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ABSTRACT

While the traditional approach to ease traffic congestion has focused on building

infrastructure, the recent emergence of Connected and Automated Vehicles (CAVs)

and urban mobility services (e.g., Autonomous Mobility-on-Demand (AMoD) sys-

tems) has opened a new set of alternatives for reducing travel times. This thesis

seeks to exploit these advances to improve the operation and efficiency of Intelligent

Transportation Systems using a network optimization perspective. It proposes novel

methods to evaluate the prospective benefits of adopting socially optimal routing

schemes, intermodal mobility, and contraflow lane reversals in transportation networks.

This dissertation makes methodological and empirical contributions to the trans-

portation domain. From a methodological standpoint, it devises a fast solver for the
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Traffic Assignment Problem with Side Constraints which supports arbitrary linear

constraints on the flows. Instead of using standard column-generation methods, it

introduces affine approximations of the travel latency function to reformulate the

problem as a quadratic (or linear) programming problem. This framework is applied

to two problems related to urban planning and mobility policy: social routing with

rebalancing in intermodal mobility systems and planning lane reversals in trans-

portation networks. Moreover, it proposes a novel method to jointly estimate the

Origin-Destination demand and travel latency functions of the Traffic Assignment

Problem. Finally, it develops a model to jointly optimize the pricing, rebalancing and

fleet sizing decisions of a Mobility-on-Demand service. Empirically, it validates all the

methods by testing them with real transportation topologies and real traffic data from

Eastern Massachusetts and New York City showing the achievable benefits obtained

when compared to benchmarks.
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1

Chapter 1

Introduction

High levels of urbanization and rapid technological developments have transformed

human mobility. Only a century ago, people had to rely on carriages for the trans-

portation of goods and only the wealthiest could afford traveling for long distances.

Today, the world looks vastly different: more than 91% of households in the U.S. own

a car (U.S. Census Bureau, 2019), and public transportation is available in almost

every urban settlement in the world.

The rise in convenience of movement has also brought traffic congestion to our

cities and thus the imperative need for improving efficiency, reducing greenhouse

gas emissions, and reducing travel times. While many advances have been made

in this direction, like the creation of new modes of urban mobility services (e.g.,

Mobility-on-Demand (MoD) systems like Uber or Lyft; and bike sharing systems);

the rapid evolution of autonomous systems; and the emergence of Connected and

Automated Vehicles (CAVs), there are still open questions related to the efficiency of

Intelligent Transportation Systems (ITS). For example, how vehicle-to-infrastructure

communication (V2I) in intersections or lane reversals can be used to reduce travel

times while keeping the physical infrastructure fixed.

This thesis seeks to exploit many of the aftermentioned advances to improve the

operation and efficiency of ITS using a network optimization perspective. It proposes

novel methods to evaluate the prospective benefits of adopting socially optimal routing

schemes, intermodal mobility, and contraflow lane reversals in transportation networks.
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This work aims to inform transportation agencies and Mobility-on-Demand platforms

on how to reduce congestion and improve the overall efficiency of the system.

This dissertation makes methodological and empirical contributions to the trans-

portation domain. From a methodological standpoint, it devises a fast solver for the

Traffic Assignment Problem with Side Constraints which supports arbitrary linear

constraints on the flows. Instead of using standard column-generation methods, it

introduces affine approximations of the travel latency function to reformulate the

problem as a quadratic (or linear) programming problem. This framework is applied

to two problems related to urban planning and mobility policy: social routing and

rebalancing in intermodal mobility systems and planning lane reversals in transporta-

tion networks. Moreover, it proposes a novel method to jointly estimate the Origin

Destination demand and travel latency functions of the Traffic Assignment Problem.

To achieve that, it uses a kernel-based method that solves the joint estimation problem

by using the ideas of inverse optimization for variational inequalities formulations.

Finally, it develops a model to jointly optimize the pricing, rebalancing and fleet

sizing decisions of a Mobility-on-Demand service. This method uses the passengers’

destinations when setting prices, allowing the service to be more cost-efficient than

when only considering origins (current state-of-the-art). Empirically, we test the

described methods with real transportation topologies and real traffic data of Eastern

Massachusetts and New York City to show the achievable benefits obtained when

compared to benchmarks.

The workhorse model that is used throughout this thesis is the Traffic Assign-

ment Problem (TAP) which quantifies the effect of a new transportation policy or

infrastructure project on the overall travel time (or energy consumption). The TAP

distributes traffic flows to specific links of the network. In other words, it assigns

routes to commuters, which determines the travel times of each traveler.
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Finally, this thesis hopes to inspire future researchers to work in transportation

modeling. The reason for that is that many processes involve moving an entity from

an origin to a destination. Examples include: water distribution networks, electric

power networks, impulse signals traversing our neural networks, and packages delivered

from factories to retailers. Thus, the analysis, understanding, and improvement of

transportation networks is of interest for countless applications and some of the

methods developed herein, focused on human mobility, may be suitable for other

applications that have a network structure.

1.1 Transportation Networks

In the fields of optimization and control, networks are mathematical objects that help

the practitioner represent a large and complicated system into a simple and compact

framework. Networks are a key component for studying large-scale transportation

models and they have been used in many applications in the transportation planning

process. For example, to identify bottlenecks, analyze new modes of transportation,

develop congestion pricing schemes, among others.

A network is formally represented by a set of links and a set of nodes. In trans-

portation networks, it is common to use links to represent a form of traveling from

one point to another (e.g., a road segment, a sidewalk, a bike lane). The nodes are

the start and end points of the links and can be connected to more than one link.

An exciting aspect of the analysis of transportation systems is that traffic congestion

and travelers commuting decisions are dependent on each other. Commuters use

strategies or services (e.g., Google Maps, Waze) to avoid congested roads while

congestion increases as more users are present in a link. These two interacting

variables, travel choices and system congestion, are thus endogenous. Figure 1·1
depicts this dependency. Hence, the need for mathematical representations to address
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this endogeneity is fundamental for the understanding of the transportation networks.

Traffic flow model Route-choice model

Path travel times

Path flows

Figure 1·1: Interacting components in a Traffic Assignment. Adapted
from Boyles et al. (2021)

1.2 Traffic Assignment

The traffic assignment is a procedure that aims to allocate the transportation demand

of users’ trips to specific transportation resources (links, modes of transportation). The

input of the assignment is composed of three main components: (i) the transportation

network defining the topology and modes of transportation; (ii) a complete description

of the traveling patterns in the network, namely the Origin-Destination (OD) demand

matrix; (iii) a travel latency function mapping traffic flows to travel times. The output

of such model are the traffic flows in each link of the transportation network.

The purpose of determining a traffic assignment as part of the transportation

planning process is to assess the effects of a new intervention or policy, as well as

to capture the deficiencies of the transportation network. This is achieved since

the assignment provides an estimate of future trips, traffic volumes, congestion, and

average user travel times.

The Traffic Assignment Problem (TAP) is simply the solution of the traffic assign-

ment given a particular transportation network and a set of link latency functions.

These functions map the flow on each link to the corresponding travel time it takes to
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cross the link. We denote them by tij(xij) where ij indicate the link (i, j) connecting

nodes i and j and xij is the flow present on link (i, j). Functions tij(·) are typically

assumed to be increasing, non-negative and convex. This modeling assumption implies

that as more vehicles are present on a link, travel times of crossing the link increase.

Many travel latency functions have been established in the literature and there

is not a single perfect function (Branston, 1976), however, the most popular is the

one introduced by Beckmann, McGuire, and Winsten (1955) and widely known as the

Bureau of Public Roads (BPR) function. This function takes the form

tij(xij) = t0ij

(
1 + α

( xij
mij

)β)
, (1.1)

where α and β are shape parameters, and t0ij and mij are the free-flow travel time

and the capacity of link (i, j), respectively. Figure 1·2 shows the travel latency

function with α = 0.15 and β = 4, parameters commonly used in the literature and

by practitioners.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1

1.2

1.4
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xij/mij

t i
j
(x

ij
)

Figure 1·2: Typical travel latency function

By using these functions, the static user equilibrium traffic assignment is con-

structed by assuming that all paths between the same origin and destination have

minimal and equal travel times. It is called an equilibrium point since if this were

not true, users would switch from slower routes to faster ones, until travel times
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are equalized across travelers. It is known that this equilibrium state is not socially

optimal, and that other configurations of traffic flow can reduce the overall travel time

compared to the user equilibrium.

The main advantage of using this static traffic assignment and link latency functions

like (1.1) is that the user equilibrium (and system optimum) states can be computed

efficiently even for large-scale networks. Mostly for this reason, this modelling frame-

work has been adopted by the transportation community for decades and remains a

fundamental model for performing analysis of the network conditions.

This dissertation utilizes the static traffic assignment framework and identifies as a

future research direction the development of the methods herein to the dynamic traffic

assignment setting. For an extensive discussion on the advantages and drawbacks of

each model, see Chapter 1 of Boyles et al. (2021).

1.3 Thesis Contributions and Overview

This section provides a brief motivation and the key contributions of each of the

chapters in this thesis. Specific related work to each of the topics is covered in the

body of each chapter. The problems are classified into two main sections defined by

who is the stakeholder for the method. First, it focuses on transportation planning

agencies and policy-makers, then, it moves to problems pertaining to Autonomous

Mobility-on-Demand (AMoD) platforms.

1.3.1 Transportation Agencies

One of the main tasks of transportation agencies is providing transportation infras-

tructure which is safe, reliable, robust and resilient. To achieve that, it is fundamental

to have models that can output accurate and useful predictions informing on the effect

of incorporating a certain policy.
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Three problems of interest to transportation agencies are developed in this thesis:

(i) the estimation of the parameters of the TAP; (ii) the assessment of new routing

policies for Connected and Automated Vehicles (CAVs); (iii) the optimization of

existing infrastructure by better allocating the direction of lanes in the network.

Estimating Travel Patterns and User Behavior from Data

An important drawback that has been observed when using the TAP is that small

perturbations in the inputs to the problem, namely the OD demands and travel

time functions have a large impact on the equilibrium solution (Bertsimas, Gupta, &

Paschalidis, 2015; Yang, Meng, & Bell, 2001). Therefore, the problem of accurately

estimating these inputs is relevant to design interventions with reliable models.

Chapter 2 contributes to this topic as follows. First, unlike most of the available

methods, this work tackles the estimation problem jointly, i.e., it calibrates the OD

demands and travel latency function simultaneously by formulating a bilevel program.

To solve the bilevel program, two methods are proposed and tested. Second, it extends

the methods from single- to multi-class vehicle networks. This allows estimating

the demand patterns and travel latency functions for different vehicle types such as

self-driving vehicles, trucks, or bikes. Third, it performs two case studies using data

from the transportation networks of Eastern Massachusetts Area (EMA) and New

York City (NYC). The empirical results suggest that the joint methods converge

to a solution that yields better estimates than solving the two estimation problems

separately.

The Effect of System-Optimal Routing in Mixed Traffic

In a selfish attempt to beat traffic, every agent optimizes their own route by mini-

mizing their travel time and leading to a user-centric solution known as the Wardrop

equilibrium (Wardrop, 1952). Alternatively, if a social planner were to choose the



8

routes for every commuter, the solution would lead to a system (or social) optimal

allocation. The inefficiency of the user-centric approach boils down to the difference

between a selfish versus a collaborative routing strategy.

A commonly used metric to measure this difference is the Price of Anarchy (PoA).

The analysis of this phenomena is relevant for transportation planners when designing

incentives schemes (e.g., congestion tolling) in the network. Moreover, the assessment

of the magnitude of the PoA is important to understand the value that can be gained

by collaboratively routing commuters.

Chapter 3 contributions are the following. First, using the estimated OD demand

and travel latency functions, the PoA for different time slots in the Eastern Mas-

sachusetts network is estimated. It is shown that for the morning peak traffic the PoA

can reach values of 1.10, suggesting that coordinating commuters routing decisions

could reduce traffic congestion by 10%. Second, It proposes an algorithm which

comes up with system-centric time-optimal and energy-optimal routes for collaborative

CAVs in the presence of mixed traffic (having both CAVs and user-centric vehicles

in the system). Using this method, the results show that even under small CAV

penetration rates, CAVs and private vehicles benefit from the improvements. This

work motivates and serves as a basis for future work on designing incentive schemes

to steer user-centric behavior towards a system-optimal allocation.

Optimizing Lane Reversals

One possible way to reduce traffic congestion without building new roads is to increase

the network’s capacity by dynamically adjusting the direction of the lanes of the

transportation infrastructure. The problem of identifying the best lanes in a network to

reverse has been shown to be NP-hard given the dependence of the users’ route selection

on the lane direction decision. Solving this problem is relevant for transportation

agencies as it helps identify which are the best links of the network to reverse. Moreover,
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it provides an estimate of the achievable benefits that this technology may provide.

Chapter 4 studies how to solve this problem efficiently by devising novel method-

ologies to solve the problem. First, it develops three tractable methods to solve the

lane reversal problem while considering the routing decisions of commuters. The

first method decouples the routing and lane assignment problems and solves them

sequentially. The second approach uses a Frank-Wolfe algorithm which takes gradient

steps for both the link’s capacity and user routing. The last method convexifies the

objective function to map the problem to a linear program. The second contribution

lies on extending the convex approximation approach by incorporating any set of

linear constraints, and provides examples for which this flexibility on the constraints

is relevant for practical applications. Finally, case studies report overall reductions

in travel times of 4.5% for the overall Eastern Massachusetts network with some

roads improving up to 40% showing the achievable benefits of lane reversal for daily

commuter traffic.

1.3.2 Autonomous Mobility-on-Demand Systems

In the last few years, the concept of a sharing economy has become ubiquitous

across industries including transportation. A key tenet of a sharing economy is

that consumer’s cost for using a resource will shift from ownership to on-demand

access based on need. In transportation, the sharing economy has had a large

expansion in the so-called Mobility-on-Demand (MoD) platforms for which many

(especially young) citizens have shifted to exclusively using MoD services and public

transportation (Etehad & Nikolewski, 2016).

These MoD systems, like Uber or Lyft in the United States, use geolocalization

and information services to improve the overall user experience. Although their

connectivity has allowed them to offer a lower cost service by employing ride-sharing

services (in which two or more passengers share a vehicle), there is an extensive
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area of opportunity to improve the overall operation of these systems by exploiting

automation, connectivity, and coordination.

The second half of this dissertation studies optimal strategies to operate an MoD

system that uses autonomous vehicles, creating Autonomous Mobility-on-Demand

(AMoD) systems. Specifically, the goal is to tackle four operational decisions. (i) How

many vehicles does the platform require to offer a desirable quality of service? (ii) How

should the system set prices in order to maximize profits? (iii) How should vehicles

be reallocated across the network in order to reduce customer wait times? and (iv)

How to optimally route vehicles?

It is crucial to note that these decisions are inter-related; for example, if we increase

the price for a specific origin-destination, we expect its demand to decrease, therefore,

requiring less reallocation of vehicles to that region and presumably a smaller fleet.

Therefore, we focus on answering these operational decisions jointly.

Optimizing Routing and Rebalancing of Autonomous Mobility-on-Demand
systems

Chapter 5 studies how to improve the quality of service of an AMoD system by

reducing the overall user travel time and by ensuring the availability of vehicles for

their customers. To achieve this, the objective is to select the routing and rebalancing

decisions jointly rather than separately (the current state-of-the-art).

The key methodological contribution is using the traffic assignment method and

approximating the non-linear travel latency function with a piecewise affine function.

This slight modification allows to render the non-linear program with rebalancing

constraints (hard to solve) to a quadratic or a linear program, making it easier and

faster to solve. We extend the two-line piecewise affine approximation presented

in Salazar, Tsao, Aguiar, Schiffer, and Pavone (2019) to n segments and provide

theoretical and empirical results showing that its solution is asymptotically optimal
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to the original problem. In addition to this contribution, we extend the routing and

rebalancing of a fleet of AMoDs to consider reactive private flow1 and intermodality

when deciding the paths of the AMoD users. With this framework at hand, we

analyze the trade-offs between the benefits of system-centric routing and the cost of

rebalancing. Finally, we perform experiments using the transportation network of

New York City.

Optimizing Pricing, Fleet Sizing, and Rebalancing of AMoD systems

Pricing policies play an important role in AMoD systems as they modulate the inflow of

customers traveling between regions in the network. In contrast to the existing pricing

methods in the literature, in Chapter 6 we use information on a customers’ destination

when designing the pricing policy. This allows the fleet manager to modulate demand

such that the system is at an equilibrium2 by solely adjusting prices. In addition

to pricing, we incorporate the rebalancing policy optimization framework presented

by Pavone, Smith, Frazzoli, and Rus (2012) and formulate a joint static optimization

model.

Using these static models as a starting point, we propose dynamic policies that

are more responsive to perturbations in the system (such as unexpected increases in

demand). We build a simulation environment that takes into account the stochasticity

of customer arrivals and travel times to test and compare the methodologies developed

in the chapter. We use this tool to perform case studies that use traffic flow and taxi

data from Eastern Massachusetts, New York City, and Chicago. Our results show

that solving the problem jointly could increase profits between 1% and up to 50%,

depending on the benchmark. Moreover, we observe that the proposed fleet size yields

a 75% utilization rate of vehicles (i.e., the vehicle is idle 25% of the time) as compared
1in a network where AMoD and user-centric private vehicles interact, we provide routing decisions

for the AMoD users that anticipate the behavior of the private vehicles.
2Infinite queues of customers or vehicles are not formed in the system.
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to 5% for private vehicles.

Finally, Chapter 7 concludes and identifies future research directions.

1.4 Notational Conventions

In this thesis, all vectors are column vectors and are denoted by bold lowercase letters.

Bold uppercase letters denote matrices. We write x = (x1, . . . , xdim(x)) to denote the

column vector x, where dim(x) is its dimensionality. We use “prime” to denote the

transpose of a matrix or vector. We let 0 and I be the vector of all zeroes and the

identity matrix, respectively. Unless otherwise specified, ∥ · ∥ denotes the Euclidean

norm, |D| denote the cardinality of a set D, and [[D]] the set {1, . . . , |D|}.



Chapter 2

Estimating Travel Patterns and User
Behavior from Data

This chapter presents a kernel-based framework that jointly estimates the OD demand

matrix and travel latency function in single and multi-class vehicle networks. To

achieve that, we formulate a bilevel optimization problem and then we transform it to

a Quadratic Constraint Quadratic Program (QCQP). To solve this QCQP, we propose

a trust-region feasible direction algorithm that sequentially solves a quadratic program.

In addition to the QCQP mehtod, we provide a more efficient alternating optimization

method. Our results show that the QCQP method achieves better estimates when

compared with the disjoint and sequential methods. We show the applicability of

the method by performing case studies using data for the transportation networks of

Eastern Massachusetts and New York City.

2.1 The Problem and Related Work

The inputs to the Traffic Assignment Problem (TAP) besides the network topology

are: (i) the Origin Destination (OD) demand matrix; and (ii) a link latency cost or

travel time function and are usually unknown. Hence, accurately estimating these

quantities if of interest to traffic engineers and policy-makers.

Assuming access to traffic counts data, i.e., data reporting the number of vehicles

13
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in every link of the network, the estimation problem of the inputs of the TAP is

minβ,g F1(x(β,g),x
d),

where F1 measures a non-negative “distance” between the TAP flows x(g,β) and

the flow data xd; g the OD demand; β represents the parameters specifying a travel

latency function and x(g,β) is the solution to the TAP.

2.1.1 Related Work

The problem of estimating g alone (for a fixed β) has received extensive attention

in the literature. In practice, urban planners estimate OD demand patterns through

surveys. This task is expensive and time consuming, which makes it impractical to

perform on a regular basis. In contrast, academics have estimated g assuming access

to flow data and using a variety of methods.

An appropriate way to classify the literature on OD demand estimation is by

considering the level of congestion in the network. For uncongested networks, where

path enumeration connecting each OD pair is possible and flows do not impact the

routing decisions of users, entropy maximization (Bell, 1983; Van Zuylen & Willum-

sen, 1980), multi-objective optimization (Brenninger-Göthe, Jörnsten, & Lundgren,

1989), generalized least squares (Cascetta, 1984; Hazelton, 2000), maximum likeli-

hood estimation (Spiess, 1987), and Bayesian inference (Maher, 1983) have been

employed. Cascetta and Nguyen (1988) provide a comprehensive comparison between

these approaches. Alternatively, for congested networks, where there exists a circular

dependence between the OD estimation problem and the traffic assignment problem,

the problem has been posed as a bilevel problem. Fisk (1988) and Fisk (1989) where

the first works to use this bilevel formulation and they tackled it by sequentially

solving an entropy maximization and a user assignment problem. Subsequently, Spiess
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(1990) proposed a gradient-descent heuristic algorithm that calculates derivatives by

assuming that routing decisions are locally constant for small perturbations of g and

solved the problem sequentially. Since then, many approaches have been proposed

for the congested case, including coordinate descent (Florian & Chen, 1995), fixed

point algorithms with generalized least squares (Cascetta & Postorino, 2001), and

extensions to a stochastic user equilibrium setting (Maher, Zhang, & Van Vliet, 2001;

Yang, Sasaki, Iida, & Asakura, 1992) that incorporates uncertainty in the routing

decision process. In addition to these, Doblas and Benitez (2005) solves the problem

by writing the augmented Largrangian and solving it using a Frank-Wolfe algorithm.

A main aspect of all these approaches is that they assume full knowledge of β.

Estimating travel time functions has received less attention in the literature.

In general, this problem has been addressed by fitting data of a single link using

regression (Mtoi & Moses, 2014; Skabardonis & Dowling, 1997), simulation (Lu,

Meng, & Gomes, 2016), and more recently by incorporating stochasticity in the link’s

capacity (Neuhold & Fellendorf, 2014). In contrast to single-link methods, there has

been some work trying to solve the inverse TAP which assumes knowledge of x and g

and aims to recover β. In this context, García-Ródenas and Verastegui-Rayo (2013)

estimates a single parameter β and uses a column-generation alternating approach.

Differently, Bertsimas et al. (2015) employs a kernel method to estimate the travel

latency function allowing more flexibility in the specification function.

To the best of our knowledge, solving the joint (OD demand and travel time

functions) estimation problem has only been studied in Russo and Vitetta (2011)

where the authors considered the parametric BPR-type function and a heuristic

algorithm to solve the joint problem. Different to Russo and Vitetta (2011), in this

thesis the problem formulation allows more flexibility in the travel latency function

by allowing it to be any monotonically increasing polynomial. Similar to this joint
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estimation problem, several studies have estimated the OD demand together with the

route-choice dispersion parameter θ encountered in the stochastic user equilibrium

(SUE). Liu and Fricker (1996) used a two-stage method and showed its convergence to

a local minimum for uncongested networks. For the congested case, Yang et al. (2001)

proposed a sequential quadratic procedure that requires estimating flow derivatives

with respect to θ and g. To compute the derivatives they used Tobin and Friesz

(1988) and showed that their algorithm converges only under certain circumstances.

Moreover, Lo and Chan (2003) and Wang et al. (2016) solved the same problem using

an alternating method, and Meng, Lee, and Cheu (2004) tackled this problem using

an augmented Lagrangian method.

2.2 Preliminaries

2.2.1 Single-Class Transportation Network Model

Consider a transportation network as a directed graph G = (V ,A), where V is the

set of nodes (road’s intersections) and A is the set of links (roads). Let the node-link

incidence matrix be denoted by N ∈ {0, 1,−1}|V|×|A| and ea ∈ {0, 1}|A| be a zero

vector with an entry equal to 1 corresponding to link a.

Let w = (ws, wt) denote an OD pair and W = {wi : wi = (wsi, wti), i ∈ [[W ]]} be

the set of all OD pairs. Furthermore, let dwi ≥ 0 be the demand flow that travels from

origin wsi to destination wti. Denote by dw ∈ R|V| the vector of all zeros except for

the coordinates of nodes wsi and wti which take values −dwi and dwi , respectively. We

will also use vector g = (dwi ; i ∈ [[W ]]) to denote the demand flows for all OD pairs.

Let xa be the total link flow of link a ∈ A and x the vector of these flows. Let F
be the set of feasible flow vectors resulting from transporting the OD demand through



17

the network, defined as

F =
{
x ∈ R|A|

+ : x =
∑
wi∈W

xwi , Nxwi = dwi , ∀i ∈ [[W ]]
}
, (2.1)

where xwi is the flow vector attributed to OD pair wi.

For each OD pair wi we define a set of possible routesRwi where each route r ∈ Rwi

is a sequence of links starting from the origin wsi and ending at the destination wti.

We will write a ∈ r if a route r contains link a. For each OD pair wi ∈ W , we define

the indicator function

δair =


1, if r ∈ Rwi uses link a,

0, otherwise.
(2.2)

Finally, let ta(x) : R|A|
+ 7→ R+ be the latency cost (i.e., travel time) function for

link a and write t(·) for the vector of these link functions. Using the same structure

used in Beckmann et al. (1955) we can characterize ta(xa) as

ta(xa) = t0af(xa/ma),

where ma is the flow capacity of link a, f(·) is a strictly increasing, positive, and

continuously differentiable function, and t0a is the free-flow travel time on link a. We

set f(0) = 1, which ensures that if there is no constraint on flow capacity, the travel

time ta is equal to the free-flow travel time.

2.2.2 Multi-class Transportation Network Model

Let Ũ be the set of user (or vehicle) classes and, without loss of generality, assume

that all vehicle classes travel in the same transportation network. Let the original

network be denoted with a directed graph G̃ =
(
Ṽ , Ã, W̃

)
where Ṽ is the set of

nodes, Ã is the set of arcs, and W̃ is the set of K OD pairs defined as W̃ =
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{
wk : wk := (wsk, wtk), k = 1, . . . , K

}
.

In order to include multiple vehicle classes, we use the idea in Dafermos (1972) of

making |Ũ | copies of G̃, each corresponding to a vehicle class. We use these graphs

to create an enlarged network, denoted with G = (V ,A,W), where the sets of arcs,

nodes, and OD pairs are constructed as the collection of all |Ũ | graphs. Formally:

V =
{
v(i, u) : i ∈ [[Ṽ ]], u ∈ [[Ũ ]]

}
, (2.3a)

A =
{
a(i, u) : i ∈ [[Ã]], u ∈ [[Ũ ]]

}
, (2.3b)

W =
{
w(k, u) : w(k, u) := (ws(k, u), wt(k, u)), k ∈ [[W̃ ]], u ∈ [[Ũ ]]

}
. (2.3c)

Let the node-link incidence matrix of G be N ∈ {0, 1,−1}|V|×|A| and let eiu denote

the |A|-dimensional vector where all entries are zero except the entry corresponding

to link a(i, u) which is set to one. To account for users’ demand, for every OD

k ∈ [[W̃ ]] and class u ∈ [[Ũ ]] let dw(k,u) be the demand rate from node ws(k, u) to node

wt(k, u). Moreover, let the vector dw(k,u) ∈ R|V| be composed of all zeros except for

the coordinates of nodes ws(k, u) and wt(k, u) which take values −dw(k,u) and dw(k,u),

respectively. Let F be the set of feasible flow vectors defined as

F =
{
x ∈ R|̃A|×|Ũ|

≥0 : xu =
∑
k∈[[W̃]]

xw(k,u), Nxw = dw, ∀w ∈ W
}
,

where x =
(
xiu; i ∈ [[Ã]], u ∈ [[Ũ ]]

)
, and xiu denotes the flow of class u on link a(i, u).

Let xu =
(
xiu; i ∈ [[Ã]]

)
be the flow vector for class u and xi =

(
xiu; u ∈ [[Ũ ]]

)
the flow

vector of all classes corresponding to the ith physical arc.

BPR-type Cost Functions

We reflect the total travel time of a link by coupling the flow from different classes of

vehicles using a travel latency function. To do so, we characterize the set of travel



19

latency functions as:

t(x) =
(
tiu(xi); i ∈ [[Ã]], u ∈ [[Ũ ]]

)
, (2.4)

where the cost on a physical link does not depend on the flows elsewhere, but only on

the flows present in the link from all classes. To simplify the analysis, we select travel

latency functions with the form of a generalized Bureau of Public Roads (BPR) form.

This is, for each link i ∈ [[Ã]] and user type u ∈ [[Ũ ]] we have

tiu(xi) = t0iuf
(θ′xi

mi

)
(2.5)

where t0iu is the free-flow travel time for vehicle class u on link i; f(·) is a travel latency

function which satisfies f(0) = 1, is strictly increasing and is continuously differentiable

on R+; mi is the flow capacity of link i, and θ =
(
θu; u ∈ [[Ũ ]]

)
is a weight vector

such that θu ≥ 1, ∀u ∈ [[Ũ ]]. As a special case, the single-class network corresponds

to |Ũ | = 1 and θ1 = 1. Finally, we make the following standard assumption in the

context of the TAP for our analysis of the models.

Assumption A. (i) G is strongly connected (there is at least one path connecting
any origin with its destination). (ii) Demands dw are non-negative. (iii) Travel time
functions are positive and continuous for every link.

It has been shown that the single-class formulation is a special case of the multi-

class model, and more interestingly, that we can treat the multi-class model as an

enlarged single-class model (Patriksson, 1994). Thus, we only need to consider general

multi-class models. However, due to coupling of flows in the latency function some

of the properties of the single-class might differ to the multi-class case. These are

further discussed in the following subsection and in Remark 1. For convenience, we

vectorize the demand for vehicle class u with gu =
(
dw(k,u); ∈ [[W̃ ]]

)
and denote with

g =
(
gu;u ∈ [[Ũ ]]

)
the full demand vector.
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2.3 Models

In this section we present the models employed to construct the joint problem. We

review the variational inequality formulation of the TAP, as well as an inverse TAP

model. We begin by defining the notion of a Wardrop Equilibrium.

Definition 1. A feasible flow x∗ ∈ F is a Wardrop Equilibrium if for every OD pair
w ∈ W, and any route riu connecting (ws(i, u), wt(i, u)) with positive flow hriu, the
cost of traveling along that route is no greater than the cost of traveling along any
other route.

For an OD pair w(k, u) let rku be a path connecting its origin to its destination

and let Rw(k,u) be the set of all paths. Furthermore, let hrku be the flow assigned to

path rku. Then a Wardrop Equilibrium exists if

hrku > 0 =⇒ crku = πw(k,u), ∀rku ∈ Rw(k,u) (2.6a)

hrku = 0 =⇒ crku ≥ πw(k,u), ∀rku ∈ Rw(k,u) (2.6b)

where crku is the travel time in route rku and πw(k,u) is the travel time on the fastest

route of w(k, u).

2.3.1 Variational Inequality

One way of modeling and solving the TAP is by using a Variational Inequality (VI)

formulation (Smith, 1979). In this context, let h be a feasible route flow vector.

Utilizing Assumption A and the conditions described in (2.6), h∗ is a Wardrop

Equilibrium flow vector if and only if

c(h∗)′(h− h∗) ≥ 0, ∀h ∈ H, (2.7)

where H is a convex feasible set for the route-based problem.

The intuition behind this result is that if there exists some ĥ ∈ H such that
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c(h∗)′(ĥ − h∗) < 0, then we have that c(h∗)′ĥ < c(h∗)′h∗ which implies that the

total system travel time can be reduced for flows ĥ and travel times are c(h∗). Hence,

switching from h∗ to ĥ must have reduced at least one vehicle’s travel time even if

the travel times c(h∗) did not change.

Moreover, this result can be further studied in terms of flows (rather than routes).

In short, if we assume that the route costs are additive for a set of links (i.e., the route

cost is the summation of its link costs), then, we can rewrite these conditions in the

link-based form

t(x∗)′(x− x∗) ≥ 0, ∀x ∈ F . (2.8)

The existence and uniqueness of the solution to (2.8) for the general transporta-

tion networks is shown in Theorems 3.14 and 3.19 of Patriksson (1994) as long as

Assumption A holds, the route costs are additive, and t is strictly monotone. These

results are derived from the more general results of Variational inequality solutions

presented in Harker and Pang (1990).

Unfortunately, as stated by Marcotte and Wynter (2004), it is not easy to verify

that tiu(xi) is strictly monotone for general multi-class transportation networks. This

happens because the tiu(xi) depends on more than one vehicle class. This, in turn,

creates an asymmetric Jacobian matrix of t(·) for which first-order methods may

not be sufficient to find the solution to (2.8). We therefore cannot always guarantee

obtaining unique link flows for each vehicle class. However, we still hope to accurately

estimate the cost functions by using a weighted sum of link flows (cf. (2.5)) for different

user types. Still, there are many standard and efficient algorithms to find a solution

to (2.8) for both single- and multi-class networks such as the Method of Successive

Averages (MSA) or the Frank-Wolfe algorithm (Frank & Wolfe, 1956).



22

2.3.2 User-Centric Inverse Model

The objective of the inverse model is to estimate the latency cost function t(·)
(specifically f(·) in (2.5)) using data. The key idea is to use observable equilibrium

flow data and known OD demands to estimate f(·) by using inverse optimization.

The inverse formulation seeks to learn f(·) so that the flow observations are as close

as possible to an equilibrium. Given that this formulation relies on measured data, we

expect some measurement noise. Hence, the notion of an approximate solution to the

variational inequality problem is needed. Therefore, for a given ε > 0, we define:

Definition 2 (ε-approximate VI). Given ε > 0; x̂ ∈ F is called an ε-approximate
solution to (2.8) if

t(x̂)′(x− x̂) ≥ −ε, ∀x ∈ F . (2.9)

This ε-approximate model is studied in Bertsimas et al. (2015) where it is shown

that x̂ is an optimal solution to (2.9) if: (i) F can be represented as the intersection

of a small number of conic inequalities in standard form (F = {x : Ax = b,x ∈ C});
(ii) F has an interior point (Slater condition); and (iii) there exists y such that

A′y ≤C t(x̂), (2.10)

t(x̂)′x̂− b′y ≤ ε. (2.11)

In short, this result is achieved by leveraging Definition 2 and strong duality, and

it is detailed in Theorem 2 of Bertsimas et al. (2015). Note that for our multi-class

transportation network “A” is constructed by N (see (2.4)) and has |W| · |Ã| rows.

Hence yw ∈ R|V| are the dual variables of w and these conditions for the multi-class

transportation network are written as

e′iuN
′yw ≤ tiu(x̂i) ∀i ∈ [[Ã]], w ∈ W , u ∈ [[Ũ ]], (2.12)

t(x̂)′x̂−
∑
w∈W

dw′
yw ≤ ε. (2.13)



23

Figure 2·1: Diagram of |K| flow observations over NYC.

Assume now we are given |K| link flow observations. One can think of these as

flow samples which are produced by the same t(·) and different OD demand g’s (see

Figure 2·1 for intuition). For each κ ∈ [[K]] we have x(κ) =
(
x
(κ)
iu ; u ∈ [[Ũ ]]

)
; i ∈ [[Ã]])

and the inverse problem is defined as finding a function t(·) such that x(k) is an

εκ-approximate solution of (2.8). Letting ε := (εκ;κ ∈ [[K]]), we formulate the inverse

VI problem as

min
t,ε

∥ε∥ (2.14a)

s.t. t(x(κ))′(x− x(κ)) ≥ −εκ, ∀x ∈ F (κ), κ ∈ [[K]], (2.14b)

εκ > 0, ∀κ ∈ [[K]], (2.14c)

where the optimization is over ε and the selection of function t(·), and where F (κ)

depends on κ based on the different OD demands.

Note however that (2.14) is not solvable yet as we have not specified t(·). Also,

observe that the set of constraints restricts the travel time function to be within εk

units of the Wardrop equilibrium flows for each sample. In this sense, if we solve the
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problem using a large [[K]] corresponding to multiple observed networks, we will find

a more “stable” travel latency function as we expect the variance of the estimated

parameters to decrease.

To solve (2.14), we require to give more structure to t(·), or more specifically to f(·),
and to express (2.14b) with their optimality conditions. Aiming to recover a function

with good data reconciling and generalization properties, we apply an approach

which expresses the function f(·) in a Reproducing Kernel Hilbert Space (RKHS)

H as in Bertsimas et al. (2015). Then, we transform (2.14) using the RHKS, (2.12),

and (2.13), which lead to the following optimization problem:

min
f,ε,y

∥ε∥+ γ∥f∥2H (2.15a)

s.t. e′
iuN

′yw ≤ t0iuf

(
θ′x(κ)

i

mi

)
, ∀i ∈ [[Ã]], u ∈ [[Ũ ]], w ∈ W(κ), κ ∈ [[K]], (2.15b)

|Ã|∑
i=1

( |Ũ |∑
u=1

t0iux
(κ)
iu f

(
θ′x(κ)

i

mi

))
−
∑

w∈Wκ

(dw)′yw ≤ εκ, ∀κ ∈ [[K]], (2.15c)

f

(
θ′x(κ)

i

mi

)
< f

(
θ′x(κ)

ĩ

mĩ

)
,∀i, ĩ ∈ [[Ã]] s.t.

θ′x(κ)
i

mi

<
θ′x(κ)

ĩ

mĩ

; ∀κ ∈ [[K]], (2.15d)

f(0) = 1, (2.15e)

ϵ ≥ 0, f ∈ H,

whereW(κ) is the OD demand matrix of the κ-th network and where we have replaced

constraints (2.14b) with (2.15b)-(2.15e). Moreover, note that in this case, when

considering |K| flow observations, then y ∈ R|W|×|K| via W(κ).

In the objective, γ is a regularization parameter and ∥f∥2H denotes the squared

norm of f(·) in H (note that to solve (2.15), f(·) still need to be specified). The first

constraint (2.15b) corresponds to dual feasibility, (2.15c) states that the solution to the

κ-th network is within εκ distance, in other words, it is the suboptimality constraint

(primal-dual gap). (2.15d) enforces f(·) to be strictly increasing, and (2.15e) is for
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normalization purposes (see (2.5)). Note that a larger γ implies giving more weight to

estimating a “better” f(·) that generalizes better out-of-sample, rather than fitting

the data better. In contrast, a smaller γ would recover a “tighter” f(·) in terms of

data reconciliation but might not provide good generalization.

One question that may arise is: How does ∥ε∥ behaves as we increase the number

of data samples? To answer this question, we refer to Theorems 6 and 7 of (Bertsimas

et al., 2015, Sec. 6) where the convergence of (2.15) is discussed in detail.

So far, solving (2.15) is ambiguous since it optimizes over undefined functions f(·).
To make the estimation problem solvable, we specify H (and thus the class of f(·)) by

choosing its reproducing kernel as a polynomial ϕ(x, y) = (c+ xy)n for some choice of

c ∈ R≥0 and n ∈ N (Evgeniou, Pontil, & Poggio, 2000). In other words, we aim to fit

f(·) with a polynomial of degree n. We believe this assumption a good choice since it

matches our intuition on how congestion affects the latency cost of links (cf. (2.5)).

The polynomial kernel function is

ϕ(x, y) = (c+ xy)n =
n∑

i=0

(
n

i

)
cn−1xiyi.

Using the representer theorem for kernel functions (Evgeniou et al., 2000), we modify

the polynomial objective function to a quadratic function parameterized by β =

{βj : j = [[n]]} where n is the degree of the polynomial. This renders to the following

tractable Quadratic Programming (QP) problem (see (3.2), (3.2), and (3.6) in Evgeniou

et al. (2000) for details)

min
β,y,ε

∥ε∥+ γ
n∑

j=0

β2
j(

n
j

)
cn−j

(2.16)

s.t. (2.15b)− (2.15d), β0 = 1.
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The output of (2.16) contains β∗, and therefore the f(·) estimator is

f̂(x) :=
n∑

i=0

β∗
i x

i = 1 +
n∑

i=1

β∗
i x

i,

where we set β0 = 1 to have f(0) = 1. Note that the well-recognized vanilla BPR

function (i.e., f(x) = 1 + 0.15x4) is a special case of the proposed polynomial f̂(x)

when β = [1, 0, 0, 0, 0.15].

Remark 1. In the above QP formulation, we have assumed that the parameter vector
θ and the set of user classes Ũ are the same for all |K| networks. Since (2.5) is a
weighed sum of link flows of different classes of vehicles. Hence, as noted previously,
we aim to accurately recover the travel latency function from such weighted sum of
link flows. In Sec. 2.5 we will illustrate this by conducting a numerical experiment.

To facilitate the analysis, let us write (2.16) using the following compact notation:

min
β,y,ε

ε′Iε+ β′Hβ (2.17a)

s.t. A(g)y +Bβ +Cε+ h ≤ 0, (2.17b)

where H is a positive definite matrix and A(g) depends on the demand vector

g via constraint (2.15c). This formulation was proposed for single-class networks

by Bertsimas et al. (2015) and employed by J. Zhang et al. (2018). We have extended

this model for the multi-class case and in the next section we present our main

contribution, the joint estimation of f(·) and g for the multi-class TAP.

2.4 The Joint Problem

2.4.1 Bilevel Formulation

Unlike most previous work in this field, we would like to recover the travel time

function f(·) (i.e., β = (β0, . . . , βn)) and the OD demand vector g jointly. To achieve
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this, we define the joint problem as a bilevel formulation and we propose an algorithm

to find its solution.

To ease notation, for any β and g we let x(β,g) = (xi(β,g); ∀i ∈ [[Ã]]) be

the optimal solution to the TAP (i.e., (2.8)). Assume that we observe |K| different

equilibrium link flow vectors x(κ), and let xd := (x(κ),∀κ ∈ [[K]]) be the vectorized

version of all the observed data. Using these definitions we write the bilevel optimization

problem as

min
β,g

F̂ (β,g) :=

|K|∑
κ=1

|Ũ |∑
u=1

|Ã|∑
i=1

([x(β,g)]iu − x(κ)iu )2 (2.18a)

s.t. x(β,g) = TAP(β,g), ∀u ∈ [[Ũ ]] (2.18b)

(β,y, ε) = arg min
β,y,ε

{
ε′Iε+ β′Hβ, (2.18c)

s.t. A(g)y +B(xd)β +Cε+ h ≤ 0
}
.

Notice that this problem is a bilevel problem and the lower-level problem/constraint

(2.18c) could be avoided completely. The reasoning behind including (2.18c) as a

constraint to the joint estimation problem is to enforce a stronger, and optimal,

relationship between g and β by leveraging the data and the inverse method presented

in the previous section. This aims to guide the optimization to better outcomes.

Remark 2. Typically, most related work aiming to solve this problem include a term
in (2.18a) which penalize the deviation of the estimated demand g from a known
demand vector g0. To include this penalty one requires prior knowledge (or a good
estimate) of the true demand through g0. We believe this term has been historically
included due to the fact that the optimization problem is non-convex in terms of x.
Hence, this prior knowledge aims to steer the solution towards a local optimum close
to the initial demand estimate g0. In contrast, we avoid imposing such connection
with an initial demand estimate. Still, our methodology allows, if desired, to include
such term in the objective function.
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2.4.2 Optimality conditions of (2.18c)

To write (2.18) as a computationally solvable joint optimization problem, we replace

the lower-level problem (2.18c) by its optimality conditions and write (2.18) as a single-

level problem. Note that both (2.18) and (2.17) have convex quadratic objectives as

the only non-zero entries in their objective are in the diagonal of the Q matrix in

their canonical QP standard form. We begin our analysis by writing the Lagrangian

function:

L(β,y, ε;ν) = ε′Iε+ β′Hβ + ν ′(A(g)y +B(xd)β +Cε+ h), (2.19)

where ν denotes the dual variables corresponding to constraints (2.17b). Furthermore,

the first-order conditions of (2.17) are

∂L/∂ε =2Iε+C′ν = 0⇒ ε = −(1/2)I−1C′ν, (2.20a)

∂L/∂β =2Hβ +B(xd)′ν = 0⇒ β = −(1/2)H−1B(xd)′ν, (2.20b)

∂L/∂y =A(g)′ν = 0, (2.20c)

which, by substituting ε and β in (2.19) using (2.20), yields to the dual function

D(ν) = −(1/4)ν ′(CIC′ +B(xd)H−1B(xd))ν + h′ν.

It follows that for each primal-dual pair (β,y, ε; ν) in (2.18c), the necessary and

sufficient conditions are

A(g)y +B(xd)β +Cε+ h ≤ 0, (2.21a)

A(g)′ν = 0, (2.21b)

ν ≥ 0, (2.21c)

ε′Iε+ β′Hβ = −1

4
(ν ′CIC′ + ν ′B(xd)H−1B(xd)′ + h′)ν, (2.21d)
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where (2.21a)-(2.21c) correspond to primal and dual feasibility and (2.21d) equates

the primal and dual objectives to ensure strong duality.

2.4.3 Relaxation and Trust-Region Feasible-Direction Method

At this point we are ready to convert the bilevel problem to a single-level joint problem.

We do this by replacing the lower-level problem (2.18c) by its KKT conditions (2.21).

In other words, we minimize (2.18a) subject to (2.21). However, note that (2.21d),

corresponding to strong duality, is a non-convex quadratic equality constraint. To

address this issue, we relax this constraint by requiring that the gap is upper bounded

by some ξ ∈ R≥0. We penalize this gap in the objective using some λ. Then, the new

joint formulation becomes

min
β,g,y,ν,ε,ξ

F (β,g, ξ) := F̂ (β,g) + λξ (2.22a)

s.t. (2.21a), (2.21b),

ε′Iε+ β′Hβ +
1

4
ν ′(CIC′ +B(xd)H−1B(xd)′)ν − h′ν ≤ ξ, (2.22b)

ν, g,β, ξ ≥ 0, (2.22c)

where β and g are the quantities of interest; y and ν are the dual variables defined in

(2.15) and (2.19), respectively; and ε and ξ are the primal-dual gap relaxations.

Unfortunately, both the objective and the constraints, through A, are nonlinear

functions of g, y and ν. Therefore, to solve (2.22), we propose an iterative trust-region

feasible direction method. To do so, let z = (β,g, ξ) and denote with j the iteration

count. With this sequential approach, we evaluate the gradient of F (·) at the previous

iteration and seek the steepest feasible direction of descent by solving the following

optimization problem:

min
zj ,y,ν,ε

∇F (zj−1)′(zj−1 − zj) (2.23a)
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s.t. (2.21a), (2.21b), (2.22b)

gj−1 − c1je ≤ gj ≤ gj−1 + c2je, (2.23b)

βj−1 − d1je ≤ βj ≤ βj−1 + d2je, (2.23c)

ν, zj ≥ 0, (2.23d)

where e denote the vector of all ones and c1j, c2j , d1j, d2j are used as step-size parame-

ters. The matrix A in the constraint (2.21a), and (2.21b) is a function of g and we

approximate it by using gj−1. Then, the gradient in (2.23a) is expressed by

∇F (zj)′ =
[ |Ũ |∑

u=1

|Ã|∑
i=1

2(xiu(z
j)− x∗iu)

∂xiu(β
j,gj)

∂βl
, l = [[n]];

|Ã|∑
i=1

2(xiu(z
j)− x∗iu)

∂xiu(β
j,gj)

∂gku
, k = [[W̃ ]], u = [[Ũ ]];λ

]
. (2.24)

As a result, problem (2.23) has a linear objective (provided that we can evaluate the

partial derivatives) and constraints that are linear and convex quadratic, making it

a tractable problem. In fact, this problem can be written as a quadratic program

by replacing ξj in the objective (2.23a) by the left-hand side of constraint (2.22b).

Given these “constant” approximations of the constraints at the prior iterate, the role

of c1j, c2j, d1j, d2j is to ensure that the optimization takes place in a relatively small

“trust” region for (βj, gj) that is not too far from the prior iterate (βj−1, gj−1). Note,

however, that to solve (2.23), we still need to estimate the partial derivatives of the

flows with respect to g and β.

2.4.4 Derivatives

It has been observed that it is hard to derive analytical expressions for the partial

derivatives of x(β,g) with respect to β and g. To overcome this, we use classical

approximation techniques. We refer the interested reader to a comprehensive discussion
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carried out by Patriksson (2004).

Directional flow derivatives with respect to the OD demand

We derive an approximation to the gradient of x(β, g) with respect to g. To that end,

fix i ∈ [[Ã]], u ∈ [[Ũ ]] and add the flows over the OD pairs demands

xiu(β,g) =
∑
k∈[[W̃]]

∑
r∈Rk

u

δa(i,u)r pkru gku =
∑
k∈[[W̃]]

gku
∑
r∈Rk

u

δa(i,u)r pkru , (2.25)

where Rk
u denotes the set of feasible routes for vehicle class u in OD pair k; pwr

u stands

for the percentage of class u vehicles using route r ∈ Rk
u, and

δa(i,u)r :=


1, if route r uses link a(i, u);

0, otherwise.
(2.26)

As pointed out by Noriega and Florian (2007) and Spiess (1990), for all k ∈ [[W̃ ]] and

all u ∈ [[Ũ ]], and assuming that the route probabilities are locally constant, equation

(2.25) implies

∂xiu(β,g)

∂gku
=


∑

r∈Rk
u
δ
a(i,u)
r pkru ;

0, otherwise.
(2.27)

If we only consider the shortest route rku(β,g) based on the travel latency cost, we

have that

∂xiu(β,g)

∂gku
≈ δ

a(i,u)
rku(β,g)

=


1, if a(i, u) ∈ rku(β,g);

0, otherwise,
(2.28)
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where a(i, u) ∈ rku(β,g) indicates that the shortest route rku(β,g) uses link a(i, u).

By (2.28) we obtain an approximation to the Jacobian matrix[
∂xiu(β,g)

∂gku
; i ∈ [[Ã]], u ∈ [[Ũ ]], k ∈ [[W̃ ]]

]
. (2.29)

The reasons to consider only the shortest routes for the purpose of calculating these

gradients are: (i) GPS routing services are widely-used by vehicle drivers so they tend

to always select the fastest routes, (ii) considering only the fastest routes significantly

simplifies the calculation of the route-choice probabilities, and (iii) extensive numerical

experiments and algorithms show that such an approximation of the gradients performs

well, e.g., TAPAS, or MSA.

Directional flow derivatives with respect to the coefficients of the travel
latency function

To the best of our knowledge there are two main techniques to calculate directional

derivatives of the link flows with respect to a perturbation ρ on the cost coefficients

β. Tobin and Friesz (1988) and Patriksson (2004) proposed a sensitivity analysis

method with respect to routes that require solving a large linear system that it is hard

to solve for large-scale networks. To overcome this issue, Josefsson and Patriksson

(2007) developed a QP formulation to calculate such derivatives. However, both the

LP and QP have a similar complexity as solving the TAP. Therefore, although we

are able to use any of these methods to calculate ∂xiu(β,g)/∂βl, we prefer to use a

finite-difference approximation. This is because, (i) the complexity of solving the TAP

is similar to that of the QP proposed in Josefsson and Patriksson (2007); (ii) there

are fast algorithms such as MSA, Frank-Wolfe, TAPAS to solve the TAP efficiently;

and (iii) the TAP allows to include all routes connecting any OD pair of any class

rather than defining a route set. Using TAPiu(·) to denote the solution of the TAP
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Algorithm 1 Joint cost-demand estimation.

Input: G; λ; ρ; (g0,β0): initial OD demand and travel latency function; step-size
rule; (η, T ) : precision parameters.

Initialize: Set j = 0, calculate F (β0,g0), if: F (β0,g0) = 0 then: terminate and
output (β0,g0) else:

1: Compute xj
u = TAPu(g

j,βj) for every u ∈ [[Ũ ]].
2: Obtain derivatives ∂x(βj,gj)/∂βj and ∂x(βj,gj)/∂gj using (2.29) and (2.30),

respectively.
3: Approximate the descent direction ∇F (βj,gj) using (2.24).
4: Choose a trust region/step size.
5: Solve for a steepest descent direction using (2.23), and obtain βj+1 and gj+1.
6: (Termination criterion)

• if ∥F (βj ,gj)−F (βj+1,gj+1)∥2
F (β0,g0)

≥ η and j < T then let j = j + 1 and go to
Step 1,

• else Terminate and output: (βj+1,gj+1).

for link i and class u, for some small enough ρ we compute

∂xiu(β
j,gj)

∂βl
≈ TAPiu(β

j + ρel,g
j)− TAPiu(β

j,gj)

ρ
,

where el is the lth unit vector.

Using these two approximation to the partial derivatives we have developed a

complete method for solving the joint problem. We summarize our approach in

Algorithm 1.

Our algorithm proceeds as a trust-region feasible direction method that seeks to

solve the joint cost-demand estimation problem (defined in (2.18)). The key idea of the

algorithm is to jointly select, at every iteration j, the vectors βj and gj that maximize

the reduction in the objective function of (2.18) by solving (2.23). To achieve this,

we evaluate the gradient of the function at the previous iteration of βj and gj and

restrict our new iterates to be within a trust region. By recursively performing this

procedure, we expect (and observe empirically) the algorithm to converge to a local

minimum.
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Note that Alg. 1 is a method that solves a sequence of quadratic problems. This

approach has some similarities with Yang et al. (2001) where, in general, convergence

cannot be guaranteed. This is due to the dependence between β and g. In addition, a

convergence analysis would need to account for the fact that A(gj) is approximated

by A(gj−1), which is not straightforward. A potential approach to address this issue

is by selecting a small step-size and by using the minimization rule. To that end,

we need to perform a line search at every iteration (this is standard in alternating

methods, see Lundgren and Peterson (2008) and García-Ródenas and Marín (2009)).

However computing x(β,g) is computationally demanding and line search would be

too expensive.

Moreover, we point out that solving (2.23) recursively is computationally intensive

as it involves solving a large optimization problem (e.g., the dimensions of ν and

y are O(|K| × |A|) and O(|K| × (|W| × |V|)), respectively) with a linear objective

and quadratic constraints. We leave the development of techniques to reduce the

computational burden, such as the one described by Bertsimas et al. (2015), to future

work.

Both the computational burden and the hardness of proving convergence motivate

us to propose an alternating method described in Alg 2. This algorithm proceeds by

adjusting g using gradient descent, and then estimating the restricted travel latency

function using (2.15) with constraint (2.23c). The algorithm possesses two advantages

over Alg. 1. First, it decomposes the problem making it more computationally tractable.

Second, we can guarantee its convergence. This follows by observing that F (β,g) is

lower-bounded by 0 and by observing that at every iteration the objective is either

reduced or stays at its current value. To show this, we argue that if c1 < 0 < c2 then

Step 3 certifies F (βj,gj+1) ≤ F (βj,gj) since we can always select α = 0. Moreover,

by imposing Step 6 we ensure a similar argument for β. Thus, by using the monotone
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Algorithm 2 Alternating cost-demand estimation.

Input: G; λ; ρ; (g0,β0): initial OD demand and travel latency function; step-size
rule; (η, T ) : precision parameters.

Initialize: Set j = 0, calculate F (β0,g0), if: F (β0,g0) = 0 then: terminate and
output (β0,g0) else:

1: Compute xj
u = TAPu(g

j,βj) for every u ∈ [[Ũ ]].
2: Obtain derivative ∂x(βj,gj)/∂βj using (2.29).
3: Find best step-size by doing line-search:

α = argminc1≤α≤c2 F (β
j,g − α∇gF (β

j,gj))
4: Take a gradient-step: gj+1 = gj − α∇gF (β

j,gj+1)
5: Obtain βj+1 by solving (2.15) for a fixed gj+1 and constraint (2.23c).
6: If F (gj+1,βj+1) > F (gj+1,βj) let βj+1 = βj.
7: (Termination criterion): Same as in Alg. 1

convergence theorem Bertsekas (2016) we guarantee its convergence. Its main drawback

is that the steepest directions of both g and β are done independently rather than

jointly as in Alg 1 and it may not converge to a local minimum of the joint problem.

2.5 Model Validation and Case Studies

We report numerical experiments conducted on a benchmark network and subnetworks

from the Eastern Massachusetts Area (EMA) and New York City (NYC). Note that for

the subnetworks we will estimate the OD demand based on the observed flow and that

through traffic (traffic originated at and destined for points outside the subnetwork)

will be estimated as belonging to an OD pair. For example, for Figure 2·2b, demand

initiated north of the top node (e.g., New Hampshire) and going south (e.g., Rhode

Island) would be counted as part of the OD demand from node 1 to 8.

We begin by validating our methods on single-class and multi-class variants of

the well-known Braess Network. Then, we perform additional validation experiments

using real networks: first on the EMA network focusing on an interstate highway

subnetwork and then on an urban network in NYC.



2.5.1 Model Validation

To perform these experiments, we generate “ground truth” data by selecting specific

OD demands and cost functions (β∗,g∗). Then, we solve the TAP problem using

these “true” inputs to obtain x∗, the “true” flow (note that, normally, we would obtain

x∗ from data). To test the performance, we take the generated flows, x∗ as input

to Alg. 1 and compare the resulting (βj,gj) to the ground truth. In addition to

reporting the performance of the methods developed herein, we compare them with

simpler algorithms. In particular: (i) the approach of just estimating OD demands

by assuming a fixed travel latency cost function (f(·) = BPR), and (ii) a gradient

descent method (GD) using the estimated derivatives in (2.29), (2.30).

Single-Class Braess Network

As our first experiment, we use the Braess network (Fig. 2·2a). We generate ground

truth data by considering a single OD pair which transports 4, 000 vehicles per hour

from node 1 to 2 and with a true travel latency function f(x) = 1+0.45x4. The resulting

“true” flows when solving the TAP for this network are: (2095, 1904, 2095, 0, 1904, 1)

for links (1, 2, 3, 4, 5) respectively. Then, we initiate Alg. 1 with g0 = 0 and β0 =

(1, 0, 0, 0, 0.15, 0). We set c = 30, λ = 0.1, ρ = 0.1, n = 5, and adaptive step-sizes

c1j = c2j =
200√
j
, d1j = d2j =

0.02
j3/4

.

In the left plot of Fig. 2·3 we observe the objective function of the joint prob-

lem (2.22a) converging to zero when solving the problem jointly. In contrast, when

only adjusting OD Demands with a fixed f(·), the method converges to a higher value.

In addition, the right hand side plot of Fig. 2·3 shows the norm between the true

demand and the estimated one. We see that this distance converges to a lower value

when solving the joint problem in contrast to all other methods. Highlighting the

benefits of solving the joint formulation over other approaches. It is imperative to
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Figure 2·2: Network topologies.

point out that the algorithm is sensitive to the selected parameters. In particular,

the selection of step sizes is relevant as it may cause the algorithm to diverge. We

believe this happens because the matrix A is evaluated at the previous iterations and

therefore, the selection of (c1j, c2j, d1j, d2j) has a direct impact on both the closeness

to the previous iteration and the algorithm’s convergence rate.

Multi-Class Braess Network

We introduce two types of vehicles: cars and commercial trucks (|Ũ | = 2). For each

vehicle class we generate ground truth demands g∗
car = [4000, 0] and , g∗

truck = [400, 0]

for OD pairs (1, 2) and (2, 1), respectively. Recall that now we are interested on

estimating the OD demand for each vehicle type, i.e., gcar and gtruck, and the travel

latency function f(·). We select T = 500, λ = 0.1, ρ = 0.1, n = 5, c1j = c2j =
400
j

,

d1j = d2j = 0.05/j and run Alg. 1 with parameters as in the single-class case (i.e.,

f(x) = 1 + 0.15x4, g0 = 0). To consider the relatively lower speed and larger physical

dimensions of trucks compared to cars, we assume the flow weight vector to be

θ = (1, 2) for cars and trucks, respectively. We assume t0i,car = t0i and t0i,truck = 1.1t0i ,

where t0i is the free-flow travel time for the physical link indexed by i. The details
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Figure 2·3: Model validation on Braess Network. f(·) solves the prob-
lem using a static BPR function; GD uses a gradient decent; Alternating
solves the two problems sequentially; Joint solves the problem using
Alg. 1

regarding the road characteristics used for the free flow speeds and capacities, as

well as the algorithms employed in this chapter are available in our online public

repository1. Figures 2·4c and 2·4d show how Alg. 1 recovers the true OD demands for

both vehicle classes. In Fig. 2·4b we see how f̂(x) (our estimate of f(x)) is getting

closer to the true travel latency function. Finally, in Fig. 2·4a we show how the

objective function converges to a value close to zero. In this experiment we observe

that we are able to recover the truth demand and travel latency function regardless

the limitation of the multi-class model as pointed in Sec 2.3.1.

Eastern Massachusetts Area Seeking for more realistic networks, we perform a

validation experiment using the road network of EMA. We select this network since

it helps to emulate the conditions of a interstate highway road network. The graph

(Fig. 2·2b) consists of 8 nodes, 24 links and 56 OD pairs.

We run Algs. 1 and 2 with T = 60, λ = 0.1, ρ = 0.1, n = 5, c1j = c2j = 250
j

,

d1j = d2j = 0.02√
j

and we initialize it with β0 = (1, 0, 0, 0, 0, 15, 0) and g0 = 0. In

1https://github.com/salomonw/tnet



39

(a) (b)

(c) (d)

Figure 2·4: Validation Results for the Multi-Class Braess Network.
(a) Objective Function, (b) f(·) evolution, (c) Car demand estimator,
(d) Truck demand estimator.

the left plot of Fig. 2·5, we observe that jointly adjusting the cost function while

estimating demands is beneficial for approximating the flows. We believe this is the

case since Alg. 1 takes the joint steepest descent direction compared with taking these

steps separately as in the Alternating method. In the right hand side plot of Fig. 2·5,

we see the progress of ∥(gj − g∗)∥ (which is not minimized explicitly). We observe

the joint method reaches a lower level than all of the other approaches, especially

against the BPR approach. However, after iteration 9, this quantity begins to increase.

We believe this happens due to the fact that the optimization process advances by

adjusting both f̂ and g and might deviate the estimated demand while tuning the

travel latency function.
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New York City To test our method in congested urban areas, we created a NYC

validation network (Fig. 2·2c) consisting of 28 nodes, 90 edges and 8 Zones (green

dots). To build this network we used two data sources: OpenStreetMaps, from which

we retrieve the network topology and road characteristics, and Uber Movement Speed

Data set, which we use for assigning speed data to each link in the network. With

this in hand, we estimated travel times, speeds, densities and flows. See Appendix B

for details.

We run the algorithms with T = 30, λ = 0.1, ρ = 0.1, n = 5, c1j = c2j = 100√
j
,

d1j = d2j =
0.02

j(3/4)
, β0 = (1, 0, 0, 0, 0, 15, 0), and g0i = 1000 for all i ∈ [[W ]]. Consistent

with the other examples we observe in Fig. 2·6 similar results as in the Braess and the

EMA networks where using the joint methodology is beneficial.

2.5.2 Case Studies

Eastern Massachusetts Area

We use speed data from April, 20th, 2012 from 8 to 9 a.m. provided by the Central

Transportation Planning Staff (CTPS) of the Boston Metropolitan Planning Organi-

zation (MPO). We converted this speed to flow data using the procedure described

in Appendix C. With this, we run the algorithms using T = 60, λ = 1e− 3, ρ = 0.1,

n = 5, c1j = c2j =
100
j

, d1j = d2j =
0.02√

j
, β0 = (1, 0, 0, 0, 0, 15, 0), and g0 = 0. And

report the estimated OD matrix in Table 2.1.

Table 2.1: Estimated OD (veh/h) demands for the EMA network.

O/D 1 2 3 4 5 6 7 8 sum
1 0.0 1.1 0.0 515.1 298.1 803.4 36.3 310.0 1964.1
2 0.0 0.0 0.0 590.5 205.3 645.3 130.5 325.8 1897.3
3 0.0 1.1 0.0 598.6 173.6 662.4 130.3 257.0 1822.9
4 0.0 1.1 0.0 0.0 349.6 720.4 20.2 331.7 1423.1
5 0.0 1.1 0.0 563.6 0.0 645.1 87.4 320.9 1618.1
6 0.0 1.1 0.0 483.5 184.3 0.0 1.7 212.8 883.3
7 0.0 1.1 0.0 619.2 283.4 807.9 0.0 197.9 1909.5
8 1706.3 0.0 0.0 1355.2 65.8 898.0 1.7 0.0 4027.0
sum 1706.3 6.6 0.0 4725.6 1560.1 5182.5 408.1 1956.1 15545.3
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Figure 2·5: Validation Results for the EMA Network. Left and right
plots show the progress over the iterations of the objective function
and the OD demand deviation from a specified “truth” demand g∗,
respectively.

From field observations we understand that the traffic patterns for EMA are similar

to most urban areas. In the morning, commuters travel to work towards the city

center and on the afternoon, they travel to residential areas. Table 2.1 matches this

intuition by estimating higher demand for OD pairs with destination in the city center.

In particular for nodes 4 (Worcester) and 6 (Downtown Boston). Likewise, the origin

for which most flow is generated is 8 (Taunton), corresponding to the southern most

node which accounts for all the southern flow that commutes towards the Boston

Metropolitan Area. In addition, our results also suggests that travelers are more

sensitive to lower flows than the ones proposed by the BPR function (see that the

estimated Joint f(·) is above the BPR in the left plot of Fig. 2·7). This is relevant for

designing and planning transportation networks.

New York City

We perform a similar case study using the NYC subnetwork. We run our algorithms

for traffic data on Feb 13th, 2017 at 9 am. The right hand plot in Fig 2·8 show our

results of the joint approach yielding to lower flow error than the other estimation
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Figure 2·6: Validation Results for the NYC Network. Left and right
plots show the progress over the iterations of the objective function
and the OD demand deviation from a specified “truth” demand g∗,
respectively
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Figure 2·7: Case Study results for EMA

methods. Similar to the EMA case, these results confirm our understanding of the

morning traffic pattern in NYC. Table 2.2 shows that node 10 is a favorite origin

and destination. This node represents Midtown, one of the busiest neighborhoods

in Manhattan due to high density of offices and businesses. Moreover, we see that

nodes 1 and 20 are desired destinations. These nodes represent Wall Street and Lower

Manhattan areas, respectively. This follows our intuition as the south of Manhattan

(also known as the Financial District) it is densely populated with offices.

In summary, the numerical results reported in this Section suggest that Alg. 1
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Figure 2·8: Case Study results for the NYC

works well in terms of reducing the objective function value of (2.18) while improving

the estimation accuracy for the cost function and demands.

Table 2.2: Estimated OD demands (veh/h) for the NYC network.

O/D 1 4 20 10 17 21 25 26 sum
1 0.0 20.6 243.2 210.1 0.0 0.0 0.0 0.0 473.9
4 0.0 0.0 312.8 199.3 0.0 0.0 0.0 0.0 512.2
20 0.0 156.2 0.0 0.0 0.0 239.4 162.8 0.0 558.4
10 713.8 0.0 0.0 0.0 270.1 0.0 0.0 19.7 1003.6
17 0.0 86.4 0.0 0.0 0.0 185.5 140.5 0.0 412.4
21 0.0 86.4 0.0 0.0 0.0 0.0 140.5 0.0 226.9
25 0.0 0.0 0.0 52.2 0.0 0.0 0.0 41.1 93.3
26 0.0 0.0 0.0 52.2 0.0 0.0 0.0 0.0 52.2
sum 713.8 349.6 556.0 513.9 270.1 424.8 443.8 60.8 3332.8

2.6 Limitations

We acknowledge some limitations of our method that we believe can serve as a basis

for future work, in particular we identify:

1. We cannot guarantee the adjusted OD demands to be close to the ground truth

demand (since we are estimating g by closing the gap between x and x∗) and

the problem is non-convex.

2. In practice, the output of our algorithm would heavily depend on the initial

demand data (since the joint problem is non-convex), as well as, on the accuracy
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of the flow observations. Hence, good initial estimates are important for the

success of recovering the true parameters.

3. The selection of (c1j, c2j, d1j, d2j) has a direct impact on both the closeness

to the previous iterate and the algorithm’s convergence rate which trades-off

speed and accuracy. To overcome the parameter selection issue, we suggest that

practitioners use cross-validation techniques or armijo-type rules when possible.

4. At each iteration we are solving a QP which can be solved in polynomial time.

However, the requirement for memory increases exponentially with the size of

the network and the number of OD pairs. Therefore, decomposition techniques

for the QP should be explored to increase the computational efficiency of the

method.

2.7 Summary and Future Work

In this chapter, we addressed the problem of estimating OD demands and cost functions

jointly in a multi-class transportation network. We tackle this problem by rewriting the

bilevel optimization problem (2.18) using the lower-level optimality conditions (2.22).

To solve the resulting model, we propose an iterative approach (2.23) by relaxing

some constraints and allowing a penalized gap to exist between the primal and dual

objectives. To solve the joint problem we proposed a trust-region feasible direction

and an alternating method described in Algs. 1 and 2, respectively.

Our results show that we can always reduce the objective function value of (2.18) to

some extent, sometimes significantly, thanks to the the construction of the algorithms.

However, the precision of the output highly depends on the inputs due to the non-

convexity nature of the bilevel problem. We show empirically that there is value in

jointly solving this problem as it reaches better estimates of the flows x, cost function

f(·), and OD demands g. Nevertheless, we believe the GD and alternating methods
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are good alternatives when dealing with large networks. We hope this work nudges

transportation experts to include cost function adjustments when estimating OD

demands from data.

We identify potential future directions: First, to perform sensitivity analysis of

link congestion metrics with respect to key quantities, such as link capacity and

free-flow speed through the estimation of f(·) to enable the transportation agencies

to prioritize congestion-reducing interventions (Houshmand, Wollenstein-Betech, &

Cassandras, 2019; Wollenstein-Betech, Salazar, et al., 2021). Second, to integrate our

algorithms to a dynamic OD demand estimation problem setting e.g., (Pitombeira-

Neto, Loureiro, & Carvalho, 2020). The potential outcome would be to provide a

more trustworthy method to predict the “Estimated Time of Arrival” more accurately.

Third, it is possible to improve the running time of our algorithm by (i) utilizing

previous iterations as starting feasible solutions for subsequent iterates; (ii) exploring

better stopping criteria; (iii) implementing coordinate descent schemes and accelerated

methods; (iv) employing more efficient data structures, and (v) aggregating flows at

the link- or bush-level.



Chapter 3

The Effect of System-Optimal Routing in
Mixed Traffic

In this chapter we study the problem of routing Connected and Automated Vehicles

(CAV) in the presence of mixed traffic (coexistence of private vehicles and CAVs). We

consider all centralized routed CAVs to belong to the same fleet seeking to minimize

their overall traveling costs (travel time or energy consumption) while private vehicles

(non-CAVs) choose their routes by selfishly minimizing their traveling times. Figure 3·1
shows a schematic representation of the problem. We propose an algorithm that deals

with the interaction between CAVs and non-CAV and investigate the penetration rate

effect of CAVs in the network. In addition to the methodological contribution, we

assess the results using real traffic data from Eastern Massachusetts. Our data-driven

results suggest that for a network of only CAVs, collaborative routing can improve

the traveling times to up to 10%. Moreover, for lower penetration rates, we observe

that not only the CAVs cost is reduced, but also the non-CAVs cost. Motivating the

question on how policy-makers should incetivize the adoption of CAVs.

3.1 The Problem and Related Work

The Price of Anarchy (PoA) for traffic networks was first introduced by Koutsoupias

and Papadimitriou (1999) and it is defined as the ratio between the social cost of

the least efficient Nash equilibrium over the minimum achievable cost. Even if this

term was introduced in 1999, this inefficiency have been studied, through examples,

46
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Figure 3·1: The centralized controller is assigning routes to CAVs
traveling from s to t. Red, blue, and green numbers show the percentage
of vehicles routed via that route.

since Pigou (1920) and later by Braess (1968). Later, Roughgarden and Tardos (2002)

formally proved that the PoA in routing games with affine latency functions may

never exceed 4/3 and for travel latency functions that are polynomials of degree

n, the worst case grows order Θ(n/log(n)). In addition, a recent work by Colini-

Baldeschi, Cominetti, Mertikopoulos, and Scarsini (2020) shows that under heavy

traffic conditions, the user-centric routing scheme becomes as efficient as the socially

optimum one, i.e. PoA = 1.

Much of the work in this field focuses on showing the bounds of the PoA under

different scenarios. However, few works have focused on estimating the PoA using

real traffic data and on calculating the inefficiencies in mixed traffic, i.e., when only a

percentage of the vehicles in the network are taking socially-optimal routes and the

rest act selfishly.

For data-driven PoA estimation, Youn, Gastner, and Jeong (2008) reported that the

PoA ranged between 1.2 and 1.3 (20%-30% inefficiencies) for the Boston/Cambridge,

New York City, and London networks when the travel latency function is a polynomial

of degree 10. In addition to this result, Grange, Melo-Riquelme, Burgos, González,

and Raveau (2017) analyzed the transportation networks of Santiago, Chicago, and
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Anaheim estimating inefficiencies of around 6% when using the classical BPR function.

In turn, analyzing socially-optimum routes in a mixed traffic setting is harder

to perform due to the dependency of the decisions of the user-centric vehicles on

the CAVs decisions, and vice versa. The study of the existence and uniqueness of

Nash equilibria points for different sets of assumptions is studied in Harker (1988)

and Yang, Zhang, and Meng (2007). In turn, other lines of research have defined

a Stackelberg game to model the case where the CAVs objective is to minimize the

total system travel time (instead of only the total travel time of their fleet). For the

Stackelberg game case, the leader agent (in this case the CAVs) selects a routing

policy anticipating the behavior of the follower (the user-centric vehicles). In the

context of transportation networks, Korilis, Lazar, and Orda (1997) derived sufficient

conditions to solve the leader (CAVs) problem when the network has parallel links.

More recently, Lazar, Coogan, and Pedarsani (2017) and Mehr and Horowitz (2020)

described that the PoA can be even larger by having CAVs choosing selfish routes.

They argue that since CAVs will reduce the headways between vehicles using the

cruise control, the congestion in certain links may be higher and therefore the system

would experience higher travel times. To make such analysis, they require to use the

assumptions of parallel links similarly as in the Stackelberg game setup in Korilis et al.

(1997) Unlike these works, in this chapter we aim to find a Nash equilibria solution

using the diagonalization approach explored in both Harker (1988) and Yang et al.

(2007) to remove the assumption of parallel links and apply it to any network topology.

In this chapter, we use real traffic data and we leverage the methodology presented

in chapter 2 to estimate both the travel latency functions and the OD demand matrices

to come up with calculations for the PoA. Moroever, we use the diagnoalization scheme

to observe the differences between the two classes of vehicles (CAVs and non-CAVS)

and analyze the differences in terms of time and energy consumption
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3.2 Models

We begin this section using a classical example introduced by Pigou (1920) to motivate

the inefficiencies of selfish routing. Consider the network shown in Figure 3·2 and

assume that every hour 10 vehicles are traveling from node s to t. If users take the

top road, their travel time is equal to 10 regardless the number of vehicles in the

road (think of it as a very wide highway). Alternatively, if users use the bottom

road, they will experience a travel time proportional to the number of vehicles in the

road (we could think of this as a shorter, but narrower bridge). Then, by having full

information of the conditions, the worst travel time a commuter can experience by

using the bottom link is 10. Hence, users the bottom road looking for the promise

that someone will deviate and they have a shorter travel time. In this case, the Total

System Travel Time (TSTT) is equal to 100 since 10 travelers are taking a route of 10

units.

In contrast, if a social planner could assign the routing decisions, the best allocation

would be to send 5 passengers through the top road and 5 via the bottom road. In

this case, the TSTT would be 75. The PoA which is defined as the ratio between

these two strategies is then PoA = User-Centric TSTT
System-Optimal TSTT = 100

75
= 4/3.

s t10 veh/hr

t1(x) = 10

t2(x) = x

Figure 3·2: Pigou’s example

We now introduce methodologies to obtain the time- and energy-based user-

centric and system-optimal solutions for general networks and polynomial travel time

functions.



50

3.2.1 Preliminaries

We model any traffic network as a directed graph G = (V ,A,W) where V is the set of

nodes, A is the set of links, and W = {wi : wi = (wsi, wti), i = 1, . . . , K} is the set of

K Origin Destination (OD) pairs. We assume that all OD pairs start and end at one of

the network’s nodes. Let the node-link incidence matrix of G be N ∈ {0, 1,−1}|V|×|A|,

and the link-route incident matrix be denoted by A. Let us define dw ≥ 0 as the

demand rate for any OD pair w ∈ W . Moreover, the route choice probability matrix

is defined as P = [pir], where pir is the probability of taking route r while traveling

through OD pair i. Let g = (gi; i ∈ [[W ]]) be the OD demand vector.

Let us define the power-set of routes R = {Ri, i ∈ [[W]]}, where Ri is the set of

allowable routes (more than one) for each OD pair i. Finally, the link-route incidence

matrix is denoted by A = {αi
a,r, i ∈ [[W ]], r ∈ Ri, a ∈ A} in which:

αi
a,r =


1; if route r ∈ Ri uses link a

0; otherwise.

Additionally, let Ai be the sub-matrix of A including the columns of A where r ∈ Ri.

The total flow is denoted by x = {xa; a ∈ A} where xa is the flow on each link a ∈ A.

3.2.2 System-Optimal Routing

We begin by assuming an all-CAV network for which a centralized controller can select

the users routes. The system-centric problem consists of minimizing the total traveling

time of CAVs in the network by coordinating the selection of routes.

The system-centric time-optimal problem is formulated as follows:

min
P

∑
a∈A

ta(xa)xa (3.1a)

s.t. x = APTg, (3.1b)
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∑
r∈Ri

pir = 1, ∀i ∈ [[W ]], (3.1c)

pir ∈ [0, 1], ∀i ∈ [[W ]], ∀r ∈ Ri, (3.1d)

where ta(xa) is the traveling time of link a assumed to be

ta(xa) = t0a

n∑
i=1

βi(
xa
ma

)(i−1), (3.2)

where t0a and ma are the free flow travel time and flow capacity of a, respectively;

β = (βi, i = 1, 2, ..., n) is a vector of coefficients; (3.1b) is the flow assignment from

OD routes to links; and (3.1c) enforces that sum of all the fraction of vehicles traveling

through an OD pair is 1.

The decision variable is the routing-probability matrix P = [pir] that for each OD

pair i ∈ [[W ]] assigns fractions of vehicles to allowable existing routes r ∈ Ri between

any given OD pair. The inputs to the problem are the link-route incident matrix (A),

and the OD demand vector g.

Note that instead of solving for individual links to follow for each vehicle, here we

are assigning CAVs directly to routes between each OD pair. This transformation helps

us reduce the decision space to select routes between OD pairs rather than finding

link-based decisions. However, it also requires to defined a finite set of allowable routes

per OD pair.

3.2.3 System-Optimal Routing in the Presence of Mixed Traffic

We address the system-centric time-optimal routing of CAVs in the presence of mixed

traffic (CAV and non-CAV). In this case, only a portion of vehicles are CAVs and

can be controlled through a centralized controller. As a result, instead of finding a

routing scheme that minimizes total costs for all vehicles in the system, we focus on

minimizing travel time for the CAV portion of traffic. We consider all CAVs belong to
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the same fleet (e.g. AMoD) and the fleet management company is trying to minimize

total traveling time of the fleet.

To solve this problem we make four assumptions: (i) The non-CAV traffic flow is the

solution to the user-centric routing approach; (ii) there exists a centralized controller

which can route the CAV portion of traffic; (iii) We allow only to select between m

for each OD pair in the network; (iv) travel time functions t(·) are monotonically

increasing and continuously differentiable.

We define γ ∈ [0, 1] to be the fraction of demand that consists of CAVs. Relatedly,

we define Pc = [pcir] to be the route choice probability matrix for the CAVs and

gc = (gci ; i ∈ [[W ]]) the CAVs OD demand vector. Let us define xc = {xca; a ∈ A} and

xnc = {xnca ; a ∈ A} as the network flow of CAVs and non-CAVs, respectively. The

optimization problem is then:

min
Pc

∑
a∈A

ta(xa)x
c
a (3.3a)

s.t. x = xc + xnc, (3.3b)

xc = APT
c g

c, (3.3c)∑
r∈Ri

pcir = 1, ∀i ∈ [[W ]], (3.3d)

pcir ∈ [0, 1], ∀i ∈ [[W ]], ∀r ∈ Ri. (3.3e)

Constraint (3.3b) states that the total flow in the network is the summation of CAV’s

flow (xc) and non-CAV’s flow (xnc). Notice that we are minimizing the travel time for

the CAV share of traffic but evaluating the travel time function with the total flow on

the link. As a result in (3.3a), the traveling time of each link which is a function of

both CAVs flow and non-CAVs flow (ta(xa)), is multiplied by the flow of CAVs only

(xca). The inputs to the optimization problem are the link-route incident matrix A,

OD demand vector g, and non-CAV flow xnc.
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By solving Problem 3.3, we find optimal flows of CAVs over each OD pair (route-

probability matrix Pc). In other words, when a CAV enters the network at an origin

O given its destination D, the algorithm gives it the desired socially optimal route to

follow in terms of a sequence of links.

It is worth mentioning that the main difference between the system-centric problem

and the user-centric problem relies on the objective functions. As stated in Section

2.4 of Patriksson (2004), the system-centric problem can be reformulated as a user-

centric problem by slightly changing the travel cost function. Therefore, the results

on the existence and uniqueness of the solution for the user-centric problem extend

to the system-centric case. As a requirement for such a result we need positive and

strictly increasing travel time functions on P which is achieved by having increasing

polynomial functions.

3.2.4 System-Optimal Eco-Routing in the Presence of Mixed Traffic

We solve the eco-routing problem for a fleet of CAVs in the presence of mixed traffic.

Eco-routing refers to the procedure of finding the most energy efficient route. This

problem shares similar properties to (3.3) with the main difference that we minimize

energy instead of time. As a result, we need an energy model to calculate energy

consumption.

To accomplish this, we leverage two energy models that are functions of average

speed which itself is a function of traffic flow. These models are suitable for Plug-in

Hybrid Electric Vehicles (PHEVs) and for conventional vehicles. For a more detailed

description of these energy models, please see Appendix E.

Eco-routing Problem Formulation for PHEVs

Following Houshmand and Cassandras (2018), the main feature of the eco-routing

model is that it categorizes the consumption into three (although more can be specified)
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different modes based on the average speed: heavy traffic, medium traffic, and low

traffic links. We then assign a drive cycle or pattern to each class based on the average

speed (Table 3.1).

Table 3.1: Drive cycle assignment of each link

Traffic Mode Average speed
on the link (mph) Drive Cycle

Heavy Traffic [0,20] NYC
Medium Traffic [20,40] UDDS

Low Traffic ≥ 40 HWFET

The eco-routing method seeks to find both the optimal routes, and optimal

switching strategies between charge depleting (CD) and charge sustaining (CS) modes

on each link. To model this, we consider two sets of decision variables: the CAV

route-probability matrix, Pc = {pcir, i ∈ [[W]], r ∈ R} and the CD/CS switching

strategy on each link, Y = {yia,r, i ∈ [[W]], r ∈ R, a ∈ A}. Here, yia,r represents the

fraction of the link’s length (la) over which we use CD mode. Thus, if we only use the

CD mode over link a ∈ A, then yia,r would equal to one1.

Then, for a given vectorized OD demand of CAVs, gc = (gci ; i ∈ [[W]]), we can

formulate the problem as follows:

min
Pc,Y

∑
i∈[[W]]

∑
r∈Ri

∑
a∈A

(
cgas

la
µa
cs(va(xa))

(1− yia,r) + cele
la

µa
CD(va(xa))

yia,r

)
xca (3.4a)

s.t.
∑
a∈A

αi
a,ry

i
a,rla

µa
cd

≤ Er,i
0 , ∀r ∈ Ri, ∀i ∈ [[W ]], (3.4b)

x = xc + xnc, (3.4c)

xc = APT
c gc, (3.4d)∑

r∈Ri

pcir = 1, ∀i ∈ [[W ]], (3.4e)

1If one would like to solve this problem for Electric Vehicles (EVs), we only set Y = 1. For Hybrid
EVs and for conventional vehicles we set Y = 0.
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pcir ∈ [0, 1], ∀i ∈ [[W ]],∀r ∈ Ri (3.4f)

yia,r ∈ [0, 1], ∀a ∈ A, ∀i ∈ [[W ]], ∀r ∈ Ri, (3.4g)

where cgas and cele are the cost of gas, and electricity, respectively; Pc = [pcir] is the

route choice probability matrix for the CAV portion of traffic; and la is the length of

link a. Constraint (3.4b) states that the total electrical energy used should not be

more than the available energy in the battery pack at the start of that path (Er,i
0 ).

µCS(·) and µCD(·) are functions of velocity (Table E.1, and 3.1), and velocity is a

function of flow: va(xa) = la/ta(xa). We assume that non-CAV flow (xnc) is known.

This model finds the eco-route for PHEVs. It is relevant noting that the energy

model used in (3.4) is a piece-wise constant function of velocity. Hence, the problem

is now non-convex and may have differentiability issues. To overcome this issue, we

use a sigmoid function to smooth out the energy function and make it differentiable.

However, the cost function still suffers from non-convexity and therefore, the optimizer

may converge to a sub-optimal solution.

Eco-routing Problem Formulation for Conventional Vehicles

For the conventional vehicle case, we adopt the energy model proposed by Boriboon-

somsin et al. (2012) (Appendix E). which models energy as a polynomial function of

the link’s average speed.

The difference between this formulation and (3.3) lies in that ta(xa) is replaced

with ea(xa) (the average fuel consumption per mile). Employing this, the eco-routing

problem for CAVs conventional vehicles is:

min
Pc

∑
a∈A

cgaslaea(va(xa))x
c
a (3.5a)

s.t. x = xc + xnc, (3.5b)
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xc = APT
c g

c, (3.5c)∑
r∈Ri

pcir = 1 ∀i ∈ [[W ]], (3.5d)

pcir ∈ [0, 1], ∀i ∈ [[W ]],∀r ∈ Ri (3.5e)

where the average energy consumption in a link is modeled by

ln(ea) =
4∑

i=0

θi(va)
i + θ5Ra,

and θ = (θi, i = 0, 1, ..., 5) is the energy cost coefficient (Table E.2).

3.2.5 Non-CAV Flow Modeling

One of the assumptions is the non-CAV flow is an input to our models. To do so, we

model non-CAVs flow considering their reaction to CAVs decisions. To achieve this

task, we assume non-CAVs act selfishly by minimizing their travel time and could be

modeled using the classical Traffic Assignment Problem (TAP).

Since, this modeling framework has been already defined in Chapter 2 Section 2.3,

we only write the TAP in terms of non-CAV flows and take into account the presence

of the CAV flow in the network.

min
xnc

∑
a∈A

xc
a+xnc

a∫
xc
a

ta(s)ds (3.6a)

s.t xnc =
∑
w∈W

xnc,w, (3.6b)

Nxnc,w = dnc,w, ∀w ∈ W (3.6c)

xnc,w ≥ 0,

where N is the node-link incidence matrix; and dnc,w and xnc,w are the vector denoting

the non-CAV demand and flow of OD pair w, respectively. This problem can be
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solved using many methodologies, a classical one is the Method of Successive Averages

described in Appendix F.

3.2.6 Mixed Traffic Modeling

The basis of this methodology is that whenever CAVs change their routing decisions,

non-CAVs adjust theirs and vice versa. To obtain the non-CAV flow for a given

CAV penetration rate γ, we first consider only non-CAVs in the network and the OD

demand of non-CAVs is given by:

gnc = (1− γ)g (3.7)

Even though we choose a uniformly demand distribution for non-CAVs across OD

pairs, without loss of generality, we can use any other given demand for both CAVs

and non-CAVs.

Considering non-CAV demand gnc, we solve the user-centric routing problem which

minimizes their travel time. In this respect, we use the Method of Successive Averages

(MSA). After finding xnc, we solve the time optimal (3.3) or energy optimal (3.5)

routing problem for CAVs demand:

gc = γg (3.8)

Since non-CAVs were unaware of CAVs in the system while solving the TAP, we

re-solve the problem considering CAV flow on each link. Hence, we re-iterate by

considering CAVs solution xc. Furthermore, the TAP is solved again for non-CAVs.

Re-iteration of this process continuous until convergence (Figure 3·3).
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Figure 3·3: (a) Procedure for solving the system-centric routing prob-
lem ; (b) Convergence plot for iterating through TAP and social problem

3.3 Numerical Results

We perform three case studies. First, by leveraging speed data and the estimates

of the OD demand we estimate the PoA for the Eastern Massachusetts network

(Figure 3·10b). Second, we study the effect of the CAV penetration rate on the total

time savings and energy savings on the Braess network (Figure 3·5). Third, we apply

the framework to the Eastern Massachusetts network. For finding the energy optimal

routes we assume the road grade is zero (Ra = 0 and we assume the cost of gas to

be 2.75 $/gal. We solve the NLP problems using IPOPT solver (Wächter & Biegler,

2006) in Julia (Bezanson, Edelman, Karpinski, & Shah, 2017).

For the eco-routing case, we only show the results for conventional vehicles using

the energy model discussed in Appendix E. This is because the other energy model

(CD/CS) introduces non-convexity to the NLP problem and it is challenging to solve

the problem using commercially available optimizers. As mentioned earlier, eco-routing

results are sensitive to the energy model employed. Given a more accurate, convex,

smooth and differentiable model may obtain different results. Hence, the eco-routing

results shown in this chapter should only be considered as preliminary results which

show the potentials of saving energy using centralized routing of CAVs.
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3.3.1 Price of Anarchy in Eastern Massachusetts

We tested the models for 100% and 0% CAVs penetration rates using real traffic speed

data for the Eastern Massachusetts road network. The data was captured by a leading

private company on traffic data called INRIX and the dataset was provided to us

by the Central Transportation Planning Staff (CTPS) of the Boston Metropolitan

Planning Organization (MPO). In Appendixes B.0.1 and C we describe dataset and

the preprocessing steps used to generate this analysis.

For our experiments, we use data of April 2012 and 2015 and we separate this

into four different time periods: the morning peak (AM) from 7:00-9:00 hrs, midday

(MD) from 11:00-13:00 hrs, afternoon peak (PM) from 17:00-19:00 hrs and night (NT)

from 21:00-23:00 hrs2. For each of these periods, we estimated the OD using the

Generalized Least Square method Hazelton (2000) and described in Appendix C.0.5.

Once the OD demand is estimated, and together with the BPR function (3.2) with β =

(1, 0, 0, 0, 0.15), we solve the time-optimal user-centric (3.6) and system-optimal (3.1)

problems. For every solution of these two methods, we compute the PoA.

Figure 3·4 shows the PoA for the different days on April as a function of the

level of congestion of the network approximated by the Total System Travel Time

(TSTT). The results report that although on average April 2015 was more congested

than April 2012 (see the x-axis), the PoA was not necessarily higher. We believe

this is due to the fact that if congestion increases too much, the PoA decreases to

one (Colini-Baldeschi et al., 2020). In fact, from both plots we can infer that for this

network the PoA is maximized when the TSTT is around 60,000. Finally, we see

that the PoA is higher for the morning and afternoon peak periods, suggesting that

socially routing decisions are particularly useful at these times. These results promises

that implementing system-optimal routing techniques in transportation systems could
2For more details of the data, we have created an interactive web-based visualization interface

available in: https://salomonw.github.io/congestionmaps/DynamicPage/AM/

https://salomonw.github.io/congestionmaps/DynamicPage/AM/


60

improve overall travel times between 0% and 10%.
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Figure 3·4: Price of Anarchy as a function of the level of congestion
of the network for different days in April 2012 and 2015

3.3.2 Braess’ Network Example

To demonstrate how system-optimal routing of CAVs can affect both CAVs and non-

CAVs, we perfrom a toy experiment with the Braess’ network. Note that in this

case instead of using the BPR function, we use the travel time functions shown on

each link of Braess’ network in Figure 3·5. We consider a demand of 4000 veh/hr

traveling from node 1 to 4, the lengths of links 1,2,3 and 5 equal to 30.5 miles and

the length of link 4 equal to zero. Time-optimal results are shown in Figure 3·6, in

which we compare traveling time of CAVs with non-CAVs under different penetration

rates. The energy cost for traveling through the optimal routes are also shown in

Figure 3·6b. In addition, we report the traveling time of CAVs and non-CAVs under

different penetration rates using the case of 0% CAVs as a baseline and reported the

time savings in Figure 3·6c.

As shown in Figure 3·6, introducing CAVs into the system not only improves

the time saving of CAVs, but also helps non-CAVs to save time. This is because
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smart routing decisions of CAVs reduce the traffic intensity in the highly congested

roads, which consequently help non-CAVs to travel faster. As we inject CAVs to

the system, we see that travel time (as well as energy cost) per vehicle of CAVs

starts decreasing compared with the uncontrolled traffic. Moreover, traveling time of

commuting through the fastest route decreases as we inject more CAVs to the system.

It is interesting to see that when a small percentage of CAVs are in the system,

there is no improvement for anyone. This happens because CAVs are optimizing for

themselves and since their fraction is not sufficient to change the network conditions,

their decision is to act selfishly. However, as we increase the penetration rate, CAVs

create a more balanced flow distribution in the network in which both CAVs and

non-CAVs can benefit from. In the Braess network example, it can be seen that if all

the cars in the system are replaced with CAVs, we can save 18.9% in terms of travel

time. This value is often referred to as the Price of Anarchy (PoA).

In addition to the time-optimal case, we also solve the eco-routing problem.

Figure 3·7 shows the same trend as time optimal results. In other words, centralized

eco-routing of CAVs can benefit both CAVs and non-CAVs. The maximum energy

savings happens at the 100% CAV penetration rate and is equal to 19.1%.

1
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t3(x3) = 45t1(x1) =
x1

100

t2(x2) = 45 t5(x5) =
x5

100

t4(x4) = 0

Figure 3·5: Simple 5 link directed graph (Braess’s network)
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(a) Traveling time compar-
ison results

(b) Energy cost compari-
son results

(c) Travel Time improve-
ment results

Figure 3·6: Braess network time optimal routing results under different
penetration rates.

(a) Traveling time compar-
ison results

(b) Energy cost compari-
son results

(c) Energy cost improve-
ment results

Figure 3·7: Braess network eco-routing (energy optimal) routing results
under different penetration rates.

3.3.3 EMA Interstate Highways Network

To obtain more realistic results, we perform a data-driven case study using the actual

traffic data from the Eastern Massachusetts (EMA) road network. This data was

collected by INRIX and was provided to us by the Boston Region MPO. The sub-

network including the interstate highways of EMA (Figure 3·10b ) is chosen for the

case study.

For this network, we use the OD demand which has been calculated using an

inverse optimization framework in J. Zhang et al. (2018). This OD demand consists

of 56 OD pairs and we allow up to 3 routes between each origin and destination (top

3 shortest routes in distance).

Time optimal and energy optimal results are shown in Figures 3·8 and 3·7, respec-
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(a) Traveling time compar-
ison results

(b) Energy cost compari-
son results

(c) Travel Time improve-
ment results

Figure 3·8: EMA network time optimal routing results under different
penetration rates.

(a) Traveling time compar-
ison results

(b) Energy cost compari-
son results

(c) Energy cost improve-
ment results

Figure 3·9: EMA network eco-routing (energy optimal) routing results
under different penetration rates.

tively. The results follow the same behavior as the results of Braess example. We again

see that as the CAV penetration rate increases, both CAVs and non-CAVs benefit

from optimal routing decisions of non-CAVs. Notice that in Figure 3·8 the differences

of the improvement are very small. This is because for the specific scenario that we

analyzed, the PoA was very small, i.e., ratio between 100% and 0% penetration rate.

However, we obtained a similar shape for other values in which the PoA is higher. For

example, for cases where the PoA is 1.08 as shown in Figure 3·4.

Figure 3·11a reports the time improvement of different OD pairs with their cor-

responding OD demand for 100% and 50% CAV penetration rates. It is interesting

to see in Figure 3·11a that two OD pairs with relatively high demand are being

affected by -0.8% and -1.3% for 50% and 100% γ’s respectively. However, we see a
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(a) (b)

Figure 3·10: (a) All available road segments in the road map of
Eastern Massachusetts J. Zhang et al. (2018) ; (b) Interstate highway
sub-network of eastern Massachusetts

5% benefit on most of the OD pairs. In this manner we are able to identify which

OD pairs are getting worse and which ones are improving. This gives the opportunity

to better understand the dynamics of the network and develop pricing and incentive

mechanisms.

(a) (b)

Figure 3·11: (a) Time saving improvement of different OD pairs for
50% and 100% CAV time optimal routing (EMA network) ; (b) Travel
time improvement of different OD pairs as a function of CAV penetration
rate (EMA network)
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3.4 Summary and Future Work

In this chapter, we proposed system-centric optimal routing algorithms for a fleet of

CAVs in the presence of mixed traffic. We consider two objectives for routing: (1)

minimizing travel time (2) minimizing energy consumption cost. Moreover, in order to

model the routing behavior of regular vehicles, we consider they make selfish decisions

by minimizing their own travel time. Then, by iteratively solving the TAP, and

finding optimal routes for CAVs we estimate non-CAV flow in the network. Historical

traffic data and a theoretical example were used to validate the models. The results

suggest that optimal routing of CAVs can not only benefit CAVs, but the smart

routing decision of CAVs helps ease traffic congestion in the network which helps

regular vehicles as well. Additionally, we empirically showed that even a small CAV

penetration rate has significant impact on the overall traveling cost of the network.

As of future work, we see three main directions. First, to implement these

algorithms in real-time and model it using a microsimulator. This will help understand

how this static planning framework compares with a more granular microscopic model.

Second, to increase the number of fleets in the network. So far, we the method only

considers two, but it may be worth exploring the results for more fleets. Finally,

exploring pricing and incentives methodologies to steer the behavior of selfish users is

of high relevance for the implementation of such routing policies.



Chapter 4

Optimizing Lane Reversals

This chapter studies how to reduce the overall travel time of commuters in a trans-

portation network by reversing the direction of some lanes in the network. This

problem has been shown to be NP-hard given the dependence of the users’ route

selection on the lane direction decision. Herein, we propose and compare three efficient

methodologies to solve the routing and lane reversal problem jointly.

First, we introduce an alternating method that decouples the routing and lane

assignment problems. Second, we propose a Frank-Wolfe method that jointly takes

gradient steps to adjust both the lane assignment and routing decisions. Third, we

propose a convex approximation method that uses a threshold-based approach to

convexify the joint routing and lane reversal problem. Using the convex approximation,

we extend the main formulation to limit a maximum number of reversals, as well as

to incorporate multiple origin-destination (OD) patterns and we present extensive

experiments using the Eastern Massachusetts transportation network.

4.1 The Problem and Related Work

Unfortunately, lane reversals have been applied in practice in very limited instances.

In particular, they have been carried out for emergency evacuations (e.g., Hurricane

Florence in South Carolina (Fausset, 2018)), or after the completion of an event (e.g.,

NASCAR races in New Hampshire (Arcand, 2019)). For both of these cases, the

reversals must be well communicated to drivers and carefully planned before being

66
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Figure 4·1: (a) Illustration of a typical lane reversal signal. (b) Diagram
of the Braess’ network with specific number of lanes and directions. (c)
Barrier transfers (or road zippers).

implemented. Hence, communicating the status of the infrastructure to drivers is a

major challenge when applying lane reversals.

Current lane reversals systems built to reduce traffic congestion indicate the di-

rection of the reversible lanes with overhead signals or road zippers, see Figures 4·1a

and 4·1c, respectively. Therefore, the infrastructure manager has to provide very

structured (not flexible) schedules to avoid driver confusion. In addition to communi-

cation, the attractiveness of lane reversals has been also curtailed by the poor human

ability to respond to a coordinated change. This has led to traffic gridlocks and to an

increase in traffic accidents (Martínez, 2021).

Propitiously, the rise of Connected and Automated Vehicles (CAVs) can address

such limitations by their ability to communicate with the infrastructure. Therefore,

CAVs will enable the possibility to implement lane reversals more aggressively, either

by doing it for more roads, or by dynamically changing the direction of a single road

more often. From the perspectives of the traffic engineer, assessing the benefits of lane

reversals and understanding which roads to revert is quite important.
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4.1.1 Related Work

Most of the literature concerned with contraflow lane reversals has concentrated on

two main applications: (i) reversing lanes for evacuation routing during emergencies

and (ii) alleviating traffic congestion.

For evacuation planning, the problem has been studied using simulation and

network flow models. Simulation methods by Jha, Moore, and Pashaie (2004)

and Theodoulou and Wolshon (2004) showed that evacuation route capacity can

be improved by 53% and 73%, respectively. Different than simulation, network flow

models by Cova and Johnson (2003) formulate the problem as a mixed-integer program

and use a generic solver to find a feasible solution. Their numerical results suggests

evacuation time improvements in Salt Lake City of 30% to 40%. Similarly, Zhao,

Feng, Li, and Bernard (2016) and Xie and Turnquist (2011) uses Tabu search to solve

the problem and Kim, Shekhar, and Min (2008) showed that the network flow lane

reversal problem is NP-complete and suggested a greedy heuristic algorithm to solve

it.

The research concerned with reducing traffic congestion has focused on reversing

lanes for a single bottleneck road (e.g., tunnels and bridges) or for the full network.

For single roads, rule-based (Ampountolas, dos Santos, & Carlson, 2019) and fuzzy

controllers (Xue & Dong, 2000; Zhou et al., 1993) have been studied and they typically

rely on the fundamental diagram of traffic flow (Lighthill & Whitham, 1955). Moreover,

with the advent of CAVs, a lane-free approach has been recently proposed where a

fluidic boundary is dynamically adapted depending on the number and type of vehicles

present in a road (Malekzadeh, Papamichail, Papageorgiou, & Bogenberger, 2021). For

networked problems, its canonical mathematical representation is an Integer Linear

Program (ILP) which is generally NP-hard. To tackle it, Chu, Lam, and Li (2019)

uses a distributed alternating direction method of multipliers (ADMM) to decompose
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the problem into smaller instances which are still integer programs. Their numerical

results show that travel times for a small subnetwork of New York City could be

improved by 61%. In addition, Hausknecht, Au, Stone, Fajardo, and Waller (2011) and

Meng and Khoo (2008) solve the networked reversal problem using genetic algorithms

and report increases in efficiencies on the order of 72% for the city of Austin. Note that

both models do not have guarantees on finding an optimal solution. Finally, Levin

and Boyles (2016) used a microscopic cell-transmission model for which they solved

the lane reversal problem using a heuristic method based on congestion estimates

showing a 21.8% reduction in total system travel time.

The rest of the chapter is structured as follows. In Section 4.2 we present the

model preliminaries and the problem formulation. In Section 4.3 we introduce the

three main methodologies employed to solve the lane assignment problem. Section 4.4

discusses extensions of our model. In particular, constraining the model to a maximum

number of reversals and employing the model for multiple origin-destination demand

patterns. Section 4.5 reports numerical results of the different methods over a case

study using the Eastern Massachusetts Area (EMA) and a smaller test network, and

Section 4.6 concludes.

4.2 Model and Problem Formulation

4.2.1 Preliminaries

We represent the transportation network using a directed graph denoted by G and

composed by the set of nodes V and the set of links A. We assume G to be strongly-

connected such that every node is reachable from any other node in the network, and

let the node-arc incidence matrix of G be N ∈ {0, 1,−1}|V|×|A|. For every link (i, j)

in A, we denote its number of assigned lanes to be zij; its capacity per lane be cij;

and its total capacity be mij = zijcij expressed in vehicles per hour. To establish the
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relationship between opposite direction links, i.e., (i, j), (j, i) ∈ A, we let nij be the

maximum number of lanes in a road (i.e., nij is the maximum number of lanes a link

can have if all lanes in the road are facing the same direction). Hence, nij = nji.

To model the user trips, let K be the number of Origin-Destination (OD) pairs

and W = {wk = (sk, tk) : k = 1, . . . , K} the set of all OD pairs. For every wk, let the

demand rate of trips (veh/hr) from its source node sk ∈ V to the target node tk ∈ V
be dwk

≥ 0.

In addition to user demand, we use xwk
ij to track the flow in every link (i, j) ∈ A

associated with OD pair wk. Moreover, let xij represent the (aggregated) total link

flow in (i, j), i.e.,

xij =
K∑
k=1

xwk
ij , ∀(i, j) ∈ A, (4.1)

and let x = (xij; (i, j) ∈ A) be the vector of all link flows.

To quantify the travel times in every link, let tij(xij, zij) : {R≥0,N≥0} 7→ R≥0 be

the latency cost (or travel time) function of link (i, j) which depends on the link’s

flow and on the number of lanes assigned to the link. Using the same structure as

in Beckmann et al. (1955), we characterize tij(xij, zij) as:

tij(xij, zij) = t0ijf
( xij
cijzij

)
, (4.2)

where f(·) is a strictly increasing, positive, and continuously differentiable function,

and t0ij is the free-flow travel time on arc (i, j). We set f(0) = 1, which ensures that

if there is no constraint on the arc’s capacity, the travel time tij equals the free-flow

travel time t0ij. A widely used function by transportation engineers is the Bureau of

Public Roads (BPR) function (Traffic Assignment Manual, 1964)

f(xij/mij) = 1 + α(xij/mij)
β. (4.3)
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A common choice is α = 0.15 and β = 4. An extensive discussion on how to estimate

these functions using flow data is in Wollenstein-Betech, Sun, Zhang, and Paschalidis

(2019) and in chapter 2 of this dissertation. Finally, we let the vector of travel latency

functions be t(x, z) = (tij(xij, zij); ∀(i, j) ∈ V).

4.2.2 LASO-TAP Problem

Using the definitions presented above, we formulate the Lane-Assignment System-

Optimal Traffic Assignment Problem (LASO-TAP) as follows:

min
x,z

t(x, z)′x (4.4a)

s.t.
∑

i:(i,j)∈A
xwk
ij −

∑
ℓ:(j,ℓ)∈A

xwk
jℓ =


−dwk

, if j = sk,

0, if j ̸= sk, tk,

dwk
, if j = tk,

∀k = 1, . . . , K, ∀j ∈ V , (4.4b)

zij + zji ≤ nij, ∀(i, j) ∈ A, (4.4c)

xwk ∈ R|A|
+ , z ∈ N|A|

+ , (4.4d)

where in the objective (4.4a) we are minimizing the overall travel time; constraint (4.4b)

ensures that x is a feasible vector which complies with demand satisfaction and

conservation of flow; constraint (4.4c) ensures that the number of assigned lanes does

not exceed the maximum number of available lanes; and (4.4d) restricts z to be a

vector of integer variables.

Origin-based formulation

The total number of variables introduced in the LASO-TAP formulation (4.4) is

|A|(|W| + 1), which is typically dominated by the number of OD pairs |W|. In

practice, this number can be very large, sometimes up to |V|2. Hence, solving (4.4)
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for real networks require large memory capabilities. To mitigate this problem, we

aggregate flows by origin, similar to Rossi, Iglesias, Alizadeh, and Pavone (2020).

This reduces the number of variables to |A|(1 + |V|), which significantly improves the

computation time.

Let the set of origin (sources) be O = {sk : dwk
> 0, k = 1, . . . , K} and let the

flow vector with o ∈ O as it source to all possible destinations be xo. The total user

flow on a link is then x =
∑

o∈O xo and we define the set of user origin-link variables

to be xO = {xo : o ∈ O}. For every origin o ∈ O and every node j ∈ V, let ϕoj be

the node imbalance describing its excess demand or supply. This is:

ϕoj =



∑
tk:wk∈W

−dwk
, if j = o,

0, if (o, j) ̸∈ W ,

dwk
, if j = tk and sk = o.

(4.5a)

With these definitions, we can formulate the origin-based LASO-TAP as follows:

min
xO,z

t(x, z)′x (4.6a)

s.t.
∑

i:(i,j)∈A
xoij −

∑
ℓ:(j,ℓ)∈A

xojℓ = ϕoj ∀j ∈ V , ∀o ∈ O, (4.6b)

zij + zji ≤ nij, ∀(i, j) ∈ A, (4.6c)

xwk ∈ R|A|
+ , z ∈ N|A|

+ . (4.6d)

Despite the reduction from (4.4) to (4.6), the LASO-TAP remains hard to solve for

several reasons. First, the interaction between the decision variables in (4.4a) and (4.6a)

makes the objective non-convex. This comes from the fact that when multiplying (4.3)

by xij we get the term γijx
β+1
ij /zβij where γij = αt0ij/c

β
ij. Second, we are optimizing

over a set of integer variables z which increases the computational complexity of the

problem. Still, (4.6) reduces the dimensionality of (4.4) and makes the problem more
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manageable to solve. In the following sections we present modifications to this problem

formulation to enable efficient solution methods.

It is important to note that the problem as stated in (4.4) and (4.6) is a lane

assignment problem rather than a lane reversal problem. This distinction is negligible

when we are capable to reverse all lanes in the network. However, in reality the

transportation infrastructure is not very flexible and might not be able to handle too

many lane reversals. Hence, we are interested in considering a sparse lane assignment

problem in which we limit the number of lane reversals. We develop this extension in

Section 4.4.

Remark 3. Note that the LASO-TAP as stated in (4.4) and (4.6) is seeking a System-
Optimal (SO) solution to the Traffic Assignment Problem (TAP). We can expect a
SO behavior when vehicles collaborate with each other when deciding their routes
which is for CAVs in chapter 3. However, by slightly modifying the objective function,
the same algorithms that solve a SO TAP are capable of solving the User-Centric
(UC) TAP (Patriksson, 1994). In this chapter we will focus on the SO case, but our
framework can handle both SO and UC TAPs.

4.3 Methods

We have discussed how the LASO-TAP problem is hard to solve for several reasons.

First, the objective is non-convex. Second, the optimization is made over a set of

integer variables z. Thus, let us consider three main strategies to find effective solutions

to the problem. To describe these strategies, we first define a condition that will help

us identify if a current solution is at an equilibrium point or not.

Intuitively, we say that Problem (4.6) is at an equilibrium point if the objective

does not improve when we perform a single reversal in the network. We now state

this formally.

Definition 3 (Equilibrium). An equilibrium point of problems (4.4) and (4.6) is found
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if for all (i, j) ∈ A

ψij ≥ 0 ∀zij = 0, . . . , nij − 1, and

ψij ≤ 0 ∀zij = nij,

where ψij is defined as

ψij =
(
x+ijtij(x

+
ij, zij + 1) + x+jitji(x

+
ji, zji − 1)

)
−
(
xijtij(xij, zij) + xjitji(xji, zji)

)
+
∑

(k,l)∈A/{(i,j),(j,i)}

((
x+kltkl(x

+
kl, zkl) + x+lktlk(x

+
lk, zlk)

)
−
(
xkltkl(xkl, zkl) + xlktlk(xlk, zlk

))
,

and x+ij indicates the modified flows when we reverse a lane in (i, j).

To check whether the equilibrium condition holds or not, we have to run a TAP

to get x+ij. Therefore, to evaluate the vector ψ = (ψij; (i, j) ∈ A) we require solving

|A| /2 TAPs. Checking this condition in a sequential algorithm is computationally

expensive, but could be used regularly as a measure of closeness to an equilibrium

point. Note that many equilibrium points may be encountered and that assessing the

global optimality of such a point may be a difficult, and often an intractable task.

In the following subsections we present three families of algorithms that could be

used to efficiently solve the LASO-TAP problem. First, we introduce an alternating

method consisting of decoupling the lane and traffic assignment problems. Then, we

provide a feasible direction or Frank-Wolfe algorithm. This framework reduces the

complexity by solving a fluidic version of the problem. Finally, we present a novel

convex approximation to the problem that can be solved to optimality.

4.3.1 Alternating method

We consider the method of sequentially and iteratively solving two disjoint and easier

problems. The idea consists of first solving the traffic assignment problem (TAP)

using any of the standard methods (e.g., Method of Successive Averages, Frank-Wolfe,

among others) and then solving for the best lane assignment (LA) for those specific
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flows. With the new lane allocation, we re-solve the TAP and LA problems and repeat

this procedure until convergence.

The LA problem of allocating lanes for a fixed flow vector x is defined as

min
z

Jz(z) :=
∑

(i,j)∈A
xijtij(xij, zij) (4.7a)

s.t. zij + zji ≤ nij, ∀(i, j) ∈ A, (4.7b)

z ∈ N|A|
+ , (4.7c)

where the objective (4.7a) only depends on z.

Problem (4.7) is an integer programming problem with a convex objective and

linear constraints. The convexity comes from the fact that each element Jz
ij is convex

in zij when we use a BPR function of the form of (4.3). This is because its second

derivative is nonnegative for all zij ≥ 0, and by the fact that the summation of convex

functions is convex. Moreover, Jz
ij is monotonically decreasing as it decreases when

we increase the capacity of arc (i, j).

For a deeper discussion on how to efficiently solve (4.7) we refer to Wollenstein-

Betech, Paschalidis, and Cassandras (2021). However, one can observe that (4.7)

is separable since both the objective and constraints are separable for each pair of

opposite direction links (i, j) and (j, i). This enables the possibility to distributively

solving this problem and obtaining the global optimal solution. Solving the lane

assignment problem is thus on order of O(∥n∥∞). This complexity is only true when

we allow to reverse any lane in the network. However, if we are interested in including

other coupling constraints, for example constraining a maximum number of reversals,

then we would have to solve the full convex integer programming problem.

The family of algorithms presented herein consists of sequentially solving TAP and

LA until convergence. We refer to a family of algorithms since we can restrict the
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LA problem to have a maximum of reversals at every iteration. For example if we

restrict the LA to only select the best reversal at every iteration, we would end up

with a greedy algorithm.

This greedy approach will switch the best lane, then will optimize flows, and then

will look for the next best reversal, and so forth. This approach is natural when urban

planners reverse a lane, i.e., wait to see how traffic responds, re-assess the network

conditions, and select the next most congested link.

4.3.2 Frank-Wolfe method

A different approach to solve the LASO-TAP problem is to relax the integer variables

to continuous ones. This relaxation is often employed when dealing with integer

programming problems and has the benefit of generating a lower bound. The relaxed

problem leads to a non-convex continuous programming problem for which standard

methods can be used to find a local stationary point.

In our context, we first derive an equilibrium condition for the relaxed case which

is analogous to the one described in Definition 3 and we quantify the impact on the

objective when we reverse a small fraction of a lane while assuming that flows x remain

unchanged. Formally, we perturb the capacity by an infinitesimal amount δ for a fixed

x. Then, its impact on the objective can be estimated using

∂Jz

∂zij
= lim

δ−→0

((
xijtij(xij, zij + δ) + xjitji(xji, zji − δ)

)
−
(
xijtij(xij, zij) + xjitji(xji, zji)

))
/δ. (4.8)

An equilibrium point for the capacity variables z is that for all (i, j) in A we have that

∂Jz/∂zij = 0, for zij ∈ (0, nij),

∂Jz/∂zij ≥ 0, for zij = 0,
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∂Jz/∂zij ≤ 0, for zij = nij.

That is, there is no benefit to reversing δ units of capacity for any arc (i, j) for a

current flow solution.

Since the relaxed problem is not convex due to the interaction between the flow

and capacity variables in f(xij/mij), we cannot ensure that the stable point will be a

global optimal but rather a local optimal solution. We argue that this local solution is

better than the current nominal lane allocation since at every step we aim to improve

the overall travel time by modifying z.

To solve the joint (x, z) problem we consider an enlarged Frank-Wolfe algorithm

which is similar to the one used for solving the TAP. At every iteration we find the

best routing decisions based on the current status of the infrastructure and then we

immediately take a step of adjusting the capacity for the current flow solution.

Algorithm 3 provides a detailed description of this methodology. When the

algorithm terminates, we simply project the fluidic (continuous) variables to its

nearest integer. Note that, similarly to the Frank-Wolfe methodology for solving TAP,

this method is memory-efficient (Patriksson, 1994).

4.3.3 Convex approximation

The goal of this subsection is to develop an approximation to the problem such that

efficient algorithms can be employed to find a global optimal solution instead of a local

solution.

The key idea is to avoid the interaction in the objective of xij with the capacity

mij such that we construct a convex objective. To do so, we fix each link’s capacity

mij using a nominal (current) number of lanes n0
ij (its vectorized version n0). Then,

we relate the new lane assignment with the flow in a threshold-based fashion.
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Algorithm 3 LASO Frank-Wolfe

1: Initialization. Set counter l := 0. Perform all-or-nothing assignment with tl =
t(0, z0). This yields xl.

2: Update SO travel time. tl+1 ← t(xl, zl) + xl∇xlt(xl, zl).
3: Capacity direction finding. Obtain ∇Jz(zl) using (4.8).
4: Capacity step size selection. Use αl

1 = 1/l.
5: Move capacity. zl+1 ← zl − αl

1∇Jz(zl).
6: Flow direction finding. Perform All-or-nothing assignment with tl+1 and zl+1 and

get auxiliary flows yl+1.
7: Flow step size selection. Use line search and select α2 by solving

min
0≤α2≤1

∑
(i,j)∈A

xl
ij+α2(ylij−xl

ij)∫
0

tl+1
ij (ω, zl+1

ij )dω

.
8: Move flow. xl+1 ← xl + α2(y

l − xl).
9: Relative gap. Calculate the Relative Gap (RG) using

RG =

(
xl+1

)′(
t(xl+1, zl+1) +∇xl+1t(xl+1, zl+1)

)∑K
k=1 dkhw

− 1

where hk is the SO shortest travel time (i.e., t(xl, zl) +∇xlt(xl, zl)) from wsk to
wtk.

10: Stopping criterion. If RG < ξ1 and ∥∇Jz(z)∥2 ≤ ξ2 or l > L then continue to
Step 11. Otherwise, let l = l + 1 and go to Step 2.

11: Project zl+1 to closest integer : zint = Π(zl+1) and output (xl+1, zint).

Specifically, we propose the following objective:

min
x,z

x′t(x,n0) + λ∥max{0,x−Θ(z)}∥2. (4.9)

where λ is a regularizer that trades off routing efficiency versus not exceeding a link’s

capacity. Note that this objective seeks a joint solution that avoids exceeding the

capacity threshold Θ(zij) that depends on z.

A natural value would be Θ(zij) = cijzij, which points to the capacity of the link

(i, j) ∈ A when zij lanes are assigned to it. However, we consider the more general
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case in which any other linear Θ(zij) function can be imposed, e.g., a fraction of the

link’s capacity that the practitioner would like to avoid exceeding.

Using this objective, the approximated LASO-TAP is formulated as follows:

min
x,z,s

x′t(x,n0) + λ∥s∥2 (4.10a)

s.t.
∑

i:(i,j)∈A
xij −

∑
ℓ:(j,ℓ)∈A

xjℓ = ϕj ∀j ∈ N , (4.10b)

zij + zji ≤ nij, ∀(i, j) ∈ A, (4.10c)

s ≥ x−Θ(z), (4.10d)

ε ≥ 0, s ≥ 0, (4.10e)

zij = {0, 1, . . . , nij} ∀(i, j) ∈ A (4.10f)

which results in a convex mixed integer program with linear constraints.

Piecewise-affine approximation

Following a similar approach as in Wollenstein-Betech, Salazar, et al. (2021), we

consider approximating the travel latency function, i.e., tij(xij, n), with a piecewise

affine function as shown in Figure 4·2.

For every piecewise segment in the range θ(l)ij ≤ xij ≤ θ
(l+1)
ij we introduce a slack

variable ε(l)ij . Hence, tij(xij, n0
ij) is approximated by

t̂ij(εij, n
0
ij) := t0ij

(
1 +

n∑
l=1

al
n0
ij

ε
(l)
ij

)
,

where a1 < a2 < · · · < an are the slopes of the n segments in the piecewise-affine

approximation. Using this function we obtain a quadratic objective

Ĵij(εij) := 1′εij t̂ij(εij, n
0
ij) ≈ xijtij(xij, n

0
ij),
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where 1′εij = xij (recall that 1 is a vector of all ones).
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Figure 4·2: Piecewise affine approximation of the travel time function

In Wollenstein-Betech, Salazar, et al. (2021) and Section 5.3.1 of this thesis, we

show that this piecewise linearization for the classical TAP results in a convex quadratic

program (QP) that could be further approximated by a linear program (LP). Using

this piecewise affine approximation, we formulate the LASO-TAP problem as a mixed

integer quadratic programming problem (MIQP):

min
ε,z,s

1′Ĵ(E) + λ∥s∥2 (4.11a)

s.t.
∑

i:(i,j)∈A
1′εij −

∑
k:(j,k)∈A

1′εjk = ϕj, ∀j ∈ N , (4.11b)

0 ≤ ϵ
(l)
ij ≤ θ

(l+1)
ij − θ(l)ij , l = 1, . . . , Lij − 1, (4.11c)

zij + zji ≤ nij, ∀(i, j) ∈ A, (4.11d)

s ≥ x−Θ(z), (4.11e)

s ≥ 0, (4.11f)

zij = {0, 1, . . . , nij} ∀(i, j) ∈ A, (4.11g)

where Ĵ(E) = (Ĵij(εij); (i, j) ∈ A). Note that, we can also formulate this problem

as a mixed integer linear program (MILP) by approximating the routing part of the



81

objective as in Wollenstein-Betech, Salazar, et al. (2021) and by penalizing the slack

variables s with an ℓ1 norm instead of an ℓ2 norm.

Although the problem we are dealing with is NP-hard due to the integrality of z,

exact methods such as branch and bound have been found to perform well in practice.

Otherwise, we can relax z by letting it be a nonnegative continuous variable. When

applying this relaxation, we can give two different interpretations. First, we can think

of the non-integer part of the solution as a percentage of the time in which the lane is

reversed. For example, if the solution indicates that an optimal lane configuration

is equal to z12 = 4/3 and z21 = 5/3 for a 3 hours period, we could assign 1 lane to

link (1, 2) for the two hours and 2 lanes assigned for one hour. Similarly, link (2, 1)

will have 1 lane assigned during one hour and a second lane assigned for 2 hours. The

second approach consists of projecting the continuous solution to the closest integer

(as in the proposed Frank-Wolfe method).

We conclude by observing that this convex approximation approach gives us four

different methodologies coming from the convex approximation framework: the integer-

based NP-hard methods MIQP and MILP; and the polynomial-time methods QP and

LP with their appropriate projections.

4.3.4 Discussion

A few comments are relevant to consider. First, one should note that contraflow lane

reversals could violate our assumption regarding the strong connectivity of G. This

may happen since we could disconnect certain nodes in the network while performing a

lane reversal. One way to avoid this issue is to restrict the solution to maintain at least

one lane in each direction of the road. While this approach maintains connectivity, it

may sacrifice some efficiency by limiting the optimization procedure. An alternative

way to handle this issue is by assuming a tiny amount of demand for every pair of

nodes in the network. In this way, we ensure that there is a path connecting any two
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nodes. Note however, that this trick may increase the dimensionality of the problem

by increasing the number of variables. This is because now every node will become an

origin in (4.6).

Second, the convexified version requires tuning λ. Although there is no specific

way to set λ, we observe that it is trading off routing with not exceeding a link’s

capacity. These two processes are somehow aligned because as flows get closer to a

link’s capacity, they also become less attractive for routing purposes due to higher

travel times (see Figure 4·2).

Third, we would like to argue the flexibility that the convexified (the MIQP, MILP,

QP and LP) approaches provide in comparison with the alternating and Frank-Wolfe

methods. Their main advantage is that they allow the inclusion of additional linear

constraints to our problem. This offers the possibility to extend the framework to

more realistic and practical examples. Another advantage of the convex approaches,

and more specifically the LP approach, is the ability to provide with very low effort

sensitivity analysis of the solution with respect to the demand vector. Moreover, the

LP method can accommodate robust (or uncertainty-aware) instances of the problem

in which the OD demand lies inside an uncertainty set and we aim to choose the

best lane configuration of the worst selection of OD demands (Ben-Tal, El Ghaoui,

& Nemirovski, 2009). This can be achieved by leveraging Bertsimas and Sim (2003).

Finally, commercial software for solving LPs and QPs is widely available and has been

improved over the years such that it is quite efficient to compute a solution to the

problem using this strategy.

4.4 Extensions

In the previous section we introduced three main methodologies to solve the lane

assignment problem while considering the routing decisions of commuters. Now, we
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exploit the convex approximation methodology to extend the framework to be suitable

for more practical implementations, especially to limit the number of reversals.

Imposing a maximum number of reversals becomes relevant for several reasons.

First, when considering the case of human-driven vehicles, we would like to have

fewer reversible roads in the network to avoid confusion. Second, if the transportation

agency is planning to invest on infrastructure in these roads, e.g., surveillance cameras,

barrier transfer machines (see Fig. 4·1c), then the agency will limit the number of

reversible lanes/links in the network due to budget constraints.

The extensions presented herein are suitable for the MIQP and MILP frameworks

but are not suitable for LP and QP. This is because we rely on inequalities that are

well-defined for the integer variables but not for the continuous ones.

4.4.1 Maximum number of lane reversals

So far, we have selected the lane configuration such that it complies with the constraint

zij + zji = nij . Note that this does not consider the current infrastructure status and

it assigns lanes to links regardless of implementation costs. However, transportation

infrastructure is, in general, not flexible to perform many reversals during a day.

Therefore, we would like to limit the number of allowable lane reversals.

To achieve that, we seek to ensure that our solution does not deviate too much from

the nominal (or current) configuration. This can be modeled by |n0
ij − zij| ≤ ξ where

n0
ij is the nominal capacity of the link (i, j) and ξ is the maximum number of lane

reversals allowed. Then, using the convex formulation (4.11) we can simply add, for

each link (i, j) ∈ A, a slack variable rij ≥ 0 and the linear constraints rij ≥ n0
ij − zij;

rij ≥ −(n0
ij − zij); and

∑
(i,j)∈A rij ≤ ξ.
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4.4.2 Maximum number of link reversals

In a similar way to the previous subsection, suppose now that the planner would like to

limit the number of allowable link (instead of lane) reversals. This is relevant because

when investing in a lane reversal infrastructure for one road, the cost of reversing

one versus multiple lanes may not be significant. However, building the initial lane

reversal infrastructure for a particular road is.

To model this, we introduce for every arc (i, j) ∈ A the variable

qij = min{1, |n0
ij − zij|}, (4.12)

= max{−1,−rij}. (4.13)

where rij is defined as in Section 4.4.1. To introduce this to our MIQP or MILP, we

let ξ be the number of allowable link reversals and we add the slack variables qij with

constraints qij ≤ 0; qij ≤ rij; qij ≥ −1; and
∑

(i,j)∈A qij ≤ ξ.

4.4.3 Multi-period optimization

We have considered the problem of finding the best lane configuration for a single

OD demand matrix. However, in practice we would like to decide where to invest

based on multiple traffic patterns. For example, by considering the morning and the

afternoon peak traffic.

To achieve this, suppose that we have an OD demand matrix for every time interval

t ∈ T . For example, T = {AM,MD,PM,NT} corresponding to morning, midday,

afternoon and night traffic patterns, respectively. Then, the problem becomes

min
{Et,ct,st | t∈T }

∑
t∈T

1′Ĵt(Et) + λ∥st∥2, (4.14a)

s.t.
∑

i:(i,j)∈A
xijt −

∑
ℓ:(j,ℓ)∈A

xjℓt = ϕjt, ∀j ∈ N , ∀t ∈ T , (4.14b)
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zijt + zjit ≤ nij, ∀(i, j) ∈ A, ∀t ∈ T , (4.14c)

st ≥ xt −Θ(zt), ∀t ∈ T , (4.14d)

rt ≥ n0
t − zt, ∀t ∈ T , (4.14e)

rt ≥ −(n0
t − zt), ∀t ∈ T , (4.14f)

q ≥ −1, (4.14g)

q ≤ −
∑
t∈T

rt, (4.14h)

1′q ≤ ξ, (4.14i)

εt, st ≥ 0, zt ∈ N+, ∀t ∈ T . (4.14j)

Problem 4.14 is an augmented version of (4.11) with the additional coupling

constraint (4.14h) which limits the number of links to invest over all the OD demand

setting in T . Notice that constraint (4.14h) is the only coupling constraint over T .

Therefore, this formulation is suitable for using decomposition techniques, such as

Dantzig-Wolfe (Dantzig & Wolfe, 1960).

4.5 Numerical Results and Case Studies

To validate and compare the methods described above, we consider several numerical

examples over two different transportation networks shown in Figure 4·3. The test

network is a small example that is useful to test our methods. Additionally, we perform

a case study using the Eastern Massachusetts interstate highways (EMA) subnetwork

(Figure 4·3a).

The EMA road network is relevant in the context of lane reversals as it captures

the dynamics of suburban/urban mobility where we expect lane reversal strategies to

be beneficial. This is because arterial roads typically have a large number of lanes and,

at the same time, they experience high traffic congestion. The values of the network
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topology (e.g., capacities, free flow speeds), as well as the code used to perform the

experiments is publicly available in our online repository.1

(a)

1
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9

(b)

Figure 4·3: (a) EMA transportation network composed of 74 nodes,
258 arcs, 581 lanes, and 1113 OD pairs; (b) Test network consists of 9
nodes, 26 arcs, 61 lanes, and 5 OD pairs.

We present our numerical results in the same order as our methods were presented

in Section 4.3. First, we analyze the convergence of different alternating methods and

the Frank-Wolfe algorithm. Then, we report numerical results for different selections of

the λ parameter for the convex programming approach and we compare all approaches.

Finally, we provide an example of one of our extensions which limits the number of

link reversals and we experiment with the symmetry of the OD demand.

4.5.1 Alternating and Greedy

Using the alternating method described in Section 4.3.1 we solve the LASO-TAP. In

particular we use three different methodologies. First, we introduce the greedy (or

One) approach where the idea is to first solve the TAP. Then, find the best possible

reversal and switch it. Once we have changed the lane, we re-solve the TAP. We do
1https://github.com/salomonw/contraflow-lane-reversal
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this iteratively until we converge to a value. The second approach, which we called

Five, implements the same idea, but instead of changing only the best possible lane,

it changes the top 5 lane reversals at every iteration. Similarly, our last alternating

approach referred to as Full follows the same procedure but at each step reverses all the

possible lanes that improve the traveling times. Figure 4·4 indicates the convergence

of these three approaches.

We observe two main patterns in these results. First, the convergence of the

algorithm is reached within a few (two to three) iterations. This is consistent with

many bi-level formulations involving the traffic assignment problem. Second, and more

interestingly, the greedy approach performs poorly compared to the other methods.

Our justification for this behavior is that when flows (or routes) are re-optimized, they

are trying to use the links of the network infrastructure efficiently. Hence, we find a

good allocation of flows to lanes such that the whole system is closer to a stationary

point.
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Figure 4·4: Convergence of the alternating method for different num-
bers of reversals per iteration. “One” corresponds to reversing only one
lane at every iteration while “All” intends to reverse all the beneficial
lanes at every step.
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4.5.2 Convergence of Alg. 3

With the aim of validating our Frank-Wolfe methodology described in Section 4.3.2,

we observe its trajectory over the iterates using the EMA transportation network.

Figure 4·5 shows (i) the value of the objective function J(x, z); (ii) the ℓ2 norm of

the gradient with respect to the lane reversals, i.e., ∥∇Jz(z)∥2. When this value equals

zero, we know that an infinitesimal change in reversing a lane will not be beneficial

to the system; (iii) the relative gap (RG) pointing to the closeness to a solution

that follows a Wardrop equilibrium. Hence, these results verify the effectiveness and

convergence of Alg. 3 in the sense that it is minimizing the overall travel times by

adjusting the routing and the links capacity at every iteration.
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Figure 4·5: Convergence of the Frank-Wolfe algorithm proposed in
Section 4.3.2
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4.5.3 Dependence on λ

As we discussed in Subsection 4.3.4, one of the main drawbacks of our convex formula-

tion is the inclusion of the parameter λ. This parameter serves as a trade-off between

the routing and the lane assignment decisions. Hence, we would like to observe the

performance of our solution for different values of λ. To perform the experiment, we

use the EMA network and we solve the problem for λ ∈ (0, 1× 105).

Figure 4·6 reports the objective for different values of λ and for different algorithms.

The numerical results show that the model is robust for different values of λ, i.e., the

performance does not change substantially for very different λ’s. This is a positive

result, since it suggest that calibrating λ does not play a very important role in the

performance of this method.
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Figure 4·6: Objective function for different values of λ and for different
convex methods over the EMA network.

4.5.4 Comparison between methods

Now, we compare all the methods proposed. We solve the routing problem, i.e., the

TAP, with the current lane configuration and call it the nominal solution. Then,

we solve the LASO-TAP problem for the test and the EMA networks using all the

methodologies described earlier, i.e., Frank-Wolfe (FW), the three variations of the
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alternating method, and the different convex integer and continuous programs.

In Table 4.1 we report the computational time of each method, as well as their

performance compared to the nominal lane allocation. Specifically, we take 1 −
(OBJmethod/OBJnominal) to obtain a relative improvement (RI) metric with respect to

the nominal allocation.

We observe that the convex approximation approaches perform very well in terms of

obtaining efficient solutions to the problem. In particular LP, QP and MILP compute

the solution relatively fast compared with the FW or the alternating methods and

achieve good solutions while providing the flexibility to add linear constraints.

Table 4.1: Results indicating the relative improvement in the overall
travel time between a method and the nominal capacity.

Method Test EMA
RI (%) Time (s) RI (%) Time (s)

Nominal 0.0 0.01 0.0 0.42
FW 12.7 11.5 0.7 956.2
Alternating (1) 10.3 0.62 1.4 12.2
Alternating (5) 14.6 0.60 2.9 12.4
Alternating (full) 14.7 0.59 5.4 12.4
MIQP 17.5 0.02 4.7 101.37
QP 17.4 0.02 4.5 0.71
MILP 17.5 0.02 4.6 5.67
LP 17.3 0.01 4.2 0.36

4.5.5 Maximum number of lane reversals

This experiment computes the Pareto optimal frontier using the extension of our convex

approximation that limits the number of link reversals for which we compute the

performance for a different value of the maximum number of allowable link reversals.

Figure 4·7 shows this relationship for the EMA network.

As expected, we observe that the first lanes are the ones that contribute the most

to the improvement of the overall travel times. This methodological advantage and

corresponding results are of particular interest to urban planners that might need to

prioritize the most critical roads and may have a budget that depends on the overall
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benefit of reducing travel times for the system. In addition, our numerical results

imply that it is not necessary to invest in too many lane reversals to achieve a large

fraction of achievable improvement. For example, by investing between 10 and 15

links in the network (out of 129 possible links) the solution has already reached most

of the benefit.
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Figure 4·7: Performance on the overall travel times as the number of
links allowed to perform reversals increases.

4.5.6 Effect of OD demand symmetry

A characteristic of lane reversal strategies is that larger benefits occur when the

demand is not symmetric. We use an example to introduce the concept of symmetry in

this context. Consider the demand patterns of a large metropolitan area on a weekday

morning. In most cases, we expect a large fraction of the demand to be traveling

towards the city center. Hence, we expect high traffic heading towards the city center

and low traffic traveling to suburban areas. We refer to this case as asymmetric

demand. In contrast, the traffic flows between two major cities could serve as an

example of a symmetric OD demand.

We generated an experiment using the Test network (Figure 4·3b) to exemplify

the effect of symmetry in the performance of lane reversals. To do so, let ρ ∈ (0, 1) be
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a parameter describing the fraction of the OD demand traveling from west to east and

(1− ρ) the fraction of vehicles going from east to west. More explicitly, we defined

the OD matrix to be d(1,9) = 15, 000ρ, d(1,9) = 15, 000(1 − ρ) and d(s,t) = 0 for all

(s, t) ∈ W \ {(1, 9), (9, 1)}.
Figure 4·8 shows the relative improvement of the lane reversal solution, using

MIQP and QP, with respect to the nominal capacity solution. We observe that for the

cases in which demand is not symmetric, the improvements in travel time can be as

high as to 65%. In contrast, when the demand is symmetric, there are fewer benefits

(considering uniform capacities across the network). Notice that negative values can

be observed (as in the QP case) since we are solving an approximation method (both

by the convex approach and by projecting the continuous QP solution) that could

deviate from the optimal value in certain cases. These results provide us a tractable

example to understand the potential of lane reversals depending on the symmetry

of the demand and suggest the instances for which these interventions provide large

benefits. Some real-life examples in which asymmetric demands can be found include:

morning and afternoon peaks, massive events, and holiday travel.

4.6 Summary and Future Work

The problem of identifying the best lanes to reverse in a congested network is challeng-

ing because it requires to solve a mixed integer non-convex programming problem. The

literature dealing with this problem has been focused on using heuristic algorithms

for solving it.

In this chapter we propose three strategies to reduce the complexity of the prob-

lem. Our first method uses the principle of decomposition, or divide and conquer, by

separating the joint routing and assignment problem into separate ones. Our second

methodology uses the idea of relaxation by converting the integer variables to con-
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Figure 4·8: The relative improvement for different OD demand dis-
tributions in the Test network. The x-axis ρ indicate the fraction of
demand traveling from west to east. Similarly, (1 − ρ) captures the
fraction of vehicles traveling from east to west. The extremes (ρ = 0
and ρ = 1) are the most asymmetric traveling patterns

tinuous ones. Lastly, our third approach convexifyies the objective by modifying the

objective function. This last method is interesting since it allows including additional

constraints to the problem, e.g., a maximum number of reversals.

We provide numerical results for all our methods showing their performance

over a test network and a case study using the transportation network of Eastern

Massachusetts. Interestingly our results show that the greedy approach, the one that

reverses the most relevant lane at every iteration, can result in sub-optimal solutions.

In contrast, the convexification approach is efficient in both the quality of the solution

and the computational burden.

We foresee the development of sensitivity analysis and robust optimization methods

as an interesting future research direction. This next step is interesting specifically for

the convexification method, as it permits to use known methods for linear programming.

This will contribute to the existing literature regarding robust network optimization.



Chapter 5

Optimizing Routing and Rebalancing of
Autonomous Mobility-on-Demand systems

This chapter studies congestion-aware route-planning policies for intermodal Au-

tonomous Mobility-on-Demand (AMoD) systems, whereby a fleet of autonomous

vehicles provides on-demand mobility jointly with public transit under mixed traffic

conditions (consisting of AMoD and private vehicles). First, we devise a network

flow model to jointly optimize the AMoD routing and rebalancing strategies in a

congestion-aware fashion by accounting for the endogenous impact of AMoD flows

on travel time. Second, we capture the effect of exogenous traffic stemming from

private vehicles adapting to the AMoD flows in a user-centric fashion by leveraging

a sequential approach. Since our results are in terms of link flows, we then provide

algorithms to retrieve the explicit recommended routes to users. Finally, we showcase

our framework with two case-studies considering the transportation sub-networks in

Eastern Massachusetts and New York City, respectively. Our results suggest that for

high levels of demand, pure AMoD travel can be detrimental due to the additional

traffic stemming from its rebalancing flows. However, blending AMoD with public

transit, walking and micromobility options can significantly improve the overall system

performance.

94
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5.1 The Problem and Related Work

We study the routing and load-balancing processes of a fleet of vehicles belonging to

an AMoD service when they interact with self-interested vehicles in the network. In

contrast to commonly used platforms today (e.g., Uber, Lyft, DiDi), our objective is

to take these two decisions jointly rather than separately.

In the chapter, we devise methodologies that optimize the operations of AMoD

systems with the goal of reducing traffic congestion. To achieve this, we develop a

coordinated intermodal routing procedure that seeks to minimize the overall commuters

travel time while ensuring that all travelers are being served by the same platform.

5.1.1 Related Work

Current drivers in MoD platforms, such as Uber, Lyft or DiDi, choose their paths

by using routing apps (e.g., Waze and Google Maps). These apps recommend routes

using traditional exact shortest path algorithms such as Dijkstra’s (Dijkstra, 1959),

Bellman-Ford (Bellman, 1958), and incremental graph (Ramalingam & Reps, 1996)

or by heuristics such as A-star (Hart, Nilsson, & Raphael, 1968), tabu search (Hertz,

Laporte, & Mittaz, 2000) and genetic algorithms (Ahn & Ramakrishna, 2002).

This User-Centric (UC) approach to routing, in which every driver minimizes their

own travel time, is suboptimal compared to System-Optimal (SO) routing schemes

achievable when vehicles are coordinated by a central controller as explained in

Chapter 3 of this thesis.

In a mixed traffic setting, the interaction between a fleet of CAVs using SO routing

coupled with reactive UC private vehicles is investigated theoretically by Lazar et al.

(2017), where a reduction in headways is considered thanks to the adaptive cruise

control technology included in CAVs. However, this analysis requires a network

configuration of parallel links and is not suitable for general transportation networks.
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To overcome this, Harker (1988); Houshmand et al. (2019); Yang et al. (2007) propose

an iterative approach to find a solution between these two classes of vehicles known

as diagonalization scheme.

Aside from routing, rebalancing is tackled in practice by providing drivers with

a real-time heat-map of the users’ demand such that the driver is incentivized to

relocate to an area that will maximize its profits.

Rebalancing has been studied by researchers using proactive (or planning) strategies

that redistribute the fleet across regions in order to meet a forecasted demand1. Using

this perspective, Pavone et al. (2012) shows that rebalancing is necessary to avoid

building unbounded customer queues and to stabilize the system. Moreover, they

propose a rebalancing policy that minimizes the empty vehicle travel time under static

(steady-state) conditions using a fluidic model. Furthermore, R. Zhang and Pavone

(2016) proposes a queueing-theoretical approach to account for customers leaving the

system when their waiting times are long. This method repeatedly solves a Linear

Program (LP) that balances the fleet availability across the regions. Similarly, Spieser,

Samaranayake, Gruel, and Frazzoli (2016) proposes a method that minimizes the

number of customer dropouts instead of the empty driven miles to focus on service

quality. Different from these queueing models, simulation-based methods are also

employed (Hörl, Ruch, Becker, Frazzoli, & Axhausen, 2018; Levin, Kockelman, Boyles,

& Li, 2017; Swaszek & Cassandras, 2019a).

More recently, schemes that consider the effects of rebalancing in routing and

congestion have been analyzed. Threshold approximations of the travel time function

have been used to study congestion effects in Rossi, Zhang, Hindy, and Pavone (2018),

sometimes capturing the interaction with public transit (Salazar, Lanzetti, Rossi,
1Note that this process finds good coverage of vehicles over regions of the system and it is not

focused on matching or assigning vehicles to customers. This vehicle-passenger assignment is explored
in Alonso-Mora, Samaranayake, Wallar, Frazzoli, and Rus (2017); Bei and Zhang (2018); R. Chen
and Cassandras (2022)
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Schiffer, & Pavone, 2020; Salazar, Rossi, Schiffer, Onder, & Pavone, 2018), or with

the power-grid (Belakaria, Ammous, Smith, Sorour, & Abdel-Rahim, 2019; Rossi et

al., 2020). These threshold schemes work as binary decisions allowing for the use of a

road (or not), depending on whether the flow has exceeded the threshold or not, but

do not capture different travel times for different flow levels on each link.

To account for flow-based routing schemes most work leverages the classical Bureau

of Public Roads (BPR) congestion model together with network optimization methods.

In particular, Solovey, Salazar, and Pavone (2019) provides a Frank-Wolfe algorithm,

where dummy nodes are added to the transportation network to account for rebalancing

flows and where the BPR function is evaluated when designing routes. However, this

approach cannot include other modes of transportation such as walking, micromobility

options, or public transit. Against this backdrop, a piecewise-affine approximation of

the travel time function is introduced in Salazar et al. (2019) which converts the joint

problem to a quadratic program. In this work, we extend this approximation in order

to account for more accurate, fast and implementable models.

The remainder of the chapter is organized as follows: In Section 5.2 we present the

models used and the problem formulation. In Section 5.3 we develop the piecewise-

affine approximation formulation along with the main analytical results. In Sections 5.4

and 5.5, we provide a framework for the mixed traffic problem and route-recovering

strategies, respectively. Finally, we present experiments using the Eastern Mas-

sachusetts and New York City transportation networks in Section 5.6 and we conclude

in Section 5.7.

5.2 Problem Formulation

Consider an AMoD system which provides a mobility service through multiple modes of

transportation (e.g., autonomous taxi-rides, walking and mass transit). To model the
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system, let G be a network composed by the road layer and L additional layers, each

representing a different transportation mode (Fig. 5·1). We denote by GR = (VR,AR)

the road layer and by Gl = (Vl,Al), for l = 1, . . . , L, the other layers where (VR,AR)

and (Vli ,Ali) are the sets of vertices and arcs for each layer. Then, the supergraph

G = (V ,A) is composed of all layers and a set of switching arcs, denoted by AS, that

connect the network layers to allow AMoD users to switch modes (see dotted lines in

Fig. 5·1). Formally G is composed of the set of vertices V = VR ∪ V1 ∪ . . . ∪ VL and

arcs A = AR ∪ A1 ∪ . . . ∪ AL ∪ AS.

𝐿

Figure 5·1: Intermodal AMoD network (supergraph) consisting of
three layers: the road network (blue with black AMoD cars and grey
private vehicles, respectively), walking pathways (green) and subway
lines (red); the dashed arrows represent switching arcs.

In order to model the demanded trips, let w = (ws, wt) denote an Origin-

Destination (OD) pair and dw ≥ 0 the demand rate at which customers request

service per unit time from origin ws to destination wt. Let W be the total number of

OD pairs and W = {wk : wk = (wsk, wtk), k = 1, . . . ,W} the set of OD pairs. Let a

vectorized version of the demand be g = (dwk
; k = 1, . . . ,W ).

To keep track of the AMoD user flow on a link, we let xwij denote the AMoD flow

induced by OD pair w on link (i, j) ∈ A. Given that the AMoD system needs to

rebalance its vehicles to ensure service, we let xrij be the rebalancing flow on link

(i, j) ∈ AR. Finally, to consider the interaction between the AMoD provider and
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the other (private) vehicles, we let xpij be the self-interested private vehicle flow on

(i, j) ∈ AR. We use the term “private” as we assume that self-interested users must

arrive at their destination with their vehicle and do not have the option of switching

transportation mode since they have a parking constraint. To simplify notation, we

let the AMoD user flow on any link be

xuij =
∑
w∈W

xwij , ∀(i, j) ∈ A, (5.1)

and the total flow on a link be

xij = xuij + xrij + xpij, ∀(i, j) ∈ A. (5.2)

Note that neither rebalancing flow xr nor private vehicle flow xp exists on layers

l = 1, . . . , L nor on the switching links in Fig. 5·1. Hence, for those links we set

xrij = xpij = 0 for all (i, j) ∈ A \ AR.

We specify the time it takes to cross link (i, j) as tij(x) : R|A|
+ 7→ R+. Using the

same structure as in Beckmann et al. (1955), we characterize tij as a travel time

function that maps the flow xij on a link to a travel time as follows:

tij(xij) = t0ijf(xij/mij), (5.3)

where mij is the link capacity, t0ij is the free-flow travel time on link (i, j), and f(·) is

a strictly increasing, positive, and continuously differentiable function. To ensure that

the travel time is equal to the free-flow travel time when there is no flow on the link,

we consider functions with f(0) = 1.

Throughout this chapter, we use the Bureau of Public Roads (BPR) function to

decide the routes of AMoD users and private vehicles given the network flow levels.

However, our analysis allows for any strictly increasing travel time function. For the

rest L layers (excluding the road layer) we consider a constant travel time (independent
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of the flow) on every link.

5.2.1 System-Optimal Routing and Rebalancing of AMoD Systems

Recall that our goal is to find the system-optimal congestion-aware routes and rebal-

ancing policies of an AMoD provider. Let duw be customer rate requests to the AMoD

system for passengers traveling from ws to wt, and 1i=j be the indicator function equal

to 1 when i = j and 0 otherwise. The problem we aim to solve is then expressed by

min
xW ,xr

J(x) :=
∑

(i,j)∈A
tij(xij)x

u
ij +

∑
(i,j)∈AR

cijx
r
ij (5.4a)

s.t.
∑

i:(i,j)∈A
xwij + 1j=wsd

u
w =

∑
k:(j,k)∈A

xwjk + 1j=wtd
u
w, ∀w ∈ W , j ∈ V , (5.4b)

∑
i:(i,j)∈AR

(
xrij + xuij

)
=

∑
k:(j,k)∈AR

(
xrjk + xujk

)
, ∀j ∈ VR, (5.4c)

xW ,xr ≥ 0, (5.4d)

where we use bold notation x to represent a vector containing all the elements of xij.

The dimensions of the decision vectors xr and xW are given by xr ∈ R|AR|, and

xW = {xw ∈ R|A| | w ∈ W}. Constraints (5.4b) take care of flow conservation and

demand compliance as in a multi-commodity transportation setting. Constraints

(5.4c) ensure the rebalancing of the AMoD fleet (only on the road network). The last

sets of constraints (5.4d) restrict the flows to non-negative values.

The objective J(x) is composed of two terms. The first term considers the total

travel time of AMoD users. This evaluates the travel time function tij(xij) with respect

to the total flow given by (5.2) which includes variables corresponding to private

vehicle flow xpij (assumed to be fixed), and the rebalancing flow xrij. When taking the

product tij(xij)xuij , we obtain a non-convex function which makes the problem hard to

solve. To address this issue, we use a piecewise-affine approximation of tij(xij) which

is further developed in Section 5.3.



101

The second term acts as a linear regularizer whose purpose is to penalize rebalancing

flows. This will ensure that a cost for rebalancing of the fleet are taken into account

in the optimization problem. We use cij = λt0ij where λ is a constant. Therefore, we

use a small λ to guide the rebalancing flow through good paths, without dominating

the AMoD user routing decisions. Note that, if normalization is needed to ensure a

good regularization parameter, we can always bound each component on (5.4a) using

the link capacities and a large enough value for t(·).

5.2.2 Private Vehicles Flow Modeling

Aiming to understand the interaction between a SO AMoD fleet and private vehicles,

we assume some user-choice model behind private vehicle decisions. To do so, we use

the User-Centric (UC) routing as in the Traffic Assignment Problem (TAP). Given

OD demands, this model finds the flows in the network which achieve a Wardrop

equilibrium (Wardrop, 1952). This is equivalent to each private user deciding to take

the route that minimizes their own travel time.

We impose that private vehicles can travel exclusively through the road network

GR as opposed to traveling in the full network G. Let xp,wij be the flow on link (i, j)

induced by private vehicle demand dpw of OD pair w. Then the UC problem of private

vehicles is

min
xp

∑
(i,j)∈AR

xij∫
xu
ij+xr

ij

tij(s)ds (5.5a)

s.t
∑

i:(i,j)∈AR

xp,wij + dpw1j=ws =
∑

k:(j,k)∈AR

xp,wjk + dpw1j=wt , ∀w ∈ W , j ∈ VR, (5.5b)

xp,w ≥ 0. (5.5c)

Notice that this version of the UC TAP is slightly different to the classic one (Patriksson,

1994) since it considers the AMoD flow in its objective (see limits of the integral on
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(5.5a)).

To solve this problem we assume that the AMoD flow is fixed and private vehicles

plan their routes considering AMoD flows as exogenous. By assuming this, we can

use the Frank-Wolfe algorithm (Frank & Wolfe, 1956) to solve (5.5). Let us use the

shorthand notation of TAP(g,xe) to indicate the solution of (5.5) with xe equal to any

generic exogenous flow. Hence xp ∈ TAP(gp,xu + xr).

5.2.3 AMoD in Mixed Traffic

Critically, AMoD flows react to the decisions made by private vehicles and these, in

turn, react to AMoDs’ flows. Hence, whenever private vehicles make their routing

decisions, the AMoD fleet adjusts theirs, and vice versa. This creates a nested

optimization problem between these two classes of vehicles.

To give a formal definition of this game-theoretical problem we use the following

bilevel optimization formulation

min
{xw}w∈W ,xr,xp

J(x) (5.6a)

s.t. (5.4b)− (5.4d),

xp ∈ TAP(gp,xu + xr), (5.6b)

which has the same structure as (5.4) with the additional constraint (5.6b). The latter

constraint refers to the TAP (the lower-level problem), which depends on the solution

of the full problem (upper-level). Note that the upper-level problem is minimizing

over the AMoD users, rebalancing, and privately-owned vehicle flows.

This phenomenon has been studied in Harker (1988) and Yang et al. (2007) where

the existence and uniqueness of Nash equilibria points is discussed. To compute the

solution to the problem, we leverage the iterative approach (diagonalization scheme)

presented in Chapter 3 of this thesis to compute the private vehicles’ and AMoD
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flows.

5.3 AMoD Routing and Rebalancing Problem

The problem of routing and rebalancing as stated in (5.4) is non-convex for typical

travel time functions such as the BPR. This happens due to the term t(xij)x
r
ij in the

objective function. To address this issue, we approximate the travel time function

with a piecewise-affine function. The results presented here are key contributions of

this Chapter and of the overall dissertation.

5.3.1 Piecewise-affine Approximation

Let the function approximating t(x) be of the form:

t̂ij(x) =



t0ij

(
1 + a1

(x− θ(1)ij )

mij

)
, if θ(1)ij ≤ x ≤ θ

(2)
ij

...

t0ij

(
1 +

n∑
l=1

(al(θ(l)ij −θ(l−1)
ij )

mij

)
+
an(x−θ(n)ij )

mij

)
, if θ(n)ij ≤ x,

where al is the slope of segment l = 1, . . . , n of t̂ with a1 ≤ · · · ≤ an < ∞, and θ
(l)
ij

is a threshold dividing segments on the travel time function for link (i, j). In our

case, we let θ(l)ij = θ(l)mij where θ(l) is the normalized threshold in the travel time and

capacity-normalized function depicted in Fig. 5·2.

To model this piecewise-affine function in the optimization problem, we introduce

the following set of slack variables

ε
(n)
ij = max{0, xij − θ(n)ij }, (5.8a)

...
ε
(k)
ij = max{0, xij − θ(k)ij −

n∑
l=k+1

ε
(l)
ij }, (5.8b)

...
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Figure 5·2: Travel time function approximation.

ε
(0)
ij = max{0, xij −

n∑
l=1

ε
(l)
ij }, (5.8c)

where each ε(k)ij denotes the extra flow exceeding threshold θ(k)ij and up to θ(k+1)
ij − θ(k)ij ,

thus, ε(k)ij ∈ [0, θ
(k+1)
ij − θ(k)ij ]. We include these variables in the problem by adding the

linear constraints ε(k)ij ≥ 0 and ε(k)ij ≥ θ
(k)
ij −

∑n
l=k+1 ε

(l)
ij , provided that the objective is

a function of ε(k)ij .

Using these definitions we can generate a tractable cost function. We focus our

attention on an element-wise analysis of the first term (non-convex part) of objective

function (5.4a) using t̂ instead of t for which we obtain the objective function

Ĵ(xij, εij) := t0ij

(
1 +

n∑
l=1

(alε
(l)
ij /mij)

)( n∑
k=1

ε
(k)
ij − xp

)
, (5.9)

derived as follows:

t̂ij(xij)x
u
ij = t0ij

(
1 +

n∑
l=1

(alε
(l)
ij /mij)

)
xuij, (5.10a)

= t0ij

(
1 +

n∑
l=1

(alε
(l)
ij /mij)

)( n∑
k=1

ε
(k)
ij − xr − xp

)
, (5.10b)

≤ t0ij

(
1 +

n∑
l=1

(alε
(l)
ij /mij)

)( n∑
k=1

ε
(k)
ij − xp

)
. (5.10c)
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In (5.10b) we express xuij by using a combination of (5.2) and (5.8). In the last step

(5.10c), we add the term
∑n

l=1 t
0
ijalεijx

r
ij/mij to Ĵij.

By adding this term, we consider a relaxation of the original problem (i.e., an

upper bound of Ĵij). This modification, which is detailed later (see Remark 4), allows

our proposed objective to be a convex quadratic function. Hence, we define the AMoD

problem to be

min
xW ,xr,ε

∑
(i,j)∈A

Ĵ(xij, εij) +
∑

(i,j)∈AR

cijx
r
ij, (5.11a)

s.t. (5.4b)− (5.4d)

ε
(k)
ij ≥ θ

(k)
ij − xij, ∀(i, j) ∈ A, k = 1, . . . , n, (5.11b)

ε
(k)
ij ≥ 0, ∀(i, j) ∈ A, k = 1, . . . , n, (5.11c)

where ε = {ε(j)ij | (i, j) ∈ A, k = 1, . . . , n}. Now, we present the main analytical

result of this work.

Theorem 1. Problem (5.11) is a linearly constrained convex Quadratic Program (QP)
with linear equality constraints.

Proof. We prove this by construction. We show that the Q matrix in the QP standard
form (i.e., minx x

′Qx, s.t. Ax ≤ b) can be modified to be positive semidefinite (PSD).
Note that in (5.11a) the only quadratic term is of the form ε

(l)
ij ε

(k)
ij and its matrix

representation (i.e., ε′Qε) does not guarantee that Q is PSD. However, we observe
that since we are minimizing, when xij ≤ θ

(k)
ij then ε

(k)
ij = 0 and when xij ≥ θ

(k+1)
ij

then ε(k)ij = (θ
(k+1)
ij − θ(k)ij ). Therefore,

ε
(l)
ij ε

(k)
ij =


(θ

(l+1)
ij − θ(l)ij )ε

(k)
ij , if l < k,

ε
(l)
ij ε

(l)
ij , if l = k,

ε
(l)
ij (θ

(k+1)
ij − θ(k)ij ), if l > k,

where the first case comes from the fact that in order for ε(k)ij to be greater than zero,
the flow xij must have exceeded θ

(l+1)
ij for l < k. Therefore, ε(l)ij is at its maximum

value of (θ(l+1)
ij −θ(l)ij ). The same analogy applies to the third case. Hence, the link-wise
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objective function of the QP without the rebalancing term is rewritten as

ĴQP
ij (xuij, εij) = t0ij

(
xuij +

n∑
l=1

al
mij

( l−1∑
k=1

(θ
(k+1)
ij − θ(k)ij )ε

(l)
ij

+ (ε
(l)
ij )

2 +
n∑

k=l+1

(θ
(l+1)
ij − θ(l)ij )ε

(k)
ij

))
.

Using this new formulation, we note that the Q matrix is the identity matrix which is
PSD and therefore JQP

ij is convex quadratic using (Bertsekas, 2016, Prop. 3.1.1).

A relevant trade-off worth noting is on the number of piecewise affine segments

used to approximate the travel latency function. Even though a larger n will provide

better approximations of t(·), and hence a better solution to the problem, this implies

adding |A| additional variables and linear constraints to the formulation for every

additional segment included in the estimation.

Remark 4. We observe that the effect of adding
∑n

l=1 t
0
ijalεijx

r
ij/mij to (5.10a) implies

taking into account congestion-aware rebalancing routing. However, this congestion-
aware routing of the rebalancing vehicles has a lower impact in JQP

ij than the AMoD
users. This is because a0 = 0 for xr (i.e., the first term in (5.10c) does not include
xr). Hence, the interpretation of this addition is that the rebalancing flows evaluate
the travel latency function with the same structure as the AMoD flows but with t0ij = 0.

5.3.2 Linear Relaxation

Seeking a simpler formulation and faster computation performance of (5.11), we notice

that it is possible to relax the QP to a Linear Program (LP) by modifying the only

quadratic term in (5.11a), i.e., (ε(l)ij )2. We approximate this using ε(l)ij θ
(l+1)
ij and observe

that when xij ≤ θ
(l)
ij or xij ≥ θ

(l+1)
ij we recover exactly (ε

(l)
ij )

2. However, a gap exists

when xij ∈ (θ
(l)
ij , θ

(l+1)
ij ) which can be diminished by adding more linear segments to

t̂(·) and consequently decreasing the range of (θ(l)ij , θ
(l+1)
ij ).

Lemma 5.3.1. Assuming the distance between the break points of the linear segments
is uniform, i.e., θ(l+1)

ij −θ(l)ij = θ(n)/n, for l = 1, . . . , n−1, then the objective function of
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the LP formulation approximates the QP objective function by an error upper-bounded
by an(θ(n))2/4n2)

∑
(i,j)∈A t

0
ijmij.

Proof. See Appendix A.0.1.

Theorem 2. Let the total flow and the capacity of every link be upper-bounded and
assume a0 ≤ a1 ≤, . . . ,≤ an <∞. Then, as n −→∞, the solution of the LP problem
recovers the solution of the QP.

Proof. See Appendix A.0.1

Interestingly, these two reformulations, QP and LP, together with Theorems 1 and

2 show that an LP can be solved instead of the original convex program described in

(5.4). This LP approximates the solution of the QP which, in turn, approximates the

solution of the original problem. These two are asymptotically optimal in the number

of segments used to describe the nonlinear function t(·) in the objective.

5.3.3 Origin-based Formulation (Flow-bundling)

So far, we have formulated the problem such that for every OD pair w ∈ W we

introduce |A| decision variables. The total number of variables in our QP (or LP) is

then (n+ 1 + |W|)|A|, which is typically dominated by the number of OD pairs |W|.
In practice, this number can be very large, sometimes up to |V|2. Hence, solving the

problem using the previous formulations may require large memory capabilities.

To mitigate this issue, we leverage similar ideas to Rossi et al. (2020) which

aggregate flows by origin with the objective to reduce the number of variables and

constraints of the QP and LP without losing information. This flow aggregation by

origin allows to reduce the number of variables to be in the order of (n+ 1 + |V|)|A|,
which makes the problem significantly faster to solve.

Let us denote the set of origin (sources) S = {ws : d
u
(ws,wt)

> 0, ∀(ws, wt) ∈ W}
and the flow on the network with s ∈ S as it source by xs; the total user flow on a link

is then xu =
∑

s∈S x
s and the set of user origin-link variables be xS = {xs | s ∈ S}.
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For every origin s, let ψs(j) be the node imbalance describing the excess demand or

supply at each node. This is

ψs(j) =



∑
t:(s,t)∈W

−du(s,t), if j = s,

0, if j ̸= s, t,

du(s,t), if j = t.

Using this definition in hand, we establish the origin-based problem as follows

min
xS≥0,xr≥0

∑
(i,j)∈A

Ĵij(xij, εij) +
∑

(i,j)∈AR

cijx
r
ij (5.14a)

s.t.
∑

i:(i,j)∈A
xsij −

∑
k:(j,k)∈A

xsjk = ψs(j), ∀j ∈ N , ∀s ∈ S, (5.14b)

∑
i:(i,j)∈AR

(
xrij + xuij

)
=

∑
k:(j,k)∈AR

(
xrjk + xujk

)
,∀j ∈ VR, (5.14c)

(5.11b), (5.11c),

where xij = xuij + xrij + xpij =
∑

s∈S x
s
ij + xrij + xpij.

We proceed to show that the resulting flows of the solution of the origin-based

problem (5.14) are the same as the OD-based problem (5.11). To accomplish this, we

use the result below.

Lemma 5.3.2. Let xS∗ be the solution to the origin-based problem (5.14) and xs∗

the flows associated with origin s. Then the subset of arcs As∗ = {(i, j) : xsij >

0, ∀(i, j) ∈ A)} with positive flow from origin s has no direct cycles.

Proof. See Appendix A.0.1

Lemma 5.3.3. The link-flow solution of the origin-based problem (5.14) is equivalent
to the solution of the OD-based problem (5.11). i,e,. for any origin s , we have∑

t:(s,t)∈W xw∗ = xs∗.

Proof. See Appendix A.0.1
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Therefore, using the result of Lemma 5.3.3, we can restate the network model

in terms of the origin-based flows which reduces the size of the model, memory

requirements, and solution time.

5.3.4 Disjoint Strategy

We have discussed methods to solve the SO routing and rebalancing problem jointly.

Yet another approach is to tackle these two problems separately. Explicitly, we initiate

the method by setting xr = 0 and then we repeatedly solve the routing problem

followed by the rebalancing problem. Mathematically, this is to first solve

min
xW≥0

∑
(i,j)∈A

tij(xij)x
u
ij (5.15)

s.t.
∑

i:(i,j)∈AR

(
xrij + xuij

)
=

∑
k:(j,k)∈AR

(
xrjk + xujk

)
,∀j ∈ VR, (5.16)

followed by using the optimal xu∗ to solve

min
xr≥0

c′xr (5.17)

s.t.
∑

i:(i,j)∈AR

(
xrij + xuij

)
=

∑
k:(j,k)∈AR

(
xrjk + xujk

)
,∀j ∈ VR, . (5.18)

It is relevant to highlight that this strategy is interesting given its fast computation.

Problem (5.16) is a constrained nonlinear program (NLP) which can be solved using

any of the typical algorithms for the TAP, for example Frank-Wolfe or TAPAS; and

problem (5.18) is a LP with |V| variables.

5.4 AMoD in Mixed Traffic

We have not yet discussed how to address the nested problem (5.6) which considers

the interaction between the fleet of AMoDs vehicles and self-interested private vehi-

cles. We employ the framework in Chapter 3 which applies a sequential approach
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(diagonalization scheme Harker (1988); Houshmand et al. (2019); Yang et al. (2007))

to find an equilibrium between the AMoD and private flows.

Rather than addressing the bilevel problem (5.6), we solve (5.5) for the private

vehicles and (5.4) for the AMoD fleet (using any of the methods in the previous

section) and iterate until convergence. Namely, for a private vehicle demand gu we

solve xp = TAP(gp,0). Thereafter, we solve (5.4) for AMoD demand gu with fixed

input xp (the output of the earlier solved TAP). Since private vehicles were not aware

of the AMoD flow in the system while finding their routes, we re-solve the TAP by

considering a fixed AMoD flow equal to xu + xr, i.e., we solve xp = TAP(gp,xu + xr).

Further, we iterate this process until it converges. An example is shown in Fig. 5·3b.

Solve user-centric for
private-vehicle (5.5)

Solve system-centric
for AMoDs (5.4)

F
ix

A
M

oD
flow

F
ix

private-vehicle
flow

(a)

0 5 10 15
Iteration number

0.325

0.330

0.335

0.340

J

γ =0.5

(b)

Figure 5·3: (a): A sketch of the procedure for solving the bilevel
problem (5.6). (b): An example of the total cost converging for an
AMoD penetration rate of 0.5 on the NYC sub-network.

Remark 5. Notice that when employing this iterative method, some of the parameters
can be updated. In particular, if one uses the disjoint strategy to solve the routing and
rebalancing problem, one could update the c vector at each subsequent iteration by the
calculated travel times t(x) at the current iteration. When doing this, one obtains a
more precise cost function by weighting vector c with the updated travel times.



111

5.5 Route Recovery Strategies

All methods discussed thus far solve the routing and rebalancing problem by choosing

xu and xr that minimize a performance metric. Even if this flow solution allows us to

assess the network deficiencies and to plan for infrastructure improvements, flows do

not give explicit routes to a given vehicle. Therefore, we need to extract the routes to

implement the desired flow-based solution we derive. An advantage of the proposed

models in (5.11) and (5.14) in contrast to classical link-based TAP is the fact that

they allow for tracing and recovering the routes (or paths).

5.5.1 AMoD User Flow

OD-pair model

Let the optimal solution of the routing and rebalancing problem be (xW∗,xr∗) and

denote with Rw a set of routes for OD pair w. For each w, we let π ∈ [0, 1]|Rw| be a

vector with elements denoting the fraction of vehicle flow routed through route i ∈ Rw.

We denote with A the route-link incidence matrix of Rw. With these definitions, we

provide a column-generation approach in which we find the routes of an OD-pair by

sequentially solving the linear program

min
π∈[0,1]

∥Aπdw − xw∗∥ (5.19a)

s.t. π′1 = 1, (5.19b)

where the product Aπdw is equal to the estimated link flow induced by routing dwπi

flow through each route. The constraint ensures that the vector π is a probability

distribution.

To address the problem of selecting which routes to include inRw (column selection)

we use the greedy approach of adding the next shortest route to Rw and re-solving

problem (5.19). To terminate the algorithm, we employ a user-defined parameter ξ
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(as shown in Alg. 4).

It is worth pointing out that this procedure can run in parallel for each OD pair.

For uncongested networks, we expect it to converge fast. This is because when there

is little congestion, the majority of vehicles will be routed through the shortest paths,

which are the first ones to be added to the set Rw. Finally, note that this formulation

is only available if we have information on xw∗ for all w ∈ W .

Algorithm 4 Route-recovery for a specific OD pair
1: procedure RouteRecovery(A, dw, xw∗, ξ)
2: Initialize: xij ← dw1(i,j)∈shortest route for w

3: while ∥x− xw∗∥ > ξ do
4: Rw ← append next shortest path
5: πw ← solve (5.19)
6: end while
7: end procedure

Origin-based model

Let xs∗ be the solution of (5.14) and let Ts = {j : ψs(j) < 0, ∀j ∈ V} be the set of

destinations (targets) from origin s. Let ψs(j) be the node imbalance of node j of the

origin-based flows initialized at s. For each origin s, one can decompose its OD-flow

solution by solving the following LP:

min
{xt}t∈Ts≥0

t0
′
x (5.20a)

s.t
∑

i:(i,j)∈A
xij −

∑
k:(j,t)∈A

xtj = ψs(t), ∀j ∈ V , (5.20b)

∑
i:(i,j)∈A

xtij −
∑

k:(j,k)∈A
xtij ≥ 0, ∀j ∈ V\{s}, (5.20c)

∑
i:(i,s)∈A

xtis −
∑

k:(s,k)∈A
xtsj = ψs(t), (5.20d)

xs∗ − x = 0. (5.20e)
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In (5.20), x is the origin-based flow defined by x =
∑

t∈Ts x
t. The first con-

straint, (5.20c), takes care of demand satisfaction and flow conservation. The second

constraint, (5.20c), considers flow conservation but allows certain target nodes to have

excess flow, allowing them to be a destination. Constraint (5.20d) ensures that the

decision variables are designed for that specific origin s ∈ S and (5.20e) forces the

solution to be equal to the origin-based flows. Finally, the objective (5.20a) is defined

with the purpose of breaking ties in case multiple combinations of flows can satisfy

the constraints (e.g. cycles).

Notice that as a result of Lemma 5.3.3, this problem is always feasible and recovers

the OD-based solution. Once this is established, we could use Alg. 4 to find the

path-based solution. Problem (5.20) is stated as a linear program that could be solved

in parallel for each origin-based solution s, therefore, we expect this optimization

process to be computationally efficient.

5.5.2 Rebalancing Flows

The problem of finding the paths of the rebalancing flows is more complex than that

of finding the AMoD routes. This is because we have no information about their

origin and destinations. Rather, the only information available is the aggregated

link flows that the rebalancing vehicles are taking to minimize (5.4a) and comply

with the load-balancing constraint (5.4c). Hence, a first step to recover the paths is

to calculate the rebalancing node imbalances ϕ(j) for every node j defined over the

available rebalancing solution xr:

ϕ(j) =
∑

i:(i,j)∈AR

xrij −
∑

k:(j,k)∈AR

xrjk.

We define a rebalancing origin to be a deficit flow node, and its set Sr = {j : ϕ(j) <
0,∀j ∈ AR}; similarly, the rebalancing destination set is defined as Tr = {j : ϕ(j) >
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0, ∀j ∈ AR}. Notice that these definitions are made in AR and not in A, as the

rebalancing vehicles only exist in GR. Then we aim to recover an OD rebalancing

solution by solving

min
{xs}s∈Sr≥0

t0
′
x (5.21a)

s.t
∑

i:(i,j)∈AR

xij −
∑

k:(j,k)∈AR

xjk = ϕ(j), ∀j ∈ VR, (5.21b)

∑
i:(i,j)∈AR

xsis −
∑

k:(s,k)∈AR

xssj = ϕ(s), ∀s ∈ Sr, (5.21c)

∑
i:(i,j)∈AR

xsij −
∑

k:(j,k)∈AR

xsij ≥ 0, ∀j ∈ VR\{s}, ∀s ∈ Sr, (5.21d)

x− xr = 0, (5.21e)

where we define x =
∑

s∈Sr
xs and xr is the available link flow solution of (5.4a).

Notice that the model follows the same intuition as (5.20). Constraint (5.21b) takes

care of the total flow conservation of the rebalancing flow, constraint (5.21c) ensures

that, for each origin variables xs, the outflow of node s is equal to the excess of vehicles.

Constraint (5.21d) allows any node different than s to be a potential destination of

the rebalancing flow. Finally, (5.21e) ensures that the aggregated rebalancing flows

by origin match the rebalancing flow obtained in the AMoD user problem.

Once we have decomposed the rebalancing flow by origins, we have for each

rebalance origin s an origin-based rebalancing flow. Since now we have the flows

available in an origin-based form, we can apply (5.20) in parallel for each s ∈ Sr to

decompose to an OD-flow solution, and finally use Alg. 4 to recover the routes.

For both of (5.20) and (5.21) it is possible to dualize the last constraint (i.e.,

penalize ∥x− xr∥ on the cost function). This makes the optimization less restrictive

and improves the solution time by lowering the quality of the solution. It is difficult

to estimate exactly what the impact of this dualization would be in terms of efficiency.
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However, for low-traffic networks, we expect (5.20) and (5.21) to be faster to solve

as we expect the total flow on every link will belong to fewer OD pairs. Conversely,

when dealing with high-traffic scenarios, the total flow on a link might be composed

of many OD pairs, making the problem harder (slower) to decompose.

In practice we have observed that for low-traffic networks less than 3 routes per

OD pair are enough to obtain an accurate solution, whereas for high-traffic cases,

the number of routes required for good solutions are in the order of 6 to 8. Still, the

problems as stated in this section can be solved to optimality.

5.6 Numerical Results and Case Studies

To validate our proposed routing algorithms, we consider two data-driven case studies

on sub-networks of Eastern Massachusetts interstate highways (EMA) and New York

City (NYC). The EMA road network (Figure 5·4a) consists of 74 nodes, 258 links,

and 1113 OD pairs, and it captures the dynamics in the context of suburban/urban

mobility. Complementary to EMA, the NYC network focuses on urban mobility. The

NYC topology was constructed using OpenStreetMap (2017) and contains 3317 arcs,

1351 nodes. The OD demand was built using historical data taxi rides (courtesy of

the NYC taxi and Limousine Commission (2020)) that occurred on March 1, 2012,

between 18:00 and 20:00 hrs which accounts for 8658 OD pairs.

5.6.1 Convergence of the approximated model

Our first experiment shows empirically our results of Theorem 1 and the observation

that as n increases, the approximation of t̂(·) to t(·) becomes tighter and therefore the

QP and LP problems approximate the original problem more accurately.

To generate this experiment, we consider a problem with no rebalancing (not

including the rebalancing constraints) and with no exogenous flow (i.e., xc = 0). This

is exactly the SO formulation of the TAP for which we use the Frank-Wolfe algorithm
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(a) EMA subnetwork (b) NYC subnetwork

Figure 5·4: Subnetworks used for the experiments. Black lines indicate
road links while colored lines indicate subway lines.

to find its solution (we solve the UC problem using the same method). Thereafter

we solve the QP and LP versions of the CARSn model for different values of n and

observe that, as we increase n, the objective of CARSn converges to the objective

of the SO. For example, for both networks shown in Figure 5·5, we observe that for

n = 6 the objective of the approximated models QP and LP are very close to the SO

solution.

5.6.2 Joint vs. Disjoint Solution

This experiment aims to compare the solution of the joint and disjoint formulation of

the problem. That is, solving (5.11) against the disjoint method in Section 5.3.4. We

compare this by showing the improvement (ratio between the value of the objective

functions) of the joint over the disjoint approach. For EMA and NYC we take account

of an improvement in the objective of 3.85% and 0.91%, respectively. Moreover,

we consider the case of NYC network with a higher demand, which we simulate by
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Figure 5·5: Deviation in percentage terms between the approximated
model and the optimal solution of the non-rebalancing SO problem
(baseline). UC indicates how much the solution of the UC deviates from
the SO. This gap between the UC and SO models is referred to as the
Price of Anarchy J. Zhang et al. (2018).

multiplying the demand vector g by 2. The improvement of the joint formulation

over the disjoint model for this demand level is 5.85%. These results highlight the

achievable benefits, especially for high demand scenarios, of jointly solving the routing

and rebalancing problems, rather than separately.

5.6.3 System-Optimal Routing and Rebalancing Trade-off

Considering the existence of selfish privately-owned vehicles and centrally-controlled

AMoD vehicles, we analyze the trade-off that exists between system-optimal AMoD

routing and the additional traffic due to AMoD rebalancing in terms of average

travel times. We tackle the bilevel Problem (5.6) following the iterative methodology

presented in Section 5.4. We use different penetration rates of AMoD customers with

respect to the total demand, i.e., a penetration rate of 0.3 will indicate that 30% of

the total demand uses the AMoD service while the rest use private vehicles. More

specifically, we let γ ∈ [0, 1] be the penetration rate and g the total OD demand.

We assume that gu = γg and gp = (1 − γ)g are the AMoD’s and private vehicles’
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demand, respectively. However, different demand separation criteria can be readily

implemented in this framework.

The general trend in Figure 5·6 shows that as the penetration rate of AMoD

increases, its overall travel time decreases. More interestingly, not only the AMoD

travel time is reduced, but also the private vehicles’ travel time. This is because

the collaborative routing decisions of the AMoD fleet lessen the traffic intensity on

congested roads, which consequently allow private vehicles to travel faster. For low

penetration rates, the addition of AMoDs could be detrimental as the negative effect

of the new rebalancing flow on travel times is higher than the positive effect generated

by better routing. For EMA, the impact of rebalancing is negligible, and increasing

the percentage of AMoD users in the network allows to reduce travel time by up to 3%.

For NYC, we observe that rebalancing indeed is detrimental to low penetration rates,

but as the percentage of SO vehicles increases, social routing improves travel times for

both AMoD users and private vehicles. Yet, in general, the impact of rebalancing on

the system-level performance depends on the network topology, and on the symmetry

and intensity of the OD demand distribution.
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Figure 5·6: Travel times for AMoD users, private vehicles and all vehi-
cles (total) for different penetration rates of AMoDs in the network.“R”
stands for an approach that considers rebalancing while “NR” does not.
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5.6.4 Intermodal AMoD

We study the impact of intermodal SO routing against UC private vehicle routing for

the NYC network. We consider high congestion levels and run the experiments by

multiplying the demand distribution vector g by a factor of 1.5 (see details of the

demand in the online repository2).

Similar to our last experiment, we run the analysis for different penetration rates.

We assume that AMoD users are able to take public transit (subway), walk, or bike

towards their destination and switch between modes in their route. In contrast to the

AMoD users, we limit the flexibility of private vehicles to exclusively use the road

network (no subway, biking or walking) due to parking constraints.

The top row of plots on Figure 5·7 display, on the left, the travel time for the two

user types as the penetration rate of AMoD users increases and, on the right, the

modal distribution of the total kilometers traveled. The top row shows the results

when only taxi-type service is offered to AMoD users (no subway, walking or biking).

We observe that the extra rebalancing flow increases the overall travel times of the

system more than what SO routing can reduce. This result confirms the fact that

pure vehicle-based MoD systems can have detrimental effects on the overall travel

time (Fitzsimmons & Hu, 2017). The subsequent plots show that by considering

the flexibility of other modes of transportation, AMoD mobility can reduce traffic

congestion. The second row of plots in Figure 5·7 includes a public transit option, the

third row adds a pedestrian option (6 km/h), and the last one also considers biking

(10 km/h) as an option3.

In general, we see that the more modes of transportation are offered, the lower

the travel times for everyone. In addition, when new options for mobility are offered,
2https://github.com/salomonw/mixed-traffic-amod-route-rebalance
3For biking, we include a set of constraints in the same spirit as (5.4c) but for the bike layer. This

ensures the balance between the incoming and outgoing flow of bikes at each node which goes in line
with the dynamics of bike sharing systems Swaszek and Cassandras (2019b).
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AMoD users could reach lower travel times than private vehicles, something which is

impossible to achieve when only taxi-rides are available (due to the assumption on UC

routing). This happens because they are more flexible and their overall transportation

capacity is larger than the available capacity for private vehicles. However, at almost

100% penetration rates, it still seems that being selfish is benefited, raising interesting

questions on how to incentivize users to act in a system-centric fashion. Finally, by

comparing the first three rows of plots in Figure 5·7, we can make an important

observation: If merely a tiny fraction of flow is accessible via subway or walking, travel

times are reduced by almost 50%.

To account for more traffic intensities, Table 5.1 presents the results for an AMoD

system with taxi-type (Veh), subway (Sub), pedestrian (Ped), and biking (Bike) layers

when demand is multiplied by a factor of 1, 1.5, (corresponding to the last subplots

of Fig 5·7) and 2. The Table shows results for the overall travel times and modal

distributions of the I-AMoD kilometers traveled for penetration rates equal to 0, 50%,

and 100%. In general we can claim that the higher the congestion, the higher the

benefit in travel times due to the enlarged capacity resulting from intermodal options.

In addition, we see that subway and biking options are critical to improve travel times.

Table 5.1: Intermodal AMoD results for different traffic intensities.

Demand Pen. Rate Avg. Travel Time (min) I-AMoD Modal Distribution
I-AMoD Private Veh Veh Reb Bike Sub Ped

1
0 5.2 5.7 80% 15% 0% 5% 0%

0.5 5.2 5.4 81% 14% 0% 5% 0%
1 5.0 5.0 82% 13% 0% 4% 0%

1.5
0 7.5 8.8 69% 23% 2% 6% 0%

0.5 7.0 6.9 74% 17% 4% 5% 0%
1 6.3 5.7 78% 13% 4% 5% 0%

2
0 10.7 15.8 52% 28% 12% 7% 1%

0.5 9.1 8.5 68% 13% 12% 6% 0%
1 7.7 6.2 75% 8% 11% 6% 0%

In conclusion, we observe that while pure AMoD systems might decrease the

system-level performance due to the additional congestion resulting from rebalancing,
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intermodal centralized-routing can significantly improve the overall travel times.

Especially at high levels of demand, we see that, while SO intermodal routing can

significantly improve travel times, it comes with the social dilemma that, from a UC

perspective, being selfish would still be optimal.

5.6.5 Route Recovery Example

We show the applicability of our route-recovery strategies presented in Section 5.5.

We implement the distribute version of the route-recovery algorithm described in

Section 5.5.1 on the solution flows of the origin-based problem (5.14). We compute the

routes using a commercial laptop with 8 cores for which we recover the routes in the

order of 30 seconds to one minute, making it accessible for real-time implementation.

Figure 5·8 shows the different SO routes connecting a single OD pair. The left plot

shows the recommended routes which only include taxi-type service. Furthermore,

the right plot shows an intermodal route composed of taking a taxi (solid lines) and

the subway (dotted line).

5.7 Summary and Future Work

In this chapter we proposed a methodology to optimize the routes and rebalancing

policies of a congestion-aware intermodal Autonomous Mobility-on-Demand (AMoD)

system when it interacts with exogenous private traffic. To address the issue of

non-convexity for this problem, we used a piecewise affine approximation of the

travel latency function and proved that as the number of piecewise affine segments

increases, the solution to the problem converges to the solution of the relaxed original

problem. Using examples with the Eastern Massachusetts Area (EMA) and New York

City (NYC) networks, (i) we empirically showed that the piecewise affine relaxation

is asymptotically optimal, (ii) we captured the benefits of centrally controlling an

intermodal AMoD system under mixed traffic conditions when different modes of
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transportation are available, (iii) we measured the advantage of using the approximated

joint method versus a method that separately optimizes the routing and rebalancing

policies, (iv) we revealed the existing trade-off between extra rebalancing flow and

smart routing decisions, and (v) we tested the applicability of our proposed route-

recovery algorithms in a real case study using the NYC network.
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Figure 5·7: System performance with alternative modes of transport
for a relatively high-demand scenario in NYC (we increase demand by
a factor of 1.5). The first column of plots show the average travel time
for different AMoD penetration rates while the second row depicts the
miles traveled per mode of transportation for each penetration rate.
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Figure 5·8: Example of the SO routes connecting an OD pair. Green
and red dots represent origin and destinations, respectively. Solid lines
portray traveling flow in the road network while dotted lines describe
flow traveling via subway.



Chapter 6

Optimizing Pricing, Fleet Sizing, and
Rebalancing of Autonomous
Mobility-on-Demand systems

The emergence of the sharing economy in urban transportation networks has enabled

new fast, convenient and accessible mobility services referred to as Mobilty-on-Demand

systems (e.g. Uber, Lyft, DiDi). These platforms have flourished in the last decade

around the globe and face many operational challenges in order to be competitive

and provide good quality of service. A crucial step in the effective operation of these

systems is to reduce customers’ waiting time while properly selecting the optimal fleet

size and pricing policy. In this chapter, we jointly tackle three operational decisions:

(i) fleet size, (ii) pricing, and (iii) rebalancing, in order to maximize the platform’s

profit or its customers’ welfare. To accomplish this, we first describe the system using

a dynamic fluid model to show the existence and stability of an equilibrium (i.e., load

balance) through pricing policies. Then, we devise an optimization framework which

gives rise to a static policy. Then, we elaborate and propose dynamic policies that are

more responsive to perturbations such as unexpected increases in demand. We test

this framework in a simulation environment using three case studies and leveraging

traffic flow and taxi data from Eastern Massachusetts, New York City and Chicago.

Our results show that solving the problem jointly could increase profits between 1%

and up to 50%, depending on the benchmark. Moreover, we observe that the proposed

fleet size yield utilization of the vehicles in the fleet is around 75% compared to private

125
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vehicle utilization of 5%.

6.1 The Problem and Related Work

This chapter studies how to jointly optimize the prizing, fleet sizing and rebalancing

policies to maximize a utility function. In particular, and in contrast with current

methods, we are interested in leveraging information about the destination of the

passenger (not only her origin) to select prices and to optimize the operations of the

service. In addition to analytical results, in this chapter we incorporate real-time

rebalancing strategies in conjunction with the static solutions and build a simulator

to test the performance of the proposed policies.

6.1.1 Related Work

In the literature, the pricing problem has been addressed using two different perspec-

tives: one-sided, or two-sided markets depending on whether the MoD controller has

full or limited control over the supply. One-sided markets assume full control over the

vehicles (Banerjee, Johari, & Riquelme, 2015; Turan, Pedarsani, & Alizadeh, 2019),

whereas two-sided markets consider self-interested suppliers (drivers) (Banerjee et al.,

2015; Bimpikis, Candogan, & Saban, 2019). To the best of our knowledge, all the

optimal pricing policies presented in the previous papers, except Turan et al. (2019),

do not rebalance proactively. Rather, they incentivize the supply (human drivers) to

reallocate by the use of compensations.

Our model differs from Turan et al. (2019), which uses a microscopic model and

Reinforcement Learning techniques, by the level of abstraction performed. Different

than their microscopic model we employ a macroscopic (planning) model to assess the

benefits of jointly solving the pricing and rebalancing problem over other approaches.

In contrast to pricing, rebalancing (without pricing) has been studied using simu-

lation (Hörl et al., 2018; Levin et al., 2017; Swaszek & Cassandras, 2019a), queuing-
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Figure 6·1: Requested taxi trips on January 15, 2015 10:38 a.m.
in NYC. Blue and Orange circles represent origins and destinations
respectively. One can observe that at this time, the Financial District
(south) is an attractive destination but not origin. Hence, we expect
taxis to rebalance to more attractive pickup locations.

theoretical (Iglesias, Rossi, Zhang, & Pavone, 2016; R. Zhang & Pavone, 2016), and

network-flow (Pavone et al., 2012; Rossi et al., 2018) models. It has also been tackled

jointly with routing schemes in Salazar et al. (2019); Wollenstein-Betech, Salazar, et al.

(2021). In Swaszek and Cassandras (2019a), the rebalancing problem is addressed using

a data-driven parametric controller suited for real-time implementation. Alternatively,

Pavone et al. (2012) uses a steady-state fluid model. Both of these frameworks serve

as the basis an building framework of this chapter.

The remainder of this chapter is organized as follows. In Section 6.2 we introduce

the system model and the formal problem formulation. Section 6.3.1 provide a formal

analysis the pricing dynamic system. In Section 6.4 we derive the optimal static

policies for the pricing, rebalancing, and joint problems. In Section 6.5 we introduce

real-time rebalancing strategies. In Section 6.6 we present our case studies and in
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Section 6.7 we conclude.

6.2 Model and Problem Formulation

To model the MoD system, we use a closed Jackson queueing network as depicted in

Figure 6·2. Formally, let the MoD fleet be composed of m vehicles who travel across

the transportation network G = (N ,A), where N = {1, . . . , N} is the set of N regions,

and A = {(i, j) : i, j ∈ N × N} is the set of arcs connecting all regions. For every

region i, we let xi(t) ∈ {1, . . . ,m} be a queue of available vehicles ready to serve a

user request at time t, and x(t) = (xi(t), . . . , xN(t)) be the vehicle queue vector.

We model the arrival process of potential customers going from i to j using a

time-invariant Poisson process with a rate λij. Upon a customer arrival, she either (i)

pays a fee pij and is served by one of the vehicles or (ii) leaves the system because the

fee was above her willingness to pay, or because there were no available vehicles in

region i to serve her. For every Origin-Destination (OD) in the network, the fee pij is

formed by the product of a base fee p0ij and a surge price (or simply price) uij(t). We

assume the platform is not willing to charge less than the base fee for any trip, hence,

we have that uij(t) ≥ 1 for all i and j and all t ≥ 0.

To determine the fraction of customer arrivals that are willing to pay the fee

p0ijuij(t), we assume there is a known demand function F̄ij(uij(t)) : R≥1 7→ [0, 1] which

establishes this relationship. We assume this function F̄ij(uij(t)) to be (i) continuous;

(ii) strictly decreasing, such that a higher price always results in a lower demand; and

(iii) lower bounded by zero such that there exists a price umax
ij that makes F̄ij(u

max
ij ) = 0

for all i, j ∈ N (see Figure 6·7). Consequently, the resulting arrival process considering

the users’ willingness to pay is described by the modulated demand Λij(uij(t)) which

follows a Poisson point process with rate λijF̄ij(uij(t)).

After a customer arrival at region i who is willing to pay the fee, the MoD platform
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assigns her a vehicle at a service rate µi. Fot which we assume that µi >
∑

j λij,

meaning that the platform assigns vehicles to customers faster than the rate at which

customers arrive. Then, the travel time experienced by the customer and vehicle is

an exponential random variable with rate 1/Tij, where Tij is the average travel time

from i to j. This is a standard assumption for queueing models, however, it can be

replaced by a deterministic travel time if desired. Additionally, we let yij(t) be the

number of customer-carrying vehicles traveling from i to j at t.

Region

arrival rate

too expensive no available vehicle

Figure 6·2: Prospective customers wishing to travel from i to j arrive
at a rate λij. Then, if they accept price uij and there is an available
vehicle they travel to j in Tij units of time. If the price uij is above
their willingness to pay, the MoD incurs a cost composed by the loss of
a trip and a cost ccij for disappointing the customer. Moreover, if the
customer is willing to pay uij but no vehicle in i is available, then the
customer is rejected and the platform incurs a cost cpij . The objective of
the MoD provider is to plan a pricing policy u and a rebalancing policy
r such that its profit (or other utility function) is maximized.

We assume the MoD service is capable of rebalancing the system, i.e., sending

empty vehicles across regions to avoid having excess or fewer vehicles at every region.

Hence, we let rij(t) be a decision variable denoting the number of vehicles that the

platform will send from i to j at time t. Finally, we let zij(t) and crij be the number

of empty vehicles en-route at t and the cost incurred for an empty trip from i to j,

respectively.
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The problem we are aiming to solve is how to properly select a fleet size m, the

prices u(t) = (uij(t) ; i, j ∈ N ) and a rebalancing policy r(t) = (rij(t) ; i, j ∈ N )

so as to maximize a utility function. Examples of this utility function are profit

maximization of the MoD service or, from a societal perspective, customer welfare

maximization. We discuss these utility functions in Section 6.4 as well as static and

dynamic strategies to solve this problem.

6.3 Analysis of Pricing Policies

We analyze the model using a relaxed steady-state deterministic fluid model of the

described stochastic queueing. The reason for making this relaxation is the flexibility

it provides to perform the mathematical analysis of the system. Moreover, since the

analysis for rebalancing is described in Pavone et al. (2012), we develop the analysis

only for the pricing decision. To make the model more robust in here, we allow

customer queues to build, in other words, if a customer arrives but no vehicle is

available, then the customer waits until a vehicle comes pick her up.

The idea is to analyze the problem at its steady-state and analyze pricing policies

that are time-invariant, i.e. u(t) = u. To achieve this, it is convenient to use a

fluidic abstraction of the real system. The main advantage of fluidic models is twofold.

First, to relax the discrete system (vehicles and customers are discrete entities) to a

continuous system in order to facilitate the optimization procedure. Second, to ensure

that the system is balanced, which means that the total incoming flow of vehicles to

any region i ∈ N is equal to the summation over the all modulated customers leaving

i (we will give a formal definition in this section). We begin the analysis by making

the following assumptions:

Assumption 1. The function Λij(·) is monotonically decreasing ∀i, j ∈ N , i.e., as

price increases, the demand rate decreases.
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Assumption 2. There exists a surge price umax
ij for which Λij(u

max
ij ) = 0,∀i, j ∈ N .

Customer Dynamics: Consider a customer queue ci(t) for each region i ∈ N in

the network. The queue dynamics are:

ċi(t) =



∑
j
Λij(uij(t)), if xi(t) = 0,

0, if xi > 0 and ci(t) = 0,∑
j
Λij(uij(t))− µi(t), if xi(t) > 0 and ci(t) > 0.

In order to express the customer dynamics with shorter notation we let H(x) = 1x>0

be an indicator function for positive values of x, and we use the following shorthand

notation:

Λij := Λij(uij); Λi :=
∑

j
Λij(uij),

xi := xi(t); ci := ci(t),

xij := xj(t− Tji), cij := cj(t− Tji)

where Λi is the total endogenous outgoing flow from node i; and cij , xij are the customer

and vehicle queue levels in region j at time t− Tij , respectively. Then, we rewrite the

customer dynamics in compact form as follows:

ċi = Λi(1−H(xi)) + (Λi − µi)H(ci)H(xi).

Note that as a result of using a fluid model, the variables denoting the number of

customers in a region are real-valued.
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Vehicle Dynamics: The outflow rate corresponding to vehicles departing station

i is given by:

ẋ−i =


−Λi, if xi ≥ 0 and ci = 0,

0, if xi = 0,

−µi, if xi ≥ 0 and ci ≥ 0.

which, by using the H(x) notation above, can be written as ẋ−i = −ΛiH(xi) + (Λi −
µi)H(xi)H(ci). In addition, the rate at which customer-carrying vehicles arrive at

station i is given by: ẋ+i =
∑

j(ΛjiH(xij)− (Λji − µj)H(xij)H(cij)). Hence, the vehicle

dynamics is ẋi = ẋ−i + ẋ+i , which lead to

ẋi = −ΛiH(xi) + (Λi − µi)H(ci)H(xi)

+
∑

j
(ΛjiH(xij)− (Λji − µj)H(cij)H(xij)).

Then, the global system dynamics are expressed by the differential equations

ċi = Λi(1−H(xi)) + (Λi − µi)H(ci)H(xi), (6.1a)

ẋi = −ΛiH(xi) + (Λi − µi)H(ci)H(xi) (6.1b)

+
∑

j
(ΛjiH(xij)− (Λji − µj)H(cij)H(xij)),

which describe a non-linear, time-delayed, time-invariant, right-hand discontinuous

system.

6.3.1 Well posedness, Equilibrium and Stability

Similar to Pavone et al. (2012), we say that the system (6.1) is well posed if two

conditions are satisfied: (i) for any initial condition, there exists a solution of the

differential equations in (6.1), and (ii), the number of vehicles in the system remain

invariant over time. In order to analyze the model, we use the framework of Filippov
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solutions (Filippov, 2013).

Proposition 1 (Well-posedness of the fluid model).

1. For every initial condition in the fluid model represented in (6.1), there exist
continuous functions ci(t) : R≥0 7→ R≥0 and xi(t) : R≥0 7→ R≥0,∀i ∈ N ,
satisfying the system of equations in the Fillipov sense.

2. For all t > 0, the total number of vehicles is invariant and equal to m =∑
i∈N xi(0).

Proof. See Appendix A.0.2

Equilibria: We say that the system is in equilibrium if customer queues (and

therefore, waiting times) do not grow to infinity. We show the existence of an

equilibrium in the fluid model (6.1) when we control the prices of every origin-

destination pair. Additionally, we show that by having the ability to control the prices,

one can have find multiple equilibria for a desired fleet size, giving the flexibility to

AMoD managers to operate the system at different demand levels.

Theorem 3 (Existence of equilibria). Let U be a set of prices u, such that when
u ∈ U we have ∑

j
Λij(uij)− Λji(uji) = 0, ∀i ∈ N , (6.2)

and let mu :=
∑

ij TijΛij(uij). Then, if u ∈ U , and m > mu, an equilibrium exists
with c = 0 and x > 0. Otherwise no equilibrium exists.

Proof. See Appendix A.0.2

Lemma 6.3.1. The set U is never empty, hence, at least one equilibrium exists.

Proof. We use the fact that there exists a price umax
ij for which Λij(u

max
ij ) = 0 for all

i, j ∈ N . Then, setting u = umax, implies that an equilibrium exists. This strategy
means that we are not providing service to any request, nevertheless the equilibrium
exists.

Lemma 6.3.2 (Infinite number of equilibria). If there is a positive demand tour in
the graph, then there exists an infinite number of price vectors u which can steer the
system to an equilibrium point.
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Proof. Assume that there exists at least one Eulerian tour (or cycle) in the graph for
which λij > 0 for all (i, j) ∈ cycle. Then, let λcycle = {λij | (i, j) ∈ cycle} and the
minimum rate on that tour be λcyclemin = min{λij}(i,j)∈cycle. Then by setting uij = umax

ij

for all (i, j) ̸∈ cycle, we can express the equilibrium condition as∑
j:(i,j)∈cycle

Λij(uij)− Λji(uji) = 0, ∀i : (i, j) ∈ cycle. (6.3)

Now, we use the fact that Λij(uij) is a monotonically decreasing function and we
focus on (i, j) ∈ cycle. Hence for all Λij(uij) > λcyclemin we can find a uij such that
Λij(uij) = λcyclemin . Then, extending this for higher prices on λcyclemin and using the
same argument as before, we show that there exists a pricing strategy u for which
we can obtain an equilibrium with a tour demand rate with any value in the range
(0, λcyclemin ).

These two lemmata imply that by incorporating an origin-destination pricing

strategy, we can operate a MoD service at equilibrium for an infinite number of

demand rate and for a desired selection of fleet size.

Corollary 1 (Minimum number of vehicles in equilibria). The minimum number of
vehicles to operate in an equilibrium induced by policy u is at least m > m := minumu

where mu :=
∑

ij TijΛij(uij).

Proof. Follows from the last argument in the proof of Theorem 3.

Stability: In this section we study local stability of the equilibria presented in

the previous subsection. As an example, we look at cases when a disruptive change

happens to the system, either because of an increase in customers or a decrease in the

availability of vehicles. Let u ∈ U and assume mu > m. Then, we define the set of

equilibria as

Υu := {(c,x) ∈ R2N | ci = 0, xi > 0, ∀i ∈ N ,
∑

i
xi = m−mu}. (6.4)

Definition 1 (Locally asymptotically stable). A set of equilibria Υu is locally
asymptotically stable if for an equilibrium (c,x) ∈ Υu, there exists a neighborhood
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Bδ
u(c,x) such that every evolution of (6.1) starting at (c(τ),x(τ)) = (c,x), and

with (c(0),x(0)) ∈ Bδ
u(c,x) has a limit which belongs to the equilibrium set Υu i.e.,

(limt−→+∞ c(t), limt−→+∞ x(t)) ∈ Υu, where τ ∈ [−maxi,j Tij, 0) and

Bδ
u(c,x) := {(c,x) ∈ R2N | ci > 0, xi = xi, ∀i ∈ N , ||(c− c, 0)|| < δ)}. (6.5)

Theorem 4 (Stability of the equilibria). Let u ∈ U and mu > m; then, the set of
equilibria Υu is locally asymptotically stable.

Proof. See Appendix A.0.2.

All these results shed light to develop optimal pricing policies that are ensured to

generate an equilibrium point when analyzed in the static deterministic model but

can be applied in the stochastic Jackson queueing model.

6.4 Optimal Strategies

As pointed out by Swaszek and Cassandras (2019a) and Turan et al. (2019), one way

in which we can derive optimal strategies for the pricing and rebalancing dynamic

system is to frame it as a Markov Decision Process and use Dynamic Programming

to solve it. Unfortunately, they observe that the problem suffers from the curse of

dimensionality and becomes intractable even for small instances. One way in which

we can address this complexity issue is to define static policies.

In general, the following mild assumptions are required to claim that the solution

of the fluidic abstraction is a good solution for the original queueing system: (i) The

solution is only optimal when analyzing the steady-state of the system, not during

transient periods; (ii) the Poisson processes modeling the modulated customer demand

and rebalancing are independent from each other.

Using these assumptions, all the stochastic processes in the queueing model are

Poisson processes. For the modulated customer demand, a thinning (or splitting)

Poisson process will result by interpreting the willingness-to-pay function for a given
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price as defining Bernoulli trials of customers accepting the price or leaving the system.

Likewise, the process of vehicles leaving stations will result in a superposition of

two independent Poisson processes (which remain a Poisson process) stemming from

the customer-carrying and the rebalancing vehicles. This is equivalent to observing

Bernoulli trials governed by the probability that the vehicle leaving a station is an

empty (rebalancing) or a customer-carrying vehicle.

6.4.1 Static Pricing

As stated earlier, we aim to select time-invariant static prices u with the objective of

maximizing the profit of a MoD provider while ensuring a balanced system. Similar

to this approach, we also present an equivalent formulation that maximizes user social

welfare rather than MoD profit.

Profit Maximization

Let coij be the operational cost of providing a transportation service from i to j and

cf be a fixed cost associated with the value of owning a vehicle for a period of time.

Moreover, let cc be an additional cost that the MoD service incurs when a costumer

leaves the platform because of a high price. For example, a customer who thinks the

service is too expensive might not consider to use this MoD platform in the future.

With these definitions we write the profit maximization problem as follows:

max
u,m

∑
i∈N

∑
j∈N

Λij(uij)(uijp
0
ij − coij)− cc(λij − Λij(uij))− cfm, (6.6a)

s.t.
∑
i∈N

(Λij(uij)− Λji(uji)) = 0, ∀j ∈ N , (6.6b)

∑
i∈N

∑
j∈N

TijΛij(uij) ≤ m, (6.6c)

1 ≤ uij ≤ umax
ij , ∀i, j ∈ N , (6.6d)
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where in the objective function Λij(uij) is the modulated demand and (uijp
0
ij − coij) is

the difference between the charged fee and the operational cost coij.

Contraint (6.6b) ensures the MoD system not to accumulate vehicles in any region,

as well as to make sure that no region is being constantly rejecting customer due to

a lack of vehicles (based on our results in the previous section). Constraint (6.6c)

restricts the minimum number of vehicles the fleet has to have in order to provide

such a service. Finally, (6.6d) ensures that the optimization process happens within

prices range.

Note that in order for (6.6) to be tractable, we have to maximize a concave

objective function (6.6a) in the range of [1,umax] over a convex feasible set. Both of

these requirements are accomplished when using a linear willingness-to-pay function

as the problem becomes to minimize a convex quadratic objective over linear equality

constraints. Notice that in this fluidic formulation, we do not include a cost of losing

a customer due to the shortage of vehicles. This is because constraint (6.6b) ensures

a balanced system and since for the fluidic model we assume non-stochastic behavior,

this cost is equal to zero.

Welfare Maximization

It is relevant for the discussion on smart cities to consider the case where social

welfare is maximized instead of the platform’s profit. To do this, we associate a

utility with every customer arrival, which we model using a random variable Uij with

probability density function fij(uij) and support in [1, umax
ij ]. If Uij exceeds price uij,

then the customer will accept the fee, which result in a modulated demand ΛWM
ij (uij) =

λijP[Uij ≥ uij]. Consequently, the expected utility of a customer conditional on the

fact that the customer is willing to pay the fee uij is E[Uij|Uij ≤ uij]. Hence, the
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welfare maximization problem is

max
u,m

∑
i∈N

∑
j∈N

E[ΛWM
ij (uij)E[Uij|Uij ≥ uij]]− cfm, (6.7a)

s.t.
∑
i∈N

(ΛWM
ij (uij)− ΛWM

ji (uji)) = 0, ∀j ∈ N , (6.7b)

∑
i∈N

∑
j∈N

TijΛ
WM
ij (uij) ≤ m, (6.7c)

1 ≤ uij ≤ umax
ij , ∀i, j ∈ N , (6.7d)

Notice that the objective (6.7a) has a similar form as (6.6a), and thus, the two

problems can be solved using the same optimization methods. Therefore, from now

on, we will focus on the profit maximization problem.

6.4.2 Static Rebalancing

Following the rebalancing model developed in Pavone et al. (2012), we are interested

in finding a static rebalancing policy that balances the system without adjusting prices.

Let rij be the rebalancing flow from i to j, in other words, the rate (veh/h) at which

we have empty vehicles traveling from i to j. We can formulate and solve this problem

using a Linear Program (LP) that minimizes the empty travel time while ensuring a

balanced system. Formally, this is stated as

min
r≥0

∑
i∈N

∑
j∈N

Tijrij (6.8a)

s.t.
∑
i∈N

(Λij(uij) + rij − Λji(uji)− rji) = 0, ∀j ∈ N . (6.8b)

Notice that in this formulation, u is a known parameter (not a decision variable) in

the optimization problem. Therefore, we do not consider the possibility of decreasing

the demand by adjusting prices. This LP is always feasible as one can always choose

rij = Λji(uji) for all i, j ∈ N which satisfies the set of constraints (6.8b). For more



139

details about this formulation, we refer the interested reader to Pavone et al. (2012)

and R. Zhang and Pavone (2016).

6.4.3 Joint Pricing and Rebalancing

We are interested in choosing the best policy that leverages multiple decisions that the

MoD platform faces. In particular, we would like to optimize the pricing, rebalancing

and fleet sizing problem. We write this joint optimization problem as the combination

of (6.6) and (6.8) which leads to

max
u,r,m

∑
i∈N

∑
j∈N

Λij(uij)(p
0
ijuij − coij)− cc(λij − Λij(uij))− cr(rijTij)− cfm (6.9a)

s.t.
∑
i∈N

(Λij(uij) + rij − Λji(uji)− rji) = 0, ∀j ∈ N , (6.9b)

∑
i∈N

∑
j∈N

Tij(Λij(uij) + rij) ≤ m, (6.9c)

1 ≤ uij ≤ umax
ij ∀i, j ∈ N , (6.9d)

where cr and cf are the cost of rebalancing and the cost of owning and maintaining a

vehicle per unit of time, respectively.

Problem (6.9) is always feasible as it can always admit the solution u = umax, r = 0

and m = 0. However, in order to numerically solve (6.9) in polynomial time, and

to ensure we have found the global maximum, we must validate that the objective

function is concave for u ∈ [1,umax] and that the constraints (6.9b)-(6.9d) form a

convex set. If these conditions are satisfied, then (6.9) yields a solution with higher

profits than the individual formulations (6.6) and (6.8), or the sequential approach

of solving first the rebalancing problem (6.8) and then selecting optimal prices (6.6).

This happens given that the problem is jointly solving for m, u and r rather than

using an individual or a greedy sequential approach.
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6.5 Real-Time Strategies

So far, we have discussed static pricing and rebalancing policies which are desirable

economically (there is no better dynamic pricing policy that can exceed its static coun-

terpart in steady-state) and socially (avoiding drastic fluctuation in prices generates a

more desirable platform for users). However, one characteristic that static policies

lack is their responsiveness to perturbations in the environment.

In this section, we introduce real-time (or dynamic) policies to optimize the

operation of the MoD platform. The main idea is to exploit real-time information to

operate the system more efficiently. For example, we can use the status of vehicle

queues x(t) and traveling vehicles y(t) at time t to decide a rebalancing strategy r(t)

or to adjust prices u(t).

Due to the desired theoretical static prices, we will focus on designing rebalancing

policies r(t) that are dynamic in order to account for fluctuations, while we keep the

prices static u(t) = u. Hence, from now on, we will focus on finding r(t) and we

assume we use the optimal static pricing resulting from solving the joint problem (6.9).

To implement a dynamic controller we are required to define the state vari-

ables that will be available to control the system. Let us propose a state vector

s(t) ∈ {0, 1, . . . ,m}N composed of state variables indicating the actual and prospective

vehicles at every region expressed by

si(t) = xi(t) +
∑
j∈N

yji(t) + zji(t),

where we recall that yij(t) and zij(t) are the number of customer-carrying vehicles

and empty vehicles traveling from i to j, respectively, and where si(t) is the sum of

all available vehicles at a region i and all vehicles traveling to i.

We let a rebalancing event be an event happening at a specific moment in time

in which the platform decides to rebalance the system. Different from the fluidic
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Figure 6·3: A diagram of the state of the system for the EMA network.
Every bar in the plot represents the state of a region composed of the
available vehicles (blue), the en-route customer-carrying vehicles (red),
and the empty rebalancing vehicles (green). The dotted line represent
the parameter θi for every region i which indicates the minimum desired
level to be satisfied when performing a rebalancing action.

controller, in which vehicles are sent at a constant rate, the dynamic controllers herein

trigger a rebalancing event once a condition is satisfied based on the state s(t) and a

vector of d parameters denoted with Θ(t) ∈ Rd.

Giving more structure to the dynamic policies presented here, let us define a set

of parameters θ(t) = (θi; i ∈ N ) corresponding to a desired level of vehicles in every

region at time t. In other words, for region i at time t, we would like to have a number

of θi(t) idle or prospective vehicles. The choice of θ(t) is not known in advance and

learning methods such as concurrent estimation (Cassandras & Lafortune, 2009) or

RL (Sutton & Barto, 2018) can be leveraged to learn good choices of θ(t).

With these parameters, we can define an optimization problem that rebalances

the system to guarantee that every region has at least θi(t) prospective vehicles at

the time of a rebalancing event. Therefore, at a fixed time t, we solve the rebalancing
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problem:

min
r(t)

∑
i∈N

∑
j∈N

Tijrij(t) (6.10a)

s.t. θi(t) ≤ si(t) +
∑

j∈N\{i}
(rji(t)− rij(t)) ∀i ∈ N , (6.10b)

∑
j∈N

rij(t) ≤ xi(t) ∀i ∈ N , (6.10c)

rij(t) ∈ N, ∀i, j ∈ N , (6.10d)

where rij(t) is the number of rebalance vehicles to be send from i to j, (6.10b) ensures

that the minimum number of current and prospective vehicles at every region is greater

or equal than its corresponding parameter, (6.10c) allows rebalancing only idle vehicles

in a region, and (6.10d) ensures that the solution is integer.

Solving general ILPs such as (6.10) is computational-expensive. Thus, we would

like to write an alternative formulation which is faster to solve. To achieve this, we

follow Pavone et al. (2012) which exploits the total unimodularity structure of the

problem. Informally, total unimodularity implies that if the right hand side vector of

a network flow problem is integer-valued and all submatrices of the constraint matrix

have determinant {−1, 0, 1}, then, the solution to the linear program relaxation is

guaranteed to return integer solutions. Note that in our case, the vectors θ(t) and

s(t) are integer-valued. Hence we rewrite (6.10) as a network flow model as follows:

min
r(t)≥0

∑
i∈N

∑
j∈N

Tijrij(t) (6.11a)

s.t. min {si(t)− θi(t), xi(t)} ≥
∑

j∈N\{i}
(rij(t)− rji(t)) ∀i ∈ N . (6.11b)

Note that (6.11b) encompasses both equations (6.10b) and (6.10c). When si(t)−θi(t) <
xi(t) holds, then (6.11b) equals (6.10b). When xi(t) < si(t) − θi(t), the constraint
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(6.11b) indicates that region i has enough idle vehicles to send to other regions and

it is identical to (6.10c). All the real time parametric controllers presented in the

following subsections will be based on solving problem (6.11) at specific times t. Then,

our next question is, when should we perform a rebalancing event?

6.5.1 Single parameter

We begin by considering the simple time-driven controller which triggers a rebalancing

event every Ω units of time. The controller solves (6.11) by choosing the thresholds

θ(t) to be uniform and time-invariant, e.g., θi(t) = ⌊mN ⌋ for all t and for all i in N .

This is a single-scalar policy since it is based on a single parameter Θ = {Ω ∈ R+}.
This controller is quite effective, however, defining a uniform θ vector can be inefficient

since demand rates for different regions are not uniform. For example, a region with a

high volume of requests would benefit for a higher θi.

6.5.2 N+1 parameter controller

To address the limitation of using only uniform thresholds, we can define a controller

that chooses a good time-invariant vector θ. One way to select θi is to consider a number

that is proportional to the outgoing flow from node i, i.e., θi = ⌊m
∑

j∈N Λij(uij)∑
i∈N

∑
j∈N Λij(uij)

⌋.
Another approach is to select θ using simulation-based optimization methods such as

concurrent estimation (see Swaszek and Cassandras (2019a)) or RL.

In addition to the N parameters coming from θ, we consider an additional param-

eter (this is why we called it the “N+1 controller”) which triggers the rebalancing

event. A natural option for this is to use a time-driven parameter as in the single

parameter controller. However we consider triggering the rebalancing event using a

metric of the total vehicle imbalances in the system. In this manner, if the system is

balanced, the controller would not activate any rebalancing event, conversely, if the

system is imbalanced, the rebalancing event will be triggered more often.
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Formally, let Ω be a selected parameter which accounts for the minimum number

of negative imbalances that the system is willing to tolerate before triggering a

rebalancing event. That is, at every time t, the controller will solve problem (6.11)

if Ω >
∑

i∈N̄ (t)(θi − si(t)) where the set N̄ (t) is composed of the regions which

have less than the desired number of vehicles, i.e., N̄ (t) = {i | θi − si(t) > 0}. Here,

Θ(t) = {θ,Ω}. Both of these parameters can be selected by using any non-convex

global optimization approach or by leveraging concurrent estimation techniques as

in Swaszek and Cassandras (2019a).

6.5.3 Dynamic N+1 controller

Up to this point, we have discussed polices where the parameters are time-invariant.

The question now becomes: can we update the parameters in real-time to improve the

overall performance? To do this, we introduce the notion of episodes.

We think of an episode as a interval of τ units of time for which we will gather

information and will use the data to update our future decisions. By employing this

approach, we assume that the last episode observation contains relevant information

for our next decision.

For every episode k = 1, . . . , K, we would like to estimate the demand rate Λ(u(t))

with Λ̂k by counting the number of observed arrivals and dividing it by τ . Then, we

update the θ vector either by using a naive approach:

θi,k(t) =
⌊
m

∑
j∈N Λ̂ij∑

i∈N
∑

j∈N Λ̂ij

⌋
,

or by taking a step in the direction of the new estimate, that is:

θi,k+1(t) =
⌊
θi,k(t)− ηk

(
θi,k(t)−m

∑
j∈N Λ̂ij∑

i∈N
∑

j∈N Λ̂ij

)⌋
,

where ηk is a pre-specified stepsize or learning rate for all k in 1, . . . , K.
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6.6 Numerical Results

We perform experiments to showcase the advantages and disadvantages of the static

and dynamic policies. To carry out the experiments, we employ the transportation

networks of Eastern Massachusetts Area (EMA), Chicago (CHI) and New York City

(NYC), shown in Figures 6·4-6·6.

The EMA network is composed of 8 regions and we retrieved its topological and

demand information using speed data provided by the Central Transportation Planning

Staff (CTPS) of the Boston Metropolitan Planning Organization (MPO) and processed

as in Wollenstein-Betech, Sun, Zhang, Cassandras, and Paschalidis (2022).

The NYC network is composed of 70 regions distributed across the Manhattan

area and we use open-source travel times and taxi trip data available in (NYC taxi

and Limousine Commission, 2020).

Finally, the Chicago network is composed of 76 regions for which we retrieve the

open-source data from (Chicago Data Portal, 2021).

To analyze the stable distributions of the demanded trips, we filter the data by

only considering working days (Monday to Friday). Then, we focus on four time

slots: Morning Peak (AM) from 7:00-10:00 hrs, Noon (MD) from 12:00-15:00 hrs,

Afternoon Peak (PM) from 17:00-20:00 hrs and Night (NT) from 00:00-3:00 hrs. For

every time slot we compute the average hourly demanded trips and travel times for

every origin-destination pair and we use this information to preform our experiments.

Before stating our results, note that the static formulations (6.6)-(6.9) still require

to define the demand functions Λij(uij). We assume that customers within and across

OD pairs are homogeneous (have the same demand function), and, since we are

interested in explicitly solving (6.6)-(6.9) to optimality, we assume a linear willingness
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Figure 6·4:
EMA

Figure 6·5:
Chicago

Figure 6·6:
NYC

to pay function of the form:

Λij(uij) =
λij

umax
ij − 1

(umax
ij − uij), (6.12)

where we select umax
ij = 4. We made this choice using the empirical results reported

in (Cohen, Hahn, Hall, Levitt, & Metcalfe, 2016, Table 2) where the number of

active customers in the platform looking for drivers for a surge price greater than

4 is negligible. See the shape of this function in Figure 6·7 Using (6.12), our static

problem becomes a Quadratic Program (QP) with linear constraints. For all three
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Figure 6·7: Willingness-to-pay function

experiments we let the operational cost and rebalancing cost be equal and proportional
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to the travel time, coij = crij = αTij, where we select α = 0.72 by transforming the

distance-based cost suggested in (Bösch, Becker, Becker, & Axhausen, 2018, Section

2.1.2) for a midsize vehicle to a time-based cost (dollars per minute). Additionally,

we let the base price be a multiplier of the operational cost p0ij = βcoij where we select

β = 1.75 which can be interpreted as the minimum margin over the operation cost

that the platform is willing to charge. We set the cost of losing customers due to

the absence of vehicles in that region to be cc = $5, and the car ownership cost be

cf = $1.98 per vehicle per hour as suggested in (AAA, 2019).

6.6.1 Joint solution

We are interested in understanding the achievable benefits of solving the joint problem

over different static approaches. We refer to Pij +Rij as the joint strategy stated

in (6.9), which solves the pricing and rebalancing for every origin and destination.

First, we compare Pij +Rij with an individual pricing policy Pij that only adjusts

prices without rebalancing the system, equivalent to solving (6.6). Second, we consider

the policy Rij of only solving the rebalancing problem (6.8) with a fixed set of prices,

in particular for this policy we set u = $2.66 which is the maximizer of (6.12). Third,

we compare against a sequential approach Rij → Pij which involves solving the the

rebalancing and using its solution to solve the pricing problem. Our motivation for

this methodology comes from the fact that current MoD platforms tend to separate

their pricing and rebalancing processes. Note that the sequential policy Pij → Rij

is not included because once the pricing problem is solved, the system is already

balanced and the rebalancing problem becomes trivial (i.e., r = 0). Finally, we also

consider the joint with fixed prices by origin policy Pi +Rij which is motivated by the

fact that current MoD services only use the origin (not the destination) when setting

surge prices (see L. Chen, Mislove, and Wilson (2015) and Cohen et al. (2016)).

In Table 6.1 we report the relative deviation between a policy π and the joint
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policy Pij + Rij. Formally, let Jπ be the optimal value of (6.9a) for a policy π.

Then, the relative deviation is (JPij+Rij
− Jπ)/Jπ, which measures the improvement

in performance of Pij +Rij relative to policy π.

Our results (in Table 6.1) show that Pij +Rij outperforms all the other policies,

highlighting the benefit of solving this problem using a joint approach. In particular,

we observe that each of the individual strategies performs on average worse than

strategies that optimize both pricing and rebalancing. It is relevant to stress the 2% to

3% deviation of the policy with fixed surge price by origin, as it reports the relevance

of considering the destination when pricing. This happens because considering the

destination in the pricing policy helps to balance the system via the selection of prices.

Table 6.1: Relative deviation in of each policy compared to the joint
policy Pij +Rij for different networks and time slots.

Network Pi +Rij Pij Rij Rij → Pij

EMA AM 0.30% 7.05% 27.1% 1.20%
EMA mid 0.40% 55.9% 29.3% 6.56%
Anaheim 1.2% 50.3% 71.6% 7.24%

Chicago
AM 0.80% 58.5% 17.4% 4.07%
MD 1.20% 1.27% 19.8% 0.16%
PM 1.2% 4.07% 18.9% 0.50%
NT 2.00% 27.5% 25.8% 2.7%

Manhattan
AM 1.00% 68.9% 40.3% 7.15%
MD 1.00% 2.49% 38.3% 0.42%
PM 1.0% 7.40% 40.5% 1.18%
NT 1.80% 49.2% 68.4% 6.34%

To better understand the different approaches, we generated plots of the pricing

distribution and trend. Figure 6·8 shows histograms comparing the value of the

solution u for the individual pricing policy and the joint strategy. We observe the

distribution of the individual approach to have higher variance than the joint method.

This happens given the hard constraint to reach an equilibrium. When no rebalancing

is considered as in Pij the policy chooses prices to ensure (6.9b). In contrast, when

solving the joint problem, the solution leverages rebalancing and pricing and gives the

pricing decision more flexibility to concentrate to select values that maximize profits.
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Figure 6·8: Distribution of prices u∗ for different policies at different
time slots

Finally, we quantify how relevant the pricing is relative to the rebalancing compo-

nent when balancing the load of the system. Letting r∗ and u∗ be the solution of (6.9),

we define a load dispersion metric as follows ζ̄0 = 1
N

∑
i |(
∑

j λij − λji)| when nothing

is applied, ζ̄r = 1
N

∑
i |(
∑

j λij + rij − λji − rij)| when the rebalancing component is

applied, and ζ̄u = 1
N

∑
i |(
∑

j Λij(uij)− Λji(uji))| when the pricing component (but

no rebalancing) is applied. Note that we do not define ζ̄u,r as the result will be zero

given that the system is at equilibrium by (6.9b). Table 6.2 shows this dispersion

metric for the different time slots considered. Interestingly, we see that the pricing

component of the policy reduces this metric in all cases, showing its relevance for load

balancing the system while also maximizing profit.

Table 6.2: Dispersion on the average absolute value of potentials when
components of the joint policy u∗ and r∗ are applied.

AM MD PM NT
ζ̄0 57.03 16.62 34.77 17.64
ζ̄u∗ 20.44 4.10 6.80 6.24
ζ̄r∗ 36.71 13.23 28.36 11.49
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6.6.2 Fleet size selection and system utilization

An important challenge for MoD systems is to properly select the correct number of

drivers or autonomous vehicles to satisfy demand. One of the benefits of our static

formulation is that its solution includes the variable m indicating the minimum fleet

size to operate the system. However, this value is calculated assuming the steady-state

solution of the system and does not account for the variance and perturbations that

occur in the real world.

In this experiment, we are interested in analyzing how this fleet size suggestion

behaves in a more dynamic environment where perturbations exist. To test this, we

have built a simulator of the MoD system which is publicly available on an online

repository1. The variance (or randomness) of the simulation comes from the Poisson

processes modeling the modulated customer arrivals and rebalancing vehicle departures.

The customer arrivals times come from a Poisson process with a rate estimated from

the data and modulated by the static prices. Similarly, the rebalancing events arrive

following a Poisson process with rate equal to the solution of the static problem.

We perform this experiment using the EMA network for which we first solve

problem (6.9). Let the optimal solution to (6.9) be u∗, r∗ and m∗. Then, in our

simulator we fix prices to u∗ and vary the fleet size by selecting m = γm∗ for γ = [0, 3].

Note that γ = 1 is equivalent to using the suggested fleet size m∗. We run our

simulations until a steady-state is reached, using two different rebalancing policies:

fluidic and N+1.

In Figure 6·9 we observe that the fleet size m∗ performs very well. The top left

plot shows that for γ ≤ 1 the profit increases as we add vehicles to the fleet. This

happens since the fleet size is too small to provide service to the platform’s demand.

In contrast, for γ > 1, we see that the profit decreases as γ increases. This is because
1https://github.com/salomonw/mobility-on-demand-control
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the negative fixed cost of owning and maintaining an extra vehicle in the fleet is higher

than profit it can produce (since most demand is already satisfied). As a result, this

experiment suggests that solving (6.9) provides an automated procedure to determine

a nominal fleet size.
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Figure 6·9: Performance indicators for different fleet sizes. Upper left
plot shows the expected profit per minute. The upper right plot shows
the percentage of time that vehicles are rebalancing. The lower left
shows the percentage of customer requests that were rejected because
there were no available vehicles to serve the customer. Finally, the lower
right plot shows the revenue per minute.

In addition, we are interested in quantifying the utilization for different fleet sizes.

In other words, we would like to measure how much time the fleet of vehicles spends

waiting for customers, transporting a passenger, or driving to rebalance the system.

Figure 6·10 shows the results for a simulation of the system for a total time of 10

hours where we observe that vehicle utilization, defined as the time that a vehicle is

either transporting a customer or rebalancing, is around 75% compared with typical

private vehicle utilization of 5%. Interestingly, the percentage of the total time that
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vehicles are rebalancing is practically negligible. We believe this value is small because

the pricing policy is helping the system to be balanced, in other words, the “User” flow

in Figure 6·10 is helping to balance the system. This is an interesting observation as

there is an ongoing debate on the congestion effects that MoD rebalancing has caused

in our cities (Fitzsimmons & Hu, 2017).
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Figure 6·10: System utilization over different fleet sizes. At the
suggested fleet size, corresponding to γ = 1.0, we observe that vehicle
utilization is around 70% compared to 5% for private vehicles.

6.6.3 Responsiveness

One characteristic that static policies lack is their responsiveness to system pertur-

bations or to changes in the environment. For example, consider the case when a

sports event or concert finishes and all its attendees are requesting a transportation

service to reach their destinations. In this situation, the steady demand is perturbed

for a certain amount of time. We showcase this situation by running 15 simulations

of the EMA network over a time period of 10 hours. For each of these simulations

we intentionally perturb the system between minutes 300 and 380 by multiplying

the demand from a particular region to all its destinations by a constant factor; in
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this example we use 3. We select the update rule of parameter θ(t) to be the naive

approach presented in Section 6.5.3 with τ = 10 minutes and Ω = 15.

Figure 6·11 shows the trajectory of the (i) profit per minute, (ii) the fraction

of loss requests due to a lack of vehicles in the region, and (iii) the percentage of

empty driving. We observe that the N+1 controller, which operates in real time,

is capable of responding to demand perturbations in comparison with the fluidic

controller. The second plot of Figure 6·11, we shows how the percentage of rejections

for the N+1 controller is lower than the fluidic one within the perturbation range

[300, 380]. Moreover, in the last plot we see how the the N+1 controller increases its

empty driving minutes responding to the demand shift experienced by the system.

Finally, in the upper plot we see minimal differences on profits as we have assumed

that the cost of rejecting a customer is small.

In conclusion, Figure 6·11 shows that the N+1 controller provides service to more

customers and hence incurs a higher rebalancing cost. In contrast, the fluidic model

lowers its rebalancing costs by dropping more customers and incurs a reduction in

profits and an additional cost for lost customers.

Either strategy could be efficient for a given cost function but, in general, the

N+1 approach is more responsive and customer-oriented as it adjusts to customer

demand in real-time. This is especially important at times when the system might be

transitioning from one stationary distribution to another, for example from an AM to

MD period.

6.7 Summary and Future Work

In this chapter we have addressed difficult operational decisions that shared mobility

services face when operating their platforms. We discussed how to properly select the

right number of vehicles to operate the platform, as well as how to choose prices to
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maximize a utility function while providing good service to customers.

Of particular interest, we have designed automated models that take as input

the network topology, the estimated demand and a willingness-to-pay function of

customers, and provide a framework to define the fleet size, the prices, and a real-time

rebalancing policy for their proper operation.

We observe that it is of high value to design pricing together with rebalancing

policies as well as to consider the customers’ destination when defining prices. This

modification in the pricing strategy achieves higher profits for the platform and helps

rebalancing the system in a more equitable fashion, i.e., if a passengers’ destination is

helping to balance the system, her price will be lower compared with other passengers

whose destination generate imbalances.

Arguably, our model deals with a simple linear willingness-to-pay function in order

to provide tractable optimization models and be able to compare our results. Never-

theless more flexible willingness-to-pay functions such as logarithmic or exponential

functions can be explored as part of future research in this area.
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Figure 6·11: Responsiveness of the dynamic policy versus a static
policy. Between minutes 300 to 380 (shaded region) we have perturbed
the demand of a single region by multiplying it by a factor of three.
We observe in the two lower plots how the real time controller N+1
responds to this by sending more vehicles to these region compared with
the static fluidic controller. As a result, N+1 provides a better service
as the number of customer rejections is lower compared to the fluidic
controller.
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Chapter 7

Conclusion and Future Work

In this dissertation we developed and tackled five network optimization problems

that are of interest to transportation agencies and Autonomous Mobility-on-Demand

(AMoD) platforms. A common objective of most problems is to come up with strategies

to reduce traffic congestion in transportation networks while keeping the same volume

of demand. We addressed the traffic congestion problem by exploiting mainly two

strategies: (i) socially routing vehicles –as opposed to selfish routing–, and (ii) using

contraflow lane reversals to the existing infrastructure. By applying both of these to

case studies, they indicate overall travel time reductions of around 5%.

A key methodological and theoretical contribution of this thesis consists of approx-

imating the travel latency function of the traffic assignment problem (TAP) with a

piecewise affine function. This allows writing the TAP as a quadratic program (or

linear program) resulting in faster solution times, the possibility to include additional

linear constraints, and perform efficient sensitivity analysis. We applied this frame-

work in Chapters 4 and 5 to solve the contraflow lane reversal problem and the joint

optimization of routing and rebalancing policies of AMoDs, respectively, showing

better and more efficient solutions than alternative methods.

Besides the piecewise affine approximation contribution, Chapter 2 develops a

feasible-direction trust-region algorithm to tackle the joint estimation of the Origin

Destination (OD) demand and travel latency functions of the TAP and it shows a

faster convergence and better estimates compared with other algorithms. Chapter 3
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uses the diagonalization scheme to study the interaction between socially-optimum

and user-centric commuters traveling in a network and estimates inefficiencies due to

user-centric routing of around 10%. We hope these results motivate traffic agencies

to design incentives to steer users behavior toward the socially-optimum solution.

Finally, Chapter 6 studies how pricing policies that consider origin and destinations

can stabilize the AMoD system and find a balance between the load of customers

and vehicles. Then, it proposes an optimization model that jointly selects pricing,

rebalancing and fleet size decisions. The gains by jointly solving the problem could

vary between 1% to 50% depending on the benchmark highlighting the importance on

the role of the destination of passengers when optimizing the system.

Future Research

We identify two main research directions that are motivated from the work presented

here: (1) Robust network control and optimization; and (2) Incentive design in

networked systems.

Robust Network Optimization and Control

The goal is to build robust optimization and control algorithms for decision-making

over networks using historical data and employing machine learning methods to predict

the likelihood of disruption. Using robust optimization, the idea is to select a policy to

best handle the worst possible situation out of a specified uncertainty set. Classically,

the uncertainty set is chosen by the modeler, or it might be trivially estimated. A

concrete research goal is to create methodologies to dynamically learn and adjust the

uncertainty set based on observed data while managing the trade-off between efficiency

and resilience. This could be potentially achieved by probing the vulnerabilities

of the system’s state space using adversarial bandits and Reinforcement Learning

(RL) agents. This framework has immediate application in the area of supply chain



158

networks.

One way to incorporate the work of this dissertation in this topic is by using the

model developed in the Lane Reversal Problem in Chapter 4 and add uncertainty sets

that are learned from the speed data.

Incentive Design for Resource Allocation

In general, a large class of problems can be framed as managing a set of resources

over multiple time periods under uncertainty. Some examples include: streets and

intersections for traffic management, doctors and nurses for personnel scheduling, and

vaccines and tests during a pandemic. Similarly, the uncertainty may have different

characterizations for different applications; car arrivals, weather conditions, number

of new cases in a pandemic. A classical solution to improve resource allocation in

networks is by using monetary incentives, for example congestion tolls in transportation.

These approaches based on congestion pricing have two fundamental drawbacks: (i)

they discriminate users with lower incomes; (ii) they may fail to consider individual

preferences such as temporary urgency and needs. It is desirable to investigate incentive

schemes based on non-monetary currencies to align the self-interest of users with a

system-optimum allocation of resources while accounting for their temporal individual

needs.

A starting point for this research could be accomplished along the lines of Salazar,

Paccagnan, Agazzi, and Heemels (2021). In particular the idea is to use a currency

(or tokens) that can neither be bought nor exchanged, but only spent or earned

when using the resource either altruistically, neutrally, or selfishly. Since these tokens

cannot be exchanged, there exist fewer opportunities to create black markets or

other types of exchange methods. The key idea is that when users play this resource

allocation game repeatedly, the system will converge to the system-optimal solution.

In the context of transportation, this game will be played at each trip and the user
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will be able to determine if it will earn or spend tokens based on presumably the

travel time. A longer route will result on earning tokens while a shorter route will

require spending tokens.



Appendix A

Proofs

A.0.1 Chapter 5

Lemma 5.3.1

Proof. Notice that the maximum total error between the LP and QP is expressed by:∑
(i,j)∈A
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where the first equality comes from the fact that the we use uniform distances for
the piecewise regions, the second equality comes from the fact that ε(l)∗ij = θ2ij/2n

maximizes equation (A.1b). Finally the last steps selects the last segment n by
observing that an has the steepest slope by assumption.

Theorem 2

Proof. Without loss of generality, let us select the thresholds θ in a uniform manner
as in Lemma 5.3.1. The proof follows immediately after observing that, for a bounded
an and mij, the error goes to zero as n −→∞.

160



161

Lemma 5.3.2

Proof. We use contradiction. Assume that there is a cycle C where (i1, i2), (i2, i3),

. . . , (ik, i1) ∈ As and let hsi be the marginal cost (related to the SO solution) of the
cheapest path from s to i. Further, consider any (i, j) ∈ As, which implies that (i)

there exists a positive flow path from s to i and (ii) xsij > 0. Since we are minimizing
a function where tij(x) and t̂ij(x) are strictly positive and monotonically increasing for
all (i, j) ∈ A, the path connecting s to i has to be a minimum cost path. Assume this
cost to be Tsi and since xsij > 0, the cost to j is Tsj = Tsi + tij . Note that by definition
Tsj ≤ Tsi + tij . However, if Tsj < Tsi + tij then there must exist a lower-cost path to j
than any of those passing through i. Hence, we must have Tsj = Tsi + tij for all the
links in As. Using the fact that all travel times are strictly positive, this implies that
for the cycle C we have T1 < T2 < . . . < Tk < T1 which is logically inconsistent.

Lemma 5.3.3

Proof. Similar to Rossi (2018), we prove this by construction and use the flow decom-
position algorithms and results in (Ahuja, Magnanti, & Orlin, 1993, Thm. 3.5). We
begin by decomposing the origin-based solution xs of origin s to a set of acyclic paths
Ps such that

∑
(s,t)∈W xw = xs

t = du(s,t), where xs
t is the acyclic decomposed flow from

xs going from s to t, and du(s,t) is the demand from s to t. We conclude the proof by
observing that the origin-based solution has no cycle (by Lemma 5.3.2) and the fact
that it is possible to decompose the problem to flows using (Ahuja et al., 1993, Thm.
3.5).

A.0.2 Chapter 6

Proposition 1

Proof. For 1), we use the framework in Haddad (1981). In particular, we check that all
assumptions and conditions of (Haddad, 1981, Thm II-1) are satisfied. This theorem,
ensures the existence of Fillipov solutions to the time-delayed differential equations
with discontinuous right-hand sides.

To prove the second claim, we separate the vehicle dynamics in two parts: vehicles
in transit xij(t), and vehicles at a specific region xi(t). For the vehicles queued at i we
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know their dynamics are as in (6.1b). For the vehicles in transit, we let the total be

xij(t) =

∫ t

t−Tij

λijH(xi(τ)) + (Λij − µi)H(ci(τ))H(xi(τ)) dτ,

and their dynamics are

ẋij(t) = ΛijH(vi) + (Λij − µi)H(ci)H(xi)

−(ΛijH(xji ) + (Λij − µi)H(cji )H(xji )).

Hence, we let the total number of vehicles in the system be m(t) =
∑

i xi(t)+
∑

ij xij(t)

with dynamics:

ṁ(t) =
∑

i
ẋi(t) +

∑
ij
ẋij(t), (A.2a)

=
∑

i

(
− λiH(xi) + (λi − µi)H(ci)H(xi) (A.2b)

+
∑

j
ΛjiH(xij)− (Λji − µj)H(cij)H(xij)

)
+
∑

ij
ẋij,

=
∑

ij
−ΛijH(xi) + (Λij − µi)H(ci)H(xi) (A.2c)

+
∑

ij
ΛjiH(xij)− (Λji − µj)H(cij)H(xij) +

∑
ij
ẋij,

= 0. (A.2d)

Note this result is obtained by expanding the first term in (A.2a) using (6.1b),
rearranged terms and found that −∑i ẋi(t) =

∑
ij ẋij(t) =⇒ ṁ = 0, which implies

that the fleet size remains invariant over time.

Theorem 3

Proof. Set ċi = 0 and ẋi = 0 for all i ∈ N . Then by using the customer system
dynamics in (6.1a), we have:

Λi = ΛiH(xi)− (Λi − µi)H(ci)H(xi), (A.3)

and since Λi < µi, the above equation just has a solution if ci = 0 and xi > 0 for all
i ∈ N . Setting ẋi = 0, and using the vehicle dynamics in (6.1b) we have

0 = −ΛiH(xi) + (Λi − µi)H(ci)H(xi)
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+
∑

j
ΛjiH(xij)− (Λji − µj)H(cij)H(xij). (A.4)

Then. by combining (A.3) and (A.4) together with the fact that c = 0 we get
0 = −Λi +

∑
j ΛjiH(xj). Which we used the fact that in the stationary equilibrium xi

and ci are constants and there is no dependence on t− Tij.
Recall that for every equilibrium solution, we require x > 0 and thus H(xi) =

1, ∀i ∈ N . Therefore, a necessary condition for the existence of equilibria is that
the prices u are chosen such that 0 = −Λi +

∑
j Λji, ∀i ∈ N ., which proves the first

statement.
We now want to verify that the fleet size is large enough to maintain an equilibrium

flow. Recall the fleet size dynamics ṁ(t) when c = 0 and x > 0 in (A.2). Observe
that to satisfy x > 0, one needs to have a fleet size of at least

∑
ij TijΛij(uij) vehicles

which is the definition of mu. This, mixed with its invariant property (ṁ = 0), proves
the claim. Conversely, if m < mu no equilibrium exists.

Theorem 4

Proof. We start by showing that xi(τ) > ci(τ) for τ ∈ [−maxi,j Tij, t), which will
serve as a key element to the analysis. To do so, we first assume xi(τ) > 0 for all
i ∈ N , and observe the system dynamics (6.1) at time t are

ċi(t) = (Λi − µi)H(ci), (A.5a)

ẋi(t) = −Λi + (Λi − µi)H(ci) +
∑
j

(Λji − (Λji − µj)H(cij)), (A.5b)

= (Λi − µi)H(ci)−
∑
j

(Λji − µj)H(cij), (A.5c)

≥ (Λi − µi)H(ci), (A.5d)

= ċi(t), (A.5e)

where all the H(xi) in (6.1) are replaced with 1 since we assume that xi(τ) > 0. The
step (A.5c) is due to the fact that the system is at equilibrium, i.e.

∑
j

Λji − Λi =

0, ∀i ∈ N , and the step (A.5d), is a result of µi > Λi which means that Λi − µi < 0.
Given that ẋi(t) ≥ ċi(t) and the fact that at the starting point x > c (i.e., x > 0), we
conclude that xi(τ) > ci(τ) for τ ∈ [−maxi,j Tij, t) and i ∈ N .

Two important consequences of this result are that ci always reaches 0 before its
corresponding xi, and the vehicle time derivative ẋi is greater than or equal to 0 after
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ci has reached 0. This follows by observing that all the terms in (6.1b) are all positive
when ci = 0.

Now we are in a position to show that x(t) > 0 for t ≥ 0. We do this by combining
the second consequence in the previous paragraph with the assumption that the initial
state of the system is (0,x) and the fact that ẋi(τ) > ċi(τ). Thus, since x(t) > 0 for
t ≥ 0, we have that ċi(t) = (Λi − µi)H(ci) ≤ 0 which will implies that ci will for sure
be 0 when t ≥ Tmax where Tmax := maxi{ci(0)/(µi − Λi)}i∈N and which implies that
limt−→+∞ c(t) = 0 since both ċi and ci will be equal to 0 for all i ∈ N .

To show that limt−→+∞ x(t) = x we use the fact that ci = ċi = 0 for t > 0 and insert
this into the vehicle dynamics in (6.1b) obtaining xi(t) = Λi(xi) +

∑
j(ΛjiH(xij) −

(Λji − µj)H(cij)H(xij)). Since, ci(t) = 0 we observe that after Tmax +maxi,j Tij time
units H(cij) will be equal to zero and therefore ẋ(t) = 0 for t > Tmax + maxi,j Tij.
Moreover, since ẋi(t) = 0 the limt−→∞ xi(t) exists and can be retrieved using xi(t) =
xi(0) +

∫ t

0
ẋi(s)ds ≥ xi(0) +

∫ t

0
ċi(s)ds = xi(0) + ci(t)− ci(0). Given that we show that

xi(0) > ci(0), we conclude that limt−→∞ xi(t) > 0. The property limt−→∞ xi(t) > 0 >

m−mu holds straight from Proposition 1.
Finally, to characterize the ball Bδ

u we set ψi := xi sin(π/4) and ψmin := mini ψi

(see Figure A·1). Then, for δ = ψmin any path of the system (6.1) starting at
(c(τ),x(τ)) = (c,x) for τ ∈ [−maxi,j Tij, 0) and satisfying (c(0),x(0)) ∈ Bδ

u(c,x) has
a limit which belongs to the equilibrium set Υu.

xi

ci

ψi

(
0, xi

)

Figure A·1: Sketch of a variable of the initial solution (c,x) along with
its neighborhood Bδ

u. Shaded in grey is the feasible region (ci < xi).



Appendix B

Description of datasets

B.0.1 Eastern Massachusetts Area (EMA)

The Boston Region Metropolitan Planning Organization (MPO) provided access to

two datasets of the EMA network: (1) A dataset which includes average speeds

(indistinguishable among different vehicle classes) for more than 13,000 road segments

(see Fig. 2·2b). This contains the average speed for every minute of the year 2012 and

2015. For each road segment, the dataset provides information about instantaneous,

average, and free-flow speeds (in mph), date, time, and travel time (in minutes). (2)

A flow capacity (in vehicles per hour) dataset which includes capacity data for more

than 100,000 road segments. For more detailed information of the two datasets, see

J. Zhang, Pourazarm, Cassandras, and Paschalidis (2016).

B.0.2 New York City (NYC)

We built the NYC transportation network through two open source data sets: (1)

OpenStreetMaps (OSM) OpenStreetMap (2017) from where we retrieved the network

topology and road characteristics of NYC and (2) the Uber Movement Speed Data set

Uber (2019) which provides average speeds of road segments on an hourly basis and

which can be easily matched with OSM.
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Appendix C

Data preprocessing

C.0.1 Selecting a sub-network

• EMA: To mitigate the computational complexity while still capturing the

key elements of the EMA network, we considered a representative highway

sub-network (Fig. 2·2b) where there are 701 road segments, composing a road

network with 8 nodes and 24 links. These links and nodes compose a road

network
(
Ṽ , Ã, W̃

)
. Every node in the network is also considered as a zone

(Origin-Destination candidate).

• NYC: Similar to EMA but in an urban environment we sought to reduce the

dimensionality of the full network (Fig. C·2a). To do this, we first select the

set of nodes from the full network to be the nodes of the NYC subnetwork

(Fig. C·1a). Then, we create edges between this set of nodes. We did this in

a way that matches our knowledge of the connectivity of NYC. Then, for each

new edge connecting these nodes, we solve a shortest path problem on the larger

network (Fig. C·2a) and report the travel time as the travel time in the smaller

network. Based on this travel times we compute speeds on each link of the

subnetwork. Finally, we select some of the nodes to serve just as intersections,

and other to be Zones (see Fig. C·1d).
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C.0.2 Calculating average speed and free-flow speed

We choose a time instances set T consisting of a set of minutes or hours (for EMA and

NYC, respectively) of a time period of interest and calculate the average speed for

each road segment. We match these values with the capacity dataset. Then, for each

road segment we compute a proxy of the free-flow speed by using the 85th-percentile

of the observed speeds on that segment.

C.0.3 Aggregating flows of the segments on each link

For i ∈ [[Ã]], let {vji , tji , v0ji , t0ji ,mj
i ; j = 1, . . . , Ji} denote the available observations

(vji , t
j
i ), and parameters (v0ji , t0ji , mj

i ) of the segments composing the ith physical link,

where, for each segment j, vji (resp., v0ji ) is the average speed (resp., free-flow speed ; in

miles per hour), tji (resp., t0ji ) is the travel time (resp., free-flow travel time; in hours),

and mj
i is the flow capacity (in vehicles per hour). Then, using Greenshield’s model

Greenshields (1935), we calculate the traffic flow (in vehicles per hour) on segment j

by

x̂ji =
4mj

i

v0ji
vji −

4mj
i

(v0ji )2
(vji )

2. (C.1)

In our analysis, we enforce vji ≤ v0ji to make sure that the flow given by (C.1) is

non-negative. In particular, if for some time instance vji > v0ji (this rarely happens),

we set vji = v0ji in (C.1), leading to a zero flow estimation for this time instance.

Aggregating over all segments composed of link i we compute:

x̂i =

∑Ji
j=1 x̂

j
i t

j
i∑Ji

j=1 t
j
i

, t0i =
∑Ji

j=1
t0ji , mi =

∑Ji
j=1m

j
i t

0j
i∑Ji

j=1 t
0j
i

,

where x̂ji is given by (C.1) and t0ji = vji t
j
i/v

0j
i , j = 1, . . . , Ji.
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C.0.4 Adjusting link flows to satisfy conservation

For i ∈ [[Ã]], let x̂i denote the original estimate of the flow on link i (see the last step),

xi its adjustment, and ξiu the flow percentage on link i for vehicle class u ∈ [[Ũ ]] (note

that ξiu ≥ 0 and
∑|Ũ |

u=1 ξiu = 1). Then, xiu = ξiuxi (recall that xiu denotes the flow on

link a(i, u); i.e., xiu is the flow on link i for vehicle class u). We solve the following

Least Squares problem:

min
x

|Ã|∑
i=1

|Ũ |∑
u=1

ξ2iu (xi − x̂i)
2 (C.2)

s.t.
∑

i∈I(vj)
ξiuxi =

∑
i∈O(vj)

ξiuxi, ∀j ∈ [[Ṽ ]], u ∈ [[Ũ ]],

xi ≥ 0, ∀i ∈ [[Ã]],

where the first constraint enforces flow conservation for each node vj ∈ Ṽ with I(vj)
(resp., O(vj)) denoting the set of links entering (resp., outgoing) to (resp., from) node

vj. Note that (C.2) generalizes its counterpart in J. Zhang et al. (2016); J. Zhang,

Pourazarm, Cassandras, and Paschalidis (2017); J. Zhang et al. (2018); the latter only

tackles the case where |Ũ | = 1. For the case where |Ũ | = 2, the datasets available to

us do not contain exact information of the parameters ξiu.

C.0.5 OD Estimation

Given the observed data flows and the set of origin and destination pairs we want to

compute the demand for each one of these pairs. To do this, we use the Generalized

Least Squares method proposed by Hazelton (2000) which assumes an uncongested

network. The basis of this assumption is the fact that the choice probabilities are

independent of traffic flow. We begin by defining the following quantities:

• The k-th flow data instance: x(k) = (x
(k)
a ; a ∈ A(k));
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(a) (b) (c) (d)

Figure C·1: NYC subnetwork: (a) Speed (miles/hr); (b) Density
(veh/mile); (c) Flow (veh/hr); (d)Conserved flow (veh/hr)

• Sample mean vector: x̄ = (1/ |K|)∑|K|
k=1 x

(k)

• Covariance matrix: S = (1/(|K| − 1))
∑|K|

k=1(x
(k) − x̄)(x(k) − x̄)′

• Probability that commuter of O-D pair i uses route r: pir

• g = (gi; i ∈ [[W ]]) vectorized demand matrix.

• Link-route incidence matrix: A

With all these elements we are able to establish the problem of minimizing the weighted

sum of square errors in the flow observations as:

min
P⪰0,g⪰0

|K|∑
k=1

(x(k) −AP′g)′S−1(x(k) −AP′g) (C.3)

s.t. pir = 0 ∀(i, r) ∈ {(i, r) : r ̸∈ Ri}

P′1 = 1

.



170

(a) (b)

Figure C·2: New York network with speed data (February 13, 2019 at
9:00 a.m.) retrieved from Uber Movement. (a) Speed (miles/hr); (b)
Flow (veh/hr)

Solving this problem is hard because of its complicated objective function. To

solve it we decouple it into two sub-problems by introducing a new variable defined by

ξ = P′g and letting h(P,g) be a scalar valued function. We also define Q = A′S−1A

and b =
∑|K|

k=1 A
′S−1x(k) Then we set the first subproblem to be

min
ξ≥0

|K|
2
ξ′Qξ − b′ξ (C.4)

and the second subproblem with the objective of decoupling P and g as:

min
P⪰0,g⪰0

h(P,g) (C.5)

s.t. pir = 0 ∀(i, r) ∈ {(i, r) : r ̸∈ R⟩}

P′g = ξ0

P1 = 1

The second sub-problem is equivalent to solving a system of equations and finding

whether a solution exists.



Appendix D

Definition of matrices of inverse estimation
problem

For the purpose of reproducibility, the detailed definition of the bilevel problem (2.22).

H1 = I, H2 = diag
(

1

(n1)cn−1
, . . . , 1

(nn)c0

)
.

For the constraint e′iuN ′
ky

w ≤ t0iu
∑n

j=0 βj

(
θ′x(k)

ai

m
(k)
i

)j
:

A1 =


...

e′iuN
′
k

...

 , B1 = −


...

t0iu

(
. . . ,

(
θ′x(k)

ai

m
(k)
i

)j
, . . .

)
...

 ,

C1 = 0, h1 = 0.

For the constraint
∑| ˜A(k)|

i=1

(∑n
j=0 βj

(
θ′x(k)

ai

mk
i

)j)∑|Ũ |
u=1 t

0
iuxiu −

∑
w∈Wk

(dw)′yw ≤ ϵk:

A2 = −


...
dw

...

 , B2 =


...∑|Ũ |

u=1 t
0
iuxiu(. . . ,

∑| ˜A(k)|
i=1

(
θ′x(k)

ai

mk
i

)j
, . . .)

...

 ,

C2 = [. . . ,−1, . . .], h2 = 0.
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For the constraint
∑n

j=0 βj

(
θ′x(k)

ai

mk
i

)j
≤∑n

j=0 βj

(
θ′x(k)

a
ĩ

mk
ĩ

)j
:

A3 = 0, B3 =


...

. . . ,
(

θ′x(k)
ai

mk
i

)j
−
(

θ′x(k)
a
ĩ

mk
ĩ

)j
, . . .)

...

 ,

C3 = 0, h3 = 0.

For the constraint ϵ ≥ 0:

A4 = 0, B4 = 0, C4 = −I, h4 = 0.

Then we obtain:

A = [A′
1, A

′
2, A

′
3, A

′
4]

′, B = [B′
1, B

′
2, B

′
3, B

′
4]

′ ,

C = [C ′
1, C

′
2, C

′
3, C

′
4]

′, H = [h′1, h
′
2, h

′
3, h

′
4]

′.



Appendix E

Energy Consumption Modeling

In addition to solving the routing problem with the time objective, we are interested

in solving the energy optimal routing problem (eco-routing). The first step to solve

such a problem is coming up with an energy consumption model for vehicles. Energy

consumption of vehicles depends on many different factors including velocity and

acceleration as well as the power-train’s architecture. Since in eco-routing we are

making high level decisions, a low-fidelity model can be sufficient for our needs. We

consider two energy models: (i) A charge depleting/charge sustaining energy model

described in (Karabasoglu & Michalek, 2013); (ii) An empirical energy model for

conventional vehicles estimated by Boriboonsomsin et al. (2012).

CD/CS Energy Model: Karabasoglu and Michalek (2013) proposed an approx-

imated energy model which assumes two operational modes for vehicles: charge

depleting (CD), and charge sustaining (CS). In CD, the main propulsion energy

comes from the battery pack (electricity) while in CS the vehicle uses the internal

combustion engine (gas). They calculated the average energy consumption (in mi/gal

and mi/kWh) that a vehicle can travel through different standard drive cycles (NYC,

UDDS, HWFET, etc.). These energy consumption values are referred to as µCD and

µCS respectively and are reported in Table E.1.

Empirical Energy Model: Boriboonsomsin et al. (2012) estimated a model that

assumes that the average energy consumption is polynomial function of the link’s
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Table E.1: Average Energy consumption values Karabasoglu and
Michalek (2013)

Vehicle Type Symbol Unit HWFET UDDS NYC
PHEV µCD mi/kWh 5.7 6.2 4.2

µCS mi/gal 58.6 69.4 45.7
HEV µCS mi/gal 59.7 69.5 48.0
EV µCD mi/kWh 5.2 4.8 3.1
CV µCS mi/gal 52.8 32.1 16.4

average speed. More specifically, they assume that

ln(ea) =
4∑

i=0

θi(va)
i + θ5Ra, (E.1)

in which ea is the average energy consumption on link a; va is the average speed of

each link in mph; Ra is the road grade (in percentage); and θ = (θi, i = 0, 1, ..., 5) is

a coefficient vector. Their calibrated values for θ are reported in Table E.2 and the

function for these parameters is shown in Fig. E·1.

Table E.2: Energy cost coefficients Boriboonsomsin et al. (2012)

θ0 θ1 θ2 θ3 θ4 θ5
6.80 -1.4e-1 3.92e-3 -5.20e-5 2.57e-7 1.37e-1
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Figure E·1: Average fuel consumption of conventional vehicles using
Boriboonsomsin model



Appendix F

MSA Algorithm

Algorithm 5 Method of Successive Averages (MSA)

Input:
(
Ṽ , Ã, W̃

)
: road network; Ũ : set of vehicle classes; f(·): cornerstone cost

function in (2.5); gu, u ∈ [[Ũ ]]: demand vector for vehicle class u; ε3 > 0: a real
parameter; L: maximum number of iterations.
Step 0: Initialization. Initialize link flows xℓiu = 0 for i ∈ [[Ã]], u ∈ [[Ũ ]]; set
iteration counter ℓ = 0.
Step 1: Compute new extremal flows. Set ℓ = ℓ+ 1.

1.1: Update link travel costs based on current link flows: tℓiu =
tiu(x

ℓ−1
i1 , . . . , xℓ−1

i|Ũ |), ∀i ∈ [[Ã]], u ∈ [[Ũ ]].
1.2: Perform “all-or-nothing” assignment of the demands gu on current
shortest paths and obtain yℓiu.

Step 2: Update link flows via

xℓiu = xℓ−1
iu + λℓ

(
yℓiu − xℓ−1

iu

)
,

where λℓ = 1/ℓ.
Step 3: Stopping criterion. Compute the Relative Gap (RG)

RG =

∑
u∈Ũ

∑
i∈Ã x

ℓ
iutiu(x

ℓ
iu)∑

u∈Ũ
∑

i∈W̃ πw(i,u)dw(i,u)
− 1.

If RG < ε3 or ℓ ≥ L, terminate; otherwise, return to Step 1.
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