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STOCHASTIC PERFORMANCE MEASUREMENT IN TWO-
STAGE NETWORK PROCESSES: A DATA ENVELOPMENT
ANALYSIS APPROACH

Alireza Amirteimoori, Saber Mehdizadeh, and Sohrab Kordrostami

In classic data envelopment analysis models, two-stage network structures are studied in
cases in which the input/output data set are deterministic. In many real applications, how-
ever, we face uncertainty. This paper proposes a two-stage network DEA model when the
input/output data are stochastic. A stochastic two-stage network DEA model is formulated
based on the chance-constrained programming. Linearization techniques and the assumption
of single underlying factor of the data are used to construct the equivalent deterministic lin-
ear programming model. The relationship between the stochastic efficiency of each stage and
stochastic centralized efficiency of the whole process, at different confidence levels, is discussed.
To illustrate the real applicability of the proposed approach, a real case on 16 commercial banks
in China is given.

Keywords: stochastic DEA, chance-constrained models, two-stage network systems, effi-
ciency

Classification: 90C05, 90B50

1. INTRODUCTION

Since the introduction of Data Envelopment Analysis (DEA) as a nonparametric method
for assessing the relative efficiency of decision-making units (DMUs) with multiple inputs
and outputs by Charnes et al. [5], many theoretical and empirical studies have applied
DEA to diverse fields of science and engineering, in both private and public sectors, such
as healthcare, agriculture, retailing, manufacturing, banking, energy and environment,
information technology, public policy, operations, and supply chains. For further details,
the reader is referred to the studies by Dyson et al. [13], Ray [32], Coelli et al. [7], Zhu
and Cook [42], Cooper et al. [11], and Zhu [41].

In many cases, there are DMUs with the two-stage process where the outputs of the
first stage are used as inputs to the second stage. To achieve an efficient status, the
inputs of the second stage should be reduced while, as the output of the first stage
they should be increased. To evaluate such processes, there are two major approaches:
cooperative and non-cooperative approaches. Consider a two-stage process in which is
considered to be leader and another one is follower. In non-cooperative approaches, we
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first optimize the leader and then, the efficiency of the follower is maximized [23]. In
contrast, in the cooperative or centralized approaches, the importance of both stages is
the same and the performance of the overall system is maximized.

In the last two decades, many studies have been conducted on the performance anal-
ysis of two-stage systems. Centralized and leader-follower models from the perspective
of game theory are constructed by Liang et al. [23], where the overall efficiency is de-
composed into the product of the efficiencies of the stages [23]. Also, Kao and Hwang
[20] considered each stage as an independent system and the efficiency of the whole
system is considered as the product of the efficiencies of each stage. The equivalence
between the relational model and the frontier model is proved by Cook et al. [8]. Chen
et al. [6] proposed an additive relational model, where the overall efficiency is decom-
posed as a weighted sum of the efficiencies of the stages [25]. From another perspective,
Kordrostami and Amirteimoori [22] have studied a multistage system when there are
undesirable final products. An extension of their approach to the more general network
processes is proposed by Hua and Bian [16]. Wang et al. [35] used additive two-stage
DEA in Chen et al. [6] applied the data translation approach to address undesirable
outputs [25]. In addition, production possibility sets (PPS) and envelopment models for
network system are constructed by Fre et al. [14].

In many situations, such as in a manufacturing system, in a production process, or
in a service system, due to volatility and complexity of the processes, measurement of
inputs and outputs are difficult in an accurate way. The traditional DEA models could
not consider data sensitivity. Thus, some researchers have proposed several models to
deal with the data variation in DEA by stochastic models. All of the above-mentioned
network models ignore the stochastic variability and uncertainty in the input and output
data caused by factors such as measurement errors, sample noise, specification errors,
etc. Although in some studies, uncertainty in the data in two-stage DEA models based
on the fuzzy theory have been considered (see, for example, [1, 12, 15, 21, 24, 26], but
there is little work on two-stage network DEA models considering stochastic data. Zhou
et al. [39] proposed the stochastic two-stage network DEA model based on centralized
control organization mechanism. In addition, the relationship of their results and the
two sub-processes are discussed. Izadikhah and Saen [18] have proposed a new stochas-
tic two-stage DEA model in the presence of undesirable data. Although they claimed
that they proposed a linear model to obtain overall efficiency, they did not represent any
transformation to linearization of their stochastic model. Wanke et al. [36] proposed an
assessment of OECD banks during 2004-2013 in light of relevant accounting and financial
indicators to reflect the production process and performance of banking industry. They
have used dynamic network DEA and SFA models for accounting and financial indica-
tors with an analysis of super-efficiency in stochastic frontiers. Moheb-Alizadeh et al.
[29] proposed a two-stage stochastic formulation with a hybrid solution methodology to
identify Efficient and sustainable closed-loop supply chain network design. Mehdizadeh
et al. [28] proposed a two-stage network DEA model with stochastic data and formu-
lated it based on the satisficing DEA models of chance-constrained programming and
the leader-follower concepts. Moreover, they discussed the relationship between the two-
stages as the leader and the follower, respectively, at different confidence levels and under
different aspiration levels. Their proposed model was applied to a real case concerning
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16 commercial banks in China. Zhou et al. [40] proposed the stochastic DEA for a
two-stage process based on the envelopment form of the DEA model. In addition, their
model assumed that the stochastic data follow a more generalized distribution function
rather than the normal distribution. They also showed that the stochastic efficiency of
the whole system can be decomposed into the product of the stochastic efficiencies of
the leader and follower.

The aim of this paper is to incorporate chance-constraint DEA and cooperative game
theory concepts into the network processes with a two-stage structure. For this pur-
pose, we utilize centralized two-stage model proposed by Liang et al. [23] and stochastic
DEA proposed by Huang and Li [17] and Cooper et al. [9] and we propose a stochastic
centralized two-stage DEA model. Actually, by using this methodology, we can re-
place deterministic concepts such as “efficiency” and “inefficiency” with concepts such
as “stochastic efficiency” and “stochastic inefficiency”. Moreover, we will apply goal
programming to linearization of our proposed model.

The paper unfolds as follows: In the next section, we discuss the deterministic cen-
tralized model. Next, in Section 3, the stochastic centralized two-stage network DEA
model according to the concepts of the cooperative game theory is proposed and its
transformation into a deterministic and linear model is explained. In addition, stochas-
tic production possibility set of the two-stage system will be discussed. In Section 4, the
proposed model is applied to a case study of 16 commercial banks in China. In the end,
Section 5 concludes the paper.

2. PRELIMINARIES

In this section, we first review the deterministic centralized two-stage DEA model and
then we present its dual programming.

2.1. Deterministic centralized model

Suppose that there are n independent Decision-Making Units, denoted by DMUj (j =
1, 2, . . . , n). Each DMU, as depicted in Figure 1, composed of two stages in series. In
the process of production, for each DMUj (j=1,2,,n), the first stage consumes xj =
(x1j , x2j , . . . , xMj)

T as inputs to produce zj = (z1j , z2j , . . . , zDj)
T as outputs. These

outputs are consumed by the second stage as inputs to produce yj = (y1j , y2j , . . . , ySj)
T

as final outputs.

Fig. 1. Two-stage process.

In real-world situations, there are many cases in which the stages of the whole system
cooperate with each other to achieve the maximal overall performance of the whole
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system [27]. For example, marketing and production departments work together to
maximize the companys profit [27].

In this section, we present the centralized model based on the concept of cooperative
game theory. In our approach, the two-stage process is viewed as one stage where the
two stages jointly determine one optimal plan to maximize the total efficiency of the
whole system [27]. In order to measure the relative efficiency of DMUo , the following
multiplier model is proposed:

Max
Uyo
V xo

(1)

s.t.

Uyj
Wzj

≤ 1, j = 1, . . . , n,

Wzj
V xj

≤ 1, j = 1, . . . , n,

Uyj
V xj

≤ 1, j = 1, . . . , n,

W,U, V ≥ 0,

in which, V,W and U are weight vectors associated with input, intermediate measures
and outputs, respectively. In the objective function of (1), the weighted sum of the
final outputs to the weighted sum of the initial inputs is maximized. The constraints
guarantee that the ratio of the weighted sum of the outputs to the weighted sum of
the inputs to both stages and the whole system do not exceed unity. Clearly, the
mathematical programme (1) is a linear fractional programming problem. By using the
Charnes and Cooper [3] transformation, programme (1) can be transformed into the
following linear form:

Max Uyo (2)

s.t.

V xo = 1,

Uyj −Wzj ≤ 0, j = 1, . . . , n,

Wzj − V xj ≤ 0, j = 1, . . . , n,

Uyj − V xj ≤ 0, j = 1, . . . , n,

W,U, V ≥ 0.

The dual formulation of (2) is as follows:

Min θ (3)

s.t.

Σnj=1(λj + γj)xij ≤ θxio i = 1, . . . ,M,

Σnj=1(λj + ξj)yrj ≥ yro r = 1, . . . , S,

Σnj=1(γj − ξj)zdj ≥ 0 d = 1, . . . , D,

λj , γj , ξj ≥ 0, (∀j).
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In programme (3), λj + γj , λj + ξj and γj − ξj are multipliers related to the inputs,
intermediate measures and final outputs, respectively.

3. STOCHASTIC CENTRALIZED MODEL

In this section, we develop a stochastic centralized DEA model to a process with a two-
stage structure, which permits the presence of stochastic variability in the data. Let us
consider all initial inputs, intermediate products, and final outputs to be jointly normally
distributed in the following chance-constrained DEA model, which is the stochastic
version of programme (3).

e
(α)
SCN =Min θ (4)

s.t.

P
(

Σnj=1(λj + γj)x̃ij ≤ θx̃io
)
≥ 1− α, i = 1, . . . ,M,

P
(

Σnj=1(λj + ξj)ỹrj ≥ ỹro
)
≥ 1− α, r = 1, . . . , S,

P
(

Σnj=1(γj − ξj)z̃dj ≥ 0
)
≥ 1− α, d = 1, . . . , D,

λj , γj , ξj ≥ 0, (∀j).

In the stochastic programming problem (4), x̃j = (x̃1j , x̃2j , . . . , x̃Mj)
T , z̃j = (z̃1j , z̃2j , . . . ,

z̃Dj)
T and ỹj = (ỹ1j , ỹ2j , . . . , ỹSj)

T respectively show the random initial input vector, in-
termediate product vector, and final output vector, and xj = (x1j , x2j , . . . , xMj)

T , zj =
(z1j , z2j , . . . , zDj)

T and yj = (y1j , y2j , . . . , ySj)
T are associated mean vectors. Moreover,

here P means probability and α ∈ [0, 1] is a scalar, specified in advance, which represents
the allowable chance (risk) of failing to satisfy the constraints with which it is associated.

Definition 3.1. For a predetermined level α, DMUo is stochastically efficient if and

only if e
(α)
SCN = 1. Suppose SPPSstage1 and SPPSstage2 are stochastic production

possibility sets of the first and second stages, respectively, defined as

SPPSstage1 =
{

(x̃T , z̃T ) ∈ RM+D
+ |∃(x̃Tj , z̃Tj ) ∈ Dj(1− α) and λj , γj ≥ 0,

j ∈ {1, . . . , n} such that Σnj=1(λj + γj)x̃j ≤ x̃ and Σnj=1(λj + γj)z̃j ≥ z̃
}

SPPSstage2 =
{

(z̃T , ỹT ) ∈ RD+S
+ |∃(z̃Tj , ỹTj ) ∈ D′j(1− α) and λj , ξj ≥ 0,

j ∈ {1, . . . , n} such that Σnj=1(λj + ξj)z̃j ≤ z̃ and Σnj=1(λj + ξj)ỹj ≥ ỹ
}

where Dj(1−α) and D′j(1−α) are confidence regions for stage 1 and stage 2 to DMUj ,
respectively, defined by Olesen and Petersen[30] as follows:

Dj(1−α) =
{

(x̃T , z̃T ) ∈ RM+D
+ |

[
(x̃j−xj)T , (z̃j−zj)T

]
Λ−1j

[
(x̃j−xj)T , (z̃j−zj)T

]T ≤ c2j},
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D′j(1−α) =
{

(z̃T , ỹT ) ∈ RD+S
+ |

[
(z̃j−zj)T , (ỹj−yj)T

]
Λ

′−1
j

[
(z̃j−zj)T , (ỹj−yj)T

]T ≤ c2j},
in which Λ−1j and Λ

′−1
j are the inverse of the variance-covariance matrix of (x̃j , z̃j) and

(z̃j , ỹj), respectively. Moreover, cj : j = 1, . . . , n is determined by P(χ2
M+D ≤ c2j ) =

1− αj , and χ2
M+D is the Chi-square random variable with M +D degrees of freedom.

Olesen and Petersen[30] clarified random realizations of DMUj that fall within the
confidence region Dj(1 − αj) , positioned inside the PPS if α ≤ 0.5 [37]. Therefore,
SPPSstage1 and SPPSstage2 are envelopment of n confidence regions Dj(1 − αj) and
D′j(1− αj) for j = 1, , n , respectively [30]. Then, the stochastic production possibility
set of the stochastic centralized network DEA Model (4) can be represented as

SPPSSCN =
{

(x̃, ỹ)|∃z̃ ∈ Dj(1− αj) ∩D′j(1− α) : (x̃, z̃) ∈ SPPSstage1,
(z̃, ỹ) ∈ SPPSstage2

}
=
{

(x̃, ỹ)|∃z̃ ∈ Dj(1− αj) ∩D′j(1− α) : Σnj=1(λj + γj)x̃j ≤ x̃,
Σnj=1(γj)z̃j ≥ Σnj=1ξj z̃j ,Σ

n
j=1(λj + ξj)ỹj ≥ ỹ, λj , γj , ξj ≥ 0

}
As it can be seen, SPPSSCN is equivalent to the stochastic production possibility set

under centralized control organization mechanism that proposed by [39]. Programme
(4) calculates the stochastic efficiency of the whole system according to the Farrell radial
measure.

3.1. Transformation to deterministic equivalent linear models

Programme (4) is very general and intended mainly for conceptual interpretation. It can
also provide guidance for the more specialized developments that we now undertake to
achieve “deterministic equivalents” for computation and implementation in applicable
circumstances [10]. To evaluate the performance of DMUo by using programme (4),
one can transform the chance-constraint programming problem to a deterministic form,
as discussed by Cooper et al. [10]. To this end, consider the ith input constraint in
stochastic programming problem (4) as follows:

P
(

Σnj=1(λj + γj)x̃ij − θx̃io ≤ 0
)
≥ 1− α. (5)

By introducing the slack variable εi ≥ 0, inequality (5) is transformed into the following
equality form:

P
(

Σnj=1(λj + γj)x̃ij − θx̃io ≤ 0
)

= 1− α+ εi. (6)

Note 1. Suppose X is a random variable and a, b and c are constants. If a ≥ b and
P(X ≤ a) = c, then P(X ≤ b) = d, in which d ≤ c.

Taking Note 1 in to consideration, and by introducing s−i ≥ 0, we have:

P
(

Σnj=1(λj + γj)x̃ij − θx̃io ≤ −S−i
)

= 1− α. (7)
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If we consider h̃i = Σnj=1(λj + γj)x̃ij − θx̃io , then h̃i ∼ N
(
hi,
(
σIi (λ, γ, θ)

)2)
, where,

hi = E(h̃i) = E
(

Σnj=1(λj + γj)x̃ij − θx̃io
)

= Σnj=1(λj + γj)xij − θxio

and(
σIi (λ, γ, θ)

)2
= V ar(h̃i) = V ar

(
Σnj=1(λj + γj)x̃ij − θx̃io

)
= V ar

(
Σnj=1(λj+γj)x̃ij

)
+V ar(θx̃io)−2Cov

(
Σnj=1(λj+γj)x̃ij , θx̃io

)
= Σnj=1Σnk=1(λj + γj)(λk + γk)Cov(x̃ij , x̃ik) + θ2V ar(x̃io)

−2θΣnj=1(λj + γj)Cov(x̃ij , x̃io

)
.

Now, considering (6), we have

P(h̃i ≤ −s−i ) = 1− α⇒ P

(
h̃i − hi

σIi (λ, γ, θ)
≤ −s

−
i − hi

σIi (λ, γ, θ)

)
= 1− α

where Z̃i = h̃i−hi
σIi (λ,γ,θ)

∼ N(0, 1). Therefore,

P

(
Z̃i ≤

−s−i − hi
σIi (λ, γ, θ)

)
= 1− α⇒ P

(
Z̃i ≤

s−i + hi
σIi (λ, γ, θ)

)
= α⇒ Φ

(
s−i + hi
σIi (λ, γ, θ)

)
= α

where Φ(.) is standard normal distribution function. Clearly, based on the invertibility
of Φ(.), we have

s−i + hi
σIi (λ, γ, θ)

= Φ−1(α)⇒ hi + s−i − Φ−1(α)σIi (λ, γ, θ) = 0

⇒ Σnj=1(λj + γj)xij + s−i − Φ−1(α)σIi (λ, γ, θ) = θxio.

Similarly, for outputs constraint, we have

Σnj=1(λj + ξj)yrj − s+i + Φ−1(α)σor(λ, ξ) = yro

in which(
σor(λ, ξ)

)2
= Σnj=1Σnk=1(λj + ξj)(λk + ξk)Cov(ỹrj , ỹrk) + V ar(ỹro)

−2Σnj=1(λj + ξj)Cov(ỹrj , ỹro).

Moreover, for the third constraint, we have

Σnj=1(ξj − γj)zdj + s−d − Φ−1(α)σzd(ξ, γ) = 0

in which(
σzd(ξ, γ)

)2
= V ar

(
Σnj=1(ξj − γj)zdj

)
= Σnj=1Σnk=1(ξj − γj)(ξk − γk)Cov(z̃dj , z̃dk).
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Consequently, programme (4) is transformed into the following quadratic form:

e
(α)
SCN =Min θ (8)

s.t.

Σnj=1(λj + γj)xij + s−i − Φ−1(α)vi = θxio, i = 1, . . . ,M,

Σnj=1(λj + ξj)yrj − s+i + Φ−1(α)ur = yro, r = 1, . . . , S,

Σnj=1(ξj − γj)zdj + s−d − Φ−1(α)wd = 0, d = 1, . . . , D,

v2i = Σnj=1Σnk=1(λj + γj)(λk + γk)Cov(x̃ij , x̃ik) + θ2V ar(x̃io)

− 2θΣnj=1(λj + γj)Cov(x̃ij , x̃io

)
, i = 1, . . . ,M,

u2r = Σnj=1Σnk=1(λj + ξj)(λk + ξk)Cov(ỹrj , ỹrk) + V ar(ỹro)

− 2Σnj=1(λj + ξj)Cov(ỹrj , ỹro

)
, r = 1, . . . , S,

w2
z = Σnj=1Σnk=1(ξj − γj)(ξk − γk)Cov(z̃dj , z̃dk), d = 1, . . . , D,

λj , γj , ξj ≥ 0, (∀j).

Theorem 3.2. The quadratic programming problem (8) is feasible, under all confidence
levels α.

P r o o f . It is easy to show that theta = 1, λo + γo = 1, λo + ξo = 1, λj + γj = 0,
λj + ξj = 0, γj − ξj = 0 for all j 6= o and v = w = u = 0 is a feasible solution to
programme (8). �

Proposition 3.3. Let α ≤ 0.5. Then 0 ≤ e(α)SCN ≤ 1.

P r o o f . Considering the feasible solution given in Theorem 3.2, and due to the min-

imization of programme (8), we conclude that e
(α)
SCN ≤ 1. Moreover, since α ≤ 0.5

then −Φ−1(α) ≥ 0 and v ≥ 0. Taking the input constraints of programme (8) into
consideration, we have:

Σnj=1(λj + γj)xij ≤ θxio ⇒
Σnj=1(λj + γj)xij

xio
≤ θ,

hence, e
(α)
SCN > 0. �

Theorem 3.4. If α = 0.5, then the results of programmes (8) and (3) are the same.

P r o o f . Since Φ−1(α) = 0, the proof is complete. �

Programme (8) is a nonlinear programming problem. In the following section, we use
the error term structure to convert it in to a linear programming problem. In this sense,
the computational efforts will be reduced substantially.
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3.2. Error structure

In this subsection, we employ the linearization approach of Cooper et al. [9] regarding
the error structure of data to transform chance-constraint problem to an equivalent linear
deterministic form. Toward this end, we suppose the inputs, intermediate measures and
final outputs of the DMUs are designated by single factors. Sharpe [33], Kahane [19]
and Huang and Li [17] applied the assumption of a single underlying factor for several
times in economics.

Suppose that the inputs, intermediate measures and final outputs of the jth DMU
are as follows:

x̃ij = xij + aijεij , i = 1, . . . ,M,

z̃dj = zdj + cdjτdj , d = 1, . . . , D,

ỹrj = yrj + brjηrj , r = 1, . . . , S,

where aij , brj and cdj are non-negative values. Moreover, εij , τdj and ηrj are independent
normal random variables, such that εij ∼ N(0, σ̄2), ηrj ∼ N(0, σ̄2) and τdj ∼ N(0, σ̄2).
Then

x̃ij ∼ N(xij , σ̄
2a2ij), i = 1, . . . ,M,

z̃dj ∼ N(zdj , σ̄
2c2dj), d = 1, . . . , D,

ỹrj ∼ N(yrj , σ̄
2b2rj), r = 1, . . . , S.

Now, suppose for each j = 1, . . . , n, we have εi = εij , ηr = ηrj and τd = τdj . Thus,
programme (4) is transformed into the following form:

e
(α)
SCN =Min θ (9)

s.t.

Σnj=1(λj + γj)xij − Φ−1(α)σ̄|Σnj=1(λj + γj)aij − θaio| ≤ θxio, i = 1, . . . ,M,

Σnj=1(λj + ξj)yrj + Φ−1(α)σ̄|Σnj=1(λj + ξj)brj − bro| ≥ yro, r = 1, . . . , S,

Σnj=1(ξj − γj)zdj − Φ−1(α)σ̄|Σnj=1(ξj − γj)cdj | ≤ 0, d = 1, . . . , D,

λj , γj , ξj ≥ 0, (∀j).

Due to the existence of the absolute function, the mathematical programming problem
(9) is non-linear. There are two different approaches to linearization of this programme.
The first method is based on the use of the properties of the absolute function and the
second one is based on the goal programming theory developed by Charnes and Cooper
[2, 4]. In the last technique, problem (9) is transformed into a quadratic programming
problem. Herein, we apply the second approach. To do this, we use the following
transformations:
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|Σnj=1(λj + γj)aij − θaio| = p+i + p−i , i = 1, . . . ,M,

Σnj=1(λj + γj)aij − θaio = p+i − p
−
i , i = 1, . . . ,M,

p+i p
−
i = 0, i = 1, . . . ,M,

|Σnj=1(λj + ξj)brj − bro| = q+r + q−r , r = 1, . . . , S,

Σnj=1(λj + ξj)brj − bro = q+r − q−r , r = 1, . . . , S,

q+r q
−
r = 0, r = 1, . . . , S,

|Σnj=1(ξj − γj)cdj | = δ+d + δ−d , d = 1, . . . , D,

Σnj=1(ξj − γj)cdj = δ+d − δ
−
d , d = 1, . . . , D,

δ+d δ
−
d = 0, d = 1, . . . , D.

By replacing the above transformations, problem (9) is converted into the following form:

e
(α)
SCN =Min θ (10)

s.t.

Σnj=1(λj + γj)xij − Φ−1(α)σ̄(p+i + p−i ) ≤ θxio, i = 1, . . . ,M,

Σnj=1(λj + γj)aij − θaio = p+i − p
−
i , i = 1, . . . ,M,

Σnj=1(λj + ξj)yrj − s+i + Φ−1(α)σ̄(q+r + q−r ) ≥ yro, r = 1, . . . , S,

Σnj=1(λj + ξj)brj − bro = q+r − q−r , r = 1, . . . , S,

Σnj=1(ξj − γj)zdj + s−d − Φ−1(α)σ̄(δ+d − δ
−
d ) ≤ 0, d = 1, . . . , D,

Σnj=1(ξj − γj)cdj = δ+d − δ
−
d , d = 1, . . . , D,

p+i p
−
i = 0, i = 1, . . . ,M,

q+r q
−
r = 0, r = 1, . . . , S,

δ+d δ
−
d = 0, d = 1, . . . , D,

λj , γj , ξj , p
+
i , p

−
i , q

+
r , q

−
r , δ

+
d , δ

−
d ≥ 0, (∀j).

Due to the existence of the constraints p+i p
−
i = 0, q+r q

−
r = 0 and δ+d δ

−
d = 0, problem (10)

is still a non-linear programming problem. However, as we know, if a linear programming
problem has an optimal solution, then, it has an extreme optimal solution and this
means that at least one of the variables p+j or p−j and q+r or q−r and δ+d or δ−d are zero.
Consequently, if we use the simplex algorithm to solve this linear programming problem,
we can find an extreme optimal solution to this nonlinear programming problem and we
can avoid the nonlinear constraints p+i p

−
i = 0, q+r q

−
r = 0 and δ+d δ

−
d = 0.

The following theorem shows that the efficiency score e
(α)
SCN is monotone decreasing

in α. This means that the error term α plays important role in determining efficiency
scores. It states that as the error term increases, the efficiency score decreases.

Theorem 3.5. For each α′ < α < 0.5 we have e
(α′)
SCN ≥ e

(α)
SCN .
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P r o o f . Suppose (θ∗, λ∗, γ∗, ξ∗, p+∗, p−∗, q+∗, q−∗, δ+∗, δ−∗) is an optimal solution to
programme (10) when DMUo is under evaluation at confidence level α. Since Φ−1(α)
is a strictly increasing function, then Φ−1(α′) < Φ−1(α) and we have

Σnj=1(λ∗j + γ∗j )xij − Φ−1(α′)σ̄(p+∗i + p−∗i ) ≤ Σnj=1(λ∗j + γ∗j )xij − Φ−1(α)σ̄(p+∗i + p−∗i )

≤ θ∗xio,

Σnj=1(λ∗j + ξ∗j )yrj + Φ−1(α′)σ̄(q+∗r + q−∗r ) ≥ Σnj=1(λ∗j + ξ∗j )yrj + Φ−1(α)σ̄(q+∗r + q−∗r )

≥ yro,

Σnj=1(ξ∗j − γ∗j )zdj − Φ−1(α′)σ̄(δ+∗d + δ−∗d ) ≤ Σnj=1(ξ∗j − γ∗j )zdj − Φ−1(α)σ̄(δ+∗d + δ−∗d )

≤ 0.

Hence (θ∗, λ∗, γ∗, ξ∗, p+∗, p−∗, q+∗, q−∗, δ+∗, δ−∗) is a feasible solution to programme (10)
when DMUo is under evaluation at confidence level α′. Due to the minimization of the
programme, the proof is completed. �

Corollary 3.6. If DMUo is efficient under the confidence level α, then it is efficient
under the level α′ < α. Also, at confidence level α′, if DMUo is inefficient, then it is
inefficient at each confidence level α > α′.

Note that by considering a fixed predetermined value α, the whole system is stochas-
tically efficient if both sub-processes are stochastically efficient. However, the converse
is not true in the sense that the sub-processes may be stochastically efficient, while the
whole system is inefficient. Theorem 3.7 states this issue.

Theorem 3.7. Let e
(α)
1 and e

(α)
2 are the stochastic efficiency scores of the first and

second stages in SPPSstage1 and SPPSstage2, respectively. Then e
(α)
SCN ≤ e

(α)
1 and

e
(α)
SCN ≤ e

(α)
2 .

P r o o f . Suppose (λ
(1)∗
1 +γ

(1)∗
1 , λ

(1)∗
2 +γ

(1)∗
2 , . . . , λ

(1)∗
n +γ

(1)∗
n , e

(α)
1 ) is an optimal solution

of the stochastic input-oriented model of the first stage. Let λj +γj = λ
(1)∗
j +γ

(1)∗
j , λj +

ξj = λ
(1)∗
j + γ

(1)∗
j and γj − ξj = 0 for all j = 1, . . . , n. As we can see, (λ1 + γ1, , λn +

γn, λ1 + ξj , . . . , λn + ξn, 0, , 0, e
(α)
1 ) is a feasible solution to programme (4). Suppose the

optimal value of programme (4) is e
(α)
SCN . Hence e

(α)
SCN ≤ e

(α)
1 . The proof of the second

part is similar. �

It is easy to show that if e
(α)
1 and e

(α)
2 are stochastic efficiency scores of the first

and second stages in SPPSstage1 and SPPSstage2, respectively, then e
(α)
SCN ≤

(e
(α)
1 +e

(α)
2

2 .
Moreover, for any predetermined confidence level α, if the whole process is stochastically
efficient under the stochastic centralized model, then each sub-process is stochastically
efficient.
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4. AN EMPIRICAL EXAMPLE

After formulating our theoretical framework, we use a real case on bank branches to
illustrate the real applicability of the approach. One of the most frequently studied
application of DEA is performance analysis in commercial banks (Seiford, & Zhu[34],
Yang et al. [38], Paradi and Zhu [31], Zhou at al. [39]). Although, many DEA-based
applications have focused on performance analysis in banking sector, however, most of
these studies in this field have used deterministic data. Here, we employ the stochastic
dataset on 16 commercial banks taken from [39].

The data set consists of 16 commercial banks in China taken from [39]. The first
stage uses Employees, Fixed Assets and Expenses as inputs to produce Deposits and
Interbank Deposits as outputs. Then, by consuming the outputs of the first stage as
inputs to the second stage, Loan and Profit are produced as final outputs. Furthermore,
all inputs and outputs are supposed to follow a normal distribution. As [39] reported,
Table 1 (Fig. 2) provides the approximated mean values and standard deviations from
annual reports and internal databases for the 16 banks, the ten years period from 2000
to 2010 from the Almanac of China’s Finance and Banking.

Fig. 2. Table of estimated mean values and standard deviations for

the 16 banks from 2000 to 2010

The efficiency scores of overall processes under model (10), at different confidence
levels α = 0.1, 0.2, 0.5, are shown in Table 2 (Fig. 3). As the results show, DMU15
have the best performance and it is stochastically efficient under all confidence levels.
Moreover, DMUs 11, 14 and 16 perform the worst under every confidence level. The
last column in Table 2 represents the stochastic efficiency scores at α = 0.5, which are
equivalent to the deterministic centralized model (3) with only input and output means.
The obtained results under different levels, one can see that choosing a confidence level
plays an important role in evaluating performance. For a better understanding and
explanation of the results, Figure 4 depicts graphically the confidence levels provided in
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Table 2 (Fig. 3). As we should expect, by increasing the confidence level α, the efficiency
score decreases.

Fig. 3. Table of efficiency scores from stochastic centralized model.

Fig. 4. The efficiency scores at different confidence levels.

Table 3 (Fig. 5) represents the stochastic efficiencies of the first stage (e1), second
stage (e2) and the mean of e1 and e2 under different confidence levels. Looking at
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Tables 2 and 3, we see that the stochastic centralized efficiency of each DMU (e
(α)
SCN ) at

every confidence level, is less than or equal to the mean of e1 and e2, as we expected.
For example, DMU15 is stochastically efficient under the centralized model that implies
both stages are stochastic efficient. However, the converse is not true. For DMUs 1 and
8, at confidence level α = 0.1, both stages are stochastically efficient. But, the overall
systems of these two DMUs are not stochastically efficient. It should be pointed out
that in deterministic centralized model, based on the definitions of the efficiency of the
overall system and efficiencies of the stages, we should expect that the efficiencies of the
stages must guarantee the efficiency of the overall system. However, in stochastic case,
this is not necessarily true.

Fig. 5. Table of efficiency scores of the stages and mean efficiency of

two stages.

A comparison between the results in deterministic case (when α = 0.5) with the
results in stochastic case provides interesting insight. In overall sense, it is obvious that
the stochastic efficiency score for each bank is changed under different confidence levels.
Moreover, as the results show, it is obvious that the efficiency scores of the DMUs under
the probability level α = 0.1 is higher than the efficiency scores in comparison with
other probability levels. This is due to the fact that α is a pre-determined confidence
level and it forms an ellipse around the mean value of the inputs and outputs of each
firm. As a result, a firm might experience a change in its efficiency score if α is changed.
Moreover, Table 5 in [40] listed the corresponding products of stochastic CCR efficiencies
of the two stages. Comparing these stochastic efficiency scores with the results obtained
from our proposed approach, we see that the products of stochastic CCR efficiency
scores of the two stages are greater than or equal to those from stochastic centralized
DEA models in Table 2, which means that products of stochastic CCR model may
overestimate the efficiencies of the whole system. Again, Table 5 in [40] shows that
DMU1 is stochastically efficient under levels α = 0.1, 0.2, 0.3 and DMU8 is stochastically
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efficient under levels α = 0.1, 0.2. However, in our proposed approach, only one unit
(DMU15) is stochastically efficient in different confidence levels.

5. CONCLUSIONS

Performance evaluation of decision-making units with two-stage structures and stochas-
tic data are studied in this paper. Toward this end, we have presented a cooperative
model to calculate the relative performance of a two-stage network system when the
input/output data are stochastic. Then, the chance-constrained model was converted to
a deterministic equivalent form. In addition, by using techniques of stochastic problems
linearization and assumption of the single underlying factor of components of inputs,
intermediate measures, and final outputs, the linear form was obtained. The relation-
ship between the stochastic efficiency of each stage and mean of their efficiencies and
stochastic centralized efficiency of the whole process, at different confidence levels, was
discussed. The results indicated that the efficiency score of the centralized model is less
than or equal to the mean efficiencies of the stages. At the end of this paper, a real
case on 16 commercial banks in China was discussed to illustrate the applicability of the
proposed approach.
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