
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2022

Mirror worlds, eclipse attacks and
the security of Bitcoin and the RPKI

https://hdl.handle.net/2144/44796
Boston University

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

MIRROR WORLDS, ECLIPSE ATTACKS AND THE

SECURITY OF BITCOIN AND THE RPKI

by

ETHAN HEILMAN

B.S., Bridgewater State University, 2007

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2022

© 2022 by
ETHAN HEILMAN
All rights reserved

Approved by

First Reader

Leonid Reyzin, PhD
Professor of Computer Science

Second Reader

Sharon Goldberg
Associate Professor of Computer Science

Third Reader

Ran Canetti
Professor of Computer Science

Fourth Reader

Andrew Miller
Assistant Professor of Electrical and Computer Engineering
University of Illinois, Urbana-Champaign

104. IF a merchant gives to an agent grain, wool, oil, or goods of any
kind with which to trade, the agent shall write down the value and return
the money to the merchant. The agent shall take a sealed [authenticated]
receipt for the money which he gives to the merchant.

105. IF the agent is careless and does not take a receipt for the money
which he has given to the merchant, the money not receipted for shall not
be placed to his account. The Law Code of Hammurabi

iv

Acknowledgments

First I want to acknowledge and thank my advisors Sharon Goldberg and Leonid

Reyzin. Sharon’s drive and focus on pragmatic solutions to problems voiced by users

put purpose in my heart and always made me feel my work was meaningful. She

showed me the value of tunneling to the center of a problem despite the many false

starts and turns. I am deeply grateful to have had such a wise researcher and professor

as an advisor and mentor. Leonid Reyzin only recently started co-advising me. Even

before he was my co-advisor I would often venture into his office seeking advice. He

always had the time to give me sage advice and he never set me wrong.

When I was preparing to give my first big research talk both Sharon and Leo had

me present what I had, gave me notes on what I could do better and then had me

present again and again. It was a serious time commitment on their part but their

continuous coaching had a dramatic impact on my public speaking ability. Whenever

I present something well, I think back to the time and effort they put in to get me to

that point.

I want to thank my parents, my grandparents, and my wife. My Dad, Ward

Heilman, who first taught me about mono-alphabetic ciphers and how to break them.

My interest in this field comes from the stories he raised me on of hacking, cryptology

and mathematical lore. He was always ready to tutor me or help me when I struggled

with school. My Mom, Kathleen Cullen-Kortleven, who never missed an opportunity

to teach me or show me something. From taking me to see Shakespeare, to quizzing

me on the times table up to twelve or her habit of covering the English parts of

multi-lingual signs and insisting that I translate the Spanish or the French. She

helped teach me the value of using every opportunity to learn. My wife Anna Krohn,

who encouraged me to apply to grad school, supported me, and kept me functioning

through the tough parts.

v

As the research in this dissertation is drawn from several research papers, many

minds other than my own contributed to it. This dissertation includes contributions

from Leen AlShenibr, Foteini Baldimtsi, Danny Cooper, Sharon Goldberg, Alison

Kendler, Leonid Reyzin, Alessandra Scafuro, and Aviv Zohar. I want to thank all

my other coauthors: Juozas Baltikauskas, Kyle Brogle, Nicolas Christin, Michael

Colavita, Tadge Dryja, Lawrence Harman, Henry Heffan, Jason Hennessey, Kevin

Lee, Sebastien Lipmann, James Lovejoy, Patrick McCorry, Andrew Miller, Malte

Möser, Arvind Narayanan, Neha Narula, Uma Shama, Kyle Soska, Shashvat Srivas-

tava, Garrett Tanzer, and Madars Virza.

I also want to thank Uma Shama and Larry Harman, Magaly Ponce, and Eric

LePage at Bridgewater State University who gave me my first research projects,

and Eran Tromer and Ron Rivest who functioned as unofficial advisors on my early

cryptanalysis research before I started at Boston University.

Thanks for all the fun times and interesting conversations to my friends at Boston

University, William Blair, Yilei Chen, Danny Cooper, Jason Hennessey, Kyle Hogan,

William Koch, Aanchal Malhotra, Dimitris Papadopoulos, Oxana Poburinnaya, Sachin

Vasant, Sarah Scheffler, Abhishek Sharma, Nikolaj Volgushev, AJ Trainor, Allan

Wirth, and Sophia Yakoubov. I would be remiss if I did not thank my fellow resi-

dents of Fort Gore, my roommate Jen Rich who regularly answers my paper writing

grammar questions and my two wonderful cats, Thalia and Clio, who have ensured

that I am warm on many cold writing days.

I am grateful to members of this committee, Leonid Reyzin, Sharon Goldberg,

Ran Canetti, and Andrew Miller being a part of this defense.

This dissertation was only possible by the efforts of many people, I don’t have

room to thank them all here. Know that I am grateful for everyone who helped me

get to this point.

vi

MIRROR WORLDS, ECLIPSE ATTACKS AND THE

SECURITY OF BITCOIN AND THE RPKI

ETHAN HEILMAN

Boston University, Graduate School of Arts and Sciences, 2022

Major Professor: Leonid Reyzin, PhD
Professor of Computer Science

ABSTRACT

While distributed databases offer great promise their decentralized nature poses

a number of security and privacy issues. In what ways can parties misbehave? If a

database is truly distributed can a malicious actor hide their misdeeds by presenting

conflicting views of the database? Can we overcome such deceit and either prevent it

by eliminating trust assumptions or detect such perfidy and hold the malicious party

to account? We study these questions across two distributed databases: RPKI (Re-

source Public Key Infrastructure), which is used to authenticate the allocation and

announcement of IP prefixes; and Bitcoin, a cryptocurrency that utilizes a permis-

sionless database called a blockchain to track the transfer and ownership of bitcoins.

The first part of this dissertation focuses on RPKI and the potential of RPKI

authorities to misbehave. We consider the methods, motivations, and impact of this

misbehavior and how an RPKI authority can present inconsistent views to hide this

misbehavior. After studying the problem we propose solutions to detect and identify

such misbehavior.

Now we turn our attention to Bitcoin. We look at ways an attacker can manipulate

Bitcoin’s Peer-to-Peer network to cause members of the network to have inconsistent

vii

views of Bitcoin’s blockchain and subvert Bitcoin’s core security guarantees. We then

propose countermeasures to harden Bitcoin against such attacks.

The final part of this dissertation discusses the problem of privacy in Bitcoin.

Many of the protocols developed to address Bitcoin’s privacy limitations introduce

trusted parties. We instead design privacy enhancing protocols that use an untrusted

intermediary to mix aka, anonymize, bitcoin transactions via blind signatures. To

do this we must invent a novel blind signature fair-exchange protocol that runs on

Bitcoin’s blockchain.

This dissertation favors a dirty slate design process. We work to layer protections

on existing protocols and when we must make changes to the underlying protocol we

carefully weigh compatibility and deployment considerations. This philosophy has

resulted in some of the research described in this dissertation influencing the design

of deployed protocols. In the case of Bitcoin our research is currently used to harden

a network controlling approximately a trillion dollars.

viii

Contents

1 Introduction 1

1.1 RPKI and Bitcoin . 2

1.2 Dissertation Overview . 3

1.2.1 Chatper 2: Improving the Transparency of the RPKI 4

1.2.2 Chapter 3: Eclipse Attacks on Bitcoin’s P2P Network 6

1.2.3 Chapters 4, 5: Blindly Signed Contracts and TumbleBit . . . 9

1.3 Protocol Design Philosophy and Impacts 12

1.4 Contributions . 17

1.4.1 Improving the Transparency of the RPKI 17

1.4.2 Eclipse Attacks on Bitcoin’s P2P Network 19

1.4.3 Blindly Signed Contracts: Anonymous Bitcoin Transactions . 20

1.4.4 Tumblebit: An Untrusted Bitcoin-compatible Anonymous Pay-

ment Hub . 20

2 Improving the Transparency of the RPKI 22

2.1 Introduction . 22

2.2 The risk of RPKI takedowns . 25

2.2.1 The hierarchical structure of the RPKI. 25

2.2.2 How the RPKI limits threats to BGP. 27

2.2.3 A default-deny architecture. 28

2.3 Detecting downgraded routes . 30

ix

2.3.1 A tool for detecting downgrades. 30

2.3.2 Tool evaluation & case studies. 33

2.4 Why accountability is hard . 35

2.4.1 Attacks that disrupt delivery of objects. 35

2.4.2 How can I whack thee? We count the ways. 36

2.4.3 Who’s to blame? A few case studies. 37

2.4.4 Holding an adversary accountable. 38

2.5 Repairing whacked objects . 40

2.6 Fixing the balance of power . 41

2.6.1 Design goals. 42

2.6.2 Overview of our design. 43

2.6.3 Procedures for RPKI authorities. 44

2.6.4 Validation procedures for relying parties. 48

2.6.5 Security analysis. 49

2.6.6 What about all those bad examples? 52

2.6.7 On the necessity of our modifications. 53

2.6.8 Data-driven analysis of our design. 54

2.7 Related work . 57

2.8 Conclusion . 59

3 Eclipse Attacks on Bitcoin’s P2P Network 61

3.1 Introduction . 61

3.1.1 Implications of eclipse attacks 64

3.2 Bitcoin’s Peer-to-Peer Network . 66

3.2.1 Propagating network information 67

3.2.2 Storing network information 68

3.2.3 Selecting peers . 70

x

3.3 The Eclipse Attack . 71

3.3.1 Populating tried and new . 71

3.3.2 Restarting the victim . 72

3.3.3 Selecting outgoing connections 72

3.3.4 Monopolizing the eclipsed victim 74

3.4 How Many Attack Addresses? . 76

3.4.1 Botnet attack . 77

3.4.2 Infrastructure attack . 80

3.4.3 Summary: infrastructure or botnet? 83

3.5 Measuring Live Bitcoin Nodes . 83

3.6 Experiments . 86

3.7 Countermeasures . 89

3.8 Related Work . 95

3.9 Conclusion . 97

4 Blindly Signed Contracts: Anonymous Bitcoin Transactions 99

4.1 Introduction . 99

4.1.1 Related Work . 101

4.2 Overview and Security Properties . 103

4.2.1 Anonymity Properties . 106

4.2.2 Security properties . 109

4.3 Implementing fair exchange via scripts and blind signatures 110

4.4 On-Blockchain Anonymous Protocols 112

4.4.1 Anonymous Fee Vouchers . 114

4.4.2 Anonymity Analysis . 115

4.5 Off-Blockchain Anonymous Payments over Micropayment Channel Net-

works . 117

xi

4.5.1 Micropayment Channel Networks 117

4.5.2 Anonymizing Micropayment Channel Networks 119

4.5.3 Anonymity Analysis . 120

4.6 Security Analysis . 122

5 Tumblebit: An Untrusted Bitcoin-compatible Anonymous Pay-

ment Hub 124

5.1 Introduction . 124

5.1.1 TumbleBit Features . 128

5.1.2 Related Work . 129

5.2 Bitcoin Scripts and Smart Contracts 133

5.3 TumbleBit: An Unlinkable Payment Hub 135

5.3.1 Overview of Bob’s Interaction with the Tumbler 136

5.3.2 Overview of Alice’s Interaction with the Tumbler 138

5.3.3 TumbleBit’s Security Properties 140

5.4 TumbleBit: Also a Classic Tumbler. 141

5.4.1 Anonymity Properties . 142

5.5 A Fair Exchange for RSA Puzzle Solving 143

5.5.1 Our (Stand-Alone) RSA-Puzzle-Solver Protocol 144

5.5.2 Fair Exchange . 147

5.5.3 Solving Many Puzzles and Moving Off-Blockchain 147

5.6 Puzzle-Promise Protocol . 150

5.6.1 Protocol Walk Through . 151

5.6.2 Security Properties . 152

5.7 TumbleBit Security . 154

5.7.1 Balance . 154

5.7.2 Unlinkability . 156

xii

5.7.3 Limitations of Unlinkability 157

5.8 Implementation . 159

5.8.1 Protocol Instantiation . 159

5.8.2 Off-Blockchain Performance Evaluation 161

5.8.3 Blockchain Tests . 163

A Appendix: Improving the Transparency of the RPKI 166

A.1 Local consistency check . 166

B Appendix: Eclipse Attack on Bitcoin’s P2P Network 168

B.1 A Useful Lemma . 168

B.2 Overwriting the New Table . 168

B.2.1 Infrastructure strategy . 169

B.2.2 Botnet strategy . 170

C Appendix: TumbleBit 171

C.1 Details of our Bitcoin Scripts . 171

C.2 TumbleBit transactions on Bitcoin’s Blockchain 179

References 181

Curriculum Vitae 197

xiii

List of Tables

1.1 A timeline of bitcoin-core deploying our proposed countermeasures . . 16

2.1 Valid ROAs and RCs at each depth of the production RPKI on January

13, 2014. 27

2.2 Impact of different local policies. 29

2.3 Alarms . 48

2.4 # of leaf RCs issuing ROAs for X ASes on January 13, 2014; X is in

the top row. 56

2.5 Similar to the distribution in Table 2.4, except for direct-allocation

RCs in our model. 57

3.1 Age and churn of addresses in tried for our nodes (marked with *)

and donated peers files. 84

3.2 Summary of our experiments. WC=Worstcase, TP=Transplant, L=Live 86

5.1 A comparison of Bitcoin Tumbler services. TTP stands for Trusted

Third Party. We count minimum mixing time by the minimum number

of Bitcoin blocks. Any mixing service inherently requires at least one

block. 1Coinparty could achieve some DoS resistance by forcing parties

to solve puzzles before participating. 129

xiv

5.2 Average performance of RSA-puzzle-solver and classic tumbler, in sec-

onds. (100 trials) running between New York (NY), Boston (BOS),

and Tokyo (TOK). 161

5.3 Average off-blockchain running times of TumbleBit’s phases, in sec-

onds. (100 trials) . 161

5.4 Transaction sizes and fees in our tests. 161

xv

List of Figures

1·1 Timeline of TumbleBit and successors protocols. A solid line means

that a project uses a protocol or library. A dotted line means that a

protocol is inspired by another protocol. 14

2·1 Excerpt of a model RPKI . 26

2·2 Downgrades due to whacked ROAs. 31

2·3 # of invalid IP addresses over time. 32

2·4 (l) Visualization of downgrades in Case Study 2. (r) Downgrades when

the ROA (63.174.16.0/20, AS 17054) is added to the RPKI in Figure 2·1. 33

2·5 Devious overwritings. (l) Before (r) After. 39

3·1 Probability of eclipsing a node q(f, f ′, τa, τ`)
8 (equation (3.3)) vs f

the fraction of adversarial addresses in tried, for different values of

time invested in the attack τ`. Round length is τa = 27 minutes, and

f ′ = 8
64×64

. The dotted line shows the probability of eclipsing a node

if random selection is used instead. 75

3·2 Botnet attack: the expected number of addresses stored in tried for

different scenarios vs the number of addresses (bots) t. Values were

computed from equations (3.4), (3.7) and (3.8), and confirmed by

Monte Carlo simulations (with 100 trials/data point). 77

3·3 Infrastructure attack. E[Γ] (expected number of non-empty buckets)

in tried vs s (number of groups). 80

xvi

3·4 Infrastructure attack with s = 32 groups: the expected number of

addresses stored in tried for different scenarios vs the number of ad-

dresses per group t. Results obtained by taking the product of equation

(3.9) and equations from the full version (Heilman et al., 2015b), and

confirmed by Monte Carlo simulations (100 trials/data point). The

horizontal line assumes all E[Γ] buckets per (3.9) are full. 81

3·5 Histogram of the number of organizations with s groups. For the /24

data, we require t = 256 addresses per group; for /23, we require t = 512. 82

3·6 (Top) Incoming + outgoing connections vs time for one of our nodes.

(Bottom) Number of addresses in tried vs time for all our nodes. . . 85

3·7 The area below each curve corresponds to a number of bots a that can

eclipse a victim with probability at least 50%, given that the victim

initially has h legitimate addresses in tried. We show one curve per

churn rate p. (Top) With test before evict. (Bottom) Without. . . . 92

3·8 Probability of eclipsing a node vs the number of addresses (bots) t

for bitcoind v0.10.1 (with Countermeasures 1,2 and 6) when tried is

initially full of legitimate addresses per equation (3.11). 96

4·1 Strawman eCash protocol. 104

4·2 Our protocol: Circles (step numbers from Section 4.4), black arrows

(objects transfered via transaction), grey arrows (messages). 105

4·3 Payment Epoch . 106

5·1 Overview of the TumbleBit protocol. 126

5·2 Our unlinkability definition: The Tumblers view and a compatible in-

teraction multi-graph. 140

xvii

5·3 RSA puzzle solving protocol. H and Hprg are modeled as random ora-

cles. In our implementation, H is RIPEMD-160, and Hprg is ChaCha20

with a 128-bit key, so that λ1 = 128. 145

5·4 Puzzle-promise protocol when Q = 1. (d , (e, N)) are RSA keys of

the tumbler T . (Sig, ECDSA-Ver) is an ECDSA-Secp256k1. We

model H,H ′ and Hshk as random oracles. In our implementation, H is

HMAC-SHA256 (keyed with salt) . H ′ is ‘Hash256’, i.e., SHA-256 cas-

caded with itself, as used in Bitcoin’s “hash-and-sign” paradigm. Hshk

is SHA-512. CashOutTFormat is the unsigned portion of a transaction.

ρi used to ensure sufficent entropy. 153

5·5 Timeline of test with uncooperative behavior, showing block height

when each transaction was confirmed. 164

B·1 E[N] vs s (the number of source groups) for different choices of g

(number of groups per source group) when overwriting the new table

per equation (B.2). 169

C·1 Transaction relationships when Q = 1. Arrows indicate spending.

Transactions in dotted line boxes denote transactions that are only

published if a party is uncooperative. 178

xviii

List of Abbreviations

ARIN American Registry for Internet Numbers
BGP Border Gateway Protocol
BGPsec Border Gateway Protocol Security (extension)
BTC Bitcoin
IP Internet Protocol
P2P Peer-to-Peer (Network)
PoW Proof-of-Work
RC Resource Certificate
RIR Regional Internet Registries
ROA Route Origination Authorization
RP Relying Party
RPKI Resource Public Key Infrastructure
USD United States Dollar

xix

1

Chapter 1

Introduction

Blockchains and other types of global scale distributed database protocols represent

a valuable tool to computer system designers. However, their use can introduce new

security and privacy challenges. How do you detect or prevent the misbehavior of

parties and intermediaries that the protocol depends on? What is the security impact

if a malicious party gains the ability to present inconsistent views of the database to

different users? If any user can download and view the entirety of the distributed

database how is privacy maintained?

In this dissertation I will explore these security and privacy issues within the

context of two distributed database systems: the RPKI (Resource Public Key In-

frastructure) (Lepinski and Kent, 2012) and Bitcoin (Nakamoto, 2008). The RPKI

(covered in Chapter 2) is a distributed database for authenticating the right to allocate

and originate IP (Internet Protocol) prefixes in internet routing. Bitcoin (covered in

Chapters 3,4,5), is a virtual currency aka, a cryptocurrency, which tracks ownership

of virtual coins using a type of distributed database known as a blockchain.

The overall plan of this dissertation is as follows. In Chapter 2 we start with

RPKI and look at ways in which RPKI authorities can misbehave and deceptively

manipulate the RPKI to present inconsistent views of the RPKI to hide this misbe-

havior. We follow this with a series of proposed improvements to the RPKI to detect

and identify such misbehavior. The dissertation then turns its attention to Bitcoin.

Chapter 3 continues the theme of misbehavior and deceit by exploiting and present-

2

ing inconsistent views of Bitcoin’s distributed database. The final two chapters deal

with the problem of designing privacy enhancing Bitcoin protocols which do not re-

quire a trusted party. Chapter 4 introduces Blindly Signed Contracts, a protocol to

anonymize Bitcoin transactions by employing an intermediary called a tumbler. In

Chapter 5 we develop TumbleBit which improves on the Blindly Signed Contracts

protocol from the previous chapter.

1.1 RPKI and Bitcoin

Let us now compare the two protocols that this dissertation concerns itself with:

RPKI and Bitcoin. These two protocols share many similarities since they both

function to answer the question who controls what. The RPKI’s main feature is

the ability to provide an authentication mechanism to determine what parties have

legitimate control over which IP (Internet Protocol) prefixes. To do this the RPKI

uses cryptographically-signed statements to allocate and sub-allocate control of those

IP prefixes. Comparatively, Bitcoin creates consensus on what parties own which

bitcoins and uses cryptographically-signed statements to assign and re-assign the

ownership of those bitcoins.

Beyond these similarities the RPKI and Bitcoin have significant differences. The

RPKI propagates changes to its database using a tree of repositories maintained by the

RPKI authorities. Bitcoin instead uses a P2P (Peer-to-Peer) network that anyone can

join. The RPKI does not attempt to solve “the double-spending problem” (Osipkov

et al., 2007), whereas solving this problem is Bitcoin’s core innovation. The RPKI is

not mainly concerned with privacy, Bitcoin is.

The RPKI propagates changes using a tree of repositories maintained by the RPKI

authorities. Reads and writes are made in an asynchronous fashion. When a relying

party wishes to download the RPKI, they start at the root of tree, recursively following

3

links in each repository to get child repositories until they have downloaded the entire

the RPKI. In Bitcoin any party can request the blockchain i.e., Bitcoin’s distributed

database, from any other full member of the Peer-to-Peer network. Transactions, or

updates to the database, are submitted and then propagated across Bitcoin’s P2P

network. These changes are added to Bitcoin’s blockchain in batches via a process

called mining.

The chief aim of Bitcoin is to model physical coinage by solving the “double-

spending problem” i.e., if Alice gives 0.1 bitcoins to Bob and that transaction is

approved by Bitcoin’s blockchain, then Alice should not also be able to give those

same bitcoins to Carol. On the other hand, the RPKI does not aim for control of

IP prefixes to be exclusive. An RPKI authority can allocate an IP prefix to multiple

parties. To put it another way one party’s right to control an IP Prefix does not

require that no one else also have a right to control that prefix. In cryptocurrency

parlance the RPKI does not seek to solve the “double-spending problem” (Osipkov

et al., 2007).

Finally while the RPKI is not concerned with privacy, Bitcoin is. The RPKI is

intended to be public record of IP prefix allocation and origination rights. Thus,

anything in the RPKI is a matter of public record. Unlike the RPKI in Bitcoin

privacy is an explicit goal of the protocol. In fact the first description of the Bitcoin

protocol, the so-called Bitcoin whitepaper (Nakamoto, 2008), lists anonymity as one

of the features of Bitcoin. Unfortunately achieving anonymity in Bitcoin is still an

area of ongoing research.

1.2 Dissertation Overview

We will now look at each chapter of this dissertation in detail. In next section we

will discuss the overarching themes that run across these chapters and the longer

4

term impact of the research presented in this dissertation. Finally we provide a short

summary of research contributions broken down by chapter.

1.2.1 Chatper 2: Improving the Transparency of the RPKI

The RPKI, which is the focus of Chapter 2, is a new infrastructure for securing

interdomain routing over BGP (Border Gateway Protocol). BGP has traditionally

operated as a “default-accept” architecture. That is, any autonomous system (AS)

on the internet can claim to be the destination for any IP prefix, and by default other

ASes will accept such a BGP announcement. This “default-accept” assumption at

the heart of BGP has made BGP vulnerable to prefix- and subprefix hijacks (Rensys

Blog, 2008; Misel, 1997; de Beaupre, 2013; Cowie, 2010; Pilosov and Kapela, 2009;

Peterson, 2013) in which an AS announces IP prefixes for which they are not the

legitimate destination and “hijacks” that IP prefix.

The RPKI seeks to prevent these attacks by providing a trusted mapping from

allocated IP prefixes to ASes authorized to originate them in BGP. To do this, the

RPKI establishes a top-down hierarchy of authorities, rooted at the Regional Internet

Registries (RIRs), that allocate and suballocate IP address space, as well as authorize

its use in BGP by individual ASes. Routers can then use the RPKI to distinguish

between hijacked BGP routes and routes originated by a legitimate AS by authenti-

cating these announcements with the RPKI.

However, the security benefits of the RPKI are accompanied by a drastic shift

from BGP’s traditional “default accept” policies, to a new “default deny” mode:

to prevent (sub)prefix hijacks, routers should only accept routes authorized by the

RPKI, and discard all other routes by default. This issue is further exacerbated by

the fact that the RPKI’s hierarchical architecture empowers centralized authorities

to unilaterally revoke authorization for IP prefixes under their control.

This shift has lead to concerns (Amante, 2012; Mueller and Kuerbis., 2011; Com-

5

munications Security, Reliability and Interoperability Council III (CSRIC), 2011;

The President’s National Security Telecommunications Advisory Committee, 2011;

Mueller et al., 2013) that the RPKI creates powerful authorities with the technical

means for taking down IP prefixes and could be exploited by abusive authorities

or governments to settle disputes or block undesirable content. This is a stark de-

parture from the status quo, where these authorities (RIRs, National/Local Internet

Registries, etc.) had the power to allocate IP address space, but not to impact routing

to IP prefixes that had already been allocated (Goldman, 2006; Project, 2011).

In Chapter 2 we examine various specific techniques in which the RPKI author-

ities may abuse and exploit their privileged position in the allocation hierarchy to

misbehave. We note how the ability to perform targeted revocations and takedowns

makes such misbehavior more likely. We introduce “mirror-world” attacks in which

a malicious party presents inconsistent views of the RPKI in a targeted fashion to

both hide misbehavior and cause other problems.

These “mirror world” attacks result from the fact that the RPKI gives authorities

unilateral control over all records below them in the hierarchy. Thus misbehaving

authorities have enormous latitude to create many sets of differing records. Com-

pounding this issue is that the current RPKI does not guarantee consistency and

does not maintain any sort of verifiable history of the past state of the RPKI. Even

if two relying parties compare their respective views of the RPKI and notice that an

authority has presented two different states, they may not be able to identify which

authority misbehaved or detect that an authority misbehaved at all.

To remedy this, we propose modest modifications to the architecture of the RPKI

to hold RPKI authorities accountable. In our design once an allocation is authorized

by the RPKI, it switches from “default-deny” to “default-accept”; that is, authorities

that revoke IP address space must first obtain cryptographic consent from all entities

6

holding allocations and suballocations of that space. This enables the identification

of authorities that fail to properly obtain consent and returns some power back to IP

space holders.

Our proposed modification also enables parties viewing the RPKI from different

vantage points to detect when the views they are presented with are not consistent.

This is important because clever RPKI authorities may use “mirror world” attacks

to evade identification and accountability. In our design authorities must commit to

the past states of the RPKI by building hash-chains of previous states. This allows

relying parties to detect inconsistencies in the local and global state of the RPKI and

raise alarms if an RPKI authority is presenting different views to different parties.

1.2.2 Chapter 3: Eclipse Attacks on Bitcoin’s P2P Network

In our next chapter (Chapter 3) we switch our focus to the cryptocurrency Bitcoin.

While cryptocurrencies have been studied since the 1980s (Chaum, 1983a; Brands,

1993; Camenisch et al., 2005), Bitcoin was the first to see widespread adoption. As

of July 2021, Bitcoin is the most valuable cryptocurrency with a market cap of over

700 billion USD with a daily trading volume of 51 billion USD (Ledesma, 2021;

CoinmarketCap, 2021) and is the national currency of El Salvador (Aleman, 2021).

A key reason for bitcoin’s success is its baked-in decentralization and open P2P

(peer-to-peer) network. Instead of using a central bank as regulatory body, Bitcoin

uses a decentralized and unpermissioned network of parties that reach consensus on

a public distributed database i.e., Bitcoin’s blockchain. Bitcoin’s consensus system is

designed to approximately model an election in which parties in the Bitcoin network

vote on consensus decisions by spending computational power such that each parties

voting power in the election is roughly proportional to the share of the computational

power each parties commands in the Bitcoin network. Satoshi Nakamoto (Nakamoto,

2008) argues that bitcoin is secure against attackers that seek to shift the blockchain

7

to an inconsistent/incorrect state, as long as these attackers control less than half

of the computational power in the network. But underlying this claim is the crucial

assumption of perfect information; namely, that all members of the bitcoin ecosystem

have an unfiltered view of the blockchain.

In this chapter we look at how to violate this core assumption by performing eclipse

attacks against Bitcoin’s P2P network and subverting Bitcoin’s security. In an eclipse

attack (Castro et al., 2002; Sit and Morris, 2002; Singh et al., 2006), the attacker

monopolizes all of the victim’s incoming and outgoing connections, thus isolating the

victim from the rest of its peers in the network. Once isolated, a victim can be shown

conflicting views of Bitcoin’s blockchain. We investigate the security issues around

this assumption in Bitcoin and propose countermeasures to such attacks.

The attacks we present in this chapter are off-path. We don’t assume the attacker

controls network infrastructure between the victim and the rest of the bitcoin network.

The attacker merely controls hosts at different IP addresses which join the Bitcoin

P2P network and isolate a victim node from the rest of the network by manipulating

the peering mechanisms in Bitcoin.

The main challenge for the attacker is to obtain a sufficient number of IP addresses.

We consider two attack types: (1) infrastructure attacks, modeling the threat of an

ISP, company, or nation-state that holds several contiguous IP address blocks, and

(2) botnet attacks, launched by bots with addresses in diverse IP address ranges. We

use probabilistic analysis, measurements, and experiments on our own live bitcoin

nodes to determine the number of IP address necessary to launch eclipse attacks for

both infrastructure attacks and botnets. We find that while there are hundreds of

organizations that have sufficient IP resources to launch eclipse attacks, botnet based

attacks require far fewer IP addresses,

After modelling, measuring and experimentally validating this attack we propose

8

a set of countermeasures that preserve Bitcoin’s openness while increasing Bitcoin’s

resistance to eclipse attacks. Our countermeasures ensure that, with high probability,

if a victim stores enough legitimate IP addresses that accept incoming connections,

then the victim cannot be eclipsed regardless of the number of IP addresses the at-

tacker controls. Eight of our ten countermeasures have been deployed and currently

protect the Bitcoin network.

Chapter 3 has some strong parallels with the preceding Chapter 2 as both deal

with the ramifications of an attacker who presents inconsistent views of a distributed

database. Bitcoin has a built-in consensus mechanism and each update i.e., block,

commits to the full history of all updates it builds on. Thus, any two parties in the

Bitcoin network, if they can communicate with each other, can compare their views

of the Bitcoin blockchain and detect inconsistent views.

In the RPKI today, we don’t have the ability to check consistency, so the counter-

measure we propose in Chapter 2 is to modify the RPKI protocol to enable parties to

detect inconsistent states. Thus, there is a escalating set of defenses for distributed

databases. First, as Chapter 2 shows, being able to check consistency is critical to

defending against and detecting misbehaving parties. Once we can check consistency

using the countermeasures in Chapter 2 we must next concern ourselves with the

attacks and countermeasures in Chapter 3. Thus to defend against an attacker pre-

senting inconsistent states we propose consistency checks. However once consistency

attacks are in place, an attacker who wishes to present inconsistent states may opt

to bypass such checks by employing eclipse attacks. These eclipse attacks would pre-

vent parties from communicating and thereby prevent these parties from detecting

the inconsistent states. As a counter to this counter the defender must now deploy

defenses against eclipse attacks to secure the ability of parties to run the consistency

checks.

9

1.2.3 Chapters 4, 5: Blindly Signed Contracts and TumbleBit

In the final two chapters of this dissertation (Chapter 4 and Chapter 5), we shift

to the pressing problem of anonymity in Bitcoin. Anonymity was initially one of

the key selling points of Bitcoin. It is stated in the Bitcoin whitepaper that users

should be able to spend bitcoins “without information linking the transaction to

anyone” (Nakamoto, 2008). However later research has shown that Bitcoin offers

much weaker anonymity than initially supposed (Meiklejohn et al., 2013; Ron and

Shamir, 2013).

The solutions put forward by the cryptocurrency community to address the Bitcoin

privacy problem fall into two categories. The first category are schemes that abandon

Bitcoin altogether and propose new anonymous cryptocurrencies (Miers et al., 2013;

Ben Sasson et al., 2014; Monero, 2016). The second category attempts to maintain

compatibility with Bitcoin by building privacy protocols on top of Bitcoin (Barber

et al., 2012; Bonneau et al., 2014; Ruffing et al., 2014; Valenta and Rowan, 2015;

Bissias et al., 2014; Maxwell, 2013b; Ben Sasson et al., 2014; Saxena et al., 2014;

Ziegeldorf et al., 2015).

The privacy work in this dissertation follows this second approach. We design two

Bitcoin privacy protocols: Blindly Signed Contacts and TumbleBit. In Chapter 4 we

cover our Bitcoin privacy protocol Blindly Signed Contracts. Blindly Signed Con-

tracts is not fully compatible with Bitcoin as it requires a minor change to Bitcoin

consensus. Chapter 5 introduces our more advanced protocol TumbleBit which im-

proves on Blindly Signed Contracts and is fully compatible with Bitcoin; no consensus

changes required.

Both of our approaches are built around the concept of a tumbler. Tumblers, aka,

mixers, are a privacy enhancing intermediary used in Bitcoin and other cryptocurren-

cies. Users send bitcoins to a tumbler to be mixed with the bitcoins of other users. In

10

theory tumblers obscure which user owns which bitcoins by providing set-anonymity

between all users who submitted their coins in a mix. As discussed in both chapters,

many deployed bitcoin tumblers are able to violate the anonymity of their users or

to steal bitcoins from users as the coins are being mixed. The goal of our research

with both Blindly Signed Contracts and TumbleBit is to design untrusted tumblers.

By untrusted tumblers we mean tumblers which even if they are malicious can not

violate the anonymity of their users and can not steal bitcoins from their users.

To build an untrusted tumbler we must overcome two problems. Problem one

is how to achieve anonymity, that is, how to ensure that neither the Tumbler nor

any party watching Bitcoin’s blockchain can link or trace bitcoins through a mix

performed by the tumbler. Problem two is how to guarantee fair-exchange, by which

we mean that no participant in the protocol including the tumbler can steal bitcoins

from another participant in the protocol.

Our anonymity property is based on RSA Blind Signatures. Blind Signatures were

first introduced in eCash (Chaum, 1983a) for a similar purpose. The idea in eCash

is that a bank can issue a coin to a user, say Alice, by signing a secret number that

has been cryptographically obscured with a “blinding factor”. Alice can then remove

the blinding factor to get an unblinded signature which we call a “coin”. Alice can

then pay another user such as Bob by transmitting the coin to Bob. Later Bob can

redeem the coin to the bank. The bank is able to check the signature is valid to ensure

it actually issued the coin but because of the blinding factor the bank is unable to

link the coin Bob redeemed with the bank, to the coin the bank issued to Alice. This

enables Alice to pay Bob without revealing to the bank that the coin came from Alice.

A drawback of eCash is that a bank can cheat users by refusing to redeem a

user’s coin i.e., fair-exchange is not a goal or feature of the eCash protocol. Our

work improves on this by using Bitcoin’s transaction scripting language aka, smart

11

contracts (Szabo, 1997), to design protocols whereby fair exchange is achieved.

Our first protocol, Blindly Signed Contracts (Chapter 4) designs a protocol for a

Bitcoin tumbler which allows parties to anonymously send Bitcoin payments using

RSA Blind Signatures for anonymity and Bitcoin’s scripting language to ensure the

fair-exchange. This chapter includes two separate protocols. The first protocol is

an on-chain scheme providing anonymity at reasonable speed. This protocol requires

four transactions to be confirmed in three blocks which takes roughly 30 minutes. The

second protocol is an off-chain aka, a layer-two scheme that usespayment channel net-

works (Poon and Dryja, 2015; Decker and Wattenhofer, 2015) to process payments

in seconds rather than minutes. We show that our on-chain protocol maintains fair-

exchange, preventing both the tumbler and the users from cheating each other or

violating each others anonymity. The anonymity provided is set-anonymity for the

set of participating users. Our off-chain scheme, while boasting faster payment con-

firmation times, only provides anonymity against an honest-but-curious tumbler. By

honest-but-curious we mean a party that correctly follows the protocol but records

everything and is not trusted to delete information.

While Blindly Signed Contracts is designed to work with Bitcoin, it requires that

bitcoin transactions support the validation of RSA Blind Signatures. For this reason

Blindly Signed Contracts is not fully compatible with Bitcoin and would require a

soft-fork of Bitcoin to add this functionality.

In Chapter 5 we introduce TumbleBit. This chapter follows the pattern of the

previous chapter (Chapter 4) and introduces a design for an untrusted Bitcoin tumbler

protocol called TumbleBit. Like Blindly Signed Contracts, TumbleBit includes both

an on-chain scheme and an off-chain scheme. However, Tumblebit is significantly

more advanced and improves on Blindly Signed Contracts in every way.

Unlike Blindly Signed Contracts, TumbleBit does not require any protocol changes

12

to Bitcoin. To accomplish this we invent a specialized contingent payment protocol

that allows the atomic exchange of a bitcoin for an RSA signature or RSA decryption

(essentially an RSA secret key exponentiation). To achieve this property we make

use of the cut-and-choose paradigm along with ephemeral signing keys and time-

locked Bitcoin transactions. Our proposed scheme, TumbleBit, achieves the optimal

set of the desired properties while being relatively fast and fully compatible with

Bitcoin. We formally analyze and prove the security and anonymity properties of our

scheme even against a malicious Tumbler (aka intermediary). While Blindly Signed

Contracts’ off-chain scheme was only secure against an honest-but-curious tumbler

both TumbleBit on-chain and off-chain schemes are secure against a fully-malicious

tumbler.

At the time at which this research was first published, previous work either pro-

vided schemes that were efficient but achieved limited security or anonymity (Bonneau

et al., 2014; Ruffing et al., 2014; Valenta and Rowan, 2015; Ziegeldorf et al., 2015;

Saxena et al., 2014) or schemes that provided strong anonymity but were slow and

required large numbers of transactions to achieve anonymity (Maxwell, 2013b; Bissias

et al., 2014; Barber et al., 2012). Our schemes offered a new trade-off between trans-

action speed, security (i.e., resistance to double-spending, denial of service (DoS) and

Sybil attacks) and anonymity (i.e., unlinkable transactions).

1.3 Protocol Design Philosophy and Impacts

There are two themes running through the research that we present in this work.

The first theme is an approach that favors carefully improving existing protocols over

complete reinvention. This is often called dirty slate or brown field design in contrast

to clean slate or green field design. The second theme is that we approach these

protocols with a healthy level of skepticism towards trusted parties. All of our designs

13

work to reduce the necessary level of trust that must be placed in intermediaries,

authorities or counter parties.

Our embrace of dirty slate design has born fruit. While the changes and counter-

measures to the RPKI we proposed in Chapter 2 were not adopted, the risks of RPKI

authority abuse that we investigated are viewed with serious concern by the RPKI

community (Kuerbis, 2013). Research on how to counter these threats continues to

be published and developed (Xing et al., 2018; Li et al., 2018; Kent and Ma, 2017;

Shrishak and Shulman, 2020; Hlavacek et al., 2020). Our TumbleBit protocol be-

came an open source project and was deployed in the privacy focused Breeze Wallet.

More importantly TumbleBit helped introduce ideas of blind signatures to Bitcoin

privacy wallets inspiring the current generation of Bitcoin privacy protocols. Finally

many of our eclipse attack countermeasures were adopted by Bitcoin and several other

cryptocurrencies including DogeCoin, Monero and ZCash. A long line of research on

cryptocurrency eclipse attacks followed our original paper and this continues to be

an active area of research.

In the next few paragraphs will give a brief summary of the impact of the Tum-

bleBit protocol and its successors. We start with TumbleBit becoming an open source

project, the deployment and use of this open source project and finally the next gener-

ation of protocols that it inspired. A timeline of these events is provided in Figure 1·1.

Afterwards we will move on to examine the influence and impact of our Bitcoin eclipse

attack research.

Following the publication of the TumbleBit protocol discussed in Chapter 5, Nico-

las Dorier launched the open source project NTumbleBit (Dorier, 2016) a full imple-

mentation of the TumbleBit protocol. NTumbleBit was then used by Breeze Wallet

to support the TumbleBit protocol and to provide privacy to their users. In parallel,

Ádám Ficsór, one of the contributors to NTumbleBit, began developing a TumbleBit-

14

2016 2017 2018 2019 2020 2021 2022

Blindly
Signed
Contracts
published

TumbleBit
 published

NTumbleBit
Opensource project

BreezeWallet
 launched

ZeroLink: Chaumian CoinJoin
 published

Wasabi Wallet
(was HiddenWallet)
launches with ZeroLink

Wasabi 2.0
Wasabi wallet
to move from
ZeroLink to
WabiSabi

 WabiSabi Protocol
published

Samaurai Wallet launches

Chaincase
iOS zerolink
wallet launches

Hidden Wallet
under development

inspired
inspired

uses

uses

uses

uses

new version

inspired

uses
uses

Figure 1·1: Timeline of TumbleBit and successors protocols. A solid
line means that a project uses a protocol or library. A dotted line means
that a protocol is inspired by another protocol.

based privacy wallet which at the time was called Hidden Wallet (nopara73, 2017)

but would be later renamed to Wasabi Wallet. However, prior to its public release,

Wasabi Wallet (formerly known as Hidden Wallet) opted to replace TumbleBit with a

newly created privacy protocol called ZeroLink. In the next paragraph we will look at

ZeroLink, its connections to TumbleBit and it’s use in the Bitcoin privacy ecosystem.

The ZeroLink protocol (Ficsór and TDevD, 2017) was jointly created by Ádám

Ficsór of Wasabi Wallet and TDev, the developer of another privacy wallet named

Samourai Wallet. ZeroLink uses the same principles of blind signatures used in

Blindly Signed Contracts and TumbleBit. According to Ádám Ficsór ZeroLink was

directly inspired by TumbleBit (Ficsór, 2021b). This is not surprising since Ádám

Ficsór was an active contributor to NTumbleBit and was using TumbleBit in early ver-

sions of Wasabi Wallet aka, Hidden Wallet. The connections between the NTumbleBit

community and Wasabi Wallet are strong and to this day Wasabi Wallet development

and research is organized on the TumbleBit slack server. The ZeroLink protocol is

15

now widely used to protect privacy in Bitcoin since it is the privacy protocol be-

hind both major Bitcoin privacy wallets: Wasabi Wallet and Samourai Wallet. One

study (Stockinger et al., 2021) estimates that from Jan 2021 to Jun 2021 the average

amount mixed was 4,563 BTC (204 million USD) per month for Wasabi and 847

BTC (35 million USD) per month for Samourai. This largely agrees with two similar

investigations (Wu et al., 2021; Ficsór, 2021a) showing massive use of ZeroLink in

the Bitcoin privacy ecosystem.

Work on deploying and improving these protocols continues to the present day.

The ZeroLink protocol is now available on mobile phones with the creation of the

ChainCase wallet (Gould, 2021). The Wasabi Wallet developers have created a Ze-

roLink successor called WabiSabi (Ficsór et al., 2021) which they are planning to

deploy sometime in late 2021 or early 2022 as a replacement for ZeroLink. Even

though TumbleBit is no longer widely used, it introduced the ideas of Chaumian

eCash (Chaum, 1983b) and blind signatures to the privacy wallet space and thus

helped inspire the design of one of the most widely used Bitcoin privacy protocols

ZeroLink.

We now switch gears to look at the impact of the research presented in Chapter 3,

eclipse attacks on Bitcoin. We will briefly examine how this research impacted the

design of Bitcoin as well as several other cryptocurrencies and the line of research

that followed it.

Prior to publishing the research in Chapter 3, we privately disclosed our attacks

and countermeasures to the bitcoin-core developers. Their initial remediation was to

implement and deploy three of our countermeasures in bitcoin-core version 0.10.1. As

time went on, more of the countermeasures we proposed were deployed into bitcoin-

core. Now, as of 2021, eight of the eclipse attack countermeasures proposed in Chap-

ter 3 have been merged and deployed into the bitcoin-core project (see Table 1.1).

16

Countermeasure Version Date Author PR
1 v0.10.1 04-2015 Pieter Wuille 5941
2 v0.10.1 04-2015 Pieter Wuille 5941
6 v0.10.1 04-2015 Pieter Wuille 5941
9 v0.12 02-2016 Patrick Strateman 6374
4 v0.13.1 10-2016 Ethan Heilman 8282
3 v0.17.0 10-2018 Ethan Heilman 9037
7 v0.19.0.1 11-2019 Suhas Daftuar 15759
5 v0.21.0 08-2020 Hennadii Stepanov 17428

Table 1.1: A timeline of bitcoin-core deploying our proposed counter-
measures

We were actively involved in this process and wrote the patches behind two of the

countermeasures. Because bitcoin-core’s source code is used by many other cryptocur-

rencies, these security improvements have been pulled into a large number of other

bitcoin-derived cryptocurrency projects. For instance the patch that implements our

countermeasure two has been used in approximately 3, 000 other git repositories in-

cluding DogeCoin (Sipa, 2015). Our research has also influenced the design of the

peer-to-peer networking architecture in ZCash (Liu and Hopwood, 2018) and one

of our countermeasures has also been independently implemented and deployed in

Monero (Monero, 2016; IPGlider, 2017).

In addition to this our research helped launch a line of research on cryptocurrency

eclipse attacks and defenses. A systematic overview of this body of work is beyond the

scope of this dissertation and would by itself represent a significant research project.

Some highlights of this research are (Nayak et al., 2016; Natoli and Gramoli, 2017;

Zhang and Lee, 2019), eclipse attacks on Ethereum (Marcus et al., 2018; Ekparinya

et al., 2018), eclipse attacks on Monero (Cao et al., 2020), and eclipse attacks on

Bitcoin via inter-domain routing (Apostolaki et al., 2017; Tran et al., 2020; Tran

et al., 2021).

We believe that TumbleBit and our research on eclipse attacks had the impact

that it did because of our focus on dirty slate design and our engagement with the

17

developer community. While TumbleBit influenced the creation of ZeroLink, it was

not the first paper to suggest the use of blind signatures for Bitcoin privacy. The

original 2013 post on CoinJoin (Maxwell, 2013a) proposed using blind signatures

and provided a brief sketch of how this might be done. In fact there are significant

similarities between the sketch given in the CoinJoin post and ZeroLink. We posit that

TumbleBit succeeded in transferring these ideas to the Bitcoin privacy community

not only because our protocol was fully compatible with Bitcoin, but also because we

published running code (Hughes, 1993) and because we engaged with and supported

the Bitcoin privacy wallet developer community. In a similar fashion as TumbleBit, we

believe our research on eclipse attacks benefited from the fact that we were studying a

widely deployed protocol, namely Bitcoin, and that the countermeasures we proposed

only required minor changes to bitcoin-core’s peer-to-peer networking software. Had

we proposed green field protocols and countermeasure our research may have had

diminished value and interest to these communities. All that said, this impact would

not have been possible without the bitcoin-core community or the Bitcoin privacy

wallet community investing the time and effort to engage with us, give us feedback

and share their knowledge with us.

1.4 Contributions

We will now briefly summarize the contributions of each of chapters of this disserta-

tion.

1.4.1 Improving the Transparency of the RPKI

1. An exploration of the interactions between the RPKI and BGP, showing the

circumstances under which an RPKI revocation of an IP prefix by an RPKI

authority may or may not impact routing. We untangle these often-unintuitive

interactions (Section 2.2) and discuss the ways in which the RPKI’s architecture

18

makes accountability difficult (Section 2.4).

2. The design and implementation of analysis tools that can increase RPKI trans-

parency by allowing an RPKI observer to detect and understand takedowns

and other issues. The first tool is an RPKI detector. It identifies and visualizes

changes to the RPKI that can impact IP prefixes (Sections 2.3). The second

tool is a repair localizer, that identifies RPKI authorities that are able to fix

RPKI problems (Section 2.5).

3. An RPKI measurement study showing the evolution of the state of the RPKI

over time. We test our analysis tools on the production RPKI and identify

real-life errors and revocations (Section 2.3.2). Since RPKI deployment is still

in its infancy, we also develop and work with models of a future full-deployment

of the RPKI, based on routing data and RIR information (Section 2.6.8).

4. Mirror world attacks, a new type of attack on RPKI’s distributed database in

which a malicious RPKI authority presents different views of RPKI to different

relying parties to manipulate their views of RPKI state and to hide misbehavior.

5. Proposed improvements to RPKI to increase its transparency and protect its

consistency even against mirror world attacks. The current RPKI specifications

place power squarely in the hands of authorities and lack robust accountability

mechanisms (Section 2.4.4). To remedy this, we propose modest modifications

to the architecture of RPKI (Section 2.6). We prove the security properties of

our design, and use data-driven analysis to estimate its overhead, including the

number of entities that must participate in our consent mechanism.

19

1.4.2 Eclipse Attacks on Bitcoin’s P2P Network

1. Analysis of how Bitcoin consensus and other security properties can be sub-

verted by an eclipse attack on Bitcoin’s P2P network. These attacks include

the ability to cause adversarial forks in the blockchain which can allow an at-

tacker the ability to double spend a transaction even after that transaction has

had many confirmations on the blockchain.

2. Probabilistic modeling of Bitcoin’s peer-to-peer network and peer discovery

mechanism. These models allow us to quantify how much security the peer-

to-peer network provides against an eclipse attacker exploiting Bitcoin’s peer-

discovery mechanisms.

3. Experiments validating our attacks under real world conditions. These experi-

ments recorded the internal state of Bitcoin nodes allowing us to measure the

degree to which our models correctly simulated the behavior of a Bitcoin node.

We demonstrated the practically of our attack by performing it on our own live

bitcoin nodes, we found that an attacker with 32 distinct /24 IP address blocks,

or a 4600-node botnet, can eclipse a victim with over 85% probability in the

attacker’s worst case. Moreover, even a 400-node botnet sufficed to attack our

own live bitcoin nodes. This contribution includes the release of open source

software for conducting such experiments (Heilman, 2016a).

4. Measurement study of the peering behavior of the Bitcoin peer-to-peer network.

5. Proposed countermeasures that make eclipse attacks more difficult while still

preserving bitcoin’s openness and decentralization. Eight of these countermea-

sures were merged into Bitcoin including (Heilman, 2016c; Heilman, 2016b;

Heilman, 2018).

20

1.4.3 Blindly Signed Contracts: Anonymous Bitcoin Transactions

1. A tumbler protocol (Heilman et al., 2016b), Blindly Signed Contracts, based on

modifying the Bitcoin protocol so that it can evaluate RSA blind signatures in

Bitcoin transactions. With this one change we build a Bitcoin tumbler which

users do not need to trust.

2. A privacy preserving fee system, allowing the Tumbler to resist DoS (Denial of

Service) attacks where attackers seek to overload the Tumbler by joining and

then aborting the protocol.

3. We perform an analysis of our protocol showing that it achieves: Fair-exchange

(neither the tumbler nor the users can cheat each other) and Sybil Resistance.

4. We extend this to develop a private micropayment network, a type of layer-two

blockchain protocol, allowing parties to establish micropayment channels with

the hub and then route payments off-chain through the hub while maintaining

privacy using RSA blind signatures. This provides scalability benefits over the

tumbler and fits the payment usecase.

1.4.4 Tumblebit: An Untrusted Bitcoin-compatible Anonymous Payment

Hub

1. In Tumblebit we extend our work from Blindly Signed Contracts showing that

an untrusted tumbler is possible without any changes to Bitcoin. This result in

TumbleBit involves the invention of two novel fair-exchange protocols that are

written in Bitcoin’s smart contracts language. We developed (off-chain) cryp-

tographic protocols that work with the very limited set of instructions provided

by today’s Bitcoin scripts. Bitcoin scripts can only be used to perform two

cryptographic operations: (1) validate the preimage of a hash, or (2) validate

21

an ECDSA signature on a Bitcoin transaction. To achieve this we introduce

novel puzzle-prover and puzzle-solve cryptographic protocols that allow mutu-

ally untrusting parties to convince each other that various encrypted values

decrypt to the output of blinded RSA operations.

2. We show how this protocol can be performed off-chain via uni-directional micro-

payment channels. This allows TumbleBit to both provide privacy and help

scale the velocity (time to finalization for a payment) and volume of payments

Bitcoin can support.

3. As with Blindly Signed Contracts we perform an analysis of the TumbleBit

protocol showing that it provides set-anonymity, fair-exchange, DoS Resistance

and Sybil Resistance.

4. We implemented TumbleBit1 in C++ and python using LibreSSL and tumbled

payments from 800 payers to 800 payees; the relevant transactions are visible

on the blockchain. Our protocol requires 327 KB of data on the wire, and 0.6

seconds of computation on a single CPU. Thus, performance in classic tumbler

mode is limited only by the time it takes for two blocks to be confirmed on

the blockchain and the time it takes for transactions to be confirmed; currently,

this takes ≈ 20 minutes. Meanwhile, off-blockchain payments can complete in

seconds.

1https://github.com/BUSEC/TumbleBit/

https://github.com/BUSEC/TumbleBit/

Chapter 2

Improving the Transparency of the RPKI

This chapter is based on work from (Heilman et al., 2014) which was written in

collaboration with Danny Cooper, Leonid Reyzin and Sharon Goldberg.

2.1 Introduction

The RPKI (Lepinski and Kent, 2012) is a new infrastructure for securing interdomain

routing with BGP. BGP has traditionally operated as a “default-accept” architecture:

any autonomous system (AS) can originate a BGP routing announcement (i.e., claim

to be the destination for) for any IP prefix, and other ASes will accept the BGP

announcement by default. This has made BGP vulnerable to a number of routing

attacks, the most common (Rensys Blog, 2008; Misel, 1997; de Beaupre, 2013; Cowie,

2010; Pilosov and Kapela, 2009; Peterson, 2013) and devastating (Butler et al., 2010;

Huston et al., 2011; Goldberg et al., 2010; Ballani et al., 2007) of which are prefix-

and subprefix hijacks. In a prefix hijack, a hijacking AS originates BGP routes for

IP prefixes that were not allocated to it, causing the traffic for those prefixes to be

intercepted by the hijacker’s AS.

The RPKI prevents these attacks by providing a trusted mapping from allocated

IP prefixes to ASes authorized to originate them in BGP. To do this, the RPKI estab-

lishes a top-down hierarchy of authorities, rooted at the Regional Internet Registries

(RIRs), that allocate and suballocate IP address space, as well as authorize its use in

BGP by individual origin ASes; routers use the RPKI to distinguish between hijacked

22

23

BGP routes and routes originated by a legitimate AS. The RPKI also turns out to be

surprisingly effective against attacks it was not designed to prevent (Goldberg et al.,

2010); (Lychev et al., 2013) shows that more advanced secure routing solutions (Lep-

inski, 2012; Kent et al., 2000) provide limited benefits over what is already provided

by the RPKI. The RPKI requires neither changes to BGP nor online cryptographic

computations during routing. It is currently being rolled out by RIRs and adopted by

individual network operators, and authorizes about 20,000 BGP routes as of January

2014 (Section 2.3.2).

From default-accept to default-deny. However, the security benefits of the

RPKI are accompanied by a drastic shift from BGP’s traditional “default accept”

policies, to a new “default deny” mode: to prevent (sub)prefix hijacks, routers should

only accept routes authorized by the RPKI, and discard all other routes by default

(Section 2.2.3). This is further complicated by the fact that the RPKI’s hierarchi-

cal architecture empowers centralized authorities to unilaterally revoke authorization

for IP prefixes under their control. This shift has lead to concerns (Amante, 2012;

Mueller and Kuerbis., 2011; Communications Security, Reliability and Interoperabil-

ity Council III (CSRIC), 2011; The President’s National Security Telecommunications

Advisory Committee, 2011; Mueller et al., 2013) that the RPKI creates powerful au-

thorities with the technical means for taking down IP prefixes, and could be exploited

by abusive authorities or governments to settle disputes or block undesirable content.

This is a stark departure from the status quo, where these authorities (RIRs, Na-

tional/Local Internet Registries, etc.) had the power to allocate IP address space,

but not to impact routing to space that has been allocated (Goldman, 2006; Project,

2011).

Transparency. In light of the risk of takedowns, it would be useful to have mech-

anisms that can hold misbehaving RPKI authorities accountable; this could create

24

social (and possibly legal) pressure to motivate misbehaving authorities to fall in line.

However, the architecture of the RPKI also makes it difficult to distinguish between

revocations due to disputes and those reflecting legitimate business agreements, or

even to identify the authority that performed a revocation (Section 2.4).

Our contributions. As RPKI deployment continues to gain traction, we present

an investigation of the risk of RPKI takedowns, and propose technical solutions that

mitigate this risk by improving the transparency of the RPKI. Our contributions are:

1. Security audit. Complex interactions between the RPKI and BGP mean that

it is not always the case that a revocation in the RPKI can takedown an IP prefix in

BGP. We untangle these often-unintuitive interactions (Section 2.2) and discuss how

the RPKI’s architecture makes accountability difficult (Section 2.4).

2. Tools, measurement & modeling. We start by working within the current

RPKI specifications, and build two tools that can increase transparency by detecting

and reacting to RPKI problems: a detector, that identifies and visualizes changes to

the RPKI that can takedown IP prefixes (Sections 2.3), and a repair localizer, that

identifies RPKI authorities that can fix the problems that result (Section 2.5). We

test our tools on the production RPKI and identify real-life errors and revocations

(Section 2.3.2). Since RPKI deployment is still in its infancy, we also develop and

work with models of a future full-deployment of the RPKI, based on routing data

and RIR information (Section 2.6.8).

3. Changes to the specifications. The current RPKI specifications still place

power squarely in the hands of authorities, and lack robust accountability mechanisms

(Section 2.4.4). To remedy this, we propose modest modifications to the architecture

of the RPKI (Section 2.6). Our design ensures that once a route is authorized by the

RPKI, it switches from “default-deny” to “default-accept”; that is, authorities that

revoke IP address space must first obtain consent from all entities holding allocations

25

(and suballocations) of that space. Our design also (1) provides accountability by

guaranteeing identification of authorities that fail to properly obtain consent, and (2)

allow parties viewing RPKI information from different vantage points to detect when

their views are not consistent. We prove the security properties of our design, and

use data-driven analysis to estimate its overhead, including the number of entities

that must participate in our consent mechanism.

2.2 The risk of RPKI takedowns

We discuss the conditions under which manipulations of the RPKI can take IP prefixes

offline. We overview the RPKI’s certificate hierarchy, explain how RPKI information

determines route validity, and show how route validity affects the availability of routes

in BGP.

2.2.1 The hierarchical structure of the RPKI.

The RPKI follows the “principle of least privilege”, arranging authorities in a strict

hierarchy that mirrors the IP address allocation hierarchy. An authority may issue

cryptographic objects for IP addresses that are covered by its own IP addresses.1

Today, IANA sits at the root of this hierarchy, allocating IP addresses to the Regional

Internet Registries (RIRs), who allocates subsets of their address space to national

internet registries or ISPs, who further allocate subsets to others.2

RPKI Objects. In the RPKI, each authority has a resource certificate (RC), a

certificate that contains its cryptographic public key and its set of allocated IP ad-

dresses (Manderson et al., 1973). An authority may issue signed cryptographic objects

for IP addresses covered by its allocation, specifically: (1) an RC that suballocates

1An IP prefix P covers prefix π if π is a subset of the address space in P (e.g., 63.160.0.0/12
covers 63.160.1.0/24) or if P = π. Also, a prefix 63.160.0.0/12 has length 12.

2The roots of the RPKI are the five RIRs (Table 2.1); in the future, IANA could be a single
root (Lepinski and Kent, 2012, Section 2.4).

26

Figure 2·1: Excerpt of a model RPKI

a subset of its addresses to another authority, or (2) a route origin authorization

(ROA)3, that authorizes a specified AS to originate a set of prefixes, and its subpre-

fixes up to a specified length, in BGP (Lepinski and Kent, 2012).

Model (Figure 2·1). We show how an RIR (ARIN) uses its RC to suballocate a

prefix to another authority (Sprint), which then issues RCs suballocating this prefix

to other authorities (ETB S.A. ESP., Continental Broadband). (This is a excerpt of

one of our models of the fully-deployed RPKI; see Section 2.6.8.) We say Sprint is

the parent of Continental Broadband, and extend this to child, grandparent, etc.in

the obvious way. Sprint issues two ROAs that authorize specified prefix and its

subprefixes of length up to 24; the remaining ROAs shown authorize only a single

prefix.

Status of the RPKI (Table 2.1). As of January 13, 2014, the production

RPKI contains ROAs for about 20,000 prefix-to-origin AS pairs. (Note that about

488K prefixes were announced in BGP on the same day). The RPKI’s structure on

January 13, 2014, (Table 2.1) is simpler than some of our models. At depth 0, there

are trust anchors for each RIR (e.g., ARIN); the trust anchors issue a handful of

intermediate RCs (at depth 1); intermediate RCs issue leaf RCs (e.g., Sprint) who

then issue ROAs. ARIN has an extra layer of intermediate RCs. Currently, RCs for

suballocations like Continental Broadband and ETB in Figure 2·1 are absent; their

ROAs could just be issued by Sprint. ROAs usually contain one AS and many prefixes

27

Depth 1 2 3 4
RIPE 4 RC 1909 RC 1512 ROA
LACNIC 4 RC 282 RC 282 ROA
ARIN 1 RC 1 RC 99 RC 151 ROA
APNIC from IANA 1 RC 450 RC 58 ROA
AfriNIC 1 RC 27 RC 48 ROA

Table 2.1: Valid ROAs and RCs at each depth of the production
RPKI on January 13, 2014.

(e.g., all prefixes for AS 7341 in could be issued in one ROA).

Repositories. The RPKI was designed to require minimal changes to BGP, and

therefore operates entirely out-of-band. RPKI objects are stored in publicly-available

repositories. Every RC has its own publication point (i.e., folder in a file system)

where it publishes every object it issued. Relying parties download RPKI objects

from publication points to their local caches, validate the objects, push information

to their routers, and use it to inform routing decisions they make in BGP.

2.2.2 How the RPKI limits threats to BGP.

To see how threats to the RPKI can impact routing with BGP, we need to understand

how threats to BGP influenced the design of the RPKI.

Threats to BGP. The RPKI is designed to prevent the most devastating attacks

on interdomain routing with BGP: prefix and subprefix hijacks (Butler et al., 2010),

where a hijacking AS originates BGP routes for IP prefixes that it is not authorized

to originate, causing the traffic intended for those prefixes to be intercepted by the

hijacker’s AS (Rensys Blog, 2008; Misel, 1997; de Beaupre, 2013; Cowie, 2010; Pilosov

and Kapela, 2009; Peterson, 2013). Prefix/subprefix hijacks are off-path attacks; any

router connected to the Internet can launch one of these this attacks, with varying

degrees of success at attracting traffic (Ballani et al., 2007; Goldberg et al., 2010).

BGP is especially vulnerable to subprefix hijacks because of longest-prefix-match

routing: when a router learns BGP routes for a prefix and its subprefix, it always

prefers the subprefix route. Subprefix hijackers, which exploit this by originating

28

routes for subprefixes of a victim prefix. This leads to a natural desideratum for the

RPKI: a subprefix hijacker’s route should be always be invalid when victim’s route

has a matching valid ROA.

Origin authentication. To achieve this desideratum, a relying party uses the

RPKI for origin authentication as follows. For our purposes, a BGP route is an IP

prefix π and an origin AS a. Once a relying party has “access to a local cache of

the complete set of valid ROAs” (Huston and Michaelson, 2012, Sec. 2), these valid

ROAs are used to classify each route learned in BGP into one of three route validation

states (Mohapatra et al., 2013; Huston and Michaelson, 2012):

– Valid: There is a valid matching ROA. A matching ROA has (1) a matching

origin AS a, and (2) a prefix P that covers prefix π, and (3) a specified maximum

length no shorter than the length of π.

– Unknown: There is no valid covering ROA. A covering ROA is any ROA for a

prefix that covers π.

– Invalid: The route is neither unknown or valid.

The rules above elegantly achieve the desiderata; the ROA for (63.174.16.0/20, AS

17054) protects the corresponding route from subprefix hijacks, because all routes for

its subprefixes are invalid (except routes with matching ROAs of their own). Thus, to

realize the RPKI’s potential to stop BGP attacks, relying parties should drop invalid

routes, i.e., not select BGP routes that are classified as invalid by the RPKI.

2.2.3 A default-deny architecture.

The RPKI is, in many ways, a “default-deny” architecture; the presence of a valid

ROA means that all routes for its subprefixes are invalid, unless they have their

own matching valid ROAs. This has serious implications: a relying party that drops

invalid routes can lose connectivity to corresponding IP prefix in BGP if problems

29

policy routing attack RPKI manipulat’n

drop invalid stops (sub)prefix hijacks prefix goes offline
depref invalid subprefix hijacks possible prefix may stay online

Table 2.2: Impact of different local policies.

with the RPKI cause a route to be wrongly classified as invalid. A misbehaving RPKI

authority (or even a denial-of-service attack on the RPKI) can exploit the default-

deny nature of the RPKI to block connectivity to IP prefixes in BGP. We discuss the

mechanics of this in Sections 2.4.2,2.4.1, and 2.4.2.

Granularity. While the RPKI allows ROAs to have arbitrary prefix lengths,

the longest IPv4 prefix length that is universally accepted by BGP routers is a /24.

(Routers usually ignore longer prefixes to avoid bloating their routing tables.) Thus,

our discussion on the RPKI’s impact on IP prefix reachability should be thought of as

having the granularity of a /24 (or shorter) IPv4 prefix, i.e., no fewer than 256 IPv4

addresses; the RPKI, therefore, can be used for significantly coarser level of blocking

than e.g., the DNS (Piscitello, 2012; Piscitello, 2013).

Local policies. Because moving to a default-deny regime is a drastic change for

the routing infrastructure, the RPKI specifications explicitly state that relying parties

may use their own “local policies” to decide what to do with invalid routes (Huston

and Michaelson, 2012). Drop invalid routes is one possible local policy.

An alternative, more lenient policy suggested by (Huston and Michaelson, 2012)

is to depref invalid routes : for a given prefix, a router should prefers valid routes over

invalid routes. This policy implies that a router still selects an invalid route when

there is no valid route for the exact same IP prefix. Thus, the router may still be able

to reach routes that are wrongly classified as invalid as a result of problems with the

RPKI.4 However, this policy does not prevent subprefix hijacks; see (Bush, 2012b,

4However, availability of a route at one router can depend strongly on local policy used at other
routers. For example, a router that uses the lenient depref invalid policy can lose connectivity to an
“invalid” route if all its neighboring routers use the strict drop invalid policy.

30

Section 5).

A difficult tradeoff. This highlights an inherent tradeoff that is implicit in the

RPKI RFCs; namely, that the local policy that is best at protecting against attacks

on BGP is worst at protecting against problems with RPKI. See Table 2.2. As of

January 2014, there are ROAs authorizing ≈20,000 routes in the RPKI. However, the

vast majority of routers ignore the information in the RPKI. While it is too early

to tell what local policies will be adopted in the long run, it is clear that better

assurances about the trustworthiness of RPKI information are need before relying

parties can start using policies that reap the security benefits provided by the RPKI.

Our focus is on improving these assurances.

2.3 Detecting downgraded routes

One way to improve the trustworthiness of RPKI data is to detect when changes to

the RPKI can negatively impact BGP. We now present a tool that detects when any

change to the RPKI causes a downgrade to the route validity state of any prefix-to-

origin-AS pair (i.e., causes a transition from “valid” to “invalid” or “unknown”, or

from “unknown” to “invalid”).

2.3.1 A tool for detecting downgrades.

Our tool detects downgrades in the validity state of all possible routes, regardless of

whether or not they are announced in BGP. It can therefore act as an alert system

for potentially-harmful changes to the RPKI, independent of information available

from a specific BGP vantage point. Our visualizer, described later in this section,

incorporates information from a BGP feed to show the validity of specific routes

announced in BGP.

Challenges. The main challenge in detecting downgrades due to changes in the

31

Figure 2·2: Downgrades due to whacked ROAs.

RPKI is that the relationship between a single prefix-to-origin-AS pair and the validity

of potential routes in BGP is complex, and depends on the presence of other ROAs

in the system. For example, a ROA giving an AS a prefix π of length 17 up to

maxlength 22 actually makes 2(23−17) − 1 = 63 possible announcements by that AS

“valid” in BGP. If the ROA gets whacked, those announcements do not necessarily

become “invalid”: some may become “unknown” (if there is no covering ROA for

them), while others may remain valid (if there is another ROA for the same AS and

a super or subprefix of π). Moreover, when such a ROA appears, it may downgrade

“unknown” routes to “invalid” for any subprefix of π of any length, depending on

what super or subprefixes of π exist in the RPKI.

Data structures. Thus, the naive approach to determining the impact of an

added or whacked ROA is to search the RPKI for all super and subprefixes of the

ROA, and to apply the route-validity rules (Section 2.2.2) to every subprefix of the

prefixes in the ROA. Instead, we take a more efficient approach. We focus on the

complete binary tree of all IP prefixes (with one IP address per leaf, and all possible

prefixes as internal nodes) and observe that a prefix-to-origin-AS pair for prefix π,

maxLength m, and origin AS α makes a subtree of this tree “valid” for α: the subtree

is rooted at π and goes down to depth m. It also makes the subtree rooted at π and

going all the way to the bottom “known” (i.e., the complement of “unknown”).

We call these subtrees triangles and build a data structure that uses interval trees

32

Figure 2·3: # of invalid IP addresses over time.

to efficiently perform unions, intersections, and complements of sets of triangles. From

this, we get a “prefix-validity” data structure that stores the validity states for all

possible routes, based on a set of ROAs in the RPKI; it can be created in time

O(n log n) given ROAs for n (prefix, AS, maxlength)-tuples.

Our tool compares a current RPKI state Scur and a previous state Sprev. It pro-

cesses each state once and creates its prefix-validity data structure. It then evaluates

the impact of every single change from Sprev to Scur in the context of other changes

that occurred, by going through each new or removed (prefix, AS, maxlength)-tuple

and extracting the relevant information from the prefix validity data structures.

Visualizing downgrades. We present a new visualization of the effects of a single

ROA on the validity states of multiple BGP routes, based on a modification of the

Sierpiński triangle. Our visualization takes in information from our detector and

from a BGP feed e.g., (Views, 2015; RIPE, 2015), and presents a binary tree that

visualizes the triangles described above, as well as the validity state of specific routes

announced in BGP.

Figure 2·4(r). We visualize the prefixes covered by Continental Broadband in

Figure 2·1. Suppose Sprev has the all ROAs issued by Continental Broadband except

the covering ROA for 63.174.16.0/20, and that the covering ROA is added in Scur.

We show downgrades from “unknown” to “invalid” in the transition from Sprev to

Scur. Routes uncovered by the four ROAs in Sprev are impacted during the transition;

33

Figure 2·4: (l) Visualization of downgrades in Case Study 2. (r)
Downgrades when the ROA (63.174.16.0/20, AS 17054) is added to the
RPKI in Figure 2·1.

routes covered by the four ROAs in Sprev were already invalid in Sprev, and do not

appear as downgrades.

Tool release. We plan to release this and all our other tools as libraries that can be

incorporated into professionally-maintained systems like (NIST, 2013a; RIPE, 2013;

LACNIC, 2013).

2.3.2 Tool evaluation & case studies.

A trace of the production RPKI. We collected production RPKI data for

2013/10/23–2014/01/13. Each day, we used rcynic (Lab, 2015) to pull the state of

the RPKI to an empty local folder, and to cryptographically validate the result. We

excluded from the trace a few days where our collector went down, and a few days

where rcynic failed to properly sync to the repository.

We study two incidents from our trace to gain insight on how routes can downgrade

in the RPKI.

Case Study 1: Valid to Invalid downgrade. On December 19, 2013, a ROA

for (79.139.96.0/24, AS 51813), for a network in Russia, was deleted from the RPKI.

Meanwhile, since at least November 21, RPKI also held a covering ROA mapping

79.139.96.0/19-20 to another Russian ISP, AS 43782. The presence of the covering

ROA caused the route corresponding to the whacked ROA to downgrade from valid

to invalid.

34

Case Study 2: ROA misconfiguration (Figure 2·4(l)). On December 13, a

new ROA was added to the RPKI rooted at ARIN, authorizing prefix 173.251.0.0/17

with maxlength 24 to AS 6128. This caused a large portion of the address space

to downgrade from unknown to invalid, including several legitimate /24 routes an-

nounced in BGP (e.g., AS 53725 with prefix 173.251.91.0/24, AS 13599 with prefix

173.251.54.0/24, and others) that did not have matching ROAs. Figure 2·4(l) visual-

izes the incident. The tool outputs the prefix tree rooted at 173.251.0.0/16, and shows

how the triangle rooted at 173.251.0.0/17 transitions from unknown to invalid; the

valid route for prefix 173.251.0.0/17 is shown with a grey circle, while the legitimate

/24 BGP routes that transitioned to invalid are shown with black circles.

We used our detector to check for downgrades between consecutive entries in our

trace.

Downgrades due to added ROAs (Figure 2·3). Each time a ROA is added,

more of the IP address space transitions to the default-deny state, i.e., all the “un-

known” address space it covers downgrades to “invalid” as in Case Study 2. Figure 2·3

shows this transition over the course of our trace. We show the number of IP ad-

dresses that are “invalid” for at least one AS over time, marking each entry in our

trace with a diamond. The drop in the number of “invalid” addresses on December

20 was due to a single event; see Case Study 3.

Downgrades due to whacked ROAs (Figure 2·2). We show the number of

prefix-to-origin AS pairs that downgraded from valid to invalid, and from valid to

unknown, for each consecutive entry in our trace (that contained a successful pull of

the RPKI). Figure 2·2 shows a value of zero if no downgrades occurred at some date,

and a gap if our trace was missing an entry. To put these results in perspective, in

January 2014, there were about 20,000 prefix-origin AS pairs authorized by ROAs in

the RPKI. Most of the incidents in Figure 2·2 correspond to the whacking of a single

35

ROA containing multiple prefixes; in many incidents, a new ROA appeared in the

RPKI authorizing the prefix(es) in the whacked ROA to some other AS. The most

dramatic event (December 20) is discussed in Case Study 3.

2.4 Why accountability is hard

Accountability means that responsibility for a problem with the RPKI can be at-

tributed to an entity (e.g., the issuer of an RC, the subject of a ROA, a disruption

on the communication path to an RPKI repository, etc.). Accountability means mis-

behaving parties can be identified (and disciplined by the RPKI community). While

accountability is easy for wrongly added ROAs (just blame the RC that issued the

ROA in question), attributing blame for whacked ROAs is much complex. We now

discuss how ROAs can be whacked, and how adversarial authorities can manipulate

the RPKI to avoid being held accountable.

2.4.1 Attacks that disrupt delivery of objects.

A ROA can be whacked by a third party (that does not have access to the keys of an

RPKI authority) that disrupts the delivery of information from an RPKI repository

to a relying party. In fact, it suffices to corrupt just a single bit in a ROA, causing

the ROA to fail cryptographic validation. The RPKI has a mechanism for detecting

lost/corrupted information:

Manifests. To provide assurance that no items have been deleted from a publication

point, a collision-resistant hash of the contents of every file issued by an RC is listed

in a single file called a manifest (Huston et al., 2012a, Section 2.1), which is digitally

signed by the RC and stored at its publication point. The manifest must be updated

whenever an RC issues, modifies, or revokes an object it issued. To prevent replay

attacks and the propagation of stale information, manifests are short-lived objects;

36

they typically expire and are renewed every 24 hours.

Of course, a third party can always corrupt or disrupt the delivery of the manifest

itself.

Accountability? Fortunately, these attacks are quite transparent: a relying party

can always check that it received all the objects in a manifest, and that the manifest

was valid and current. If not the relying party should raise a missing-information

alarm that attributes blame to the communication path, or to the RPKI authority

who issued the manifest (since the authority could have sneakily deleted an object

from its publication point but not from its manifest).

Reacting to alarms? A relying party should search for missing objects in its

local cache or at other relying parties, and search for unusual routing activity in

the IP address space covered in the RC that issued the manifest that triggered the

alarm (Austein et al., 2012, Sect 6.5).

2.4.2 How can I whack thee? We count the ways.

Because relying parties download RPKI objects from publication points that are con-

trolled by their issuer (Lepinski and Kent, 2012, Section 8), the issuer can manipulate

the contents of its publication points any way it likes. An RPKI authority can whack

descendant ROAs in various ways, including:

Deleting or corrupting. An authority can delete or corrupt any object in its

publication point. If the authority logs appropriate change in its manifest, relying

parties will accept the change without complaint (as in Case Study 1). This is in

contrast to attacks on object delivery (Section 2.4.1), where relying parties would

alarm because of a mismatch between the manifest and the publication point’s state.

Overwriting. Each RPKI object is identified by a uniform resource identifier

(URI), and an authority may overwrite any RC it issued, so that modified objects

37

can have persistent URIs (thus simplifying operations like certificate renewal and key

rollover (Huston et al., 2012b)). An authority can always overwrite an RPKI object

with one for a different set of IP addresses (or a different key, etc.) and log the

appropriate change in its manifest; children of the overwritten RC can be whacked

as a result, because they are no longer covered by the RC (or they are signed by the

wrong key, etc.), as in Case Study 4.

Revoking. Finally, an issuer can revoke any object it issues, because the RPKI also

inherits certificate revocation lists (CRL) from the X.509 standard. A CRL is a list,

signed by an RPKI authority A of the objects issued by A that A has revoked (Cooper

et al., 2008).

Moreover, if an object’s ancestor RC gets whacked, the object is whacked by associ-

ation.

2.4.3 Who’s to blame? A few case studies.

Who should we blame when a ROA gets whacked? To gain some insight, we present

two incidents from our our trace of the production RPKI that were identified by

our detector (Section 2.3.1). These incidents likely resulted from benign errors or

normal churn, but we will use them to explain how an authority can manipulate

RPKI information in order to avoid be held accountable.

Case Study 3: Stale objects at LACNIC. On December 20, 2013, an error

at LACNIC whacked 4217 prefix-to-origin-AS pairs. The day before the incident the

RPKI rooted at LACNIC looked very similar to what is shown in Table 2.1. On

December 20, the manifests and CRLs issued by all four of LACNIC’s intermediate

RCs (at depth 2) in our local cache all expired. As a result, all four of the intermediate

RC became invalid, thus whacking all of their descendant RCs and ROAs. All objects

in subtree rooted at LACNIC became invalid; thus, there were no valid ROAs for any

38

address space allocated by LACNIC, and routes in the impacted LACNIC ROAs

downgraded from valid to unknown (Figure 2·2).

Who should be held accountable? This is a classic disruption-of-delivery incident,

in which a relying party (i.e., our collector) saw a stale manifest. Thus, we can blame

the four intermediate RCs, the communication path to LACNIC’s publication point,

or our collector.

Case Study 4: Overwritten parent RC. On January 5, 2014, a ROA for

(196.6.174.0/23, AS 37688) for a backbone connectivity network in Nigeria was whacked

because its parent RC was overwritten. The incident occurred as follows: On January

4, the ROA’s parent RC was allocated prefix 196.6.174.0/23. On January 5, the RC

was overwritten with an RC with the same key but for an IPv6 prefix 2c0f:f668::/32.

The ROA in question (which remained in the publication point) became invalid, be-

cause it was no longer covered by its parent. Interestingly, the RC had no valid

descendants until January 6, when it issued ROAs covered by the IPv6 prefix to a

different AS (AS 37600, in Mauritius).

It is worth considering how an RPKI authority might behave similarly to avoid

being blamed for an RPKI manipulation. Specifically, on January 5, it would have

been impossible to determine if this action was legitimately requested by a subject

of the overwritten RC, or if issuer of the RC (AfriNIC) took this action unilaterally,

without the agreement or knowledge of the subject. (For this particular incident, we

speculate that the latter is true, since the overwritten RC did manage to issue a new

valid ROA on January 6.)

2.4.4 Holding an adversary accountable.

In light of Case Study 4, one might be satisfied with a tool that attributed blame to

a pair of entities in the RPKI, i.e., the subject of an RC and its issuer. While this

might suffice for localizing the root causes of common errors and misconfigurations,

39

Figure 2·5: Devious overwritings. (l) Before (r) After.

we now show how an adversarial RPKI authority could circumvent such a tool. We

first need some background:

RPKI repository structure (Figure 2·5 (l)). This is a simplified schematic view

of part of the RPKI in Figure 2·1. Every object issued by an RC is in the issuer’s

publication point. Sprint’s RC has a child pointer (the RFCs call this the “Subject

Information Access (SIA)” field) that points to the URI of Sprint’s publication point.

Meanwhile, every RPKI object has a parent pointer, which is the URI for its issuer’s

RC (the “Authority Information Access (AIA)” field). The key belonging to an RC’s

subject is shown with a key graphic, and the signature of an RC’s issuer with a lock

graphic.

Case Study 5: Devious overwritings. ARIN whacks the ROA for AS 19429

in the hypothetical manner shown in Figure 2·5(r). ARIN overwrites Sprint’s RC

with a new RC for Sprint*, that has the same IP prefix, but for a different public

key (whose secret key is known to ARIN, but not to Sprint) and publication point

(controlled by ARIN). As a result, the children of Sprint become invalid, because

their parent pointer points to the new Sprint* RC, but they are signed by Sprint’s

old key. Next, because ARIN knows the secret key in the new Sprint* RC, ARIN

covers its tracks by issuing new objects identical to those issued by the original Sprint

RC, except that they live in the new publication point (controlled by ARIN). What

happens, then, to the ROA for AS 19429 that was originally issued by ETB? The

40

ROA remains invalid, because its parent pointer points to the invalid RC for ETB,

in Sprint’s original publication point, rather than new valid RC for ETB, in the

publication point controlled by ARIN.

The story above attributes blame to ARIN. However, ETB could just as well be

responsible: ETB has access to the key and publication point that houses the whacked

ROA, so why does ETB not renew it? One could even hold Sprint accountable:

perhaps Sprint wanted to refresh its key and publication point, and asked ARIN to

modify its RC accordingly. Thus, we could blame any one of the three parties.

One can construct ever more complicated situations that adversarial RPKI au-

thorities can use to confound accountability mechanisms. We will instead move on to

designing a tool that can be used to help repair problems caused by whacked ROAs

(Section 2.5), and then propose modifications to the RPKI’s architecture to allow for

robust accountability (Section 2.6).

2.5 Repairing whacked objects

We now present a tool that allows relying parties to identify RCs that can “repair”

whacked ROAs.

Tool design. Our repair localizer tool takes in a current RPKI state Scur and

previous state Sprev. Given a ROA R for a prefix π that was whacked in the transition

from Sprev to Scur (as identified by our detector, Section 2.3.1), the tool identifies RCs

that can issue ROAs for π in Scur. However, since any RC whose resources cover π

can do so, and RC allocations are not exclusive, there may be many such RCs. We

search for someone who was “responsible” for R in Sprev. We therefore look for the

lowest surviving ancestor of R covering π.

Looking for this ancestor in Scur is challenging, because Sprev and Scur may look

completely different due to multiple changes—in particular, because the RPKI has

41

no persistent names for its authorities. For example, it would be nice if any RC for

Sprint had the string “Sprint” as its subject name, but RCs “must not attempt to

convey the identity of the subject in a descriptive fashion” (Lepinski and Kent, 2012)

to avoid “legal and liability concerns” (FCC, 2013). Thus, for reasons discussed in

our technical report, we try to find the ancestor RCs by matching on (a) URI, (b)

public key, and/or (c) child pointer.

Testing our tool. We tested our tool on whacked-ROA incidents in our trace of

the production RPKI (Section 2.3.2), as well as Case Study 5 and other situations

that we injected into our models of a fully-deployed RPKI (Section 2.6.8). For brevity,

we just mention what the repair localizer did in a few cases:

Case Study 1. The parent of the whacked ROA (a leaf RC in the RPKI rooted at

RIPE) was identified.

Case Study 4. The parent of the overwritten RC (an intermediate RC held by

AfriNIC) was identified.

Case Study 5. The RC belonging to ETB SA ESP was identified; as discussed in

Section 2.4.4, this RC can repair the problem, but may not be responsible for it.

2.6 Fixing the balance of power

We have seen that the RPKI’s design empowers authorities to unilaterally whack their

descendants (Section 2.4.2), and that adversarial authorities can evade accountability

mechanisms (Section 2.4). We therefore propose restoring the balance of power via

modest modifications to the RPKI specifications. We start with our design goals,

and then discuss our modifications to the objects issued by the authorities, and how

they allow relying parties to verify not only the validity of RPKI objects, but also the

validity of authorities’ behavior. We then justify our design by presenting its exact

security guarantees, explain why alternative designs would not suffice to provide these

42

guarantees, and estimate its overhead via data-driven analysis.

This section provides an overview of our design; full details and security proofs

are in our technical report.

2.6.1 Design goals.

Consent. To correct the power imbalance created by the RPKI, one might consider

distributing the role of RPKI authorities; namely, having multiple entities jointly issue

objects, as in (Zhou et al., 2002; Cachin and Samar, 2004). However, in a default-

deny architecture like the RPKI, there is little sense in distributing the issuance

of RPKI objects, because this rarely causes IP prefixes to go offline. Instead, we

should distribute the revocation of RPKI objects, since revocation can downgrade

BGP routes from “valid” (authorized) to “invalid” (denied). We will therefore require

that any action that can remove resources (IP prefixes) from or invalidate RCs must

obtain the consent of all impacted RCs.5 This approach limits bureaucratic overhead,

since it only involves entities that already have a stake in the action. To simplify the

exposition, we will not discuss consent from ROAs; instead we just suppose than any

ROA that wishes to be entitled to consent is issued its own covering RC.6

Consistency. A relying party must be able to verify that it has the same view of

the RPKI as other relying parties, and raise an alarm if it does not. This prevents

adversarial RPKI authorities from launching mirror world attacks, where they

present one view of the RPKI to some relying parties, and a different view to others.

(For example, the subject of an RC could shown a view containing the RC, but other

5The addition of a ROA can also cause routes to downgrade from “unknown” to “invalid”.
However, there is no way to obtain consent from the entities originating the “unknown” routes,
since they do not participate in the RPKI. (If they did, they would already have ROAs, and their
routes would not be “unknown”.)

6 Actually, each ROA’s parent issues an X.509 end-entity (EE) certificate for an ephemeral one-
time-use key, which is used to sign the ROA message (Lepinski and Kent, 2012, Section 2.3). The
ROA and EE cert are stored in a single .roa file, so we have treated them as one object. But a
ROA could instead consent via its EE cert, instead of asking for its own RC.

43

relying parties can be shown a view that omits the RC.)

Accountability. We also require that relying parties can verify that consent has

been properly obtained, and to raise an alarm if it has not. Alarms hold accountable

any authority that failed to properly obtain consent, or that launched a mirror-world

attack. Alarms are resolved via out-of-band mechanisms, just like other routing

anomalies, and indicate that relying parties should monitor the relevant portion of

the IP address space for unusual routing activity (as in Section 2.4.1).

Formal statements of these properties are in Section 2.6.5.

2.6.2 Overview of our design.

Our design introduces .dead objects to enable consent (Section 2.6.3). When an

authority wants to revoke (or remove resources from) a child RC, the authority must

first obtain a signed .dead object from the child RC and all its impacted descen-

dant RCs; the authority then revokes the child by publishing the .dead object in its

publication point, and deleting the child RC.

We provide accountability and consistency using manifests signed by RPKI au-

thorities (Austein et al., 2012) (Section 2.6.3), and alarms raised by relying parties

(Section 2.6.4, Appendix A.1). An RPKI authority’s manifest positively attests to the

set of objects the authority issues (Austein et al., 2012). We additionally require con-

secutive manifests to be hash chained. Relying parties will raise alarms if manifests

indicate that an object is revoked without a .dead, or if consecutive manifests are

inconsistent. This allows us to hold authorities accountable when RCs are improperly

revoked/modified, or during mirror world attacks.

The purpose of alarms is to increase transparency by detecting misbehavior, and

also to inform relying parties’ local routing decisions (Section 2.6.5). As in the current

RPKI specifications, we suppose that relying parties use their own local policies to

decide how to resolve alarms (Austein et al., 2012, Section 6); alarms could indicate

44

that certain IP prefixes should be monitored for routing anomalies, or that a relying

party should revert to an older (“stale”) set of RPKI objects that did not raise alarms.

Alarms also allow relying parties to distinguish between consensual revocations and

disputes between a subject and issuer; for example, if an issuer unilaterally revokes

an RC during a dispute, relying parties raise alarms that inform their local policies

and could also launch investigations into the nature of the dispute.

2.6.3 Procedures for RPKI authorities.

We now discuss our new .dead objects, and our modifications to the RPKI’s specifi-

cation of manifests (Austein et al., 2012).

Consent via .dead objects

Consent for revocation. For RC A to revoke a valid child RC B, it needs the

consent of B and all the RCs that descend from B. Consent is provided to A via a

.dead object signed by each consenting RC .

.dead objects are constructed recursively as follows: Let D be a descendant of

B that consents to its own revocation. Before D can sign its own .dead object, D

first collects .dead objects from each of its descendants. D then signs its own .dead

object, that includes (1) the hash of the .dead object issued by each child of D, (2)

the hash of mD, the manifest issued by D at the time D signs its own .dead object,

and (3) the hash of the RC of D. D then provides its own .dead object and the

.dead objects for all its descendants to its issuer C.

At the end of this process, A has received the .dead objects from B and all

descendants of B. (This recursive collection of .dead objects protects A, and any of its

descendants, from being falsely accused of revoking a descendant without consent.)RC

A then simultaneously (a) deletes RC B, (b) puts the .dead object for B and all of

descendants of B in the publication point of A, and (c) logs all the .dead objects in

45

the updated manifest of A.

Consent for modification. An RC B is “modified” when it is overwritten by a

new RC B′ (with the same URI). Because many modifications to an RC can whack

its descendants, our design only permits modifications to resources or parent pointers

(to accommodate key rollover).7 Consent (via a .dead object) is required from the

original RC B when the modified RC B′ lacks resources in B; A must recursively

collect and publish .dead objects from B and every valid descendant of B that was

whacked due to the modification. Other modifications to B must be accomplished by

issuing a fresh RC at a different URI.

Complexity? While this consent mechanism adds complexity, we emphasize that,

besides B, only the RCs that become invalid as a result of the modification need to

sign a .dead object. Some modifications, such as revoking B, will require the consent

of all its descendants. Other modifications, such as removing IP prefixes from B, may

invalidate only the subset of descendants that overlap with the removed resources.

Finally, many modifications have no adverse impact on anyone at all (not even on B)

and do not require .dead objects (e.g., modifying the parent pointer of an RC, or

increasing the set of IP prefixes or AS numbers it certifies). We estimate the number

of entities that must be involved in issuing .dead objects in Section 2.6.8.

Make before break. Consent should be given and obtained in a “make-before-

break” fashion. For B, this means (a) consenting to the modification only after it

knows that a validly-issued replacement object (with a different URI) exists in the

RPKI or (b) knowingly consenting to have its removed resources disappear completely

from the RPKI. For A, it means obtaining the needed .dead objects ahead of time,

so they can be published at the same time that A revokes/modifies B.

Key rollover. Any PKI needs a mechanism for refreshing cryptographic keys.

7Other modifications can be accommodated at the cost of complicating the design; we avoid this
here.

46

Adapting the RPKI’s key rollover mechanism to our design, while still preserving

accountability and consistency, requires some care. Details are in our tech report.

Importantly, key rollover only requires consent from the RC whose key was rolled.

Emergencies. In some situations (e.g., key-rollover due to stolen keys, disputes

etc.), it will be impossible to obtain consent in a timely manner. In this cases, the

issuer can just unilaterally revoke (or otherwise modify) the RC; these actions will be

visible to relying parties, who will raise alarms per Section 2.6.4.

Manifests as positive attestations

Manifests (Austein et al., 2012) lie at the core of our design. We (a) add information

to manifests, and (b) modify the semantics by which they are interpreted. The

details follow; readers more interested in our security analysis can jump ahead to

Section 2.6.5.

Normative manifests. Manifests positively attest to the set of objects issued by

an RPKI authority. Because the RPKI is a default-deny architecture, a relying party

must know that it has all the objects issued by an authority. We therefore make

manifests normative; namely, any object not logged in the issuer’s current manifest

is treated as nonexistent by relying parties. Once manifests become normative, we

can simplify other aspects of the RPKI:

1. Only manifests may expire. In the current RPKI, manifest are “updated”

when their issuer overwrites them with a fresh manifest with a higher ‘manifestNum-

ber’ (Austein et al., 2012); manifests therefore short lived objects — most expire and

updated with fresh versions within 24 hours. In our design, if a manifest expires be-

fore it is updated, then all objects logged in the manifest become “stale”, rather than

“invalid”; “stale” indicates that up-to-date information is unavailable, but does not

indicate that the objects logged in the expired manifest have explicitly been revoked.

47

A stale manifest (or any object logged in a current manifest but not obtained by a

relying party) raises a missing-information alarm at the relying party (Section 2.6.4).

Thus our design no longer requires expiration dates on ROAs and RCs: any

RC/ROA not logged in the current manifest is automatically invalid. We do this to

prevent an issuer from issuing short-lived ROAs/RCs in order to circumvent the need

to obtain consent.

2. Manifests must log only valid objects. Any issuer that logs an invalid

object in its manifest (e.g., an object pointing to the wrong parent, has a prefix that

not covered by the issuer’s RC, etc.) risks the ire of relying parties, who raise alarms

per Section 2.6.4. (This is necessary for our consistency mechanisms to work properly;

see Counterexample 2 in Section 2.6.7.)

By ensuring that manifests only attest to what is valid, we no longer need CRLs

to attest to what is invalid. In fact, RCs/ROAs need not even be signed: signature

on a manifest suffices, because the manifest contains the collision-resistant hash of

every valid object (as in (Gassko et al., 2000)’s approach).

These changes may seem unorthodox, but we note that the RPKI is different from the

usual PKI where relying parties obtain and validate objects one-by-one; instead, all

objects in a publication point are downloaded en masse, so it suffices just to validate

the manifest. All these changes can be implemented without any modification to

object formats by having relying parties ignore CRLs, expiration times/signatures on

RCs and ROAs.

Reconstructing intermediate states. To prevent mirror world and other

attacks (e.g., Counterexample 1 in Section 2.6.7), relying parties must be able to

reconstruct states that could have been seen by other relying parties. Thus, issuers

must also provide relying parties with “hints” to enable reconstruction of any inter-

mediate manifest/publication-point state between two syncs to a publication point;

48

alarm description
missing-information manifest is stale/missing OR

object logged in manifest is missing
bad rollover RC issued “post-rollover manifest” but

performed incorrect key rollover procedure
invalid syntax RC issued malformed object
child too broad RC issued object it does not cover
unilateral revocation RC deleted/modified object without .dead
global inconsistency manifest failed global consistency check

Table 2.3: Alarms

our technical report has details on the small amount of additional information that

needs to be maintained at a publication point.

Hash chaining. Manifests are hash-chained: each new manifest includes the hash

of the contents (excluding the signature) of the manifest it supersedes. A horizontal

chain is a sequence of consecutively issued manifests, each superseding the next.

For each manifest m, hash chaining defines successor and predecessor manifests of

manifest m in the obvious way.

Disambiguating the issuer. If an RC is overwritten, this can introduce some

ambiguity as to who issued its manifest; was it issued by the original RC, or its over-

written version? (Counterexample 2 explains how this can complicates consistency

checking.) We therefore require every manifest to include the hash of the manifest

containing its issuer’s RC (“parent manifest”), so that we can definitively determine

the resources allocated to an RC at the time it signed its manifest. A vertical chain

is a sequence of manifests, each containing the hash of the manifest above it and the

hash of an RC that signed the manifest below it.

2.6.4 Validation procedures for relying parties.

The validation procedures for relying parties have two purposes: (1) to determine the

set of valid RPKI objects, and (2) to raise alarms that hold authorities accountable

when they violate procedures in Section 2.6.3.

49

Local consistency check. A relying party performs this check locally, one pair of

consecutive manifests at a time, to validate objects and raise alarms when procedures

in Section 2.6.3 are violated; see Appendix A.1.

Global consistency check. To defeat mirror-world attacks, relying parties can

confirm that others see the same objects as they do. A trivial, but unwieldy, solution

has relying parties check consistency by synchronizing and exchanging their entire

local caches.

Our solution dispenses with synchronization and requires the exchange of much

less information. We ask only that one party (Alice) is no more than time tg (“global

consistency window”) ahead of the other (Bob).

Bob sends Alice the hash h of the contents (excluding the signature) of latest

manifest that he obtained (that passed cryptographic signature and hash verification)

for each publication point in his local cache. For every hash value h received from

Bob, Alice checks that h ∈ HA, where HA is the set that contains the hash of each

manifest that Alice obtained (again, as defined in Appendix A.1), going back for time

tg. The check fails if h 6∈ HA, and Alice raises a global-inconsistency alarm implicating

the manifest corresponding to h.

A pairwise interactive protocol is not actually required here; Bob can just post

his hash values in a public location for any other relying party to use.

2.6.5 Security analysis.

We now discuss the security properties of our design. We only state theorems here;

proofs are in our tech report.

Threat model. We suppose that the relying parties named in Theorems 2.6.1-

2.6.3 are honest; everyone else can be arbitrarily malicious, but cannot break the

cryptographic primitives (e.g., forge digital signatures, find hash collisions, etc.).

50

RC Successors. The theorem uses the following definition: for an RC R and

relying party Alice, let the immediate successor of R be (a) an RC that overwrites R,

whichever happens first from Alice’s point of view. Define the set of successors of R

inductively as the set containing R and immediate successors for each of its elements.

Valid remains valid. The following theorem tells us that once an honest relying

party Alice sees a valid object, the object will remain valid for Alice until the object

consents to revocation (or Alice raises an alarm):

Theorem 2.6.1. Suppose an RC R was valid for a relying party Alice at time t1.

Consider some time t2 > t1. Then at time t2, at least one of the following is true:

1. a successor of R is valid in the local cache of Alice and has all the resources of R;

2. a successor of R is valid in the local cache of Alice, is missing some resources that

R had, and Alice observed .dead object(s) signed successors of R consenting to

the revocation(s) of those resources;

3. at or before time t2, Alice saw a .dead object signed by a successor of R, consenting

to its revocation;

4. at or before time t2, Alice raised a unilateral revocation alarm in response to a

deleted or overwritten certificate; the alarm included a successor of R as a vic-

tim, and blamed an ancestor (or a successor of the ancestor) of the deleted or

overwritten certificate.

No mirror worlds. We prove robustness to mirror world attacks; relying parties

can be sure that if they see a valid RC in a manifest, and use this manifest in the

global consistency check, others who successfully check against them will also see the

same valid object:

Theorem 2.6.2. Suppose the local cache of a relying party Bob contains a valid RC R

and a manifest m that was issued by the parent of R. Suppose that R is not marked

as stale; thus, the version of R in Bob’s local cache is same as the one logged in

m. Suppose another relying party Alice performs a global consistency check against

Bob; Bob sends the hash of m to Alice, and Alice looks for it in her set HA of hashed

manifests. Suppose the global consistency check does not raise the global-inconsistency

alarm for m. Then either

51

• Alice raised an alarm with R as the victim when performing the local consistency

check on one of the manifests in HA, or

• at any time t2 after the global consistency check, at least one of the conditions in

Theorem 2.6.1 holds for R and Alice.

No mirror worlds in the past. Because manifests are hash-chained, a successful

global consistency check also implies that parties were consistent in the past. We

state the theorem only informally here:

Theorem 2.6.3 (Informal). Suppose neither Alice nor Bob raised alarms for k man-

ifest updates in a row. Then if Alice passes a global consistency check against Bob,

then for every RC R seen as valid by Bob in any of the past k manifests, at least one

the conditions specified in Theorem 2.6.1 holds for R and Alice.

Alarms & accountability. Our theorems apply to situations in which honest rely-

ing parties Alice and/or Bob have valid objects and manifests. Sometimes, however,

Alice may be unable to find a valid object (because communication is disrupted) or

to run a global consistency check because of an invalid manifest. Our design ensures

that Alice will also raise alarms in response to these problems. Table 2.3 summarizes

these alarms; missing information alarms are raised when a valid object cannot be

found, and global inconsistency alarms are raised when the global consistency check

fails.

The remaining alarms in Table 2.3 can be raised by Alice during the local con-

sistency check, described in Appendix A.1. These local-inconsistency alarms are for

a particular victim object O (e.g., a .dead or manifest) and blame the RC R that

signed O. The validity of O is defined in the context of other objects (e.g., the validity

of a .dead depends on its signer’s manifest, while the validity of manifest m depends

the validity of the manifest that logs the RC that issued m). In our design, O includes

this context as hashes of other objects (e.g., a .dead includes the hash of its signer’s

manifest (Section 2.6.3), while a manifest m includes the hash of its parent’s manifest

52

(Section 2.6.3)). Thus, the blame attributed by Alice’s local consistency alarm are

provable if her local cache contains the necessary context for O (i.e., objects whose

hashes are consistent with those in O). Because hashes are collision resistant and

objects are signed, a third party Bob can take O and its context as sufficient proof

that the blamed RC R misbehaved, even if Bob does not trust Alice.

On the other hand, if Alice’s local cache does not have the necessary context (i.e.,

the objects whose hashes are present in O), then a missing-information alarm is

raised, and the blame attributed by Alice is no longer provable. This is because Alice

is missing some information that the blamed RC claims to have, perhaps because

the blamed RC is lying, or because Alice and the blamed RC are out of sync due to

a race condition, or because Alice and the blamed RC are living in mirror worlds.

In these situations, determining which RC is guilty of misbehavior could require a

forensic investigation that collects the missing information needed to reconstruct the

local caches of the blamed RC (and potentially other RCs) over time. Horizontal and

vertical manifest chaining can be used to resolve inconsistencies.

Resolving alarms. Alarms increase transparency. Because alarms have specific

victims, relying parties can use their own local policies to make informed decisions

on how to resolve them; they may revert to the last-known manifest that raised no

alarms, require extra verification of BGP announcements for IP prefixes impacted

by the alarm, use other out-of-band mechanisms, etc. RPKI authorities holding RCs

that are regularly implicated in alarms can be disciplined by the RPKI community

(e.g., via mailing lists, blogs, SLAs).

2.6.6 What about all those bad examples?

We consider how some whacked-ROA incidents we discussed earlier would look in our

design. In Case Study 5, we would be able to provably implicate ARIN by presenting

its manifest from before and after it modified Sprint’s RC; the same is true for the

53

AfriNIC RC that overwrote the RC in Case Study 4. In Case Study 4, AfriNIC could

avoid being implicated in a unilateral-revocation alarm by obtaining .dead objects

from the overwritten RC and its descendants. In Case Study 5, ARIN could avoid

being implicated by placing the RC for Sprint* at a fresh URI, and obtaining .dead

objects from Sprint and its descendants; alternatively, ARIN could use a proper key

rollover procedure, which would only require consent from Sprint.

2.6.7 On the necessity of our modifications.

We give intuition for our design via two examples.

Counterexample 1: Not checking intermediate state. Suppose we did not

require relying parties to verify the state at every consecutive manifest update. An

authority X could exploit this in a mirror world attack that would violate Theo-

rems 2.6.2 and 2.6.3.

At time t1, X issues an RC Y ; at time t2, X replaces Y with a new valid RC Y ′

that contains an additional IP prefix; and continues swapping between Y (at odd-

numbered times), and Y ′ (at even-number times). Alice syncs to X’s publication

point at odd-numbered times, and sees only Y ; Bob syncs at even-numbered times

and sees RC Y ′. But, since Alice does not check full intermediate states (only manifest

chains), she does not notice the transition from Y ′ to Y , and does not realize that

X needs to get a .dead object from Y ′. Thus, Alice and Bob live happily in their

mirror worlds.

Counterexample 2: Race conditions. A major challenge we faced was that

relying parties can sync to different publication points at different times. This creates

race conditions that complicate global consistency:

54

Suppose an authority X is allocated a small address block. At time t1, X properly

issues a child RC Y that is invalid because Y contains more addresses than its parent

X. A time t2, parent X is overwritten by an RC for those addresses, and its child Y

becomes valid. At time t3, parent X overwrites Y with an RC that is invalid because

it contains even more addresses. This process continues as above. Notice that from

time t1 to t2, and from t3 to t4, the manifest of X logs an invalid object. Suppose

Alice syncs just after t1 and just after t3; she decides that Y is invalid. Bob syncs

just after t2 and just after t4; he decides that Y is valid. Hence, mirror worlds!

This problem cannot be caught by checking for .dead objects for Y , since in Alice’s

view Y is always invalid, and in Bob’s view Y just keeps getting more resources. Nor

can it be caught by the global consistency check, because Alice and Bob see the same

manifests. Our design eliminates this problem by requiring relying parties to alarm

if invalid objects are logged in the manifest; in this example, Alice would raise an

alarm. Theorems 2.6.2 and 2.6.3 would be false without this requirement.

2.6.8 Data-driven analysis of our design.

We discuss the impact of our changes on the RPKI.

Less crypto. One immediate improvement is that a single digital signature on the

manifest needs to be issued and verified, rather than individual signatures on each

RC, ROA, CRL, and manifest (Section 2.6.3). To put this perspective, on January

13, 2014 there were ≈ 10, 400 validly-signed objects in the RPKI; our changes require

the validation of only ≈ 2, 800 manifests.

55

No renewals. RCs/ROAs do not expire in our design (Section 2.6.3); hence

recipients of resources are no longer dependent on their issuers for routine renewals.

Mandated interaction for obtaining consent. However, issuers are dependent

on recipients to provide consent (via .dead objects) for revocations and certain modi-

fications (Section 2.6.3). To find out how often those events happen, we use our trace

of the production RPKI for 2013/10/23–2014/01/21 (Section 2.3.2). The largest event

we observed was in mid-November 2013, when RIPE removed 3,336 RCs/ROAs and

issued new ones with new parent/child pointers and public keys, as part of repository

restructuring. Our design would require RIPE to obtain .dead objects from all of

them, which seems to impose a large burden on RIPE. However, unless RIPE holds

the secret keys of its descendants (in which case it can just issue .dead objects by

itself), interaction is needed even if .dead objects were not required, because RIPE’s

descendant RCs would need to reissue their objects in new publication points.

Besides this event, we saw 4,443 instances of modified/revoked RCs/ROAs. Of

these, 3,569 (80%) were renewals, that are not needed in our design. Meanwhile, at

most 230 (5%) would need a .dead object.

How many parties need to consent? Next, we consider how many parties need

to be involved in signing a .dead when an RC is revoked. Our estimates, made from

the production RPKI and a model of the RPKI, suggest that we do not require many

.dead objects on average. The details of our estimates follow:

1. Production RPKI. Table 2.1 shows the structure of the production RPKI

on January 13, 2014. Suppose that ROAs were able to sign off on .dead objects

(e.g., because they had requested their own covering RCs, or via the mechanism in

footnote 6). How many entities would need to sign a .dead object if we wanted to

revoke a leaf RC in Table 2.1? We use ASes as a proxy for entities, and estimate this

by counting the number of ASes in ROAs issued by each leaf RC; the results for the

56

ASes 1 2 3 4 5 6-10 10-30 98
RIPE 678 122 51 13 12 30 8 1
LACNIC 123 20 9 2 1 2 0 0
APNIC 26 8 2 0 2 0 0 0
ARIN 30 5 4 4 3 0 0 0
AfriNIC 9 2 1 1 0 0 0 0

Table 2.4: # of leaf RCs issuing ROAs for X ASes on January 13,
2014; X is in the top row.

production RPKI are in Table 2.4, which shows that on average, only 1.6 ASes need

to consent to revoking a leaf RC, and that 93% of leaf RCs can be revoked with the

consent of no more than 3 ASes.

2. Model. Because the RPKI is far from fully deployed, we also created a model

for a future (full) deployment of the RPKI using routing data for the week starting

2012/05/06. In our model, the RIRs sit at the highest layer of the hierarchy; they

issues RCs to “direct allocations,” i.e., IP prefixes directly allocated by the RIRs

(e.g., Sprint in Figure 2·1). We obtained these top two layers of the hierarchy by

using files retrieved from the FTP site of each RIR. Our model omits intermediate

RCs (since the are just held by the RIRs). To model the ROAs descended from each

direct allocation, we extracted (prefix, origin AS)-tuples from BGP feeds (Views,

2015; RIPE, 2015) for the week starting 2012/05/06. (Any tuple not covered by a

directly-allocated prefix was discarded as a bogon.)8We grouped tuples by AS and

found that, on average, each direct allocation issues ROAs for only 1.5 ASes; the

distribution is in Table 2.5.

With great power comes great responsibility. Tables 2.4, 2.5 indicate that

there are a small percentage of outlier RCs that issue ROAs for many (even hundreds!)

of ASes. (In our model, out of 116,357 total direct-allocation RCs, 26 (0.02%) have

8Figure 2·1 is derived from this model. We built a subtree of RCs below each direct allocation
RC, with one RC for every prefix with (prefix, AS)-tuple in the BGP feeds. The ancestor relation-
ship corresponds to the cover relationship for prefixes, and we collapsed parent-child pairs of RCs
generated for the same AS, ASes in the same organization per (CAIDA, 2014a) or when if child was
a “stub AS” per (Wang et al., 2013).

57

ASes 1-10 11-30 31-100 100-200 200− 1073
115,605 594 132 15 11

Table 2.5: Similar to the distribution in Table 2.4, except for direct-
allocation RCs in our model.

more than 100 ASes and 221 (0.18%) have more than 25 ASes.) Revoking these

outliers requires a large number of .dead objects. However, we consider this to be

a feature, not a bug: these RCs can impact routing to a large number of ASes,

so revoking them should not be easy. Moveover, outright revocation may not be

necessary if the goal is simply to change the resources given to them slightly, because

we provide mechanisms for removing resources from RC that only require .dead

objects from descendants that become invalid as a result (Section 2.6.3).

2.7 Related work

Routing security. The RPKI is a realization of a series of routing security pro-

posals (Kent et al., 2000; White, ired; Aiello et al., 2003; Osterweil et al., 2011) for

origin authentication (Section 2.2.2). A number of works (Ballani et al., 2007; Gold-

berg et al., 2010; Lychev et al., 2013) argue that origin authentication can significantly

improve routing security. The RPKI is also the first step towards a comprehensive

solution for securing the current routing system with BGPSEC (Lepinski, 2012) or

other proposals surveyed in (Butler et al., 2010; Huston et al., 2011). See also (Zhang

et al., 2011) for clean-slate architectures that are robust to routing problems.

Censorship. Censorship is known to occur at all layers of the Internet’s archi-

tecture; see e.g., (Murdoch and Anderson, 2008) for an overview. There is already

evidence (Rensys Blog, 2008; Qiu et al., 2011; Anderson, 2012) of routing-based cen-

sorship with BGP; we explored the risk that the RPKI could also be used for this

purpose.

PKI design. Our modified RPKI architecture (Section 2.6) is related to an long

58

line of work on public key infrastructure (PKI) design, culminating in recent efforts to

harden the web PKI (NIST, 2013b). The idea of validating the state of the RPKI over

time is related to certificate pinning (Evans et al., 2013), and the idea of hash-chaining

manifests is related to append-only-logs (Schneier and Kelsey, 1997) (or see (Crosby

and Wallach, 2009) and references therein) and certificate transparency (Laurie et al.,

2013). While these works suppose that a single logger tracks a stream of ordered

events, we have to deal with the race conditions (Counterexample 2) that result from

allowing individual RPKI authorities to maintain their own logs (i.e., manifests). The

idea of correcting the balance of power in a hierarchical system has also appeared in

work on distributing certificate authorities (Zhou et al., 2002) and centralized systems

like the DNS (Cachin and Samar, 2004; namecoin, 2015; Ramasubramanian and Sirer,

2004); these works distribute the issuance of objects, but we only distribute revocation

(since revocation can harm IP prefix reachability).

The RPKI. Research on the RPKI covers measurement (Wählisch et al., 2012;

Osterweil et al., 2012) and policy questions (Mueller and Kuerbis., 2011; Communica-

tions Security, Reliability and Interoperability Council III (CSRIC), 2011; The Pres-

ident’s National Security Telecommunications Advisory Committee, 2011; Mueller

et al., 2013). An earlier HotNets paper (Cooper et al., 2013) discusses the threat of

misbehaving RPKI authorities, but does not provide solutions to any the threats it dis-

cusses; portions of our security audit (Sections 2.2, 2.4.1, 2.4.2) overlap with (Cooper

et al., 2013), but the remainder of this chapter presents new results.

Concurrently to our work, there have been efforts within the IETF to harden the

RPKI against authorities that abuse their power (Bush, 2013; Kent and Mandelberg,

2013; Bush, 2012a). Kent et al. (Kent and Mandelberg, 2013) considers the threat of

whacked ROAs and of “competing ROAs”. A new ROA “competes” with an existing

ROA if it contains prefixes covered by the older ROA; a competing ROA is a threat

59

if BGP is attacked, since the AS in the competing ROA can perform a (sub)prefix

hijack on the AS in the older ROA. Our architecture (Section 2.6) ignores this threat

because we focus on the risk that the RPKI can take IP prefixes offline in the absence

of an attack on BGP. Moreover, any authority that issues a competing ROA and then

attacks BGP can be held accountable; the competing ROA itself is non-repudiable

evidence of the attack. Both (Kent and Mandelberg, 2013) and our design defend

against whacked ROAs by comparing the state of the RPKI over time, but we also

detect mirror world attacks and have exact security guarantees.

Systems have also been developed to monitor the RPKI (Spider, 2015; LACNIC,

2013; NIST, 2013a; RIPE, 2013; Surfnet, 2013); most use a snapshot of ROAs from

the RPKI to determine the validity state of routes in publicly-available BGP route

collectors (Views, 2015; RIPE, 2015). Our detector (Section 2.3.1) is complementary

because we detect when any change to the RPKI alters the validity state of all possible

routes, not just the ones visible from a particular BGP vantage point at a specific

time; it can therefore be used as an alert system (especially when RPKI deployment

reaches steady state), even if a particular vantage point does not obtain a complete

view of all routes announced in BGP. Our tools also provide a new way of visualizing

downgrade events (Section 2.3.1) and to repair the problems that result (Section 2.5).

2.8 Conclusion

We have explored a number of techniques to harden the RPKI against the risk of

IP prefix takedowns. We have built tools for detecting and reacting to takedowns

within the existing RPKI specifications. We have also proposed changes to the spec-

ifications that (1) entitle parties to consent to revocations of their IP address space,

and guarantee that (2) a misbehaving RPKI authority can be held accountable for

its actions and that (3) relying parties obtain a consistent view of information in the

60

RPKI. Given the security improvements promised by the RPKI (Lychev et al., 2013;

Goldberg et al., 2010; Ballani et al., 2007), we hope our work will catalyze further

efforts to harden the RPKI against abusive authorities.

Chapter 3

Eclipse Attacks on Bitcoin’s P2P Network

This chapter uses research from (Heilman et al., 2015a) which was written in collab-

oration with Alison Kendler, Aviv Zohar and Sharon Goldberg.

3.1 Introduction

While cryptocurrency has been studied since the 1980s (Chaum, 1983a; Brands, 1993;

Camenisch et al., 2005), bitcoin is the first to see widespread adoption.A key reason

for bitcoin’s success is its baked-in decentralization. Instead of using a central bank

to regulate currency, bitcoin uses a decentralized network of nodes that use computa-

tional proofs-of-work to reach consensus on a distributed public ledger of transactions,

aka., the blockchain. Satoshi Nakamoto (Nakamoto, 2008) argues that bitcoin is se-

cure against attackers that seek to shift the blockchain to an inconsistent/incorrect

state, as long as these attackers control less than half of the computational power

in the network. But underlying this security analysis is the crucial assumption of

perfect information; namely, that all members of the bitcoin ecosystem can observe

the proofs-of-work done by their peers.

While the last few years have seen extensive research into the security of bitcoin’s

computational proof-of-work protocol e.g., (Nakamoto, 2008; Eyal and Sirer, 2014;

Shomer, 2014; Bahack, 2013; Kroll et al., 2013; Johnson et al., 2014; Courtois and

Bahack, 2014; Eyal, 2014; Laszka et al., 2015; Rosenfeld, 2014), less attention has

been paid to the peer-to-peer network used to broadcast information between bitcoin

61

62

nodes (see Section 3.8). The bitcoin peer-to-peer network, which is bundled into the

core bitcoind implementation, aka., the Satoshi client, is designed to be open, de-

centralized, and independent of a public-key infrastructure. As such, cryptographic

authentication between peers is not used, and nodes are identified by their IP ad-

dresses (Section 3.2). Each node uses a randomized protocol to select eight peers

with which it forms long-lived outgoing connections, and to propagate and store ad-

dresses of other potential peers in the network. Nodes with public IPs also accept up

to 117 unsolicited incoming connections from any IP address. Nodes exchange views

of the state of the blockchain with their incoming and outgoing peers.

Eclipse attacks. This openness, however, also makes it possible for adversarial

nodes to join and attack the peer-to-peer network. In this chapter, we present and

quantify the resources required for eclipse attacks on nodes with public IPs running

bitcoind version 0.9.3. In an eclipse attack (Castro et al., 2002; Sit and Morris, 2002;

Singh et al., 2006), the attacker monopolizes all of the victim’s incoming and outgoing

connections, thus isolating the victim from the rest of its peers in the network. The

attacker can then filter the victim’s view of the blockchain, force the victim to waste

compute power on obsolete views of the blockchain, or coopt the victim’s compute

power for its own nefarious purposes (Section 3.1.1). We present off-path attacks,

where the attacker controls endhosts, but not key network infrastructure between the

victim and the rest of the bitcoin network. Our attack involves rapidly and repeatedly

forming unsolicited incoming connections to the victim from a set of endhosts at

attacker-controlled IP addresses, sending bogus network information, and waiting

until the victim restarts (Section 3.3). With high probability, the victim then forms

all eight of its outgoing connections to attacker-controlled addresses, and the attacker

also monopolizes the victim’s 117 incoming connections.

Our eclipse attack uses extremely low-rate TCP connections, so the main challenge

63

for the attacker is to obtain a sufficient number of IP addresses (Section 3.4). We

consider two attack types: (1) infrastructure attacks, modeling the threat of an ISP,

company, or nation-state that holds several contiguous IP address blocks and seeks to

subvert bitcoin by attacking its peer-to-peer network, and (2) botnet attacks, launched

by bots with addresses in diverse IP address ranges. We use probabilistic analysis,

(Section 3.4) measurements (Section 3.5), and experiments on our own live bitcoin

nodes (Section 3.6) to find that while botnet attacks require far fewer IP addresses,

there are hundreds of organizations that have sufficient IP resources to launch eclipse

attacks (Section 3.4.2). For example, we show how an infrastructure attacker with

32 distinct /24 IP address blocks (8192 address total), or a botnet of 4600 bots,

can always eclipse a victim with at least 85% probability; this is independent of the

number of nodes in the network. Moreover, 400 bots sufficed in tests on our live

bitcoin nodes. To put this in context, if 8192 attack nodes joined today’s network

(containing ≈ 7200 public-IP nodes (Bitnode, 2014)) and honestly followed the peer-

to-peer protocol, they could eclipse a target with probability about (8192
7200+8192

)8 =

0.6%.

Our attack is only for nodes with public IPs; nodes with private IPs may be

affected if all of their outgoing connections are to eclipsed public-IP nodes.

Countermeasures. Large miners, merchant clients and online wallets have been

known to modify bitcoin’s networking code to reduce the risk of network-based at-

tacks. Two countermeasures are typically recommended (btcwiki, 2014b): (1) dis-

abling incoming connections, and (2) choosing ‘specific’ outgoing connections to well-

connected peers or known miners (i.e., use whitelists). However, there are several

problems with scaling this to the full bitcoin network. First, if incoming connections

are banned, how do new nodes join the network? Second, how does one decide which

‘specific’ peers to connect to? Should bitcoin nodes form a private network? If so,

64

how do they ensure compute power is sufficiently decentralized to prevent mining

attacks?

Indeed, if bitcoin is to live up to its promise as an open and decentralized cryp-

tocurrency, we believe its peer-to-peer network should be open and decentralized as

well. Thus, our next contribution is a set of countermeasures that preserve openness

by allowing unsolicited incoming connections, while raising the bar for eclipse attacks

(Section 3.7). Today, an attacker with enough addresses can eclipse any victim that

accepts incoming connections and then restarts. Our countermeasures ensure that,

with high probability, if a victim stores enough legitimate addresses that accept in-

coming connections, then the victim be cannot eclipsed regardless of the number of

IP addresses the attacker controls. Eight of our countermeasures are deployed in bit-

coin project as of the year 2020 in bitcoind v0.21. In Table 1.1 we provide a table of

bitcoin’s deployment of our countermeasures.

3.1.1 Implications of eclipse attacks

Apart from disrupting the bitcoin network or selectively filtering a victim’s view of

the blockchain, eclipse attacks are a useful building block for other attacks.

Engineering block races. A block race occurs when two miners discover blocks at

the same time; one block will become part of the blockchain, while the other “orphan

block” will be ignored, yielding no mining rewards for the miner that discovered it.

An attacker that eclipses many miners can engineer block races by hording blocks

discovered by eclipsed miners, and releasing blocks to both the eclipsed and non-

eclipsed miners once a competing block has been found. Thus, the eclipsed miners

waste effort on orphan blocks.

Splitting mining power. Eclipsing an x-fraction of miners eliminates their

mining power from the rest of the network, making it easier to launch mining attacks

(e.g., the 51% attack (Nakamoto, 2008)). To hide the change in mining power under

65

natural variations (Bitcoin Wisdom, 2015), miners could be eclipsed gradually or

intermittently.

Selfish mining. With selfish mining (Eyal and Sirer, 2014; Shomer, 2014; Bahack,

2013; Courtois and Bahack, 2014), the attacker strategically withholds blocks to win

more than its fair share of mining rewards. The attack’s success is parameterized

by two values: α, the ratio of mining power controlled by the attacker, and γ, the

ratio of honest mining power that will mine on the attacker’s blocks during a block

race. If γ is large, then α can be small. By eclipsing miners, the attacker increases γ,

and thus decreases α so that selfish mining is easier. To do this, the attacker drops

any blocks discovered by eclipsed miners that compete with the blocks discovered by

the selfish miners. Next, the attacker increases γ by feeding only the selfish miner’s

view of the blockchain to the eclipsed miner; this coopts the eclipsed miner’s compute

power, using it to mine on the selfish-miner’s blockchain.

Attacks on miners can harm the entire bitcoin ecosystem; mining pools are also

vulnerable if their gateways to the public bitcoin network can be eclipsed. Eclipsing

can also be used for double-spend attacks on non-miners, where the attacker spends

some bitcoins multiple times:

0-confirmation double spend. In a 0-confirmation transaction, a customer pays

a transaction to a merchant who releases goods to the customer before seeing a block

confirmation i.e., seeing the transaction in the blockchain (Bitcoin Wiki, 2015). These

transactions are used when it is inappropriate to wait the 5-10 minutes typically

needed to for a block confirmation (blockchain.io, 2015), e.g., in retail point-of-sale

systems like BitPay (bitpay, 2014), or online gambling sites like Betcoin (RoadTrain,

2013). To launch a double-spend attack against the merchant (Karame et al., 2012),

the attacker eclipses the merchant’s bitcoin node, sends the merchant a transaction

T for goods, and sends transaction T ′ double-spending those bitcoins to the rest of

66

the network. The merchant releases the goods to the attacker, but since the attacker

controls all of the merchant’s connections, the merchant cannot tell the rest of the

network about T , which meanwhile confirms T ′. The attacker thus obtains the goods

without paying. 0-confirmation double-spends have occurred in the wild (RoadTrain,

2013). This attack is as effective as a Finney attack (Finney, 2011), but uses eclipsing

instead of mining power.

N-confirmation double spend. If the attacker has eclipsed an x-fraction of

miners, it can also launch N -confirmation double-spending attacks on an eclipsed

merchant. In an N -confirmation transaction, a merchant releases goods only after

the transaction is confirmed in a block of depth N−1 in the blockchain (Bitcoin Wiki,

2015). The attacker sends its transaction to the eclipsed miners, who incorporate it

into their (obsolete) view of the blockchain. The attacker then shows this view of

blockchain to the eclipsed merchant, receives the goods, and sends both the merchant

and eclipsed miners the (non-obsolete) view of blockchain from the non-eclipsed min-

ers. The eclipsed miners’ blockchain is orphaned, and the attacker obtains goods

without paying. This is similar to an attack launched by a mining pool (mmitech,

2013), but our attacker eclipses miners instead of using his own mining power.

Other attacks exist, e.g., a transaction hiding attack on nodes running in SPV

mode (Biryukov et al., 2014a).

3.2 Bitcoin’s Peer-to-Peer Network

We now describe bitcoin’s peer-to-peer network, based on bitcoind version 0.9.3, the

most current release from 9/27/2014 to 2/16/2015, whose networking code was largely

unchanged since 2013. This client was originally written by Satoshi Nakamoto, and

has near universal market share for public-IP nodes (97% of public-IP nodes according

to Bitnode.io on 2/11/2015 (Bitnode, 2014)).

67

Peers in the bitcoin network are identified by their IP addresses. A node with

a public IP can initiate up to eight outgoing connections with other bitcoin nodes,

and accept up to 117 incoming connections.1 A node with a private IP only initiates

eight outgoing connections. Connections are over TCP. Nodes only propagate and

store public IPs; a node can determine if its peer has a public IP by comparing the IP

packet header with the bitcoin VERSION message. A node can also connect via Tor;

we do not study this, see (Biryukov and Pustogarov, 2014; Biryukov et al., 2014a)

instead. We now describe how nodes propagate and store network information, and

how they select outgoing connections.

3.2.1 Propagating network information

Network information propagates through the bitcoin network via DNS seeders and

ADDR messages.

DNS seeders. A DNS seeder is a server that responds to DNS queries from

bitcoin nodes with a (not cryptographically-authenticated) list of IP addresses for

bitcoin nodes. The seeder obtains these addresses by periodically crawling the bitcoin

network. The bitcoin network has six seeders which are queried in two cases only.

The first when a new node joins the network for the first time; it tries to connect to

the seeders to get a list of active IPs, and otherwise fails over to a hardcoded list of

about 600 IP addresses. The second is when an existing node restarts and reconnects

to new peers; here, the seeder is queried only if 11 seconds have elapsed since the node

began attempting to establish connections and the node has less than two outgoing

connections.

ADDR messages. ADDR messages, containing up to 1000 IP address and their times-

tamps, are used to obtain network information from peers. Nodes accept unsolicited

1This is a configurable. Our analysis only assumes that nodes have 8 outgoing connections, which
was confirmed by (Miller et al., 2015)’s measurements.

68

ADDR messages. An ADDR message is solicited only upon establishing a outgoing con-

nection with a peer; the peer responds with up to three ADDR message each containing

up to 1000 addresses randomly selected from its tables. Nodes push ADDR messages

to peers in two cases. Each day, a node sends its own IP address in a ADDR message

to each peer. Also, when a node receives an ADDR message with no more than 10

addresses, it forwards the ADDR message to two randomly-selected connected peers.

3.2.2 Storing network information

Public IPs are stored in a node’s tried and new tables. Tables are stored on disk

and persist when a node restarts.

The tried table. The tried table consists of 64 buckets, each of which can store

up to 64 unique addresses for peers to whom the node has successfully established an

incoming or outgoing connection. Along with each stored peer’s address, the node

keeps the timestamp for the most recent successful connection to this peer.

Each peer’s address is mapped to a bucket in tried by taking the hash of the

peer’s (a) IP address and (b) group, where the group defined is the /16 IPv4 prefix

containing the peer’s IP address.A bucket is selected as follows:

SK = random value chosen when node is born.

IP = the peer’s IP address and port number.

Group = the peer’s group

i = Hash(SK, IP) % 4

Bucket = Hash(SK, Group, i) % 64

return Bucket

Thus, every IP address maps to a single bucket in tried, and each group maps to up

to four buckets.

When a node successfully connects to a peer, the peer’s address is inserted into

the appropriate tried bucket. If the bucket is full (i.e., contains 64 addresses), then

69

bitcoin eviction is used: four addresses are randomly selected from the bucket, and the

oldest is (1) replaced by the new peer’s address in tried, and then (2) inserted into

the new table. If the peer’s address is already present in the bucket, the timestamp

associated with the peer’s address is updated. The timestamp is also updated when an

actively connected peer sends a VERSION, ADDR, INVENTORY, GETDATA or PING message

and more than 20 minutes elapsed since the last update.

The new table. The new table consists of 256 buckets, each of which can hold up 64

addresses for peers to whom the node has not yet initiated a successful connection.

A node populates the new table with information learned from the DNS seeders, or

from ADDR messages.

Every address a inserted in new belongs to (1) a group, defined in our description

of the tried table, and (2) a source group, the group the contains the IP address

of the connected peer or DNS seeder from which the node learned address a. The

bucket is selected as follows:

SK = random value chosen when node is born.

Group = /16 containing IP to be inserted.

Src_Group = /16 containing IP of peer sending IP.

i = Hash(SK, Src_Group, Group) % 32

Bucket = Hash(SK, Src_Group, i) % 256

return Bucket

Each (group, source group) pair hashes to a single new bucket, while each group selects

up to 32 buckets in new. Each bucket holds unique addresses. If a bucket is full, then

a function called isTerrible is run over all 64 addresses in the bucket; if any one

of the addresses is terrible, in that it is (a) more than 30 days old, or (b) has had

too many failed connection attempts, then the terrible address is evicted in favor of

the new address; otherwise, bitcoin eviction is used with the small change that the

evicted address is discarded.

70

3.2.3 Selecting peers

New outgoing connections are selected if a node restarts or if an outgoing connection

is dropped by the network. A bitcoin node never deliberately drops a connection,

except when a blacklisting condition is met (e.g., the peer sends ADDR messages that

are too large).

A node with ω ∈ [0, 7] outgoing connections selects the ω + 1th connection as

follows:

(1) Decide whether to select from tried or new, where

Pr[Select from tried] =

√
ρ(9− ω)

(ω + 1) +
√
ρ(9− ω)

(3.1)

and ρ is the ratio between the number of addresses stored in tried and the number

of addresses stored in new.

(2) Select a random address from the table, with a bias towards addresses with

fresher timestamps: (i) Choose a random non-empty bucket in the table. (ii) Choose

a random position in that bucket. (ii) If there is an address at that position, return

the address with probability

p(r, τ) = min(1, 1.2r

1+τ
) (3.2)

else, reject the address and return to (i). The acceptance probability p(r, τ) is a

function of r, the number of addresses that have been rejected so far, and τ , the

difference between the address’s timestamp and the current time in measured in ten

minute increments.2

(3) Connect to the address. If connection fails, go to (1).

2The algorithm also considers the number of failed connections to this address; we omit this
because it does not affect our analysis.

71

3.3 The Eclipse Attack

Our attack is for a victim with a public IP. Our attacker (1) populates the tried table

with addresses for its attack nodes, and (2) overwrites addresses in the new table with

“trash” IP addresses that are not part of the bitcoin network. The “trash” addresses

are unallocated (e.g., listed as “available” by (RIPE, 2015)) or as “reserved for future

use” by (IANA, 2015) (e.g., 252.0.0.0/8). We fill new with “trash” because, unlike

attacker addresses, “trash” is not a scarce resource. The attack continues until (3)

the victim node restarts and chooses new outgoing connections from the tried and

new tables in its persistant storage (Section 3.2.3). With high probability, the victim

establishes all eight outgoing connections to attacker addresses; all eight addresses

will be from tried, since the victim cannot connect to the “trash” in new. Finally,

the attacker (5) occupies the victim’s remaining 117 incoming connections. We now

detail each step of our attack.

3.3.1 Populating tried and new

The attacker exploits the following to fill tried and new:

1. Addresses from unsolicited incoming connections are stored in the tried table;

thus, the attacker can insert an address into the victim’s tried table simply by

connecting to the victim from that address. Moreover, the bitcoin eviction discipline

means that the attacker’s fresher addresses are likely to evict any older legitimate

addresses stored in the tried table (Section 3.2.2).

2. A node accepts unsolicited ADDR messages; these addresses are inserted directly

into the new table without testing their connectivity (Section 3.2.2). Thus, when our

attacker connects to the victim from an adversarial address, it can also send ADDR

messages with 1000 “trash” addresses. Eventually, the trash overwrites all legitimate

addresses in new. We use “trash” because we do not want to waste our IP address

72

resources on overwriting new.

3. Nodes only rarely solicit network information from peers and DNS seeders

(Section 3.2.1). Thus, while the attacker overwrites the victim’s tried and new

tables, the victim almost never counteracts the flood of adversarial information by

querying legitimate peers or seeders.

3.3.2 Restarting the victim

Our attack requires the victim to restart so it can connect to adversarial addresses.

There are several reasons why a bitcoin node could restart, including ISP outages,

power failures, and upgrades, failures or attacks on the host OS; indeed, (Biryukov

et al., 2014a) found that a node with a public IP has a 25% chance of going offline after

10 hours. Another predictable reason to restart is a software update; on 1/10/2014,

for example, bitnodes.io saw 942 nodes running Satoshi client version 0.9.3, and by

29/12/2014, that number had risen to 3018 nodes, corresponding to over 2000 restarts.

Since updating is often not optional, especially when it corresponds to critical security

issues; 2013 saw three such bitcoin upgrades, and the heartbleed bug (OpenSSL,

2014) caused one in 2014. Also, since the community needs to be notified about an

upgrade in advance, the attacker could watch for notifications and then commence its

attack (btcwiki, 2014a). Restarts can also be deliberately elicited via DDoS (King,

2014; Vasek et al., 2014), memory exhaustion (Biryukov et al., 2014a), or packets-

of-death (which have been found for bitcoind (Andresen, 2014a; EvilKnievel, 2015)).

The bottom line is that the security of the peer-to-peer network should not rely on

100% node uptime.

3.3.3 Selecting outgoing connections

Our attack succeeds if, upon restart, the victim makes all its outgoing connections to

attacker addresses. To do this, we exploit the bias towards selecting addresses with

73

fresh timestamps from tried; by investing extra time into the attack, our attacker

ensures its addresses are fresh, while all legitimate addresses become increasingly

stale. We analyze this with few simple assumptions:

1. An f -fraction of the addresses in the victim’s tried table are controlled by the

adversary and the remaining 1− f -fraction are legitimate. (Section 3.4 analyzes how

many addresses the adversary therefore must control.)

2. All addresses in new are “trash”; all connections to addresses in new fail, and the

victim is forced to connect to addresses from tried (Section 3.2.3).

3. The attack proceeds in rounds, and repeats each round until the moment that the

victim restarts. During a single round, the attacker connects to the victim from each

of its adversarial IP addresses. A round takes time τa, so all adversarial addresses in

tried are younger than τa.

4. An f ′-fraction addresses in tried are actively connected to the victim before the

victim restarts. The timestamps on these legitimate addresses are updated every 20

minute or more (Section 3.2.2). We assume these timestamps are fresh (i.e., τ = 0)

when the victim restarts; this is the worst case for the attacker.

5. The time invested in the attack τ` is the time elapsed from the moment the

adversary starts the attack, until the victim restarts. If the victim did not obtain new

legitimate network information during of the attack, then, excluding the f ′-fraction

described above, the legitimate addresses in tried are older than τ`.

Success probability. If the adversary owns an f -fraction of the addresses

in tried, the probability that an adversarial address is accepted on the first try

is p(1, τa) · f where p(1, τa) is as in equation (3.2); here we use the fact that the

adversary’s addresses are no older than τa, the length of the round. If r− 1 addresses

were rejected during this attempt to select an address from tried, then the probability

74

that an adversarial address is accepted on the rth try is bounded by

p(r, τa) · f
r−1∏
i=1

g(i, f, f ′, τa, τ`)

where

g(i, f, f ′, τa, τ`) = (1− p(i, τa)) · f + (1− p(i, 0)) · f ′

+ (1− p(i, τ`)) · (1− f − f ′)

is the probability that an address was rejected on the ith try given that it was also

rejected on the i− 1th try. An adversarial address is thus accepted with probability

q(f, f ′, τa, τ`) =
∞∑
r=1

p(r, τa) · f
r−1∏
i=1

g(i, f, f ′, τa, τ`) (3.3)

and the victim is eclipsed if all eight outgoing connections are to adversarial addresses,

which happens with probability q(f, f ′, τa, τ`)
8. Figure 3·1 plots q(f, f ′, τa, τ`)

8 vs f

for τa = 27 minutes and different choices of τ`; we assume that f ′ = 8
64×64

, which cor-

responds to a full tried table containing eight addresses that are actively connected

before the victim restarts.

Random selection. Figure 3·1 also shows success probability if addresses were

just selected uniformly at random from each table. We do this by plotting f 8 vs f .

Without random selection, the adversary has a 90% success probability even if it only

fills f = 72% of tried, as long as it attacks for τ` = 48 hours with τa = 27 minute

rounds. With random selection, 90% success probability requires f = 98.7% of tried

to be attacker addresses.

3.3.4 Monopolizing the eclipsed victim

Figure 3·1 assumes that the victim has exactly eight outgoing connections ; all we

require in terms of incoming connections is that the victim has a few open slots to

75

Figure 3·1: Probability of eclipsing a node q(f, f ′, τa, τ`)
8 (equation

(3.3)) vs f the fraction of adversarial addresses in tried, for different
values of time invested in the attack τ`. Round length is τa = 27
minutes, and f ′ = 8

64×64
. The dotted line shows the probability of

eclipsing a node if random selection is used instead.

accept incoming TCP connections from the attacker.

While it is often assumed that the number of TCP connections a computer can

make is limited by the OS or the number of source ports, this applies only when OS-

provided TCP sockets are used; a dedicated attacker can open an arbitrary number

of TCP connections using a custom TCP stack. A custom TCP stack (see e.g.,

zmap (Durumeric et al., 2013)) requires minimal CPU and memory, and is typically

bottlenecked only by bandwidth, and the bandwidth cost of our attack is minimal:

Attack connections. To fill the tried table, our attacker repeatedly connects to

the victim from each of its addresses. Each connection consists of a TCP handshake,

bitcoin VERSION message, and then disconnection via TCP RST; this costs 371 bytes

upstream and 377 bytes downstream. Some attack connections also send one ADDR

message containing 1000 addresses; these ADDR messages cost 120087 bytes upstream

and 437 bytes downstream including TCP ACKs.

Monopolizing connections. If that attack succeeds, the victim has eight out-

going connections to the attack nodes, and the attacker must occupy the victim’s

remaining incoming connections. To prevent others from connecting to the victim,

76

these TCP connections could be maintained for 30 days, at which point the victim’s

address is terrible and forgotten by the network. While bitcoin supports block in-

ventory requests and the sending of blocks and transactions, this consumes significant

bandwidth; our attacker thus does not to respond to inventory requests. As such,

setting up each TCP connection costs 377 bytes upstream and 377 bytes downstream,

and is maintained by ping-pong packets and TCP ACKs consuming 164 bytes every

80 minutes.

We experimentally confirmed that a bitcoin node will accept all incoming connec-

tions from the same IP address. (We presume this is done to allow multiple nodes

behind a NAT to connect to the same node.) Maintaining the default 117 incoming

TCP connections costs 164×117
80×60

≈ 4 bytes per second, easily allowing one computer

to monopolize multiple victims at the same time. As an aside, this also allows for

connection starvation attacks (Dillon, 2013), where an attacker monopolizes all the

incoming connections in the peer-to-peer network, making it impossible for new nodes

to connect to new peers.

3.4 How Many Attack Addresses?

Section 3.3.3 showed that the success of our attack depends heavily on τ`, the time

invested in the attack, and f , the fraction of attacker addresses in the victim’s tried

table. We now use probabilistic analysis to determine how many addresses the at-

tacker must control for a given value of f ; it’s important to remember, however, that

even if f is small, our attacker can still succeed by increasing τ`. Recall from Sec-

tion 3.2.2 that bitcoin is careful to ensure that a node does not store too many IP

addresses from the same group (i.e., /16 IPv4 address block). We therefore consider

two attack variants:

Botnet attack (Section 3.4.1). The attacker holds several IP addresses, each

77

Figure 3·2: Botnet attack: the expected number of addresses stored in
tried for different scenarios vs the number of addresses (bots) t. Values
were computed from equations (3.4), (3.7) and (3.8), and confirmed by
Monte Carlo simulations (with 100 trials/data point).

in a distinct group. This models attacks by a botnet of hosts scattered in diverse

IP address blocks. Section 3.4.1 explains why many botnets have enough IP address

diversity for this attack.

Infrastructure attack (Section 3.4.2). The attacker controls several IP address

blocks, and can intercept bitcoin traffic sent to any IP address in the block, i.e., the

attacker holds multiple sets of addresses in the same group. This models a company or

nation-state that seeks to undermine bitcoin by attacking its network. Section 3.4.2

discusses organizations that can launch this attack.

We focus here on tried; Appendix B.2 considers how to send “trash”-filled ADDR

messages that overwrite new.

3.4.1 Botnet attack

The botnet attacker holds t addresses in distinct groups. We model each address as

hashing to a uniformly-random bucket in tried, so the number of addresses hashing

to each bucket is binomally distributed3 as B(t, 1
64

). How many of the 64×64 entries

in tried can the attacker occupy? We model various scenarios, and plot results in

Figure 3·2.

3B(n, p) is a binomial distribution counting successes in a sequence of n independent yes/no
trials, each yielding ‘yes’ with probability p.

78

1. Initially empty. In the best case for the attacker, all 64 buckets are initially

empty and the expected number of adversarial addresses stored in the tried table is

64E[min(64, B(t, 1
64

))] (3.4)

2. Bitcoin eviction. Now consider the worst case for the attacker, where each

bucket i is full of 64 legitimate addresses. These addresses, however, will be older

than all Ai distinct adversarial addresses that the adversary attempts to insert into

to bucket i. Since the bitcoin eviction discipline requires each newly inserted address

to select four random addresses stored in the bucket and to evict the oldest, if one of

the four selected addresses is a legitimate address (which will be older than all of the

adversary’s addresses), the legitimate address will be overwritten by the adversarial

addresses.

For a = 0....Ai, let Ya be the number of adversarial addresses actually stored in

bucket i, given that the adversary inserted a unique addresses into bucket i. Let

Xa = 1 if the ath inserted address successfully overwrites a legitimate address, and

Xa = 0 otherwise. Then,

E[Xa|Ya−1] = 1− (Ya−1

64
)4

and it follows that

E[Ya|Ya−1] = Ya−1 + 1− (Ya−1

64
)4 (3.5)

E[Y1] = 1 (3.6)

where (3.6) follows because the bucket is initially full of legitimate addresses. We now

have a recurrence relation for E[Ya], which we can solve numerically. The expected

number of adversarial addresses in all buckets is thus

64
t∑

a=1

E[Ya] Pr[B(t, 1
64

) = a] (3.7)

79

3. Random eviction. We again consider the attacker’s worst case, where each

bucket is full of legitimate addresses, but now we assume that each inserted address

evicts a randomly-selected address. (This is not what bitcoin does, but we analyze

it for comparison.) Applying Lemma B.1.1 (Appendix B.1) we find the expected

number of adversarial addresses in all buckets is

4096(1− (4095
4096

)t) (3.8)

4. Exploiting multiple rounds. Our eclipse attack proceeds in rounds ; in each

round the attacker repeatedly inserts each of his t addresses into the tried table.

While each address always maps to the same bucket in tried in each round, bitcoin

eviction maps each address to a different slot in that bucket in every round. Thus,

an adversarial address that is not stored into its tried bucket at the end of one

round, might still be successfully stored into that bucket in a future round. Thus far,

this section has only considered a single round. But, more addresses can be stored

in tried by repeating the attack for multiple rounds. After sufficient rounds, the

expected number of addresses is given by equation (3.4), i.e., the attack performs as

in the best-case for the attacker!

Who can launch a botnet attack?

The ‘initially empty’ line in Figure 3·2 indicates that a botnet exploiting multiple

rounds can completely fill tried with ≈ 6000 addresses. While such an attack can-

not easily be launched from a legitimate cloud service (which typically allocates < 20

addresses per tenant (AWS, 2014; azure, 2014; Rackspace, 2014)), botnets of this

size and larger than this have attacked bitcoin (Vasek et al., 2014; Johnson et al.,

2014; King, 2014); the Miner botnet, for example, had 29,000 hosts with public

IPs (Plohmann and Gerhards-Padilla, 2012). While some botnet infestations concen-

80

Figure 3·3: Infrastructure attack. E[Γ] (expected number of non-
empty buckets) in tried vs s (number of groups).

trate in a few IP address ranges (Stock et al., 2009), it is important to remember

that our botnet attack requires no more than ≈ 6000 groups; many botnets are or-

ders of magnitude larger (Rossow et al., 2013). For example, the Walowdac botnet

was mostly in ranges 58.x-100.x and 188.x-233.x (Stock et al., 2009), which creates

42 × 28 + 55 × 28 = 24832 groups. Randomly sampling from the list of hosts in the

Carna botnet (CarnaBotnet, 2012) 5000 times, we find that 1250 bots gives on average

402 distinct groups, enough to attack our live bitcoin nodes (Section 3.6). Further-

more, we soon show in Figure 3·3 that an infrastructure attack with s > 200 groups

easily fills every bucket in tried; thus, with s > 400 groups, the attack performs as

in Figure 3·2, even if many bots are in the same group. .

3.4.2 Infrastructure attack

The attacker holds addresses in s distinct groups. We determine how much of tried

can be filled by an attacker controlling s groups s containing t IP addresses/group.

How many groups? We model the process of populating tried (per Section 3.2.2)

by supposing that four independent hash functions map each of the s groups to one

of 64 buckets in tried. Thus, if Γ ∈ [0, 64] counts the number of non-empty buckets

in tried, we use Lemma B.1.1 to find that

E[Γ] = 64
(
1− (63

64
)4s
)
≈ (1− e−

4s
64) (3.9)

81

Figure 3·4: Infrastructure attack with s = 32 groups: the expected
number of addresses stored in tried for different scenarios vs the num-
ber of addresses per group t. Results obtained by taking the product
of equation (3.9) and equations from the full version (Heilman et al.,
2015b), and confirmed by Monte Carlo simulations (100 trials/data
point). The horizontal line assumes all E[Γ] buckets per (3.9) are full.

Figure 3·3 plots E[Γ]; we expect to fill 55.5 of 64 buckets with s = 32, and all but

one bucket with s > 67 groups.

How full is the tried table? The full version (Heilman et al., 2015b) deter-

mines the expected number of addresses stored per bucket for the first three scenarios

described in Section 3.4.1; the expected fraction E[f] of tried filled by adversarial

addresses is plotted in in Figure 3·4. The horizontal line in Figure 3·4 show what

happens if each of E[Γ] buckets per equation (3.9) is full of attack addresses.

The adversary’s task is easiest when all buckets are initially empty, or when a

sufficient number of rounds are used; a single /24 address block of 256 addresses suf-

fices to fill each bucket when s = 32 grouips is used. Moreover, as in Section 3.4.1,

an attack that exploits multiple rounds performs as in the ‘initially empty’ scenario.

Concretely, with 32 groups of 256 addresses each (8192 addresses in total) an adver-

sary can expect to fill about f = 86% of the tried table after a sufficient number of

rounds. The attacker is almost as effective in the bitcoin-eviction scenario with only

one round; meanwhile, one round is much less effective with random eviction.

82

Figure 3·5: Histogram of the number of organizations with s groups.
For the /24 data, we require t = 256 addresses per group; for /23, we
require t = 512.

Who can launch an infrastructure attack?

Which organizations have enough IP address resources to launch infrastructure at-

tacks? We compiled data mapping IPv4 address allocation to organizations, using

CAIDA’s AS to organization dataset (CAIDA, 2014a) and AS to prefix dataset (CAIDA,

2014b) from July 2014, supplementing our data with information from the RIPE

database (RIPE, 2014). We determined how many groups (i.e., addresses in the

same /16 IPv4 address block) and addresses per group are allocated to each organi-

zation; see Figure 3·5. There are 448 organizations with over s = 32 groups and at

least t = 256 addresses per group; if these organizations invest τ` = 5 hours into an

attack with a τa = 27-minute round, then they eclipse the victim with probability

greater than 80%.

National ISPs in various countries hold a sufficient number of groups (s ≥ 32) for

this purpose; for example, in Sudan (Sudanese Mobile), Columbia (ETB), UAE (Eti-

salat), Guatemala (Telgua), Tunisia (Tunisia Telecom), Saudi Arabia (Saudi Telecom

Company) and Dominica (Cable and Wireless). The United States Department of the

Interior has enough groups (s = 35), as does the S. Korean Ministry of Information

and Communication (s = 41), as do hundreds of others.

83

3.4.3 Summary: infrastructure or botnet?

Figures 3·4, 3·2 show that the botnet attack is far superior to the infrastructure attack.

Filling f = 98% of the victim’s tried table requires a 4600 node botnet (attacking

for a sufficient number of rounds, per equation (3.4)). By contrast, an infrastructure

attacker needs 16, 000 addresses, consisting of s = 63 groups (equation (3.9)) with

t = 256 addresses per group. However, per Section 3.3.3, if our attacker increases the

time invested in the attack τ`, it can be far less aggressive about filling tried. For

example, per Figure 3·1, attacking for τ` = 24 hours with τa = 27 minute rounds, our

success probability exceeds 85% with just f = 72%; in the worst case for the attacker,

this requires only 3000 bots, or an infrastructure attack of s = 20 groups and t = 256

addresses per group (5120 addresses). The same attack (f = 72%, τa = 27 minutes)

running for just 4 hours still has > 55% success probability. To put this in context,

if 3000 bots joined today’s network (with < 7200 public-IP nodes (Bitnode, 2014))

and honestly followed the peer-to-peer protocol, they could eclipse a victim with

probability ≈ (3000
7200+3000

)8 = 0.006%.

3.5 Measuring Live Bitcoin Nodes

We briefly consider how parameters affecting the success of our eclipse attacks look on

“typical” bitcoin nodes. We thus instrumented five bitcoin nodes with public IPs that

we ran (continuously, without restarting) for 43 days from 12/23/2014 to 2/4/2015.

We also analyze several peers files that others donated to us on 2/15/2015. Note

that there is evidence of wide variations in metrics for nodes of different ages and

in different regions (Karame et al., 2012); as such, our analysis (Section 3.3-3.4) and

some of our experiments (Section 3.6) focus on the attacker’s worst-case scenario,

where tables are initially full of fresh addresses.

Number of connections. Our attack requires the victim to have available slots

84

oldest # Age of addresses (in days)
addr addr % live < 1 1− 5 5− 10 10− 30 > 30
38 d* 243 28% 36 71 28 79 29
41 d* 162 28% 23 29 27 44 39
42 d* 244 19% 25 45 29 95 50
42 d* 195 23% 23 40 23 64 45
43 d* 219 20% 66 57 23 50 23
103 d 4096 8% 722 645 236 819 1674
127 d 4096 8% 90 290 328 897 2491
271 d 4096 8% 750 693 356 809 1488
240 d 4096 6% 419 445 32 79 3121
373 d 4096 5% 9 14 1 216 3856

Table 3.1: Age and churn of addresses in tried for our nodes (marked
with *) and donated peers files.

for incoming connections. Figure 3·6 shows the number of connections over time for

one of our bitcoin nodes, broken out by connections to public or private IPs. There are

plenty of available slots; while our node can accommodate 125 connections, we never

see more than 60 at a time. Similar measurements in (Biryukov and Pustogarov,

2014) indicate that 80% of bitcoin peers allow at least 40 incoming connections. Our

node saw, on average, 9.9 connections to public IPs over the course of its lifetime;

of these, 8 correspond to outgoing connections, which means we rarely see incoming

connections from public IPs. Results for our other nodes are similar.

Connection length. Because public bitcoin nodes rarely drop outgoing connec-

tions to their peers (except upon restart, network failure, or due to blacklisting, see

Section 3.2.3), many connections are fairly long lived. When we sampled our nodes

on 2/4/2015, across all of our nodes, 17% of connections had lasted more than 15

days, and of these, 65.6% were to public IPs. On the other hand, many bitcoin nodes

restart frequently; we saw that 43% of connections lasted less than two days and of

these, 97% were to nodes with private IPs. This may explain why we see so few

incoming connections from public IPs; many public-IP nodes stick to their mature

long-term peers, rather than our young-ish nodes.

85

Figure 3·6: (Top) Incoming + outgoing connections vs time for one
of our nodes. (Bottom) Number of addresses in tried vs time for all
our nodes.

Size of tried and new tables. In our worst case attack, we supposed that the

tried and new tables were completely full of fresh addresses. While our Bitcoin

nodes’ new tables filled up quite quickly (99% within 48 hours), Table 3.1 reveals

that their tried tables were far from full of fresh addresses. Even after 43 days,

the tried tables for our nodes were no more than 300/4096 ≈ 8% full. This likely

follows because our nodes had very few incoming connections from public IPs; thus,

most addresses in tried result from successful outgoing connections to public IPs

(infrequently) drawn from new.

Freshness of tried. Even those few addresses in tried are not especially fresh.

Table 3.1 shows the age distribution of the addresses in tried for our nodes and from

donated peers files. For our nodes, 17% of addresses were more than 30 days old, and

48% were more than 10 days old; these addresses will therefore be less preferred than

the adversarial ones inserted during an eclipse attack, even if the adversary does not

invest much time τ` in attacking the victim.

Churn. Table 3.1 also shows that a small fraction of addresses in tried were online

86

Attacker resources Experiment Predicted
grps addrs total τ` τa, pre-attack post-attack Attack addrs Attack addrs

Attack s /grp t addrs rnd new tried new tried new tried Wins new tried Wins

Infra (WC) 32 256 8192 10 h 43 m 16384 4090 16384 4096 15871 3404 98% 16064 3501 87%
Infra (TP) 20 256 5120 1 hr 27 m 16380 278 16383 3087 14974 2947 82% 15040 2868 77%
Infra (TP) 20 256 5120 2 hr 27 m 16380 278 16383 3088 14920 2966 78% 15040 2868 87%
Infra (TP) 20 256 5120 4 hr 27 m 16380 278 16384 3088 14819 2972 86% 15040 2868 91%
Infra (L) 20 256 5120 1 hr 27 m 16381 346 16384 3116 14341 2942 84% 15040 2868 75%

Bots (WC) 2300 2 4600 5 h 26 m 16080 4093 16384 4096 16383 4015 100% 16384 4048 96%
Bots (TP) 200 1 200 1 hr 74 s 16380 278 16384 448 16375 200 60% 16384 200 11%
Bots (TP) 400 1 400 1 hr 90 s 16380 278 16384 648 16384 400 88% 16384 400 34%
Bots (TP) 400 1 400 4 hr 90 s 16380 278 16384 650 16383 400 84% 16384 400 61%
Bots (TP) 600 1 600 1 hr 209 s 16380 278 16384 848 16384 600 96% 16384 600 47%
Bots (L) 400 1 400 1 hr 90 s 16380 298 16384 698 16384 400 84% 16384 400 28%

Table 3.2: Summary of our experiments.
WC=Worstcase, TP=Transplant, L=Live

when we tried connecting to them on 2/17/2015.4 This suggests further vulnerability

to eclipse attacks, because if most legitimate addresses in tried are offline when a

victim resets, the victim is likely to connect to an adversarial address.

3.6 Experiments

We now validate our analysis with experiments.

Methodology. In each of our experiments, the victim (bitcoind) node is on a

virtual machine on the attacking machine; we also instrument the victim’s code. The

victim node runs on the public bitcoin network (aka, mainnet). The attacking ma-

chine can read all the victim’s packets to/from the public bitcoin network, and can

therefore forge TCP connections from arbitrary IP addresses. To launch the attack,

the attacking machine forges TCP connections from each of its attacker addresses,

making an incoming connection to the victim, sending a VERSION message and some-

times also an ADDR message (per Appendix B.2) and then disconnecting; the attack

connections, which are launched at regular intervals, rarely occupy all of the victim’s

available slots for incoming connections. To avoid harming the public bitcoin network,

(1) we use “reserved for future use” (IANA, 2015) IPs in 240.0.0.0/8-249.0.0.0/8 as

4For consistency with the rest of this section, we tested our nodes tables from 2/4/2015. We also
repeated this test for tables taken from our nodes on 2/17/2015, and the results did not deviate
more than 6% from those of Table 3.1.

87

attack addresses, and 252.0.0.0/8 as “trash” sent in ADDR messages, and (2) we drop

any ADDR messages the (polluted) victim attempts to send to the public network.

At the end of the attack, we repeatedly restart the victim and see what outgo-

ing connections it makes, dropping connections to the “trash” addresses and forging

connections for the attacker addresses. If all 8 outgoing connections are to attacker

addresses, the attack succeeds, and otherwise it fails. Each experiment restarts the

victim 50 times, and reports the fraction of successes. At each restart, we revert the

victim’s tables to their state at the end of the attack, and rewind the victim’s sys-

tem time to the moment the attack ended (to avoid dating timestamps in tried and

new). We restart the victim 50 times to measure the success rate of our (probabilistic)

attack; in a real attack, the victim would only restart once.

Initial conditions. We try various initial conditions:

1. Worst case. In the attacker’s worst-case scenario, the victim initially has tried

and new tables that are completely full of legitimate addresses with fresh timestamps.

To set up the initial condition, we run our attack for no longer than one hour on a

freshly-born victim node, filling tried and new with IP addresses from 251.0.0.0/8,

253.0.0.0/8 and 254.0.0.0/8, which we designate as “legitimate addresses”; these ad-

dresses are no older than one hour when the attack starts. We then restart the victim

and commence attacking it.

2. Transplant case. In our transplant experiments, we copied the tried and

new tables from one of our five live bitcoin nodes on 8/2/2015, installed them in a

fresh victim with a different public IP address, restarted the victim, waited for it to

establish eight outgoing connections, and then commenced attacking. This allowed

us to try various attacks with a consistent initial condition.

3. Live case. Finally, on 2/17/2015 and 2/18/2015 we attacked our live bitcoin

nodes while they were connected to the public bitcoin network; at this point our

88

nodes had been online for 52 or 53 days.

Results (Table 3.2). Results are in Table 3.2. The first five columns summarize

attacker resources (the number of groups s, addresses per group t, time invested in

the attack τ`, and length of a round τa per Sections 3.3-3.4). The next two columns

present the initial condition: the number of addresses in tried and new prior to the

attack. The following four columns give the size of tried and new, and the number of

attacker addresses they store, at the end of the attack (when the victim first restarts).

The wins columns counts the fraction of times our attack succeeds after restarting

the victim 50 times.

The final three columns give predictions from Sections 3.3.3, 3.4. The attack addrs

columns give the expected number of addresses in new (Appendix B.2) and tried.

For tried, we assume that the attacker runs his attack for enough rounds so that the

expected number of addresses in tried is governed by equation (3.4) for the botnet,

and the ‘initially empty’ curve of Figure 3·4 for the infrastructure attack. The final

column predicts success per Section 3.3.3 using experimental values of τa, τ`, f , f ′.

Observations. Our results indicate the following:

1. Success in worst case. Our experiments confirm that an infrastructure attack

with 32 groups of size /24 (8192 attack addresses total) succeeds in the worst case

with very high probability. We also confirm that botnets are superior to infrastructure

attacks; 4600 bots had 100% success even with a worst-case initial condition.

2. Accuracy of predictions. Almost all of our attacks had an experimental

success rate that was higher than the predicted success rate. To explain this, recall

that our predictions from Section 3.3.3 assume that legitimate addresses are exactly

τ` old (where τ` is the time invested in the attack); in practice, legitimate addresses

are likely to be even older, especially when we work with tried tables of real nodes

(Table 3.1). Thus, Section 3.3.3’s predictions are a lower bound on the success rate.

89

Our experimental botnet attacks were dramatically more successful than their

predictions (e.g., 88% actual vs. 34% predicted), most likely because the addresses

initially in tried were already very stale prior to the attack (Table 3.1). Our in-

frastructure attacks were also more successful then their predictions, but here the

difference was much less dramatic. To explain this, we look to the new table. While

our success-rate predictions assume that new is completely overwritten, our infras-

tructure attacks failed to completely overwrite the new table;5 thus, we have some

extra failures because the victim made outgoing connections to addresses in new.

3. Success in a ‘typical’ case. Our attacks are successful with even fewer

addresses when we test them on our live nodes, or on tables taken from those live

nodes. Most strikingly, a small botnet of 400 bots succeeds with very high probability;

while this botnet completely overwrites new, it fills only 400/650 = 62% of tried,

and still manages to win with more than 80% probability.

3.7 Countermeasures

We have shown how an attacker with enough IP addresses and time can eclipse any

target victim, regardless of the state of the victim’s tried and new tables. We now

present countermeasures that make eclipse attacks more difficult. Our countermea-

sures are inspired by botnet architectures (Section 3.8), and designed to be faithful

to bitcoin’s network architecture.

The following five countermeasures ensure that: (1) If the victim has h legitimate

addresses in tried before the attack, and a p-fraction of them accept incoming con-

nections during the attack when the victim restarts, then even an attacker with an

unbounded number of addresses cannot eclipse the victim with probability exceed-

ing equation (3.10). (2) If the victim’s oldest outgoing connection is to a legitimate

5The new table holds 16384 addresses and from 6th last column of Table 3.2 we see the new is
not full for our infrastructure attacks. Indeed, we predict this in Appendix B.2.

90

peer before the attack, then the eclipse attack fails if that peer accepts incoming

connections when the victim restarts.

1. Deterministic random eviction. Replace bitcoin eviction as follows: just

as each address deterministically hashes to a single bucket in tried and new (Sec-

tion 3.2.2), an address also deterministically hashes to a single slot in that bucket.

This way, an attacker cannot increase the number of addresses stored by repeat-

edly inserting the same address in multiple rounds (Section 3.4.1). Instead, addresses

stored in tried are given by the ‘random eviction’ curves in Figures 3·2, 3·4, reducing

the attack addresses stored in tried.

2. Random selection. Our attacks also exploit the heavy bias towards forming

outgoing connections to addresses with fresh timestamps, so that an attacker that

owns only a small fraction f = 30% of the victim’s tried table can increase its

success probability (to say 50%) by increasing τ`, the time it invests in the attack

(Section 3.3.3). We can eliminate this advantage for the attacker if addresses are

selected at random from tried and new; this way, a success rate of 50% always

requires the adversary to fill 8
√

0.5 = 91.7% of tried, which requires 40 groups in

an infrastructure attack, or about 3680 peers in a botnet attack. Combining this

with deterministic random eviction, the figure jumps to 10194 bots for 50% success

probability.

These countermeasures harden the network, but still allow an attacker with enough

addresses to overwrite all of tried. The next countermeasure remedies this:

3. Test before evict. Before storing an address in its (deterministically-chosen)

slot in a bucket in tried, first check if there is an older address stored in that slot.

If so, briefly attempt to connect to the older address, and if connection is successful,

then the older address is not evicted from the tried table; the new address is stored

in tried only if the connection fails.

91

We analyze these three countermeasures. Suppose that there are h legitimate

addresses in the tried table prior to the attack, and model network churn by sup-

posing that each of the h legitimate addresses in tried is live (i.e., accepts incoming

connections) independently with probability p. With test-before-evict, the adversary

cannot evict p×h legitimate addresses (in expectation) from tried, regardless of the

number of distinct addresses it controls. Thus, even if the rest of tried is full of

adversarial addresses, the probability of eclipsing the victim is bounded to about

Pr[eclipse] = f 8 <
(
1− p×h

64×64

)8
(3.10)

This is in stark contrast to today’s protocol, where attackers with enough addresses

have unbounded success probability even if tried is full of legitimate addresses.

We perform Monte-Carlo simulations assuming churn p, h legitimate addresses

initially stored in tried, and a botnet inserting a addresses into tried via unsolicited

incoming connections. The area below each curve in Figure 3·7 is the number of bots a

that can eclipse a victim with probability at least 50%, given that there are initially h

legitimate addresses in tried. With test-before-evict, the curves plateau horizontally

at h = 4096(1− 8
√

0.5)/p; as long as h is greater than this quantity, even a botnet with

an infinite number of addresses has success probability bounded by 50%. Importantly,

the plateau is absent without test-before-evict; a botnet with enough addresses can

eclipse a victim regardless of the number of legitimate addresses h initially in tried.

There is one problem, however. Our bitcoin nodes saw high churn rates (Ta-

ble 3.1). With a p = 28% churn rate, for example, bounding the adversary’s suc-

cess probability to 10% requires about h = 3700 addresses in tried; our nodes had

h < 400. Our next countermeasure thus adds more legitimate addresses to tried:

4. Feeler Connections. Add an outgoing connection that establish short-lived

test connections to randomly-selected addresses in new. If connection succeeds, the

92

Figure 3·7: The area below each curve corresponds to a number of
bots a that can eclipse a victim with probability at least 50%, given
that the victim initially has h legitimate addresses in tried. We show
one curve per churn rate p. (Top) With test before evict. (Bottom)
Without.

address is evicted from new and inserted into tried; otherwise, the address is evicted

from new.

Feeler connections clean trash out of new while increasing the number of fresh

address in tried that are likely to be online when a node restarts. Our fifth counter-

measure is orthogonal to those above:

5. Anchor connections. Inspired by Tor entry guard rotation rates (Dingledine

et al., 2014), we add two connections that persist between restarts. Thus, we add

an anchor table, recording addresses of current outgoing connections and the time of

first connection to each address. Upon restart, the node dedicates two extra outgoing

connections to the oldest anchor addresses that accept incoming connections. Now,

in addition to defeating our other countermeasures, a successful attacker must also

disrupt anchor connections; eclipse attacks fail if the victim connects to an anchor

address not controlled by the attacker.

Apart from these five countermeasures, a few other ideas can raise the bar for

eclipse attacks:

93

6. More buckets. Among the most obvious countermeasure is to increase the size

of the tried and new tables. Suppose we doubled the number of buckets in the tried

table. If we consider the infrastructure attack, the buckets filled by s groups jumps

from (1 − e− 4s
64) (per equation (3.9) to (1 − e− 4s

128). Thus, an infrastructure attacker

needs double the number of groups in order to expect to fill the same fraction of

tried. Similarly, a botnet needs to double the number of bots. Importantly, however,

this countermeasure is helpful only when tried already contains many legitimate

addresses, so that attacker owns a smaller fraction of the addresses in tried. However,

if tried is mostly empty (or contains mostly stale addresses for nodes that are no

longer online), the attacker will still own a large fraction of the addresses in tried,

even though the number of tried buckets has increased. Thus, this countermeasure

should also be accompanied by another countermeasure (e.g., feeler connections) that

increases the number of legitimate addresses stored in tried.

7. More outgoing connections. Figure 3·6 indicates our test bitcoin nodes had

at least 65 connections slots available, and (Biryukov and Pustogarov, 2014) indicates

that 80% of bitcoin peers allow at least 40 incoming connections. Thus, we can require

nodes to make a few additional outgoing connections without risking that the network

will run out of connection capacity. Indeed, recent measurements (Miller et al., 2015)

indicate that certain nodes (e.g., mining-pool gateways) do this already. For example,

using twelve outgoing connections instead of eight (in addition to the feeler connection

and two anchor connections), decreases the attack’s success probability from f 8 to f 12;

to achieve 50% success probability the infrastructure attacker now needs 46 groups,

and the botnet needs 11796 bots.

8. Ban unsolicited ADDR messages. A node could choose not to accept large

unsolicited ADDR messages (with > 10 addresses) from incoming peers, and only solicit

ADDR messages from outgoing connections when its new table is too empty. This

94

prevents adversarial incoming connections from flooding a victim’s new table with

trash addresses. We argue that this change is not harmful, since even in the current

network, there is no shortage of address in the new table (Section 3.5). To make this

more concrete, note that a node request ADDR messages upon establishing an outgoing

connection. The peer responds with n randomly selected addresses from its tried

and new tables, where n is a random number between x and 2500 and x is 23% of

the addresses the peer has stored. If each peer sends, say, about n = 1700 addresses,

then new is already 8n/16384 = 83% full the moment that the bitcoin node finishing

establishing outgoing connections.

9. Diversify incoming connections. Today, a bitcoin node can have all of

its incoming connections come from the same IP address, making it far too easy for

a single computer to monopolize a victim’s incoming connections during an eclipse

attack or connection-starvation attack (Dillon, 2013). We suggest a node accept only

a limited number of connections from the same IP address.

10. Anomaly detection. Our attack has several specific “signatures” that make

it detectable including: (1) a flurry of short-lived incoming TCP connections from

diverse IP addresses, that send (2) large ADDR messages (3) containing “trash” IP

addresses. An attacker that suddenly connects a large number of nodes to the bitcoin

network could also be detected, as could one that uses eclipsing per Section 3.1.1 to

dramatically decrease the network’s mining power. Thus, monitoring and anomaly

detection systems that look for this behavior are also be useful; at the very least,

they would force an eclipse attacker to attack at low rate, or to waste resources on

overwriting new (instead of using “trash” IP addresses).

Status of our countermeasures. In Table 1.1 we provide a timeline of current

status of our countermeasures in bitcoind. We disclosed our results to the bitcoin core

developers on 02/2015. They deployed Countermeasures 1, 2, and 6 in the bitcoind

95

v0.10.1 release, which now uses deterministic random eviction, random selection, and

scales up the number of buckets in tried and new by a factor of four. To illustrate

the efficacy of this, consider the worst-case scenario for the attacker where tried is

completely full of legitimate addresses. We use Lemma B.1.1 to estimate the success

rate of a botnet with t IP addresses as

Pr[Eclipse] ≈
(
1− (16383

16384
)t
)8

(3.11)

Plotting (3.11) in Figure 3·8, we see that this botnet requires 163K addresses for a

50% success rate, and 284K address for a 90% success rate. This is good news, but

we caution that ensuring that tried is full of legitimate address is still a challenge

(Section 3.5), especially since there may be fewer than 16384 public-IP nodes in the

bitcoin network at a given time. Countermeasures 3 and 4 are designed to deal with

this, and so we have also developed two patches for each of these two countermea-

sures; our patch for countermeasure 4 was adopted and deployed in bitcoind v0.13.1,

our patch for countermeasure 3 was merged and deployed in bitcoind v0.17.0. Coun-

termeasure 5 was implemented and merged into bitcoind v0.21.0. Only 2 of our 10

proposed countermeasures remain undeployed.

While countermeasures 7 and 9 were also now deployed in bitcoind, it is un-

clear if our research motivated these changes. The pull-request which implemented

countermeasure 7 lists its purpose as defend against the attacks this other research

paper (Delgado-Segura et al., 2019). Countermeasure 9 was adopted as a general DoS

protection mechanism and does not discuss eclipse attacks.

3.8 Related Work

The bitcoin peer-to-peer (p2p) network. Recent work considers how bitcoin’s

network can delay or prevent block propagation (Decker and Wattenhofer, 2013) or

96

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

0

0.2

0.4

0.6

0.8

1

Number of Addresses Inserted

Pr
[E

cl
ip

se
]

Figure 3·8: Probability of eclipsing a node vs the number of addresses
(bots) t for bitcoind v0.10.1 (with Countermeasures 1,2 and 6) when
tried is initially full of legitimate addresses per equation (3.11).

be used to deanonymize bitcoin users (Koshy et al., 2014; Biryukov et al., 2014a;

Biryukov and Pustogarov, 2014). These works discuss aspects of bitcoin’s networking

protocol, with (Biryukov et al., 2014a) providing an excellent description of ADDR

message propagation; we focus instead on the structure of the tried and new tables,

timestamps and their impact on address selection (Section 3.2). (Biryukov and Pus-

togarov, 2014) shows that nodes connecting over Tor can be eclipsed by a Tor exit

node that manipulates both bitcoin and Tor. Other work has mapped bitcoin peers to

autonomous systems (Feld et al., 2014), geolocated peers and measured churn (Donet

et al., 2014), and used side channels to learn the bitcoin network topology (Biryukov

et al., 2014a; Miller et al., 2015).

p2p and botnet architectures. There has been extensive research on eclipse

attacks (Castro et al., 2002; Sit and Morris, 2002; Singh et al., 2006) in structured

p2p networks built upon distributed hash tables (DHTs); see (Urdaneta et al., 2011)

for a survey. Many proposals defend against eclipse attacks by adding more struc-

ture; (Singh et al., 2006) constrains peer degree, while others use constraints based

on distance metrics like latency (Hildrum and Kubiatowicz, 2003) or DHT identi-

fiers (Awerbuch and Scheideler, 2006). Bitcoin, by contrast, uses an unstructured

network. While we have focused on exploiting specific quirks in bitcoin’s existing

network, other works e.g., (Bortnikov et al., 2009; Bakker and Van Steen, 2008;

Anceaume et al., 2013; Jesi et al., 2010) design new unstructured networks that are

97

robust to Byzantine attacks. (Jesi et al., 2010) blacklists misbehaving peers. Pup-

petcast’s (Bakker and Van Steen, 2008) centralized solution is based on public-key

infrastructure (Bakker and Van Steen, 2008), which is not appropriate for bitcoin.

Brahms (Bortnikov et al., 2009) is fully decentralized, and instead constrains the

rate at which peers exchange network information—a useful idea that is a signifi-

cant departure from bitcoin’s current approach. Meanwhile, our goals are also more

modest than those in these works; rather than requiring that each node is equally

likely to be sampled by an honest node, we just want to limit eclipse attacks on

initially well-connected nodes. Thus, our countermeasures are inspired by botnet ar-

chitectures, which share this same goal. Rossow et al. (Rossow et al., 2013) finds

that many botnets, like bitcoin, use unstructured peer-to-peer networks and gossip

(i.e., ADDR messages), and describes how botnets defend against attacks that flood

local address tables with bogus information. The Sality botnet refuses to evict “high-

reputation” addresses; our anchor countermeasure is similar (Section 3.7). Storm uses

test-before-evict (Davis et al., 2008), which we have also recommended for bitcoin.

Zeus (Andriesse and Bos, 2014) disallows connections from multiple IP in the same

/20, and regularly clean tables by testing if peers are online; our feeler connections

are similar.

3.9 Conclusion

In this chapter we presented an eclipse attack on bitcoin’s peer-to-peer network that

undermines bitcoin’s core security guarantees, allowing attacks on the mining and

consensus system, including N -confirmation double spending and adversarial forks in

the blockchain. Our attack is for nodes with public IPs. We developed mathematical

models of our attack, and validated them with Monte Carlo simulations, measure-

ments and experiments. We demonstrated the practically of our attack by performing

98

it on our own live bitcoin nodes, finding that an attacker with 32 distinct /24 IP ad-

dress blocks, or a 4600-node botnet, can eclipse a victim with over 85% probability

in the attacker’s worst case. Moreover, even a 400-node botnet sufficed to attack

our own live bitcoin nodes. Finally, we proposed countermeasures that make eclipse

attacks more difficult while still preserving bitcoin’s openness and decentralization;

several of these were incorporated in a recent bitcoin software upgrade.

Chapter 4

Blindly Signed Contracts: Anonymous

Bitcoin Transactions

This chapter uses work from (Heilman et al., 2016b) which was written in collabora-

tion with Foteini Baldimtsi and Sharon Goldberg.

4.1 Introduction

When Bitcoin was first introduced in 2008, one of its key selling points was anonymity—

users should be able to spend bitcoins “without information linking the transaction

to anyone” (Nakamoto, 2008). In the last few years, however, researchers have shown

that Bitcoin offers much weaker anonymity than was initially expected (Meiklejohn

et al., 2013; Ron and Shamir, 2013), by demonstrating that they could follow the

movement of funds on the Bitcoin blockchain. The community has reacted to this

by proposing two key approaches to improve the anonymity of Bitcoin: (1) new

anonymity schemes that are compatible with Bitcoin (Barber et al., 2012; Bonneau

et al., 2014; Ruffing et al., 2014; Valenta and Rowan, 2015; Bissias et al., 2014;

Maxwell, 2013b; Ben Sasson et al., 2014; Saxena et al., 2014; Ziegeldorf et al., 2015),

and (2) new anonymous cryptocurrencies that are independent of Bitcoin (Miers et al.,

2013; Ben Sasson et al., 2014).

In this chapter we take the former approach by developing new anonymity schemes

that are compatible with Bitcoin via a soft fork. Our schemes offer a new trade-off

between practicality (i.e., transaction speed), security (i.e., resistance to double-

99

100

spending, denial of service (DoS) and Sybil attacks) and anonymity (i.e., unlinkable

transactions). As we will see below, previous work either provided schemes that are

efficient but achieve limited security or anonymity (Bonneau et al., 2014; Ruffing

et al., 2014; Valenta and Rowan, 2015; Ziegeldorf et al., 2015; Saxena et al., 2014)

or schemes that provide strong anonymity but are slow and require large numbers of

transactions (Maxwell, 2013b; Bissias et al., 2014; Barber et al., 2012).

Our first scheme is an “on-blockchain” scheme providing anonymity at reasonable

speed, i.e., requiring four transactions to be confirmed in three blocks (≈ 30 mins).

Our protocol runs in epochs, and provides set-anonymity within each epoch. That is,

while the blockchain publicly displays the set of payers and payees during an epoch,

no one can tell which payer paid which payee. To do this, we introduce an untrusted

(possibly malicious) intermediary I between all payers and payees.

Our second “off-blockchain” scheme uses a new payment technology called micro-

payment channel networks (Poon and Dryja, 2015; Decker and Wattenhofer, 2015).

Micropayment channel networks use Bitcoin as a platform to confirm transactions

within seconds, rather than minutes, and already provide a degree of anonymity—

most of the transactions are made outside of the blockchain, and thus not shown

to the public—but this anonymity is incomplete. Critically, because micropayment

channel networks chain payments through pre-established paths of connected users

(explained in Section 4.5.1), these users that participate in the path learn transaction

details, including the cryptographic identities of the sending and receiving party. We

provide anonymity against malicious users by using an honest-but-curious intermedi-

ary I (Section 4.5.3); set-anonymity within an epoch is preserved as long as I does

not abort or deny service to payers or payees.

Our technique, inspired by eCash (Chaum, 1983a), works as follows. For a user A

to anonymously pay another user B, she would first exchange a bitcoin for an anony-

101

mous voucher through intermediary I. B could then redeem the anonymous voucher

with I to receive a bitcoin back. Our scheme overcomes two main challenges: (i) En-

suring that the vouchers are unlinkable (i.e., hiding the link between the issuance and

the redemption of a voucher), and (ii) enforcing fair exchange between participants

(i.e., users can redeem issued vouchers even against an uncooperative or malicious

I, and no party can steal or double-spend vouchers and bitcoins). We use blind

signatures to achieve unlinkability, and the scripting functionality of Bitcoin transac-

tions to achieve fair exchange via transaction contracts (aka smart contracts (Szabo,

1997)).

We provide an overview of our scheme in Section 4.2 and define the required

properties. We discuss our use of transaction contracts in Section 4.3. Our scheme

for on-blockchain anonymous transactions is in Section 4.4. Our off-blockchain scheme

which uses micropayment channel networks is in Section 4.5. Finally, we analyze the

anonymity of our schemes in Sections 4.4.2 and 4.5.3 and their security in Section 4.6.

4.1.1 Related Work

We now review some of the most representative related works in the literature.

Anonymous Payment Schemes. Zerocash (Ben Sasson et al., 2014) and Zero-

coin (Miers et al., 2013) provide anonymous payments through the use of a novel type

of cryptographic proofs (ZK-SNARKs). Unlike our schemes, they are “stand-alone”

cryptocurrencies and can not be integrated with Bitcoin. Meanwhile, (Saxena et al.,

2014) is an anonymous payment scheme that can offer anonymity protections to Bit-

coin that provides excellent blockchain privacy and is very fast. However, the parties

entrusted to anonymize transactions in (Saxena et al., 2014) can still violate users’

anonymity, even if they are honest-but-curious.

Mixing Services. A bitcoin mixing service provides anonymity by transferring

payments from an input set of bitcoin addresses to an output set of bitcoin addresses,

102

such that is it hard to trace which input address paid which output address. Mix-

coin (Bonneau et al., 2014) uses a trusted third party to mix Bitcoin addresses, but

this third party can violate users privacy and steal users’ bitcoins; theft is detected

but not prevented. Blindcoin (Valenta and Rowan, 2015) improves on Mixcoin by

preserving users privacy against the mixing service, as with Mixcoin, theft is still not

prevented. CoinParty (Ziegeldorf et al., 2015) is secure if 2/3 of the mixing parties

are honest. CoinJoin (Maxwell, 2013a) and CoinShuffle (Ruffing et al., 2014) improve

on prior work by preventing theft. (Meiklejohn and Orlandi, 2015) shows a rigorous

proof of anonymity for a scheme “almost identical” to CoinShuffle.

CoinShuffle’s anonymity set is thought to be small due to coordination costs (Bis-

sias et al., 2014; Bonneau et al., 2015); meanwhile, our schemes are not limited to

small anonymity sets. Moreover, both CoinShuffle and CoinJoin run an entire mix

in a single bitcoin transaction. Thus, a single aborting user disrupts the mix for all

other users. Moreover, mix users cannot be forced to pay fees upfront, so that these

schemes are vulnerable to DoS attacks (Bonneau et al., 2015; Tschorsch and Scheuer-

mann, 2016) (where users join the mix and then abort) and Sybil attacks (where

an adversary deanonymizes a user by forcing it to mix with Sybil identities secretly

under her control) (Bissias et al., 2014).

XIM (Bissias et al., 2014) is a decentralized protocol which builds on the fair-

exchange mixer in (Barber et al., 2012) and prevents bitcoin theft and resists DoS

and Sybil attacks via fees. We also prevent bitcoin theft resist DoS and Sybil attacks

with fees (Section 4.4.1). One of XIM’s key innovations is a secure method for part-

nering mix users. Unfortunately, this partnering method adds several hours to the

protocol execution because users have to advertise themselves as mix partners on the

blockchain. Our schemes are faster because they do not require a partnering service.

CoinSwap (Maxwell, 2013b) is a fair-exchange mixer that allows two parties to

103

anonymously send Bitcoins through an intermediary. Like our schemes, the CoinSwap

intermediary is prevented from stealing funds by the use of fair exchange. Unlike our

schemes, however, CoinSwap does not provide anonymity against even a honest but

curious intermediary. Our on-blockchain scheme takes ≈ 30 mins, slower than Coin-

shuffle’s ≈ 10 mins. Off-blockchain however, our scheme is faster than CoinShuffle,

since it only runs in seconds (Poon and Dryja, 2015); however, our off-blockchain only

supports anonymity against a honest-but-curious intermediary1.

4.2 Overview and Security Properties

We introduce two schemes: (a) on-blockchain anonymous payments and coin mixing,

and (b) off-blockchain anonymous payments. By on-blockchain we denote the stan-

dard method of transferring bitcoins i.e., using the Bitcoin blockchain, as opposed

to the newly proposed “off-blockchain” methods that utilize micropayment channel

networks.

On-blockchain Anonymous Payments. We first consider the scenario where a

user A, the payer wants to anonymously send 1 bitcoin, btc, to another user B, the

payee2

If A were to perform a standard Bitcoin transaction, sending 1 bitcoin from an

address AddrA (owned by A) to a fresh ephemeral address AddrB (owned by B)

there would be a record of this transaction on Bitcoin’s blockchain linking AddrA to

AddrB. Even if A and B always create a fresh address for each payment they receive,

the links between addresses can be used to de-anonymize users if, at some point, they

“non-anonymously” spend a payment (e.g., buying goods from third party that learns

their mailing address) or receive a payment (e.g., a Bitcoin payment processor like

1Our off-blockchain scheme is fast because it uses micropayment channel networks. It’s unclear
how to retrofit prior work onto these networks, e.g., mapping Coinshuffle’s single atomic transaction
onto the arbitrary graph topology of a micropayment channel network.

2We assume that all transactions in our schemes are of 1 bitcoin value.

104

I A B

T
IM

EIs
su
a
n
ce

σ
sn

=)V (snσ ,

1 btc

1 btc

R
e
d
e
m
p
ti
o
n

,

V

Figure 4·1: Strawman eCash protocol.

BitPay) (Meiklejohn et al., 2013).

One idea A and B could use to protect their privacy is to employ an intermediary

party I that breaks the link between them. A would first send one bitcoin to I, and

then I would send a different bitcoin to B. Assuming that a sufficient number of users

make payments through I, it becomes more difficult for an outsider to link A to B by

looking at the blockchain (more on this below). The downside of this idea, however,

is that the intermediary I knows everything about all users’ payments, violating their

anonymity.

We could apply techniques used in online anonymous eCash schemes (Chaum,

1983a) to prevent I from learning who A wants to pay. The protocol is in Figure 4·1.

A pays one bitcoin to I, and obtains an anonymous voucher V = (sn, σ) in return.

(A chooses a random serial number sn, blinds it to sn and asks I to compute a

blind signature σ on sn. A unblinds these values to obtain V = (sn, σ). The blind

signature requires only a minor change to Bitcoin and can be implemented using a

soft fork (Section 4.3). Then A pays B using V , and finally B redeems V with I to

obtain one bitcoin.

How do we ensure that I does not know who A wants to pay? This follows from

the blindness of blind signatures—namely, that the signer (I) cannot read the blinded

serial number sn that it signs, and also cannot link a message/signature (sn, σ) pair

to its blinded value (sn, σ). Blindness therefore ensures that even a malicious I

105

h=H(sn)I A B

Toffer(BTC→V)

Tfulfill(BTC→V)

Tfulfill(V→BTC)

Toffer(V→BTC)

T
IM

E

2

34

5

6

7

{
Is
su
a
n
ce

σ

sn

h

=)V (snσ ,

1 btc

V
1 btc

R
e
d
e
m
p
ti
o
n

8

Figure 4·2: Our protocol: Circles (step numbers from Section 4.4),
black arrows (objects transfered via transaction), grey arrows (mes-
sages).

cannot link a voucher it redeems with a voucher it issues. Blind signatures are also

unforgeable, which ensures that a malicious user cannot issue a valid voucher to itself.

While this eCash-based approach solves our anonymity problem, it fails when I is

malicious since it could just refuse to issue a voucher to A after receiving her bitcoin.

To solve this, we use Bitcoin transaction contracts to achieve blockchain-enforced fair

exchange (as in prior work, fair-exchange denotes an atomic swap). The key idea is

that A transfers a bitcoin to I if and only if it receives a valid voucher V in return.

Figure 4·2 presents the high-level idea, and full description is in Section 4.4.

At a high-level, our scheme consists of four blockchain transactions that are con-

firmed in three blocks on the blockchain, as shown in Figures 4·2-4·3. The protocol

involves two blockchain-enforced fair exchanges. The first is V→btc, which exchanges

a voucher from B for a bitcoin from I, and is realized using the following two trans-

action contracts: (1) Toffer(V→btc), which is created by I, confirmed in the first block

on the blockchain and offers a fair exchange of one bitcoin (from I) for one voucher

(from B), and (2) Tfulfill(V→btc), which is created by B to fulfill the offer by I and is

confirmed in the third block on the blockchain. These transaction contracts ensure

that a malicious I cannot redeem B’s voucher without providing B with a bitcoin

106

 A
TIME

Blocki

Toffer(V→BTC)

Toffer(BTC→V)

Tfulfill(V→BTC)

Tfulfill(V→BTC)

Blocki+1 Blocki+2

I
I
 B

1 Epoch

.

Figure 4·3: Payment Epoch

in return (see Sections 4.3,4.4). The second fair exchange is btc→V and works in

a similar fashion, fairly exchanging a bitcoin from A for a voucher from I via two

transaction contracts: (1) Toffer(btc→V), created by A and confirmed on the second

block, and (2) Tfulfill(btc→V), created by I and confirmed in the third block. These two

fair exchanges are arranged to realize the anonymity protocol shown on the previous

page; the fair exchange btc→V stands in for the interaction between A and I, while

the fair exchange V→btc stands in for the interaction between B and I.

Mixing Service. A mixing service allows a user to move bitcoins from one address

it controls to a fresh ephemeral (thus anonymous) address, without directly linking

the two addresses on the blockchain. To use our on-blockchain anonymous payments

as a mixing service, users can just anonymously pay themselves from one address

to another fresh ephemeral address, thus playing the role of both A and B in the

protocol above.

Off-blockchain Payments. We also adapt our scheme to the recently proposed off-

blockchain micropayment channel networks. Our off-blockchain scheme uses the same

four transactions described above, but confirms them on a micropayment channel

network. See Section 4.5 for details.

4.2.1 Anonymity Properties

In the strawman eCash protocol of Figure 4·1, the anonymity level of users depends

on the total number of payments using I as users can obtain or redeem vouchers at ar-

107

bitrary times. However, our anonymous fair-exchange protocol of Figure 4·2 provides

anonymity only for payments starting and completing within an epoch (Figure 4·3)

i.e., a three block window.

Assumptions. We make the following assumptions for our schemes:

1. We assume that all users coordinate on epochs (by e.g., choosing the starting

block to have a block height that is divisible by three).

2. As with traditional eCash schemes, we assume that if A pays B, then A and

B trust each other. (A malicious A or B could easily conspire with I to reveal

the other party of the transaction; for instance, A could just tell I the serial

number the voucher she was issued, and then I can identity B when he redeems

that voucher.) This is a reasonable assumption in cases where A is purchasing

goods from B, since A is likely already trusting B with far more personal and

identifying information including e.g., her shipping address or IP address.

3. For our on-blockchain scheme only, payees B always receive payments in a fresh

ephemeral Bitcoin address AddrB controlled by them. Any communication

between AddrB and I is done anonymously (e.g., using Tor). The payee can

transfer the payment from AddrB to his long-lived Bitcoin address if the protocol

successfully completes.

4. Payers only make one anonymous payment per epoch. Similarly, payees only

accept one payment per epoch (i.e., we assume they do not create multiple

ephemeral addresses to receive multiple payments in one epoch). 3

Given these assumptions, the anonymity properties of our on-blockchain scheme are:

3We could allow users to perform multiple payments (by using multiple Bitcoin addresses that
belong to them) but this would reduce their anonymity and make our analysis more complex.

108

Set-Anonymity within an Epoch. Our assumptions imply that in every epoch

there are exactly n addresses making payments (playing the role of payer A) and

n receiving addresses (playing the role of B). All these Bitcoin addresses should

belong to different users. Anyone looking at the blockchain can see the participating

addresses of payers and payees, but should not be able to distinguish which payer paid

which payee within a specific epoch. Thus, for all successfully completed payments

within an epoch, the offered anonymity set has size n. In other words, the probability

of successfully linking any chosen payerA to a payee should not be more than 1/n plus

some negligible function. This means that an adversary (or a potentially malicious

I) can do no better than randomly guessing who paid whom during an epoch.

Resilient Anonymity.

All payments should be totally anonymous until the recipient, B, chooses to trans-

fer them to an address linkable to B. Even if a party aborts our protocol before it

completes in an epoch, the intended recipient of a payment should remain totally

anonymous.

Transparency of Anonymity Set. Users in our on-blockchain scheme learn the

membership of their anonymity set after a transaction completes, just like anyone else

who might be looking at the blockchain. This property is unusual for eCash schemes,

but quite common for bitcoin mixes. Thus, if a particular B feels his anonymity set

is too small in one epoch, he can increase the size of his anonymity set by remixing

in a subsequent epoch. For instance, if AddrB gets paid in an epoch with n = 4,

he can create a fresh ephemeral address Addr ′B and have AddrB pay Addr ′B in a

subsequent epoch. If the subsequent epoch has a n = 100, then B increases the size

of his anonymity set.

Our on-blockchain protocol achieves all the above anonymity properties, which also

generalize to our mixing service (Section 4.4.2). Our mixing service has the additional

109

advantage that A does not need to trust B since they are the same user. Our off-

blockchain scheme only offers set-anonymity against I when I is honest-but-curious,

rather than malicious (Section 4.5.3). Additionally, our off-blockchain scheme does

not achieve the anonymity-set transparency or the anonymity resilience property.

Remark: Intersection Attacks. Anyone observing the anonymity-set mem-

bership in each epoch can attempt intersection attacks that de-anonymize users

across epochs (e.g., frequency analysis). This follows because we are composing

set-anonymity across multiple epochs, and is a downside of any mix-based service

that composes across epochs. ((Bissias et al., 2014) has a detailed description of

intersection attacks.) By anonymity transparency, anyone looking at the blockchain

can attempt an intersection attack on our on-blockchain scheme. Our off-blockchain

scheme (roughly) only allows I to do this (Section 4.5.3).

4.2.2 Security properties

Fair-exchange. There will always be a fair-exchange between V ↔ btc. Our

property ensures that: (i) malicious intermediary I cannot obtain a bitcoin from A

unless it honestly creates a voucher for her, and (ii) malicious intermediary I cannot

obtain a voucher V from B and refuse to pay a bitcoin back. This property is also true

against malicious users: (iii) malicious A cannot refuse to give a bitcoin to I when

receiving V , and (iv) malicious B cannot receive a bitcoin from I without presenting

a (valid) V .

Unforgeability. A user cannot create a valid V without interacting with I.

Double-spending Security. A user can not redeem the same V more than once.

DoS Resistance. The intermediary I should be resistant to Denial of Service (DoS)

attacks where a malicious user starts but never finishes many parallel fair exchanges

(redemptions) of a V for a btc.

110

Sybil Resistance. The protocol should be resistant to a Sybils (i.e., identities that

are under the control of single user) that attempt to de-anonymize a target user.

4.3 Implementing fair exchange via scripts and blind signa-

tures

We explain how the transaction contracts Toffer(btc→V) and Tfulfill(btc→V) implement

the fair exchange btc→V used in our protocol (V→btc is analogous).

We start with some background on transaction contracts. Recall that Bitcoin has

no inherent notion of an “account”; instead, users merely move bitcoins from old

transactions to new transactions, with the blockchain providing a public record of all

valid moves. To do this, each transaction contains a list of outputs. These outputs

hold a portion of that transaction’s bitcoins and a set of rules describing the condi-

tions under which the portioned bitcoins in that output can be transferred to a new

transaction. The rules for spending outputs are written in a non-Turing-complete

language called Script. One transaction spends another transaction when it success-

fully satisfies the rules in a script. Transaction contracts (aka smart contracts (Szabo,

1997)) are written as scripts, e.g., A will only pay B if some condition is met. Using

the CHECKLOCKTIMEVERIFY feature (Todd, 2014) of scripts, we can timelock a

transaction, so that funds can be reclaimed if a contract has not been spent within a

given time window tw .

We use timelocking to implement the btc→V fair exchange. The fair exchange

begins when a user A generates (and the blockchain confirms) a transaction contract

Toffer(btc→V) which says that A offers one bitcoin to I under the condition “I must

compute a valid blind signature on the blinded serial number sn within time window

tw”; if the condition is not satisfied, the bitcoin reverts to A. More precisely, A first

chooses a random serial number sn, blinds it to sn, and then uses sn to create a

111

transaction contract Toffer(btc→V) with an output of one bitcoin that is spendable in

a future transaction Tf if one of the following conditions is satisfied:

1. Tf is signed by I and contains a valid blind signature σ on sn4, or

2. Tf is signed by A and the time window tw has expired.

The contract Toffer(btc→V) is fulfilled if I posts a transaction Tf = Tfulfill(btc→V) that

contains a valid blind signature σ on sn. This would satisfy the first condition of

Toffer(btc→V) and so the offered bitcoin is transferred from A to I. If I does not fulfill

the contract within the time window tw , then A signs and posts a transaction Tf

that returns the offered bitcoin back to A, thus satisfying the second condition of

Toffer(btc→V).

Blind Signature Scheme. Our fair exchange requires blind signatures with exactly

two rounds of interaction. We use Boldyreva’s (Boldyreva, 2003) scheme, instantiated

with elliptic curves for which the Weil or Tate pairing are efficiently computable

and the computational Diffie-Hellman problem is sufficiently hard. While bitcoin

supports elliptic curve operations, it uses a curve (Secp256k1) that does not support

the required bilinear pairings. Thus, we need a soft fork to add an opcode that

supports elliptic curves with efficient bilinear pairings (i.e., supersingular curves of

the type y2 = x3 + 2x± 1 over Fe`).

We use standard multiplicative notation and overlines to denote blinded values.

Let G be a cyclic additive group of prime order p in which the gap Diffie-Hellman

problem (Boneh et al., 2001) is hard and G′ a cyclic multiplicative group of prime

order q. By e we denote the bilinear pairing map: e : G × G → G′. Let g be

a generator of the group and H be a hash function mapping arbitrary strings to

elements of G\{1}. Let (p, g,H) be public parameters and (sk , pk = gsk) be the

signer’s secret/public key pair.

4I signs Tf to stop a malicious miner that learns σ from stealing the bitcoin A gives I.

112

• To blind sn, user A picks random r ∈ Z∗p and sets sn = H(sn)gr.

• To sign sn, signer I computes σ = snsk .

• To unblind the blind signature σ, user A computes σ = σpk−r.

• To verify the signature σ on sn, anyone holding pk checks that the bilinear

pairing e(pk , H(sn)) is equal to e(g, σ).

• To verify that the blinded signature σ on the blinded sn, anyone holding pk

can verify that this is valid (intermediate) signature by checking if e(pk ,m) =

e(g, σ).

4.4 On-Blockchain Anonymous Protocols

We now discuss the details of on-blockchain protocol depicted in Figure 4·2-4·3.

As shown in Figure 4·2, our protocol interleaves two fair exchanges btc→V (imple-

mented using Toffer(V→btc) and Tfulfill(V→btc)) and V→btc (implemented using Toffer(btc→V)

and Tfulfill(btc→V)). The interleaving is designed to ensure that a malicious I cannot

issue a voucher V to A and then subsequently refuse to redeem V from B. The key

idea is that it is in the interest of both A and B to force I to commit to redeeming

the voucher V = (sn, σ). To do this A starts by choosing the serial number sn for the

voucher and sending its hash h = H(sn) to B; notice that h hides the value of sn and

thus does not harm anonymity. Then, B uses h to force I to commit to redeeming a

voucher with serial number sn. Specifically, B asks I to create the transaction con-

tract Toffer(V→btc) that offers one bitcoin to B under the condition “B must provide

a valid voucher V with serial number sn such that h = H(sn) within time window

tw”. To prevent double-spending, I agrees to create Toffer(V→btc) iff the hash value

h does not match the h of any prior transaction contract that I has signed. Once

113

Toffer(V→btc) is on the blockchain, committing that I will redeem the voucher with

serial number sn, our two fair exchanges proceed as in Figure 4·2.

The details of the scheme are as follows. Let k be the security parameter.

We assume that I performs a one-time setup by posting public parameters on the

blockchain. These parameters include the public parameters for the blind signature

scheme, the fee value f and reward value w, and the time windows (tw 1, tw 2). (We

define f , w below.)

1. B creates a fresh ephemeral Bitcoin address to receive the payment.

2. A randomly chooses sn
r←− {0, 1}k, computes h← H(sn) and sends h to B.

3. B sends h to I and asks I to create transaction contract Toffer(V→btc) offering

one bitcoin to B under condition: “B must provide a valid voucher V with

serial number whose hash is equal to h within time window tw 2”.

4. If h does not match any h from prior transaction contracts signed by I, then I

creates the requested contract Toffer(V→btc) and posts it to the blockchain.

5. A blinds sn to obtain sn and waits for Toffer(V→btc) to be confirmed on the

blockchain. Then A creates transaction Toffer(btc→V), offering a 1 + w bitcoins

to I under the condition “I must provide a valid blind signature on the blinded

serial number sn within time window tw 1” (where tw 1 > tw 2 so that I cannot

cheat by waiting until Toffer(btc→V) expires but Toffer(V→btc) has not).

6. To prevent A from double-spending the bitcoin offered in Toffer(btc→V), I waits

until the blockchain confirms Toffer(btc→V). I then fulfills the btc→V fair ex-

change by creating transaction Tfulfill(btc→V) which contains the blinded signa-

ture σ on sn. Tfulfill(btc→V) is posted to the blockchain, and transfers (1 + w)

bitcoins from Toffer(btc→V) to I.

114

7. A learns σ from Tfulfill(btc→V), unblinds σ to σ and sends V = (sn, σ) to B.

8. B creates a transaction Tfulfill(V→btc) which contains the voucher V = (sn, σ),

and thus transfers the bitcoin in Toffer(V→btc) to B. Tfulfill(V→btc) is posted to

the blockchain and confirmed in the same block as Tfulfill(btc→V).

Rewards. A offers 1 +w bitcoins to I in Toffer(btc→V), but I only offers B 1 bitcoin

in Toffer(V→btc). The remaining w bitcoin is kept by I as a “reward” for completing

its role in the protocol. I cannot steal w because w is paid via a fair exchange.

4.4.1 Anonymous Fee Vouchers

Bitcoin transactions include a transaction fee that is paid to the miner who confirms

the transaction in the blockchain; if this transaction fee is not paid or is too low, it

is extremely unlikely that this transaction will be confirmed. Since I can not trust

B or A, I should not be required to cover the cost of the transaction fee for first

transaction contract Toffer(V→btc) that I posts to the blockchain.

Following ideas from (Bissias et al., 2014), we have A buy a special anonymous

fee voucher V ′ of value f bitcoin from I. The value f � 1 should be very small and

is set as a public parameter. Since fee vouchers are anonymous and have low value,

A should buy them out-of-band in bulk with cash, credit or bitcoin. Then, whenever

A wishes to mix or make an anonymous payment, A sends an anonymous fee voucher

V ′ to B, who in turn sends it to I with a request that I initiate the protocol. All this

happens out-of-band. Note though, that the fee voucher V ′ is not created with a fair

exchange, and thus I could steal f bitcoin by accepting V ′ but refusing to initiate

the protocol. However, we argue that I has very little incentive to do this if, upon

completing the protocol, I obtains a reward w that is significantly larger than f .

DoS Resistance. Fees raise the cost of an DoS attack where B starts and

aborts many parallel sessions, locking I’s bitcoins in many Toffer(V→btc) transaction

115

contracts. This is because B must forward an anonymous fee voucher V ′ from A to I

every time B wishes to initiate our protocol. This method also works for our mixing

service, where A and B are the same user. Moreover, if a party aborts a run of our

protocol during an epoch, this has no affect on other runs in that epoch. This is

in contrast to (Ruffing et al., 2014; Maxwell, 2013a) where a single aborting player

terminates the protocol for all parties in that mix.

Sybil Resistance. In a sybil attack, the adversary creates many sybil identities

secretly under her control, and deanonymizes a target user by forcing the target to mix

only with sybils (Bissias et al., 2014; Tschorsch and Scheuermann, 2016). To launch

this attack on our protocol, the attacker could create m runs of our protocol (i.e., m

payers and payees) that occupy most of the intermediary I’s resources, leaving only a

single slot available for the targeted payer and payee. Again, we use fees to raise the

cost of this attack, by requiring each of the m Sybil runs to pay a fee voucher of value

f . If I performs a sybil attack, I avoids paying f but must pay all four transaction

fees.

4.4.2 Anonymity Analysis

Before discussing the anonymity properties of our scheme we start by noting that in

the first step of our protocol, B is always required to create a fresh ephemeral Bitcoin

address Addr 0. Upon creation, this address is completely anonymous, in the sense

that there is no way to link it to B’s identity; this is a much stronger notion than

the set anonymity defined in Section 4.2.1. Now suppose that A uses our protocol

to pay a bitcoin to Addr 0. Then, as we will argue below, Addr 0 is now linkable to

A with probability 1/n (if n payments happened in that epoch). However Addr 0 is

still completely anonymous with respect to B’s “Bitcoin identity”, i.e., the long-lived

Bitcoin address that B uses to send and receive payments. If the funds from Addr 0

were paid into another fresh ephemeral Bitcoin address Addr 1 controlled by B, these

116

funds would still be unlinkable to B. Indeed, the funds in Addr 0 only become linkable

to B if they are transferred to an address controlled by B that already contains some

bitcoins.

Set-Anonymity within an Epoch. Our on-blockchain payment scheme achieves

an anonymity set of size n within an epoch, as defined in Section 4.2.1. Suppose that

n payments successfully complete during an epoch, and recall that each payer may

only perform one payment per epoch and each payment is made to a fresh ephemeral

address. It follows that there are n payers and n payees during the epoch. Any adver-

sary (including I) observing the blockchain can see the following: n payers’ addresses,

n payees’ addresses, and n sets of transactions of the type Toffer(btc→V),Tfulfill(btc→V),

Toffer(V→btc), Tfulfill(V→btc). For the adversary to link a payer to a payee, it would

need to link a Toffer(btc→V), Tfulfill(btc→V) pair (btc→V) to a Toffer(V→btc), Tfulfill(V→btc)

pair (V→btc). Let us first examine what do these pairs of transaction contracts re-

veal on the blockchain. The btc→V pair reveals a blinded serial number sn and the

corresponding intermediate (blinded) blind signature σ. Meanwhile, the V→btc pair

reveals a serial number sn and the corresponding signature σ. As long as the blinding

factor of sn is not revealed, the blind signature ensures that no one can link an sn to

an sn. The signatures σ and σ are similarly unlinkable (except with some negligible

probability ν(k)). Thus, the adversary’s best strategy is to randomly link a payer to

a payee, which succeeds with probability 1/n+ ν(k).

The same analysis applies to our mixing service. Moreover, mix users can repeat-

edly rerun the mix over several epochs, thus boosting the size of their anonymity set

beyond what could be provided during a single epoch.

Resilient Anonymity and Transparency of Anonymity Set. Ephemeral ad-

dresses prevent I from de-anonymizing a payment from A to B by aborting or deny-

ing service. Suppose I aborts by refusing to issue Tfulfill(btc→V) to A (Figure 4·2).

117

If this happens, A does not obtain voucher V = (sn, σ) and cannot pass V on to

B. By the unforgeability of vouchers, it follows that B will not be able to issue a

valid Tfulfill(V→btc) that fulfills Toffer(V→btc). Thus, I can de-anonymize the payment

between A and B by matching the aborted exchange with A with the incomplete

exchange with B. As another possible attack, malicious I could instead refuse ser-

vice to all payers apart from a target A, and then identify B by finding the single

V→btc exchange that completes during the epoch. Fortunately, however, anonymity-

set transparency allows B to detect these attacks. B can recover by discarding the

ephemeral address it used in the attacked epoch, and chose a fresh ephemeral address

in a subsequent epoch.

Note that for both our payment and mixing service one could attempt an inter-

section attack as discussed in Section 4.2.1.

4.5 Off-Blockchain Anonymous Payments over Micropayment

Channel Networks

We start by reviewing off-blockchain transactions via micropayment channel networks

and then describe how to make our protocol faster by adapting it to work with them.

4.5.1 Micropayment Channel Networks

Micropayment Channels. To establish a pairwise micropayment channel, A

and B each pay some amount of bitcoins into an escrow transaction Te which is

posted to the blockchain. This escrow transaction is on-blockchain and therefore

slow (≈ 10 minutes), but all subsequent transactions are off-blockchain and therefore

fast (≈ seconds). Te ensures that no party reneges on an off-blockchain transaction.

Suppose x bitcoins are paid into Te. Te offers these x bitcoins to be spent under

condition: “The spending transaction is signed by bothA and B”. Then, the spending

118

transaction Tr has the form: “a bitcoins are paid to A and b bitcoins are paid to B”

where a and b reflect the agreed-upon balance of bitcoins between A and B.

Once Te is confirmed on the blockchain, A and B can transfer funds between

themselves off-blockchain by signing a spending transaction Tr. Importantly, Tr is

not posted to the blockchain. Instead, the existence of Tr creates a credible threat

that either party can claim their allocated bitcoins by posting Tr to the blockchain;

this prevents either party from reneging on the allocation reflected in Tr. To con-

tinue to make off-blockchain payments, A and B just need to sign a new transaction

T ′r that reflects the new balance of bitcoins a′ and b′. Micropayment channels have

mechanisms that ensure that this later transaction T ′r always supersedes an earlier

transaction Tr. Our protocol applies generically to any micropayment channel with

such a mechanism, e.g., Lightning Network (Poon and Dryja, 2015), Duplex Micro-

payment Channels (DMC) (Decker and Wattenhofer, 2015).

Micropayment Channel Networks. Micropayment channel networks are de-

signed to avoid requiring each pair of parties to pre-establish a pairwise micropay-

ment channel between them. Indeed, such a requirement would be infeasible, since it

requires each pair of users to lock funds into many different escrow transactions Te

on the blockchain. Instead, suppose a pair of users A and B are connected by a path

of users with established pairwise micropayment channels (i.e., A has a channel with

A1, A1 has a channel with A2, ..., Am−1 has a channel with Am, Am has a channel

with B). Then, the path of users can run a protocol to transfer funds from A to B.

However, it will not suffice to simply have each user Ai create a transaction paying

the next user Ai+1 in the path, since a malicious user Ak could steal funds by failing

to create a a transaction for Ak+1. Instead, the Lightning Network and DMC use a

protocol based on hash timelocked contracts or HTLCs. A transaction T is an HTLC

if it offers bitcoins under the condition: “The spending transaction must contain the

119

preimage of y and be confirmed within timewindow tw”, where y = H(x) and x is a

random value, i.e., the preimage. We say that T is locked under the preimage of y.

Micropayment channels use HTLCs as follows. Suppose the existing balance be-

tween A and B is a bitcoin for A and b bitcoin for B. Now suppose that A wants to

transfer ε bitcoin to B, updating the balances to a − ε and b + ε. First, B chooses a

random value x, computes y = H(x), and announces y to everyone in the path. Then,

A asks each pair of parties (Ai,Ai+1) on the path to transfer ε bitcoin locked under

the preimage of y using the micropayment channel from Ai to Ai+1. The mechanics

of the transfer between Ai and Ai+1 are as follows. Suppose the existing balance

between Ai and Ai+1 is c bitcoin for Ai and d bitcoin for Ai+1. Then Ai and Ai+1

jointly sign a new spending transaction T ′r of the form “c− ε bitcoins are paid to Ai

and d + ε bitcoins are paid to Ai+1” under the condition “the spending transaction

contains the preimage of y within timewindow tw”. Once A sees that all the trans-

actions on the path have been signed, it releases the preimage x to the path and the

funds flow from Ai to Aj. If any user refuses to sign a transaction, the timelock tw

allows all signing users to reclaim their funds. The timelock is decremented along the

path to prevent race conditions. This entire protocol occurs off-blockchain, with x

and the HTLCs creating a credible threat that users can reclaim their funds if they

are posted to the blockchain.

4.5.2 Anonymizing Micropayment Channel Networks

As a strawman for anonymous transactions in micropayment channel networks, we

can replace the hash lock with the transaction contracts conditions in that we use

in Toffer(V→btc) and Toffer(btc→V) (see Section 4.4). The protocol assumes paths of

intermediate channels (path1, path2) connecting A to I and I to B respectively, and

has Setup phase as in our original on-blockchain protocol.

120

1. A chooses a random serial number sn, hashes it to h = H(sn) and sends h to

B.

2. B uses h to lock a path of micropayment channels (path2) to I under the con-

dition: “The spending transaction must provide a valid voucher V with serial

number whose hash is equal to h within time window tw 2.”

3. A blinds the serial number sn to obtain sn. A asks B to confirm that each party

on path2 from A to I has properly locked the path. Then, A asks I to lock a

path path1 of micropayment channels between Ai and I under the condition:

“The spending transaction must provide a valid blind signature on the blinded

serial number sn within time window tw 1” where tw 1 > tw 2.

4. I then reveals σ to every party on path1, unlocking the path from I to A. A

obtains σ, unblinds it to σ and thus obtains the voucher V = (σ, sn). A sends

V = (σ, sn) to B who releases it to every party on path path2, unlocking the

path from I to B.

We again need the notion of an epoch. Since we do not have blocks to coordinate

these epochs, we instead use synchronized clocks. We break an epoch of q seconds

into three equal divisions of q
3

seconds long. path2 is set up in first division, path1 is

set up second and path1 and path2 are resolved in third division. Also, we can add

anonymous fee vouchers to this protocol, since fee vouchers are redeemed out of band

(Section 4.4.1).

4.5.3 Anonymity Analysis

Of the properties in Section 4.2.1, our off-blockchain scheme only supports set anonymity

within an epoch (as discussed in Section 4.4.2) when I is honest-but-curious. That

is, I follows the protocol without aborting or denying services to other payers and

121

payees, but is still curious to learn which payer is paying which payee. However, we

still support fair-exchange against a malicious I (Section 4.6) as well as set-anonymity

within an epoch against malicious third parties.

We only support anonymity against honest-but-curious I because we cannot use

fresh ephemeral addresses in this off-blockchain context. This follows because choos-

ing a fresh address amounts to establishing a fresh micropayment channel. Because

this requires a fresh escrow transaction Te to be posted on the blockchain (taking

≈ 10 minutes), it obviates the speed benefits of the off-blockchain scheme. Recall

that B discards its ephemeral address in order to recover from an epoch where a

malicious I de-anonymized the payment from A to B by aborting or denying service

(Section 4.4.2).

We have also given up on anonymity transparency. Because transactions are no

longer posted on the blockchain, even users that participate in the protocol cannot

learn the size or membership of their anonymity set.

Proxy Addresses. We need the notion of proxy addresses to ensure that no

parties (other than I) can break anonymity by behaving maliciously. Notice that in

a micropayment channel network, a malicious user Ai along the path path1 from A

to I can abort the protocol by refusing to create the appropriate transactions. Now

if Ai is also on the path path2 from I to B, then Ai can abort the protocol and

de-anonymize A and B in the same way that I can. To prevent this attack, we need

to make sure that I is the only party that is on both path1 and path2. The idea is

that every user B of our system has an additional proxy address Addrpx
B , and uses

this address to establish, just once, a (reusable) micropayment channel directly to I.

This ensures that path2 consists of only I and Addrpx
B . Then, B will receive payments

to its proxy address Addrpx
B using the strawman protocol of Section 4.5.2 in a one

epoch. In the subsequent epoch, B will rerun the strawman protocol to transfer funds

122

from Addrpx
B (acting as user A) to its long-lived address AddrB (acting as user B).

Intersection Attacks. The lack of anonymity set transparency and the use of proxy

addresses implies that only I can observe the full membership of the anonymity set

during each epoch. As payments between proxy Addrpx
B and identity AddrB addresses

occur in contiguous epochs, I could use an intersection attack (Bissias et al., 2014)

to infer their relationship. Other adversaries only observe off-blackchain transactions

flowing through them.

4.6 Security Analysis

Fair-Exchange Our schemes prevent parties from stealing from each other.

1. The btc→V fair exchange (Section 4.3) ensures that (1) I cannot steal A’s

bitcoin without issuing her a valid voucher V , and (2) A cannot refuse to pay

I a bitcoin upon receiving a V . (Fair exchange properties (i) and (iii) from

Section 4.2.2.)

2. The V→btc fair exchange ensures that B cannot steal I’s bitcoins without

actually redeeming V . Also, I cannot refuse to redeem a V = (sn, σ) that

it issued to A. This follows because, as discussed in Section 4.4, I commits

to the redemption of V when it posts Toffer(V→btc) (which contains h, where

h = H(sn)). Moreover, recall that Tfulfill(btc→V) is transaction where (a) 1 + w

bitcoin are transferred from A to I, and (b) I issues V by providing the blind

signature σ. Since Toffer(V→btc) is posted to the blockchain before Toffer(V→btc),

it follows that A does not pay I for V until I has committed to redeeming V .

(Fair exchange properties (ii) and (iv) from Section 4.2.2.)

3. I cannot prevent B from redeeming V by issuing V just before Toffer(V→btc)

expires. This follows because A choose tw 1 such that tw 1 > tw 2 which ensures

123

that Toffer(btc→V) expires earlier that Toffer(V→btc). This way, if I takes too long

to issue Toffer(btc→V), A will have already reclaimed her refunds. (Fair exchange

property (ii) from Section 4.2.2.)

Unforgeability and Double-spending. Unforgeability follows from the under-

lying blind signature scheme, which ensures that only the intermediary I can issue

vouchers V = (sn, σ). Moreover, vouchers cannot be double-spent because if I has

previously seen h = H(sn), I will refuse to post Toffer(V→btc).

DoS and Sybil Resistance. Both our on- and off-blockchain schemes support

anonymous fee vouchers, and thus resist DoS and sybil attacks (Section 4.4.1).

Chapter 5

Tumblebit: An Untrusted

Bitcoin-compatible Anonymous Payment

Hub

In this chapter, we will discuss (Heilman et al., 2017) in which we developed new

tumbler protocols for Bitcoin. This work was written in collaboration with Leen

AlShenibr, Foteini Baldimtsi, Alessandra Scafuro and Sharon Goldberg.

5.1 Introduction

One reason for Bitcoin’s initial popularity was the perception of anonymity. Today,

however, the sheen of anonymity has all but worn off, dulled by a stream of academic

papers (Meiklejohn et al., 2013; Ron and Shamir, 2013), and a blockchain surveillance

industry (Limited, 2016; Inc, 2016), that have demonstrated weaknesses in Bitcoin’s

anonymity properties. As a result, a new market of anonymity-enhancing services

has emerged (Möser and Böhme, 2016; Grams, 2016; wikipedia, 2016); for instance,

1 million USD in bitcoins are funneled through JoinMarket each month (Möser and

Böhme, 2016). These services promise to mix bitcoins from a set of payers (aka, input

Bitcoin addresses A) to a set of payees (aka, output bitcoin addresses I) in a manner

that makes it difficult to determine which payer transferred bitcoins to which payee.

To deliver on this promise, anonymity must also be provided in the face of the

anonymity-enhancing service itself—if the service knows exactly which payer is pay-

124

125

ing which payee, then a compromise of the service leads to a total loss of anonymity.

Compromise of anonymity-enhancing technologies is not unknown. In 2016, for ex-

ample, researchers found more than 100 Tor nodes snooping on their users (Noubir

and Sanatinia, 2016). Moreover, users of mix services must also contend with the po-

tential risk of “exit scams”, where an established business takes in new payments but

stops providing services. Exit scams have been known to occur in the Bitcoin world.

In 2015, a Darknet Marketplace stole 11.7M dollars worth of escrowed customer bit-

coins (Stone, 2015), while btcmixers.com mentions eight different scam mix services.

Thus, it is crucial that anonymity-enhancing services be designed in a manner that

prevents bitcoin theft.

TumbleBit: An unlinkable payment hub. We present TumbleBit, a unidirec-

tional unlinkable payment hub that uses an untrusted intermediary, the Tumbler T , to

enhance anonymity. Every payment made via TumbleBit is backed by bitcoins. We

use cryptographic techniques to guarantee Tumbler T can neither violate anonymity,

nor steal bitcoins, nor “print money” by issuing payments to itself. TumbleBit allows

a payer Alice A to send fast off-blockchain payments (of denomination one bitcoin)

to a set of payees (I1, ..., IQ) of her choice. Because payments are performed off the

blockchain, TumbleBit also serves to scale the volume and velocity of bitcoin-backed

payments. Today, on-blockchain bitcoin transactions suffer a latency of ≈ 10 min-

utes. Meanwhile, TumbleBit payments are sent off-blockchain, via the Tumbler T ,

and complete in seconds. (Our implementation1 completed a payment in 1.2 seconds,

on average, when T was in New York and A and I were in Boston.)

TumbleBit Overview. TumbleBit replaces on-blockchain payments with off-

blockchain puzzle solving, where Alice A pays Bob I by providing I with the solution

to a puzzle. The puzzle z is generated through interaction between I and T , and

1https://github.com/BUSEC/TumbleBit/

btcmixers.com
https://github.com/BUSEC/TumbleBit/

126

Ph
as

e
1:

E

sc
ro

w
Ph

as
e

2:
Pa

ym
en

t

Alice Tumbler Bob

Ph
as

e
3:

C
as

h-
ou

t

{
{
{

Puzzle-Promise
 Protocol

Escrow Transaction Escrow Transaction

RSA-Puzzle-Solver
 Protocol

Cash-out Transaction Cash-out Transaction

Z

=Blind() Z

Z

Z

Unblind()=ϵ

1 BTC from A to B

3 BTC 3 BTC

2 BTC 2 BTC1 BTC 1 BTC

ϵ ϵ
ϵ

= Dec () ϵ c σ

(c,)Z

Figure 5·1: Overview of the TumbleBit protocol.

solved through an interaction between A and T . Each time a puzzle is solved, 1

bitcoin is transferred from Alice A to the Tumbler T and finally on to Bob I.

The protocol proceeds in three phases; see Figure 5·1. In the on-blockchain Escrow

Phase, each payer Alice A opens a payment channel with the Tumbler T by escrowing

Q bitcoins on the blockchain. Each payee Bob I also opens a channel with T . This

involves (1) T escrowing Q bitcoins on the blockchain, and (2) I and T engaging

in a puzzle-promise protocol that generates up to Q puzzles for I. During the off-

blockchain Payment Phase, each payer A makes up to Q off-blockchain payments to

any set of payees. To make a payment, A interacts with T to learn the solution

to a puzzle I provided. Finally, the Cash-Out Phase closes all payment channels.

Each payee I uses his Q′ solved puzzles (aka, TumbleBit payments) to create an on-

blockchain transaction that claims Q′ bitcoins from T ’s escrow. Each payer A also

closes her escrow with T , recovering bitcoins not used in a payment.

Anonymity properties. TumbleBit provides unlinkability : Given the set of es-

crow transactions and the set of cash-out transactions, we define a valid configuration

as a set of payments that explains the transfer of funds from Escrow to Cash-Out.

Unlinkability ensures that if the Tumbler T does not collude with other TumbleBit

users, then T cannot distinguish the true configuration (i.e., the set of payments

actually sent during the Payment Phase) from any other valid configuration.

TumbleBit is therefore similar to classic Chaumian eCash (Chaum, 1983a). With

127

Chaumian eCash, a payee A first withdraws an eCash coin in exchange for money

(e.g., USD) at an intermediary Bank, then uses the coin to pay a payee I. Finally

I redeems the eCash coin to the Bank in exchange for money. Unlinkability ensures

that the Bank cannot link the withdrawal of an eCash coin to the redemption of it.

TumbleBit provides unlinkability, with Tumbler T playing the role of the Chaumian

Bank. However, while Tumbler T need not be trusted, the Chaumian Bank is trusted

to not (1) “print money” (i.e., issue eCash coins to itself) or (2) steal money (i.e.,

refuse to exchange coins for money).

TumbleBit: As a classic tumbler. TumbleBit can also be used as a classic

Bitcoin tumbler, mixing together the transfer of one bitcoin from ℵ distinct payers

(AliceA) to ℵ distinct payees (Bob I). In this mode, TumbleBit is run as in Figure 5·1

with the payment phase shrunk to 30 seconds, so the protocol runs in epochs that

require two blocks added to the blockchain. As a classic tumbler, TumbleBit provides

k-anonymity within an epoch—no one, not even the Tumbler T , can link one of the k

transfers that were successfully completed during the epoch to a specific pair of payer

and payee (A, I).

RSA-puzzle solving. At the core of TumbleBit is our new “RSA puzzle solver”

protocol that may be of independent interest. This protocol allows Alice A to pay

one bitcoin to T in fair exchange2 for an RSA exponentiation of a “puzzle” value z

under T ’s secret key. Fair exchange prevents a cheating T from claiming A’s bitcoin

without solving the puzzle. Our protocol is interesting because it is fast—solving

2048-bit RSA puzzles faster than (Maxwell, 2016)’s fair-exchange protocol for solving

16x16 Sudoku puzzles (Section 5.8))—and because it supports RSA. The use of RSA

means that blinding can be used to break the link between the user providing the

puzzle (i.e., Bob I) and the user requesting its solution (e.g., payer Alice A).

2True fair exchange is impossible in the standard model (Pagnia and Gartner, 1999) and thus
alternatives have been proposed, such as gradual release mechanisms, optimistic models, or use of a

128

Cryptographic protocols. TumbleBit is realized by interleaving the RSA-

puzzle-solver protocol with another fair-exchange puzzle-promise protocol. We for-

mally prove that each protocol is a fair exchange. Our proofs use the real/ideal

paradigm in the random oracle model (ROM) and security relies on the standard

RSA assumption and the unforgeability of ECDSA signatures. Our proofs are in the

full version (Heilman et al., 2016a).

5.1.1 TumbleBit Features

Bitcoin compatibility. TumbleBit is fully compatible with today’s Bitcoin

protocol. We developed (off-blockchain) cryptographic protocols that work with the

very limited set of (on-blockchain) instructions provided by today’s Bitcoin scripts.

Bitcoin scripts can only be used to perform two cryptographic operations: (1) validate

the preimage of a hash, or (2) validate an ECDSA signature on a Bitcoin transaction.

The limited functionality of Bitcoin scripts is likely here to stay; indeed, the recent

“DAO” theft (Peck, 2016) has highlighted the security risks of complex scripting

functionalities. Moreover, the Bitcoin community is currently debating (Faife, 2017)

whether to deploy a solution (“segregated witnesses” (Wuille, 2015)) that corrects

Bitcoin’s transaction malleability issue 1). TumbleBit, however, remains secure even

if this solution is not deployed as explained in Appendix C.1.

No coordination. In contrast to earlier work (Maxwell, 2013a; Ruffing et al., 2014),

if Alice A wants to pay Bob I, she need not interact with any other TumbleBit users.

Instead, A and I need only interact with the Tumbler and each other. This lack of

coordination between TumbleBit users makes it possible to scale our system.

Performance. We have implemented our TumbleBit system in C++ and python,

trusted third party. We follow prior works that use Bitcoin for fair exchange (Andrychowicz et al.,
2014; Kumaresan and Bentov, 2014; Kumaresan et al., 2015) and treat the blockchain as a trusted
public ledger. Other works use the term Contingent Payment or Atomic Swaps (Maxwell, 2011;
Back et al., 2014).

129

Scheme Prevents Theft Anonymity Resists DoS Resists Sybils Min. Mix Time Bitcoin Compatible No Coordination?
Coinjoin X small set × × 1 block X ×
Coinshuffle X small set × × 1 block X × (p2p network)
Coinparty 2/3 users honest X some1 X (fees) 2 blocks X ×
XIM X X X X (fees) hours X × (uses blockchain)
Mixcoin TTP accountable × (TTP) X X (fees) 2 blocks X X
Blindcoin TTP accountable X X X (fees) 2 blocks X X
CoinSwap X × (TTP)2 X X (fees) 2 blocks X X
BSC X X X X (fees) 3 blocks × X
TumbleBit X X X X (fees) 2 blocks X X

Table 5.1: A comparison of Bitcoin Tumbler services. TTP stands
for Trusted Third Party. We count minimum mixing time by the mini-
mum number of Bitcoin blocks. Any mixing service inherently requires
at least one block. 1Coinparty could achieve some DoS resistance by
forcing parties to solve puzzles before participating.

using LibreSSL as our cryptographic library. We have tumbled payments from 800

payers to 800 payees; the relevant transactions are visible on the blockchain. Our

protocol requires 327 KB of data on the wire, and 0.6 seconds of computation on a

single CPU. Thus, performance in classic tumbler mode is limited only by the time

it takes for two blocks to be confirmed on the blockchain and the time it takes for

transactions to be confirmed; currently, this takes ≈ 20 minutes. Meanwhile, off-

blockchain payments can complete in seconds (Section 5.8).

5.1.2 Related Work

TumbleBit is related to work proposing new anonymous cryptocurrencies (e.g., Zero-

cash (Miers et al., 2013; Ben Sasson et al., 2014), Monero (Monero, 2016) or Mim-

blewimble (Jedusor, 2016)). While these are very promising, they have yet to be as

widely adopted as Bitcoin. On the other hand, TumbleBit is an anonymity service

for Bitcoin’s existing user base.

Off-blockchain payments. When used as an unlinkable payment hub, TumbleBit

is related to micropayment channel networks, notably Duplex Micropayment Chan-

nels (Decker and Wattenhofer, 2015) and the Lightning Network (Poon and Dryja,

2015). These systems also allow for Bitcoin-backed fast off-blockchain payments. Pay-

ments are sent via paths of intermediaries with pre-established on-blockchain pairwise

escrow transactions. TumbleBit (conceptually) does the same. However, while the

130

intermediaries in micropayment channel network can link payments from A to I,

TumbleBit’s intermediary T cannot.

The protocol discussed in Chapter 4 Blindly Signed Contracts published as (Heil-

man et al., 2016c) proposed a protocol that adds anonymity to micropayment channel

networks. TumbleBit is implemented and Bitcoin compatible, while Blindly Signed

Contracts is not. Moreover, Blindly Signed Contracts requires both Alice A and Bob

I to interact with the Tumbler T as part of every off-blockchain payment. Thus, the

Tumbler could correlate the timing of its interactions with A and I in order to link

their payments. Meanwhile, TumbleBit eliminates this timing channel by only requir-

ing interaction between A and T (and A and I) during an off-blockchain payment

(see Figure 5·1 and Section 5.7.2).

TumbleBit is also related to concurrent work proposing Bolt (Green and Miers,

2016), an off-blockchain unlinkable payment channel. While TumbleBit is imple-

mented and Bitcoin compatible, Bolt has not been implemented and employs script-

ing functionalities that are not available in Bitcoin. Instead, Bolt runs on top of

Zerocash (Miers et al., 2013; Ben Sasson et al., 2014).

Bolt operates in several modes, including a unidirectional payment channel (where

Alice can pay Bob), a bidirectional payment channel (where Alice and Bob can pay

each other), and bidirectional payment hub (where Alice and Bob can pay each other

through an Intermediary). The latter mode is most relevant to TumbleBit, and offers

different unlinkability properties. First, Bolt hides the denomination of the payment

from the Intermediary; meanwhile, TumbleBit payments all have the same denomi-

nation, which is revealed to the Tumbler. Second, off-blockchain Bolt payments hide

the identity of the payer and payee; meanwhile, off-blockchain TumbleBit payments

reveals the identity of the payee (but not the payer) to the Tumbler. Finally, if a

party aborts a payment via Bolt’s bidirectional payment hub, then the identity of

131

the payer and payee is revealed. In this case, Bolt must fall back on the anonymity

properties of Zerocash, which ensures that on-blockchain identities are anonymous.

Meanwhile, abort attacks on TumbleBit are less damaging (see Section 5.7.3). This is

important because TumbleBit cannot fall back on Zerocash’s anonymity properties.

Bitcoin Tumblers. Prior work on classic Bitcoin Tumblers is summarized in

Table 5.1.

Blindcoin (Valenta and Rowan, 2015), and its predecessor Mixcoin (Bonneau et al.,

2014), use a trusted third party (TTP) to mix Bitcoin addresses. However, this third

party can steal users’ bitcoins; theft is detected but not prevented. In Mixcoin, the

TTP can also violate anonymity. CoinSwap (Maxwell, 2013b) is a fair-exchange mixer

that allows two parties to anonymously send bitcoins through an intermediary. Fair

exchange prevents the CoinSwap intermediary from stealing funds. Unlike TumbleBit,

however, CoinSwap does not provide anonymity against even an honest-but-curious

intermediary. Coinparty (Ziegeldorf et al., 2015) is another decentralized solution,

but it is secure only if 2/3 of the users are honest.

CoinShuffle (Ruffing et al., 2014) and CoinShuffle++(Moreno-Sanchez et al., 2016)

build on CoinJoin (Maxwell, 2013a) to provide a decentralized tumbler that prevents

bitcoin theft. Their anonymity properties are analyzed in (Meiklejohn and Orlandi,

2015). CoinShuffle(++) (Ruffing et al., 2014; Moreno-Sanchez et al., 2016) both

perform a mix in a single transaction. Bitcoin’s maximum transaction size (100KB)

limits CoinShuffle(++) to 538 users per mix. These systems are also particularly

vulnerable to DoS attacks, where a user joins the mix and then aborts, disrupting the

protocol for all other users. Decentralization also requires mix users to interact via a

peer-to-peer network in order to identify each other and mix payments. This coordi-

nation between users causes communication to grow quadratically (Bissias et al., 2014;

Bonneau et al., 2015), limiting scalability; neither (Ruffing et al., 2014) nor (Moreno-

132

Sanchez et al., 2016) performs a mix with more than 50 users. Decentralization also

makes it easy for an attacker to create many Sybils and trick Alice A into mixing

with them in order to deanonymize her payments (Bonneau et al., 2015; Tschorsch

and Scheuermann, 2016). TumbleBit sidesteps these scalability limitations by not

requiring coordination between mix users.

XIM (Bissias et al., 2014) builds on fair-exchange mixers like (Barber et al., 2012).

XIM prevents bitcoin theft, and uses fees to resist DoS and Sybil attacks—users must

pay to participate in a mix, raising the bar for attackers that disrupt the protocol

by joining the mix and then aborting. We use fees in TumbleBit as well. Also, an

abort by a single XIM user does not disrupt the mix for others. TumbleBit also

has this property. One of XIM’s key innovations is a method for finding parties to

participate in a mix. However, this adds several hours to the protocol, because users

must advertise themselves as mix partners on the blockchain. TumbleBit is faster; a

tumble requires only two blocks on the blockchain.

When used as a classic tumbler, TumbleBit and (Heilman et al., 2016c) shares

the same fair-exchange properties and anonymity properties. However, unlike Tum-

bleBit, (Heilman et al., 2016c) is not compatible with Bitcoin and does not provide an

implementation. Also, (Heilman et al., 2016c) requires three blocks to be confirmed

on the blockchain, while TumbleBit requires two.

After this work was first posted, Dorier and Ficsor began an independent Tum-

bleBit implementation.3. TumbleBit was integrated as a privacy protocol into the

Breeze wallet (Jamie, 2017) and the Hidden Wallet (Ficsór, 2017). The Hidden Wal-

let (now renamed to the Wasabi Wallet) continued this line of research on Bitcoin

privacy and now uses a protocol of their own invention called WabiSabi (Ficsór et al.,

2021).

3https://github.com/NTumbleBit/NTumbleBit

https://github.com/NTumbleBit/NTumbleBit

133

5.2 Bitcoin Scripts and Smart Contracts

In designing TumbleBit, our key challenge was ensuring compatibility with today’s

Bitcoin protocol. We therefore start by reviewing Bitcoin transactions and Bitcoin’s

non-Turing-complete language Script.

Transactions. A Bitcoin user Alice A is identified by her bitcoin address (which

is a public ECDSA key), and her bitcoins are “stored” in transactions. A single

transaction can have multiple outputs and multiple inputs. Bitcoins are transferred

by sending the bitcoins held in the output of one transaction to the input of a different

transaction. The blockchain exists to provide a public record of all valid transfers. The

bitcoins held in a transaction output can only be transferred to a single transaction

input. A transaction input T3 double-spends a transaction input T2 when both T2 and

T3 point to (i.e., attempt to transfer bitcoins from) the same transaction output T1.

The security of the Bitcoin protocol implies that double-spending transactions will

not be confirmed on the blockchain. Transactions also include a transaction fee that

is paid to the Bitcoin miner that confirms the transaction on the blockchain. Higher

fees are paid for larger transactions. Indeed, fees for confirming transactions on the

blockchain are typically expressed as “Satoshi-per-byte” of the transaction.

Scripts. Each transaction uses Script to determine the conditions under which

the bitcoins held in that transaction can be moved to another transaction. We build

“smart contracts” from the following transactions:

- Toffer : One party A offers to pay bitcoins to any party that can sign a transaction

that meets some condition C. The Toffer transaction is signed by A.

- Tfulfill : This transaction points to Toffer , meets the condition C stipulated in Toffer ,

and contains the public key of the party I receiving the bitcoins.

Toffer is posted to the blockchain first. When Tfulfill is confirmed by the blockchain, the

bitcoins in Tfulfill flow from the party signing transaction Toffer to the party signing

134

Tfulfill . Bitcoin scripts support two types of conditions that involve cryptographic

operations:

Hashing condition: The condition C stipulated in Toffer is: “Tfulfill must contain

the preimage of value y computed under the hash function H.” Then, Tfulfill col-

lects the offered bitcoin by including a value x such that H(x) = y. (We use the

OP RIPEMD160 opcode so that H is the RIPEMD-160 hash function.)

Signing condition: The condition C stipulated in Toffer is: “Tfulfill must be digitally

signed by a signature that verifies under public key PK .” Then, Tfulfill fulfills this

condition if it is validly signed under PK . The signing condition is highly restrictive:

(1) today’s Bitcoin protocol requires the signature to be ECDSA over the Secp256k1

elliptic curve (Research, 2010)—no other elliptic curves or types of signatures are

supported, and (2) the condition specifically requires Tfulfill itself to be signed. Thus,

one could not use the signing condition to build a contract whose condition requires

an arbitrary message m to be signed by PK .4 (TumbleBit uses the OP CHECKSIG op-

code, which requires verification of a single signature, and the “2-of-2 multisignature”

template ‘OP 2 key1 key2 OP 2 OP CHECKMULTISIG’ which requires verification of a

signature under key1 AND a signature under key2.)5

Script supports composing conditions under “IF” and “ELSE”. Script also sup-

ports timelocking (OP CHECKLOCKTIMEVERIFY opcode (Todd, 2014)), where Toffer also

stipulates that Tfulfill is timelocked to time window tw . (Note that tw is an absolute

block height.) This allows the party that posted Tfulfill to reclaim their bitcoin if

Tfulfill is unspent and the block height is higher than tw . Section 5.8.1 details the

scripts used in our implementation.

4This is why (Heilman et al., 2016c) is not Bitcoin-compatible. (Heilman et al., 2016c) requires
a blind signature to be computed over an arbitrary message. Also, ECDSA-Secp256k1 does not
support blind signatures.

5Unlike cryptographic multisignatures, a Bitcoin 2-of-2 multisignature is a tuple of two distinct
signatures and not a joint signature.

135

2-of-2 escrow. TumbleBit relies heavily on the commonly-used 2-of-2 escrow smart

contract. Suppose that Alice A wants to put Q bitcoin in escrow to be redeemed

under the condition C2of2: “the fulfilling transaction includes two signatures: one

under public key PK 1 AND one under PK 2.”

To do so, A first creates a multisig address PK (1,2) for the keys PK 1 and PK 2

using the Bitcoin createmultisig command. Then, A posts an escrow transaction

Tescr on the blockchain that sends Q bitcoin to this new multisig address PK (1,2).

The Tescr transaction is essentially a Toffer transaction that requires the fulfilling

transaction to meet condition C2of2. We call the fulfilling transaction Tcash the cash-

out transaction. Given that A doesn’t control both PK 1 and PK 2 (i.e., doesn’t

know the corresponding secret keys), we also timelock the Tescr transaction for a time

window tw . Thus, if a valid Tcash is not confirmed by the blockchain within time

window tw , the escrowed bitcoins can be reclaimed by A. Therefore, A’s bitcoins are

escrowed until either (1) the time window expires and A reclaims her bitcoins or (2) a

valid Tcash is confirmed. TumbleBit uses 2-of-2 escrow to establish pairwise payment

channels, per Figure 5·1.

5.3 TumbleBit: An Unlinkable Payment Hub

Our goal is to allow a payer, Alice A, to unlinkably send 1 bitcoin to a payee, Bob I.

Naturally, if AliceA signed a regular Bitcoin transaction indicating that AddrA pays 1

bitcoin to AddrB, then the blockchain would record a link between Alice A and Bob I

and anonymity could be harmed using the techniques of (Meiklejohn et al., 2013; Ron

and Shamir, 2013; Biryukov et al., 2014b). Instead, TumbleBit funnels payments from

multiple payer-payee pairs through the Tumbler T , using cryptographic techniques

to ensure that, as long as T does not collude with TumbleBit’s users, then no one

can link a payment from payer A to payee I.

136

5.3.1 Overview of Bob’s Interaction with the Tumbler

We overview TumbleBit’s phases under the assumption that Bob I receives a single

payment of value 1 bitcoin. TumbleBit’s Anonymity properties require all payments

made in the system to have the same denomination; we use 1 bitcoin for simplicity. In

our full version (Heilman et al., 2016a) we also discuss how Bob can receive multiple

payments of denomination 1 bitcoin each.

TumbleBit has three phases (Fig 5·1). Off-blockchain TumbleBit payments take

place during the middle Payment Phase, which can last for hours or even days. Mean-

while, the first Escrow Phase sets up payment channels, and the last Cash-Out Phase

closes them down; these two phases require on-blockchain transactions. All users

of TumbleBit know exactly when each phase begins and ends. One way to coordi-

nate is to use block height; for instance, if the payment phase lasts for 1 day (i.e.,

≈ 144 blocks) then the Escrow Phase is when block height is divisible by 144, and

the Cash-Out Phase is when blockheight+1 is divisible by 144.

1: Escrow Phase. Every Alice A that wants to send payments (and Bob I that

wants to receive payments) during the upcoming Payment Phase runs the escrow

phase with T . The escrow phase has two parts:

(a) Payee I asks the Tumbler T to set up a payment channel. T escrows 1

bitcoin on the blockchain via a 2-of-2 escrow transaction (Section 5.2) denoted as

Tescr(T ,I) stipulating that 1 bitcoin can be claimed by any transaction signed by both

T and I. Tescr(T ,I) is timelocked to time window tw 2, after which T can reclaim its

bitcoin. Similarly, the payeer A escrows 1 bitcoin in a 2-of-2 escrow with T denoted

as Tescr(A,T), timelocked for time window tw 1 such that tw 1 < tw 2.

(b) Bob I obtains a puzzle z through an off-blockchain cryptographic protocol

with T which we call the puzzle-promise protocol. Conceptually, the output of this

protocol is a promise by T to pay 1 bitcoin to I in exchange for the solution to a

137

puzzle z. The puzzle z is just an RSA encryption of a value ε

z = fRSA(ε, e, N) = εe mod N (5.1)

where (e, N) is the TumbleBit RSA public key of the Tumbler T . “Solving the

puzzle” is equivalent to decrypting z and thus obtaining its “solution” ε. Meanwhile,

the “promise” c is a symmetric encryption under key ε

c = Encε(σ)

where σ is the Tumbler’s ECDSA-Secp256k1 signature on the transaction Tcash(T ,I)

which transfers the bitcoin escrowed in Tescr(T ,I) from T to I. (We use ECDSA-

Secp256k1 for compatibility with the Bitcoin protocol.) Thus, the solution to a puzzle

z enables I to claim 1 bitcoin from T . To prevent misbehavior by the Tumbler T ,

our puzzle-promise protocol requires T to provide a proof that the puzzle solution ε is

indeed the key which decrypts the promise ciphertext c. The details of this protocol,

and its security guarantees, are in Section 5.6.

2: Payment Phase. Once Alice A indicates she is ready to pay Bob I, Bob I

chooses a random blinding factor r ∈ Z∗N and blinds the puzzle to

z = rez mod N. (5.2)

Blinding ensures that even T cannot link the original puzzle z to its blinded version

z. Bob I then sends z to A. Next, A solves the blinded puzzle z by interacting

with T . This puzzle-solver protocol is a fair exchange that ensures that A transfers

1 bitcoin to T iff T gives a valid solution to the puzzle z. Finally, Alice A sends the

solution to the blinded puzzle ε back to Bob I. Bob unblinds ε to obtain the solution

ε = ε/r mod N (5.3)

138

and accepts Alice’s payment if the solution is valid, i.e., εe = z mod N .

3: Cash-Out Phase. Bob I uses the puzzle solution ε to decrypt the ciphertext

c. From the result I can create a transaction Tcash(T ,I) that is signed by both T and

I. I posts Tcash(T ,I) to the blockchain to receive 1 bitcoin from T .

Our protocol crucially relies on the algebraic properties of RSA, and RSA blinding.

To make sure that the Tumbler is using a valid RSA public key (e, N), TumbleBit

also has an one-time setup phase:

0: Setup. Tumbler T announces its RSA public key (e, N) and Bitcoin address

AddrT , together with a non-interactive zero-knowledge proof of knowledge π6 of the

corresponding RSA secret key d . Every user of TumbleBit validates (e, N) using π.

5.3.2 Overview of Alice’s Interaction with the Tumbler

We now focus on the puzzle-solving protocol between A and the Tumbler T to show

how TumbleBit allows A to make many off-blockchain payments via only two on-

blockchain transactions (aiding scalability).

During the Escrow Phase, Alice opens a payment channel with the Tumbler T by

escrowing Q bitcoins in an on-blockchain transaction Tescr(A,T). Each escrowed bitcoin

can pay T for the solution to one puzzle. Next, during the off-blockchain Payment

Phase, A makes off-blockchain payments to j ≤ Q payees. Finally, during the Cash-

Out Phase, Alice A pays the Tumbler T by posting a transaction Tcash(A,T)(j) that

reflects the new allocation of bitcoins; namely, that T holds j bitcoins, while A holds

Q − j bitcoins. The details of Alice A’s interaction with T , which are based on a

technique used in micropayment channels (Narayanan et al., 2016, p. 86), are as

follows:

1: Escrow Phase. Alice A posts a 2-of-2 escrow transaction Tescr(A,T) to the

6Such a proof could be provided using the GQ identification protocol (Guillou and Quisquater,
1988) made non-interactive using the Fiat-Shamir heuristic (Fiat and Shamir, 1986) in the random
oracle model.

139

blockchain that escrows Q of Alice’s bitcoins. If no valid transaction Tcash(A,T) is

posted before time window tw 1, then all Q escrowed bitcoins can be reclaimed by A.

2: Payment Phase. Alice A uses her escrowed bitcoins to make off-blockchain

payments to the Tumbler T . For each payment, A and T engage in an off-blockchain

puzzle-solver protocol (see Sections 5.5.1,5.5.3).

Once the puzzle is solved, Alice signs and gives T a new transaction Tcash(A,T)(i).

Tcash(A,T)(i) points to Tescr(A,T) and reflects the new balance between A and T (i.e.,

that T holds i bitcoins while A holds Q− i bitcoins). T collects a new Tcash(A,T)(i)

from A for each payment. If Alice refuses to sign Tcash(A,T)(i), then the Tumbler

refuses to help Alice solve further puzzles. Importantly, each Tcash(A,T)(i) for i = 1...j

(for j < Q) is signed by Alice A but not by T , and is not posted to the blockchain.

3: Cash-Out Phase. The Tumbler T claims its bitcoins from Tescr(A,T) by signing

Tcash(A,T)(j) and posting it to the blockchain. This fulfills the condition in Tescr(A,T),

which stipulated that the escrowed coins be claimed by a transaction signed by both

A and T . (Notice that all the Tcash(A,T)(i) point to the same escrow transaction

Tescr(A,T). The blockchain will therefore only confirm one of these transactions; oth-

erwise, double spending would occur. Rationally, the Tumbler T always prefers to

confirm Tcash(A,T)(j) since it transfers the maximum number of bitcoins to T .) Be-

cause Tcash(A,T)(j) is the only transaction signed by the Tumbler T , a cheating Alice

cannot steal bitcoins by posting a transaction that allocates fewer than j bitcoins to

the Tumbler T .

Remark: Scaling Bitcoin. A similar (but more elaborate) technique can be ap-

plied between I and T so that only two on-blockchain transactions suffice for Bob

I to receive an arbitrary number of off-blockchain payments. Details are in the full

version (Heilman et al., 2016a). Given that each party uses two on-blockchain trans-

actions to make multiple off-blockchain playments, Tumblebit helps Bitcoin scale.

140

𝓐1

𝓐2

t5

𝓐3

𝓐4

𝓑1

𝓑2

𝓑3
A compatiable interaction graph

t6

t1

t3

t5

t2

t3

t4

Payer puzzle-solver payments

2 BTC

Payee cashouts

3 BTC

3 BTC

?
?

?
?

?
?

?
?{ {Tumbler's View

Figure 5·2: Our unlinkability definition: The Tumblers view and a
compatible interaction multi-graph.

5.3.3 TumbleBit’s Security Properties

Unlinkability. We assume that the Tumbler T does not collude with other users.

The view of T consists of (1) the set of escrow transactions established between (a)

each payer Aj and the Tumbler (Aj
escrow,ai−→ T) of value ai and (b) the Tumbler and

each payee Ii (T
escrow,bi−→ Ii), (2) the set of puzzle-solver protocols completed with each

payer Aj at time t during the Payment Phase, and (3) the set of cashout transactions

made by each payer Aj and each payee Ii during the Cash-Out Phase.

An interaction multi-graph is a mapping of payments from payers to payees (Fig-

ure 5·2). For each successful puzzle-solver protocol completed by payer Aj at time t,

this graph has an edge, labeled with time t, from Aj to some payee Ii. An interaction

graph is compatible if it explains the view of the Tumbler T , i.e., the number of edges

incident on Ii is equal to the total number of bitcoins cashed out by Ii. Unlinkability

requires all compatible interaction graphs to be equally likely. Anonymity therefore

depends on the number of compatible interaction graphs.

Notice that payees Ii have better anonymity than payersAj. (This follows because

the Tumbler T knows the time t at which payer Aj makes each payment. Meanwhile,

the Tumbler T only knows the aggregate amount of bitcoins cashed-out by each payee

Ii.)

A high-level proof of TumbleBit’s unlinkability is in Section 5.7, and the limitations

of unlinkability are discussed in Section 5.7.3.

141

Balance. The system should not be exploited to print new money or steal money,

even when parties collude. As in (Green and Miers, 2016), we call this property

balance, which establishes that no party should be able to cash-out more bitcoins than

what is dictated by the payments that were successfully completed in the Payment

Phase. We discuss how TumbleBit satisfies balance in Section 5.7.

DoS and Sybil protection. TumbleBit uses transaction fees to resist DoS and

Sybil attacks. Every Bitcoin transaction can include a transaction fee that is paid

to the Bitcoin miner who confirms the transaction on the blockchain as an incentive

to confirm transactions. However, because the Tumbler T does not trust Alice A

and Bob I, T should not be expected to pay fees on the transactions posted during

the Escrow Phase. To this end, when Alice A establishes a payment channel with

T , she pays for both the Q escrowed in transaction Tescr(A,T) and for its transaction

fees. Meanwhile, when the Tumbler T and Bob I establish a payment channel, the

Q escrowed bitcoins in Tescr(T ,I) are paid in the Tumbler T , but the transaction fees

are paid by Bob I (Section 5.3.1). Per (Bissias et al., 2014), fees raise the cost of an

DoS attack where I starts and aborts many parallel sessions, locking T ’s bitcoins in

escrow transactions. This similarly provides Sybil resistance, making it expensive for

an adversary to harm anonymity by tricking a user into entering a run of TumbleBit

where all other users are Sybils under the adversary’s control.

5.4 TumbleBit: Also a Classic Tumbler.

We can also operate TumbleBit as classic Bitcoin Tumbler. As a classic Tumbler,

TumbleBit operates in epoches, each of which (roughly) requires two blocks to be

confirmed on the blockchain (≈ 20 mins). During each epoch, there are exactly ℵ

distinct bitcoin addresses making payments (payers) and ℵ bitcoin addresses receiving

payments (payees). Each payment is of denomination 1 bitcoin, and the mapping

142

from payers to payees is a bijection. During one epoch, the protocol itself is identical

to that in Section 5.3 with the following changes: (1) the duration of the Payment

Phase shrinks to seconds (rather than hours or days); (2) each payment channel

escrows exactly Q = 1 bitcoin; and (3) every payee Bob I receives payments at an

ephemeral bitcoin address AddrB chosen freshly for the epoch.

5.4.1 Anonymity Properties

As a classic tumbler, TumbleBit has the same balance property, but stronger anonymity:

k-anonymity within an epoch (Heilman et al., 2016c; Bissias et al., 2014). Specifically,

while the blockchain reveals which payers and payees participated in an epoch, no one

(not even the Tumbler T) can tell which payer paid which payee during that specific

epoch. Thus, if k payments successfully completed during an epoch, the anonymity

set is of size k. (This stronger property follows directly from our unlinkability defini-

tion (Section 5.3.3): there are k compatible interaction graphs because the interaction

graph is bijection.)

Recovery from anonymity failures. It’s not always the case that k = ℵ. The

exact anonymity level achieved in an epoch can be established only after its Cash-Out

Phase. For instance, anonymity is reduced to k = ℵ−1 if T aborts an payment made

by payer Aj. We deal with this by requiring I to uses an ephemeral Bitcoin address

AddrB in each epoch. As in (Heilman et al., 2016c), Bob I discards AddrB if (1) the

Tumbler T maliciously aborts Aj’s payment in order to infer that Aj was attempting

to pay I (see Section 5.8.3); or (2) k-anonymity was too small. (In case (2), I can

alternatively re-tumble the bitcoin in AddrB in a future epoch.)

Remark: Intersection attacks. While this notion of k-anonymity is commonly

used in Bitcoin tumblers (e.g., (Bissias et al., 2014; Heilman et al., 2016c)), it does

suffer from the following weakness. Any adversary that observes the transactions

posted to the blockchain within one epoch can learn which payers and payees par-

143

ticipated in that epoch. Then, this information can be correlated to de-anonymize

users across epochs (e.g., using frequency analysis or techniques used to break k-

anonymity (Ganta et al., 2008)). See also (Bissias et al., 2014; Meiklejohn and Or-

landi, 2015).

DoS and Sybil Attacks. We use fees to resist DoS and Sybil attacks. Alice

again pays for both the Q escrowed in transaction Tescr(A,T) and for its transaction

fees. However, we run into a problem if we want Bob I to pay the fee on the escrow

transaction Tescr(T ,I). Because Bob I uses a freshly-chosen Bitcoin address AddrB,

that is not linked to any prior transaction on the blockchain, AddrB cannot hold any

bitcoins. Thus, Bob I will have to pay the Tumbler T out of band. The anonymous

fee vouchers described in (Heilman et al., 2016c) provide one way to address this,

which also has the additional feature that payers A cover all fees.

5.5 A Fair Exchange for RSA Puzzle Solving

We now explain how to realize a Bitcoin-compatible fair-exchange where Alice A pays

Tumbler T one bitcoin iff the T provides a valid solution to an RSA puzzle. The Tum-

bler T has an RSA secret key d and the corresponding public key (e, N). The RSA

puzzle y is provided by Alice, and its solution is an RSA secret-key exponentiation

ε = f−1
RSA(y, d , N) = yd mod N (5.4)

The puzzle solution is essentially an RSA decryption or RSA signing operation.

This protocol is at the heart of TumbleBit’s Payment Phase. However, we also

think that this protocol is of independent interest, since there is also a growing in-

terest in techniques that can fairly exchange a bitcoin for the solution to a com-

putational “puzzle”. (The full version (Heilman et al., 2016a) reviews the related

work (Maxwell, 2011; Maxwell, 2016; Kumaresan and Bentov, 2014; Banasik et al.,

144

2016).) Section 5.5.1 presents our RSA-puzzle-solver protocol as a stand-alone pro-

tocol that requires two blocks to be confirmed on the blockchain. Our protocol is

fast—solving 2048-bit RSA puzzles faster than (Maxwell, 2016)’s protocol for solving

16x16 Sudoku puzzles (Section 5.8)). Also, the use of RSA means that our proto-

col supports solving blinded puzzles (see equation (5.2)), and thus can be used to

create an unlinkable payment scheme. Section 5.5.3 shows how our protocol is inte-

grated into TumbleBit’s Payment Phase. Implementation results are in Table 5.2 of

Section 5.8.2.

5.5.1 Our (Stand-Alone) RSA-Puzzle-Solver Protocol

The following stand-alone protocol description assumes Alice A wants to transfer 1

bitcoin in exchange for one puzzle solution. Section 5.5.3 shows how to support the

transfer of up to Q bitcoins for Q puzzle solutions (where each solution is worth 1

bitcoin).

The core idea is similar to that of contingent payments (Maxwell, 2011): Tumbler

T solves Alice’s A’s puzzle y by computing the solution yd mod N , then encrypts

the solution under a randomly chosen key k to obtain a ciphertext c, hashes the key

k under bitcoin’s hash as h = H(k) and finally, provides (c, h) to Alice. Alice A

prepares Tpuzzle offering one bitcoin in exchange for the preimage of h. Tumbler T

earns the bitcoin by posting a transaction Tsolve that contains k, the preimage of h,

and thus fulfills the condition in Tpuzzle and claims a bitcoin for T . Alice A learns k

from Tsolve, and uses k to decrypt c and obtain the solution to her puzzle.

Our challenge is to find a mechanism that allows A to validate that c is the

encryption of the correct value, without using ZK proofs. Thus, instead of asking

T to provide just one (c, h) pair, T will be asked to provide m + n pairs (Step 3).

Then, we use cut and choose: A asks T to “open” n of these pairs, by revealing the

randomly-chosen keys ki’s used to create each of the n pairs (Step 7). For a malicious

145

Public input: (e, N).
π proves validity of (e, N) in a one-time-only setup phase.

Alice A Tumbler T
Input: Puzzle y Secret input: d

1. Prepare Real Puzzles R
For j ∈ [m], pick rj ∈ Z∗N
dj ← y · (rj)e mod N

2. Prepare Fake Values F
For i ∈ [n], pick ρi ∈ Z∗N
δi ← (ρi)

e mod N

3. Mix Sets.
Randomly permute 4. Evaluation
{d1 . . . dm, δ1 . . . δn} For i = 1 . . .m+ n

to {β1 . . . βm+n}
β1...βm+n−−−−−→ Evaluate βi: si = βd

i mod N
Let R be the indices of the di Encrypt the result si:
Let F be the indices of the δi – Choose random keyi ∈ {0, 1}λ1

– ci = Hprg(keyi)⊕ si
Commit to the keys: hi = H(keyi)

c1,...,cm+n←−−−−−−
h1,...,hm+n←−−−−−−

5. Identify Fake Set F
F,ρi ∀i∈F−−−−−→ 6. Check Fake Set F

For all i ∈ F :
Verify βi = (ρi)

e mod N ,
If yes, reveal ki ∀i ∈ [F].

7. Check Fake Set F Else abort.

For all i ∈ F ,
keyi ∀i∈F←−−−−−

Verify that hi = H(keyi)
Decrypt si = Hprg(keyi)⊕ ci
Verify si = ρi mod N

Abort if any check fails.

8. Post transaction Tpuzzle

Tpuzzle offers 1 bitcoin within timewindow tw 1
under condition “the fulfilling transaction is
signed by T and has preimages of hj ∀j ∈ R”.

9. Check βj unblind to y ∀j ∈ R
y, rj∀j∈R−−−−−−→ For all j ∈ R

Verify βj = y · (rj)e mod N
If not, abort.

10. Post transaction Tsolve

Tsolve contains kj∀j ∈ R
11. Obtain Puzzle Solution
For j ∈ R:

Learn kj from Tsolve

Decrypt cj to sj = Hprg(keyj)⊕ cj
If sj is s.t. (sj)

e = βj mod N ,
Obtain solution sj/rj mod N
which is yd mod N .

Figure 5·3: RSA puzzle solving protocol. H and Hprg are modeled as
random oracles. In our implementation, H is RIPEMD-160, and Hprg

is ChaCha20 with a 128-bit key, so that λ1 = 128.

146

T to successfully cheat A, it would have to correctly guess all the n “challenge” pairs

and form them properly (so it does not get caught), while at the same time malforming

all the m unopened pairs (so it can claim a bitcoin from A without actually solving

the puzzle). Since T cannot predict which pairs A asks it to open, T can only cheat

with very low probability 1/
(
m+n
n

)
.

However, we have a problem. Why should T agree to open any of the (c, h)

values that it produced? If A received the opening of a correctly formed (c, h) pair,

she would be able to obtain a puzzle solution without paying a bitcoin. As such, we

introduce the notion of “fake values”. Specifically, the n (c, h)-pairs that A asks T to

open will open to “fake values” rather than “real” puzzles. Before T agrees to open

them (Step 7), A must prove that these n values are indeed fake (Step 6).

We must also ensure that T cannot distinguish “real puzzles” from “fake values”.

We do this with RSA blinding. The real puzzle y is blinded m times with different

RSA-blinding factors (Step 1), while the n fake values are RSA-blinded as well (Step

2). Finally, A randomly permutes the real and fake values (Step 3).

Once Alice confirms the correctness of the opened “fake” (c, h) values (Step 7),

she signs a transaction Tpuzzle offering one bitcoin for the keys k that open all of the

m “real” (c, h) values (Step 8). But what if Alice cheated, so that each of the “real”

(c, h) values opened to the solution to a different puzzle? This would not be fair to

T , since A has only paid for the solution to a single puzzle, but has tricked T into

solving multiple puzzles. We solve this problem in Step 9: once A posts Tpuzzle, she

proves to T that all m “real” values open to the same puzzle y. This is done by

revealing the RSA-blinding factors blinding puzzle y. Once T verifies this, T agrees

to post Tsolve which reveals m of the k values that open “real” (c, h) pairs (Step 10).

147

5.5.2 Fair Exchange

Fair exchange exchange entails the following: (1) Fairness for T : After one execution

of the protocol A will learn the correct solution yd mod N to at most one puzzle y of

her choice. (2) Fairness for A: T will earn 1 bitcoin iff A obtains a correct solution.

We prove this using the real-ideal paradigm (Goldreich et al., 1987). We call the

ideal functionality Ffair-RSA and present it the full version (Heilman et al., 2016a).

Ffair-RSA acts like a trusted party between A and T . Ffair-RSA gets a puzzle-solving

request (y, 1 bitcoin) from A, and forwards the request to T . If T agrees to solve

puzzle y for A, then T gets 1 bitcoin and A gets the puzzle solution. Otherwise, if T

refuses, A gets 1 bitcoin back, and T gets nothing. Fairness for T is captured because

A can request a puzzle solution only if she sends 1 bitcoin to Ffair-RSA. Fairness for

I is captured because T receives 1 bitcoin only if he agrees to solve the puzzle. The

following theorem is proved in the full version (Heilman et al., 2016a):

Theorem 5.5.1. Let λ be the security parameter, m,n be statistical security param-

eters, let N > 2λ. Let π be a publicly verifiable zero-knowledge proof that fRSA with

parameters (N, e) is a permutation and a proof of knowledge for the associated secret

key d.

If the RSA assumption holds in Z∗N , and if functions Hprg, H are independent

random oracles, there exists a negligible function ν, such that protocol in Figure 5·3
securely realizes Ffair-RSA in the random oracle model with the following security guar-

antees. The security for T is 1− ν(λ) while security for A is 1− 1

(m+n
n)
− ν(λ).

5.5.3 Solving Many Puzzles and Moving Off-Blockchain

To integrate the protocol in Figure 5·3 into TumbleBit, we have to deal with three

issues. First, if TumbleBit is to scale Bitcoin (Section 5.3.2), then Alice A must

be able to use only two on-blockchain transactions Tescr(A,T) and Tcash(A,T) to pay

for the an arbitrary number of Q puzzle solutions (each worth 1 bitcoin) during the

Payment Phase; the protocol in Figure 5·3 only allows for the solution to a single

148

puzzle. Second, per Section 5.3.2, the puzzle-solving protocol should occur entirely

off-blockchain; the protocol in Figure 5·3 uses two on-blockchain transactions Tpuzzle

and Tsolve. Third, the Tsolve transactions are longer than typical transactions (since

they contain m hash preimages), and thus require higher transaction fees.

To deal with these issues, we now present a fair-exchange protocol that uses only

two on-blockchain transactions to solve an arbitrary number of RSA puzzles.

Escrow Phase. Before puzzle solving begins, Alice posts a 2-of-2 escrow transac-

tion Tescr(A,T) to the blockchain that escrows Q bitcoins, (per Section 5.3.2). Tescr(A,T)

is timelocked to time window tw 1, and stipulates that the escrowed bitcoins can be

transferred to a transaction signed by both A and T .

Payment Phase. Alice A can buy solutions for up to Q puzzles, paying 1 bitcoin

for each. Tumbler T keeps a counter of how many puzzles it has solved for A, making

sure that the counter does not exceed Q. When A wants her ith puzzle solved, she

runs the protocol in Figure 5·3 with the following modifications after Step 8 (so that

it runs entirely off-blockchain):

(1) Because the Payment Phase is off-blockchain, transaction Tpuzzle from Fig-

ure 5·3 is not posted to the blockchain. Instead, Alice A forms and signs transaction

Tpuzzle and sends it to the Tumbler T . Importantly, Tumbler T does not sign or post

this transaction yet.

(2) Transaction Tpuzzle points to the escrow transaction Tescr(A,T); Tpuzzle changes

its balance so that T holds i bitcoin and Alice A holds Q − i bitcoins. Tpuzzle is

timelocked to time window tw1 and stipulates the same condition in Figure 5·3: “the

fulfilling transaction is signed by T and has preimages of hj∀j ∈ R.”

(Suppose that T deviates from this protocol, and instead immediately signs and

post Tpuzzle. Then the bitcoins in Tescr(A,T) would be transferred to Tpuzzle. However,

these bitcoins would remain locked in Tpuzzle until either (a) the timelock tw expired,

149

at which point Alice A could reclaim her bitcoins, or (b) T signs and posts a trans-

action fulfilling the condition in Tpuzzle, which allows Alice to obtain the solution to

her puzzle.)

(3) Instead of revealing the preimages kj∀j ∈ R in an on-blockchain transaction

Tsolve as in Figure 5·3, the Tumbler T just sends the preimages directly to Alice.

(4) Finally, Alice A checks that the preimages open a valid puzzle solution. If

so, Alice signs a regular cash-out transaction Tcash(A,T) (per Section 5.3.2). Tcash(A,T)

points to the escrow transaction Tescr(A,T) and reflects the new balance between A

and T .

At the end of the ith payment, the Tumbler T should have two new signed trans-

actions from Alice: Tpuzzle(i) and Tcash(A,T)(i), each reflecting the (same) balance of

bitcoins between T (holding i bitcoins) and A (holding Q − i bitcoins). However,

Alice A already has her puzzle solution at this point (step (4) modification above).

What if she refuses to sign Tcash(A,T)(i)?

In this case, the Tumbler immediately begins to cash out, even without waiting

for the Cash-Out Phase. Specifically, Tumbler T holds transaction Tpuzzle(i), signed

by A, which reflects a correct balance of i bitcoins to T and Q − i bitcoins to A.

Thus, T signs Tpuzzle(i) and posts it to the blockchain. Then, T claims the bitcoins

locked in Tpuzzle(i) by signing and posting transaction Tsolve. As in Figure 5·3, Tsolve

fulfills Tpuzzle by containing the m preimages kj∀j ∈ R. The bitcoin in Tescr(A,T) will

be transferred to Tpuzzle and then to Tsolve and thus to the Tumbler T . The only

harm done is that T posts two longer transactions Tpuzzle(i),Tsolve(i) (instead of just

Tcash(A,T)), which require higher fees to be confirmed on the blockchain. (Indeed, this

is why we have introduced the Tcash(A,T)(i) transaction.)

Cash-Out Phase. Alice has j puzzle solutions once the the Payment Phase is

over and the Cash-Out Phase begins. If the Tumbler T has a transaction Tcash(A,T)(j)

150

signed by Alice, the Tumbler T just signs and post this transaction to the blockchain,

claiming its j bitcoins.

5.6 Puzzle-Promise Protocol

We present the puzzle-promise protocol run between I and T in the Escrow Phase.

Recall from Section 5.3.1, that the goal of this protocol is to provide Bob I with

a puzzle-promise pair (c, z). The “promise” c is an encryption (under key ε) of the

Tumbler’s ECDSA-Secp256k1 signature σ on the transaction Tcash(T ,I) which transfers

the bitcoin escrowed in Tescr(T ,I) from T to I. Meanwhile the RSA-puzzle z hides

the encryption key ε per equation (5.1).

If Tumbler T just sent a pair (c, z) to Bob, then Bob has no guarantee that the

promise c is actually encrypting the correct signature, or that z is actually hiding

the correct encryption key. On the other hand, T cannot just reveal the signature σ

directly, because Bob could use σ to claim the bitcoin escrowed in Tescr(T ,I) without

actually being paid (off-blockchain) by Alice A during TumbleBit’s Payment Phase.

To solve this problem, we again use cut and choose: we ask T to compute many

puzzle-promise pairs (ci, zi), and have Bob I test that some of the pairs are computed

correctly. As in Section 5.5.1, we use “fake” transactions (that will be “opened” and

used only to check if the other party has cheated) and “real” transactions (that

remain “unopened” and result in correctly-formed puzzle-promise pairs). Cut-and-

choose guarantees that I knows that at least one of the unopened pairs is correctly

formed. However, how does I know which puzzle zi is correctly formed? Importantly,

I can only choose one puzzle zi that he will ask Alice A to solve during TumbleBit’s

Payment Phase (Section 5.3.1). To deal with this, we introduce an RSA quotient-

chain technique that ties together all puzzles zi so that solving one puzzle zj1 gives

the solution to all other puzzles.

151

In this section, we assume that I wishes to obtain only a single payment of

denomination 1 bitcoin; the protocol as described in Figure 5·4 and Section 5.6.1

suffices to run TumbleBit as a classic tumbler. We discuss its security properties in

Section 5.6.2 and implementation in Section 5.8.2. In the full version (Heilman et al.,

2016a), we show how to modify this protocol so that it allows I to receive arbitrary

number of Q off-blockchain payments using only two on-blockchain transactions.

5.6.1 Protocol Walk Through

I prepares µ distinct “real” transactions and η “fake” transactions, hides them by

hashing them with H ′ (Step 2-3), permutes them (Step 4), and finally sends them

to T as β1, ..., βm+n. T the evaluates each βi to obtain a puzzle-promise pair (ci, zi)

(Step 5).

Next, I needs to check that the η “fake” (ci, zi) pairs are correctly formed by T

(Step 8). To do this, I needs T to provide the solutions εi to the puzzles zi in fake

pairs. T reveals these solutions only after I has proved that the η pairs really are

fake (Step 7). Once this check is done, I knows that T can cheat with probability

less than 1/
(
µ+η
η

)
.

Now we need our new trick. We want to ensure that if at least one of the “real”

(ci, zi) pairs opens to a valid ECDSA-Secp256k1 signature σi, then just one puzzle

solution εi with i ∈ R, can be used to open this pair. (We need this because I

must decide which puzzle zi to give to the payer A for decryption without knowing

which pair (ci, zi) is validly formed.) We solve this by having T provide I with µ− 1

quotients (Step 9). This solves our problem since knowledge of ε = εj1 allows I to

recover of all other εji , since

εji = ε1 · q2·, . . . , ·qi

152

On the flip side, what if I obtains more than one valid ECDSA-Secp256k1 signatures

by opening the (ci, zi) pairs? Fortunately, however, we don’t need to worry about this.

The escrow transaction Tescr(T ,I) offers 1 bitcoin in exchange for a ECDSA-Secp256k1

signature under an ephemeral key PK eph
T used only once during this protocol execution

with this specific payee I. Thus, even if I gets many signatures, only one can be

used to form the cash-out transaction Tcash(T ,I) that redeems the bitcoin escrowed in

Tescr(T ,I).

5.6.2 Security Properties

We again capture the security requirements of the puzzle-promise protocol using

real-ideal paradigm (Goldreich et al., 1987). The ideal functionality Fpromise-sign is

presented the full version (Heilman et al., 2016a). Fpromise-sign is designed to guarantee

the following properties: (1) Fairness for T : Bob I learns nothing except signatures

on fake transactions. (2) Fairness for I: If T agrees to complete the protocol,

then Bob I obtains at least one puzzle-promise pair. To do this, Fpromise-sign acts a

trusted party between I and T . Bob I sends the “real” and “fake” transactions to

Fpromise-sign. Fpromise-sign has access to an oracle that can compute the Tumbler’s T

signatures on any messages. (This provides property (2).) Then, if Tumbler T agrees,

Fpromise-sign provides Bob I with signatures on each “fake” transaction only. (This

provides property (1).) The following theorem is proved the full version (Heilman

et al., 2016a):

Theorem 5.6.1. Let λ be the security parameter, m,n be statistical security param-

eters, let N > 2λ. Let π be a publicly verifiable zero-knowledge proof that fRSA with

parameters (N, e) is a permutation and a proof of knowledge for the associated secret

key d.

If RSA trapdoor function is hard in Z∗N , if H,H ′, Hshk are independent random or-

acles, if ECDSA is strong existentially unforgeable signature scheme, then the puzzle-

promise protocol in Figure 5·4 securely realizes the Fpromise-sign functionality. The

153

Public input: (e, N,PK eph
T , π).

Tumbler T chooses fresh ephemeral ECDSA-Secp256k1 key, i.e., bitcoin address (SK eph
T ,PK eph

T).
π proves validity of (e, N) in a one-time-only setup phase.

Bob I Tumbler T . Secret input: d

1. Set up Tescr(T ,I)

Sign but do not post transaction Tescr(T ,I)

timelocked for tw 2 offering one bitcoin
under the condition: “the fulfilling transaction
must be signed under key PK eph

T and
2. Prepare µ Real Unsigned Tcash(T ,I). under key PK I .”

For i ∈ 1, . . . , µ:
Tescr(T ,I)←−−−−−

Choose random pad ρi ← {0, 1}λ
Set Tcash(T ,I)

i = CashOutTFormat(ρi)
hti = H ′(Tfulfill

i).

3. Prepare Fake Set.
For i ∈ 1, . . . , η:

Choose random pad ri ← {0, 1}λ
fti = H ′(FakeFormat||ri).

4. Mix Sets.
Randomly permute
{ft1, ..., ftη, ht1, ..., htµ}

to obtain {β1, ...βµ+η}
Let R be the indices of the hti
Let F be the indices of the fti

β1...βµ+η−−−−−→
Choose salt ∈ {0, 1}λ
Compute: hR = H(salt||R)

hF = H(salt||F) 5. Evaluation.
hR,hF−−−→ For i = 1, . . . , µ+ η:

ECDSA sign βi to get σi = Sig(SK eph
T , βi)

Randomly choose εi ∈ ZN .
Create promise ci = Hshk(εi)⊕ σi
Create puzzle zi=fRSA(εi, e, N)

(c1,z1),...(cµ+η ,zµ+η)←−−−−−−−−−−−− i.e., zi = (εi)
e mod N

6. Identify Fake Set.
R,F−−→

ri ∀i∈F−−−−→
salt−−→ 7. Check Fake Set.

Check hR = H(salt||R) and hF = H(salt||F)
For all i ∈ F :

8. Check Fake Set. verify βi = H ′(FakeFormat||ri)
For all i ∈ F εi ∀i∈F←−−−− Abort if any check fails
- Validate that εi < N
- Validate RSA puzzle zi = (εi)

e mod N
- Validate promise ci:

(a) Decrypt σi = Hprg(εi)⊕ ci
(b) Verify σi, i.e.,
ECDSA-Ver(PK eph

T , H ′(fti), σi) = 1 9. Prepare Quotients.
Abort if any check fails For R = {j1, ..., jµ}:

q2,...,qµ←−−−− set q2 =
εj2
εj1
, ..., qµ =

εjµ
εjµ−1

10. Quotient Test.
For R = {j1, ..., jµ} check equalities:
zj2 = zj1 · (q2)e mod N
...
zjµ = zjµ−1 · (qµ)e mod N

Check that ∀i ∈ [m], zji ∈ Z∗N
Abort if any check fails 11. Post transaction Tescr(T ,I) on blockchain

12. Begin Payment Phase.
Set z = zj1 . Send z̄ = z · (r)e to Payer A

Figure 5·4: Puzzle-promise protocol when Q = 1. (d , (e, N)) are RSA
keys of the tumbler T . (Sig, ECDSA-Ver) is an ECDSA-Secp256k1. We
model H,H ′ and Hshk as random oracles. In our implementation, H is
HMAC-SHA256 (keyed with salt) . H ′ is ‘Hash256’, i.e., SHA-256 cas-
caded with itself, as used in Bitcoin’s “hash-and-sign” paradigm. Hshk

is SHA-512. CashOutTFormat is the unsigned portion of a transaction.
ρi used to ensure sufficent entropy.

154

security for T is 1− ν(λ) while security for I is 1− 1

(µ+η
η)
− ν(λ).

5.7 TumbleBit Security

We discuss TumbleBit’s unlinkability and balance properties. See Section 5.3.3 for

DoS/Sybil resistance.

5.7.1 Balance

The balance was defined, at high-level, in Section 5.3.3. We analyze balance in several

cases.

Tumbler T ∗ is corrupt. We want to show that all the bitcoins paid to T by allAj’s

can be later claimed by the Ii’s. (That is, a malicious T ∗ cannot refuse a payment

to Bob after being paid by Alice.) If Ii successfully completes the puzzle-promise

protocol with T ∗, fairness for this protocol guarantees that Ii gets a correct “promise”

c and puzzle z. Meanwhile, the fairness of the puzzle-solver protocol guarantees that

eachAj gets a correct puzzle solution in exchange for her bitcoin. Thus, for any puzzle

z solved, some Ii can open promise c and form the cash-out transaction Tcash(T ,I) that

allows Ii to claim one bitcoin. Moreover, transaction Tescr(A,T) has timelock tw 1 and

transaction Tescr(T ,I) has timelock tw 2. Since tw 1 < tw 2, it follows that either (1) T ∗

solves A’s puzzle or (2) A reclaims the bitcoins in Tescr(A,T) (timelock tw 1), before T

can (3) steal a bitcoin by reclaiming the bitcoins in Tescr(T ,I) (timelock tw 2).

Case A∗j and I∗i are corrupt. Consider colluding payers I∗i and payees A∗j . We

show that the sum of bitcoins cashed out by all I∗i is no more than the number of

puzzles solved by T in the Payment Phase with all A∗j .

First, the fairness of the puzzle-promise protocol guarantees that any I∗i learns

only (c, z) pairs; thus, by the unforgeability of ECDSA signatures and the hardness

of solving RSA puzzles, I∗ cannot claim any bitcoin at the end of the Escrow Phase.

155

Next, the fairness of the puzzle-solver protocol guarantees that if T completes SPj

successful puzzle-solver protocol executions with A∗j , then A∗j gets the solution to

exactly SPj puzzles. Payees I∗i use the solved puzzles to claim bitcoins from T . By

the unforgeability of ECDSA signatures (and assuming that the blockchain prevents

double-spending), all colluding I∗i cash-out no more than min(t,
∑

j SPj) bitcoin in

total, where t is the total number of bitcoins escrowed by T across all I∗i .

Case I∗i and T collude. Now suppose that I∗i and T ∗ collude to harm Aj. Fairness

for Aj still follows directly from the fairness of the puzzle-solver protocol. This follows

because the only interaction between Aj and I∗i is the exchange of a puzzle (and its

solution). No other secret information about Aj is revealed to I∗i . Thus, I∗i cannot

add any additional information to the view of T , that T can use to harm fairness for

Aj.

We do note, however, that an irrational Bob I∗i can misbehave by handing Alice

Aj an incorrect puzzle z∗. In this case, the fairness of the puzzle-solver protocol

ensures that Alice Aj will pay the Tumbler T for a correct solution ε∗ to puzzle z∗.

As such, Bob Ii will be expected to provide Alice Aj with the appropriate goods or

services in exchange for the puzzle solution ε∗. However, the puzzle solution ε∗ will be

of no value to Bob Ii, i.e., Bob cannot use ε∗ to claim a bitcoin during the Cash-Out

Phase. It follows that the only party harmed by this misbehavior is Bob Ii himself.

As such, we argue that such an attack is of no importance.

Case A∗j and T collude. Similarly, even if A∗j and T collude, fairness for an honest

Ii still follows from the fairness of the puzzle-promise protocol. This is because A∗j ’s

interaction with Ii is restricted in receiving a puzzle z, and handing back a solution.

WhileA∗j can always give Ii an invalid solution ε∗, Ii can easily check that the solution

is invalid (since (ε∗)e 6= z mod N) and refuse to provide goods or services.

Case A∗j , I∗i and T collude. Suppose A∗j , I∗i and T all collude to harm some

156

other honest A and/or I. This can be reduced to one of the two cases above because

an honest A will only interact with I∗i and T ∗, while an honest I will only interact

with A∗j and T .

5.7.2 Unlinkability

Unlinkability is defined in Section 5.3.3 and must hold against a T that does not

collude with other users. We show that all interaction multi-graphs G compatible

with T ’s view are equally likely.

First, note that all TumbleBit payments have the same denomination (1 bitcoin).

Thus, T ∗ cannot learn anything by correlating the values in the transactions. Next,

recall from Section 5.3.1, that all users of TumbleBit coordinate on phases and epochs.

Escrow transactions are posted at the same time, during the Escrow Phase only.

All Tescr(T ,I) cash-out transactions are posted during the Cash-Out Phase only. All

payments made from Ai and Ij occur during the Payment Phase only, and payments

involve no direct interaction between T and I. This rules out timing attacks where

the Tumbler purposely delays or speeds up its interaction with some payer Aj, with

the goal of distinguishing some behavior at the intended payee Ii. Even if the Tumbler

T ∗ decides to cash-out with Aj before the Payment Phase completes (as is done in

Section 5.5.3 when Aj misbehaves), all the Ii still cash out at the same time, during

the Cash-Out Phase.

Next, observe that transcripts of the puzzle-promise and puzzle-solver protocols

are information-theoretically unlinkable. This follows because the puzzle z used by

any Aj in the puzzle-solver protocol is equally likely to be the blinding of any of

the puzzles z that appear in the puzzle-promise protocols played with any Ii (see

Section 5.3.1, equation (5.2)).

Finally, we assume secure channels, so that T ∗ cannot eavesdrop on communica-

tion between Aj’s and Ii’s, and that T ∗ cannot use network information to correlate

157

Aj’s and Ii’s (by e.g., observing that they share the same IP address). Then, the

above two observations imply that all interaction multi-graphs, that are compatible

with the view of T ∗, are equally likely.

5.7.3 Limitations of Unlinkability

TumbleBit’s unlinkability (see Section 5.3.3) is inspired by Chaumian eCash (Chaum,

1983a), and thus suffers from similar limitations. (The full version (Heilman et al.,

2016a) discusses the limitations of Chaumian eCash (Chaum, 1983a) in more detail.)

In what follows, we assume that Alice has a single Bitcoin address AddrA, and Bob

has Bitcoin address AddrI .

Alice/Tumbler collusion. Our unlinkability definition assumes that the Tumbler

does not collude with other TumbleBit users. However, collusion between the Tumbler

and Alice can be used in a ceiling attack. Suppose that some Bob has set up a

TumbleBit payment channel that allows him to accept up to Q TumbleBit payments,

and suppose that Bob has already accepted Q payments at time t0 of the Payment

Phase. Importantly, the Tumbler, working alone, cannot learn that Bob is no longer

accepting payments after time t0. (This follows because the Tumbler and Bob do

not interact during the Payment Phase.) However, the Tumbler can learn this by

colluding with Alice: Alice offers to pay Bob at time t0, and finds that Bob cannot

accept her payment (because Bob has “hit the ceiling” for his payment channel). Now

the Tumbler knows that Bob has obtained Q payments at time t0, and he can rule

out any compatible interaction graphs that link any payment made after time t0 to

Bob.

If we can prevent ceiling attacks (e.g., by requiring Bob to initiate every interaction

with Alice) then Bob’s puzzle z cannot be linked to any payee’s Bitcoin address

AddrI1 , ...,AddrIι , even if Alice and the Tumbler collude; see the full version (Heilman

et al., 2016a).

158

Bob/Tumbler collusion. Bob and the Tumbler can collude to learn the true

identity of Alice. Importantly, this collusion attack is useful only if Bob can be paid

by Alice without learning her true identity (e.g., if Alice is a Tor user). The attack is

simple. Bob reveals the blinded puzzle value z to the Tumbler. Now, when Alice asks

that Tumbler to solve puzzle z, the Tumbler knows that this Alice is attempting to

pay Bob. Specifically, the Tumbler learns that Bob was paid by the Bitcoin address

AddrA that paid for the solution to puzzle z.

There is also a simple way to mitigate this attack. Alice chooses a fresh random

blinding factor r′ ∈ Z∗N and asks the Tumbler to solve the double-blinded puzzle

z = (r′)e · z mod N. (5.5)

Once the Tumbler solves the double-blinded puzzle z, Alice can unblind it by dividing

by r′ and recovering the solution to single-blinded puzzle z. This way, the Tumbler

cannot link the double-blinded puzzle z from Alice to the single-blinded puzzle z from

Bob.

However, even with double blinding, there is still a timing channel. Suppose Bob

colludes with the Tumbler, and sends the blinded puzzle value z to both Alice and the

Tumbler at time t0. The Tumbler can rule out the possibility that any payment made

by any Alice prior to time t0 should be linked to this payment to Bob. Returning to

the terminology of our unlinkability definition (Section 5.3.3), this means that Bob

and the Tumbler can collude to use timing information to rule out some compatible

interaction graphs.

Potato attack. Our definition of unlinkability does not consider external infor-

mation. Suppose Bob sells potatoes that costs exactly 7 bitcoins, and the Tumbler

knows that no other payee sells items that cost exactly 7 bitcoins. The Tumbler can

use this external information rule out compatible interaction graphs. For instance,

159

if Alice made 6 TumbleBit payments, the Tumbler infers that Alice could not have

bought Bob’s potatoes.

Intersection attacks. Our definition of unlinkability applies only to a single epoch.

Thus, as mentioned in Section 5.4.1 and (Bissias et al., 2014; Meiklejohn and Orlandi,

2015), our definition does not rule out the correlation of information across epochs.

Abort attacks. Our definition of unlinkability applies to payments that complete

during an epoch. It does not account for information gained by strategically aborting

payments. As an example, suppose that the Tumbler notices that during several

TumbleBit epochs, (1) Alice always makes a single payment, and (2) Bob hits the

ceiling for his payment channel. Now in the next epoch, the Tumbler aborts Alice’s

payment and notices that Bob no longer hits his ceiling. The Tumbler might guess

that Alice was trying to pay Bob.

5.8 Implementation

To show that TumbleBit is performant and compatible with Bitcoin, we implemented

TumbleBit as a classic tumbler. (That is, each payer and payee can send/receive

Q = 1 payment/epoch.) We then used TumbleBit to mix bitcoins from 800 payers

(Alice A) to 800 payees (Bob I). We describe how our implementation instantiates

our TumbleBit protocols. We then measure the off-blockchain performance, i.e.,

compute time, running time, and bandwidth consumed. Finally, we describe two

on-blockchain tests of TumbleBit.

5.8.1 Protocol Instantiation

We instantiated our protocols with 2048-bit RSA. The hash functions and signatures

are instantiated as described in the captions to Figure 5·3 and Figure 5·4.7

7There were slight difference between our protocols as described in this chapter and the implemen-
tation used in some of the tests. In Figure 5·3, A reveals blinds rj∀j ∈ R to T , our implementation

160

Choosing m and n in the puzzle-solving protocol. Per Theorem 5.5.1, the

probability that T can cheat is parameterized by 1/
(
m+n
m

)
where m is the number of

“real” values and n is the number of “fake” values in Figure 5·3. From a security

perspective, we want m and n to be as large as possible, but in practice we are

constrained by the Bitcoin protocol. Our main constraint is that m RIPEMD-160

hash outputs must be stored in Tpuzzle of our puzzle-solver protocol. Bitcoin P2SH

scripts (as described below) are limited in size to 520 bytes, which means m ≤ 21.

Increasing m also increases the transaction fees. Fortunately, n is not constrained by

the Bitcoin protocol; increasing n only means we perform more off-blockchain RSA

exponentiations. Therefore, we chose m = 15 and n = 285 to bound T ’s cheating

probability to 2−80. (2−80 equals RIPEMD-160’s collision probability.)

Choosing µ and η in the puzzle-promise protocol. Theorem 5.6.1 also allows

T to cheat with probability 1/
(
µ+η
µ

)
. However, this protocol has no Bitcoin-related

constraints on µ and η. Thus, we take µ = η = 42 to achieve a security level of

2−80 while minimizing the number of off-blockchain RSA computations performed in

Figure 5·4 (which is µ+ η).

Scripts. By default, Bitcoin clients and miners only operate on transactions

that fall into one of the five standard Bitcoin transaction templates. We therefore

conform to the Pay-To-Script-Hash (P2SH) (Andresen, 2014b) template. To format

transaction Toffer (per Section 5.2) as a P2SH, we specify a redeem script (written

in Script) whose condition C must be met to fulfill the transaction. This redeem

script is hashed and stored in transaction Toffer . To transfer funds out of Toffer , a

transaction Tfulfill is constructed. Tfulfill includes (1) the redeem script and (2) a set of

input values that the redeem script is run against. To programmatically validate that

instead reveals an encrypted version rej ∀j ∈ R. This change does not affect performance, since A
hold both rj and rej . Also, our implementation omits the index hashes hR and hF from Figure 5·4;
these are two 256-bit hash outputs and thus should not significantly affect performance. We have
since removed these differences.

161

Table 5.2: Average performance of RSA-puzzle-solver and classic tum-
bler, in seconds. (100 trials) running between New York (NY), Boston
(BOS), and Tokyo (TOK).

Compute
Time

Running Time
(BOS-NY)

RTT
(BOS-NY)

Running Time
(BOS-TOK)

RTT
(BOS-TOK) Bandwidth

RSA-puzzle-solving 0.398 0.846 0.007949 4.18 0.186 269 KB
In clear 0.614 1.190 0.008036 5.99 0.187 326 KB
B over Tor 0.614 3.10 0.0875 8.37 0.273 342 KB
Both over Tor 0.614 6.84 0.0875 10.8 0.273 384 KB

Table 5.3: Average off-blockchain running times of TumbleBit’s
phases, in seconds. (100 trials)

Compute
Time

Running Time
(Boston-New York-Toronto)

Running Time
(Boston-Frankfurt-Tokyo)

Escrow 0.2052 0.3303 1.5503
Payment 0.3878 1.1352 4.3455
Cash-Out 0.0046 0.0069 0.0068

Tfulfill can fulfill Toffer , the redeem script Tfulfill is hashed, and the resulting hash value

is compared to the hash value stored in Toffer . If these match, the redeem script is

run against the input values in Tfulfill . Tfulfill fulfills Toffer if the redeem script outputs

true. All our redeem scripts include a time-locked refund condition, that allows the

party offering Toffer to reclaim the funds after a time window expires. To do so, the

party signs and posts a refund transaction Trefund that points to Toffer and reclaims

the funds locked in Toffer . We reproduce our scripts in the full version (Heilman et al.,

2016a).

5.8.2 Off-Blockchain Performance Evaluation

We evaluate the performance for a run of our protocols between one payer Alice A,

one payee Bob I and the Tumbler T . We used several machines: an EC2 t2.medium

instance in Tokyo (2 Cores at 2.50 GHz, 4 GB of RAM), a MacBook Pro in Boston

(2.8 GHz processor, 16 GB RAM), and Digital Ocean nodes in New York, Toronto

and Frankfurt (1 Core at 2.40 GHz and 512 MB RAM).

Table 5.4: Transaction sizes and fees in our tests.

Transaction Size Satoshi/byte Fee (in BTC)
Tescr 190B 30 0.000057
Tcash 447B 30 0.000134
Trefund for Tescr 373B 30 0.000111
Tpuzzle 447B 15 0.000067
Tsolve 907B 15 0.000136
Trefund for Tpuzzle 651B 20 0.000130

162

Puzzle-solver protocol (Table 5.2). The total network bandwidth consumed

by our protocol was 269 Kb, which is roughly 1/8th the size of the “average webpage”

per (the Internet Archive, 2015) (2212 Kb). Next, we test the total (off-blockchain)

computation time for our puzzle-solver protocol (Section 5.5.1) by running both par-

ties (A and T) on the Boston machine. We test the impact of network latency by

running A in Boston and T in Tokyo, and then with T in New York. (The average

Boston-to-Tokyo Round Trip Times (RTT) was 187 ms and the Boston-to-New York

RTT was 9 ms.) From Table 5.2, we see the protocol completes in < 4 seconds, with

running time dominated by network latency. Indeed, even when A and T are very far

apart, our 2048-bit RSA puzzle solving protocol is still faster than (Maxwell, 2016)’s

16x16 Sudoku puzzle solving protocol, which takes 20 seconds.

TumbleBit as a classic tumbler (Table 5.2). Next, we consider classic Tumbler

mode (Section 5.4). We consider a scenario where A and I use the same machine,

because Alice A wants anonymize her bitcoin by transferring it to a fresh ephemeral

bitcoin address that she controls. Thus, we run (1) A and I in Boston and T in

Tokyo, and (2) A and I in Boston and T in New York. To prevent the Tumbler

T for linking A and I via their IP address, we also tested with (a) I connecting to

T over Tor, and (b) both A and I connected through Tor. Per Table 5.2, running

time is bound by network latency, but is < 11 seconds even with when both parties

connect to Tokyo over Tor. Connecting to New York (in clear) results in ≈ 1 second

running time. Compute time is only 0.6 seconds, again measured by running A, I

and T on the Boston machine. Thus, TumbleBit’s performance, as a classic Tumbler,

is bound by the time it takes to confirm 2 blocks on the blockchain (≈ 20 minutes).

Performance of TumbleBit’s Phases. (Table 5.3) Next, we break out the

performance of each of TumbleBit’s phases when Q = 1. We start by measuring

compute time by running all A, I and T on the Boston machine. Then, we locate

163

each party on different machines. We first set A in Toronto, B in Boston and T in

New York and get RTTs to be 22 ms from Boston to New York, 23 ms from New

York to Toronto, and 55 ms from Toronto to Boston. Then we set A in Frankfurt, B

in Boston and T in Tokyo and get RTTs to be 106 ms from Boston to Frankfurt, 240

ms from Frankfurt to Tokyo, and 197 ms from Tokyo to Boston. An off-blockchain

payment in the Payment Phase completes in under 5 seconds and most of the running

time is due to network latency.

5.8.3 Blockchain Tests

Our on-blockchain tests use TumbleBit as a classic tumbler, where payers pay them-

selves into a fresh ephemeral Bitcoin address. All transactions are visible on the

blockchain. Transaction IDs (TXIDs) are hyperlinked below. The denomination

of each TumbleBit payment (i.e., the price of puzzle solution) was 0.0000769 BTC

(roughly $0.04 USD on 8/15/2016). Table 5.4 details the size and fees8used for each

transaction.

Test where everyone behaves. In our first test, all parties completed the proto-

col without aborting. We tumbled 800 payments between ℵ = 800 payers and ℵ = 800

payees, resulting in 3200 transactions posted to the blockchain and a k-anonymity

of k = 800.The puzzle-promise escrow transactions Tescr(T ,I) are all funded from this

TXID and the puzzler-solver escrow transactions Tescr(A,T) are all funded from this

TXID. This test completed in 23 blocks in total, with Escrow Phase completing in 16

blocks, Payment Phase taking 1 block, and Cash-Out Phase completing in 6 blocks.

We note, however, that our protocol could also have completed much faster, e.g.,

with 1 block for the Escrow Phase, and 1 block for the Cash Out Phase. A Bitcoin

8We use a lower transaction fee rate of 15 Satoshi/byte (see Table 5.4) for Tpuzzle and Tsolve be-
cause we are in less of hurry to have them confirmed. Specifically, if A refuses to sign Tcash(A,T), then
T ends the Payment Phase with A early (even before the Cash-Out Phase begins), and immediately
posts Tpuzzle and then Tsolve to the blockchain. See Section 5.5.3.

https://blockchain.info/tx/fd51bd844202ef050f1fbe0563e3babd2df3c3694b61af39ac811ad14f52b233
https://blockchain.info/tx/8520da7116a1e634baf415280fdac45f96e680270ea06810512531a783f0c9f6

164

block can typically hold ≈ 5260 of our 2-of-2 escrow transactions Tescr and ≈ 2440 of

our cash-out transaction Tcash. We could increase transaction fees to make sure that

our Escrow Phase and Cash-Out phase (each confirming 2× 800 transactions) occur

within one block. In our tests, we used fairly conservative transaction fees (Table 5.4).

As a classic Tumbler, we therefore expect TumbleBit to have a higher denomination

than the 0.0000769 BTC we used for our test. For instance, transaction fees of 60

Satoshi per Byte (0.0007644 BTC/user) are ≈ 1/1000 of a denomination of 0.5 BTC.

Test with uncooperative behavior. Our second run of only 10 users (5 payers

and 5 payees) demonstrates how fair exchange is enforced in the face of uncooperative

or malicious parties. Transactions Tescr(A,T) and Tpuzzle were timelocked for 10 blocks

and Tescr(T ,I) was timelocked for 15 blocks. All escrow transactions Tescr(A,T) are

funded by TXID and all escrow transactions Tescr(T ,I) are funded by TXID. Two

payer-payee pairs completed the protocol successfully. For the remaining three pairs,

some party aborted the protocol:

425500

425502
Escrow Phase
Tescr(𝓐, 𝓣) & Tescr(𝓣, 𝓑)

425505

425507

{Case 2 & 3: Tpuzzle

Case 3: Tsolve

425509

425511

Case 1: Tescr(𝓐, 𝓣) Refund
Case 2: Tpuzzle Refund

Block Height {

{

425514 {

 Case 1 & 2: Tescr(𝓣, 𝓑) Refund
425527

Figure 5·5: Timeline of test with uncooperative behavior, showing
block height when each transaction was confirmed.

Case 1: The Tumbler T (or, equivalently, Alice A1) refused to cooperate after the

Escrow Phase. Alice A1 reclaims her bitcoins from escrow transaction Tescr(A,T) via

a refund transaction after the timelock expires. The Tumbler T reclaims its bitcoins

from his payment channel with Bob I1 escrow transaction Tescr(T ,I) via a refund

transaction after the timelock expires.

https://blockchain.info/tx/71484544a15f97d3f9adad5a631db7cfcd5f7ec552e17970b4d968c86d543939
https://blockchain.info/tx/44e25bc0ed840f9bf0e58d6227db15192d5b89e79ba4304da16b09703f68ceaf
https://blockchain.info/tx/fbfc8d5deb86bb51ad1af902c8f8ce2d646043bc1b185b43d6612908727bb1cc
https://blockchain.info/tx/ec2c71e180e23f7b8a23e80e86ebc7baa0a2bd92a900c88b0e81a5a524f15ac4
https://blockchain.info/tx/6bd9fe5986aba3868a24eb1e8ee3aac9121efe8892a767277192865c23eef46a
https://blockchain.info/tx/cfdb679ac64c53159b753d74f09c66f78c27a2be1de8d2a435ece3aa670f5367
https://blockchain.info/tx/cfdb679ac64c53159b753d74f09c66f78c27a2be1de8d2a435ece3aa670f5367

165

Case 2: The Tumbler aborts the puzzle-solver protocol by posting the transaction

Tpuzzle but refusing to provide the transaction Tsolve. No payment completes from A2

to I2. Instead, A2 reclaims her bitcoin from Tpuzzle via a refund transaction after the

timelock in Tpuzzle expires. Tumbler reclaims its bitcoins from its payment channel

with Bob I2 via a refund transaction after the timelock on the escrow transaction

Tescr(T ,I) expires.

Case 3: The Tumbler provides Alice A3 the solution to her puzzle in the puzzle-

solver protocol, and the Tumbler has an Tpuzzle signed by A (Section 5.5.3). However,

Alice refuses to sign the cash-out transaction Tcash(A,T) to pay out from her escrow

with the Tumbler. Then, the Tumbler signs and posts the transaction Tpuzzle and its

fulfilling transaction Tsolve and claims its bitcoin. Payment from A3 to I3 completes

but the Tumbler has to pay more in transaction fees. This is because the Tumbler has

to post both transactions Tpuzzle and Tsolve, rather than just Tcash(A,T); see Table 5.4.

Remark: Anonymity when parties are uncooperative. Notice that in Case

1 and Case 2, the protocol aborted without completing payment from Alice to Bob.

k-anonymity for this TumbleBit run was therefore k = 3. By aborting, the Tumbler

T learns that payers A1,A2 were trying to pay payees I1, I2. However, anonymity

of A1,A2, B1, B2 remains unharmed, since I1 and I2 were using ephemeral Bitcoin

addresses they now discard to safeguard their anonymity (see Section 5.4.1).

https://blockchain.info/tx/d0a4f26ab7a0006713cbe63ab16e889b57dc14a837d0b954c996bf22c707dc20
https://blockchain.info/tx/d0a4f26ab7a0006713cbe63ab16e889b57dc14a837d0b954c996bf22c707dc20
https://blockchain.info/tx/4f98a8cf05a855016056fc2d12fa2cd7eeaed4f07ab8cc3d381b1a69d1ffd025
https://blockchain.info/tx/5ab204fc3c709ae877057537c5130eaa74f036c77ecc002a4132090d0ae50a42
https://blockchain.info/tx/0a356de3c61669011e2a77acdd618fcefd5711dc8089a85329035844b0772c35
https://blockchain.info/tx/0a356de3c61669011e2a77acdd618fcefd5711dc8089a85329035844b0772c35
https://blockchain.info/tx/a69fd26e6c7c8717c5833a8766faba5e6ded46fff4a730a426efcad19d245dff
https://blockchain.info/tx/6c3ecfe9a9ae5e41e4a699cac286270246e0f9d9e2373226b08b6f2cca71a3a8
https://blockchain.info/tx/6c3ecfe9a9ae5e41e4a699cac286270246e0f9d9e2373226b08b6f2cca71a3a8

Appendix A

Appendix: Improving the Transparency of

the RPKI

A.1 Local consistency check

Relying parties use the following local consistency check (Section 2.6.4).

Initial sync. The initial connection to the repository is as in the current RPKI: all

objects are downloaded and validated. If a relying party cannot obtain the valid cur-

rent manifest of an RC R, or any objects logged in the manifest (as in Section 2.4.1),

it raises a missing information alarm that blames RC R or the communication path

to the publication point of R.

Subsequent syncs.

In the current design of the RPKI, updates to a relying party’s local cache are

performed all at once. We, instead, require incremental processing of updates: a rely-

ing party updates its local cache one publication point and one consecutive manifest

change at a time. Updates are performed only for manifests issued by valid RCs.

Incremental updates allow us to avoid race conditions than can occur when author-

ities update their manifests in parallel; see Counterexample 2. (We do allow relying

parties to sync to publication points in any order, and to parallelize updates of pub-

lication points that are not in an ancestor-descendant relationship.) New RCs are an

exception to this rule: the entire subtree rooted at new a RC should be downloaded

and validated immediately to allow for quick issuance of new objects.

166

167

When a relying party obtains an updated state of a publication point, it recon-

structs all the intermediate states of the publication point, and then compares pairs

of consecutive states (indicated by consecutive manifest numbers) to make sure that

(a) all new or modified objects are valid, and (b) all deletions and overwrites received

proper consent. If not, it issues one of the middle alarms in Table 2.3. Details are in

our tech report.

Appendix B

Appendix: Eclipse Attack on Bitcoin’s

P2P Network

B.1 A Useful Lemma

Lemma B.1.1. If k items are randomly and independently inserted into n buckets,

and X is a random variable counting the number of non-empty buckets, then

E[X] = n
(
1− (n−1

n
)k
)
≈ n(1− e−

k
n) (B.1)

Proof. Let Xi = 1 if bucket i is non-empty, and Xi = 0 otherwise. The probability

that the bucket i is empty after the first item is inserted is (n−1
n

). After inserting k

items

Pr[Xi = 1] = 1−
(
n−1
n

)k
It follows that

E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

Pr[Xi = 1] = n(1− (n−1
n

)k)

(B.1) follows since (n−1
n

) ≈ e−1/n for n� 1.

B.2 Overwriting the New Table

How should the attacker send ADDR messages that overwrite the new table with “trash”

IP addresses? Our “trash” is from the unallocated Class A IPv4 address block

252.0.0.0/8, designated by IANA as “reserved for future use” (IANA, 2015); any

connections these addresses will fail, forcing the victim to choose an address from

168

169

Figure B·1: E[N] vs s (the number of source groups) for different
choices of g (number of groups per source group) when overwriting the
new table per equation (B.2).

tried. Next, recall (Section 3.2.2) that the pair (group, source group) determines the

bucket in which an address in an ADDR message is stored. Thus, if the attacker con-

trols nodes in s different groups, then s is the number of source groups. We suppose

that nodes in each source group can push ADDR messages containing addresses from

g distinct groups; the “trash” 252.0.0.0/8 address block give an upper bound on g of

28 = 256. Each group contains a distinct addresses. How large should s, g, and a be

so that the new table is overwritten by “trash” addresses?

B.2.1 Infrastructure strategy

In an infrastructure attack, the number of source groups s is constrained, and the

number of groups g is essentially unconstrained. By Lemma B.1.1, the expected

number of buckets filled by a s source groups is

E[N] = 256(1− (255
256

)32s) (B.2)

We expect to fill ≈ 251 of 256 new buckets with s = 32.

Each (group, source group) pair maps to a unique bucket in new, and each bucket

in new can hold 64 addresses. Bitcoin eviction is used, and we suppose each new bucket

is completely full of legitimate addresses that are older than all the addresses inserted

by the adversary via ADDR messages. Since all a addresses in a particular (group,

170

source group) pair map to a single bucket, it follows that the number of addresses

that actually stored in that bucket is given by E[Ya] in the recurrence relation of

equations of (3.5)-(3.6). With a = 125 addresses, the adversary expects to overwrite

E[Ya] = 63.8 of the 64 legitimate addresses in the bucket. We thus require each source

group to have 32 peers, and each peer to send ADDR messages with 8 distinct groups

of a = 125 addresses. Thus, there are g = 32 × 8 = 256 groups per source group,

which is exactly the maximum number of groups available in our trash IP address

block. Each peer sends exactly one ADDR message with 8× 125 = 1000 address, for a

total of 256 × 125 × s distinct addresses sent by all peers. (There are 224 addresses

in the 252.0.0.0/8 block, so all these addresses are distinct if s < 524.)

B.2.2 Botnet strategy

In a botnet attack, each of the attacker’s t nodes is in a distinct source group. For

s = t > 200, which is the case for all our botnet attacks, equation (B.2) shows that

the number of source groups s = t is essentially unconstrained. We thus require each

peer to send a single ADDR message containing 1000 addresses with 250 distinct groups

of four addresses each. Since s = t is so large, we can model this by assuming that

each (group, source group) pair selects a bucket in new uniformly at random, and

inserts 4 addresses into that bucket; thus, the expected number of addresses inserted

per bucket will be tightly concentrated around

4× E[B(250t, 1
256

] = 3.9t

For t > 200, we expect at least 780 address to be inserted into each bucket. From

equations (3.5) and (3.6), we find E[Y780] ≈ 64, so that each new bucket is likely to

be full.

Appendix C

Appendix: TumbleBit

C.1 Details of our Bitcoin Scripts

Figure C·1 overviews the relationships between the transactions used in the TumbleBit

protocol. We walk through the details of our transactions, explain why they conform

to the Pay-To-Script-Hash (P2SH) (Andresen, 2014b) template, and discuss why

TumbleBit protocol is not affected by the transaction malleability issue (Andrychowicz

et al., 2015) of the current Bitcoin protocol:

Transaction malleability. The transaction malleability issue is roughly explained

as follows. If one bitcoin transaction Tfulfill fulfills another bitcoin transaction Toffer ,

then Tfulfill must contain a pointer to Toffer . The pointer is the TXID, which is the

hash of entire Toffer transaction, including any signatures on that transaction. Now,

bitcoin uses ECDSA signatures over the Secp256k1 elliptic curve. It is well known that

ECDSA signatures are not deterministic. First, a party that holds the secret signing

key can easily produce multiple valid signatures on a single message m. Second,

even a party that does not know the secret signing key can take a valid signature

on a message m, and maul it to produce a different valid signature on m. Now,

because TXID is the hash of the entire Toffer transaction, including all signatures on

that transaction, mauling these signatures results to a different TXID of Toffer . Such

mauling attacks are not a problem for a transaction that is already in a blockchain,

but they can cause problems to transactions that are still unconfirmed.

171

172

The Bitcoin community is currently considering patching transaction malleability

using a solution called segregated witness (Wuille, 2015), but as of this writing it has

not been fully deployed (Faife, 2017). TumbleBit, however, remains secure even in

the absence of segregated witness.

Interaction between Tumbler and Bob.

The right side of the Figure C·1 presents the transactions used for the interaction

between the Tumbler T and Bob I. The script in the Tescr(T ,I) transaction offers

1 bitcoin to a fulfilling transaction satisfies the condition (I ∧ T) ∨ (T ∧ tw2), i.e.,

a transaction that is either (1) signed by both I and T , or (2) signed by T and

posted to the blockchain after timewindow tw2. Condition (2) is time-locked refund

condition which is scripted as follows:

locktime

OP_CHECKLOCKTIMEVERIFY

OP_DROP

payer_pubkey

OP_CHECKSIG

where locktime is a timewindow (i.e., an absolute block height). All subsequent

descriptions of our scripts use refund condition as a placeholder for the script above.

For Tescr(T ,I), the refund condition script has locktime is set to tw2 and payer pubkey

is set to the Tumbler’s public key.

Now, the full redeem script for the two-of-two escrow transaction Tescr(T ,I) is as

follows:

OP_IF

OP_2

payer_pubkey

redeemer_pubkey

OP_2

173

OP_CHECKMULTISIG,

OP_ELSE

refund_condition

OP_ENDIF

where payer pubkey is the Tumbler’s public key, redeemer pubkey is Bob’s public

key, and the refund condition is scripted as described above with locktime set

equal to tw 2. Note that instructions up to and including OP CHECKMULTISIG checks

for the condition T ∧ I—checking if a valid Tcash(T ,I) has been posted that is signed

by both Tumbler T and Bob I. The redeem script above is hashed and its hash is

stored in Tcash(T ,I). (This ensures that the transaction conform to the to the Pay-To-

Script-Hash (P2SH) (Andresen, 2014b) template.)

If Tcash(T ,I) is posted to the blockchain, it contains (1) the redeem script above

and (2) the following input values that include the required two signatures:

OP_FALSE

payer_signature

redeemer_signature

OP_TRUE

To programmatically validate that Tcash(T ,I) can fulfill Tescr(T ,I) (per the P2SH tem-

plate), the redeem script in Tcash(T ,I) is hashed, and the resulting hash value is com-

pared to the hash value stored in Tescr(T ,I). If these match, the redeem script is run

against the input values in Tcash(T ,I). Tcash(T ,I) fulfills Tescr(T ,I) if the redeem script

outputs true.

Meanwhile, if Bob I refuses to post Tcash(T ,I) before the timewindow tw2 ends,

then the Tumbler T can reclaim the bitcoin escrowed in Tescr(T ,I) by posting a refund

transaction Trefund(T ,I). (See the right side of Figure C·1.) When Trefund(T ,I) is posted

to the blockchain, it contains (1) the redeem script above and (2) the following input

values, where signature is a signature that verifies under payer pubkey:

174

Signature

OP_FALSE

Trefund(T ,I) fulfills Tescr(T ,I) if the hash of the redeem script in Trefund(T ,I) matches the

hash value stored in Tescr(T ,I), and if the redeem script in Trefund(T ,I) outputs true

when run against the input values in Trefund(T ,I).

Notice that Bob I is not involved in constructing the refund transaction Trefund(T ,I);

indeed, Trefund(T ,I) need only be signed by the Tumbler T . There are two reasons why

this is crucial.

First, Trefund(T ,I) must be posted when I becomes uncooperative. Thus, Tumbler

T can singlehandedly post Trefund(T ,I), and reclaim his bitcoin, even in cases where

Bob refuses to interact with T .

The second reason is the transaction malleablity issue (Andrychowicz et al., 2015)

of the current Bitcoin protocol. Suppose that Bob I mauls1 his signature on transac-

tion Tescr(T ,I) before it is posted to the blockchain, causing the TXID for Tescr(T ,I) to

change from the TXID value expected by T . This has no effect on the Tumbler’s abil-

ity to post the refund transaction Trefund(T ,I). Specifically, before posting Trefund(T ,I),

the Tumbler need only find Tescr(T ,I) on the blockchain, hash Tescr(T ,I) to obtain its

TXID, and use this TXID when it forming his refund transaction Trefund(T ,I). By

contrast, suppose our protocol had instead somehow required Bob to participate in

forming Trefund(T ,I) before Tescr(T ,I) had been posted to the blockchain. Then a mali-

cious Bob could give the Tumbler a valid Trefund(T ,I) on Tescr(T ,I). Then, Bob could

maul the signatures on Tescr(T ,I), and then post the mauled Tescr(T ,I) to the blockchain.

Tescr(T ,I) would still be a valid transaction, but the Trefund(T ,I) held by the Tumbler

would be useless, because Trefund(T ,I) no longer points to Tescr(T ,I) (because Bob has

mauled the TXID of Tescr(T ,I)).

1In fact, this mauling could even be done by the Bitcoin miner that confirms Tescr(T ,I) on the
blockchain!

175

Interaction between Tumbler and Bob.

The left side of the Figure C·1 presents the transactions used for the interaction

between Alice A and the Tumbler T . The script in the Tescr(A,T) transaction offers

1 bitcoin to a fulfilling transaction satisfies the condition (A ∧ T) ∨ (T ∧ tw1). The

redeem script for this transaction is identical to the one used in Tescr(T ,I), except that

now payer pubkey is Alice’s public key, redeemer pubkey is the Tumbler’s public

key, and the locktime in the refund condition is set equal to tw 1. Tcash(A,T) from

Figure C·1 is formed analogously to Tcash(T ,I), and the refund Trefund(A,T) pointing to

Tescr(A,T) is formed analogously to Trefund(T ,I).

Recall from Section 5.5.3, that in the puzzle-solver protocol, Alice forms and

signs Tpuzzle and sends it to the Tumbler. Transaction Tpuzzle fulfils Tescr(A,T) via

the condition (A ∧ T). Thus, (just like Tcash(A,T)), a valid transaction Tpuzzle should

contain (1) a hash of redeem script for Tescr(T ,I), and (2) input values that include the

required signatures fromA and T . If a valid Tpuzzle is posted to the blockchain, Alice’s

bitcoin escrowed in Tescr(A,T) is transferred to Tpuzzle. However, this bitcoin remains

locked up in Tpuzzle until Tpuzzle fulfilled by a transaction the meets the condition

(T ∧ A∀j ∈ R : hj = H(kj)) ∨ (A ∧ tw1) as specified to the following redeem script:

OP_IF

OP_RIPEMD160, h1, OP_EQUALVERIFY

OP_RIPEMD160, h2, OP_EQUALVERIFY

...

OP_RIPEMD160, h15, OP_EQUALVERIFY

redeemer_pubkey

OP_CHECKSIG

OP_ELSE

refund_condition

OP_ENDIF

The redeemer pubkey is the Tumbler T public key, and the refund condition has

176

payer pubkey as Alice’s public key and locktime as tw1. This redeem script checks

that either (1) the fulfilling transaction has input values that contain the correct

preimages (h1, . . . , h15 from Figure 5·3) and is signed by T ’s public key, or (2) the ful-

filling transaction is a refund transaction signed by Alice and posted to the blockchain

after timewindow tw1. This redeem script is hashed and its hash is stored in Tpuzzle.

To fulfil Tpuzzle, the transaction Tsolve contains (1) the redeem script whose hash is

stored in Tpuzzle, and (2) the following input values:

signature

k15

...

k1

OP_TRUE

where signature is a signature under the the Tumbler T ’s public key. The preimages

k1, ..., k15 are such that H(k`) = h` per Figure 5·3.

Per Section 5.5.3, however, if all parties are cooperative, the Tumbler T just

holds on to Tpuzzle and never signs or posts Tpuzzle to the blockchain. However, it is

important to note that once Alice A provides Tpuzzle to the Tumbler T , the Tumbler

can claim the bitcoin escrowed in Tescr(A,T). To do this, T just signs and posts

Tpuzzle to the blockchain, and then forms, signs and posts Tsolve to the blockchain.

No involvement from Alice A is required to do this, and thus the Tumbler T can

claim his bitcoin even if Alice stops communicating with T . Notice, however, if T

decides to unilaterally claims a bitcoin by posting Tsolve, the Tumbler T necessarily

reveals the puzzle solution (see Section 5.5.1). Therefore, Alice gets what she paid for

even if she stops cooperating with the Tumbler T . As a final note, Alice cannot use

transaction malleability to steal her bitcoin from the Tumbler; when Alice A gives

Tpuzzle to the Tumbler T , then Tpuzzle points to the Tescr(A,T) transaction which is

already confirmed by the blockchain and thus cannot be mauled.

177

Finally, recall from Section 5.5.3 that if T becomes uncooperative, T could sign

and post Tpuzzle to the blockchain, and then refuse to sign and post Tsolve. In this

case, Alice never obtains her puzzle solution, and must reclaim her bitcoin which

is locked in Tpuzzle by posting a refund transaction Trefund(A,T) that points at Tpuzzle.

(See Figure C·1.) Specifically, Trefund(A,T) points at Tpuzzle and (1) contains the redeem

redeem script whose hash is stored in Tpuzzle and (2) and the following input values

values, where signature is a signature that verifies under Alice’s public key:

Signature

OP_FALSE

Once again, Alice can post Trefund(A,T) without any help from the Tumbler. Once

again, this matters because the refund transactions must be posted when T becomes

uncooperative, and must still be valid even in the face of transaction malleability

(i.e., if T mauls the TXID for the transaction fulfilled by Trefund(A,T).)

178

Tcash(𝓐,𝓣)

Inputs:
 0. ← (𝓐 ∧ 𝓣)
Outputs:
 0. [1 BTC] → 𝓣

Tpuzzle
Inputs:
 0. ← (𝓐 ∧ 𝓣)
Outputs:
 0. [1 BTC] → (𝓣 ∧ ∀j∈R:hj=H(kj))∨(𝓐 ∧ tw1)

Tsolve
Inputs:
 0. ← 𝓣 ∧ ∀j∈R:hj=H(kj)
Outputs:
 0. [1 BTC] → 𝓣

Tescr(𝓐,𝓣)

Inputs:
 0. ← 𝓐
Outputs:
 0. [1 BTC] → (𝓐 ∧ 𝓣) ∨ (𝓐 ∧ tw1)

⊕

Tescr(𝓣,𝓑)

Inputs:
 0. ← 𝓣
Outputs:
 0. [1 BTC] → (𝓑 ∧ 𝓣) ∨ (𝓣 ∧ tw2)

Tcash(𝓣,𝓑)

Inputs:
 0. ← (𝓑 ∧ 𝓣)
Outputs:
 0. [1 BTC] → 𝓑

Trefund(𝓐,𝓣)

Inputs:
 0. ← 𝓐 ∧ tw1

Outputs:
 0. [1 BTC] → 𝓐

T refund(𝓣,𝓑)

Inputs:
 0. ← 𝓣 ∧ tw2

Outputs:
 0. [1 BTC] → 𝓣

⊕

⊕
Trefund(𝓐,𝓣)

Inputs:
 0. ← 𝓐 ∧ tw1

Outputs:
 0. [1 BTC] → 𝓐

Uncooperative 𝓑

Uncooperative 𝓣 Uncooperative 𝓐

Alice to Tumbler (𝓐→𝓣) Transactions Tumbler to Bob (𝓣→𝓑) Transactions

Figure C·1: Transaction relationships when Q = 1. Arrows indicate spending. Transactions in dotted
line boxes denote transactions that are only published if a party is uncooperative.

179

C.2 TumbleBit transactions on Bitcoin’s Blockchain

We ran the TumbleBit protocol to achieve a classic-tumbler for 800 users(i.e., ℵ =

anonymity-set = 800). In this run of protocol. For readability we refer to each txid

with a number given as follows:

1. fd51bd844202ef050f1fbe0563e3babd2df3c3694b61af39ac811ad14f52b233

2. 8520da7116a1e634baf415280fdac45f96e680270ea06810512531a783f0c9f6

3. cc6ce9f949f84f35aa33ed24c40c3a1a9d2988a69b97b95a4ca00526ae176794

4. a2819ac0112d272467b8c2c9f62a5ff1742108fb3d2da2b763bcfcd0c7d2d504

5. 0d26f9a51d3f580a8d4665e80135d7402cb3512f04cb30081ce2a5b37669beff

6. 016ddd812b4b55c3fd5b6e19a2f0930ba5842fa60c753d73d4dabb1f5d407f77

7. 4b961d9d3355f4940277aafbeb28ee10834c4eac73b2b541dd784c08936fd5b7

8. 5b71e3eba88c2760f4edf7c50a1dcfc3ff3437742dc725c3797a8bd0593462e6

9. 607dbdd7863200235c26d3e943e1acb4e70077eadb6b25448c15ef87eb65925d

10. e16a086fa132130c6e3db4b1764fa6e2b1b167fd44d28062ec891e0588b1a212

11. dbe59befda9f050ad4f4de20d288a35fddb389f0dc210b6444f52d99f0c5cdca

12. 72f01960d3b856a1c34bd914da0c570b367f0b3134d3a14fe9468c5deb393fc0

For the 800 user tumble the puzzle-promise escrow fund transactions all spend

from txid:1 and the puzzler-solver escrow fund transactions all spend from txid:2.

Our second run of only 10 users demonstrates how our fair exchange properties

are enforced in the face of cooperative or malicious parties.

180

If Alice or the Tumbler refuse to cooperate after both escrow fund transactions

(TXID:3, TXID:4) has been confirmed, Alice reclaims her bitcoins via a refund trans-

action (TXID:5) after the timelock of tw1 blocks expires and then later the Tumber

reclaims its bitcoins via a refund transaction (TXID:3) after a timelock of tw2 blocks

expires). If the Tumbler posts the preimage fund (TXID:6) and refuses to provide Al-

ice the preimage spend, Alice reclaims her bitcoins via a refund transaction (TXID:7)

after the timelock tw1 on the preimage fund expires and the Tumbler reclaims its

bitcoins after the timelock tw2 on puzzle-promise escrow (TXID:8) expires. If the

however the Tumbler has provided Alice the solution to the puzzle and Alice refuses

to sign the puzzle-solver escrow spend, the Tumbler posts the preimage fund (TXID:9)

and the preimage spend (TXID:10) and claims its bitcoins.

The puzzle-promise escrow fund transactions all spend from TXID:11 and the

puzzler-solver escrow fund transactions all spend from TXID:12.

References

Aiello, W., Ioannidis, J., and McDaniel, P. (2003). Origin authentication in inter-
domain routing. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 165–178. ACM.

Aleman, M. (2021). El salvador makes bitcoin legal tender. Associated Press.
Accessed: 2021-06-27.

Amante, S. (2012). Risks associated with resource certification systems for internet
numbers.

Anceaume, E., Busnel, Y., and Gambs, S. (2013). On the power of the adversary
to solve the node sampling problem. In Transactions on Large-Scale Data-and
Knowledge-Centered Systems XI, pages 102–126. Springer.

Anderson, D. (2012). Splinternet behind the great firewall of china. Queue,
10(11):40.

Andresen, G. (2014a). CVE-2013-5700: Remote p2p crash via bloom filters. https:

//en.bitcoin.it/wiki/Common Vulnerabilities and Exposures. Accessed: 2014-
02-11.

Andresen, G. (2014b). BIP-0016: Pay to Script Hash. Bitcoin Improvement Propos-
als.

Andriesse, D. and Bos, H. (2014). An analysis of the zeus peer-to-peer protocol.

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. (2014). Secure
multiparty computations on bitcoin. In IEEE S&P, pages 443–458.

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. (2015). On
the malleability of bitcoin transactions. In International Conference on Financial
Cryptography and Data Security, pages 1–18. Springer.

Apostolaki, M., Zohar, A., and Vanbever, L. (2017). Hijacking bitcoin: Routing
attacks on cryptocurrencies. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 375–392. IEEE.

Austein, R., Huston, G., Kent, S., and Lepinski, M. (2012). RFC 6486: Manifests for
the Resource Public Key Infrastructure (RPKI). Internet Engineering Task Force
(IETF). http://tools.ietf.org/html/rfc6486.

181

https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://eprint.iacr.org/2013/784.pdf
https://eprint.iacr.org/2013/784.pdf
http://link.springer.com/chapter/10.1007/978-3-662-48051-9_1
http://link.springer.com/chapter/10.1007/978-3-662-48051-9_1
http://tools.ietf.org/html/rfc6486

182

Awerbuch, B. and Scheideler, C. (2006). Robust random number generation for peer-
to-peer systems. In Principles of Distributed Systems, pages 275–289. Springer.

AWS (2014). Amazon web services elastic ip. http://aws.amazon.com/ec2/faqs/
#elastic-ip. Accessed: 2014-06-18.

azure (2014). Microsoft azure ip address pricing. http://azure.microsoft.com/
en-us/pricing/details/ip-addresses/. Accessed: 2014-06-18.

Back, A., Maxwell, G., Corallo, M., Friedenbach, M., and Dashjr, L. (2014). En-
abling blockchain innovations with pegged sidechains. Blockstream, https: //

blockstream .com/ sidechains .pdf .

Bahack, L. (2013). Theoretical bitcoin attacks with less than half of the computa-
tional power (draft). arXiv preprint arXiv:1312.7013.

Bakker, A. and Van Steen, M. (2008). Puppetcast: A secure peer sampling proto-
col. In European Conference on Computer Network Defense (EC2ND), pages 3–10.
IEEE.

Ballani, H., Francis, P., and Zhang, X. (2007). A study of prefix hijacking and
interception in the Internet. In SIGCOMM’07.

Banasik, W., Dziembowski, S., and Malinowski, D. (2016). Efficient Zero-Knowledge
Contingent Payments in Cryptocurrencies Without Scripts. Cryptology ePrint
Archive, Report 2016/451.

Barber, S., Boyen, X., Shi, E., and Uzun, E. (2012). Bitter to Better - How to
Make Bitcoin a Better Currency. In Financial Cryptography and Data Security.
Springer.

Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and Virza,
M. (2014). Zerocash: Decentralized anonymous payments from Bitcoin. In IEEE
Security and Privacy (SP), pages 459–474.

Biryukov, A., Khovratovich, D., and Pustogarov, I. (2014a). Deanonymisation of
clients in Bitcoin P2P network. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 15–29. ACM.

Biryukov, A., Khovratovich, D., and Pustogarov, I. (2014b). Deanonymisation of
Clients in Bitcoin P2P Network. In ACM-CCS, pages 15–29.

Biryukov, A. and Pustogarov, I. (2014). Bitcoin over tor isn’t a good idea. arXiv
preprint arXiv:1410.6079.

http://aws.amazon.com/ec2/faqs/#elastic-ip
http://aws.amazon.com/ec2/faqs/#elastic-ip
http://azure.microsoft.com/en-us/pricing/details/ip-addresses/
http://azure.microsoft.com/en-us/pricing/details/ip-addresses/
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://eprint.iacr.org/2016/451
https://eprint.iacr.org/2016/451
https://crypto.stanford.edu/~xb/fc12/bitcoin.pdf
https://crypto.stanford.edu/~xb/fc12/bitcoin.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=695658

183

Bissias, G., Ozisik, A. P., Levine, B. N., and Liberatore, M. (2014). Sybil-resistant
mixing for bitcoin. In Workshop on Privacy in the Electronic Society, pages 149–
158.

Bitcoin Wiki (2015). Confirmation. https://en.bitcoin.it/wiki/Confirmation.

Bitcoin Wisdom (2015). Bitcoin difficulty and hash rate chart.
https://bitcoinwisdom.com/bitcoin/difficulty.

Bitnode (2014). Bitnode.io snapshot of reachable nodes.
https://getaddr.bitnodes.io/nodes/. Accessed: 2014-02-11.

bitpay (2014). Bitpay: What is transaction speed? https://support.bitpay.com/
hc/en-us/articles/202943915-What-is-Transaction-Speed-.

blockchain.io (2015). Average transaction confirmation time.
https://blockchain.info/charts/avg-confirmation-time.

Boldyreva, A. (2003). Threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme. In PKC, volume 2567,
pages 31–46.

Boneh, D., Lynn, B., and Shacham, H. (2001). Short signatures from the weil pairing.
In ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 514–
532.

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten, E. W.
(2015). SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurren-
cies. In IEEE - SP.

Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J., and Felten, E. (2014).
Mixcoin: Anonymity for bitcoin with accountable mixes. In Financial Cryptogra-
phy and Data Security.

Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., and Shraer, A. (2009). Brahms:
Byzantine resilient random membership sampling. Computer Networks, 53(13):2340–
2359.

Brands, S. (1993). Untraceable off-line cash in wallets with observers (extended
abstract). In CRYPTO.

btcwiki (2014a). Bitcoin: Common vulnerabilities and exposures.
https://en.bitcoin.it/wiki/Common Vulnerabilities and Exposures. Accessed:
2014-02-11.

btcwiki (2014b). Bitcoin wiki: Double-spending. https://en.bitcoin.it/wiki/
Double-spending. Accessed: 2014-02-09.

http://forensics.umass.edu/pubs/bissias.wpes.2014.pdf
http://forensics.umass.edu/pubs/bissias.wpes.2014.pdf
https://en.bitcoin.it/wiki/Confirmation
https://bitcoinwisdom.com/bitcoin/difficulty
https://getaddr.bitnodes.io/nodes/
https://support.bitpay.com/hc/en-us/articles/202943915-What-is-Transaction-Speed-
https://support.bitpay.com/hc/en-us/articles/202943915-What-is-Transaction-Speed-
https://blockchain.info/charts/avg-confirmation-time
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Double-spending
https://en.bitcoin.it/wiki/Double-spending

184

Bush, R. (2012a). Responsible Grandparenting in the RPKI. Internet Engineering
Task Force Network Working Group. http://tools.ietf.org/html/draft-ymbk-
rpki-grandparenting-02.

Bush, R. (2012b). RPKI-Based Origin Validation Operation. Internet Engineering
Task Force Network Working Group. http://tools.ietf.org/html/draft-ietf-
sidr-origin-ops-19.

Bush, R. (2013). RPKI Local Trust Anchor Use Cases. Internet Engineering Task
Force (IETF). http://www.ietf.org/id/draft-ymbk-lta-use-cases-00.txt.

Butler, K., Farley, T., McDaniel, P., and Rexford, J. (2010). A survey of BGP
security issues and solutions. Proceedings of the IEEE.

Cachin, C. and Samar, A. (2004). Secure distributed dns. In Dependable Systems
and Networks, 2004 International Conference on, pages 423–432. IEEE.

CAIDA (2014a). AS to Organization Mapping Dataset.

CAIDA (2014b). Routeviews prefix to AS Mappings Dataset for IPv4 and IPv6.

Camenisch, J., Hohenberger, S., and Lysyanskaya, A. (2005). Compact e-cash. In
EUROCRYPT.

Cao, T., Yu, J., Decouchant, J., Luo, X., and Verissimo, P. (2020). Exploring the
monero peer-to-peer network. In International Conference on Financial Cryptog-
raphy and Data Security, pages 578–594. Springer.

CarnaBotnet (2012). Internet census 2012.
http://internetcensus2012.bitbucket.org/paper.html.

Castro, M., Druschel, P., Ganesh, A., Rowstron, A., and Wallach, D. S. (2002).
Secure routing for structured peer-to-peer overlay networks. ACM SIGOPS Oper-
ating Systems Review, 36(SI):299–314.

Chaum, D. (1983a). Blind signature system. In CRYPTO.

Chaum, D. (1983b). Blind signatures for untraceable payments. In Advances in
cryptology, pages 199–203. Springer.

CoinmarketCap (2021). Coinmarketcap bitcoin july 27 2021. link.

Communications Security, Reliability and Interoperability Council III (CSRIC) (2011).
Secure bgp deployment. Communications and Strategies.

Cooper, D., Heilman, E., Brogle, K., Reyzin, L., and Goldberg, S. (2013). On the
risk of misbehaving RPKI authorities. HotNets XII.

http://tools.ietf.org/html/draft-ymbk-rpki-grandparenting-02
http://tools.ietf.org/html/draft-ymbk-rpki-grandparenting-02
http://tools.ietf.org/html/draft-ietf-sidr-origin-ops-19
http://tools.ietf.org/html/draft-ietf-sidr-origin-ops-19
http://www.ietf.org/id/draft-ymbk-lta-use-cases-00.txt
http://internetcensus2012.bitbucket.org/paper.html
https://coinmarketcap.com/currencies/bitcoin/historical-data/?start=20210725&end=20210725

185

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and Polk, W. (2008).
RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. Internet Engineering Task Force (IETF). http:

//tools.ietf.org/html/rfc5280.

Courtois, N. T. and Bahack, L. (2014). On subversive miner strategies and block
withholding attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718.

Cowie, J. (2010). Rensys blog: China’s 18-minute mystery. http://www.renesys.com/
blog/2010/11/chinas-18-minute-mystery.shtml.

Crosby, S. A. and Wallach, D. S. (2009). Efficient data structures for tamper-evident
logging. In USENIX Security Symposium, pages 317–334.

Davis, C. R., Fernandez, J. M., Neville, S., and McHugh, J. (2008). Sybil attacks as
a mitigation strategy against the storm botnet. In 3rd International Conference
on Malicious and Unwanted Software, 2008., pages 32–40. IEEE.

de Beaupre, A. (2013). ISC Diary: Multiple Banking Addresses Hijacked. http:

//isc.sans.edu/diary/BGP+multiple+banking+addresses+hijacked/16249.

Decker, C. and Wattenhofer, R. (2013). Information propagation in the bitcoin
network. In IEEE Thirteenth International Conference on Peer-to-Peer Computing
(P2P), pages 1–10. IEEE.

Decker, C. and Wattenhofer, R. (2015). A fast and scalable payment network with
bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of
Distributed Systems, pages 3–18. Springer.

Delgado-Segura, S., Bakshi, S., Pérez-Solà, C., Litton, J., Pachulski, A., Miller, A.,
and Bhattacharjee, B. (2019). Txprobe: Discovering bitcoin’s network topology
using orphan transactions. In International Conference on Financial Cryptography
and Data Security, pages 550–566. Springer.

Dillon, J. (2013). Bitcoin-development mailinglist: Protecting bitcoin against network-
wide dos attack. bitcoin-dev/2013-July/002896.html. Accessed: 2021-10-7.

Dingledine, R., Hopper, N., Kadianakis, G., and Mathewson, N. (2014). One fast
guard for life (or 9 months). In 7th Workshop on Hot Topics in Privacy Enhancing
Technologies (HotPETs 2014).

Donet, J. A. D., Pérez-Sola, C., and Herrera-Joancomart́ı, J. (2014). The bitcoin p2p
network. In Financial Cryptography and Data Security, pages 87–102. Springer.

Dorier, N. (2016). Ntumblebit: tumblebit implementation in .net core. https:

//github.com/NTumbleBit/NTumbleBit.

http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://isc.sans.edu/diary/BGP+multiple+banking+addresses+hijacked/16249
http://isc.sans.edu/diary/BGP+multiple+banking+addresses+hijacked/16249
https://web.archive.org/web/20210907163612/https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002896.html
https://github.com/NTumbleBit/NTumbleBit
https://github.com/NTumbleBit/NTumbleBit

186

Durumeric, Z., Wustrow, E., and Halderman, J. A. (2013). ZMap: Fast Internet-
wide scanning and its security applications. In Proceedings of the 22nd USENIX
Security Symposium.

Ekparinya, P., Gramoli, V., and Jourjon, G. (2018). Impact of man-in-the-middle at-
tacks on ethereum. In 2018 IEEE 37th Symposium on Reliable Distributed Systems
(SRDS), pages 11–20. IEEE.

Evans, C., Palmer, C., and Sleevi, R., editors (2013). Public Key Pinning Extension
for HTTP. IETF Web Security, Internet-Draft. http://tools.ietf.org/html/
draft-ietf-websec-key-pinning-09.

EvilKnievel (2015). Bug bounty requested: 10 btc for huge dos bug in all current
bitcoin clients. Bitcoin Forum. https://bitcointalk.org/index.php?topic=
944369.msg10376763#msg10376763.

Eyal, I. (2014). The miner’s dilemma. arXiv preprint arXiv:1411.7099.

Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable.
In Financial Cryptography and Data Security, pages 436–454. Springer.

Faife, C. (2017). Will 2017 bring an end to bitcoin’s great scaling debate? http:

//www.coindesk.com/2016-bitcoin-protocol-block-size-debate/.

FCC (2013). Working group 6, secure bgp deployment, final report. Technical
report, FCC CSRIC Working Group 6.

Feld, S., Schönfeld, M., and Werner, M. (2014). Analyzing the deployment of bitcoin’s
p2p network under an as-level perspective. Procedia Computer Science, 32:1121–
1126.

Fiat, A. and Shamir, A. (1986). How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO.

Ficsór, Á. (2017). Goodbye breeze wallet, hello hidden wallet! medium.com.

Ficsór, Á. (2021a). Dumplings: software to create reproducible coinjoin statistics
from blockchain data.

Ficsór, Á. (2021b). Private correspondence with Adám Ficsór.

Ficsór, Á., Kogman, Y., Ontivero, L., and Seres, I. A. (2021). Wabisabi: Cen-
trally coordinated coinjoins with variable amounts. IACR Cryptol. ePrint Arch.,
2021:206.

Ficsór, Á. and TDevD (2017). Zerolink: The bitcoin fungibility framework. github.com.

http://tools.ietf.org/html/draft-ietf-websec-key-pinning-09
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-09
https://bitcointalk.org/index.php?topic=944369.msg10376763#msg10376763
https://bitcointalk.org/index.php?topic=944369.msg10376763#msg10376763
http://www.coindesk.com/2016-bitcoin-protocol-block-size-debate/
http://www.coindesk.com/2016-bitcoin-protocol-block-size-debate/

187

Finney, H. (2011). Bitcoin talk: Finney attack. https://bitcointalk.org/
index.php?topic=3441.msg48384#msg48384. Accessed: 2014-02-12.

Ganta, S. R., Kasiviswanathan, S. P., and Smith, A. (2008). Composition attacks
and auxiliary information in data privacy. In ACM SIGKDD, pages 265–273.

Gassko, I., Gemmell, P., and MacKenzie, P. D. (2000). Efficient and fresh cerification.
In Imai, H. and Zheng, Y., editors, Public Key Cryptography, volume 1751 of Lecture
Notes in Computer Science, pages 342–353. Springer.

Goldberg, S., Schapira, M., Hummon, P., and Rexford, J. (2010). How secure are
secure interdomain routing protocols? In SIGCOMM’10.

Goldman, E. (2006). Sex.com: An update. http://blog.ericgoldman.org/archives/
2006/10/sexcom an updat.htm.

Goldreich, O., Micali, S., and Wigderson, A. (1987). How to play any mental game.
In STOC. ACM.

Gould, D. (2021). Github: chaincase the only privacy preserving bitcoin wallet for
ios. https://github.com/chaincase-app/Chaincase.

Grams (2016). Helixlight: Helix made simple. https://grams7enufi7jmdl.onion.to/
helix/light.

Green, M. and Miers, I. (2016). Bolt: Anonymous Payment Channels for Decentral-
ized Currencies. Cryptology ePrint Archive 2016/701.

Guillou, L. C. and Quisquater, J.-J. (1988). A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and memory. In
EUROCRYPT.

Heilman, E. (2016a). Bitcoin Peer Forger (BPF). github.
https://github.com/EthanHeilman/bitcoin peer forger.

Heilman, E. (2016b). (Bitcoin PR 8282) net: Feeler connections to increase online
addrs in the tried table. github. https://github.com/bitcoin/bitcoin/pull/8282.

Heilman, E. (2016c). (Bitcoin PR 9037) net: Add test-before-evict discipline to
addrman. github. https://github.com/bitcoin/bitcoin/pull/9037.

Heilman, E. (2018). (Bitcoin PR 12626) Limit the number of IPs addrman learns
from each DNS seeder . github. .

Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., and Goldberg, S. (2016a).
TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment Hub. Cryp-
tology ePrint Archive 2016/575.

https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
http://blog.ericgoldman.org/archives/2006/10/sexcom_an_updat.htm
http://blog.ericgoldman.org/archives/2006/10/sexcom_an_updat.htm
https://github.com/chaincase-app/Chaincase
https://grams7enufi7jmdl.onion.to/helix/light
https://grams7enufi7jmdl.onion.to/helix/light
http://eprint.iacr.org/2016/701
http://eprint.iacr.org/2016/701
https://github.com/EthanHeilman/bitcoin_peer_forger
https://github.com/bitcoin/bitcoin/pull/8282
https://github.com/bitcoin/bitcoin/pull/9037
https://github.com/bitcoin/bitcoin/pull/12626
http://eprint.iacr.org/2016/575

188

Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., and Goldberg, S. (2017).
Tumblebit: An untrusted bitcoin-compatible anonymous payment hub. In Network
and Distributed System Security Symposium.

Heilman, E., Baldimtsi, F., and Goldberg, S. (2016b). Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions. In International
conference on financial cryptography and data security, pages 43–60. Springer.

Heilman, E., Baldimtsi, F., and Goldberg, S. (2016c). Blindly Signed Contracts:
Anonymous On-Blockchain and Off-Blockchain Bitcoin Transactions. In Workshop
on Bitcoin and Blockchain Research at Financial Crypto.

Heilman, E., Cooper, D., Reyzin, L., and Goldberg, S. (2014). From the consent of
the routed: Improving the transparency of the rpki. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 51–62.

Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. (2015a). Eclipse attacks on bit-
coin’s peer-to-peer network. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 129–144.

Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. (2015b). Eclipse attacks on
bitcoin’s peer-to-peer network (full version). Technical Report 2015/263, ePrint
Cryptology Archive, http://eprint.iacr.org/2015/263.pdf.

Hildrum, K. and Kubiatowicz, J. (2003). Asymptotically efficient approaches to
fault-tolerance in peer-to-peer networks. In Distributed Computing, pages 321–
336. Springer.

Hlavacek, T., Cunha, I., Gilad, Y., Herzberg, A., Katz-Bassett, E., Schapira, M., and
Shulman, H. (2020). Disco: sidestepping rpki’s deployment barriers. In Network
and Distributed System Security Symposium (NDSS).

Hughes, E. (1993). A cypherpunk’s manifesto. Crypto anarchy, cyberstates, and
pirate utopias, pages 81–83.

Huston, G., Loomans, R., and Michaelson, G. (2012a). RFC 6481: A Profile for Re-
source Certificate Repository Structure. Internet Engineering Task Force (IETF).
http://tools.ietf.org/html/rfc6481.

Huston, G. and Michaelson, G. (2012). RFC 6483: Validation of Route Origina-
tion Using the Resource Certificate Public Key Infrastructure (PKI) and Route
Origin Authorizations (ROAs). Internet Engineering Task Force (IETF). http:

//tools.ietf.org/html/rfc6483.

Huston, G., Michaelson, G., and Kent, S. (2012b). RFC 6489: Certification Authority
(CA) Key Rollover in the Resource Public Key Infrastructure (RPKI). Internet
Engineering Task Force (IETF). http://tools.ietf.org/html/rfc6489.

http://eprint.iacr.org/2016/056.pdf
http://eprint.iacr.org/2016/056.pdf
http://eprint.iacr.org/2015/263.pdf
http://tools.ietf.org/html/rfc6481
http://tools.ietf.org/html/rfc6483
http://tools.ietf.org/html/rfc6483
http://tools.ietf.org/html/rfc6489

189

Huston, G., Rossi, M., and Armitage, G. (2011). Securing BGP: A literature survey.
Communications Surveys & Tutorials, IEEE, 13(2):199–222.

IANA (2015). Iana ipv4 address space registry. http://www.iana.org/assignments/
ipv4-address-space/ipv4-address-space.xhtml.

Inc, C. (2016). Chainalysis: Blockchain analysis. https://www.chainalysis.com/.

IPGlider (2017). (Monero PR 1701) Add anchor connections. github.
https://github.com/monero-project/monero/pull/1701.

Jamie, R. (2017). Breeze wallet integrates trustless payment hub tumblebit.
news.bitcoin.com.

Jedusor, T. E. (2016). Mimblewimble.

Jesi, G. P., Montresor, A., and van Steen, M. (2010). Secure peer sampling. Com-
puter Networks, 54(12):2086–2098.

Johnson, B., Laszka, A., Grossklags, J., Vasek, M., and Moore, T. (2014). Game-
theoretic analysis of ddos attacks against bitcoin mining pools. In Financial Cryp-
tography and Data Security, pages 72–86. Springer.

Karame, G., Androulaki, E., and Capkun, S. (2012). Two bitcoins at the price
of one? double-spending attacks on fast payments in bitcoin. IACR Cryptology
ePrint Archive, 2012:248.

Kent, S., Lynn, C., and Seo, K. (2000). Secure border gateway protocol (S-BGP). J.
Selected Areas in Communications, 18(4):582–592.

Kent, S. and Ma, D. (2017). RFC 8211: Adverse Actions by a Certification Authority
(CA) or Repository Manager in the Resource Public Key Infrastructure (RPKI).
Internet Engineering Task Force (IETF). http://tools.ietf.org/html/rfc8211.

Kent, S. and Mandelberg, D. (2013). Suspenders: A Fail-safe Mechanism for the
RPKI. Internet Engineering Task Force (IETF). http://tools.ietf.org/html/
draft-kent-sidr-suspenders-00.

King, L. (2014). Bitcoin hit by ’massive’ ddos attack as tensions rise. Forbes.

Koshy, P., Koshy, D., and McDaniel, P. (2014). An analysis of anonymity in bitcoin
using p2p network traffic. In Financial Cryptography and Data Security, pages
468–485. Springer.

Kroll, J. A., Davey, I. C., and Felten, E. W. (2013). The economics of bitcoin mining,
or bitcoin in the presence of adversaries. In Proceedings of WEIS, volume 2013.

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.chainalysis.com/
https://github.com/monero-project/monero/pull/1701
https://web.archive.org/web/20210301061110/https://news.bitcoin.com/breeze-wallet-integrates-trustless-payment-hub-tumblebit/
http://tools.ietf.org/html/rfc8211
http://tools.ietf.org/html/draft-kent-sidr-suspenders-00
http://tools.ietf.org/html/draft-kent-sidr-suspenders-00
http://www.forbes.com/sites/leoking/2014/02/12/bitcoin -hit-by-massive-ddos-attack-as-tensions-rise/

190

Kuerbis, B. (2013). Keep your pants on: Governments want suspenders for secure
routing. Internet Governance Project.

Kumaresan, R. and Bentov, I. (2014). How to use bitcoin to incentivize correct
computations. In ACM-CCS.

Kumaresan, R., Moran, T., and Bentov, I. (2015). How to use bitcoin to play
decentralized poker. In ACM-CCS.

Lab, D. R. (2015). rcynic software. http://trac.rpki.net.

LACNIC (2013). RPKI looking glass.
www.labs.lacnic.net/rpkitools/looking glass/.

Laszka, A., Johnson, B., and Grossklags, J. (2015). When bitcoin mining pools run
dry. 2nd Workshop on Bitcoin Research (BITCOIN).

Laurie, B., Langley, A., and Kasper, E. (2013). Certificate transparency. Net-
work Working Group Internet-Draft, v12, work in progress. http://tools. ietf.
org/html/draft-laurie-pki-sunlight-12.

Ledesma, L. (2021). Bitcoin trading volumes returned as price spiked over 40k.
Yahoo Finance. Accessed: 2021-06-27.

Lepinski, M., editor (2012). BGPSEC Protocol Specification. IETF Network Work-
ing Group, Internet-Draft. Available from http://tools.ietf.org/html/draft-
ietf-sidr-bgpsec-protocol-04.

Lepinski, M. and Kent, S. (2012). RFC 6480: An Infrastructure to Support Secure In-
ternet Routing. Internet Engineering Task Force (IETF). http://tools.ietf.org/
html/rfc6480.

Li, D., Zou, H., and Shao, Q. (2018). Technical report: Rpki monitor and visual-
izer for detecting and alerting for rpki errors. nternet DNS Beijing Engineering
Research Center, ZDNS.

Limited, E. E. (2016). Elliptic: The global standard for blockchain intelligence.
https://www.elliptic.co/.

Liu, S. and Hopwood, D. (2018). (ZIP: 201), Network Peer Management for Over-
winter. github. https://github.com/zcash/zips/blob/main/zip-0201.rst.

Lychev, R., Goldberg, S., and Schapira, M. (2013). Is the juice worth the squeeze?
BGP security in partial deployment. In SIGCOMM’13.

Manderson, T., Vegoda, L., and Kent, S. (1973). RFC 6491: Resource Public Key
Infrastructure (RPKI) Objects Issued by IANA”. Internet Engineering Task Force
(IETF). http://tools.ietf.org/html/rfc6491.

http://trac.rpki.net
www.labs.lacnic.net/rpkitools/looking_glass/
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04
http://tools.ietf.org/html/rfc6480
http://tools.ietf.org/html/rfc6480
https://www.elliptic.co/
https://github.com/zcash/zips/blob/main/zip-0201.rts
http://tools.ietf.org/html/rfc6491

191

Marcus, Y., Heilman, E., and Goldberg, S. (2018). Low-resource eclipse attacks on
ethereum’s peer-to-peer network. IACR Cryptol. ePrint Arch., 2018:236.

Maxwell, G. (2011). Zero Knowledge Contingent Payment. Bitcoin Wiki.

Maxwell, G. (2013a). CoinJoin: Bitcoin privacy for the real world. Bitcoin-talk.

Maxwell, G. (2013b). CoinSwap: transaction graph disjoint trustless trading. Bitcoin-
talk.

Maxwell, G. (2016). The first successful Zero-Knowledge Contingent Payment. Bit-
coin Core.

Meiklejohn, S. and Orlandi, C. (2015). Privacy-Enhancing Overlays in Bitcoin. In
Lecture Notes in Computer Science, volume 8976. Springer Berlin Heidelberg.

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., Voelker, G., Savage, S.,
and McCoy, D. (2013). A fistful of bitcoins: Characterizing payments among men
with no names. In ACM-SIGCOMM Internet Measurement Conference, IMC.

Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013). Zerocoin: Anonymous
distributed e-cash from bitcoin. In IEEE Security and Privacy (SP), pages 397–
411.

Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., and Bhat-
tacharjee, B. (2015). Discovering bitcoin’s network topology and influential nodes.
Technical report, University of Maryland.

Misel, S. (1997). “Wow, AS7007!”. Merit NANOG Archive. www.merit.edu/
mail.archives/nanog/1997-04/msg00340.html.

mmitech (2013). Ghash.io and double-spending against betcoin dice. Bitcoin Forum.
https://bitcointalk.org/index.php?topic=327767.0.

Mohapatra, P., Scudder, J., Ward, D., Bush, R., and Austein, R. (2013). RFC
6811: BGP prefix origin validation. Internet Engineering Task Force (IETF).
http://tools.ietf.org/html/rfc6811.

Monero (2016). Monero, https://getmonero.org/home.

Moreno-Sanchez, P., Ruffing, T., and Kate, A. (2016). P2P Mixing and Unlinkable
P2P Transactions. Draft.

Möser, M. and Böhme, R. (2016). Join Me on a Market for Anonymity. Workshop
on Privacy in the Electronic Society.

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement
http://fc15.ifca.ai/preproceedings/bitcoin/paper_5.pdf
www.merit.edu/mail.archives/nanog/1997-04/msg00340.html
www.merit.edu/mail.archives/nanog/1997-04/msg00340.html
https://bitcointalk.org/index.php?topic=327767.0
http://tools.ietf.org/html/rfc6811
https://getmonero.org/home

192

Mueller, M. and Kuerbis., B. (2011). Negotiating a new governance hierarchy: An
analysis of the conflicting incentives to secure internet routing. Communications
and Strategies, 1(81):125–142.

Mueller, M., Schmidt, A., and Kuerbis., B. (2013). Internet security and networked
governance in international relations. International Studies Review, 15(1):86–104.

Murdoch, S. J. and Anderson, R. (2008). Access Denied: The Practice and Policy of
Global Internet Filtering, chapter Tools and technology of Internet filtering, pages
57–72. MIT Press.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. metz-
dowd.com.

namecoin (2015). Github: namecoin repository. https://github.com/namecoin/
namecoin.

Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bitcoin
and cryptocurrency technologies. Princeton University Pres.

Natoli, C. and Gramoli, V. (2017). The balance attack or why forkable blockchains
are ill-suited for consortium. In 2017 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pages 579–590. IEEE.

Nayak, K., Kumar, S., Miller, A., and Shi, E. (2016). Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 305–320. IEEE.

NIST (2013a). RPKI deployment monitor. nist.gov.

NIST (2013b). Workshop on Improving Trust in the Online Marketplace. http:

//www.nist.gov/itl/csd/ct/ca-workshop-agenda2013.cfm.

nopara73 (2017). Introducing hiddenwallet : full block spv tumblebit wallet —
testing release. https://medium.com/hackernoon/introducing-hiddenwallet-
full-block-spv-tumblebit-wallet-testing-release-1054a15a9bb1.

Noubir, G. and Sanatinia, A. (2016). Honey onions: Exposing snooping tor hsdir
relays. In DEF CON 24.

OpenSSL (2014). TLS heartbeat read overrun (CVE-2014-0160).
https://www.openssl.org/news/secadv 20140407.txt.

Osipkov, I., Vasserman, E. Y., Hopper, N., and Kim, Y. (2007). Combating double-
spending using cooperative p2p systems. In 27th International Conference on
Distributed Computing Systems (ICDCS’07), pages 41–41. IEEE.

https://github.com/namecoin/namecoin
https://github.com/namecoin/namecoin
http://www-x.antd.nist.gov/rpki-monitor/
 http://www.nist.gov/itl/csd/ct/ca-workshop-agenda2013.cfm
 http://www.nist.gov/itl/csd/ct/ca-workshop-agenda2013.cfm
https://medium.com/hackernoon/introducing-hiddenwallet-full-block-spv-tumblebit-wallet-testing-release-1054a15a9bb1
https://medium.com/hackernoon/introducing-hiddenwallet-full-block-spv-tumblebit-wallet-testing-release-1054a15a9bb1
https://www.openssl.org/news/secadv_20140407.txt

193

Osterweil, E., Amante, S., Massey, D., and McPherson, D. (2011). The great ipv4
land grab: resource certification for the ipv4 grey market. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, page 12. ACM.

Osterweil, E., Manderson, T., White, R., and McPherson, D. (2012). Sizing estimates
for a fully deployed rpki. Technical report, Verisign Labs Technical Report.

Pagnia, H. and Gartner, F. C. (1999). On the impossibility of fair exchange without
a trusted third party.

Peck, M. (2016). DAO May Be Dead After $60 Million Theft. IEEE Spectrum, Tech
Talk Blog.

Peterson, A. (2013). Researchers say u.s. internet traffic was re-routed through
belarus. that’s a problem. Washington Post.

Pilosov, A. and Kapela, T. (2009). Stealing the internet.

Piscitello, D. (2012). Guidance for preparing domain name orders, seizures & take-
downs. Technical report, ICANN.

Piscitello, D. (2013). The value of assessing collateral damage before requesting a
domain seizure. Technical report, ICANN.

Plohmann, D. and Gerhards-Padilla, E. (2012). Case study of the miner botnet.
In Cyber Conflict (CYCON), 2012 4th International Conference on, pages 1–16.
IEEE.

Poon, J. and Dryja, T. (2015). The bitcoin lightning network: Scalable off-chain
instant payments. Technical report, Technical Report (draft). https://lightning.
network.

Project, I. G. (2011). In important case, RIPE-NCC seeks legal clarity on how it
responds to foreign court orders. www.internetgovernance.org.

Qiu, J., Zhihong, T., Jianwei, Y., and Shuofei, T. (2011). Design, implementation
and optimization of network access control system based on routing diffusion. In
Information Technology and Artificial Intelligence Conference (ITAIC), 2011 6th
IEEE Joint International, volume 2, pages 121–125. IEEE.

Rackspace (2014). Rackspace: Requesting additional ipv4 addresses for cloud servers.
www.rackspace.com/knowledge center. Accessed: 2014-06-18.

Ramasubramanian, V. and Sirer, E. G. (2004). The design and implementation
of a next generation name service for the internet. ACM SIGCOMM Computer
Communication Review, 34(4):331–342.

http://spectrum.ieee.org/tech-talk/computing/networks/dao-may-be-dead-after-40million-theft
http://www.internetgovernance.org/2011/11/23/in-important-case-ripe-ncc-seeks-legal-clarity-on-how-it-responds-to-foreign-court-orders/
http://www.rackspace.com/knowledge_center/article/requesting-additional-ipv4-addresses-for-cloud-servers

194

Rensys Blog (2008). Pakistan hijacks YouTube. http://www.renesys.com/blog/
2008/02/pakistan hijacks youtube 1.shtml.

Research, C. (2010). Sec 2: Recommended elliptic curve domain parameters.

RIPE (2013). RPKI validator. http://localcert.ripe.net:8088/trust-anchors.

RIPE (2014). Ripestat. https://stat.ripe.net/data/announced-prefixes.

RIPE (2015). Latest delegations.
ftp://ftp.ripe.net/pub/stats/ripencc/delegated-ripencc-extended-latest.

RIPE (2015). RIPE RIS raw data. http://www.ripe.net/data-tools/stats/ris/
ris-raw-data.

RoadTrain (2013). Bitcoin-talk: Ghash.io and double-spending against betcoin dice.
https://bitcointalk.org/index.php?topic=321630.msg3445371#msg3445371.

Ron, D. and Shamir, A. (2013). Quantitative analysis of the full bitcoin transaction
graph. In Financial Cryptography and Data Security, pages 6–24. Springer.

Rosenfeld, M. (2014). Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009.

Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich,
C. J., and Bos, H. (2013). Sok: P2pwned-modeling and evaluating the resilience of
peer-to-peer botnets. In IEEE Symposium on Security and Privacy, pages 97–111.
IEEE.

Ruffing, T., Moreno-Sanchez, P., and Kate, A. (2014). Coinshuffle: Practical decen-
tralized coin mixing for bitcoin. In ESORICS, pages 345–364. Springer.

Saxena, A., Misra, J., and Dhar, A. (2014). Increasing anonymity in bitcoin. In
Financial Cryptography and Data Security, pages 122–139. Springer.

Schneier, B. and Kelsey, J. (1997). Automatic event-stream notarization using digital
signatures. In Security Protocols, pages 155–169. Springer.

Shomer, A. (2014). On the phase space of block-hiding strategies. IACR Cryptology
ePrint Archive, 2014:139.

Shrishak, K. and Shulman, H. (2020). Limiting the power of rpki authorities. In
Proceedings of the Applied Networking Research Workshop, pages 12–18.

Singh, A., Ngan, T.-W. J., Druschel, P., and Wallach, D. S. (2006). Eclipse attacks
on overlay networks: Threats and defenses. In In IEEE INFOCOM.

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://localcert.ripe.net:8088/trust-anchors
https://stat.ripe.net/data/announced-prefixes
ftp://ftp.ripe.net/pub/stats/ripencc/delegated-ripencc-extended-latest
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
https://bitcointalk.org/index.php?topic=321630.msg3445371#msg3445371

195

Sipa (2015). (Dogecoin) Always use a 50% chance to choose between tried and new
entries. github. https://github.com/dogecoin/dogecoin/commit/c6a63ceeb4956.

Sit, E. and Morris, R. (2002). Security considerations for peer-to-peer distributed
hash tables. In Peer-to-Peer Systems, pages 261–269. Springer.

Spider, R. (2015). Rpki spider. http://rpkispider.verisignlabs.com/.

Stock, B., Gobel, J., Engelberth, M., Freiling, F. C., and Holz, T. (2009). Walowdac:
Analysis of a peer-to-peer botnet. In European Conference on Computer Network
Defense (EC2ND), pages 13–20. IEEE.

Stockinger, J., Haslhofer, B., Moreno-Sanchez, P., and Maffei, M. (2021). Pinpointing
and measuring wasabi and samourai coinjoins in the bitcoin ecosystem. arXiv
preprint arXiv:2109.10229.

Stone, J. (2015). Evolution Downfall: Insider ’Exit Scam’ Blamed For Massive Drug
Bazaar’s Sudden Disappearance. international business times.

Surfnet (2013). RPKI dashboard. http://rpki.surfnet.nl/validitytables.html.

Szabo, N. (1997). Formalizing and securing relationships on public networks. First
Monday, 2(9).

the Internet Archive (2015). Http Archive: Trends. http://httparchive.org/
trends.php.

The President’s National Security Telecommunications Advisory Committee (2011).
Nstac report to the president on communications resiliency.

Todd, P. (2014). BIP-0065: OP CHECKLOCKTIMEVERIFY. Bitcoin Improvement
Proposal.

Tran, M., Choi, I., Moon, G. J., Vu, A. V., and Kang, M. S. (2020). A stealthier
partitioning attack against bitcoin peer-to-peer network. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 894–909. IEEE.

Tran, M., Shenoi, A., and Kang, M. S. (2021). On the routing-aware peering
against network-eclipse attacks in bitcoin. In 30th {USENIX} Security Sympo-
sium ({USENIX} Security 21).

Tschorsch, F. and Scheuermann, B. (2016). Bitcoin and Beyond: A Technical Survey
on Decentralized Digital Currencies. IEEE Communications Surveys Tutorials,
PP(99).

Urdaneta, G., Pierre, G., and Steen, M. V. (2011). A survey of dht security tech-
niques. ACM Computing Surveys (CSUR), 43(2):8.

https://github.com/dogecoin/dogecoin/commit/c6a63ceeb4956933588995bcf01dc3095aaeb1fc
http://rpkispider.verisignlabs.com/
http://rpki.surfnet.nl/validitytables.html
http://httparchive.org/trends.php
http://httparchive.org/trends.php
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://eprint.iacr.org/2015/464.pdf
https://eprint.iacr.org/2015/464.pdf

196

Valenta, L. and Rowan, B. (2015). Blindcoin: Blinded, accountable mixes for bitcoin.
In FC.

Vasek, M., Thornton, M., and Moore, T. (2014). Empirical analysis of denial-of-
service attacks in the bitcoin ecosystem. In Financial Cryptography and Data
Security, pages 57–71. Springer.

Views, R. (2015). University of oregon route views project.
http://www.routeviews.org/.

Wählisch, M., Maennel, O., and Schmidt, T. (2012). Towards detecting BGP route
hijacking using the RPKI. In Poster: SIGCOMM’12, pages 103–104. ACM.

Wang, L., Park, J., Oliveira, R., and Zhang, B. (2013). Internet topology collection.
http://irl.cs.ucla.edu/topology/.

White, R. (2003, expired). Deployment considerations for secure origin BGP (soBGP).
draft-white-sobgp-bgp-deployment-01.txt.

wikipedia (2016). Bitcoin Fog.

Wu, L., Hu, Y., Zhou, Y., Wang, H., Luo, X., Wang, Z., Zhang, F., and Ren, K.
(2021). Towards understanding and demystifying bitcoin mixing services. In
Proceedings of the Web Conference 2021, pages 33–44.

Wuille, P. (2015). Segregated witness and its impact on scalability
https://www.youtube.com/watch?v=NOYNZB5BCHM.

Xing, Q., Baosheng, W., and Xiaofeng, W. (2018). Bgpcoin: blockchain-based inter-
net number resource authority and bgp security solution. Symmetry, 10(9):408.

Zhang, S. and Lee, J.-H. (2019). Double-spending with a sybil attack in the bitcoin
decentralized network. IEEE transactions on Industrial Informatics, 15(10):5715–
5722.

Zhang, X., Hsiao, H.-C., Hasker, G., Chan, H., Perrig, A., and Andersen, D. G.
(2011). SCION: scalability, control, and isolation on next-generation networks. In
IEEE Security and Privacy (SP).

Zhou, L., Schneider, F. B., and Van Renesse, R. (2002). COCA: A secure distributed
online certification authority. ACM Transactions on Computer Systems (TOCS),
20(4):329–368.

Ziegeldorf, J. H., Grossmann, F., Henze, M., Inden, N., and Wehrle, K. (2015).
Coinparty: Secure multi-party mixing of bitcoins. In CODASPY.

http://www.routeviews.org/
http://irl.cs.ucla.edu/topology/
https://en.wikipedia.org/wiki/Bitcoin_Fog
https://www.youtube.com/watch?v=NOYNZB5BCHM

197

CURRICULUM VITAE

198

199

200

201

202

203

204

205

206

207

	Introduction
	RPKI and Bitcoin
	Dissertation Overview
	Chatper 2: Improving the Transparency of the RPKI
	Chapter 3: Eclipse Attacks on Bitcoin’s P2P Network
	Chapters 4, 5: Blindly Signed Contracts and TumbleBit

	Protocol Design Philosophy and Impacts
	Contributions
	Improving the Transparency of the RPKI
	Eclipse Attacks on Bitcoin's P2P Network
	Blindly Signed Contracts: Anonymous Bitcoin Transactions
	Tumblebit: An Untrusted Bitcoin-compatible Anonymous Payment Hub

	Improving the Transparency of the RPKI
	Introduction
	The risk of RPKI takedowns
	The hierarchical structure of the RPKI.
	How the RPKI limits threats to BGP.
	A default-deny architecture.

	Detecting downgraded routes
	A tool for detecting downgrades.
	Tool evaluation & case studies.

	Why accountability is hard
	Attacks that disrupt delivery of objects.
	How can I whack thee? We count the ways.
	Who's to blame? A few case studies.
	Holding an adversary accountable.

	Repairing whacked objects
	Fixing the balance of power
	Design goals.
	Overview of our design.
	Procedures for RPKI authorities.
	Validation procedures for relying parties.
	Security analysis.
	What about all those bad examples?
	On the necessity of our modifications.
	Data-driven analysis of our design.

	Related work
	Conclusion

	Eclipse Attacks on Bitcoin's P2P Network
	Introduction
	Implications of eclipse attacks

	Bitcoin's Peer-to-Peer Network
	Propagating network information
	Storing network information
	Selecting peers

	The Eclipse Attack
	Populating tried and new
	Restarting the victim
	Selecting outgoing connections
	Monopolizing the eclipsed victim

	How Many Attack Addresses?
	Botnet attack
	Infrastructure attack
	Summary: infrastructure or botnet?

	Measuring Live Bitcoin Nodes
	Experiments
	Countermeasures
	Related Work
	Conclusion

	Blindly Signed Contracts: Anonymous Bitcoin Transactions
	Introduction
	Related Work

	Overview and Security Properties
	Anonymity Properties
	Security properties

	Implementing fair exchange via scripts and blind signatures
	On-Blockchain Anonymous Protocols
	Anonymous Fee Vouchers
	Anonymity Analysis

	Off-Blockchain Anonymous Payments over Micropayment Channel Networks
	Micropayment Channel Networks
	Anonymizing Micropayment Channel Networks
	Anonymity Analysis

	Security Analysis

	Tumblebit: An Untrusted Bitcoin-compatible Anonymous Payment Hub
	Introduction
	TumbleBit Features
	Related Work

	Bitcoin Scripts and Smart Contracts
	TumbleBit: An Unlinkable Payment Hub
	Overview of Bob's Interaction with the Tumbler
	Overview of Alice's Interaction with the Tumbler
	TumbleBit's Security Properties

	TumbleBit: Also a Classic Tumbler.
	Anonymity Properties

	A Fair Exchange for RSA Puzzle Solving
	Our (Stand-Alone) RSA-Puzzle-Solver Protocol
	Fair Exchange
	Solving Many Puzzles and Moving Off-Blockchain

	Puzzle-Promise Protocol
	Protocol Walk Through
	Security Properties

	TumbleBit Security
	Balance
	Unlinkability
	Limitations of Unlinkability

	Implementation
	Protocol Instantiation
	Off-Blockchain Performance Evaluation
	Blockchain Tests

	Appendix: Improving the Transparency of the RPKI
	Local consistency check

	Appendix: Eclipse Attack on Bitcoin's P2P Network
	A Useful Lemma
	Overwriting the New Table
	Infrastructure strategy
	Botnet strategy

	Appendix: TumbleBit
	Details of our Bitcoin Scripts
	TumbleBit transactions on Bitcoin's Blockchain

	References
	Curriculum Vitae

