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Abstract
To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new
skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset;
it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach
within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections
to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence
between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this
modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art
approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames
of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition.

Keywords: ASL, Isolated Sign Recognition, GCN, Linguistic Modeling

1. Introduction
There are 28 million Deaf or Hard of Hearing peo-
ple (Lin et al., 2011) in the US, and American Sign
Language (ASL) is the primary language for ≥500,000
people (Mitchell et al., 2006). It is also the 3rd most
studied “foreign” language (Looney and Lusin, 2019).
Signed languages involve articulations of the hands and
arms and non-manual expressions: facial expressions
and movements of the head and upper body. Computer-
based sign language recognition from video would
pave the way for technologies to improve communi-
cation between deaf and hearing individuals, such as
ASL-to-English translation; educational applications to
support ASL learners; or Google-like sign search by
example over videos on the Web. These same technolo-
gies could also be applied to other signed languages.
The research reported here focuses on recognition of
isolated, citation-form signs. The linguistically sig-
nificant aspects of sign production include particu-
lar hand configurations, palm orientations, locations
(places of articulation), and movements, as well as non-
manual components in some cases. As would be ex-
pected in any language, the production of words (signs)
shows considerable variability, and inter- and intra-
signer variations pose a challenge for computer-based
sign recognition. For this reason, it is important to use
a large video corpus with sufficient numbers of exam-
ples for each sign, including multiple signers. In this
research, we used the WLASL dataset (Li et al., 2020),
a collection of videos taken from various sources that
includes 119 signers in 21,083 videos of 2,000 distinct
isolated signs. However, there are inconsistencies in
the gloss labels associated with signs. We thus modi-
fied the gloss labeling to enforce consistency. We also

restricted the set of signs to lexical signs (the largest
class), for which there is a fixed vocabulary. For ex-
ample, we did not include fingerspelled signs and other
sign types in this research. The resulting dataset, with
corrected annotations, that we used for these experi-
ments consists of 18,141 videos for 1,449 lexical signs,
and we evaluated the performance of our deep learning
approach on this modified dataset.
Before the advent of deep learning, there were sev-
eral approaches to isolated sign recognition using tradi-
tional machine learning methods (e.g., Hidden Markov
Models (HMMs), Conditional Random Fields (CRFs)
(Lafferty et al., 2001)) to analyze the spatiotemporal
information in a video sign sequence (Grobel and As-
san, 1997; Dilsizian et al., 2014; Fatmi et al., 2017;
Metaxas et al., 2018; Tornay et al., 2020). Some meth-
ods also incorporated some degree of linguistic model-
ing (Dilsizian et al., 2014; Metaxas et al., 2018). Re-
cent advances in deep machine learning have given rise
to new methodologies for sign recognition (Lim et al.,
2019; Sincan et al., 2019; Sincan and Keles, 2021;
Masood et al., 2018), which include Convolutional
Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long short-term Memory (LSTMs) (Hochre-
iter and Schmidhuber, 1997), and often multi-modal
input learning fusion approaches. However, such ap-
proaches still achieve limited success in sign recogni-
tion from large vocabularies.
To improve isolated sign recognition accuracy, we pro-
pose a new skeleton-based method that involves ex-
plicit detection of start and end frames of signs and uses
linguistically relevant parameters based on the skele-
ton input, employing a bidirectional learning approach
within a GCN framework. We achieve 77.43% top-1
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and 94.54% top-5 accuracy using the modified WLASL
dataset. Furthermore, we compare our method with
that of Jiang et al. (2021) on the same modified dataset,
demonstrating the importance of linguistically moti-
vated parameters and attention to the start and end
frames of signs; our method does not require multi-
modal data input.

2. Related Work
Before the rise of deep learning methods, sign recogni-
tion frameworks often used hand-crafted features, such
as relative hand positions and distances between the
hands and specific body parts (Tornay et al., 2020;
Cooper et al., 2012; Badhe and Kulkarni, 2015; Xiao-
han Nie et al., 2015), in conjunction with standard clas-
sifiers, such as Support Vector Machines (SVMs), k-
Nearest Neighbors (kNNs), CRFs and HMMs (Memiş
and Albayrak, 2013; Dardas and Georganas, 2011;
Yang, 2010; Metaxas et al., 2018; Tornay et al., 2020).
However, the hand-crafted features and underlying
Gaussian distribution assumptions inherent to these ap-
proaches have resulted in systems with very limited ca-
pability for generalization and scalability. Recent deep
neural network based learning methods address these
limitations and have produced state-of-the-art results in
computer vision tasks such as action and gesture recog-
nition; these methods have also been applied to sign
language recognition, which is a related but consider-
ably more complex problem because of the importance
of linguistic structure. For sign language recognition,
several data inputs have been used, such as RGB video,
depth video, or both (Rastgoo et al., 2021). Some re-
cent methods fuse information from those inputs, using
raw RGB video frames, 2D extracted skeletons from
RGB video, and/or depth data to improve sign language
recognition (Jiang et al., 2021).

2.1. RGB-based Approaches
Early sign language approaches used CNNs to extract
spatial features in each RGB frame in combination with
Recurrent Neural Networks, such as LSTM or Bidirec-
tional LSTMs (Bi-LSTMs), to capture temporal infor-
mation (Sincan et al., 2019; Koller et al., 2019; Pa-
pastratis et al., 2020; Cui et al., 2019). Some research
has also used modified CNNs to capture short-term de-
pendencies. For example, Tran et al. (2015) first pro-
posed a 3D-CNN to improve action recognition. Many
researchers subsequently leveraged modified CNNs in
the context of action and sign language recognition
(Liang et al., 2018; Li et al., 2020; Vaezi Joze and
Koller, 2019). The most extensively used architecture
based on 3D-CNN networks is the Inflated 3D-CNN
(I3D) model (Carreira and Zisserman, 2017); variations
include separable 3D-CNNs (S3D) (Xie et al., 2018).
Although 3D-CNN models perform better than previ-
ous approaches in learning short-term memory depen-
dencies, a major drawback is that they restrict the learn-
ing of long-term dependencies at the final temporal

global average pooling stage. In order to overcome this
disadvantage in the domain of action recognition, the
authors in (Kalfaoglu et al., 2020), inspired by Natu-
ral Language Processing methods, used a Bidirectional
Transformer (BERT) (Devlin et al., 2018). The atten-
tion mechanism of this Transformer worked quite well
for dealing with most of the temporal dependencies.

Some newer architectures for video understanding have
been based on the use of Transformers, exploiting their
self-attention mechanism (Bertasius et al., 2021). This
is a promising direction for action recognition and
video classification, including sign language recogni-
tion. Transformers have the advantage of capturing
space-time dependencies over the entire video. How-
ever, they require larger amounts of training data than
are generally available for sign language recognition.

2.2. Skeleton-based Approaches

Instead of using the raw RGB frames, some meth-
ods have used frame-based extracted skeletons to fo-
cus the learning on the relevant information. When
the skeleton extraction process is robust, these meth-
ods show improved learning and recognition perfor-
mance, as they are not affected by irrelevant infor-
mation, such as the background. Extracted skeletons
can be in the form of sets of body joints (keypoints)
or skeleton graphs that include the edges between the
joints. The early approaches to action and sign lan-
guage recognition used CNNs followed by RNNs to
learn the relevant temporal information (Soo Kim and
Reiter, 2017; Liu et al., 2017). A disadvantage of these
models is their inability to encode keypoint interactions
in both space and time. To overcome this limitation,
Yan et al. (2018) proposed the first Spatial-Temporal
Graph Convolutional Network (ST-GCN) and showed
the effectiveness of GCNs for learning the spatiotem-
poral skeleton dynamics. However, ST-GCN extracts
and processes spatiotemporal keypoint features using
only the human body joint connections. Thus, interac-
tions of keypoints that are not directly connected, such
as the keypoints between the 2 hands, are largely ig-
nored. This information is important for recognizing
signs. There have recently been attempts to overcome
this limitation. Li et al. (2019b) exploits the latent joint
connections to improve human action recognition. Shi
et al. (2019b) propose a 2-stream approach that uses
keypoints and bone information (vectors between con-
secutive keypoints), while in Shi et al. (2020) the mo-
tion of keypoints and bones is added, resulting in im-
proved action recognition. de Amorim et al. (2019)
use an extension of the ST-GCN model for sign lan-
guage recognition, achieving close to 60% accuracy on
a vocabulary of 20 signs. This performance is signif-
icantly lower, however, than the recognition accuracy
achieved with traditional sequence learning models that
use skeleton and CNN-based RGB video frame fea-
tures (Metaxas et al., 2018).
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2.3. Multi-Feature Combination Approaches
Recent research has aimed to improve sign recogni-
tion accuracy by combining multiple features, such as
raw RGB video frame features, 2D/3D extracted skele-
tons from RGB video frames, and depth data. Rastgoo
et al. (2020) use spatial features extracted from pre-
trained CNNs and skeleton data, with an LSTM model
to encode the temporal information of signs, achieving
86.32% sign recognition accuracy on a vocabulary of
249 signs. Jiang et al. (2021) use a GCN approach
as in (Shi et al., 2020) and combine multiple features,
such as skeleton-based data, RGB-based features, op-
tical flow, and depth video features. This results in
a 4-stream framework for isolated sign recognition.
The GCN also employs a decoupled spatial convolu-
tional layer to boost the GCN modeling capacity. Us-
ing this multi-feature combination learning approach,
they achieve top-1 accuracy of 59.39% and top-5 ac-
curacy of 91.48% on the WLASL dataset (2000 signs)
(Li et al., 2020), and top-1 accuracy of 98.53% on the
AUTSL dataset (226 signs) (Sincan and Keles, 2020).

3. Our Approach
The distinctive aspects of our approach include detec-
tion of start and end frames for ASL signs, as a first
step; the use of a GCN model for keypoint graphs;
and a late fusion strategy that utilizes both forward and
backward video streams. We have also taken steps to
ensure consistency of the gloss labeling of signs used
for this research. Below we report on the data used for
this project; we then describe the technical approach.

3.1. Data for This Project
We perform sign recognition on lexical signs in the
WLASL dataset (Li et al., 2020), with enforced consis-
tency of gloss labeling, as described below. We use the
ASLLRP ASLLVD dataset (Neidle and Opoku, 2021;
Neidle et al., 2018; Neidle et al., 2012), with almost
10,000 linguistically annotated citation-form sign ex-
amples corresponding to over 3,300 distinct signs from
6 signers, for training on detection of start and end
points of signs.

3.1.1. Critical Importance of 1-1 Correspondence
between Signs and Gloss Labels

Deficiencies in the quality and accuracy of annota-
tions in sign language corpora are a key limitation
for progress in sign recognition research (Bragg et al.,
2019). Research based on gloss labels for signs faces
a serious challenge, in light of the fact that: (1) there
is no 1-1 correspondence between English words and
ASL signs, and (2) there are also no established gloss-
ing conventions shared by the ASL/research commu-
nity. The ASLLRP projects (Neidle and Opoku, 2021;
Neidle et al., 2018; Neidle et al., 2012) have established
conventions to ensure a 1-to-1 correspondence between
gloss label and ASL sign production, which is criti-
cally important. See (Neidle et al., 2012) for discussion

of the challenges posed in establishing glossing con-
ventions. Serious problems arise, however, when re-
searchers use datasets where 1-1 gloss label to sign cor-
respondences have not been enforced; or when multi-
ple datasets using inconsistent glossing conventions are
combined. This is the situation for the WLASL dataset,
which brings together multiple, publicly shared, ASL
video corpora from different sources.

3.1.2. Problems with the Gloss Labels Provided
for the WLASL dataset

Although Li et al. (2020) claim that sign variations (of-
ten attributed to dialect variation rather than to varia-
tions in labeling) have been taken into account, serious
labeling inconsistencies remain. For example, in the
WLASL dataset the same sign is sometimes glossed
as “reply” and sometimes as “answer”; compare, e.g.,
video ID 2718, 2713, and 4735, among the examples
glossed as “answer” with 47343, 47345, and 47342,
among those glossed as “reply,” as shown in Fig. 1.

Figure 1: Example of 2 different WLASL gloss labels
for a single sign.

Conversely, the gloss “right” is used sometimes to
mean the opposite direction from “left,” as in 48107,
48109, and 48114; and sometimes for the sign that
means “correct”, as in 48105, 48106, and 48115. This
is shown in Fig. 2.

Figure 2: Example of 2 different ASL signs assigned
the same WSLASL gloss label.

Note that the WLASL also has other occurrences of the
sign shown in 48106 of Fig. 2 that are, in fact, glossed
as “correct”, e.g. 13359, as shown in Fig. 3.
There is also an odd attribution of differences in sign
productions to “dialect” variation. For example, the
English word ‘correct’ can also be used as a verb, ‘to
correct’. There is a different ASL sign used for that
meaning of the word (which has a range of other possi-
ble meanings, as well), shown in Fig. 4. However, this
is treated as a dialectal variant of “correct,” although
it is clearly not a dialectal (or any other kind of) vari-
ant of the ASL sign shown in Fig. 3 (possible English
translations of these signs notwithstanding).
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Figure 3: A different WLASL gloss label assigned to 1
of the signs shown in Fig. 2.

Figure 4: Supposed “dialectal variant” of the WLASL
sign shown in Fig. 3.

These are not isolated examples. There are large num-
bers of signs in the WLASL data beset with the types
of issues just mentioned.

3.1.3. Adjustments Made to Address This Issue
We made an effort to associate with the publicly shared
WLASL data gloss labels consistent with those used
for the ASLLRP (including the ASLLVD) datasets.
This has 2 advantages: (1) the ASLLRP conventions
are well established, with a Web-accessible Sign Bank
(ASLLRP, 2017-2022), and thus such relabeling was
feasible, thereby drastically improving the consistency
of gloss labeling for the WLASL data; and (2) this will
make it possible, in the future, to combine the WLASL
and ASLLRP data to make an even larger set of data
that can be used for sign recognition research.

3.2. Technical Approach
3.2.1. Detecting Sign Start and End Frames
In ASL datasets of citation-form signs (including the
ASLLVD and WLASL datasets, among many others),
the video clip typically includes frames both before and
after the core region of the sign itself. Thus, process-
ing the entirety of the clip, including frames external to
the sign, for extraction of RGB-based features and/or
skeleton-based keypoints, may result in introduction of
additional noise to the model because of (1) movements
of human body parts not directly related to the sign, and
(2) the possibility of extensive blurriness in the transi-
tion frames. For this reason, we have introduced detec-
tion of the start and end points, so that we can restrict
attention to the linguistically informative frames.
The start point of the sign is the frame in which the
features of the sign are fully realized, i.e., when the ini-
tial hand configuration has been fully formed and the
initial palm orientation and place of articulation (loca-
tion) have been reached. Thus, there is a convergence
of probable changes that may signal the start of the
sign, including stabilization of the hand configuration
and orientation, decrease in acceleration, and poten-

tially an abrupt change in the direction of movement.
The reverse occurs at the end of the sign, i.e., the hand
configuration, palm orientation, and/or location and ac-
celeration of the hands are likely to change.
Our methodology for detection of the start and end
frames of isolated signs from RGB video consists of
2 steps. (1) We detect both hands in the video frames
using a pre-trained YOLOv3 neural network (Redmon
and Farhadi, 2018) that computes 2 bounding boxes
around each of the visible hands. Each bounding box is
modeled by computing the 2D coordinates of the upper
left corner of the tightest bounding box, its width and
height, as well as the confidence score of the bound-
ing box detection. Based on a threshold, we use this
confidence score to remove the frames at the beginning
and end of the video where both hands are not visible.
(2) We use a Bi-LSTM machine learning approach to
estimate the start and end frames of the sign based on
the detection of changes in the velocity and/or shape
of the hands. We first calculate at each frame the lo-
cation and velocity of the center of mass of the hands’
bounding boxes. To estimate robustly the probability of
a boundary point at time t, our Bi-LSTM model takes
into account several frames before and after time t.
The input to the Bi-LSTM network is a sequence vec-
tor of fixed length T (T is set to the 95 percentile of
the sign lengths) of xt, t = 1 : T . It includes spatial
hand features within the detected bounding boxes us-
ing a pre-trained CNN and the velocity and acceleration
of the bounding boxes’ center of mass. The output of
the Bi-LSTM network is a probability sequence vector
with the same length pt, t = 1 : T , where pt indicates
the probability for time t to be a boundary point (start
or end of a sign). Since start and end points have differ-
ent statistics, we train separate Bi-LSTM networks for
detection of the start and end points of the sign. To im-
prove end point detection and avoid false positives due
to repetitive movements, noise, blurring and other ar-
tifacts in the course of sign production, we reverse the
input feature sequence. We train these networks on the
ASLLVD dataset (Athitsos et al., 2008; Neidle et al.,
2012; Neidle et al., 2018; Neidle and Opoku, 2021),
which has start/end ground truth annotations. Further-
more, although the WLASL dataset lacks such annota-
tions, we manually annotated a small set of signs for
start and end points, and we used those to fine-tune the
network parameters. Since we want to detect the begin-
ning and end of a sign (in which there may be repetitive
movements), we keep the first detected boundary point
candidate in the original and reversed sign sequences.

3.2.2. GCN for Skeleton Keypoints
The GCN learning approach for isolated sign recogni-
tion consists of graph construction, skeleton graph key-
point selection, spatial-temporal graph convolutions,
bidirectional stream learning, and score fusion. The in-
novations in our approach include bidirectional learn-
ing, keypoint selection, and late fusion of skeleton key-
point positions, velocities, and accelerations.
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Graph Construction. To construct the spatial-
temporal graphs, we first connect the spatially adja-
cent keypoints for the human anatomy. We also con-
nect the keypoints to themselves in the temporal dimen-
sion. Thus, the corresponding adjacency matrix A in
the spatial dimension is constructed using the keypoint
set V = {ui|i = 1, . . . , N} as:

A =

{
0, if d(ui, uj) ̸= 1

1, if d(ui, uj) = 1
(1)

where d(ui, uj) is the minimum distance between any
skeleton keypoints ui, uj , i ̸= j, on the graph.
Spatial-Temporal Graph Convolution. To capture
the structure embedded in connections of the body key-
points and model the spatiotemporal changes in the
skeleton representation, we use spatial-temporal graph
convolutions with a spatial partitioning strategy of the
ST-GCN (Yan et al., 2018).The implementation of the
spatial part of the GCN is expressed as follows:

xout = Λ− 1
2 (I +A)Λ− 1

2xinW (2)

where matrix I represents the self-connections and ma-
trix A represents the intra-body connections. Λ is the
diagonal matrix of (I+A) and W is the weight matrix
of the convolutions, which is trainable. In practice, the
spatial part of the GCN is implemented by performing
standard 2D convolution and then multiplying the out-
come by Λ− 1

2 (I +A)Λ− 1
2 .

In the temporal dimension, the skeleton keypoints are
connected to themselves. In practice, 2 temporal neigh-
bors (1 before and 1 after time t) are used. Thus, it
is straightforward to perform the temporal graph con-
volutions by modifying the traditional 2D filter-based
convolution formulation through use of 1-dimensional
filters. Specifically, we use the output of the spatial
feature map in equation (2), to perform a convolution in
the temporal dimension using a kernel size kt×1, where
kt is the reception field.
This spatial and temporal sequence of convolution
operations constructs a spatial-temporal GCN block,
the key component of the GCN. Inspired by the lat-
est GCN-based action recognition models (Yan et al.,
2018; Shi et al., 2019a; Wen et al., 2019; Shi et al.,
2019b; Si et al., 2019; Li et al., 2019b; Li et al., 2019a),
we create our own isolated sign recognition model by
stacking several spatial-temporal GCN blocks (Fig. 6).
To improve learning efficiency and minimize overfit-
ting with no extra computational cost, we employ a
variation of the spatial GCN called a decoupling GCN,
along with a DropGraph layer as in (Cheng et al.,
2020). In the decoupling GCN layer, the input fea-
tures are organized into g groups, where g is a hyper-
parameter. Features in each g group share 1 trainable
adjacent matrix. To use the output features from the
decoupling GCN layer, we concatenate the output fea-
tures from all the g groups. To further improve GCN
learning, we introduce a self-attention module that con-
tains a sequence of 3 sub-modules: a spatial, temporal,

and channel attention module, as in (Shi et al., 2020).
Fig. 5 shows the Spatial-Temporal-Channel (STC) At-
tention mechanism. Fig. 6 presents the structure of our
GCN block.

Figure 5: The STC Attention mechanism. The 3 sub-
modules are arranged in the order: Spatial before Tem-
poral before Channel attention. The generated atten-
tion maps are multiplied with the original feature maps.
The residual connection in each attention sub-module
is added to stabilize the training.

Figure 6: The GCN model and the Graph Convo-
lutional block in the network. Each stream has 10
blocks. Each block has a Spatial Graph Convolutional
layer, a Temporal Graph Convolutional layer, and a
Spatial-Temporal-Channel Attention (STC) module.

Selecting keypoints for Graph Construction. To
construct the skeleton graph, 2D keypoints are ex-
tracted from a given video frame using a pre-trained
network (Fang et al., 2017) that detects 136 face and
body keypoints. However, constructing a skeleton
graph using all detected keypoints leads to several
problems that reduce the recognition rate. This is be-
cause the upper body keypoints are more informative
than those of the lower body for isolated sign recog-
nition. Because of noise and image blurriness, it can
be hard to detect the hand keypoints. The skeleton
graph topology can result in keypoint pairs with large
distances, leading to inaccurate learning of interactions
between keypoints and the skeleton-adjacent matrix.
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To overcome these potential problems, we use a subset
of the upper body keypoints to construct the skeleton
graph, which results in significantly higher recognition
rates. More specifically, our skeleton graph consists
of 27 nodes corresponding to the nose, eyes, shoul-
ders, elbows, and hands. We use 10 nodes for each
hand: the base and tip of each finger. Each node in our
graph consists of a (x, y, c) vector, where (x, y) are the
2D coordinates of the corresponding keypoints and c is
keypoint detection confidence score.
Bidirectional Stream GCN. Inspired by (Shi et al.,
2020), which adopts a multi-stream approach, we use
both the forward and backward direction of the video
frame sequence to recognize each isolated sign. For
each of the 2 streams, we use 6 types of data input: the
coordinates of the skeleton keypoints (1st-order infor-
mation), the distance between consecutive keypoints,
the bone vector (2nd-order information), and their mo-
tion and acceleration vectors (Fig.7).
To generate the bone vectors for our graph, we set
the nose as the root keypoint. Then, we calculate
the bone vectors by following the connections of con-
secutive body skeleton keypoints from the root. Let
vKi,t = (xi,t, yi,t, ci,t) and vKj,t = (xj,t, yj,t, cj,t) be 2
ordered, connected keypoints on the skeleton at frame
t. Then, the bone vector is calculated as:

vBj,t = vKj,t − vKi,t,

vBj,t = (xj,t − xi,t, yj,t − yi,t, cj,t − ci,t) ∀(i, j) ∈ V (3)

where set V contains all the keypoint connections.
The motion streams for the keypoints as well as of the
bone vectors are obtained by calculating the difference
between their corresponding coordinates in 2 consecu-
tive frames. For example, given a keypoint i at frame t,
the keypoint velocity vKV

i,t is calculated as:

vKV
i,t = vKi,t − vKi,t−1 ∀ i ≥ 2 (4)

Similarly, for a bone vector, the bone velocity vBV
i,t is

calculated as:
vBV
i,t = vBi,t − vBi,t−1 ∀ i ≥ 2 (5)

Then, it is straightforward to calculate the keypoints
and bone accelerations, using keypoints or bone veloc-
ities, respectively:

vKA
i,t = vKV

i,t − vKV
i,t−1 ∀ i ≥ 3 (6)

vBA
i,t = vBV

i,t − vBV
i,t−1 ∀ i ≥ 3 (7)

Score Fusion. Since our method consists of multi-
ple streams, we need to aggregate the prediction scores
from these streams. There are several approaches, such
as fusing multiple features obtained from middle layers
in streams (middle fusion) (Li et al., 2019c; Hong et
al., 2020; Tatulli and Hueber, 2017), or fusing multiple
probabilities obtained from the last layers (late fusion)
(Shi et al., 2019b; Shi et al., 2019a; Shi et al., 2020;
Cai et al., 2021). For isolated sign recognition, the for-
ward and backward sign video streams are adapted for

a late fusion approach. First, the probability in both
the forward and the backward stream is calculated as a
weighted summation of the output scores of the 6 cor-
related streams. Next, we obtain the sign scores and
predict the sign label by assigning weights, and we sum
the results from the forward and backward streams.

Figure 7: Illustration of our bidirectional framework.

4. Experiments
The proposed bidirectional GCN-based framework was
tested for isolated sign recognition on the modified
WLASL dataset (with corrections to gloss labeling).
We compare our method with an RGB-based approach
as a baseline model (Zhou et al., 2018) and with a
GCN-based approach that uses skeleton data for sign
recognition (Jiang et al., 2021). First, we describe
how we extract the skeleton data. Then we compare
our forward and backward stream-based learning ap-
proach with the other methods on the modified WLASL
dataset. We also compute sign start and end frames,
and use transfer learning from the AUTSL (Sincan and
Keles, 2020) and SLR500 (Zhang et al., 2016) datasets.
In addition, we provide ablation studies to demonstrate
the improvements achieved through the detection of
start and end frames and use of transfer learning.

4.1. The WLASL Dataset
The WLASL dataset (Li et al., 2020) is a collection of
isolated ASL sign videos taken from various sources
that includes 119 signers and 2,000 distinct signs. It
is an imbalanced dataset, consisting of 21,083 videos
with unconstrained recording conditions. However, we
have found that there are inconsistencies in the gloss
labels associated with the signs. Thus, we modified the
gloss labeling to enforce consistency (as discussed in
Section 3.1). The modified dataset consists of 18,141
videos for 1449 lexical signs.
We split the modified dataset following (Li et al., 2020)
into training, validation, and testing sets using a ra-
tio of 4:1:1 for the samples of each sign. We evaluate
the recognition performance and report the per-instance
Top-1 and Top-5 sign recognition accuracy.

4.2. Skeleton Extraction-Data Preparation
We use the pre-trained model in (Fang et al., 2017) to
estimate 136 keypoints of the whole body (torso, face,
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hands, and legs) from the RGB video frames and con-
struct our skeleton graph of 27 nodes. First we nor-
malize the keypoint coordinates to [-1,1], and then we
apply the following data augmentation techniques: (a)
random sampling, (b) mirroring, (c) rotation, (d) scal-
ing, and (e) shifting. Since each video contains multi-
ple frames with different lengths, the length of all the
videos is aligned to 150 frames. If a video has more
than 150 frames, the first 150 frames are extracted from
the video. If a video has fewer than 150 frames, we re-
peat the frame sequence until the video length is 150
frames. Moreover, we use the information about the
detected start and end frames of each sign video to re-
define our input.

4.3. Performance of the Bidirectional
GCN-based Framework

The Top-1 and Top-5 recognition performance of the
proposed forward and backward GCN-based frame-
work is reported in Table 1 and Table 2.

Forward Streams WLASL
Top-1 Top-5

Keypoint 74.52% 92.41%
Bone 68.95% 90.02%
Keypoint Velocity 56.53% 78.87%
Bone Velocity 53.40% 76.56%
Keypoint Acceleration 45.73% 68.92%
Bone Acceleration 45.32% 68.27%
Multi-stream 76.75% 94.18%

Table 1: Forward stream sign recognition accuracy.

Backward Streams WLASL
Top-1 Top-5

Keypoint 73.87% 92.44%
Bone 68.22% 88.66%
Keypoint Velocity 56.93% 79.58%
Bone Velocity 51.88% 76.59%
Keypoint Acceleration 46.08% 69.98%
Bone Acceleration 44.21% 68.03%
Multi-stream 75.75% 93.88%

Table 2: Backward stream sign recognition accuracy.

Of the streams for which there is both forward and
backward information, the keypoint stream provides
the best accuracy. The score fusion approach for the
forward and backward models further improves the
overall recognition rate. Table 3 shows the score fu-
sion of the forward and backward models. The bidi-
rectional approach results in higher performance com-
pared to using only the forward or backward stream.
This demonstrates the advantage of using the proposed
fusion approach.
In Table 4 we report the performance of our proposed
framework compared to the RGB-based model (TRN)
in (Zhou et al., 2018) and the GCN-based model in
(Jiang et al., 2021) on the same modified WLASL

Streams WLASL
Top-1 Top-5

Forward Stream 76.75% 94.18%
Backward Stream 75.75% 93.88%
Bidirectional stream 77.43% 94.54%

Table 3: Fused bidirectional framework performance.

dataset. We use pre-training on the AUTSL dataset
(Sincan and Keles, 2020) to improve sign recognition.
Our proposed late fusion model raises the recognition
rate by 6.39%. Top-1 accuracy is improved to 77.43%.
Compared with other state-of-the-art methods, our pro-
posed method achieves the best recognition accuracy.

Method WLASL
Top-1 Top-5

TRN (Zhou et al., 2018) 49.32% 77.91%
SL-GCN (SAM-SLR-v2)
(Jiang et al., 2021) 71.04% 91.44%
Ours 77.43% 94.54%

Table 4: Comparison on the modified WLASL dataset.

In Table 5, we show the classification accuracy result-
ing from use of keypoints, velocities, accelerations,
and their combinations in forward and backward data
streams. Keypoints generally contribute more to the
accuracy than the velocity streams.
Tables 6 and 7 present ablation studies. For trans-
fer learning, pre-training on the Turkish sign language
dataset AUTSL (Sincan and Keles, 2020) results in
higher accuracy than pre-training on the Chinese sign
language dataset SLR500 (Zhang et al., 2016). These
2 datasets have similar characteristics, although the
AUTSL dataset consists of half the number of signs as
are in the SLR500 dataset. This leads to the conclusion
that, to achieve higher recognition rates, pre-training
our framework using the AUTSL dataset is more effi-
cient than pre-training on the SLR500 dataset. Further-
more, using the detected start and end frames results in
higher accuracy than using raw data.

4.4. Training Details
The experiments were conducted using Pytorch 1.7.0
and 1 NVIDIA Quadro RTX8000. To train the GCN
models in each stream (forward and backward), a
Cross-Entropy loss function is used, and the weight de-
cay is set to 0.0001. The Stochastic Gradient Descent
(SGD) with Nesterov Momentum is selected as the op-
timization algorithm; the momentum is set to 0.9. The
learning rate is initially set to 0.1 and divided by 10
when 150 and 200 epochs are reached. The total num-
ber of epochs used for training our models is 300. The
batch size for both the training and testing processes is
set to 64. We randomly select 64 videos during train-
ing as input in an iteration. Moreover, we ensure that
all the videos are used in an epoch for training.
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Forward Data Stream Backward Data Stream (%)
K B K-V B-V K-A B-A K B K-V B-V K-A B-A Top-1 Top-5
✓ ✓ 76.21 93.94

✓ ✓ 60.39 82.68
✓ ✓ 52.15 75.77

✓ ✓ ✓ ✓ ✓ ✓ 76.75 94.18
✓ ✓ 75.07 93.45

✓ ✓ 60.63 83.74
✓ ✓ 51.58 75.61

✓ ✓ ✓ ✓ ✓ ✓ 75.75 93.88
✓ ✓ ✓ ✓ 77.19 94.29
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 77.35 94.67
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 77.43 94.54

Table 5: Comparison of the GCN Accuracy Resulting from Use of Combinations of Various Types of Data, using
Forward and Backward Streams – for recognition of the 1,449 lexical signs in the modified WLASL dataset.
Abbreviations: K=Keypoints; B=Bone; K-V=Keypoint Velocity; B-V=Bone Velocity;
K-A=Keypoint Acceleration; B-A=Bone Acceleration.

Transfer Learning WLASL
Top-1 Top-5

SLR500 73.65% 92.36%
AUTSL 74.52% 92.41%

Table 6: Performance of the forward data stream using
transfer learning from SLR500 and AUTSL datasets.

Start/end frames WLASL
Top-1 Top-5

Yes 74.52% 92.41%
No 68.95% 87.82%

Table 7: Performance of the forward data stream with
and without detection of sign start and end frames.

5. Conclusion

We propose here a bidirectional GCN-based frame-
work for accurate isolated sign recognition. Some
key methodological aspects of this approach are: use
of a dataset with enforced consistency of text-based
gloss labeling of signs; pre-training, to leverage trans-
fer learning; use of start and end frame information
for selecting the input to our framework; and the co-
operative use of forward and backward data streams
(including various sub-streams), for recognition of iso-
lated signs. The proposed framework outperforms the
state-of-the-art methods in isolated sign recognition on
the challenging WLASL dataset (with modifications of
gloss labeling), as shown in Fig. 8. The ablation studies
demonstrate the effectiveness of representing both for-
ward and backward relations of intra-body keypoints
over time. Future research will explore other fusion
methods for the forward and backward streams, and
exploitation of statistical information that reflects lin-
guistic constraints governing the relationships between
the 2 hands and between the start and end frames of
lexical signs, which has been demonstrated to improve
recognition accuracy (Thangali et al., 2011; Dilsizian
et al., 2014).

Figure 8: Comparison of recognition accuracy of our
GCN-based method with another GCN-based method
and with a CNN-based method.
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