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ABSTRACT

ORTUZAR, J. de D. {1980) Multimodal choice modelling -
some relevant issues. Leeds: University of Leeds, Inst.
Transp. Stud., WP 138, (unpublished)

- This paper gives an overview of the most relevant
issues relating to the application of multimodal choice
models ranging from data considerations, such as alternative
sampling strategies and measurement techniques, to the hotly
debated aggregation issue. Particular emphasis is placed on
the speecification and estimation problems of disaggregate

choice models.

Dr. Ortuzar's address is:; Departamento de Ingenieria de Transporte
" Universidad Catolica de Chile-
Casilla 114-D
Bantiago — Chile.
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MULTIMODAL CHOICE MODELLING - SOME RELEVANT TISSBUES

1. INTRODUCTION

The problems of mode choice modelling and forecasting have been
approached in many ways since the mid-50s, bubt for the most part,
research and applications have been concerned with choice between car
and public transport which, it has been argued, is the situation faced
by the majorit& of travellers in the journey—to—work. However, it is -
obvious that people do not neecessarily choose between two épecific
alternatives only when making their choice, but instead they genérally
confront options such as driving & car, travelling as passengers in a
car, bug or train, riding a biecycle or a scooter or simply waiking. In
addition, each trip_might utilise a;cambination of modes, i.e., mixed-
mode trips (for example, park-snd-ride), although it can be argued that
some mixed options are so unlikely thet the probability of their
selection can be considered as zero. As a consequence, it has often
been suggeéted that individuals can be considered as users of their -
'main mode' (e.g. the procedure used in the.majority of transportation
studies in the U.K.). However, this procedure is clearly inaceurate
for many people who depend on another mode for access to the major one.
Also, with the increasing departure from traditional policiés based on
a 'pure' mode context and the emphasis on an 'inteérated' appreoach to

- urban transport problems, the tiﬁe is ripe for models which are more
oriented towards alternative policies, such as price penalty measures,
traffic restraint and exclusion schemes, bus priority measures,
incentives to park-and-ride and car—pooling, etc., and which must be

multimodal (as opposed to binary) in nature.

During the last decade, and particularly over the last five years,
gignificant advances have been made in travel demand forecasfing
methods. The most important and widely promoted new techniques have
been the so—called 'disaggregate' or 'individual-choice'! or 'second
generation' models (for a good review of theoretical developments, see
Williams, 1979). These models have heen usually generéted‘within a
tyrandom uﬁility' theory framework(*) (for a review, see Domencich and

(*) Note that the theory i;-ﬁot_constrained_to disaggregate models only;
in fact we have used it recently to generate aggregate modal split
models (see Hartley and Ortuzar, 1980).
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McFadden, 1975). 1In this guantal choice theory, the decision-maker is
assumed to choose the opticn (Aj) Whiéh possessés, as far as he is
concerned, the greatest utility Uj. In order to. account for dispersion
~ +the fact that individuals with the same observable characteristics
do not necessarily select the same optidﬁ -~ +the modeller introduces

a random element ej in addition to each measured individusl's utility
Uj' In this way, the utility of alternative Aj is actually represented
as:

U. = U. + €.
J J J

Ortuzar éﬁd Williamg (19Té) have described pedagogically, the
generation of random utility models, ranging from the very convenient
but theoretically restrictive multinomial logit (MNL) model, to the
general and powerful but rather intractable multinomial probit (MNP}

model.

_ In this paper we wish to discuss briefly some issues related to

the application of such models (and in some cases any model) to the
problem of choice of mode for the joufney—to—wofk. We will consider
guestions of data, such as type of data, alternative éampling strategies
and problems of measurement, and modelling issues, such as model
specification and estimation. However, we will first address the
aggregation problem which lies at the heart of one of today's most
hotly contested debates - vwhether to use aggregate or disaggregate

models, and in which circumstances.

We do not attempt to be comprehensive on these issues, so we
refer the reader to good general discussions by McFaddeﬁ (19765 1979a);
Williems (1977; 1979); Hensher (1979a); Ben-Akiva et al (197T; 1979);
Daganzo (1980); Daly (1979); Jansen et al (1979); Manheim (1979);
Reid (1977); Spear (197T; 1979); and Willisms end Ortuzar (1980b).

2. THE PROBLEM OF AGGREGATION

The aggregation issue may be thought of in very general terms as
the path through which a detailed description of an individual's
decision-making process, as imputed by a modeller, is transformed into
a set of observable entities.and For relatione which can be usefully
employed by him. Tn an econometric interpretation of (transport demand)
ﬁodels, the aggregation over unobservable entities results in s
probabilistic decision (choice) micro model, and the aggregation over

the distribution of observable quantities results in the conventional
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aggregate or macro relations. In this sense, the difficulty of the
aggregation problgm depends, to & large extent, on how theicomponents
of a system are described within the frame of reference used by a
modeller, because it 1s precisely this frameﬁork.which will determine
the degree of vafiability to be accounted for in a 'causal' relationg*)
To give an example, if the frame of reference used by a modeller is,
say, that provided by the entropy maximising approach, the explanation
of the statistical dispersion in a given data set will be very different
to that'provided by another observer using a random utility meximising
~approach, even if they both'fiﬁish up with identical model functions
(the equi-finality issue, sée, for example, Williams, 1979). The
interpretétion of such a model, say the classicial MNL, depends however
on the theory used to generate it, and this is particularly important
for its elasticity parameters. For the entropy maximisingrmodeller,
the parsmeter corresponds to a Lagrange multiplief associated

".... with the change in likelihood of observing a given

allocation (share) pattern ... with respect to ineremental

‘changes in system trip cost measures". (Williams, 1979)
For the second modeller, the same pafameter is now inversely related
to the standard deviation of the utility distributions from which the

% =
model is generated( ) see Williams (1977).

TIf we choose to use a random ubility approach, the aggregetion
problem Willlreduce, to obfain from datsa, abt the level of the individual,
aggregate measures such as market shares of different modes, flows on
links, etc., which are typieal final mddel outputs. There are two
obvious ways of proceeding, as shown in Figure 1{a}, which are basically
distinguished by having the process of aggregating individual_data .
before or after model estimation. If the data is grouped prior to the
estimation of the model, we will have the classical ‘aggregate‘ approach
which has been heavily criticised for being inefficient in the use of
data (because date is aggregated, each observation is not used as ' a-

data point and therefore more date is needed), for notb accounting for

(*) I am grateful to Huw Williams for having explained this
' interpretation to me,

(%) Two comments are worthwhil e here: firstly the full interpretation
of model paremeters is rot transferable within theoriesj and,
secondly, while in some cases the interpretation might not matter
(i.e. if one is interested on flows in networks) in others it can be
very crucial, for example, if we are seeking to endow predicted
forecasts with some notion of benefits (Williams and Ortuzar, 1980b).
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the full variability in the data (e.g. within zone variance may be
higher than iéér—zonalrvériance), and for risking statistical-
distortion ana bias (such as the well-known ecological fallacy), ete.
The 'disaggregate' approach, on the other hand, estimates the model at
the level of the individual thus apparently answering, at this stage,
the criticisms mentioned above. The question that remains, however,
is how to perform the aggregation operation over the micro relations?
As we will see below, the answer is ... ‘'rather simply', <f we are _
interested in short-term predictions of journey-to-work mode choice
| models; however, for other modelling'requirements, the answer ranges
from ... 'diffieult!, to ... 'almost impossible', unless being
self~defeating in the sense of requiring heroic assumptions {as bad as
those criticised in the 'aggregate' approach) and/or enormous amounts
of extra data. In fact, Reid (1977) in the.context of developing a
disaggregate model system has remarked that-

"... there are practical and theoretical limits to the

application of strictly behavioural methods ... it is

difficult to preserve a behavioural structure and conform

to aggregate observations...”

Before briefly deScribing the main aggregatioﬁ methods, let us
note that thefapproach.followed in British practice is a hybrid of the
two mentioned above as shown in Figure 1(b). For example, household
hased (rathef than zonal) category analysis has been used at the trip
-generatidn stage, while the SELNEC and subseqﬁent studies used
weighting coefficients obtained from a standard disaggregate study
(e.g. McIntosh and Quarmby, 1970), in a generalised cost formulation.
However, the elasticity parameters (e.g. £ and A) and other model
constants have been determined from an aggregate célibration. This
'transferability' of micro parameters (*) between different studies
{e.g. different regions and different times) with the possibility
of local ‘'tuning'’ (Goodwin, 1978) may be seen as a pragmatic approach
to the aggregatidn problem, This issue is discussed at more length
by Williams and Ortuzar (1.980Db). '

(¥) Which interestingly bears close analogy to the strategy proposed
by Ben-Akiva (1979) for the transferability of disaggregate
models, although with different motivations. .
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Returning to the general approaches shown in Figure la, much
research has been directed recently at arcomparative assessment of
aggregation methods (see, for example, Ben—Akiva and Atherton, 197T;
Ben-Akiva and Koppelman, 1974; Bouthelier and Daganzo, 1979; - Daly,
1976; Dehghani and Telvitie, 1979; Hasan, 1977; Xoppelman, 197k,
1976a, 1976b; Liou et al, 1975; McFadden and Reid, 1975; Meyburg
and Stopher, 1975; Miller, 197hk;  Reid, 1978a, 1978b; Ruijgrok,

- 1979; Watanatada and Ben-Akiva, 1978). The various methods proposed
offer different strategles for-computing the summation/inﬁegratidn
over miero relations, and include, among others: the 'naive' approach,

sample enumeration methods, and classification approaches.

The naive approach consists of the direct substitution of
aggregate or average values of the expianatory variables into typically
noh—linear, micro relations, and it has been found that the aggregation
bias may be severe in this case. In the sample enumeration approach,
the impact of a given policy on each individual, in a representative
sample, is determined from the disaggregate model and population
forecasts are then computed by straightforward suwmation of the effect
6ver individuals according to the sampiing strategy. This method is
considered to bée particularly useful for estimating impacts for
short—term policies (see Ben—Akiva and Atherton, 1977), but must be
modified when the characteristics of the population change over the
forecasting period (since it cannot be assumed thet the distribution

of observable attributes remains constant).

In the clessification approach, the total population is partitioned
into relatively homogeneous groups and then average (group) values of
the ekplanatory variasbles are inserted into the disaggregate model to
determine demand in each.grdup.according to the naive approach(*). |
The accuracy and'efficiency of the method depends on the classification
involved, e.g. the type and numbér of groups and the characteristics

of the variables included.

(¥) In terms of its aggregation charascteristics, the practiece in
British studies with use of market segment differentiated models,
may perhaps best be seen as a variation of this classification
approach.
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For mode choice studies where only short term elasticities are
required,rthere ig a consensus that aggregating micro-relations, i.e.

" the 'disaggregate' approach, is both feasible, efficient and hence
desirable. However, in loﬁger term contexts where location
(distribution) models need to be considered and/or when network fTlows
are required'the problem becomes much more involved. Very few studies
have attempted the aggregation of micro-models in these contexts so

it is premature to make definitive judgements. One which did, the
SIGMO study (Project Bureau Integral Traffic_énd Transportation Studies,
1977) encountered severe problems in attempting to reconcile micro
destination choice models with aggregate trip patterns and ébandoned
the.disaggregate approach in favour of an existing distribution model
baged on generalised costs. More generally, Reid (1977) has noted that
while in principle a disaggregate model haé a better chance of
capturing the essential causality in the data, in practice,‘

"... 1f the behavioural theory is weak or the models untested

againgt experience, such as with eurrent individual location

models, they may fail to include some important factors which

are emquied in aggregate or summary variables which merely

show a correlation to demand. These are more likely to pick

up unknown effects ... {and} ... if adequate disaggregate data

will not be available for forecasting, models calibrated on

aggregate data will be more accurate."

In the early 19T70's the process of sggregation was usﬁally viewed
as. the rather straightforward solution of a numerical problem which was
well underatood in principle. In practice, howé#er, it has shown
itgelf to be a highly non-trivial process which embraces not only
considerations of numerical efficiency, but alsco questions relating to
the availability of forecasts for individual explanatory variables and
the stability of the distribution of explanatory variables over time.
Furthermore, there is also concern about the relation of predictions to
estimation and data designs; therefore, any comparison of 'aggregate'
and 'disaggregate' models must involve, implicitly or ekplicitly, &

consideration of these issues.
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3. DATA COLLECTION AND MEASUREMENT

3.1 Representation and measurement of travel attributes

In any particular study, out of the large variety of potentially
available forecasting methods (é:g. eross—sectional analysis; panel
data methods; aggregate time series approaches) and estimétion
techniques, data considerations alone will normally restrict the choice
to one single method. Historically, the cross—sectional approach hag
clearly dominested, typically in conjunction with revealed preference
methods, although alternative approaches based, for example, on stated.
preferences/inﬁentions, nave been preferred on several occasions (see
Ortuzar, 1980a)}. However, the general problem of discounting for the
over—enthusiasm of respondents (the 'yeah' bias) has-not vet been
solved, and it hag recently been suggested that - stated and revealed
preferenée methods may perhaps be better used in a complementary fashion,
vhere insights can be obtained which would not arise if either approach
ﬁere used_alone (see, for example, Hensher and Louviere, 1979; Gensch,
1980}. We have argued elsewhere, (Williams and Ortuzar, 1980a), that it
is not possible at the cross—section to discriminate between a large
variety of possible sources of dispersion in data patterns (such as
preference dispersion, constraints, habit effects, etc.). Panel data
or more simply, before-and-after information, may offer some means to
directly test and perhaps reject hypotheses relating to response, (see
an interesting example in Johnson and Hensher,_1980); On the other hand
models built on 'longitudinal! (as opposed to—cross—sectional data)
have technical problems of their own (e.g. how best to 'pool' the
information), but a discussion of their merits is beyond the scope of

this paper.

A related area of concern has to do with the probleﬁ of measurement.
We wish to discuss briefly here the implications for parameter estimates
of using. different measurement techniques and/or philosophies. TFor a
deeper insight into the problem we refer the reader to the excellent .
. discussiohs by Daly (1978) and Bruzelius (1979). The problems involved
in obtaining measures of explanatory variasbles (e.g. cost and time
requiremeﬁts by alternative modes) are shown schematically in Figure 2.
Ideally we would like to obtain information-on these variables as
perceibed by the commuter when taking his decision, especially if we

are not interested in forecasting (how do you get ‘perceived' information
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about é future situation?), but perhaps in obtaining 'values of time'.
The figure reflects the staté~qf—the—arf in the understanding of the
relstionships between 'actual', 'perceived', ‘reported' and 'measured’
values. The trouble is that none of the arrows and boxes in the figure
have yet been quantified. Knowledge in'this area .is, literally, sketchy!
The analyst is therefore made to choose between reported and measured (or

'engineering' or 'synthesised'} data, and Whlle models estimated on each
type of data may prove reasonable in themselves

"... it is very difficult to postulate relationships that -

will allow models calibrated on reported data to be applied
to synthesised data or vice versa." (Daly, 1978)
- Most probably the safest way out 1s to collect information on both
reported and.engineéring values and to make comparisons in order to gain
ingight from the two approaches. This is, of course, more costly and
time consuming end, as Hensher (1979c) and others have remarked, it is
seldom the case that the analyst finds himself with the luxury (or |

embarassment) of alternative datsa/methods at hand.

We mentioned above that one possible and alternative use for a model,
instead of forecasting; is to employ it for egtimating, for example,
values of time (Bruzelius, 1979; Daly, 1978; Hénsher,'1972; MecFadden,
1978b; Prashker, 1979:; Quarmby, 1967; Train, 1977; GCunn, Mackie and
- Ortuzar, 1980; and some of the references cited therein). An old issue
in this.contekt is the 'trader/ndn—tradér"queStion, e.g. should those
individuals who appear to be faced with-a dominant(*) option be excluded
frqm the sample? As Daly (1978) has clearly pointed out, the answer ils
definitély no! The main difficulty has actually been due to a
misundeistanding: that only observable, and hence measured (or measurable)
attributes should matter when defining whether an option is dominant,
leaving out the crucial unobservables and/or unmeasured charactéristids.
In this sense, the larger the number of measured atﬁributes incorporated
in the model, the smaller will be the number of apparent 'non-traders' and,
better still, the less the influence of unmeasured factors (simply because
more of-thOSe are incorporated.)

{(*) An option which, to the modeller, looks better in every respect
than the others and happens to be the chosen one (if it is not
the chosen one the individual is deemed irrational!). Notice
that this is not to be confused with the issue of captive travellers
(e.g. & person who needs the car during the day) who should be
trimmed out of the sample (if identified).



This bringe us naturally into the question or using
ettitudinal vsriables feg. comfort, convenience, reliability) to
improve gur models. (For a more complete discussion see,
Foerster, 1919b, Johnson, 1975; Spear, 1976; Stopher et al.l97h;
and Wermuth, 1978)., In terms of the influence of attitudinal
measures on the value of other parameters and on. the genersal
performsnce of a model, there is conflicting evidence in the
literature. McFadden (1976), for example, concluded that choice
was explaiﬁed, to a great extent, by the typical level-of-service
veriables uaed‘in conventional studies and that attitudinal
measures added veryllittle ex@lanatory power to the modelsl+).

More recently, however,-Prashker (1979) has found that including
measures of relisbility (eg. reliability of finding a parking
éééﬁé; areiiability of bus arrivals), both substéntially increased
the explanatory poﬁ&r of the models (for exemple, it produced mode-
specific constants which were not statistically different from zero),
and changajsign{ficantly the values of some parsmeters {in parti- |
cular the value of iﬁ-vehicle tim;). Once more, the safest recom-
mendation seems to be to eXemine the possibility of measuring some
'unconventional'.factors (eg. reliability, comtort, convenience,
etc.) and to test for their effects on the other parameter estimates
and model explanatory poﬁer. Again, however, this would naturally

imply higher data collection and analysis costs.

(f)It is fair to say, though, that the models discussed by McFadden

(1976) have been heavily criticised by Talvitie and Kirsghner (1978) on the

grounds, among other thaings, that the mode-specific constants tended
to account for over 60% of their explanstory power,
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3.2 ‘Alternative sampling strategies

The development and implementation of travel demand models
have traditionally been associated with large data collection
efforts, involving, priﬁcipally, very expensive home interview
surveys, Because conventional aggregsate models used date at the
zonal level fairly large random samples were required for cal ibra-
tion purposes, and it is well-known that on meny occasions the
cost and time consﬁmed in the collection and analysis of the data
prevented the sralysts from exsmining a sufficient renge of

alternative policies.

One ofrthe adventages traditionally cited for diseggregate
models is the efficiency with which they can make use of available
date and the potential for reducing the time and effort expended
on data collection, As We:saM‘EbOVE, this claim (together with

others) has not been ﬁniv&rsally aéhieved, but it is t%ue to say
that in certein situations the fact that disaggrégate choice médels
- use observations of individual decision maiérs, rather than
geogrephically defined groups, can substantially reduce data col—-
lection costQ« ] The rest of this section summarises two excellent

papers by Lerman snd Manski (1976; 1979) which constitute the

gtate~of~the~art in this ares.

The majority éf applications of disaggregste cholce models
have relied on randomly sampled data, eg. slight variations on the
typical home interview survey. A few studies have used strati-
fied sampling, where the population of interest is divided into
groups according to some cheracteristics sueh as car ownership
(which must be known in advance) and each subpopulstion is sampled

randomly. It is clear that wandom or stratified samples can be
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very expenéive indeed in cases where an option of interest has a
very low probability of selection; because to achieve & reasonable
representation of the optipn in guestion it is necessary to collect
8 very large sample, A choice-based sample (that is, one where
observations are drawn based on the outcome of the deeisibnwmaking
process under study) designed so that the nmumber of users of the

low option is predetermined offers one wey to solve this problem.

Choice~based sémples are not uncommon.in transport studies.
Typical exanples are on—boerd train and bus surveys, and roadside
interviews in the case of mode ehoice modelling.  They can fre-
gquently be 6btaiﬁed fairly inexpensively, but (because of the way
the parameters of (disaggregate) models are generally calibrated)
heve seldom been used for calibrating models (see Cosslett, 1980).
As we will see below ea;h sempling strategy results in a different
-distribution of observed choices and characteristics in the sample
. fhat iﬁ certain situations the fact that disaggrégﬁte choice models
use observations of individuel decision'maﬁérs, rather than
geographically defined groups, can substantially reduce data col=-
lection cbsté. " The rest of this section summarises tw§ excellent

p&?ers by Lermsn and Manski (1976; 1979) which constitute the

atate~of-the~art in this area.

The mejority of applications of dissggregate ¢h01ce modals
heve relied on randomly sampled dats, eg. slight variations on the
typical home interview survey. A few studies have used strati-
fied sampling, vhere the population of interest is divided into
groups according to some characteristics such as car ownership
(vhich must be known in advﬁnce} and each subpopulation is sampled

randomty., It is clear that random or stratified samples can be



-12 -

very expensive indeed in cases where an option of interest haé a
very low probability of selection; because to achieve a reasonable
representation of the option in question it is necessary to collect
a very large sample. A choice-based sample (that is, one where
ohservations are drawn based on the outcome ot the decisiénﬂmaking
process under stpﬂy) designed aoﬁthat thé nuﬁber_pf users of the

low option is predetermined offers one way to solve this problenm.

Choice-based samples are not unéommon in trensport studies,
Typieal examples are on-board train and bus surveys, and roadside
interviews in the case of mode ehoice modelling. They can fre-
quently be obtained fairly inexpensively, but {because of the way
the parameters of {disaggregate) models are generally calibrated)
heve seldom been used for calibrating models (see Cosslett, 1980),
As we will see below ea;h sampling #trategy resulis in a diffefent
distribution of observed choices end characteristics in the éamplE'
and hence each has associated a different calibration function
{sueh as likelihood). Although the first.two sampling methods
present no problems to existing software, the choice-based
approach needs éome modifications (Lermen, Manski and Atherton,
1976; Lerman and Manski, 1976} or existing programs will

#*
produce biased parameters( ;.

Given the existence of a practical estimation procedure for
choice-based samples, the guestion is what sampling strategy
should be preferred. Lerman and Menski (1976; 1979} have argued
that unfortunately, the snswer is extremek& situation-specific
and depends on

. . .
. LI LI .. e L Y - LI LI ‘.. . s a "

* . '

( )For a practical application (if rather e 'pregmatic' one) of the
use of existing software to estimate disaggregele models from &
choice based sample refer to Stopher and Wilmot (1979},

-
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~ the cozt of various sampling'@ethods

-~ the choice being modelleé

- the characteristics of the population umder study

~ the social cost of estimation errors in terms of
appiications of misguided pollcie5(+)

Random samples often require a major expenditure of time and
money to collect. . Normally thé& should be baged on homes - if
done enywhere else thef would be choice-based because the respon—
dent has already made a trip choice - with all the problems

asgociated with home interview surveys., However there is scope

for longer and more in-depth interviewing.

A further problem of random samples is that they offer no
opportunity to increase the amount of information given a fixed
(%)

sample size, Variation in the data

f

cannot bé_controlled in
thig case, being rather a random outcome of the sampling process.
SBtratified BB?plEE on the other hand ghould help in this sense,
because even if the characteristics of the population vary little,
the sample iteelf can have & high variance, ie, certain strata
can be samnpled at different rates from others. However, strati-
fied samples are often more expensive than random ones because,

in order to sample at random from e subpopﬁlation, cne must first
be sble to isolate the subpopulation; in prectice this may be

difficult (and expensive) to achieve (¥¥).

(T}Seefenuch.(l980) for an 1nterest1ng example about the possible
_m&bnltude of such costs,

t )The more variation in thF data, the more rellable are the para—
meter estimates. -

® ) . ‘
( %or example one may need to begin an interview to find out the
stratum to which the respondent belongs.
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In genersal choice-based samples are the least expensive but
théy require prior knowledge of the ratio of the share of the
entire population choosing esch elternative to the sample shere,
Fcrtunaiely, the former.is an aggregate statistic which might be
obtained from several sources (Lerman and Manski, 1976},  Ancther
problem of this sampling strategy is that of bias(%); or alter-
‘natively, how to ensure that the sample, given the users of en
option, is random.. Lerman and Menski {1979) mention as an
example the problem, in an on-bus survey, of allowing for the fact
that some routes may have a higher percentage of elderly usérs

while others may attract primarily workers., Another cese is thet

associnted with high rejectidn rates of mail-back questionnaires

where it is unlikely that the distribution of characteristics of
those who choose o respond will be the same as that of the

-

populstion &s a whole.

Bearing all the above issues in mind, Lermen and Manski
{1976) coneluded in their paper

"... In 8ll probability the question of sample design
will remsin & judgemental problem,”

and we see no reason why we should challenge this view.

L,  Model Specification

Having available, or having decided to collect data in a
certain weay and of a given type ~ typically a random sample of
crosg-sectional informetion on revealed preferences, where values
of attributes are either measured or synthesised - the analyst

still has some options open in terms of the model §tructure,

" ua - sss e LI ] , . man LI ) s a R -ae "ea .o

(#) A problem of stratified samples in general.



‘gpecification and estimation method to use. In section 5 we will
present a fairly comprehensive review of the most widely recommended
method of estimating discrete choice models - Maximum Likelihood

(ML) estimation — with particulér emphasis on disaggregate data.
(Elsewhere, (Hartley and Ortuzar, 1980), we have discussed the method
as ‘applied to the calibration of aggregate hierarchical logit modal
split models and compared it with alternative procedures.) Firstly
thoﬁgh, we wish to briefly comment here on the related problem of

model selection in general.

h,1 Model éeleétidn

In general, the structure of a model; the variables entériﬁg
it and their form, the form of the utility functions themselves,
and so on, are 81l metters for testing end experimentation (see
the excellent book by Lesmer, 1978), and are quite often a strong
function of context and data'availability. Aggregate models
have often beén ecritically viewed ss policy insensitive, either
because a key variable has been completely left out of the model;
or from some component(s) of the model thought to be sensitive to
it (eg, inelastic trip,generatioh); or because severe distortions
¢ould be introduced from specification or aggregation biss errors.
In this sense the American UTPS system was particularly weeak

(Ben-Akiva et al., 1977T).

In British practice, however, the concept of generalised
" »
costs, together with network modifications, have been used to test
a very wide range of policies (eg. from road investments to perking

restreint and park-and-ride systems), although these have only been

: * ‘
interpreted on terms of the variables( ): in~vehicle-time, out-of-

(%) Although disaggregate models include many more explanatory variables,

: including socio—economie, level-of-service and even attitudinal variables,
we mentioned in seetion 3 that most of the statistical explanatory power
of the models_(excepting‘the large amount explained by mode—specific
constants, Talvitie and Kirshner, 1978) rests in relatively few of
these attributes, including the usual level-of-service variables '
(McFadden, 1976). - ‘ :
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vehicle time and out*of“poéket costs (suitﬁble scaled by the generalised
cost coefficient). Also a large variety of model structures ha#e been
employed (see the discussion by Williams, 1979) including both simultaneous
and sequential model forms, and the policy responsiveness of models has
been Tound to be eritically dependent on model specification, to the extent
_that certain models since have been recognised as 'pathological'

(i.e. impliéd elasticities of the wrong sign) because their structures
were not propérly diagnosed for specification errors (see Senior and
Williams, 1977; and Williams and Senior, 197T).

The consideraticn of available altefnatives (vhich could also be
discussed as an aggregafion issue) is another part of the specification
process with strong im@lications for policy sensitivity. In the vast
majority of aggregate studies only binary choice between car and public
transport has been considered, witﬁ;the consequence that the multimodal
problem has not heen treated very seriously.‘ In the-bést'cases fhe ‘
consideration:cf alternative public transport optioné has been relegated _
to the assignment stage, employing 'all~or—nothing' or-‘multipath',allocation'
of trips to sub-modal network links. We have given elsewhere, (Hartly and
Ortuzar, 1980), a practical example of fitting a rather more general
structure than the simple MNL to aggregate modal split data for three
modes (car, bus and train) and show how a priori’ notions which led us
to postulate such structure were confirmed by appropriate structural
diagnosis tests. Here we will concentrate on disaggregate models both
because the full range of issues in their specification are more apparent

and because they have been more thoroughly aired and discussed.

We mentioned shove that the final speéification of a model ténds
to be a strong function of context and data availability. A priori
notions and theoretical.insight also provide valuable help while another
important pragmatic factor is the availability of specilalised software.
In fact, one reason why‘liﬁeér—in4the—parame£ers logit (and simple binary
probit) models have been so popular is that they can easily be estimated 
using available software (for well documented examples, see Boyce, Desfor,
et al., 1974; Domencich and McFadden, 1975; Ben-Akive and Atherton, 1977:
Hensher, 1979c; and Talvitie and Kirshner, 1978) whilsf"other more general
forms normally present enormous difficulties (see the discuséion on
probit models by Sheffi, Hall and Daganzo, 1980).
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On the other hand, the limitations of 'simple scaleable choice
models' typified by the MNL structure have been one of the primg
motivations behind the interest in alternative models of the dedision
process; although we have argued elsewhere (Williams and Ortuzer,1980a)
that, in a certain sense, the development of more general raﬁdom
utility*structures (such as the MNP) has removed some of the‘original
Justifications for building such models. However, this does not mean
that the more cqnvéntional models are necessarily appropriate; indeed,
it is often useful and dgsirable to examine competing frameworks. One
" ecause for concerﬁg though, is that different model'structures and forms
tend to produce different parameter estimates and response elasticities,
whilst we do not have means to discriminate between them at the cross-

section (see Williams and Ortuzar, 1980sa).

4.2 Choice set debermination

One of the First problems an analyst has to solve, given a typical
(i.e. as defined above) data set is that of deciding which alternatives
_ are available to each individuasl in the sample. As Hensher (1979c) has

noted

M. .. Choice set determination ... 1s the most difficult
‘of all the issues to resolve., It reflects ... the
dilemms which a modeller has to teckle in srriving at
a suitable trade—off between modelling relevance and
modelling complexity. Usually, however, data
avatlability acts as a yardstick." (our emphasis)

It is extremely difficult to decide on an individual's choice
set unless one asks himy therefore the problem is closely tonnec—
ted with the already discussed dilemma of whether to use reported
or measured deta. ‘the obvious procedures of (&) taking into
account only those alternatives which are effectively chosen in
the sample; or (b) to assume that everybody has all alternatives
available {and hence let the model decide that the choice proba~
bilities of the unrealistié alternatives are low or zero) have

also obvious disadvaentages. ™ For example, in the former case it

is possible to miss realistic elternatives which are not chosen
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{due to the specific sample or ssmpling technique). In the
latter case, theinclusion of too many elternatives may affect the
discriminatory capacities of the model, in the sense that & model
capeble of dealing with unrealistic alternatives may not be able
to describe adequately the choices among realistie options (see,
Ruijgrok, 1979). Portunately, in the context that interest us
here ~ mode choice modelling - the number of alﬁernatiVEs is

usuelly small and the problem should not be severe.

By contrast, in destination choice modélling {1e. frip
distribution} the identificétion of alternatives in the choice set
is & erueial matter, end not simply becauge the total number of
alternatives is usually very high(*). - To illustrate this, con-

sider the case of modelling the behsviour of & group of individuals
“who vaiy.a great deal iﬁrterms of their knowledge of patential
destinationﬁ'(owing perhaps to varying 1éngths of residence in the
deseribe the relationship between predicted utilities and cbserved
choices, may be influenced as much by veriation in choice sets
among individuels (which are not fully accounted for in the model)
as by variation; in acﬁual preferences {which are accounted for)j.
Because chenges in the nature of destinations mey affect both
choice set and preferences to different degrees, this confusion
may be likely té play havoe with the use of the models in fore-
casting or in the possibility of transferring their specification
over space. It is interesting to note in_this context that
McFadden (197¢%a) hes shown thet for & MNL, the model parameters
can be estimated without bias-by sampling alternatives st random

from the full set of options, with appropriate adjustments in the

estimation mechanisms. This is,however, not possible for the

LG ] »asw * s ‘e s LI ] . L} LRCI L) LR Y LI LI ) - a

(*) Although this in itself is also quite a problem because current
software is only capable of dealing with 20 to 30 options.




MNP, for example, precisely due to its improved specification which

allows for interaction between all alternatives.

4.3 Defining the form of the utility function

Another area of concern in 'specification searches' relates to the
form of the utility functions. Although there is broad agreement among’
experts thaﬁ'for mode choice modelling the convenient assumption of
'representative' utilities with linear-in—the-parameters (LTP) forms
should present little difficulty, in other contexts such as destination
' (*) ' '
are not valid ({see, for example, Foerster, 1979a; Daly, 1979; Louviere
‘and Meyer, 1979). The problem this time is partly the lack of

choice modelling the general agreement is that LTP utility functions

. . - . *%
appropriabe estimation software, and partly theoretlcal( 2 Three

general approaches have been prbposed'to deal with this problem:

— the use of functional-measurement/conjoiﬁt analysis.
techniques with experimental design data {Lerman and
Louviere, 1978; Hensher, 1979a, 1979b; Hensher and
Louviere, 1979).

- the use of 'form searches' by means of statistical
transformations (e.g. the Box-Cox method) as in the
work of Gaudry and Wills {197T7).

- the constructive use of the economic theory itself
for the derivation of form (Train and McFadden, 1978;
Hensher and Johnson, 1980).

Exploring this issue further would be outside the scope of this paper
but we wish to mention not only that non-linear utility forms imply
different trade-off mechanisms than those usually assoclated with a
concept like the 'value-of-time'; but also, and more_importantly,
that model elasticities and forecasting power have been shown to
vary dramatically with functional form (see; Dagenais, Gaudry and
Liem, 1980). Thus the issue has importent implications for model

-design'and hypothesis testing.

(*) A further major challenge in destination choice modelllng (and in addition

in mode choice modelling for non-work journeys such as shopping trips} is
© how to measure and/or represent the attractiveness of destinations. For the

cage of mode choice for the journey-to-eork this is not a problem because
in the short term it cam be safely assumed that destinations are fixed;
therefore, their atiractions are common to all competing modes and. thus
cancel out. When this assumption does not hold (as is the case with
shopping trips) we face a problem which has, so far as we are aware, ho
satisfactory answers. :

(**)Spec1f1cally the problem is that for non-linear utlllty expre551ons there
lS no guarantee that the likelihood function has a unique optimum(Daganzo,l979). J




b, b Model structure and variable selection

Having solved or simply avoided (as in our case) the
aforementioned problems we have to deal with two further

obstacles:

- whaet model form (and structure) to use, eg. logit
or probit
~ given the structure, what varigbles should enter the

utility functions and in what form

We think it is fair to say that the question of model structure
can only he resoiveﬁ by examining thé particular situation under study.
If we have reasons to believe that alternatives are independent and
that variations in taste among individuals in'the'population are not
important (e.g. we can speak of a single value, rather than a
distribution, for the coefficients.multiplying the attributes enteriﬁg :
the utility functions), then we may confidently choose the MNL mbdel.
If, on the other hand, the above conditions are not met or if we are
not certain, then we should test alternative (more complex) model
structures against the convenient MNL. For example, if we suspect that
correlation between alternatives may be a serious problem, we can
either test if the ‘independence from irrelevant alternaties' condition
is satisfied (McFadden, Tye and Train, 1976) or, better still, estimate
8 hierarchical logit model which includes built—in structural diagnbsis
tests (Sobel, 1980; Ortuzar, 1980b; Ortuzar 1980c). On the other hand,

. if we have reasons to believe that there are strong taste variations
effects, we might have to try and fit a 'random coefficients' model.
The simplest one is the CRA Hedonies model (Cardell and Reddy, 1977)
which still has the restriction of assuming non—corfelatéd alternatives
as the MNL. The most general model structure possible, and sédly the

. ‘more complex to estimate(*)g is the MNP model wﬁich‘allows_for the

existence of both correlation and taste variations in the data.

It is important to realise that use of an inadequate model, such as
the MNL, can lead to seriocus errors (Hausman and Wise, 1978; Horowitz,
1978, 1979a, 1979b, 1980) and studies on the comparison of alternative

(*¥) The special problems of estimating probit models are discussed by
Sheffi, Hall and Daganmo 1980. The interested reader ig also
referred to the excellent book by Daganzo (1980).
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model structures using simulated data, such as those described in
Ortuzar (1978, 1979, 1980a) and Williams and Ortuzar (1980a) among

others, have tended to confirm this view.

Even-if the analyst ié convinced (or has no choice but to
be convinced) that a given model structure (say a MNL msdelj is
adequate and that linear-in~the-parsmeters utility functions pose
no difficulties, he has still to decide what varimbles should
enter the utility expressions, and in what f;rm. Thig quesiion
is particularly relevant in the case of socio-economic variables.
In dissggregate modelling work the most comman approach until the
mid-1970's was to add these variables as sdditional linear termns;
this is consistent with the hypothesis that any trade~off mecha-
nisms involving say, time an& costs, are the same for &ll
individuals.

Two slternative approaches allow different trade~off functions
for groups of people with different characterisﬁics. The first,
which is fully consistent with the requirement of observing
groups of individusels with the ssame éhpiceé'and constraints, is
to stratify the sample on the basis of the individual charac—
teristics and to calibrate a model for each market gegment., | In
thig way the model coefficients are allowed to vary for the
different market segments, thus resulting in potentially different
trade-off mechanisms(*). The problem is, as usual, one of data:
the larger the number of market segments, the smaller the number
of observations cn.each for a given sample size, The second one,
which can be used in ceonjunction with the first, is to express
certain coefficients (eg.zof fhe time or cost varisbles) as a

" function of an individusl descriptor, usually income (see the

e s e s e s LI L -an e s e "ew sen "

(¥} This is not to be confused with the issue if random vs. fixed
coefficients models as discussed above. Here we are simply
considering fixed ccefficient models being applied to different
market segments. o -
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discussion by Train and McFadden, 1978). In a value-of-time

context this would, for example, result in time being valued as

a percentage of the wage rate (McFadden, 1976).

The decision about what variables enter the utility function
and in what form {eg. level-of-service varidﬁles being generic or
méde—sPecific, ete,) is usuzlly approached in a stepwise fashion
bylteeting if‘the extra varieble or form adds extra explenatory
power to the model.  This is related to questions of model
credibility and poliey sensitivity in the following sense; 1t may
often occur that & variable which is considered to.be important,
either on strong & priori grounds or because it is & key one in the
policy-model interface (eg. a cost variable in a study of pricing
mechanisms), would be left.out as statistieally insignificant by a
stepw1sé selection procedure, In such a case, the tendency has
been Lo override the 'mutomatic! selection-procedure {see Gunn

and Bates, 1980), The stepwise gelection of variables is
usually done as part of the model estimation phase; so we wili'

postpone a- discussion on methods +to do this until secti0n 5.2.

5. MODEL ESTIMATION
: *
5.1 General statement of the problemg )

In travel demand modelling (as in most modelling exercises)
interest centres on finding a ¢gusal relationship between one
variable, or set of variables, held to be dependent on another
variable, or set of variables, .Tne ﬁurpose of thé exereise is
to predict what value the dependent variable will take given

particular known or hypothesised (forecest) values of the

L ] LR LI ] ae . LAY e e “ ey * e LY e s e e LI Y

(*) I~wi11 draw heavily here on unpublished seminay notés'by thh Gunn,
with whom T have also benefited  greatly from discussions in all
aspects relating to the statistical interpretation of models.




explanatory variables. For two variables we can simply write

Y = £(X) (1)

and the problem is epproached by collecting s sample of, say, n
pairs of observations {xi,yi}, i=l, +.., n, and letting the data
deteymine the ‘besﬁ' form of £(-), On certain occasions, given
enough data points, nc mathematical analysis is needed; for any
given (forecast) value of, say, X, e simply consqlt the data,
f£ind the nearest ohserved value of x to X and use the gorresponding
value y as the modelled result. With less data we will ﬁormally

need to interpolate values, or at a considerably greater risk,

extrapolate them, For this we need to assume a functionsl form
for £(»); en estimation problem arises when the reletionship
between ¢ and X is not exact, Formally, we can postulate the

model form:.

vy = flx) vy | (2)

where the error term, €:s is introduced to sccount for the scatter
in the date. Estimation consists of choésing particuler values
for the unknowncoefficlents in'f(x) in order to minimise the 'diSw
tance' between modelled and observed values of the dependent
variable at the set of data points. In other words we want o
meximise the similarity between Y and £({X) end for this we must

choose & sultable measure of 'distance' from the many available,

such as
p, = jy-zm| (3)
D, = (Yff(X))a (4)
Y - £(X) 1
by = (52550 (5)

ete,
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Each criterion of goodness—of-fit will determine a corresponding
. set of estimetes of the unknown coefficients — the problem is

*®
which is the "beat!\ 7

When the error terms are each independent with mean zero

and consbent variancesﬂb, the least squares criterion, is knowm
i R .(**) i

to give such "best' estimates on average . For general error
distributions, which may vary from observation to observation, a
satisfactory criterion of fit must allow for the relative relia-
bility of each deta point. The method of Maximum Likelinood
(ML), which we will describe below, does just that end it is
interesting to note in passing that if the errors €, have common
and independent Normal distributions, the-criteria ML and D,
are identical. For models in which the dependent variable Y is

e proportion {such as in the case of an aggregate modal splity

model), it appears sensible to choose f(X), such that
0 < f(xi) < 1, ¥xeX (6)

If we move to & more general case where we wish to model an

exhaustive set of outcomes {I‘.LE'.'2 .ns YN} where
N .
Yy o= 1 (7).

then it is also sensible to ensure that the models

{fl(Xi)fE(Xi) vee EN{Xi)} are such that

z t, ) = 1 (8): -
j=1 9

- . "0 a "8 . e . was L LY L ] .- ae LI ] s aw

(*) Usually interpreted as the most rellable in terms of the forecasts
it produces.

(¥*) However, problems arise with its use when different data points
 have different errors — weights may have to be introduced, or
transformations made (see, for example Bishop, Fienberg and
Holland, 1975).
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Now if we éhooser
fjix}} = K, exp{gjkx})} | (9)

we will ensure that the non-negstivity condition in (£) . is

satisfied for any-function gj(-), if K; 18 & positive constant.

Furthermore setting

1

K, = : (10)
1 N .

T EXP{gj(X;)}

J—

Fd

ensures tha£ the models sum to unity., The combination of (9)
end (10} ig, of course, the logit model which has been used for
decades to analyse tables of proportions for precisely the reasons
given sbove. Thus the random utility generation of tﬁe model has
been a post~hoc rationalisation for use of the model in certain
circumstances where it might be appropriate {for a fuller discus-

siom of this issue, see Willisms and Ortuzar, 1980b).

5.2  Meximum Likelihood (ML) estimation and allied

ghatistical teats
ML calibration of aggregate nesied logit models (as series
of logit models), together with a discussion of ML and other cali-

bration methods for aggregate data_(eg. where proportions rather

than (0,1} choices are observed) have been presented in Hartley and
Ortuzar (1980). Here we will concentrate on the special problems
‘ariging in the estimation of any disaggregate model. The differences
stem from the basic fact that while models predict choice probabilities

(i.e. numbers between O and 1), they must be tested and calibrated

. : . * . ) : .
against (0,1) choice behaviour (-). From now on, we will assume

L] : LR ] »aw aan LI

(¥*) For a good general discussion of the problems involved, the
reader is referred to McFadden (1976); Stopher (1975); Tardiff
(1976); Hauser (1978) and Project Bureau Integral Traffic and
Transportation Studies (1977).
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that the modeller has gathered, following & certain sampling rule,
information on thel actual choices (eg. alternative A;, from the
choice set A(gled) of individuals g, and informstion on choice
influencing Varia.'bl_l.esr Z;g‘thg,se mey jbe levglwof—service at't;ributé's,
of the options and/or socio—economic characteristics). The ML
techmigue, which has been lthe most widely ﬁsed and more strongly
recormended method (Jansen et al., 1977; McFadden, 1976, 1979b)
looks at the prdﬁability of obtaining the Q independent choices,

Cq, =1, 0., @, given the model {along with its parameters @_):

rle q,g) (11) -

Then the probability of obtaining the observations

Cy1sCps sees cq, is

Q
L{c.y ssey €.58) = 1 P(c ,0) (12) -
1 q R

The usual wey of looking at this function is to regard the vector
of parameters @ as known and L as a set of probabilities over
possible observations, However, in the estimation context, the
observations are known end @ 15 unknown., When L is regarded as
& function of @ for given (observed) c.o g=l, .eay @, it is called
the 'Likelihood Function' and is normally written as 1(9), for
short, Recall that the observed dependent variable takes a wvalue
of either 0 or 1. This brings in scme problems for essessing

goodness—of~it, as will be discussed below.

Assuming that L(@) is well behaved, it 1s possible to find e

unique set of estimates of @4 §,which maximises L(§) where © depends
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on the observations. If we define

2(0) = s L{g) (13}
d .
= 220(0) -1 - e
¥V = —{B( = 1}
;L]

where B(+)} denotes an expectation'operatoi't*),' then _gl is an
asymptotically efficient estimator of @ an.d is asymptotically
distributed as Normal, K (_Q,‘\__[). Moreover -2.£(§) is - asymptoti~-
cally distributed xe {ehi-squared) with § degrees of freedonm.
This means that although _(E may be biased for small samples, the
bias is smallfor large enough Q {Jjust how large is Ylarge enough'
ie a function of the problem under examination, but generally
dats sebs with 500 to 1000 observations heve been found to be
sufficient). Tleestimator _§_ is the best possible for large
samples (McFadden, 1976), and there is a concrete expression ¥
for its variance-covariance m:ﬁtrix. Note however, that for
most model forms, including the easy to handle MNL, _é_ must be
calculated by sn iterative procedure; Fortunately ¥ is useful

in this iterative calculation and is thus availeble when convergence

QCoUTs,

ror a gimple MNL model of the form

e )

Pi (aq),8) = (15)

z
jea( @ ¥R Z5o2)

- L] LI LA I LU} - a "en = w e - a e .- a vwa

(#) For the simple MNL model the expectation is not needed because
the second derivatives of 2(8) depend only on the modelled
probabilities and not on the observed proportions or choices
(see, Hartley and Ortuzar, 1980).
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the Likelihood Function can be written as follows (Ben-Akiva, 1973)

qQ
L@ = 1 1 P (A(q), 8)8iq (16)
a=1 jeA(q) Y

vhere gjq_equals 1l if alternative j was selected in observation g
and zero otherwise. 'Teking the natural logerithm of both sides
we geb

Q

wg) = £ = g .nP. (2(2),9) (17)
q=1 jealq) 9 *

Substituting equation  (15) in  (17) we can derive the first

order conditions (McFadden, 197L4)

22 L (e - P,(4(a),0)}.5; (28)
= © : {g_-P.(a(@),9)}.2, = 0 ]
20, a=1 geata) ¥ * Il

for k=1, ..., K

It is easy to see that if the set of variables includes a mode-
specific dummy as follows:

1 for J =a

B3
#

i (19)

=
A T T e

0 otherwise
then from the first order conditions (18) we will always get

Q q
teg, = LP(adg),0) (20)
g =l Q=i

Therefore s comparison of a sum of probabilities for a given
alternative with the total number of observations that selected
the alternative can be misleading. For this reason, and because

S

it is slso misleading to compare the computed probabilities with
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the 5jq verisbles (if we assume that the actusl choice is made
with s probability and not a certainty as the gj,:i variables
indicete), a goodness—of-fit measure such as R2 in 6rdinary'least

squares, which is based on estimated residuels, does not exist.

A word of caution is also in order here, Although it is well
known that for a logit model with linear-in-parameters specification
2(0) is well behaved, this has not been proven for probit models,

except for the simplest independent binary case, Indeed it has

been noted that the most widely used and efficient MNP estimaticon
computer code available, CHOMP {Daganzo and Shoenfeld, 1978) may

have problems in that the approximation to 2(8) used is not necessarily
unimodal (Bouthelier, 1978; Daganzo, 1979).

The well understood properties of the maximum likelihood
‘estimation methed, for well behaved likelihood functions, allow a

number of statisticel tests which are of major importance:

o

(1) The t—test for sigﬂijicance o} any component ék of

Equation - (1k) implies that ék has sn estimated variance Vigge?
where V = {vkk}’ which ir caleulated by the estimeting program,

Thus if Gk =0,
t = "'31;’.""1:1: : (21)

is distributed Nérmal K{0,1)}). For this reason, it is possible
to test whether 5k is significagtly different from zero (it is not
exactly a t—~test as this is a large sample approximetion; % is
tested with the Normal distribution). Largg absdlute values of t
(tyﬁically bigger than 2 for 95% confidence levels) lead to the
rejection of the null hxpothesis 8

0, is significant. )

K = 0 and hence to acceptance that
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(ii) The tikelihoog ratio test of linear restrictions of any

general hypothesis

A number of important model properties can be expressed as
linear restrictions on a more general linear-in-paremeters model,

Some important examples of properties are:

- Attribute genericity: There are two main types of
explanatory f&riables, 'gene;ic ﬁariables'Aaﬁa 'alternétive—
specific' variables. The former vary in value (or level) across
choice alternat{ves, whereas the latter are thoée with an identi-
fiable correspondence between choice alternatives; because they
may not vary across ell opbions, alternative-specific-variables
can take on a zero value for certain elements of the choice set,

Let us assume a model with three alternatives, car, bus and rail,

and the following choice influencing variables,

T = travel time _OPC = out-of-pocket travel costs

Then, & general form of the model would be:

-

Ucar = eloPCcar + 0ETTca.r
Uﬁus = 'G3OPCbus_+ ehTT%us
Ur&il = 050PC 051 %6 rai1

However, it might be hypothesiséd.that costs (but not times, say)
should be generic. - This can be expressed by writing this

hypothesis as two linear equaticns in the parsmeters:
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In general it is possible to express attribute genericity by linesr
restrictions on a more genersal model. For extensive use of this
type of test refer to Dehghani and Talvitie (1979).

- Semple homogeneity: It ig possible to tesf whether or not
the same model coefficigpts are approPriaﬁé for two subpopulations
(say living north and scuth of a river). For this, one formilates
8 general mndel{using different coefficients for the two popula-—

tions and then tests for equelity of the coefficients as & linear

restyriction.

Because of the ﬁroPerties of ML, it is very easy to test any
such hypothesis expressed as linear restrictions by means of the
well~known Likelihood ratio test (LR). To perform the test the
estimation program is first run in the more general case to give
the estimates.é end the log~likelihood at convergence £*(§). It
is then run again to attain ebtimates ér of § and the new log-
Jikelihood et maximum E*(éTJ, for the restricted case., Fhen, if
the regtricted model under consideration is & correct specifieation

the likelihood ratio statistic,
- B ) -~ g
2{a~(8,) ~ 2*(8)}

is asymptotically distributed xz with k-r degrees of freedom where
k is the number of elements in 8 and r is the number of linear
restrictions(*). Rejection of the null hypothesis implies that
the restricted model is erroneous. Train {1977), offers examples
of the use of this test to stﬁﬂy-qﬁestions d?non—linéarity, non~
genericity and non-homogeneity. Horowitz (1980) has discussed
the power and properties of the test in detail and should be

congulted for further refefence,

{¥) Note that for this we need one model to be a restricted or

nested version of the other. We will look at what to do with
non-nested models below.
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(i1i) 2he overall test of fit

A special case of the LR test is to find out whether all

components oflé are equsl to zerc - the equally likely model:

1

P, (4lq),0) = (22}

N
a4

where Nq is the number of options aveilable to individuelq ; or,
preferably, to test whether those components of @ which do not
correspond to model constants are equal to zero - the 'best null!

model (or 'constants only' model):
P.(A(q),8) = ms, - (23)

where msi is the merket shere of alternative i, TLet us congider
the first case, which is the most common and obvious one, %o

begin with.

If there are k parameters and £¥(0) is the log-likelihood
of the equally-likely model, then under the null hypothesis of

82 =0, the value

~2{27(0) - 2#(8)}

should be asymptotically distributed x2 with k degrees of freedom,
Note that £*(0) does not require a special progrem run since it is
ususlly celculated as the initial log-likelihood at the start of
the program. This test is actually rather weak; if rejected it
only says that the model with parameters § provides e better
explanation of the data then a model which does not have eny signi-
fiéa,nt explanatory power (the equally likely model)., It is
obvious that when the model contains alternative-specific constants,
the test in this sﬁmplesﬁ form is not approérigte. It is more

relevant to test, as suggested sbove, whether the explanatory
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variables add anything to the explsnation given 5y the constants
alone, ie. the best null model, It is rﬁther embarrasing‘to
note that constanﬁs tend to account for 60% to 80% of the

o

explenatory power of these models (Talvitie and :Kirschner, :1978).

In general, an eitra run is required to caleulste R¥(C),
the 1qg—likelihood of the model containing only slternative-
specific constants, except for models when all individusls face
the seme slternatives where it has the followihg close rorm

equation (Tardiff, 1976a).

J Q.
#*(C) = T Q. ln NEUSE
=179 q

where Qj = number of individuals choosing alternative Aj.

liv} The Rho squared indices

It is felt by manj that & coefficient of goodness—of-fit
is useful. However, as we mentioned above, s goodness-of-fit
like R® in ordinary least squares does not exist. A goodness—
of~fit coefficient should renge from 0 to 1 (no fit to perfect
fit), be meaningfui for comparing models calibrated with
different samples, and hopefully be related to a statistic with
& known probability distribution for purposes of statistical

hypothesis testing.
Such an index has been defined (MeFadden, 1976) as

1))

1*(0) @)
However, it hes been noted that although p2 behaves nicely at
the limite {eg. O and 1) it does not have an intuitive inter-

pretation between the limits (Hauser, 1978). A quotation by

Mcradden (1976) may also be appropriate at this poimt:
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" ees Those wnfamiliar with the p2-should be forewarned
that its velueg tend to.be considerably lower than
those of the R* index (of regression anslysis) and
should not be judged by the standards for “good fat"
in ordinary regression analysis. For example, values
of 0.2 to’0.4 for p 2 represent sn excellent fit ..."

Because 8 pz—like index can in princaple be computed
relative to any null hypothesis, 1t is important to choose an
sppropriate one. For example, it is very easy to show that
the minimmm values of p2 {witH respect to the equally likely
model), in models with alternative-specitic constants, vary
depending on the proportion of individuasls choosing each alter-
native, Taking a simplé binéry case, Table 1 (Tardiff, 19T6).
show the minimum values of p2 for different proportions cheoosing
option 1, It can be seen that 92 is only eppropriate for the

50/50 percent case.

Sample Proportion Selecting Minimm value of
the First Alternative 02

0.50 0.00
0.60 0.03
.0 0.12
0.80 0.28
0.90 0,53
0.95 . | 0.71

e

. e .
Table . .1.  Minimum values of p for various relative frequencies

(Source: Tardire, 1976.)

These values mean, for example, that a model calibrated with
. a 0.9/0.1 semple, yielding a pa of U.55% would undoubtediy be much
venker than a model ylelding a p2 of 0.25 from & sample with &

0.5/0.5 split. Fortunetely, a rather simple adjustment exists
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(Tardiff, 1916) " that overcomes these dirficulties, It conmsists

of defining & more appropriate index 32 as

;g»*(_é_)

=] e
P e - (26)

This statistic has between O and 1, is comparable across different
semples and is also related to the x2 statistic; therefore 1t is
recommended over 92. (For é:more profound discussion of these
issues, tﬁe reader is referred to the recent papers by Gunn and

Bates, 19u¢0; ané Horowitz, 1980 )

5.3 Model comparison through goodness—of-fit measures

It has been shown (see, for example Horowitz, 1980} that
uncritical use of goodness-ot-fit statistics, such as p2, can
give perverse-results(*). or this reason, among 6thers, several
other possible measures ha#e been proposed and discussed by, for
example, Stopher (1975); McFadden (1Y76); -and Hauser (L978).
We will, however, mention only one other measure, the "first
preference recover&', FrR (nlso termed the 'percentage correctly
predicted’ of 'percent right' for short) and discuss & recent
improvement to it (Gunn and Bates, 1980). FPR is an aggregate
messure which simply computes the proportion of individuals that
actually select the option wath the highést modelled utility.
FPR is easy to undérstand and can readily be compared to the

'chance recovery', (R, the recoveries predicted using the equally

likely model, given by:

- + . LR Y “« e on " s eas a s - - . ea s

(*} Especially if one is comparing non-nested models.
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. _ q : ' :
CR = Lo (272)
q _

or, if every individual has the same number of options ﬁ;Aby:

CR = L/N (27Th)
FFR can also be compared to the ‘market share recovery', MSR,
the recoveries predicted by the best null model {constants only
model given by:

MSR = S(ms.'?) (25)
i v

where ms = market share of option j.

Also, being an sggregate test it has strong intuitive appeal and
is useful to improve communication between analysts and managers
or declsion-mekers (Hauéer, 1978). ﬁnfortunately, because of
its aggregate nature; it cen be misleading. For example

'ees & Farst preference recovery of 55% is usually good,
but not in a market of two products. A recovery of
90% is usually good in & two-product market but not if
one product has a market share of 95%.” (Hauser, 197Y)

Two further problems of FFR, in the sense of not being an
unambiguous indicator of model relisbility, are worth noting.
The tirst is that too high a value of FPR should lead to rejec—
ting the model as well as too low. To understand this point is
is necessary to define the expected value of FFR for a specified

rodel, ‘this is given by

ER = Ip , - 29)
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vhere Py is the calculated (maximum) probability essociated with

the best option for individualq. Ve also need to note thet the
()

varience of CR and Ef are given respectively by

-

| Q 1 1
Ver{(CR) = I == (1 ~—j (30)
i g=1 Nq Hq
) Q.-
Var(ER}) = Zp (1 -p ) (31)
qml q- q.

Thus, a computed value of FFR for a given model can be ;ompared
with CR end ER; if the three ﬁeasures are relatively close.({given
the estimated variances) the nodel is reasonable but wiinformative;
if FPR and ER are similar and larger than CR, the model is
reasonable and informative; if FPR and ER are not similar, the
model does not explain the variation in the data and should be

rejected‘- whether FPR 18 Lavger or smaller than ER.

The second problem with the messure arises even if the value
of FPR is acceptablie, because a-test which welghts each correct
prediction equally will not be suitable for circumstances where
some opbions are more important than others.,” For example, given
& multimodal choice context if we are particularly interested in
the predictions with respect to a minor mode, say, park-and-ride
{P&R), we would not Judge two models with the same FPR equivalent,
if one of them predicted P&R incorrectly in all cases whilst
correctiy predicting the other modes slightly more times than the

rival model which performed reasonably well for all modes.

Y " aa e . LR Y -nn PR . . e 3
a e .

% ' . o . . )
(*) Because for an individual g, and FPR is an independent. random
event occurring with probability l/Nq'and p_ respectively
i q *
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Gunn(*) has obtained a more sensitive test based on the
sbovementioned measure by extending the coﬁparison of observéd
and expected FPR fo take account of 'where they occur' as well

a5 their absolufe mmber. ior this he divides the probabilaty
range (0,1) inio & number of intervels - for example (0,0.1),
(0,1,0,2), +avy (0.9,1.0) - and allocates individual observations-
to each of these intervals on the basis of their modelled 'first-
preference probabilities' (fpp) (ie., the highest probability
predicted by the model). Thus, if two individuals have,
respectively say, fpp = 0.488 and 0,415, they would both be
assigned to the interval (0.4,0.5). On the basis of the model,
we can expect approximately 45% of these individuals to show FiR,
We can, ﬁhen,observe the actual number of FPR in that group and
compare expectation {on the basis of the model) with out-turn.

It is interesting %o reéllse that a given model might have
exactly the expected number of FFR overall and yet be incorreect

in the distribution of FPR over the spectrum between likely and

unlikely recovery. It is obvious that this would indicate &
faulty model structure as clearly as an incorrect overall number
of FPR. Comparisons between observed and expected frequencies
can be carried out by means of straightforward xg tests (see
Ortuzar, 1980c).

5.4 Validation samples

The performance of any model should be judged against data
other than that being used to speeify it and, ideally, taken at
another point in time (pérhaps after the introduction of a policy
in order to judge the model response properties). This is most

. a0 LI ] e " e . o« e ven

(*) Private communication to be written as a Technical Note,
Tnstitute for Transpdrt Studies. Examples of its use are
given in Gunn and Bates {1980}; and Ortuzar (1980c).
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obviously true for the sort of models (eg. gravity model}
frequently fitted to aggregate data sets, because a comparison
of such mod?ls to the calibration data can only.reveal how gbod
a summary they provide for that ome data set. The same is true
though of disaggregate models. We will definé a subsample of the
data, or preferably another sample, not used during estimation,

as a validation sample.

In this section we will describe a procedure to estimate
the minimum size of such a validation sample (to be subtracted
from the total sample available for the study) conditional on -
allowing us to detect a difference between the performance of
+two or more models, when there exists a true difference between
them.  The method, due to Gunn, is based on the FPR coneept and
will be used elsewhere to determine the size of a validation

- sample for the estimation of disaggregate choice models (Ortuzar, 1980c).

Consider a 2x2 table layout as follows:

Madel 2
Not
FPR FFR
4 Not n n
FPR 13 12
rao’i e
2 oy, Nop

For all individuals in & velidation sample, choice @robabiiities
and FPR are calculated for sach of two mndéls under investigation
and the cells of the table are filled appropriately, ror example

assigning to cell (1,1) 1f not FPR in either model, ete.
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We are interested in the null hypothesis that the probabilities .
with whieh individuals fsll into cells (1,2) snd (2,1) are equal,
for in that case the implication, on simple FPR, is that the two
models are equivalent, On this null hypothesis, the statistic
M (after MbNemaf, see Foerster, 197%a)

)2
M o= —del L (32)

+
T ¥ Py

{n -~ 1

is x21dlstributed with 1 degree of freedom., Thus, a test or the
'equiv&lence' bf the two models, in terms of KPR, is given by
computing M and comparing the result with Xi,l' If M is less
than the appropriate chosen critical value of xi’l {3.85 for the
usual G654 confidence level) we cannot reject the null hypothesis

and we conclude the models are equivalent 4n these terms,

Given thié procedurs we can choose whichever level of
confidence seems appropriste for the assertion that the two
models under comparison differ in respect of the eXpected naumber of
FPR, This gives us control over the fraction of times that we
will incorrectly assert a difference between similar models. As
ususl, the aim of selecting a particular sample size is to ensure
a corresponding control over the proportion of times we will meke
the other type of error, namely incorrecily concluding that there
is no difference between different models, Now, to calculate
the probebility of an error of the second type we need to decide

what should be thé minimum differéﬁce that we should like to be
able to detect. With this we can ealculate the sample size
needed to reduce the chance of errors of the second kind to aﬁ
acceptable level for models which differ by exactly this minimum

o

amount, or more.
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Congider, as an illustration, & particular case of two models

such that, on average, model 2 prodnces 10 extra FFR per 100

- *
individuals modelled as compared to model 1t ). In this simple

case n,., is zero and the statistics M simply becomes n If

21 12°
we are ensuring 95% confidence that mny difference we establish
could not have arisen by chance from equivalent models, we will
compare I,
say, the probability that r individuals will be assigned to

with the value 3.85, For any given sample size n,

cell (1,2) is simply the binomial probability (g)pr (- p)™T
vhere p denotes the probdbility of an individusl chosen at raendom
being assigned to the (1,2) cell, eg. the minimum difference we
have zet to detect. Given n, and taking p = 0.05, say, we can
calculate the probebilities of 0,1,2 and 3 individuals being
assigned, and sum these to give the total probability of accepting
the null hypothesis, eg. dammitting an error of the second kind.
Table 2 gives the resulting probabilities for different sample
sizes(?). It 1g clear that the requira&validation sample size
ﬁeeds to be relatively lsrge, given that estimation data sets are

only a few hundred date points. Also recall that this table is for

the simple case of one model being better than or equal in each

(*}Hote that here it does not matter whether this arises as a
result of model 1 having 20% FPR and model 2,30% FPR, or model 1
80% FPR and model 2|90%; in other words poth models can be

inadequate.

(?}An extension of this table for other values oi p is given in
Chapter T of Ortuzar (1980c)..
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Minimum difterence 5%

Semple size -
) Prob {error II}
50 0.76
100 0.26
150 0.05
200 0.01
250 0.00

i A . W A QL P e 2 st

Table ... 2. Probability of an error of the second kind for

given sample size, minimum difference of

5%, &nd models ms defined

observation than the other, although the method is easily
generalisable to cases where both (1,2) and (2,1) cells have

" non-zero probability.

5.2 - Comparison of non-nested models

The 1ikelihoqdmratio tests outlined inisectionVS.E abové,
require tepting a model against & parametric generalisation of
itself, ie., it requires the models to be 'mested'. Models
whose utility functions have significantly different functionsl
forms or models based on different behsviocural parsdigms cannot

be compared by these tesis.

It is easy to conceive of situations in which it would be
useful to test a given model against another which is not &
parametric generalisation of itself, The following example
provided by Horowitz (1960) is very illustrative. Suppose that

one model has a representative utility function specified as:




U = 0,3, + 0,3, (33)

and the other, a representative utility function given by:

¥ = 0427 (3h)
and fhat it is desired to test the two models agarinst one another
to determine which best explains the data, Clearly there is no
value of O

that causes U and V to coincide for all values of

3

9 @2 and the attributes z.

12
If both models belong to the same general family of models,

it is possible to construet hybrid models; for instance, in our

simple exsmple we could form a model whose representative utility

¥ contains both U and V as special cases:

W z_ elzl + @222 + GBZSZu _@5)

Using likelihood-ratio tests, both models can be compared against
the hybrid. The first (33) corresponds to the hypothesis 0,=0
and the second (34) to the hypothesis 9, =8, =0, Several
other'tests, including cases where the competing models do not
belong to the same general Ffamily are discussed at length in—{hé

excellent paper by Horowitz (1980).

An especialiy helpful feature of the validation sample
concept discussed in seétiou 5.4 above, is that, mrovided the semple
is sdequate, the issue of ranking models, nested or non-nested,
is particulsrly easily resolved (Gunn end Bates, 1980}, because
likelihood ratio tests can be performed on that‘semple for any

, %
nodels regerdless of difference in model structure or parameters( }.

L] 4w LAY LIS e e

(¥} The condition of one model being a parametrié generalisation
of the cther is only required for tests with the same data used
for estimation (Gunn and Bates, 1980).
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5.6  Estimation of models from chdice:pésed samples

We mentioned ip sectioﬁ 2, -that estimating é choice model from a
choice~based sample may be of interest because the data collection
costs are often‘;onsiderably smaller than those for typical
random or stratified samples (Lerman and Manski, 1976} 1979).

The problem of finding a tractable estimation procedure possessing
certain desirable statistical properties, is not an easy one; the

state-of-the-atrt is provided by the excellent papers of Manski

and Lerman (1977) and Manski and McFadden {1980).

These authors have found thet appropriate meximm likelihoéd
estimators for choice based sampling, except n very restricted
eivoumatances are impractical due to computational intractability.
However, if it is assuned that the analyst knows the fraction of
the decision-makang population selecting each alternative then a
tractable method can be introduced. This approach modifies the
familiar maximum Likelihood estimator of random sampling by
welghting each observation's contribution to the log-likelihood
by the ratio H(i)/S(i), where H(i) is the fraction of the popula-
tion selscting option i and 8(i) is the analogous fraction for
the choice~based sample, Mansgki and Lerman {1977) go on and
prove thet this estimator is consistent, find its &symptotié,n
covariance matrix and examine its asymptotic efficiency for
special cases., They also show that the unweighted random sample
ML estimator is generally inconsistent when applied to choice—
based samples, snd in most choice models this inconsistency affects
~ all paremeter estimates. However, for simple MNL models with a |
juli set of slternative-specific dummy variables, the inconsie—
tency is jully confined %o the estimates of the coefficients of

these dumies (Mapski and Lerman, 1977; Manski and McFadden, 1980).
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This latter result has been used in an empirical study in South
Africa by Stopher and Wilmot (1979). Coslett (1980) have extended

this work to the estimation of hierarchical logit models discussed below.

5.7 Estimation of hierarchical logit models

The nested or hierarchical logit model (Williams 1977; Daly and
Zachary, 1978) is a generalisation of the MNL which does not suffer the
l':T_ndependénce from irrelevant alternatives' restriction. For example,
if ve éonsidey the well-known red bus/blue bus case, = hierarchical
logit model would proceed in two st&ges. Firstly, a primary split
between car (e) and 'composite! bus mode (b), and secondly a subsplit
between the two ﬁus options (rb and bb, respectively), as shown in
Figure 3. A detalled description of the calibration and properties of
such a model, for choice among car, bus and train, usiﬁg aggregate data
has.been presented in Hartley and Ortuzar (1980). Here we just want to
show the special complications that arise when the estimation is carried
out using individual choice data. For practical examples refer to Coslett
(1980), Sobel (1980), and Ortuzar (1980c). |

Individuals are conceptually assumed to evaluate each alternative

according to utility functions U 2 Urb and Ub respectively (with

measurable components U . Urb and U ) as in the case of the MNL.
However, in this case we need also to consider a ‘composite utility'

of the lower hierarchy'or 'nest'. This composite utility (ﬁb) inq;uggg
the expected value of the maximum utility of the members of the next,

given by

I, = In {exla( v exP( ) B6)

end attributes which are common to all the members of the lower

hierarchy as in
qb g 4T, + 8 7 | «{31)

where o is an estimated coefficient and © is the vector of

© egtimeted coefficients multlplylng the set of attributes 2 which
(*)

are common to all nest members

. e LECEY P ) s s - aaa PN ] Y .. .E -5 a -9

(*) The reason for taking the attributes z  out is that, belng common,
they do not influence the choice in the lower hlerarchy'(e g. both
buses have the same fare structure). -However they must be included
agein in the next hierarchy because they certainly influence choice
between car and the composite bus mode.
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It is easy to see that the hierarchical logit model can be
estimated using standerd MNIL, software in two stageé: rifstly, as
s binery logit model between red bus and blue bus, the results of
which allow us to calculate I, from {36); seéondly this value
is entered ss another independent variable along with the z

B
varisbles snd the attributes of car in the primary split which.is,
in thia‘simﬁle case, another binary logit model. The secondary
split will yield P(rb/b) and P(bb/b), the conditional probabilities
of red bus and blue bus given tﬁat choice is constrained to bus,
The primary split yields P(e) and P(b), the marginal probabilitiés

of car and bus respectively. It is clear that probabilities of

each mode are

car = P(Q)
Prod pus = P(b).P(rb/b) - (38)
Plive bus £{bj). Pihb/b)

{

An im@ortant feature of the model conC¢rns‘acceptable
ﬁalueé of ¢, the coefficient of the expectéd meximum utility of
the nest (see Qrtuzar, 1980b for e discussion of its use as a
diegnostic tool(for appropriate specification). _ Williams
{(1977% has shown that ¢ must satisfy:

0 < ¢ £ 1 (39)

it has also been shown (Williems, 1977, Daly and
" Zachary, 1978) that if there are more than two levels of nesting,
eg. & case with more composité utilities énd coefficients ¢,
- then |

0 < 4 .5—4:2 § 4y € eae S 1 (bo)
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where ¢l represents the coetficient of the expected maximum
ukility of the 'lowest' hierarchy. Note also, that at any
hierarchical level, i, & value of ¢; = 4 implies that the linked
nesting at level i is mathematically equivalent to & simple ML

at that level. For a good discussion of these issues see

Coslett (1980) and for e review and an application to real data see
Ortuzar (1980) .and SObel (1980}, who has shown that for hierarchical
logit models there exist equivalent measures to the 92 and.EQ

indices (equations 25 and 26), given by

z*(_f-ﬁ_) + 2*@) +aes * z*f(é_) '
p2 = ] - 1 o L (lil)
*( * *
¥e) + 25(0) + .., + R,J.(O)
and (n ~ ”
2%(0) + 2%(9) + ... + 27(0)
B o= 1 -2 : i (h2)

.* * * '
R,l(C) + 22(0) Foaes * zj(c)

where the subscripts 1 to ] refer to the gimple MNL models in the

hierarchy of interest.

Notwithstanding the simplicity of the 'heuristic' or 'bobttom
u@’ calibration of thehiefarchicallngit model (Williams, 197T)
it is known that the consequence of sequential estimation is a
loss of statisticai efficiency which may be severe (Daly and
Yacheiry, 1978; Amemiya, 1976, 1978; Coslett, 1980; Sobel, 1980).
This happens because the standard errors of lower level coeffi-
cient estimates permeate from lower hierarchies upwards imbedded
in the values of the expected maximum utilities I. When there

are multiplie hierarchies,
M. .. successively higher level expected maximum
utilities will contain greater and greater
proportions of random statistical 'noise',"
| (Sobel, 1940)
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What is really required is a simultanecus estimation routine which

would eliminate the compounding effect of these errors, thereby

improving the statisticel efficiency of the estimstes of the

(*)

parameters @ Another powerful reason for developing such

softwvare is to avoid the unpleasent possibility of obtaiﬁing

different estimates of the same parsmeter at different hierarchi-

cal levels (which is quite common due to the different smount and

quelity of data used in each). At least two experimental

simultaneous estimation sottware packages are in the process of

dévelopment by Daly at Cambridge Systematics Ine. and by Small and

Brownstone of Princeton University, butnone is yet availsble.
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Recall how crucial are the ¢'s in allowing for structural diagnosis
of the model, through,condltlons (39) and (40}.
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