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ABSTRACT 

ORTUZAR, J. de D. (1980) MultimodaL choice modelling - 
some relevant issues. Leeds: University of Leeds, Inst. 
Transp. Stud., WP 138. (unpublished) 

This paper gives an overview of the most relevant 

issues re la t ing  t o  the appl icat ion of multimodal choice 

models ranging from data considerations, such as a l ternat ive 

sampling s t ra teg ies and measurement techniques, t o  the  hot ly 

debated aggregation issue. Part icular  emphasis i s  placed on 

the  specif icat ion and estimation problems of disaggregate 

choice models. 

D r .  Ortuzar's address is: Departamento de Ingenieria de Transporte 
Universidad Catolica de Chile 
Casi l la 114-D 
Santiago - Chile. 
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MULTIMODAL C H O I C E  MODELL ING - SOME RELEVANT ISSUES 

1. INTRODUCTION 

The problems of mode choice modelling and forecasting have been 

approached i n  many ways since the  mid-50s, but for the  most par t ,  

research and appl icat ions have been concerned with choice between car 

and public t ransport  which, it has been argued, is the  s i tua t ion  faced 

by the majority of t rave l le rs  i n  the  journey-to-work. However, it i s  

obvious tha t  people do not necessarily choose between two speci f ic  

a l ternat ives only when making t h e i r  choice, but instead they generally 

confront options such as driving a car,  t rave l l ing as passengers i n  a 

car, bus o r  t ra in ,  r id ing a bicycle or a scooter o r  simply walking. In 

addition, each t r i p  might u t i l i s e  a combination of modes, i . e .  mixed- 

mode t r i p s  ( for  example, park-and-ride), although it can be argued tha t  

some mixed options a re  so unl ikely tha t  the probabil i ty of t h e i r  

select ion can be considered as zero. A s  a consequence, it has often 

been suggestedthat individuals can be considered as users of t h e i r  

'main mode' (e.g. the  procedure used i n  the majority of transportat ion 

studies i n  the  U.K. ) . However, t h i s  procedure is  c lear ly  inaccurate 

for  many people who depend on another mode for  access t o  the  major one. 

Also, with the  increasing departure from t rad i t iona l  po l ic ies based on 

a 'pure' mode context and the  emphasis on an ' integrated' approach t o  

urban transport problems, the time i s  r ipe  fo r  models which are more 

oriented towards a l ternat ive po l ic ies,  such as pr ice penalty measures, 

t r a f f i c  res t ra in t  and exclusion schemes, bus p r i o r i t y  measures, 

incentives t o  park-and-ride and car-pooling, e tc . ,  and which must be 

multimodal (as opposed t o  binary) i n  nature. 

During the l a s t  decade, and par t icu lar ly  over the  l a s t  f i ve  years, 

s igni f icant advances have been made i n  t rave l  demand forecasting 

methods. The most important and widely promoted new techniques have 

been the so-called 'disaggregate' o r  'individual-choice' o r  'second 

generation' models (for a good review of theoret ica l  developments, see 

Williams, 1979). These models have been usually generated within a 

'random u t i l i t y '  theory framework(*) (for a review, see Domencich and 

-. . 
( * )  Note tha t  the  theory i s  not constrained t o  disaggregate models only; 

i n  fact  we have used it recently t o  generate aggregate modal s p l i t  
models (see Hartley and Ortuzar, 1980). 



McFadden, 1975). In t h i s  quanta1 choice theory, the  decision-maker is 

assumed t o  choose the option ( A . )  which possesses, a s  f a r  as he i s  
J 

concerned, the  greatest  u t i l i t y  U..  In order t o  account for  dispersion 
J 

- the fac t  t ha t  individuals with the  same observable character is t ics  

do not necessari ly se lect  the  same option - the  modeller introduces 

a random element e i n  addition t o  each measured individual 's u t i l i t y  
- j 
U.. In t h i s  way, the  u t i l i t y  of a l ternat ive A.  is actual ly represented 

J J 
as: 

Ortuzar and Williams (1978) have described pedagogically, the 

generation of random u t i l i t y  models, ranging from the  very convenient 

but theoret ica l ly  res t r i c t i ve  multinomial l og i t  (MNL) model, t o  the  

general and powerful but ra ther  intractable multinomial probit  ( M N P )  

model. 

In t h i s  paper we wish t o  discuss b r ie f l y  some issues re la ted t o  

the application of such models (and i n  some cases any model) t o  the  

problem of choice of mode for  the  journey-to-work. We w i l l  consider 

questions of data, such as type of data, a l ternat ive sampling s t ra teg ies 

and problems of measurement, and modelling issues, such as model 

specif icat ion and estimation. However, we w i l l  f i r s t  address the 

aggregation problem which l i e s  a t  the heart of one of today's most 

hotly contested debates - whether t o  use aggregate or disaggregate 

models, and i n  which circumstances. 

We do not attempt t o  be comprehensive on these issues, so we 

refer  the  reader t o  good general discussions by McFadden (1976; 1979a); 

Williams (1977; 1979); Hensher (1979a); Ben-Akiva e t  a1 (1977; 1979); 

Daganzo (1980) ; Daly (1979) ; Jansen e t  al  (1979) ; Wnheim (1979) ; 

Reid (1977) ; Spear (1977; 1979) ; and Williams and Ortuzar (1980b). 

2. THE PROBLEM OF AGGREGATION 

The aggregation issue may be thought of i n  very general terIUS a s  

the path through which a detai led description of an indiuidual 's 

decision-making process, as imputed by a modeller, i s  transformed in to  

a se t  of observable en t i t i es  and for  re la t ions which can be useful ly 

employed by him. In an econometric interpretat ion of (transport demand) 

models, the  aggregation ovsr unobservabZe entities resu l ts  i n  a 

probabi l is t ic  decision (choice) micro model, and the aggregation over 

the  distribution of observabZe quantities resu l ts  i n  t h e  conventional 



aggregate o r  macro relat ions.  In t h i s  sense, the  d i f f i cu l ty  of the 

aggregation problem depends, t o  a large extent, on how the  components 

of a system are  described within the  frame of reference used by a 

modeller, because it i s  precisely t h i s  framework which w i l l  determine 
( * I  the degree of var iab i l i t y  t o  be accounted for  i n  a 'causal' relat ion. 

To give an example, if the  frame of reference used by a modeller i s ,  

say, t ha t  provided by the  entropy maximising approach, the explanation 

of the s t a t i s t i c a l  dispersion i n  a given data se t  w i l l  be very dif ferent 

t o  tha t  provided by another observer using a random u t i l i t y  maximising 

approach, even i f  they both f i n i sh  up with identicaz model functions 

( the equi-f inal i ty issue, see, for  example, Williams, 1979). The 

interpretat ion of such a model, say the  c lass ic ia l  MNL, depends however 

on the theory used t o  generate it, and t h i s  i s  par t icu lar ly  important 

for  i t s  e l a s t i c i t y  parameters. For the entropy maximising modeller, 

the  parameter corresponds t o  a Lagrange mult ip l ier  associated 

' I . . . . .  with the change i n  ZikeZihood of observing a given 
aZZocation (share) pattern ... with respect t o  incrementaZ 
changes i n  system t r i p  cost measures". (WiZZiams, 2979) 

For the  second modeller, the  same parameter i s  now inversely re la ted 

t o  the  standard deviation of the u t i l i t y  d istr ibut ions from which the 

model i s  generated (**) see ~ i l l i a m s  (1.977). 

I f  we choose t o  use a random u t i l i t y  approach, the aggregation 

problem w i l l  reduce, t o  obtain from data, a t  the leve l  of the  individual, 

aggregate measures such as market shares of d i f ferent  modes, flows on 

l inks,  e t c . ,  which a re  typ ica l  f i n a l  model outputs. There are two 

obvious ways of proceeding, as shown in  Figure l ( a ) ,  which a re  basical ly  

distinguished by having the process of aggregating individual data 

before or after  model estimation. I f  the data is grouped pr ior  t o  the  

estimation of the  model, we w i l l  have the  c lass ica l  'aggregatebpproach 

which has been heavi ly c r i t i c i sed  for  being inef f ic ient  in the  use of 

data (because data is aggregated, each observation is  not used a s  a 

data point and therefore more data is  needed), fo r  not accounting for  

(*l I am grateful  t o  Huw Williams fo r  having explained t h i s  
interpretat ion t o  me. 

(**I Two comments a re  worthwhil e here: f i r s t l y  the f u l l  interpretat ion 
of model parameters is-not t ransferable within theor ies;  and, 
secondly, while i n  some cases the interpretat ion might not matter 
( i . e .  i f  one is in terested on flows i n  networks) i n  others it can be 
very crucial ,  f o r  example, if we are  seeking t o  endow predicted 
forecasts with some notion of benefi ts (Williams and Ortuzar, 1980b). 



the full var iab i l i t y  i n  the  data (e.g. within zone variance may be 
< 

higher than iner-zonal variance), and for  r isk ing s t a t i s t i c a l  

d is tor t ion and b ias (such as the  wgll-known ecological fa l lacy) ,  e tc .  

The 'disaggregate' approach, on the other hand, estimates the model a t  

the leve l  of the  individual thus apparently answering, a t  t h i s  stage, 

the  cr i t ic isms mentioned above. The question tha t  remains, however, 

i s  how t o  perform the  aggregation operation over the  micro relat ions? 

As we w i l l  see below, the  answer i s  ... ' ra ther  simply', if we are  

interested i n  short-term predictions of journey-to-work mode choice 

models; however, for  other modelling requirements, the  answer ranges 

from ... ' d i f f i c u l t ' ,  t o  ... 'almost impossible', unless being 

self-defeating i n  the  sense of requiring heroic assumptions (as  bad as 

those c r i t i c i sed  i n  the  'aggregate' approach) and/or enormous amounts 

of extra data. I n  fac t ,  Reid (1977) i n  the context of developing a 

disaggregate model system has remarked tha t  

" ... there a re  pract ica l  and theoret ica l  l im i ts  t o  the 
appl icat ion of s t r i c t l y  behavioural methods ... it is  
d i f f i cu l t  t o  preserve a behavioural structure and conform 
t o  aggregate observations..." 

Before b r i e f l y  describing the  main aggregation methods, l e t  us 

note tha t  the approach followed i n  Br i t ish pract ice is a hybrid of the  

two mentioned above as shown i n  Figure l ( b ) .  For example, household 

based ( ra ther  than zonal) category analysis has been used a t  the t r i p  

generation stage, while the  SELNEC and subsequent studies used 

weighting coeff icients obtained from a standard disaggregate study 

(e.g. McIntosh and Quarmby, 1970), i n  a generalised cost formulation. 

However, the  e las t i c i t y  parameters (e.g. p and A )  and other model 

constants have been determined from an aggregate cal ibrat ion.  This 

' t ransferab i l i ty '  of micro parameters ( * )  between di f ferent  studies 

(e.g. dif ferent regions and dif ferent times) w i t h  the poss ib i l i t y  

of loca l  ' tuning' (Goodwin, 1978) may be seen as a pragmatic approach 

t o  the  aggregation problem. This issue i s  discussed a t  more length 

by Williams and Ortuzar (1980b). 

('1 Which interest ingly bears close analogy t o  the  s t ra tegy proposed 
by Ben-Akiva C19791 f o r  t he  t rans fe rab i l i t y  of disaggregate 
models, although with di f ferent  motivations. 

- 



Returning t o  the  general approaches shown i n  Figure l a ,  much 

research has been directed recently a t  a comparative asses~ment of 

aggregation methods (see, f o r  example, Ben-Akiva and Atherton, 1977; 

Ben-Akiva and Koppelman, 1974 ; Bouthelier and Daganzo, 1979 ; Daly , 
1976; Dehghani and Talv i t ie,  1979 ; Hasan, 1977; Koppelman, 1974, 

1976a, 1976b; Liou e t  a l ,  1975; McFadden and Reid, 1975; Meyburg 

and Stopher, 1975; .Miller, 1974; Reid, 1978a, 19781,; Ruijgrok, 

1979; Watanatada and Ben-Akiva, 1978). The various methods proposed 

of fer  d i f ferent  s t ra teg ies for  computing the sma t ion / i n teg ra t i on  

over micro re la t ions,  and include, among others: the 'naive' approach, 

sample enumeration methods, and c lass i f icat ion approaches. 

The naive approach consists of the d i rect  subst i tut ion of 

aggregate o r  average values of the explanatory variables in to  typical ly  

non-linear, micro re la t ions,  and it has been found tha t  the  aggregation 

bias may be severe i n  t h i s  case. In the sample enumeration approach, 

the impact of a given pol icy on each individual, i n  a representat ive 

sample, is determined from the  disaggregate model and population 

forecasts a re  then computed by straightforward sumnation of the  effect 

over individuals according t o  the  sampling strategy. This method i s  

considered t o  be par t icu lar ly  useful for  estimating impacts for  

short-term pol ic ies (see Ben-Akiva and Atherton, 1977). but must be 

modified when the  character is t ics  of the  population change over the 

forecasting period (s ince it cannot be assumed tha t  the  d is t r ibut ion 

of observable a t t r ibu tes  remains constant]. 

In the c lass i f icat ion approach, the t o t a l  population i s  part i t ioned 

in to  re la t ive ly  homogeneous groups and then average (group) values of 

the explanatory variables a re  inserted in to  the disaggregate model t o  
(*) determine demand i n  each group according t o  the  naive approach . 

The accuracy and eff iciency of t he  method depends on the c lass i f icat ion 

involved, e.g. t he  type and number of groups and the  character is t ics  

of the variables included. 

[*I In terms of i ts aggregation character is t ics ,  the  pract ice i n  
Br i t ish studies with use of market segment d i f ferent ia ted models, 
may perhaps best be seen as a var iat ion of t h i s  c lass i f icat ion 
approach. -. 



For mode choice studies where only short term e l a s t i c i t i e s  are 

required, there i s  a consensus tha t  aggregating micro-relations, i .e .  

' t h e  'disaggregate' approach, i s  both feasible,  e f f i c ien t  and hence 

desirable. However, i n  longer term contexts where locat ion 

(d is t r ibut ion)  models need t o  be considered and/or when network flows 

are required the  problem becomes much more involved. Very few studies 

have attempted the  aggregation of micro-models i n  these contexts so 

it i s  premature t o  make def in i t ive judgements. One which did, the  

SIGMO study (Project Bureau Integral  Traff ic and Transportation Studies, 

1977) encountered severe problems in  attempting t o  reconcile micro 

destination choice models with aggregate t r i p  patterns and abandoned 

the disaggregate approach i n  favour of an exist ing d is t r ibut ion model 

based on generalised costs. More generally, Reid (1977) has noted tha t  

while i n  pr incip le a disaggregate model has a be t te r  chance of 

capturing the essent ia l  causal i ty  i n  the data, i n  pract ice 

"... if t he  behavioural theory i s  weak or the models untested 
against experience, such a s  with current individual location 
models, they may f a i l  t o  include some important factors which 
a re  embodied i n  aggregate o r  summary variables which merely 
show a correlat ion t o  demand. These are  more l i ke l y  t o  pick 
up unknown ef fects  . . . (and) . . . i f  adequate disaggregate data 
w i l l  not be avai lable for  forecasting, models cal ibrated on 
aggregate data w i l l  be more accurate." 

In the  ear ly 1970's the  process of aggregation was usual ly viewed 

as the  rather straightforward solut ion of a numerical problem which was 

well understood i n  principle. In pract ice,  however, it has shown 

i t s e l f  t o  be a highly non-tr ivial  process which embraces not only 

considerations of numerical eff iciency, but a lso questions re la t ing t o  

the  ava i lab i l i t y  of forecasts fo r  individual explanatory variables and 

the  s t a b i l i t y  of t he  d is t r ibut ion of explanatory variables over time. 

Furthermore, there i s  a lso concern about the  re la t ion  of predict ions t o  

estimation and data designs; therefore, any comparison of 'aggregatet 

and 'disaggregatet models must involve, impl ic i t ly  o r  exp l i c i t l y ,  a 

consideration of these issues. 



3 .  DATA COLLECTION AND MEASUREMENT 

3.1 Representation and measurement of t r a v e l  a t t r ibu tes  

In any par t icu lar  study, out of the large var iety of potent ia l ly  

avai lable forecasting methods (e  .g. cross-sectional analysis ; panel 

data methods; aggregate time ser ies approaches) and estimation 

techniques, data considerations alone w i l l  normally r e s t r i c t  the  choice 

t o  one single method. Histor ical ly ,  the cross-sectional approach has 

c lear ly  dominated, typ ica l ly  i n  conjunction with revealed preference 

methods, although a l ternat ive approaches based, f o r  example, on s ta ted  

preferences/intentions, have been preferred on several occasions (see 

Ortuzar, 1980a). However, the general problem of discounting for the 

over-enthusiasm of respondents ( the  'yeah' b ias )  has not yet  been 

solved, and it has recently been suggested tha t  s ta ted and revealed 

preference methods may perhaps be be t te r  used i n  a complementary fashion, 

where insights can be obtained which would not a r i se  i f  e i ther  approach 

were used alone Csee, for  example, Hensher and Louviere, 1979; Gensch, 

1980). We have argued elsewhere, ( ~ i l l i a m s  and Ortuzar, 1980a), t ha t  it 

is not possible a t  t he  cross-section t o  discriminate between a large 

var iety of possible sources of dispersion i n  data pat terns (such a s  

preference dispersion, constraints,  habi t  ef fects,  e t c . ) .  Panel data 

o r  more simply, before-and-after information, may o f fe r  some means t o  

d i rect ly  t e s t  and perhaps re jec t  hypotheses re la t ing t o  response, (see 

an in terest ing example i n  Johnson and Hensher, 1980). On the  other hand 

models bu i l t  on ' longitudinal '  (as opposed t o  cross-sectional data) 

have technical problems of t h e i r  own (e.g. how best t o  'pool' the  

information), but a discussion of t h e i r  merits i s  beyond the  scope of 

t h i s  paper. 

A re la ted area of concern has t o  do with the  problem of measurement. 

We wish t o  discuss b r i e f l y  here the implications for  parameter estimates 

of using d i f ferent  measurement techniques and/or philosophies. For a 

deeper insight  in to  the  problem we refer  the  reader t o  the excel lent 

discussions by Daly (1978) and Bruzelius (1979). The problems involved 

i n  obtaining measures of explanatory variables (e.g. cost and time 

requirements by a l ternat ive modes) are shown schematically i n  Figure 2. 

Ideal ly we would l i k e  t o  obtain information on these variables as 

perceived by the commuter when taking h i s  decision, especial ly i f  we 

are no t  in terested i n  forexasting (how do you get 'perceived' information 



about a future s i tua t ion?) ,  but perhaps i n  obtaining 'values of t ime'. 

The f igure re f lec ts  the  state-of-the-art i n  the understanding o f t h e  

relat ionships between 'actua l ' ,  'perceived', 'reported' and 'measured' 

values. The trouble i s  t ha t  none of the arrows and boxes i n  the f igure 

have yet been quantif ied. Knowledge i n  t h i s  a r e a , i s ,  l i t e r a l l y ,  sketchy! 

The analyst i s  therefore made t o  choose between reported and measured (or  

'engineering' or  'synthesised') data, and while models estimated on each 

type of data may prove reasonable i n  themselves 

"... it i s  very d i f f i cu l t  t o  postulate relat ionships tha t  
w i l l  allow models cal ibrated on reported data t o  be applied 
t o  synthesised data o r  vice versa." ( ~ a l y ,  1978) 

Most probably the  safest  way out is t o  col lect  information on both 

reported and engineering values and t o  make comparisons i n  order t o  gain 

insight from the  two approaches. This i s ,  of course, more cost ly and 

time consuming and, a s  Hensher (1979~)  and others have remarked, it i s  

seldom the  case tha t  the  a n d y s t  f inds himself with t he  luxury (o r  

embarassment) of a l ternat ive data/methods a t  hand. 

We mentioned above tha t  one possible and a l ternat ive use for  a model, 

instead of forecasting, i s  t o  employ it f o r  estimating, f o r  example, 

values of time ( ~ r u z e l i u s ,  1979; Daly, 1978; Hensher, 1972; McFadden, 

1978b; Prashker, 1979; Quarmby, 1967; Train, 1977; Gunn, Mackie and 

Ortuzar, 1980; and some of t he  references c i ted  there in ) .  An old issue 

i n  t h i s  context i s  the  'trader/non-trader' question, e.g. should those 

individuals who appear t o  be faced with a dominant(*) option be excluded 

from the  sample? As Daly (1978) has c lear ly  pointed out, t he  answer is 

def in i te ly  no! The main d i f f i cu l ty  has actual ly been due t o  a 

misunderstanding: t ha t  only observable, and hence measured (or measurable) 

a t t r ibu tes  should matter when defining whether an option i s  dominant, 

leaving out the  cruc ia l  unobservables and/or unmeasured character is t ics .  

In t h i s  sense, the larger  the  number of measured a t t r ibu tes  incorporated 

i n  the model, the  smaller w i l l  be the  number of apparent 'non-traders' and, 

be t te r  s t i l l ,  the l e s s  the  influence of unmeasured factors (simply because 

more of those are  incorporated.) 

(*)  An option which, to the modeller, looks be t te r  i n  every respect 
than the  others and happens t o  be the  chosen one ( i f  it is not 
the  chosen one the  individual i s  deemed i r ra t ional ! ) .  Notice 
tha t  t h i s  i s  not t o  be confused with the  issue of captive t rave l le rs  
(e.g. a person who needs'the car during the day) who should be 
trimmed out of t he  sample ( i f  ident i f ied) .  



This brings us natural ly in to  the question o r  using 

at t i tud inal  varia'bles feg. comfort, convenience, re l i ab i l i t y )  t o  

improve our models. (For a more complete discussion see, 

Foerster, 19'(9b, Johnson, 1975; Spear, 1976; Stopher e t  ~1.1974; 

and Wemuth, 1978). In  terms of the influence of a t t i tud ina l  

measures on the value of other parameters and on the general 

performance of a model, there i s  conflicting evidence i n  the 

l i terature.  McFadden (1976) , fo r  example, concluded tha t  choice 

was explained, t o  a great extent, by the typical level-of-service 

variables used i n  conventional studies and tha t  a t t i t u a n a l  

(t) measures added very l i t t l e  explanatory power t o  the models . 
More recently, however, Prashker (19'(9) has found that  including 

measures of re l i ab i l i t y  (eg. re l i ab i l i t y  of finding a parking 

space; r e l i ab i l i t y  of bus arr iva ls)  , both substantial ly increased 

the explanatory power of the models ( for example, it produced mode- 

specific constants which were not statistically different from zero), 
1 

and change s ign i f i cmt ly  the values of some parmeters ( i n  part i -  

cular the value of in-vehscle time). Once more, the safest  recom- 

mendation seems t o  be t o  examine the possibi l i ty of measuring some 

'unconventional' factors (eg. re l i ab i l i t y ,  cowort ,  convenience, 

etc.) and t o  t e s t  fo r  the i r  ef fects on the other parameter estimates 

and model explanatory power. Again, however, th is  would natural ly 

imply higher data collection and analysis costs. 

("1t is  f a i r  t o  say, though, that  the models discussed by McFadden 
(1976) have been heavily c r i t i c ised by Ta l r i t ie  and Kirs$hner (1978) on the 
grounds, among other thmgs, _that the mode-specific constants tended 
t o  account for over 60% of the i r  explanatory power. 



3.2 Alternative sampling s t ra teg ies 

The development and implementation of t rave l  demand models 

have t rad i t ional ly  been associated with large data col lect ion 

ef for ts ,  involving, pr incipal ly,  very expensive home interview 

surveys. Because conventional aggregate models used data a t  the 

zonal leve l  f a i r l y  large random samples wererequired for  cal ibra- 

t ion purposes, and it i s  ~ e l l - ~ a m  tha t  on many occasions the  

cost and time consumed i n  the col lect ion and analysis of the data 

prevented the  analysts from examining a suf f ic ient  range of 

a l ternat ive pol icies. 

One of the advantages t rad i t ional ly  c i t ed  fo r  disaggregate 

models i s  the eff iciency with which they can make use of avai lable 

data and the potent ia l  f o r  reducing the time and e f fo r t  expended 

on data collection. A s  we saw above, t h i s  claim (together with 
- 

others) has not been universally achieved, but it is t rue  t o  say 

tha t  i n  cer ta in  s i tuat ions the  fac t  that disaggregate choice models 

use observations of individual decision makers, rather than 

geographically defined groups, can substant ia l ly  reduce data col- 

lec t ion costs. The r e s t  of t h i s  section sumarises two excel lent 

papers by Lerman and Manski (3.~76; 1979) Which const i tute the 

state-of-the-art i n  t h i s  area. 

The majority of appl icat ions of disaggregate cholce models 

have re l ied  on randomly sampled data, eg. s l igh t  variat ions on the 

typ ica l  home interview survey. A few studies have used strati- 

f ied sampling, where the population of in te res t  is  bv ided i n to  

groups according t o  some character ist ics such as car  ownership 

(which must be known i n  advance) and each subpopulation is sampled 

randormy. It is clear that-random o r  s t r a t i f i e d  samples can be 



very expensive indeed i n  cases wheee an option of in te res t  has a 

very low probabil i ty of select ion; because t o  achieve a-reasonable 

representation of' the  option i n  question it is necessary t o  co l lec t  

a very large sample. A choice-based sample t t h a t  i s ,  one where 

observations are drawn based on the  outcome of the decision-aaking 

process under study1 designed so tha t  the number of users of the 

low option is  redetermined of fers  one way t o  solve t h i s  problem. 

Choice-based samples a re  not uncommon i n  t ransport  studies. 

Typical examples a re  on-board t r a i n  and bus surveys, and roadside 

interviews i n  the case of mode ehoice modelling. They can fre- 

quently be obtained f a i r l y  inexpensively, but (because of the way 

the parameters of ( d i s a g ~ e ~ a t e )  models are generally cal ibrated) 

have seldom been used fo r  cal ibrat ing models (see Cosslett ,  1980). 

As we w i l l  see below each sampling strategy resu l ts  i n  a di f ferent  

d istr ibut ion of observed choices and character ist ics i n  the sample 

that  i n  certain s i tuat ions the fact  that  disaggreeate choice models 

m e  observations of individual decision makers, rather than 

geographically defined groups. can substant ia l ly  reduce data col- 

lect ion costs. The r e s t  of t h i s  section summarises two excel lent 

papera by Lerman nnd Manski (1976; 1979) which const i tute the 

state-.of-the-art i n  t h i s  area. 

The majority of applications of disaggregate choice models 

have re l ied  on randomly sampled data, eg. s l igh t  variat ions on the 

typical home interview survey. A few studies have used s t ra t i -  

f jed sampling, where the population of in te res t  is  chvided i n to  

groups according t o  some character ist ics such as car ownership 

(which must be known in  advance) and each subpopulation i s  sampled 
- 

randomly. It is clear tha t  random o r  s t r a t i f i e d  samples can be 



very expensive indeed i n  cases where an option of in te res t  has a 

very lor? probabil i ty Of select ion; because t o  achieve a reasonable 

representation of the option i n  question it i.s necessary t o  co l lec t  

a very large sanple. A choice-based sample (that i s ,  one where 

observations are drawn based on the outcome of the decision-making 

process under study) designed so tha t  the number of users of the 

low option i s  predetermined of fers one way t o  solve t h i s  problem. 

Choice-based samples a re  not uncommon i n  t ransport  studies. 

Yypical examples a re  on-board t r a i n  and bus surveys, and roadside 

interviews in the case of mode choice modelling. They can fre- 

quently be obtained f a i r l y  inexpensively, hut (because of the way 

the parmeters of (disagyregate) models are generaU y cal ibrated) 

have ackdom been used for  cal ibrat ing models (see Cossleti;, 1900). 

A s  we w i l l  see below each sampling strategy resu l ts  i n  a dif ferent 

d istr ibut ion of observed choices and character ist ics i n  the  sample 

and hence each has associated a di f ferent  cal ibrat ion f h c t i o n  

(such as l ikel ihoodl. Although the f i r s t  two sanpling methods 

present no problems t o  exist ing software, the choice-based 

u.pproach needs some modirications (Lermm, hhnski and Atherton, 

1976; Lerman and t.fansk~, 1976) o r  exist ing programs w i l l  

(*J produce biased paxameters . 
Given the existence of a pract ica l  estimation procedure for  

choice-based samples, the question i s  what sampling strategy 

should be preferred. Leman and Fanski (1976; 1979) have argued 

that  unfortunately, the anawer is  extremely si tuation-specif lc 

and depends on ... ... ... . . . . . . . . . . . . ... ... ... . . . ... -. 

(*)For a practical applicat ion ( i f  rather a 'pragmatic' one) of the 
uLe of exist in8 software t o  estimate disaggregate models from a 
choice based sample re fer  .to Stopher and Wilmot (1979). 



- the cost of various sampling methods 

- the choice being modelled 

- the character ist ics of the population under study 

- the social  cost of estimation errors i n  terms of 

appl icat ions of misguided pol ic ies (T) 

Random samples often require a major expenditure of time and 
- 

money t o  col lect.  . Normally they should be based on homes - i f  

done anywhere e lse  they would be choice-based because the  respon- 

dent has already made a t r i p  choice - wjth a l l  the problem 

associated with home interview surveys. However there is scope 

for  longer and more in-depth interviewing. 

A fbrther problem of' random sarnples is tha t  they o f fe r  no 

opportunity t o  increase the  amount of information given a f ixed 

sumple size. Variation i n  the data(*) cannot be controlled i n  

t h i s  case, being rather a random outcome of the sao?.plin& process. 

St ra t i f ied samples on the other hand should help i n  t h i s  sense, 

because even if the c h ~ s a c t e r i s t i c s  of the population vary l i t t l e ,  

the smple i t ~ t e l f  can have a hi& variance, i e ,  certain s t r a t a  

can be sampled a t  d i f ferent  ra tes  from others. However, s , t ra t i -  

f ied samples are often more expensive than random ones bec~use ,  

i n  order t o  s q l e  a t  random frm a subpopulation, one m u s t  first 

be able t o  iso la te  the subpopulation; i n  pract ice t h i s  nay be 

d i f f icu l t  (and expensive) t o  achieve C**). 

. . . ... ... . . . . . . . . . ... ..* ... . . . . . . . . . 
(*)SeeGensch (1900) for  an in terest ing example about the possible 
magnitude mf such costs. 

(*)The more variat ion i n  the h t a ,  the more re1labl.e are tne para- 
meter estimates. -. 
** ( iTor exnmple one may need t o  begin an interview t o  f ind out the 

stratum t o  which the respondent belongs. 



In general choice-based samples are the l eas t  expensive but 

they require pr ior  ktiowledge of the r a t i o  of the share.of the 

ent i re populetion chooslng each a l ternat ive t o  the sample shere. 

Fortunntely, the former is an aggregate s t a t i s t i c  which might he 

obtained from several sources (Lerman and Manski, 19.16). Another 

problem of t h i s  sampling strategy is  that  of b ias (*), or  a l ter -  

native]-y, how t o  ensure tha t  the sample, given the users of an 

option, io readam.. Lerman and Manski (1979) mention a s  an 

example 'the problem, in an on-.bus survey, of allowing for  the fac t  

that sane routes may have a higher percentage of e lder ly users 

while others may a t t r a c t  primarily workers. Another case is  tha t  

associated with high reject ion ra tes  of mail-back questionnaires 

where it is unlikely t h a t  the  distribution of character ist ics of 

those who choose t o  respond w i l l  be the same as tha t  of the 

population a s  a whole. 

Bearing all t he  above issues i n  mind, Lenaen and Manski 

(1976) concluded i n  t h e i r  paper 

"... I n  a l l  probabi l i ty the question of sample deslgn 
w i l l  remain a judgemental problem." 

and we see no reason why we should challenge t h i s  view. 

4. Model Specif ?cat ion 

Having avai lable, o r  having decided t o  co l lec t  dJtta i n  a 

certa in way and of  a given type - typical ly  a random sample of 

cross-sectional information on revealed preferences, where values 

of a t t r ibu tes  a re  e i ther  measured or  synthesised - the analyst 

s t i l l  has some options open i n  terms of the  model structure,  
I .  

... ... ... ... . . . ... . . . . . . ... ... ... ... -. 

('1 A problem of s t r a t i f i e d  samples i n  general. 



specif icat ion and estimation method t o  use. I n  section 5 we w i l l  

present a f a i r l y  comprehensive review of the  most widely recommended 

method of estimating d iscrete choice models - Maximum Likelihood 

(ML) estimation - with par t icu lar  emphasis on disaggregate data. 

(Elsewhere, (Hartley and Ortuzar, 19801, we have discussed the  method 

as applied t o  the  cal ibrat ion of aggregate hierarchical  l og i t  modal 

s p l i t  models and compared it with a l ternat ive procedures. ) F i r s t l y  

though, we wish t o  b r ie f l y  comment here on the  re la ted problem of 

model select ion i n  general. 

4.1 Model select ion 

In  general, the structure of a model, the variables entering 

it and t h e i r  form, the form of the utility functions thenselves, 

and so on, are matters for  tes t ing  and experimentation (see 

the excellent book by Learnel-, 19781, and are qui te often a strong 

function of context and data avai lab i l i ty .  Aggregate models 

have often been c r i t i c a l l y  vi.ewed as policy insensi.tivc, e i ther  

because a key variable has been completely l e f t  out of the model; 

o r  from some component(s) of the model thought t o  be sensi t ive t o  

i t (eg. ine last ic  t r i p  generation) ; or because severe distor t ions 

could be introduced from specif icat ion o r  aggregation bias errors.  

I n  t h i s  sense the Amerlcan WPS system was part icular ly weak 

(Ben-Akiva et aZ. , 1977). 

In Br i t ish pract ice,  however; the concept of generalised 

costs, together with network modifications, have been used t o  t e s t  

l 
a very wide range of pol ic ies (eg. from road investments t o  parking I 
res t ra in t  and park-and-ride systems), although these have only been I 

interpreted on t e ~ s  of the var iables(*) :  in-vehicle-time, out-of- 

. . . ... . . . . . . ... ... ... ... . . . . . . . . . . . . 
(*) Although disaggregate models include many more explanatory var iables,  

including socio-economic,-level-of-service and even a t t i t ud ina l  variables, 
we mentioned i n  section 3 t h a t  most of the  s t a t i s t i c a l  explanatory power 
of the  models (excepting the  la rge  amount explained by mode-specific 
constants, Ta lv i t ie  and Kirshner, 1978) res ts  i n  re la t i ve ly  few of 
these a t t r ibu tes ,  including the  usual level-of-service variables 
( ~ c ~ a d d e n ,  1976). 



vehicle time and out-of-pocket costs (sui table scaled by the  generalised 

cost coeff ic ient) .  Also a large var iety of model structures have been 

employed (see the  discussion by W i l l i a m s ,  1979) including both simultaneous 

and sequential model forms, and the  policy responsiveness of models has 

been found t o  be c r i t i c a l l y  dependent on model speci f icat ion,  t o  the  extent 

t ha t  certa in models since have been recognised as 'pathological1 

G.e.  implied e l a s t i c i t i e s  of t he  wrong sign) because t h e i r  structures 

were not properly diagnosed for  specif icat ion er rors  (see Senior and 

Williams, 1977; and Williams and Senior, 1977). 

The consideration of avai lable al ternat ives (which could also be 

discussed a s  an aggregation issue)  is  another par t  of the  specif icat ion 

process with strong implications fo r  policy sens i t iv i ty .  In the vast 

majority of aggregate studies only binary choice between car and public 

transport has been considered, with the consequence tha t  t he  multimodal 

problem has not been t rea ted  very seriously. I n  the  best  cases the  

consideration of a l ternat ive public transport options has been relegated 

t o  the  assignment stage, employing 'all-or-nothing' o r  'multipathl al location 

of t r i p s  t o  sub-modal network l inks.  We have given elsewhere, (Hartly and 

Ortuzar, 1980), a pract ica l  example of f i t t i n g  a ra ther  more general 

structure than the  simple 1DtL t o  aggregate modal s p l i t  data fo r  three 

modes (car, bus and t r a i n )  and show how a p r i o r i  notions which l ed  us 

t o  postulate such s t ructure were confirmed by appropriate s t r u c t v a l  

diagnosis t e s t s .  Here we w i l l  concentrate on disaggregate models both 

because the f u l l  range of issues i n  t h e i r  specif icat ion a re  more apparent 

and because they have been more thoroughly ai red and discussed. 

We mentioned above tha t  t he  f i na l  specif icat ion of a model tends 

t o  he a strong function of context and data avai lab i l i ty .  A p r i o r i  

notions and theoret ica l  insight  a lso provide valuable help while another 

important pragmatic factor  is the  ava i lab i l i t y  of special ised software. 

In fac t ,  one reason why linear-in-the-parameters l og i t  (and simple binary 

probi t )  models have been so popular i s  tha t  they can eas i l y  be estimated 

using avai lable software [for well documented examples, see Boyce, Desfor, 

e t  al., 1974; Domencich and McFadden, 1975; Ben-Akiva and Atherton, 1977; 

Hensher, 1 9 7 9 ~ ;  and Talv i t ie  and Kirshner, 1978) whilst other more general 

forms normally present enormous d i f f i cu l t ies  (see the discussion on 

probit models by Sheff i ,  H a l l  and Daganzo, 1980). 



On the  other hand, the  l imi ta t ions of 'simple scaleable choice 

models1 typi f ied by the  MNL structure have been one of the  prime 

motivations behind the  in te res t  i n  a l ternat ive models of the  decision 

process; although we have argued elsewhere ( ~ i l l i a m s  and Ortuzar,1980a) 

t ha t ,  in a cer ta in  sense, the  development of more general random 

u t i l i t y  structures (such as the  M N P )  has removed some of t he  or ig ina l  

jus t i f icat ions fo r  building such models. However, t h i s  does not mean 

tha t  t he  more conventional models a re  necessari ly appropriate; indeed, 

it is  often useful and desirable t o  examine competing frameworks. One I 
1 

cause for  concern, though, i s  t ha t  dif ferent model structures and forms 

tend t o  produce d i f ferent  parameter estimates and response e l a s t i c i t i e s ,  

whilst we do not have means t o  discriminate between them a t  the  cross- 

section (see TTilliams and Ortuzar, 1980a). 

4.2 Choice se t  determination 

One of the  f i r s t  problems an analyst has t o  solve, given a typ ica l  

( i .e .  as defined above) data se t  is  tha t  of deciding which a l ternat ives 

a re  avai lable t o  each individual i n  the  sample. As Hensher (1979~)  has 1 
noted 

". . . Choice s e t  determination . . . is  the mast d i f f i cu l t  
' o f  all the  issues t o  resolve. It re f lec ts  ... the 
dilemma which a modeller has t o  tackle m arr iv ing at, 
a sui table trade-off between modelling relevance and 
modelling complexity. Usually, however, data 
maiZab;iZitg acts as a ~ardstick." (our emphasis) 

It i s  extremely d i f f i cu l t  t o  decide on an individual 's choice 

set  unless one asks him; therefore the problem i s  closely oonnec- 

t ed  with the already discussed dilemma of whether t o  use reported 

or measured data. Yhe obvious procedures of (a) Caking i n to  

account only those a l ternat ives which are ef fect ively chosen i n  

the sample; o r  (b) t o  assume tha t  everybody has all al ternat ives 

avai lable (and hence Let t he  model decide tha t  the  choice proba- 

b i l i t i e s  of the unreal is t ic  a l ternat ives a re  low or zero) have 

also obvious disadvsntages.- For example, i n  the former case it 

i s  possible t o  m i s s  r e a l i s t i c  u l ternat ives which are not chosen 



(due t o  the speci f ic  sanple or s a p l i n g  tecnnique). In  the 

l a t t e r  case, t k h c l u s i o n  of too many alternatives may a f fec t  the 

discriminatory capacit ies of the model, i n  the sense tha t  a model 

capable of dealing with unreal ist ic al ternat ives may not be able 

t o  describe adequately the choices among r e a l i s t i c  options (see, 

Huijgrok, 1979). Fortunately, i n  the context t ha t  in te res t  us 

here - mode choice modelling - the number of a l ternat ives i s  

usually small and the problem should not be severe. 

By contrast, i n  destination choice modelling ( le .  t r i p  

distr ibut ion) the ident i f icat ion of a l ternat ives i n  the choice s e t  

i s  a crucial  matter, and not simply because the t o t a l  number of 

a l ternat ives is usually very high(*). - To i l l u s t r a t e  t h i s ,  con- 

sider the case of modelling the behaviour of a group of individuals 

who vary a great deal i n  terms of t he i r  knowledge of potent ia l  

destinations (owing perhaps t o  varying lengths of residence i n  the 

descr~be the  relat ionship between predicted utilities and observed 

choices, may be influenced as much by variat ion i n  choice se ts  

among individuals (which are not f u l l y  accounted fo r  i n  the model) 
, 

as  by variat ions i n  actual preferences (which are accounted I'Or). 

Because changes i n  the nature O f  destinations may af fect  both 

choice se t  a d  preferences t o  di f ferent degrees, t h i s  confusion 

may be l ike ly  t o  plqf havoc with the use of the models i n  fore- 

casting or i n  tne poss ib i l i ty  of t raasferr ing the i r  specif icat ion 

over space. It i s  in terest ing t o  note i n  t h i s  context t ha t  

McFadden (1978a) has shown tha t  for  a MNL, the model parameters 

can be estimated without bias by sampling al ternat ives a t  random 

from the Ful l  se t  of options, with appropriate adjustments i n  the 

e s t h a t i o n  mechanisms. This -. i s  ,however, not possible fo r  the 

o()  Although t h i s  in i t s e l f  is also quite a problem because current 
software i s  only capable of dealing with 20 t o  30 options. 



KMP, for  example, precisely due t o  i ts  improved speci f icat ion which 

allows for  interact ion between all al ternat ives.  

4.3 Defining the  form of the  u t i l i t y  function 

Another area of concern i n  'specif icat ion searches' re la tes  t o  the  

form of t he  ut i . l i ty  functions. Although there i s  broad agreement among 

experts tha t  f o r  mode choice modelling the  convenient asswpt ion of 

' representat ive ' u t i l i t i e s  w i t h  linear-in-the-parameters (LTP) forms 

should present l i t t l e  d i f f i cu l ty ,  i n  other contexts such as destination 

choice modelling'*' t h e  general agreement i s  t ha t  LTP u t i l i t y  functions 

are not va l id  (see, f o r  example, Foerster, 1979a; Daly, 1979; Louviere 

and Meyer, 1979). The problem t h i s  time is  par t l y  the  lack of 

appropriate estimation software, and par t ly  theoretical(**! Three 

general approaches have been proposed t o  deal with t h i s  problem: 

- the  use of functional measurement/conjoint analysis 

techniques w i t h  experimental design data (~erman and 

Louviere, 1978; Hensher, 1979a, 1979b; Hensher and 

Louviere, 1979 1. 

- t he  use of 'form searches' by means of s t a t i s t i c a l  

transformations (e.g. t he  Box-Cox method) as i n  t he  

work of Gaudry and Wills (1977). 

- t he  constructive use of the  economic theory i t s e l f  

for  the  derivat ion of form (Train and McFadden, 1978; 

Hensher and Johnson, 1980). 

Exploring t h i s  issue fur ther would be outside the  scope of t h i s  paper 

but we wish t o  mention not o n l y t h a t  non-linear u t i l i t y  forms imply 

d i f ferent  trade-off mechanisms than those usually associated with a 

concept l i k e  the 'value-of-time'; but a lso,  and more importantly, 

tha t  model e l a s t i c i t i e s  and forecasting power have been shown t o  

vary dramatically with functional form (see, Dagenais, Gaudry and 

Liem, 1980). Thus the  issue has important implications fo r  model 

design and hypothesis tes t ing .  . . . ... . . . ... . . . ... ... ... . . . . . . . . . ... 
(*) A fur ther major challenge i n  destination choice modelling (and i n  addition 

i n  mode choice modelling fo r  non-work journeys such a s  shopping t r i p s )  is 
how t o  measure and/or represent the  at t ract iveness of destinations. For the  
case of mode choice fo r  t he  journey-to-eork t h i s  is  not a problem because 
i n  the  short term it c m b e  safe ly  assumed tha t  dest inat ions a re  f ixed; 
therefore, t h e i r  a t t rac t ions  a re  common t o  a l l  competing modes and thus 
cancel out. When t h i s  assumption does not hold (as is the  case with 
shopping trips) we face a problem which has, so f a r  a s  we are  aware, no 
sat isfactory answers. 

(**)Specifically the  problem is tha t  for  non-linear u t i l i t y  expressions there 
i s  no guarantee tha t  the  l ikel ihood function has a unique optimum(Daganzo,l979). 



4.4 Model structure and variable select ion 

Raving solved o r  simply avoided (as i n  our case) the  

aforementioned problems we have t o  deal with tm fur ther 

obstacles: 

- what model form land s t ructure)  t o  use, eg. l o g i t  

- given the structure,  what variables shouLd enter the  

u t i l i t y  f'unctions and i n  what fom 

We think it i s  f a i r  t o  say tha t  the  question of  model s t ructure 

can only be resolved by examining the  par t icu lar  s i tuat ion under study. 

If we have reasons t o  bel ieve tha t  a l ternat ives a re  independent and 

tha t  var iat ions in t a s t e  among individuals i n  the  population are not 

important (.e.g. we can speak of a single value, ra ther  than a 

distr ibut ion,  for  the  coeff ic ients multiplying the  a t t r ibu tes  entering 

the  u t i l i t y  functions), then we may confidently choose the  MNL model. 

If, on the  other hand, t he  above conditions are not met o r  if we are  

not certa in,  then we shouZd t e s t  a l ternat ive (more complex) model 

structures against t he  convenient MNL. For example, i f  we suspect t ha t  

correlat ion between a l ternat ives may be a serious problem, we can 

e i ther  t e s t  i f  the  'independence from ir re levant a l te rna t ies '  condition 

i s  sa t i s f ied  [McFadden, Tye and Train, 1976) o r ,  be t te r  st i l l ,  estimate 

a hierarchical l o g i t  model which includes bui l t- in s t ruc tu ra l  diagnosis 

t e s t s  (sobel, 1980; Ortuzar, 1980b; Ortuzar 1 9 8 0 ~ ) .  On the  other hand, 

if we have reasons t o  bel ieve tha t  there are strong t a s t e  var iat ions 

e f fec ts ,  we might have t o  t r y  and f i t  a 'random coeff ic ients '  model. 

The simplest one i s  t he  CRA Hedonics model (Cardell and Reddy, 1977) 

which st i l l  has t he  res t r i c t i on  of assuming non-correlated a l ternat ives 

a s  the  MNL. The most general model structure possible, and sadly the  

more complex t o  estimatec*), is the  MNP model which allows fo r  the  

existence of both correlat ion and t a s t e  var iat ions i n  the  data. 

It is  important t o  rea l i se  tha t  use of an inadequate model, such a s  

the  MNL, can lead t o  serious errors (~ausman and Wise, 1978; Horowitz, 

1978, 1979a, l979b, 19801 and studies on the  comparison of a l ternat ive 

... . . . . . . . . . ... . . . ... . . . ... ... . . . . . . - 
C * )  The special problems of estimating probit  models a re  discussed by 

Sheff i ,  H a l l  and Daganno 1980. The interested reader i s  a lso 
referred t o  the  excel lent book by Daganzo (1980). 



model structures using simulated data, such as those described i n  

Ortuzar (1978, 1979, 1980a) and ~ i l l i a m s  and Ortuzar (1980a) among 

others, have tended t o  confirm t h i s  view. 

Even i f  the analyst is  convinced (or has no choice but t o  

be convinced) tha t  a given model structure (say a MNL model) is  

adeg,uate and that  linear-in-the-parmeters u t i l i t y  Functions pose 

no d i f f icu l t ies,  he has st i l l  t o  decide what variables should 

enter the u t i l i t y  expressions, and i n  what form. This question 

is  part icular ly relevant i n  the case of socio-economic variables. 

I n  disaggregate modelling work the most common approach un t i l  the 

mid-1970's was t o  add these variables as  additional l inear  terms; 

t h i s  is consistent with the hypothesis that  any trade-off mecha- 

nisms involving say, time and costs, are the same for a l l  

individuals. 

Two alternat ive approaches allow different trade-off functions 

for groups of people with dif ferent characteristics. The first, 

which is  f'uJ.1~ consistent with the requirement of observing 

groups of individuals with the sane choices and constraints, is 

t o  s t rat i *  the sample on the basis of the individual charac- 

te r i s t i cs  and t o  cal ibrate a model for each market segment. I n  

th i s  w a y  the model. coefficients are allowed to vary for the 

dif ferent market segments, thus resul t ing i n  potential ly di f ferent 

trade-off mechanisms(*). The problem is, as usual, one of data: 

the larger the number of market segnents, the smaller the number 

of observations on each for a given smple size. The second one, 

which can be used i n  conjlulction with the first, is  t o  express 

certain coefficients (eg. of the time o r  cost variables) as  a 

function of an individual descriptor, usually income (see the 

(*) This is not t o  be confused with the  issue i f  random vs. f ixed 
coeff icients models as  discussed above. Here we are simply 
considering fixed coefficient models being applied t o  dif ferent 
market segments. 



discussion by Train and McFadden, 19'18). I n  a value-of-time 

context t h i s  would, f o r  example, resul t  i n  time being valued as 

a percentage of the wage ra te  I~cFadden, 197b). 

The decision about what variables enter the u t i l i t y  function 

and i n  what form (eg. level-of-service variables being generic o r  

mode-specific, etc.1 is  usual% approached i n  a stepwise fashion 

by test ing if the ext ra variable o r  form adds extra explanatory 

power t o  the model. This i s  related t o  questions of model 

cred ib i l i ty  and policy sensi t iv i ty  in  the following sense; it may 

often occur tha t  a variable which is considered to  be important, 

e i ther  on strong a p r io r i  grounds o r  because it is  a key one i n  the 

policy-model interface leg. a cost variable i n  a study of pr ic ing 

mechanisms), would be l e f t  out  as s t a t i s t i c a l l y  insigtl if icant by a 

s t e m s e  selection procedure. I n  such a case, the tendency has 

been t o  override the 'automatic' select ion procedure (see Gunn 

and Bates, 1980). The stepwise selection of variables is 

usually done as par t  of tke model estimation phase; so we will 

postpone a discussion on methods t o  do t h i s  u n t i l  section 5.2. 

5. MODEL ESTIMATION 

5.1 General statement o f  the problem (" 

In  t ravel  demand modelling (as i n  most modelling exercises) 

. i n te res t  centres on finding a cau8aZ relat ionship between one 

variable, o r  s e t  of variables, held t o  be dependent on another 

variable, o r  s e t  of variables. The purpose of the exeraise is  

t o  predict what value the dependent variable w i l l  take given 

part icular known or  bypothesised (forecast) values of the ... . . . . . . . . . . . . ... ... ... . . . ... ... . . . 
(*) I w i l l  draw heavily here on unpublished seminar notes by Hugh Gunn, 

with whom I have a lso benefited great ly  from discussions i n  a l l  
aspects re la t ing t o  the s t a t i s t i c a l  interpretat ion of models. 



explanatory variables. For two variables we can simply write 

Y = f(X) (1) 

and the problem i s  approached by col lect ing a sample of, say, n 

pairs of obsemt lons  {x. ,y.), i=l, ..., n, and le t t l ng  the data 
1 1  

determine the 'best' form of f ( -1 .  On cer tam occasions, given 

enough data points, no mathematical analysis is  needed; for  any 

given (forecast) value of, say, x , we simply consult the data, 
0 

f ind the nearest observed value of x t o  xo and use the corresponding 

value y as the modelled resul t .  With l e s s  data we w i l l  nornally 

need t o  interpolate values, or  a t  a considerably greater r i sk ,  

extrapolate them. For t h ~ s  we need t o  assume a functional form 

for f ( - ) ; an estimation problem ar ises when the relat ionship 

between Y and X is  not exact, Formally, we can postulate the 

model form: 
, 

Yi = f (x i )  + Ei 
( 2 )  

where the error tern,  E ~ ,  is  introduced t o  account for the scat ter  

i n  the data. Estimation consists of choosing part icular values 

for theunknowncoeffi~ients i n  f(X) in  order to miniuise tine 'dis- 

tmce'  between modelled and observed values of the dependent 

variable a t  the se t  of data points. In  other words we w a r t  t o  

maximise the simi lar i ty between Y and f l ~ )  and for t h i s  we must 

choose a suitable measure of 'd~stance '  f r m  the many available, 

such as 

DL = I Y  - d x , /  ( 3 )  

etc. 



Each cr i ter ion of  goodness-of-fit w i l l  determine a corresponding 

se t  of estimates of t he  unknown coeff icients - the problem is  

which is the 'best' \"I1 

When the error  terms a re  each independent with mean zero 

and constant variance,D2, the l eas t  squares cr i ter ion,  i s  known 

t o  give such 'best' estimates an average(**! For general er ror  

distr ibutions, which mqy vary from observation t o  observation, a 

sat isfactory cr i ter ion of f i t  must allow fo r  the re la t i ve  re l ia-  

b i l i t y  of each data point. The method of K m i m u m  Likelinood 

(ML), which we w i l l  describe below, does j u s t  t ha t  and it is  

interest ing t o  note i n  passing that  i f  the errors E~ have common 

and independent Normal distr ibutions, the . c r i t e r i a  ML and ;D2 

are identical.  For models i n  which the dependent variable Y i s  

a proportion (such as i n  the case of an aggregate modal. spl iky 

model), it appears sensible t o  choose T(x), such tha t  

If we move to a more general case where we wish t o  model an 

91 where exhaustive se t  of outcomes I+Y ... 

then it is also sensible t o  ensure tha t  the models 

{f1(2jf,(2) ... f,(~i)3 are such that 

(*) Usually interpreted as  the most re l iab le  i n  terms of the forecasts 
it produces. -. 

(**I However, problems a r i se  w i t h  i t s  use when dif ferent data points 
have di f ferent errors - weights may have t o  be introduced, o r  
transformations made (see, fo r  example, Bishop, Fienberg and 
Holland, 1975). 



Now i f  we choose 

we w i l l  ensure tha t  the non-negativity condition i n  .(.6) is 

sat is f ied  for  any function g.( . ) , if Ki is a posit ive constant. 
3 

Furthermore set t ing 

1 

Ki 
a 

N (a0 ) 
c e p { g j ( 9 ) ~  
j =l 

, 
ensures tha t  the models sum t o  unity. The combination of (9 )  

and ( l o )  is, of course, the l og i t  model wnich has been used fo r  

decades t o  andyse tab les of proportions for  precisely the reasons 

given above. Thus the randam u t i l i t y  generation of the model has 

been a post-hoc rat ional isat ion fo r  use of the model i n  cer ta ln  

circumstances where it might be appropriate ( for  a f u l l e r  discus- 

sion of t h i s  issue, see Wi l l i ams  and Ortuzar, 1900b). 

5.2 M w h  Likelihood (ML) estimation and a l l i e d  

s t a t i s t i c a l  t e s t s  

ML cal ibrat ion of a w e g a t e  nested l og i t  models (as  ser ies 

of l o g i t  modelsj, together with a discussion of ML and other cal i -  

bration methods f o r  aggregate data (eg. where proportions rather 

than C0,l) choices a re  observed] have Been presented i n  Hartley and 

Ortuzar (1980). Here we w i l l  concentrate on the special problems 

ar is ing in t he  estimation of any disaggregate model. The differences 

stem from the  basic fact  tha t  while models predict choice probabi l i t ies  

( i . e .  numbers between 0 and 11,  they must be tes ted  and cal ibrated 

against (0 , l )  choice behaviour (*I . From now on, we w i l l  assume 

("1 For a good general dis&ssion of the problems involved, t he  
reader i s  referred t o  McFadden (1976) ; Stopher (1975) ; Tardiff 
(1976) ; Hauser (1978) and Project Bureau Integral  Traffic and 
Transportation Studies (1977). 
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that  the modeller has gathered, following a certain s a p l i n g  rule, 

information on the a c t d  choices (eg. al ternat ive Ai, from the 

choice se t  ~ ( q ) % )  of  individuals q, and information on choice 

k influencing variables Z. (these may be levelrof-service at t r ibutes 
-2L- 

of the options and/or socio-economic character ist ics).  The ML 

technique, which has been the most widely used and more strongly 

recommended method  anse sen e t  al., 1977; McFadden, 1976, 1979b) 
, 

looks a t  the probabil i ty of obtaining the Q  independent choices, 

C , q=l, ..., Q ,  given the model (along with i ts parameters O): 
9 - 

Then the;probability of obtaining the observations 

The usual way of looking a t  t h i s  function is  t o  regard the vector 

of parameters - 13 as known and L as a se t  of probabiLities over 

possible observations. However, i n  the estimation context, the 

observations are known a n d 2  is  unknown. When L is regarded as 

a function of 2 Tor gi,ven (observed) c , 1 . . . , Q, it is  cal led 
'4 

the 'Likelihood Function' and is normally wr'itten as  L ( ) ,  f o r  

short. Recall that  t he  observed dependent variable takes a value 

of ei ther 0 or  1. This brings i n  some problems for assessing 

goodness-of-fit, as w i l l  be discussed below. 

Assuming tha t  L ( )  is well behaved, it i s  possible 4jo f ind a 
* A 

unique s e t  of estimates of gd - $,which maximises L ( ~ I  where 2 depends 



on the observations. I f  we define 

where E( a )  denotes an expectation operatorL*), then $ i s  an 

asymptotically e f f i c ien t  estimator of 2 and is asymptotically 

distr ibuted as Mormal, MQ,X). Moreover -2.~@) is asymptoti- 

2 cally distr ibuted x (chi-squared) with Q degrees of freedom. 

l'his means that  although may be biased fo r  small samples, the 

bias i s  smallfor large enow& Q I jus t  how large i s  ' large enough' 

is a function of the problem under examination, but generally 

data se ts  with 500 t o  1000 observations have been found to  be 

suff icient). Tte estimator 4 is the best possible for large 

smples (McFadden, 1976). and there i s  a concrete expression P - 
for  i ts  variance-covariance matrix. Note however, that  fo r  

most model forms, including the easy t o  handle MNL, must be 

cdculated by an i te ra t ive  procedure. Fortunately g is useful 

in  t h i s  i te ra t ive  cdlculation and i s  thus available when convergence 

O C C ~ S  . 
i+or a simple MNL model of the  f o m  

(*I For the simple !@TL model the expectation is not needed because 
the second derivatives of R&-1 depend only on the modelled 
probabil i t ies and not_qn the  observed proportions or  choices 
(see, Hartley and Ortuzar, 19801. 



the Likelihood Function can be written as follows (i3en-~kiva, 1973) 

where g .  equals 1 i f  alternatxve j was selected i n  observation q 
J q 

and zero otherwise. Taking Ohe natural logarithm of both sides 

we get 

Substituting equation (15) i n  ('171 we can derive the first 

order conditions ( ~ c ~ a d d e n ,  1974 ) 

for $=la ..., K 

It i s  easy to see t ha t  i f the se t  of variables includes a mode- 

specifxc dummy as follows: 

( 1 fo r  j = a 

i 0 otherwise 

then from the f i r s t  order conditions (18) we w i l l  always get 

Therefore a comparison of: a sum of probabil i t ies fo r  a given 

al ternat ive with the t o t a l  number of observations that  selected 

the alternative can be misleading. For t h i s  reason, and because .. 
it i s  also misleading t o  compare the computed probabil i t ies with 



the g .  variables ( i f  we assume tha t  the  actual  choice is  made 
J9 

- with a probabil i ty and not a cer ta in ty  a s  the g .  variables 
J9 

indicate),  a goodness-of-rit measure such a s  R* i n  ordinary l e a s t  

squares, which is based on estimated residuals, does not exist .  

A word of caution is also i n  order here. Although it is well 

known tha t  for  a l o g i t  model with linear-m-parameters speci f icat ion 

R(O)  - is well behaved, thxs has not been proven for  probi t  models, 

except f o r  the simplest independent binary case. Indeed it has 

been noted tha t  tile most widely used and e f f i c ien t  IlNP estimation 

computer code avai lable, CHOMP (~aganzo and Shoenfeld, 1978) may 

have problems i n  t ha t  the  approximation t o  t(6) used i s  not necessari ly - 
unimodd (Bouthelier, 1978; Daganzo, 1979). 

The well understood propert ies of the maximum l ikel ihood 

estimation method, f o r  well behaved l ikel ihood functions, &low a 

number of s t a t i s t i c a l  &stti which are  of major importance: 

a 

(j) The t - tent  fop significance of any component gk of Q 

Equation 114) implies tha t  6 has an estimated variance v k kk' 

where V_ = f v  j ,  which is  calculated by the estimating progrm. - kk 

Thus i f  Bk = 0, 

is  distr ibuted Normal ~ ( 0 , l ) .  For t h i s  reason, it i s  possible 
A 

t o  t e s t  whether Bk is signi f icant ly dif ferent from zero ( i t  is not 

exactly a t - test  as t h i s  is a large sample approximation; t is 

tes ted  with the  N o h  distr ibut ion).  Large absolute values of t 

( typ ica l ly  bigger than 2 f o r  95% confidence leve ls)  lead t o  the 

reject ion of the  nu l l  hypothesis Bk = 0 and hence t o  acceptance that  

6 i s  s igni f icant.  
k 



( i i )  !C& LikeZihood r a t @  t e s t  of 'Linear res t r i c t ions  of q 

genera2 hgpothegis 

R number of important model properties can be expressed as 

l inear rest r ic t ions on a more general lxnear-in-parameters model. 

Some important examples of properties are: 

- Attribute genericity: There are two main types of 
- 

explanatory variables, 'generic variables ' and 'alternative- 

specific' variables. The former vary i n  value (or  level )  across 
, 

choice alternatives, whereas the l a t t e r  are those with an identi- 

f iab le correspondence between choice alternatives; because they 

may not vary across d l  options, alternative-specific-variables 

can take on a zero value fo r  certain elements of the choice set.  

Let us assume a model with three alternatives, car, bus and r a i l ,  

and the following choice influencing variables. 

TT = t rave l  time OPC = out-of-pocket t rave l  costs 

Then, a general. form of the model would be: 

- 
'car = e l ~ ~ c c a r  + o~TT,,, 

IIoweyer, it might be hypothesised tha t  costs (but not times, say) 

should be generic.' This can be expressed by writing t h i s  

-thesis as two l inear  equations i n  the parameters: 



In  general it i s  possible t o  express a t t r ibu te  generici ty by l i near  

rest r ic t ions on a more general model. For extensive use of t h i s  

type of t e s t  re fe r  t o  Dehghani and T a l e t i e  (1979). 

- Semple hcrmogenelty: It is possible to t e s t  whether o r  not 

the same model coeff ic ients are appropriate for  two subpopulations 

(say l i n n g  north and south of a r iver) .  For th i s ,  one formulates 

a general model using differelit coefficients fo r  the two popula- 

t ions and then t e s t s  fo r  equali ty of the coeff icients as  a l inear  

restr ict ion.  

Because of the propert ies of ML, it is  very easy t o  t e s t  any 

such hy-pothesis expressed as  l i nea r  restrictions by means of the 

well-known tikeZihood mtio t e s t  (LR). To perform the  t e s t  the 

estimation program is  first r y  i n  the more general case t o  give 

the estimates - 8 and the lop l i ke l ihood a t  convergence ~"(3. It 

,. 
i s  then run again t o  a t t a i n  ektimates 8 of 2 and the new log- 

-T- 

lilcelihood a t  maximum R*(&J, fo r  the res t r i c ted  case. %'hen, i f  

the res t r i c ted  model under consideration i s  a correct specif icat ion 

the l ikel ihood r a t i o  s t a t i s t i c ,  

2 is  asymptotically distr ibuted x with k-r degrees of freedom where 

lr i s  the number of elements i n  3 and r is  the number of l inear  

rest r ic t ions(*) .  Rejection of  the nul l  hypothesis implies tha t  

the rest r ic ted model is  erroneous. %sin (19771, of fers examples 

of the use of t h i s  t e s t  t o  sgudy questions cfnon-linearity, non- 

genericity and non-homogeneity. Horowitz (1980) has discussed 

the power and propert ies of the t e s t  i n  de ta i l  and should be 

consulted for fur ther refeFence. 

* Note tha t  for  t h i s  we need one model t o  be a res t r i c ted  or  
nested version of the other. We w i l l  look a t  what t o  do w i t h  
non-nested models below. 



(ili) !?he overaZZ te8.t of fit 

A special case of t he  Lk t e s t  is  t o  f ind  out whether a l l  
A 

camponents of 2 are  equal t o  zero - the equally l i k e l y  model: 

where N is the number of options avai lable t o  i n d i v i d ~ a ~ q ;  o r ,  
9 .. 

preferably, t o  t e s t  whether those components of 2 which do not 

correspond t o  model constants a re  equal t o  zero - the  'best nu l l '  

model (or  'constsnts only' model): 

where ms is the market share of a l ternat ive i. Let us consider i 

the first case, whlch i s  the most common and obvious one, t o  

begin vith. 

If there a re  k parameters and R"(0) i s  the log-likelihood 

of the  equally-likely model, then under the nu l l  hypothesis of 

D = 0, the  value - 

2 should be asymptotically d is t r ibuted x with k degrees of freedom. 

Note that  P ( 0 )  does not require a special program run since it i s  

usually catculated a s  the i n i t i a l  log-likelihood a t  the s t a r t  of 

the program. This t e s t  is  actual ly rather weak; i r  re jected it 

only says that  the  model with parameters 4 provides a be t te r  

explanation of the data than a model whlch does not have any slgnl- 

f icant  explanatory power (.the equally l i ke ly  model). It i s  

obvious tha t  when the  model contains alternative-speclf ic constants, 

the  t e s t  m t h i s  s h p l e s t  form i s  not appropriate. It is  more 
-. 

relevant t o  t e s t ,  a s  suggested above, whether the  explanatory 



variables add anything t o  the explanation given by the  constants 

alone, ie. the best  nu l l  model. It i s  ra ther  embarrasing t o  

note that  constants tend t o  account f o r  60% 60 80% of the 

explanatory power o f  these models ( ~ a l v i t l e  and . Kirschner , 1978). 

I n  general, an ex t ra  run is  required t o  calculate E'tC), 

the  log-likelihood of the model containing only al ternat ive- 

specir ic constants. except f o r  models when a l l  individuals face 

the same al ternat ives where it has the following close rorm 

equation (Tardiff, 1976a). 

where Q = number of individuals choosing a l ternat ive A.. 
j J 

( ~ v j  ?'he Rlzo squared znd%ces 

It is  f e l t  by many tha t  a coefficient of goodness-of-fit 

is useful. However, a s  we mentioned above, a goodness-of-fit 

l i k e  i n  ordinary l e a s t  squares does not exist .  A goodness- 

of- f i t  coeff ic ient  should range from 0 t o  1 (no f i t  t o  perfect  

f i t ) ,  be meaningful f o r  comparing models cal ibrated with 

di f ferent  samples, and hopefuLly be re la ted  t o  a s t a t i s t i c  w i t h  

a known probabil i ty d is t r ibut ion for  purposes of s t a t i s t i c a l  

hypothesis test ing. 

Such an index has been defined ( ~ c ~ a d d e n ,  1976) a s  

However, it has been noted t h a t  although p 2  behaves nicely a t  

the l im i ts  teg. 0 and 1) it does not have an i n tu i t i ve  inter-  

pretat ion between the l i m i t s  ( ~ a u s e r ,  1978). A quotation by 

Mck'adden (1976) may also bea'approPriate a t  t h i s  point: 



"... Those unfamiliar with the p2 should be forewarned 
tha t  i ts  values tend to-be considerably lower than 
those of the R~ index (of regression analysis) and 
should not be judged by the  standards for  "good f l t "  
i n  ordinary regression analysis. For example, values 
of 0.2 .to, 0.4 fo r  P represent an excel lent f i t  . . ." 
Because a p2-like indlex can i n  princxple be computed 

re la t ive t o  any nu l l  hypothesis, it i s  important t o  choose an 

approprlate one. For example, it is very easy t o  show tha t  

the minimum values of pC (with respect t o  the equally l i ke l y  

model), i n  models with alternative-specir ic constants, vary 

depending on the proportion of individuals choosing each a l te r -  

native. Taking a simple binary case, Table 1 (Tardif f ,  197b. ). 

2 ' show the minimum values of p for  d i f ferent  proportions chooslng 

option I. It can be seen tha t  p2  is only appropriate for  the  

50/50 percent case. 

Sample Proportion Selecting Minimum value of 
the F i r s t  Alternative p2 

2 
Table - .1. Zinimm values of p for  various-r-ive r . re~uencies 

(source: Tardirf, 1976. ) 

l%ese values mean, for  example, t ha t  a model cirlibrated with 

a O.Y/0.1 sample, yielding a p2 of 0.5'~ would undoubtedly be much 

weaker tlmn a model yielding a p2  of 0.23 from a sample w i t h  a 

0.5/0.5 sp l l t .  Fortunately, a ra ther  simple ad~ustment ex is ts  
-. . 



(Tardiff, 19(63 ' t ha t  overcomes these d i r f icu l t ies.  It consists 

-2 
of defining a more appropriate index p as 

This statistic has between U and 1, IS comparable across di f ferent 

samples and is also related t o  the x2 s ta t i s t i c ;  therefore it is 

2 - 
recommended over p . (For a more profound discussion of these 

issues, the reader i s  referred t o  the recent papers by Gunn and 

Bates, 1960; and Horowitz, 1980 ) 

- 5.3 k d e l  c o m e o n  throw1 ~oodness-of-fit measures 

S t  has been shown (see, ror exmple Horowitz, 19801 that  

2 uncr i t ical  use of goodness-or-flt statistics, such as  p , can 

give perverse resul ts(*) .  Yor t h i s  reason, among bthers, several 

other possible meaaures have been proposed and discussed by, fo r  

example, Stopher (19751 ; McFadden (1976) ; and Hauser (19'76). 

We w i l l ,  however, mention only one other measure, the ' f i r s t  

preference recovery', FMI (also termed the 'percentage correctly 

predicted1 or 'percent r ight '  fo r  short) and discuss a recent 

improvement t o  it (Gunn and Bates, 1900). FPR i s  an aggregate 

measure which simply computes the proportion of Individuals tha t  

actual ly se lect  the option n t h  the  highest modelled u t i l i t y .  

FFB i s  easy t o  understand and can readlly be compared t o  the 

'chance recovesy', CR, the recoveries predicted using the equally 

l i ke ly  model, given by: 

C*) Especially if one i s  comparing non-nested models. 
-. 



or, if every individual has the  same number of options E, by: 

FPR can also be compared t o  the 'market share recovery', MSN, 

the recoveries predicted by the best  nu l l  model (constants only 

model given by: 

2 
MSR = xhsj) 

3 

where ms. = market share of option j. 
J 

Also, being an aggregate t e s t  it has strong in tu i t i ve  appeal and 

i s  useful t o  improve comunication between analysts and managers 

o r  decision-makers (Hauser, 19781. Unfortunately, because of 

i t s  aggregate nature, it can be misleading. For example 

". . . a f i r s t  preference recovery of 55% i s  usually good, 
but not i n  a market of two products. A recovery of 
90% i s  usually good i n  a two-product market but not  if 
one product Bas a market share of 95%." ( ~ a u s e r  , 1970) 

Two fur ther problems of FPR, i n  the sense of not being an 

unambiguous indicator of model re l i ab i l i t y ,  a re  worth noting. 

The l ' i rst is t h a t  too high a value of FPR should lead t o  rejec- 

t ing  the  model a s  well a s  too low. To understand t h i s  point is  

is necessary t o  define the expected value of F'PR fo r  a specif ied 

model. 'l'his is  given by 



where p is the calculated (maximum) probabil i ty assocxated with 
9 

the best option f o r  indivxdud q . We also need t o  note that  the 

variance of L% and Etl are given respectively by ( * I  
, 

Q 1 1 
var(cx) = c - ( 1  - -1 /30) 

q = l  N 
and 9 Nq 

Thus, a computed value of FPR fo r  a given model can be compared 

wxth CR and EK; if the  three measures a re  re la t i ve ly  c lose (given 

the estimated variances) the model is reasonabLe but uninformat.iue; 

i f  FPR and &R a re  s i m i l a r  and larger  than CR, the model i s  

reasonable and i n f o m t i v e ;  i f  FPR and ER are not s i m i l a r ,  the 

model does not explain the var iat ion i n  the data and should be 

rejected - whether P R  i s  Larger or smaZLer than ER. 

The second problem with the measure a r ises  even i f  the  value 

of FPR is acceptable, because a t e s t  which weights each correct  

prediction equally w i l l  not be suxtable for  circumstances where 

some options a re  more important than others.' For example, given 

a multimodal choice context if we are  par t icu lar ly  interested i n  

the predictions with respect t o  a minor mode, say, park-and-ride 

(P&RJ,  we would not judge two models with the same FPR equivalent, 

if one of them predicted P&R incorrect ly i n  all cases w h i l s t  

correct ly predict ing the  other modes s l igh t l y  more times than the 

r i v a l  model which performed reasonably well ror  all modes. 

... ... ... ... . . . . . . . . . . . .  ... ... ..* .. 
(*I Because for  an individual q, and FPR is  an independent random 

event occurring with probabi l i ty  l/N and p respectively. - 9 9 



G u m ( * '  has obtained a more sensi t ive t e s t  based on the 

abovementioned measure by extending the  comparison of observed 

and expected FPH t o  take account of 'where they occur' a s  well 

a s  the i r  a,bsolute number. For t h i s  he divides the probability 

range ( 0 , ~ )  in to  a number of in terva ls  - for  example (o ,o .~ ) ,  

(0.1,0.2), . . . , (0.9,l.o) - g ~ d  al locates i nhv idua l  ohservations 

t o  each of these in terva ls  on the basis of t h e i r  modelled ' f i r s t -  

preference probabilities' (fPp) . the highest probabi l i ty  

predicted by the model). Thus, if two individuals have, 

respectively say, fpp = 0.486 and 0.415, they would both he 

assigned t o  the in terva l  (0.4,0.5]. On the basis of tne model, 

. 
we can expect approximately 45% of these individuals t o  show FPR. 

We can, then,observe the  actual  number of FPR i n  t h a t  group and 

compare expectation (on the  basis of the  model) with out-turn. 

It is in terest ing t o  rea l l se  tha t  a glven model might have 

exactly the expected number of FPR overal l  and ye t  be incorrect 

i n  the distr ibut ion of hTR over the  spectrum between l i k e l y  and 

unlikely recovery. It i s  obvious tha t  t h i s  wodd indicate a 

faul ty model s t ructure as c lear ly  as an incorrect overal l  number 

of FPR. Comparisons between observed and expected frequencies 
2 can be carr ied out by means of straightforward x t e s t s  (see 

Ortuzar, 1980c 1 . 

5.4 Validation samples 

The performance of any model should be judged against data 

other than tha t  being used t o  specify it and, ideal ly,  taken a t  

another point i n  time (perhaps a f t e r  the  introduction of a pol icy 

i n  order t o  judge the  model response propert ies).  This is most 

... 0 . .  . . . . . . ... ... . . . ... . . . . . . ... 
("1 Private communication t o  be wr i t ten as a Technical Note, 

I ns t i t u te  fo r  Transpzrt Studies. Examples of i t s  use a re  
given i n  Gunn and Bates (19801; and Ortuzar (1980cj. 



obviously t rue  for  the sor t  of models (eg. gravity model) 

frequently f i t t e d  t o  aggregate data se ts ,  because a comparison 

of such models t o  the  cal ibrat ion data can only reveal how good 

a summary they provide for  t ha t  one data se t .  The same i s  t rue  

though of disaggregate models. We w i l l  define a subsample of the  

data, or  preferably another sample, not used during estimation, 

as a val idation sample. 

In t h i s  section we w i l l  describe a procedure t o  estimate 

the  minimum s i ze  of such a val idation sample ( t o  be subtracted 

from the  t o t a l  sample avai lable for  the  study) conditional on 

allowing us t o  detect a difference between the  performance of 

two or  more models, when there ex is ts  a t rue  difference between 

them. The method, due t o  Gunn, is  based on the FPR concept and 

w i l l  be used elsewhere t o  determine the s ize  of a val idat ion 

sample for  the  estimation of disaggregate choice models (Ortuzar, 1 9 8 0 ~ ) .  

Consider a 2x2 tab le  layout as follows: 

Model 2 

Not FPR 
FPR 

-I 
Not 
FPR 11 n 

12 
rl ------- 

FPR 
"21 "22 

n. = number of individuals assigned t o  c e l l  ( i ,  j )  
l j  

For a l l  individuals i n  a val idat ion sample, choice probabi l i t ies 

and FPR are calculated f o r  each of two models under investigation 

and the c e l l s  of the  tab le  are f i l l e d  appropriately, ror  example 
, 

assigning t o  c e l l  (1,l) 1f not FPR in  e i ther  model, etc. 

-. 



We are interested i n  the nu l l  hypothesis tha t  the probabi l i t ies  

with which individuals f a l l  in to  c e l l s  (1,2) and ( 2 , ~ )  are  equal, 

for  i n  tha t  case the implication, on simple FPR, is  tha t  the two 

models are equivalent. On t h i s  nu l l  hypothesis, the s t a t i s t i c  

M (a f te r  McNemar, see Foerster, 19'(9al 

is X2 drstr ibuted with 1 degree of freedom. Thus, a t e s t  o r  the 

'equivalence' of the two models, i n  terms of 1PR, is given by 

computing M and comparing the resu l t  with x 2 If M i s  l e s s  
a , l '  

than the appropriate chosen c r i t i c a l  value of 2 13.115 for  the 
a,1 

usual 9% confidence leve l )  we cannot re jec t  the nu l l  hypothesis 

and we conclude the  models e re  equivalent i n  these terms. 

Given t h i s  procedure we can choose whichever leve l  of 

confidence seems appropriate for  the assert ion tha t  the two 

models under comparison d i f f e r  i n  respect of the  expected number of 

FPR. This gives us control over the f ract ion of times tha t  we 

w i l l  incorrect ly asser t  a difference between similar models. A s  

usual, the aim of se lect ing a partxcular sample s i ze  i s  t o  ensure 

a corresponding control over the proportion of times we w i l l  make 

the other type of er ror ,  namely incorrect ly concluding t h a t  there 

i s  no difrerence between d i f ferent  models. Now, t o  calculate 

the probabil i ty of an er ror  of the  second type we need t o  decide 

what should be the minimum difference tha t  we should l i k e  t o  be 

able to detect. With t h i s  we can calculate the  sample s ize  

needed to reduce the chance of errors of the second kind t o  an 

acceptable leve l  f o r  madels which.drffer by exactly t h i s  minimum 
, 

amount, o r  more. 



Consider, a s  an i l l us t ra t ion ,  a par t icu lar  case of two models 

such that ,  on average, model 2 produces 10 e x t r a  FPR per 100 

I*) individuals modelled a s  compared t o  model 1 . I n  t h i s  simple 

case n is zero and the  statistics M simply becomes n 21 12' If 

we are ensuring 95% confidence tha t  any difference we estab l ish 

could not have ar isen by chance from equivalent models, we w i l l  

compare n wlth the  value 3.85. For any given sample s i ze  n, 12 

say, the probability tha t  r individuals w i l l  be assigned t o  

c e l l  ( 1 , ~ )  i s  simply the  binomial probabil i ty (n )p r ( l  - p)n-r r 

where p denotes the probabi l i ty  of an individual chosen a t  random 

being assigned t o  the ( l ,2)  c e l l ,  eg. the minimum difference we 

have s e t  t o  detect. Given n, and taking p = 0.05, s w ,  we can 

calculate the probabi l i t ies of 0,1,2 and 3 individuals being 

assigned, and sum these t o  give the  t o t a l  probability of accepting 

the null hypothesis, eg. committing an er ro r  of the second kind. 

Tahle 2 gives the resu l t ing probabi l i t ies for  d i f ferent  sample 

sizes'". It is c lear  t h a t  the requir$validation sample s i ze  

needs t o  be re la t i ve ly  large,  given tha t  estimation data s e t s  a re  

only a few hundred data points. 41so reca l l  t h a t  t h i s  tabl'e i s  f o r  

the simple case of one model being better than or equal i n  each 

( * ) ~ o t e  t h a t  here it does not matter whether t h i s  ar ises as a 
resu l t  of model 1 having 20% FPR and model 2,30% FPR, or  model 1 
00% FPR and model 2, 9%; i n  other words both models can be 
inadequate. 

("~n extension of t h i s  tab;e fo r  other values ot' p is  given i n  
Chapter 7 of Ortuzar ( 1 9 8 0 ~ ) .  



knimum difrerence 5% 

Sample s i ze  -- 
Prob {error 111 

8 

Table 2 Probabil i ty of an e r r o ~ f  the second kind for  

g v e n  sample s i x  minimum dzfferenc? 02 

5%. and models as  defined --- 

observation than the other, although the  method i s  easi ly  

generalisable t o  cases where both (1,2) and (2, l )  c e l l s  have 

non-zero proba'bility. 

5.5 Comparison of non-nestgsopels  

The likelihood-ratio t e s t s  outl ined i n  section 5.2 above, 

require test ing a model against a parametric generalisation of 

i t s e l f ,  ie., it requires the models t o  be 'nested'. Models 

whose u t i l i t y  functions have sifpif icantly di f ferent functional 

forms or  models based on di f ferent behavioural paradigms cannot 

be compared by these tes ts .  

It is easy t o  conceive of situations i n  which it would be 

useful t o  t e s t  a given model against another which is  not a 

generalisation of i t s e l f .  The following example 

provided by Horowitz (19110) is  Very i l lus t ra t ive.  Suppose tha t  

one model has a representative u t i l i t y  function specif ied as: 



and the other, a representative u t i l i t y  k c t i o n  given by: 

and tha t  it i s  desired to  t e s t  the two models against one another 

t o  determine which best explains the data. Clearly there i s  no 

value of 0 t ha t  causes 'ij and t o  coincide for a11 values of 
3 

O O and the at t r ibutes 2. 
1' 2 

If both models belong t o  the same general family of models, 

it is possible t o  construct -rid models; for  instance, i n  our 

simple example we could form a model whose representative u t i l i t y  
- 
W contains both 'lj and as  special cases: 

Using l ikelihood-ratio tes ts ,  both models can be compared against 

the hybrid. The first (33) corresponds t o  the hypothesis O3 = 0 

and the second (34) t o  the hypothesis O1 = €I2 = 0. Several 

o ther ' tes ts ,  including cases where the competing models do not 

belong t o  the same general family are discussed a t  length i n  the  

excellent paper by Horowitz (1980). 

An especially helpful feature of the d i d a t i o n  sample 

concept discussed i n  section 5.4 above, is tha t ,  ?rovided the sample 

is adequate, the issue of ranking models, nested or  non-nested, 

is part icular ly eas i l y  resolved (Gum and Bates, 19801, because 

likelihood r a t i o  tes ts  can be performed on tha t  sample f o r  any 

( * I  models regardless of dsfference i n  model structure o r  parameters . 

(*) The condition of one model being a parametric general isat ion 
of the other is  only-required for  t e s t s  with the same data used 
fo r  estimation ( ~ u n n  and Bates, 1980). 



6 Estimation of models fromchoice-based samples 

We mentioned i n  section 2, tha t  estimating a choice model from a 

choice-based sample may be of in te res t  because the data col lect ion 
, 

costs a re  often considerably smaller than those fo r  t yp ica l  

random o r  s t ra t i f i ed  samples (~erman and Manski, 1976: 1979). 

The problem of f inding a t ractab le  estimation procedure possessing 

certain desirable s t a t i s t i c a l  properties, i s  not an easy one; the 

state-of-the-art is provided by the excellent papers of Manski 

and Lerman (1977) and Manski and McFadden (1980). 

These authors have found tha t  appropriate maximum l ikel ihood 

estimators for  choice based sampling, except zn ve ly  res-tricted 

cirnonstances are  impractical due t o  computational in t ractab i l i ty .  

However, if it is assumed tha t  the  analyst knows the f ract ion of 

the decision-malung population select ing each a l ternat ive then a 

t ractab le  method can be introduced. This approach modifies the  

fandliar maximum l ikel ihood estimator of random sampling by 

weighting each observation's contribution t o  the log-likelihood 

by the r a t l o  H ( ~ ) / s ( L ) ,  where H[i) is  the f ract ion of the  popula- 

t ion select ing option i and 8 (  i) i s  the analogous f ract ion for  

the ck~oice-based sample. Manski and Lerman (1977) go on and 
- 

prove tha t  t h i s  estimator i s  consistent, f ind i ts  asymptotic 

covariance matrix and examine i t s  asymptotic eff iciency for 

special cases. They also show tha t  the unweighted random smp le  

MI, estimator is generally inconsistent when applied t o  choice- 

based smples,  and i n  most choice models t h i s  inconsistency af fects  

a l l  parameter estimates. However, for  simple MNL models with a 

fiu"uZ sset of alternative-specif ic dmmy variables, the i n m s i s -  

tency i s  fuZLy confined t o  the estimates of the coeff icients of 

these dummies (Manski and Lerman, 1977; Manski and McFadden, 1980). 



This l a t t e r  resu l t  has been used i n  an empirical study i n  South 

Africa by Stopher and Wilmot (1979). Coslett (1980) have extended 

t h i s  work t o  the  estimation of hierarchical l og i t  models discussed below. 

5.7 Estimation of h ierarchical  l o ~ i t  models 

The nested or  h ierarchical  l og i t  model ( ~ i l l i a m s  1977; Daly and 

Zachary, 1978) i s  a general isat ion of the MliL which does not suf fer  the  

'independence from ir re levant a l ternat ivest  res t r i c t ion .  For example, 

i f  we consider the  well-known red bus/blue bus case, a hierarchical  

l og i t  model would proceed i n  two stages. F i rs t l y ,  a primary s p l i t  

between car (c)  and 'composite' bus mode (b) ,  and secondly a subspl i t  

between the two bus options ( rb  and bb, respect ively) ,  a s  shown i n  

Figure 3. A detai led descript ion of the cal ibrat ion and propert ies of 

such a model, for  choice among car,  bus and t ra in ,  using aggregate data 

has been presented i n  Hartley and Ortuzar (1980). Here we just  want t o  

show the  special complications tha t  a r i se  when the estimation i s  carr ied 

out using individual choice data. For pract ica l  examples re fe r  t o  Coslett 

(1980), Sobel (19801, and Ortuzar (1980~) .  

Individuals a re  conceptually assumed t o  evaluate each a l ternat ive 

according t o  u t i l i t y  functions Uc, Urb and Ubb respectively (with 
- 

measurable components fie, Urb and ebb) as i n  t he  case of the  MNL. 

However, i n  t h i s  case we need also t o  consider a 'composite u t i l i t y '  

of the lower hierarchy o r  'nes t t .  This composite u t i l i t y  (ijb) includes 
1 - 

the  expected value of the maximum u t i l i t y  of t he  members of the  next, 

given by 

and at t r ibutes which are conarnon t o  all the members of the  lower 

hierarchy as i n  

where a i s  an estimated coeff ic ient  e n d 2  i s  the vector of 

estimated coeff ic ients multiplying the s e t  of a t t r ibu tes  z+, which - 
( * I  are  common t o  a l l  nest  members . 

(*) The reason for  taking the  a t t r ibu tes  z out is tha t ,  being common, 
they do not influence the  choice i n  txs lower hierarchy (e.g. both 
buses have the same fare s t ructure) .  However they must be included 
again i n  the next hierarchy because they certain ly influence choice 
between car and the  composite bus mode. 



It i s  easy t o  see tha t  the hierarchical l og i t  model can be 

estimated using standard MNL software i n  two stages: r i r s t l y ,  as 

. a blnary l o g i t  model between red bus and blue bus, t he  resu l ts  of 

which allow us t o  calculate Ib from ( 3b); secondly t h i s  value 

i s  entered as another independent variable along with the z 
-b 

variables and the  a t t r ibu tes  of car  i n  the primary s p l i t  which i s ,  
- 

i n  t h i s  simple case, another binary l o g i t  model. The secondm 

s p l i t  w i l l  y ie ld  P(rb/b) and P(bb/b), the condi t lond probabi l i t ies 

of red bus and blue bus given tha t  choice i s  constrained t o  bus. 

The primary s p l i t  yields P(c)  clnd Plb) , the marginal probabi l i t ies 

of car and bus respectively. It i s  c lear  t h a t  probabi l i t ies of 

each mode are  

P 
car  = Y(c) 

'red bus = ~ ( b )  .P(rb/b) Cq38) 

'blue bus = ~ ( b ) .  P(bb/b) 

An important feature of the model concerns acceptable 
1. 

values of 0, the  coeff icient of the expected maximum u t i l i t y  of 

the  nest  (see Ortuear, 1980b fo r  a discussion of i t s  use a s  a 

diagnostic too l  f o r  appropriate specif icat ion). Williams 

(197'7'3 has shown tha t  np must sat is fy :  

it has a lso been shown (Williams, 1977'; Daly and 

Zachary, 1978) t ha t  i f  there a re  more than two leve ls  of nesting, 

eg. a case w i t h  more composite u t i l i t i e s  and coeff ic ients 0, 

- then 
-. 

0 < + 4 0, s +3 4 ...< 1 140 



where $ represents the coefl icient of the expected maximum 
1 

u t i l i t y  of the 'lowest' hierarcw. Notealso, tha t  a t  any 

hierarchical level ,  i, a value of $ i  = imp]-ies tha t  the l inked 

nesting a t  level  i i s  mathematically equivalent t o  a sinrple KNL 

a t  that  level. For a good discussion of these issues see 

Coslett (19801 and for a review and an application to  rea l  data see 

Ortuzar (1980) ,and Sobel b980hwho has shown that  fo r  hierarchical 

2 --'L 
l og i t  models there ex is t  equivalent measures t o  the p and p 

indices (equations 25 and 6 26). given by 

and .. a A 

a;(,) + a;(gj + ... + a?(@) 
= 1 -  *L.l 

where the subscripts 1 t o  j re fer  t o  the simple MNL models i n  the 

hierarchy of interest.  

flotwithstanding the simplicity of the 'heurist ic '  or  'bottom 

upq cal ibration of the  hierarchical. l og i t  model IWilliams, 19.17) 

it is known tht the consequence of sequential estimation is a 

loss of s t a t i s t i ca l  eff iciency which may be severe ( ~ a l ~  and 

Zachary, 1978; Amemiya, 1976, 1978; Coslett, 1980; Sobel, 1 ~ 8 0 ) .  

This happens because the standard errors of lower level  coeffi- 

cient estimates permeate from lower hierarchies upwards imbedded 

i n  the values of the expected maximum u t i l i t i e s  I. When there 

are multiplie hierarchies, 

'I. . . successively higher leve l  expected maximum 
u t i l i t i e s  w i l l  contain greater and greater 
proportions of random s t a t i s t i c a l  'noise' ." 

I Sobel, 1 9 ~ 0 )  



What is  r e d l y  required is  a simultaneous estimation routine which 

would elimxnate the  compounding ef fect  of these er rors ,  thereby 

improving the s t a t i s t i c a l  eff iciency of the estimates of the 

("1 parameters $ . Another powerful reason fo r  developing such 

software i s  t o  avoid the  unpleasant poss ib i l i t y  of obtaining 

different estimates of the same parameter a t  d i f ferent  hierarchi- 

ca l  levels (which is quite common due t o  the d i f ferent  mount and 
- 

qual i ty of data used i n  each). A t  l e a s t  two experimental 

simultaneous estunation soi'tware packages are i n  the  process ot' 

development by Daly a t  Cambridge Systematics Inc. and by Small and 

Brownstone of princeton University, butnone i s  yet available. 

I am grateful  t o  Hugh Gunn, Dirck Van Vl iet and Huw Williams 

for  all they have taught me, part  of which i s  ref lected heavily i n  

t h i s  paper. 

(*I Recall how crucial  a re  the  Ofs in allowing for  s t ruc tu ra l  diagnosis 
of the model, through-,conditions ( 39 )  and (401. 
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strategies. strategy implicit in 
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