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ABSTRACT

In the past decade, the field of biosensing has experienced an incredible pace of

development, due to the compelling need for accurate and reliable tools for charac-

terization of biomolecular kinetics. Specifically, label-free kinetic measurements are

the most direct method for studying molecular binding, for example to establish the

efficacy of drug-receptor interactions. For this reason, researchers in the pharma-

ceutical industry rely heavily on label-free detection for drug and antibody screening.

Meanwhile, in the biosafety industry and healthcare, there is great demand for screen-

ing tools that can target biothreats, in order to accurately recognize the presence of

toxins and pathogens with high sensitivity in diverse samples, such as bodily fluids,

food and drinking water. This research topic has become particularly relevant dur-

ing the recent pandemic, where vaccine development was carried out side by side

with quantification and characterization of single viral particles. Here, we introduce
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a versatile biosensing platform capable of characterizing virtually any type of target

compound, down to the single molecule level. For this work, we have improved the

Interferometric Reflectance Imaging Sensor (IRIS) to perform accurate measurements

of the binding kinetics of analytes ranging in molecular weight from less than 1kDa

(small molecules) to more than 1MDa (biological nanoparticles). For the first time,

we demonstrate multiplexed kinetic binding characterization of small molecules to

surface immobilized antibody probes, as well as detection and phenotyping of large

and complex analytes, on the same platform.

The IRIS platform utilizes the optical interference signal produced by thinly lay-

ered substrates in order to precisely measure the thickness of a transparent film atop

a silicon chip. In the context of this work, dynamic characterization of a wide range

of biomolecular and nanoparticle targets was made possible by a multidimensional

optimization, in order to improve both the sensitivity and the dynamic range of the in-

strument. Analysis of low molecular weight compounds required a significant increase

in signal to noise ratio, which was achieved through averaging, as well as complete

elimination of background solution effects (’bulk effect’). Additionally, the best sur-

face chemistry for each application was identified by a new technique which consists of

immobilizing capture probes on a multiplexed array of active polymers functionalized

on the same sensor surface, allowing for simultaneous side-by-side comparison of their

performance. Surface chemistry plays a huge role in kinetic measurements, in terms

of probe functionality, steric hindrance, charge distribution and diffusion effects.

Finally, imaging optics, illumination wavelength, and thickness of the silicon diox-

ide film were optimized to perform detection and phenotyping of large analytes, such

as extracellular vesicles (EVs) and antibody-conjugated gold nanoparticles (mAb-

GNPs). Results obtained from numerical simulations allowed for selection of the

best experimental parameters for each application. Experimentally, mAb-GNPs were

viii



utilized to produce a real-time sandwich lateral flow assay. In this context, we demon-

strated how the improved IRIS platform can bridge the gap between single-particle

detection (’digital’ configuration) and bulk reflectance measurements (’analog’ con-

figuration), creating a new ’hybrid’ system (h-IRIS), which only requires minimal

hardware adjustments to easily switch from one modality to the other. This brought

a substantial improvement in sensitivity, improving the limit of detection by three

orders of magnitude and enabling single-molecule level measurements. Finally, future

system optimization ideas are presented to achieve even higher accuracy and further

extend the range of target analytes.
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Chapter 1

Introduction

1.1 Measuring molecular affinity: the importance of kinetics

Molecular interactions shape the world around us. In nature, almost all biologi-

cal functions involved in the process of life are regulated by interactions between

molecules, primarily receptors, proteins, enzymes and nucleic acids. Petsko and Yates

brilliantly summarized this concept as: nothing happens in biology unless something

binds to something else (Petsko and Yates, 2011). Inside both prokaryotic and eu-

karyotic cells, molecular reactions are carried out in order to perform gene replication,

protein synthesis, pathway signaling and regulation of immune responses (Friedl et al.,

2005). All these processes are extremely diverse, in timescale, purpose and produced

effect, and can sometimes involve more than one consecutive step, generating com-

plex molecular systems. In general, biomolecular interactions span a broad range of

timescales, varying over more than ten orders of magnitude (Clerc et al., 2021; Elber,

2005). Very fast molecular reactions include, for example, the R to T transition of

hemoglobin (Elber, 2005), which is in the order of microseconds, while the dissociation

of high affinity compounds is a slow process, lasting for multiple hours.

In order to understand and investigate the complex working principle of the human

body, it is therefore essential to study it at the molecular level. Generally, a system

which is capable of measuring the strength of a molecular reaction is referred to as a

biosensor. Biosensors are incredibly valuable in the field of molecular development,

and a large deal of effort has been devoted in the past decade to develop robust,
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reliable and highly sensitive instruments for biochemical investigation.

Biosensors are usually composed of a bioreceptor, or ligand, which is the recogni-

tion element responsible for interacting with the target molecule (the analyte), and

a transduction mechanism, which is a property of the system that can be monitored

and is altered when the reaction takes place, enabling the measurement of binding

events. For the sake of this discussion, the focus will be on optical biosensors, where

an optical property of the transducer, such as its refractive index, is modified by the

occurrence of the binding reaction, and the biorecognition element is immobilized on

the surface of the sensor (Peltomaa et al., 2018). In the field of optical biosensing,

some technologies have been developed which succeed in visualizing molecular reac-

tions in real-time, providing an estimation of how fast and how strongly the target

analyte and the ligand interact with each other. These real-time measurements are

usually referred to as kinetic measurements, since their goal is to assess the kinetic,

or dynamic, parameters of an interaction.

The strength of a molecular reaction is defined as molecular affinity, and its deter-

mination provides an estimation of how likely the two molecules are to interact with

each other, as well as how strongly they resist being separated. As a matter of fact,

the kinetics of a reaction is measured by testing the behavior of the molecules in two

consecutive phases: the association phase, that is, the two molecules are introduced

to each other and are allowed to react and bind; and the dissociation phase, where

one of the two agents is removed from the solution and the rate at which they ’dis-

sociate’ or ’debind’ from each other is measured. As mentioned above, the molecule

that is introduced and then removed is referred to as the analyte, while its binding

partner, the bioreceptor, is the ligand. The rate of association, or binding, is defined

as the on-rate (kON) of the reaction, while the dissociation rate is referred to as the

off-rate (kOFF ). If the two agents A and B interact in a 1:1 fashion, the reaction can
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be described by the simple symbolic equation:

A+B
kON−−−⇀↽−−−
kOFF

AB (1.1)

Where A is the analyte and B the ligand. In order to describe the kinetics of the

reaction, differential equations can be written which define the rate of formation of

the complex AB, as well as the dissociation after analyte A is removed:


d[AB]

dt
= kON [A][B]− kOFF [AB] t0 < t < t1

d[AB]

dt
= −kOFF [A][B] t > t1

(1.2)

Where [A], [B], [AB] are the molar concentrations of the two molecules separately

and as a complex, respectively, t0 is the injection time of the analyte and t1 is the start

time of the wash, that is, the removal of the free analyte. In order for the reaction

to be detected on a sensor, the binding of the analyte molecules to the ligands needs

to generate a signal. The differential equations above can therefore be written as a

signal increment in time:

dS

dt
= kONC(Smax − S)− kOFFS (1.3)

Where C is the molar concentration of the analyte, which is assumed to be con-

stant in time, and Smax is the maximum reachable signal, defined as the signal mea-

sured when all ligand binding sites are occupied. Reactions are usually allowed to

reach equilibrium during the association phase, the condition where the number of

analyte molecules binding and debinding is equal, creating a steady state. This leads

to the following analytical solution of Equation 1.2:
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S(t) =


0 0 < t < t0

Seq(1− e−(kONC−kOFF )(t−t0)) t0 < t < t1

Seq(e
−kOFF (t−t1)) t > t1

(1.4)

This is the referred to as the Langmuir thermodynamic model, and solving for Seq

leads to an isotherm of the form:

Seq =
Smax

1 + KD

C

(1.5)

where KD = kOFF/kON represents the dissociation constant, also defined as the

equilibrium constant. Most kinetic sensors consider KD as the ultimate value to be

measured in order to establish the affinity of the reaction.

Unless otherwise specified, this is the model that will be utilized to fit most binding

data presented in this dissertation. As mentioned above, it describes a 1:1 interac-

tion, assuming one analyte molecule should only interact with one ligand molecule.

Other types of interactions include bivalency (2:1) and multivalency (N:1) (Schas-

foort, 2017).

As mentioned above, most researchers believe the equilibrium constant KD to be

a good description of the affinity of a reaction, thus not necessarily requiring kinetic

measurements. Indeed, by measuring the equilibrium binding signal reached at sev-

eral analyte concentrations, KD can be mapped as an isotherm (Equation 1.5). That

can be true in some cases, however, end-point measurements, or equilibrium mea-

surements, provide a ’frozen’ view of the molecular complex, ignoring the dynamic

nature of the association-dissociation reaction. For this reason, kinetic measurements

generally have significant advantages over equilibrium measurements. For example, if

the reaction rate is not limited by diffusion or analyte molecules’ availability, measur-

ing a single binding curve at one analyte concentration point is enough to establish
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association and dissociation rates, from which KD can be derived. This is beneficial

in terms of sample preservation, as well as rapid generation of results, leading to cost-

and time-effective experiments.

Furthermore, some reactions can be characterized by complex dynamics, such as

cooperative binding (De Lean and Rodbard, 1979), and biphasic binding (Needham,

2019; Karanicolas and Brooks, 2004) which are difficult to identify when performing

end point measurements. Finally, most equilibrium measurements such as fluores-

cence microarrays or enzyme-linked immunoassays (ELISA), require labeling of the

target molecules, a procedure that can be challenging as it will be described in the

following section.

1.1.1 Probing in the dark: label-free measurements

Label-free detection is the concept of detecting the presence of a microscopic object

on the surface of a sensor without the aid of a label. The target compound, usually

a molecule or a biological nanoparticle, is captured by the surface through affinity

interactions. In order to achieve that, the sensor’s surface is functionalized with

specific biorecognizing elements, which in this discussion will be referred to as probes

or, as mentioned above, ligands. Probes are generally antibodies, but sometimes

oligonucleotides, receptors or enzymes are used. Label-free detection is the least

artificial way of characterizing a molecular reaction in vitro, due to the absence of a

third interacting element and the non invasive sensing method.

On the other hand, labeled methods are well-established in the field of biomedi-

cal discovery, due to the high sensitivity and specificity they provide (Cretich et al.,

2011; Epstein et al., 2002; Camarca et al., 2021). Particularly, fluorescent microarrays

enable multiplexed detection and quantification of molecular contaminants, DNA mu-

tations, as well as single biological particles counting and phenotyping (Gagni et al.,

2016). Fluorescence is a fascinating biophysical concept that relies on narrowband
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light adsorption and re-emission by chemical compounds that possess an excitable

state. For decades, it has allowed researchers to ’shine a light in the dark’, and detect

the presence of biological phenomena that would otherwise be invisible to the human

eye.

However, labeling is a cumbersome, challenging process which is usually low yield,

and can sometimes lead to molecular denaturation or hindering of the analyte binding

sites (Syahir et al., 2015). In most cases, the label is covalently attached to the target

molecule by direct modification, which can cause structure distortion and loss in

reactivity. As an alternative to modification, secondary fluorescent antibodies are

often utilized for post-reaction labeling. This method is more straightforward, but it

requires two subsequent incubations of the sensor - first with the analyte and then

with the label.

Moreover, the labeling antibody needs to target a binding site on the analyte

molecule that remains available after the reaction with the probe, and that is reachable

despite the steric hindrance caused by the presence of the probe and the surface.

For example, in the case of ELISA sandwich assays, antibody pairs are specifically

developed to target two different binding sites positioned at two opposite sides on

the analyte molecule. Obviously, this is particularly challenging for small molecule

targets, which often have only one binding site, or - if more than one is present - they

are all very close to each other and therefore made unavailable by steric hindrance.

All these issues delineate the motivation for the development of biocharacterization

methods that do not require labeling. In biomedical research, there is a crucial

need for easy to use, versatile sensors that do not require special treatments of the

molecules involved and that produce reliable characterization data. This dissertation

will describe the development of a system which enables the characterization of most

biological samples, with few or no purification and/or modification steps required,
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down to the single particle digital counting level. The hereby discussed platform has

the power to establish itself as a better alternative to both labeled and unlabeled

characterization methods currently available in the field.

1.2 Properties of multi-scale analytes

The main objective of this dissertation was to develop a versatile platform that can

provide label-free, accurate kinetic binding data, enabling real-time characterization

of highly diverse analytes, varying both in size and biophysical properties.

In the following Sections, we will give a brief overview of the most important

characteristics of the studied molecules and nanoparticles, in order to highlight both

the challenges that we had to overcome to achieve accurate affinity measurements of

this wide range of targets, as well as the impact of our work on the field of biomolecular

development.

1.2.1 Small molecules and drug development

Small molecules (SMs) are defined as the chemical compounds with a molecular weight

below 1kDa (Fechner et al., 2014; Peltomaa et al., 2018). Due to their low molecular

weight, SMs have recently gained a huge popularity in the drug development field,

because they can easily penetrate the cellular membrane and produce their effect.

In 2019, 73% of all approved drugs by the FDA belonged to the category of SMs

(Mullard, 2020). As an example of their relevance, is has been demonstrated that SMs

can easily penetrate the blood-brain barrier (BBB), which is the interface between

the vascular system and the brain, and represents a significant obstacle in delivering

drugs and medicines to the brain (Eyal et al., 2009). Its permeability is extremely

low, and only a few chemicals can easily cross it through ion channels. However, it has

been shown that small lipophilic molecules (MW < 500Da) can be transported across

the BBB thanks to passive diffusion across the membrane of brain cells (Wong et al.,
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2013). This has been an invaluable discovery for research in brain cancer treatment,

and other brain-related diseases.

One other fundamental application of SMs characterization is toxin detection.

More than 99% of all toxins in nature belong to the category of SMs (Wishart et al.,

2015; Peltomaa et al., 2018), and these compounds are harmful to humans. Of

particular relevance are mycotoxins, toxic compounds produced by molds or fungi,

especially from the species Aspergillus, Fusarium, and Penicillium, that are most

commonly found in corn and other crops (Granados-Chinchilla et al., 2018). Myco-

toxin intoxication has been shown to have an impact on the formation of esophageal

cancer (Sydenham et al., 1990; Chu and Li, 1994). Consequently, having a method of

efficient identification of mycotoxin presence in organic products is absolutely critical

for the food industry, especially in the quality control phase.

However, despite the huge impact that SMs have in various research and indus-

try fields, there is still a lack of consensus on a good detection and characterization

method. As a matter of fact, due to their low molecular weight, SMs are particularly

challenging to detect in a label-free manner, as molecular binding of tiny-sized com-

pounds produces a small optical response on label-free transducers. One of the most

widely used sensors for SMs research is Surface Plasmon Resonance (SPR). SPR is

highly sensitive, and it provides the ability to detect and phenotype SMs. However,

its sensitivity to environmental conditions, particularly refractive index changes of

the surrounding solution, makes it non ideal for SM measurements. SMs are indeed

mostly insoluble in aqueous buffers, requiring in most cases the addition of a power-

ful organic solvent which considerably raises the refractive index of the environment

surrounding the surface. This, combined with the dense and thick surface chemistry

that SPR requires, reduces its ability to provide reliable kinetic data for SMs binding.

This topic will be further discussed in Section 2.4.
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Labeling small molecules with either a fluorescent tag (Joubert et al., 2013;

Mizukami et al., 2014) or a metallic nanoparticle (Cao et al., 2018; Lin et al., 2007)

makes them easier to detect. However, as explained above in Section 1.1.1, labeled

techniques have multiple issues, one of the most relevant being that they lack kinetic

capabilities. Furthermore, efficient labeling of SMs can be challenging: sandwich as-

says with a secondary fluorescent antibody are virtually impossible, since SMs usually

possess a single binding site; modification with fluorescent chemical groups is an inva-

sive process that can cause changes in the molecule’s functionality, especially if the tag

is similar or larger in size (Fechner et al., 2014). Label-free techniques are, therefore,

preferred when it comes to evaluating the kinetic behavior of drugs, toxins, and small

analytes in general. In this dissertation, we have explored SMs binding kinetics on

the IRIS sensor, successfully producing repeatable binding data for a small molecule

toxin (fumonisin, MW≈722 Da) and for biotin, an essential SM protein (MW≈244

Da) utilized in combination with its binding partner, streptavidin, in many surface

chemistry applications due to the almost-covalent nature of their interaction (Wong

et al., 1999).

1.2.2 Biological nanoparticles: Extracellular Vesicles (EVs)

Extracellular Vesicles (EVs) are lipid-bilayer delimited particles that are produced

inside cells in the human body, and are subsequently released into the bloodstream

by various mechanisms, including fusion of endosomes with the cell membrane (Lötvall

et al., 2014). All EVs are incapable of replicating, vary in size in the 30nm-1µm range

and can contain variable amount of biological material of diagnostic relevance. For

example, exosomes are small EVs (30-150nm) of endosomic origin which have been

shown to carry information both on their surface and inside their cargo which allows

to discern whether the cell that originated them is a healthy or a cancer cell. As a

matter of fact, it has recently been demonstrated that exosomes can be utilized as
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biomarkers for various types of cancer, including lung (Sandfeld-Paulsen et al., 2016b)

and prostate (Nawaz et al., 2014) cancer. For all these reasons, the interest in EVs

as biomarkers has vertiginously increased in the past few years, and development of

platforms that provide extensive analysis of EVs samples has seen a steady upsurge,

both in research and in the industry.

Fluorescence is still the most common method for analysis of EVs samples, as

it is sensitive, robust and can provide high marker specificity (Wang et al., 2020).

However, label-free methods have also been applied to EVs analysis, including SPR

and SPR imaging (SPRi) (Picciolini et al., 2018). Here, we will discuss the results

of detection, characterization and phenotyping of EVs samples with the IRIS system,

which - in two different configurations - provides both measurements of analog real-

time binding of EVs, as well as single particle counting.

1.2.3 Antibody- gold nanoparticle complexes (mAb-GNP) for lateral flow
assays

Lateral Flow Assays (LFAs) are cellulose-based point of care (POC) diagnostic tools

that are widely utilized for detection of infectious diseases, toxins, food contaminants

and other biothreats (Liu et al., 2021). These tests have gained a huge popularity

in the past fifty years due to the many advantages over other techniques: LFAs are

rapid, cheap (down to <1$ per test) and robust, as well as not necessitating any

technical expertise on the tester’s side. They utilize simple colored lines - a ’control’

line and a ’test’ line - to readily provide the information on the presence or absence

of a certain pathogen or biomarker target in human fluids.

LFA-based devices are composed of a nitrocellulose membrane, a conjugate pad,

for sample intake and an absorbent pad, for sample delivery to the test line. The

test line utilizes highly specific antibodies and gold nanoparticles in order to create a

control colored band, as well as a test/positive band, while the sample flows through
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the line. In the past two years, LFAs have become incredibly popular due to their

huge impact in SARS-CoV-19 diagnosis. Most self-administrable, at-home test kits

are based on LFA technology. However, LFAs have been around for decades, and the

most popular and readily available example are pregnancy tests.

Investigating the reaction kinetics of LFAs is a crucial step in the development

of successful assays and is also essential for obtaining the highest possible sensitivity

(Liu et al., 2021). Right now, the sensitivity of LFAs is in the µM range in terms of

target concentration, while laboratory tests such as ELISA assays or PCR-based tests

can detect concentrations down to pM-fM range. Thus, given the great advantages of

LFAs, which led to their quick rise in popularity, it has become more and more cru-

cial to improve their sensitivity as well as the specificity of the involved antibody-gold

nanoparticle complexes (mAb-GNP). In the final section of Chapter 4, we will intro-

duce a method to analyze the kinetics of mAb-GNS complexes, while also performing

single particle imaging and counting, on a novel, hybrid interferometric sensor.

1.3 Dissertation objectives and overview

In this work, we aim to describe a versatile biosensing platform for the complete

analysis of highly diverse biochemical samples. The dissertation is divided into three

main chapters. In Chapter two, we describe the working principle of the Interfero-

metric Reflectance Imaging Sensor (IRIS); first, we distinguish two main applications

of the platform: kinetic analysis of biomolecules using the analog configuration of

the sensor, and single nanoparticle detection and phenotyping by switching to the

digital configuration, or SP-IRIS. After reviewing the theoretical principles and the

physical requirements of each setup, we then begin to describe the hardware modifi-

cations needed to create a hybrid system (h-IRIS). In Chapter 3, we focus on system

performance optimization. We discuss noise factors, the impact of illumination uni-
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Figure 1·1: Multi-scale analytes studied on the Interferometric Re-
flectance Imaging Sensor (IRIS)

formity and potential optical improvements, solution effects such as the bulk shift,

and advantages and limitations of various surface chemistry methods. We also show

some theoretical results on wavelength optimization, with simulations for nanopar-

ticle analysis both at the analog and digital level. Finally, in Chapter 4 we show

several experimental results, where we successfully demonstrate characterization of

heterogeneous samples ranging from small molecules to extracellular vesicles and gold

nanoparticles-antibody complexes on the h-IRIS system.



13

1.4 Published work

Most of the work presented in this dissertation has been published in academic jour-

nals. The small molecule characterization work discussed in Chapter 4 has been

published in ACS Omega (Chiodi et al., 2020a), while a paper on kinetic analysis

of extracellular vesicles was published in Sensors (Chiodi et al., 2021a); such work is

also presented in Chapter 4.

The work on bulk effect elimination discussed in Chapter 3 has been published

in ACS Omega (Marn et al., 2021a). We have recently published two reviews in the

journal Polymers that focus on the impact of surface chemistry on label-free measure-

ments (Chiodi et al., 2021c; Chiodi et al., 2022), while a paper that introduces an

innovative method for surface chemistry optimization has been published in Analyt-

ical and Bioanalytical Chemistry (Chiodi et al., 2020b); we will discuss such method

in Chapter 3, as a part of system optimization. Finally, we are currently working on

a paper where we introduce the hybrid h-IRIS system.

During the past three years, we have published additional papers that I have

contributed to as part of my doctoral work, which unfortunately did not find a place

in this dissertation (Bakhshpour et al., 2022; Marn et al., 2021b; Brambilla et al.,

2021; Chiodi et al., 2021b; Celebi et al., 2020).
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Chapter 2

The Interferometric Reflectance Imaging
Sensor (IRIS)

2.1 Analog measurements: sensor’s working principle and cur-
rent performance

The Interferometric Reflectance Imaging Sensor (IRIS) is an interferometry-based

biosensor for the real time detection and characterization of biomaterial accumulation.

In its analog configuration, it exploits the simple concept of thin-film interference, the

same physical principle that allows the human eye to see colorful reflections in soap

bubbles, in order to achieve highly sensitive detection of biomolecular binding. Fur-

thermore, years of research have demonstrated how interference can also be utilized to

enhance the scattering signal from single particles, leading to a different application

of the sensor, its digital or Single-Particle IRIS configuration (SP-IRIS), which will

be described in the following section (Section 2.2). Both IRIS-based platforms have

been widely described in the literature, and applied to the detection of numerous bi-

ologically relevant samples - from proteins, antibodies, and oligonucleotides, to single

viral particles and bacteria.

Practically, the optical configuration of the IRIS system is a simple reflectance-

based common-path interferometer, and the physical sensor chip is a silicon substrate

with a thermally-grown silicon dioxide layer on top (Si/SiO2). A set of four generic

RGYB light emitting diodes (LEDs) is used for illumination, in a custom config-
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uration; depending on the application, light from a single or multiple LEDs can be

employed. The partially coherent light is further randomized by an integrating sphere

(for example, ThorLabs IS236A-4), then collected and collimated by illumination op-

tics. The optical configuration of the illumination arm of the interferometer, as well

as the objective magnification and the thickness of the oxide layer, all depend on the

specific application chosen, either analog or digital detection. These differences will

be discussed more in details in Section 2.3. The analog configuration of the IRIS uses

a critical illumination setup, where the source light is collected and collimated by an

achromatic doublet with a focal length (f) of 50mm (ThorLabs AC254-050-A-ML),

then focused on the sample plane.

An adjustable-diameter aperture is placed at the output of the integrating sphere

to eliminate light at extraneous angles from entering the system. The collimated

light is then shined on the chip, through a beam splitter (ThorLabs CCM1-BS013)

and an infinity-corrected objective (Nikon, various models). Light is reflected back

from the surface of the chip, and is subsequently collected and imaged through the

same objective, beam splitter and a tube lens onto a CMOS camera (FLIR BlackFly

BFS-U3-17S7M). A simplified scheme of the interferometer is shown in Figure 2·1.

Critical illumination is the simplest possible illumination scheme, and results in

the source being imaged at the camera level. However, for analog measurements, low

numerical aperture objectives are employed in order to approximate to normal illumi-

nation and collection, and therefore the illumination across the image plane remains

sufficiently uniform. This will not be true for digital, single-particle counting mea-

surements, where a more sophisticated illumination setup is necessary, as described

later in Section 2.2.

For flow-based, real-time kinetic measurements, the Si/SiO2 substrate is illumi-

nated from the top through a microfluidic chamber, formed by sandwiching the chip
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Figure 2·1: A simplified scheme of the optical configuration of the
IRIS platform. The configuration of the illumination arm changes based
on the specific application.

with a PSA-coated gasket (Grace Bio Labs) and an AR-coated glass slide (Abrisa

technologies, inc.). The chip has laser-drilled inlet and outlet holes, therefore allow-

ing solutions to be flowed across its surface (Figure 2·2). The liquid is driven through

the system by a microfluidic setup composed of a programmable precision syringe

pump (Hamilton PSD/4 54848-01) coupled with an eight way ceramic valve (Hamil-

ton 59943-01). The microfluidic scheme is represented in Figure 2·3. The 130-µm

thick microfluidic chamber allows for high flow rates and reduction of mass transport

effect.

The light reflecting from the Si-SiO2 and the SiO2-immersion medium interface

will interfere to produce a spectral reflectance curve that is dependent on the OPD

(optical path difference) between the two interfaces. The reflectance from this dual-
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Figure 2·2: (a) A photo of the Si/SiO2 IRIS chip and (b) a scheme of
the fluidic cartridge used for the experiments.

Figure 2·3: A graphical scheme of the microfluidic system employed
on the IRIS instrument.

layer substrate can be measured on the IRIS at discrete wavelengths. Accumulation

of biomass on the sensor surface will increase the effective thickness of the oxide layer
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and therefore alter the spectral reflectance. In order to maximize the signal due to

molecular binding, the thickness of the oxide layer and the illumination wavelength

need to be engineered so that constructive interference is obtained, and signal change

is maximized for changes in the OPD. For our measurements in pure analog con-

figuration, the thickness of the oxide was optimized at d(SiO2) = 110nm, while the

wavelength was λ = 452nm (blue).

The reflectance equation is obtained by simplifying Fresnel equations for reflection

and transmission of light in layered substrates. Briefly, when light travels from a

medium with a refractive index n1 to a second medium n2, part of the radiation is

reflected and part is transmitted; the reflected fraction depends on the wavelength of

light, the incidence angle and the optical properties of the two media. The reflected

intensity is referred to as the reflectance Rs for s-polarized light and Rp for p-polarized

light, and its derivation is described by the equations below based on the the reflection

coefficients rs (s-polarized) and rp (p-polarized).

rs(λ, θ) =
n1(λ)cosθi − n2(λ)cosθt
n1(λ)cosθi + n2(λ)cosθt

(2.1)

rp(λ, θ) =
n1(λ)cosθt − n2(λ)cosθi
n1(λ)cosθt + n2(λ)cosθi

(2.2)

Rs(λ, θ) = |rs(λ, θ)|2 (2.3)

Rp(λ, θ) = |rp(λ, θ)|2 (2.4)

On the IRIS system, illumination can be approximated as normal, and there-

fore θ = 0. Furthermore, incident radiation is unpolarized, reducing the effective

reflectance to the average of the reflectance from both polarizations:
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r(λ) =
n1(λ)− n2(λ)

n1(λ) + n2(λ)
(2.5)

R(λ) = |r(λ)|2 (2.6)

Which then yields: (Sevenler and Ünlü, 2016):

R(λ, d) = |r2| = r12
2 + r23

2 + 2r12r23 cos 2φ

1 + r122r232 + 2r12r23 cos 2φ
(2.7)

Where:

φ =
2πd

λ
n2 (2.8)

r12 =
n1 − n2

n1 + n2

, (2.9)

r23 =
n2 − n3

n2 + n3

, (2.10)

The OPD is described by the phase difference φ, which changes in response to

biomass accumulation (increase in d), as shown in Figure 2·4.

By acquiring the reflectance at four discrete wavelengths (center wavelengths of

the RGYB LEDs: λ=452nm, 518nm, 595nm, 632nm) the values can be fitted to

the reflectance equation. By assuming small, linear shifts in the reflectance curve

due to biomass accumulation, it is possible to only acquire a four-color image of the

chip at the beginning of the experiment, and afterwards utilize a single-color LED

for acquisition. The four-color image is used to generate a lookup table, in order

to correlate changes in reflectance for a single color to biomass density increments.

This calibration step allows for conversion of reflectance values to mass density values



20

Figure 2·4: The working principle of the IRIS system. a) When
biomass accumulates on the IRIS chip, the OPD d changes, causing a
phase shift of the b) reflectance curve, producing constructive interfer-
ence signal.

(expressed in pg/mm2) (Sevenler and Ünlü, 2016).

On a side note, if the refractive index of the solution were to change (n1), the

phase would not change but the total measured reflectance would. More precisely, a

change in n1 would cause the reflectance curve to shrink, while a change in d would

cause it to shift. In this case, the look-up table method would not work, and four

color images would have to be acquired at each time point. Since changes in the

refractive index of the solution usually correlate with small molecule characterization

experiments, due to the need for high refractive index solvents to dissolve them, we

have developed a method to remove such effect in practice by manipulating the LED

wavelength. Such bulk effect removal technique will be described in Section 3.4.1.

The performance of the IRIS system should be determined based on the specific

application. Here, the discussion will mostly focus on the analog configuration of the

sensor, as most of the data shown in this dissertation were acquired in this modality.

For analog measurements, the important parameter is the mass density sensitivity

or limit of detection (LOD) of the system, which can be defined as the minimum

measurable change in reflectance due to molecular binding. Currently, the sensitivity



21

of the sensor in terms of the minimum measurable increment in mass density (mass

per unit area) is LOD = 1pg/mm2. This value can be improved further with various

methods, both computational and physical, as described in Section 3.1.

2.2 Introduction to single particle (digital) detection

In the era of pandemics, accurate and highly sensitive detection of biological parti-

cles (BPs) such as viruses and bacteria is of crucial importance for pharmaceutical

research as well as diagnostics (Kairdolf et al., 2017). Particularly, biological nanopar-

ticles (BNPs) are a subset of BPs sized 10-100nm which includes viruses and small

extracellular vesicles (SEVs). Label-free, scattering-based detection of single BNPs

poses multiple challenges, due to their weakly scattering characteristics, the low re-

fractive index contrast with the surrounding medium and the sub-wavelength spatial

resolution limit imposed by the optical imaging system.

While pure scattering-based, dark-field methods for nanoparticle detection are

limited in the size of particle they can measure due to the fact that the measured

scattering signal scales with the sixth power of the particle size (S ≈ r6), on the SP-

IRIS system, the detected intensity has a linear dependence on the induced scattered

field, and the measured signal scales with the third power of the nanoparticle size

(S ≈ r3), a huge improvement with respect to standard techniques.

More precisely, in the quasi-static dipole limit (r << λ: the nanoparticle size is

much smaller than the wavelength) the far-field scattered field induced by illumination

of a nanoparticle with polarizability tensor α is expressed as (Novotny and Hecht,

2006):

Es =
k20
ε0
Gsµ (2.11)

Where ε0 is the vacuum dielectric constant, k0 is the wavenumber in vacuum, Gs
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is the far-field dyadic point spread function (PSF) of the particle, and is the sum

of its primary point spread function G0 and the reflected point spread function Gr

because we are considering dipole emission close to a planar surface; and µ is the

induced dipole moment, expressed as:

µ = εmαEd (2.12)

α = Iα (2.13)

(2.14)

Where Ed is the total driving field, which again is the sum of the incident field

and the reflected field. The polarizability magnitude of a nanoparticle in the Rayleigh

scattering limit can be written as (van de Hulst, 1958):

α = 4πr3εm
εp − εm
εp + 2εm

(2.15)

And for a spherical nanoparticle, the tensor reduces to the identity matrix:

I =

1 0 0
0 1 1
0 0 1

 (2.16)

Based on Equation 2.11, the pure elastically scattered intensity (Is = |Es|2) will

depend on the square volume of the particle (α2 ∝ V 2 ≈ r6), resulting in exceptionally

low optical contrast for small nanoparticles. On the other hand, by considering the

sum of the scattered field with a reference, interfering field, the detected intensity will

take the form:
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Id = |Es + Er|2 = |Es|2 + |Er|2 + 2|Es||Er|cosθ (2.17)

Id = E2
s + E2

r + 2EsErcosθ (2.18)

Where θ = φs−φr is the phase difference between the reference and scattered fields,

and |Ex| = Ex. Assuming maximization of the phase term (cosθ = 1), and considering

weakly scattering particles (Es ≈ 0) as well as a strong reference (Er >> Es), the

detected intensity will scale as:

Id ≈ E2
r + 2ErEs (2.19)

And therefore, the measured differential signal (dS = Id − Ir where Ir = E2
r ) will

scale as:

dS = 2EsEr ∝ r3 (2.20)

This interferometric contribution has a huge impact on the measurable signal for

small scatterers, leading to high signal-to-noise ratio (SNR) imaging of sub-wavelength

particles. Far-field Green’s functions can be utilized to calculate the scattered fields,

and Fresnel coefficients are used to calculate the reflected field by the silicon oxide

surface as discussed in Section 2.1. By considering both contributions, the measured

signal at the camera level can be obtained. To further enhance the measured scatter-

ing signal, the oxide thickness has been engineered and optimized, and simulations

show that the highest particle-background contrast is achieved at d(SiO2) = 60nm

where d(SiO2) is the thickness of the oxide (Yurdakul, 2021).

Moreover, the interferometric detection of elastically scattered light by single

BNPs requires high numerical aperture in order to collect as many scattering angles
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as possible. High-NA objectives are being employed on the SP-IRIS setup (NA≥0.4)

with high magnification (20-60X). The illumination scheme is more sophisticated

than what is required for analog measurements, since better particle contrast can be

achieved by engineering the illumination function. On the SP-IRIS, a Köhler illumi-

nation geometry is implemented by conjugating the objective back pupil plane with

an aperture mask in the source plane. This is obtained by implementing a 4-f system

with two lenses of focal length f1=75mm. The mask is an adjustable diaphragm

placed at the output of the integrating sphere. By adjusting the size of the aperture,

the illumination angle can be controlled, up to the maximum angle which will be de-

termined by the numerical aperture of the objective. A scheme of Köhler illumination

geometry as it is implemented on the SP-IRIS is shown in Figure 2·5. An additional

aperture is placed exactly in the middle between the two lenses to minimize stray

radiation coupled into the system.

The interferometric image of sub-wavelength particles will be diffraction limited

according to the equation:

RDL =
λ

2NA
(2.21)

Where RDL is the minimum resolvable size and λ is the wavelength. The other

limiting factor is the pixel size, which - in order to sample twice the diffraction limited

resolution of the system - will need to be smaller than:

dpix ≤
λ

4NA
×M (2.22)

Where M = Mobj/Msys, Mobj being the magnification of the objective and Msys

the magnification of the system. This places a requirement on the camera to be

utilized for nanoparticle detection. For example on a system that uses a 20X objective

with 0.45NA at a 518nm wavelength, the maximum pixel size allowed to visualize
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Figure 2·5: A scheme of the optical configuration of the SP-IRIS.
BF refers to the back-focal plane of the objective. The lenses in the
4f system have a focal length f1 of 75mm. Red and blue dotted lines
indicate conjugate planes.

diffraction limited particles will be dpix = 518nm× 20/(4× 0.45) = 5.75µm.

The SP-IRIS system features a XY-manual stage and a focal-direction both man-

ual and piezometric stage. The manual stage is utilized to move across the surface of

the chip and for gross focusing, while the piezo is utilized for precision focus adjust-

ments and to acquire defocus images of the particles. By acquiring defocus scans of

particles, it is possible to determine their contrast with respect to the background at

different focal planes. As an example, the defocus curve of a 100nm polystyrene bead

immobilized on an IRIS chip is shown in Figure 2·6. The red curves show the defocus

curve of the particle when the surrounding medium is air, while the blue curves refer
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to the same particle when the chamber is filled with PBS, therefore the particle is

immersed in liquid. To simplify, the contrast diminishes when the medium has a

refractive index more similar to that of the particle, and the defocus curve broadens.

Figure 2·6: The defocus curve of a polystyrene bead immobilized on
an IRIS 60nm-SiO2 chip, immersed in air (red curves) and in PBS (blue
curves). The same particle was imaged in each medium four times and
the average curve was calculated (dashed lines).

2.3 Combining analog and digital detection

While high-resolution, high-sensitivity single nanoparticle detection has recently seen

a huge rise in popularity due to the impact it has in the diagnostics and personalized

medicine field, the drug development industry is focusing more and more on small

molecules as the next generation medicines, given the many advantages they bring in

terms of easy access to the cell through the cellular membrane. As detailed above in

Section 4.1, characterization of these chemical compounds in a label-free manner is

equally challenging, due to the minuscule optical signal they produce when accumu-
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lating on the sensor surface. These considerations show a need for a versatile, flexible

and robust platform with the ability to handle very diverse samples without losing

sensitivity and reproducibility.

As detailed in the previous Sections 2.1 and 2.2, in the past decade, the IRIS tech-

nology has seen development along two well defined directions: biomass accumulation

sensing (analog configuration), applied to kinetic analysis of proteins, antibodies, and

oligonucleotides; and single nanoparticle detection and phenotyping (digital config-

uration), for specific characterization of viruses, bacteria and extracellular vesicles.

However, in a sense, the analog configuration is simply a generalization of the digi-

tal one: the increase in planar reflectance that we define as analog signal is in fact

light scattering by single molecules that interferes constructively. In Figure 2·7 we

schematically show how the analog signal produced by molecular accumulation can

be seen as a generalization of the digital signal generated by single particles. As one

of the main objectives of this dissertation, we have explored this concept by merging

these two configurations together on the same platform, creating a new instrument,

the hybrid IRIS system (h-IRIS). By optimizing illumination and collection optics, as

well as illumination wavelength and oxide thickness, analog and digital measurements

were successfully performed on the h-IRIS with minimal hardware adjustments, as

presented in the Results Section (Section 4.3). In this Section, on the other hand, we

will go through the optimization steps that were performed in order to obtain such

results.

In the past, each configuration of the IRIS instrument was developed with a dif-

ferent optical configuration, as well as specific hardware and software characteristics.

Generally, for biomass accumulation measurements (analog configuration), low mag-

nification, low-numerical aperture (NA) objectives were utilized, in order to maxi-

mize the field of view and minimize non-normal reflection. Having a large field of
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Figure 2·7: A simplified scheme of the signal measured on 1) the
standard analog IRIS system and 2) the h-IRIS system in its analog
configuration.

view (FOV) is essential for multiplexing: the field of view on the current IRIS analog

instrument is 5mm x 7mm, and with an average diameter of a microarray spot of

100µm, this FOV allows for monitoring of thousands of spots at the same time. This

translates to hundreds of possible probe conditions that can be monitored simulta-

neously. The SiO2 layer on analog IRIS chip needs to be >100nm in thickness, and

is engineered in order to maximize the changes reflectance due to biomass accumu-

lation at an LED wavelength, typically blue. Moreover, for low-magnification analog

measurements, a simple illumination scheme such as critical illumination can be uti-

lized, while for digital measurements a more sophisticated illumination scheme such

as Köhler illumination is required, to avoid artifacts caused by imaging the source

onto the image plane.

As mentioned above, the final goal of the hybrid IRIS (h-IRIS) platform is to

detect the analog signal produced by nanoparticles (NPs) rapidly accumulating on

the sensor surface, particularly when they do not produce a carpet, i.e., the surface
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of the spot is not fully covered, by exploiting the constructive interference produced

by adjecent NPs. A simplified scheme of the signal measured on the h-IRIS system is

reported in Figure 2·7. Such measurements are performed with a low-NA objective

and full NA illumination. Then, the nanoparticles are imaged in a digital fashion by

switching to a high-NA objective and low-NA illumination. This technique allows

for measuring the affinity of low concentrated samples to their antibodies by NP-

labeling, in a multiplexed fashion, and then ’digitally’ count and phenotype the single

NPs. So far, the main application of this method is the characterization of mAb-

GNP complexes for lateral flow assays; however, since on the analog IRIS sensor we

achieved characterization of EVs, and then imaged them on the SP-IRIS system, a

new application of the h-IRIS could be characterization and imaging of EVs and other

biological NPs.

Practically, when switching from high to low collection NA for nanoparticle de-

tection, both resolution and contrast are lost, for two main reasons: first of all, the

minimum resolvable size RDL (Eq. 2.21) is increased; additionally, much less light is

collected and at smaller angles, therefore reducing the total acquired intensity and

favoring forward scattering. Since the scattering from a single NP is approximated

as a spherical wave, not being able to collect light at large angles clearly reduces

the measurable scattered signal with respect to the planar background. Here, loss

in resolution is not important for analog signal measurements. However, loss in con-

trast is, and therefore maximizing the NA is still crucial. Figure 2·8 is a photo of

the physical h-IRIS setup, and in the next few sections, we will detail its features, in

order to summarize the main hardware adjustments that were performed to build the

versatile platform.
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Figure 2·8: A photo of the physical h-IRIS platform.

2.3.1 Illumination on the hybrid IRIS system

On the h-IRIS platform, Köhler illumination geometry was implemented. In addition

to the many advantages it provides in terms of visualization improvement for NP

scattering, this illumination scheme is also effective for analog measurements since it

improves illumination uniformity.

Furthermore, it has been demonstrated that the best interferometric contrast for

single NPs on the IRIS system is obtainable at low illumination NA, due to the

preferred excitation in that case of horizontally-oriented dipoles, which generate a

more intense scattering signal in the near-normal direction (Avci et al., 2017). On

the other hand, the analog system operates in a shot-noise limited regime (Section

3.1), and for this reason it is essential to maximize the total acquired signal in order

to minimize the noise. The best way to increase the acquired reflectance signal is

to maximize the total light that is shined on the chip, and that requires full NA

illumination. Therefore, one of the minimum hardware adjustments necessary to

switch from analog to digital measurements on the h-IRIS is to adjust the pupil mask

placed in front of the integrating sphere, reducing it from 13mm in diameter for analog
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measurements (maximum) to around 3mm for digital.

In terms of choosing the best LED wavelength for hybrid measurements, simula-

tions show that green LED light (center λ=518nm) is the best compromise between

decent biomass accumulation sensitivity and high single-nanoparticle contrast, es-

pecially for gold nanoparticles (GNPs). We optimized the system for single GNP

detection since our main application of the h-IRIS platform is the analog-to-digital

study of GNP-mAb complexes. The simulation results are shown and further com-

mented in Section 3.2.3.

2.3.2 Camera and objective selection

Having a small pixel size is crucial when running single-NP detection experiments. As

defined in Equation 2.22, there is a limiting pixel size above which diffraction-limited

NPs are not discernible anymore. On the other hand, for kinetic measurements,

the limiting factor is the acquisition speed: for the same camera sensor size, smaller

pixels cause extra computational effort, thus resulting in slower acquisition times. As

we will explain in detail in Section 3.1, the best way to reduce the noise on the IRIS

system is by spatial and temporal averaging. Particularly, temporal averaging consists

in averaging together multiple acquired frames to obtain a single image. For kinetic

experiments, we have demonstrated that averaging 100 frames is an ideal compromise

between major noise reduction and maintaining good temporal resolution (Chiodi

et al., 2020a). Since most of the molecular interactions we have investigated happen

on a timescale on the order of 30 seconds to ten minutes, a good time resolution would

be in the order of seconds. A camera sensor that has a frame rate of 50fps would

allow us to acquire an averaged image every 2s, which is acceptable.

Therefore, in order to combine single NP resolution with kinetic measurements,

it is necessary to compromise on a camera with a large enough sensor size in order to

achieve multiplexing for kinetic measurements, and whose time resolution does not
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drop below 50 frames per second (fps); at the same time, the pixel size should be

small enough to allow for resolution of diffraction-limited particles. The table below

summarizes the requirements of the h-IRIS system, together with the characteristics

of the currently employed cameras for analog and digital detection, respectively.

Table 2.1: Camera comparison of the GS3-U3-51S5M (standard for
digital configuration) and the BFS-U3-17S7M (standard for analog con-
figuration).

h-IRIS GS3-U3-51S5M BFS-U3-17S7M

requirements (Std digital) (Std analog)

FWC (electrons) Largest possible 10361 98645
FPS (frames/s) ≥50 38 196
Resolution (MPixels) Largest possible 5.0 1.7
Sensor Size (mm2) Largest possible 8.45 x 7.07 14.4 x 9.90
Pixel Size (µm) ≤5.75 3.45 9.00

As one can see from the table above, neither the standard (std) digital or analog

configuration cameras satisfy all the requirements: the pixel size on the digital sensor

is very small and therefore the frame rate is far too slow. Moreover, the sensor size is

much smaller than what is normally used for analog detection, reducing multiplexing

capabilities for kinetic measurements. On the other hand, the pixel size on the std

analog sensor would not allow to resolve single scattering nanoparticles with a 20X,

0.45NA objective. After a meticulous search and optimization of all the parameters,

we consider a good compromise between the characteristics of these two cameras to

be the BlackFly BFS-U3-70S7M, the features of which are summarized below.
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Table 2.2: Comparison of the h-IRIS system requirements in terms of
camera sensor, with the characteristics of the chosen camera BFS-U3-
70S7M.

h-IRIS BFS-U3-70S7M

requirements (Chosen sensor)

FWC (electrons) Largest possible 25420
FPS (frames/s) ≥30 51
Resolution (MPixels) Largest possible 7.1
Sensor Size (mm2) Largest possible 14.4 x 9.90
Pixel Size (µm) ≤5.75 4.5

This sensor is ideal for our purpose of adapting a system to do both single NP de-

tection as well as multiplexed kinetic measurements: it has a decent full well capacity,

not as large as on the analog sensor but still more than two times larger than that of

the standard digital sensor. Moreover, its pixel size is small enough to resolve diffrac-

tion limited particles on a 20X objective with 0.45NA, but not too small - allowing

for a decently fast frame rate, 51 fps, satisfying the time resolution requirement for

kinetic measurements.

For what concerns objective selection, there are a few incompatibilities between

the two applications that require that a different objective is used for each of them.

For kinetic measurements, low magnification is needed as multiplexing is essential.

Lower NA is acceptable since we are approximating illumination with normal in-

cidence, however, on this system it is necessary to have a high enough NA that

allows to acquire the scattering signal produced by single NPs in an analog fashion.

Simulations shown in Section 3.2.3 demonstrate that with an NA of 0.15 (5X objec-

tive) single NPs are non-resolvable but the bulk scattering signal is still measurable.

Therefore, for analog measurements, our objective choice landed on a 5X, 0.15 NA

objective from Nikon (MUE12050) while for digital measurements we utilized a 20X,

0.45NA objective (MRH08230). The latter was chosen because it allows us to vi-
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sualize diffraction-limited particles and still preserve a good field of view for digital

imaging: approximately 3mm x 2 mm, allowing to visualize four 400µm diameter

spots simultaneously.

2.4 State of the art of label free detection and competing tech-
nologies

In the context of label-free detection, kinetic measurements are utilized to evaluate

the affinity of two molecules binding to one another, and biomass accumulation is

translated to an analog signal by a transduction mechanism. In most cases, the mea-

surement is based on detecting a small variation of an optical parameter close to the

surface of the sensor, such as the refractive index. Sensors whose working principle

is based on such a measurement are referred to as optical biosensors. However, there

are few examples in the literature of sensors based on the modification of mechan-

ical properties, such as the tension of a cell membrane (Zhang et al., 2018), or the

oscillations of piezoelectric crystals (Pohanka, 2018).

In general, there are a few label-free optical biosensors that are well established in

the field, and are widely utilized both in academic and industrial research for molec-

ular discovery. The gold standard in this sense is Surface Plasmon Resonance (SPR).

SPR sensors are label-free optical sensing tools that base their working principle on

the resonant coupling of an evanescent field with the plasmonic excitation of the

electrons in a gold layer, in order to measure local refractive index variations.

Practically, an SPR biosensor is constituted by a gold-coated glass prism that is

functionalized with a reactive hydrogel layer where probe molecules are covalently

immobilized. During an SPR measurement, a solution containing a relevant con-

centration of target analytes is flowed across the surface of the sensor thanks to a

microfluidic system that converges to a fluidic chamber. This way, the gold layer is
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enclosed between the solution and the glass, creating two metal-dielectric interfaces.

To detect refractive index variations, p-polarized monochromatic light is shined at a

specific angle θSPR on one side of the prism, and the reflected light is measured on

the other side of the prism by an array of photodetectors, as shown in in Figure 2·9.

In this configuration, light propagates from a medium with higher refractive

index (nglass) to a medium with lower refractive index (nsolution), and total inter-

nal reflection (TIR) can be achieved for all incidence angles above a critical angle

θc = nsolution/nglass. Since θSPR > θc, this generates an evanescent field which ex-

tends into the solution with exponentially-decaying amplitude. The evanenscent field

is represented in Figure 2·9 by a continuous black line.

Figure 2·9: A simplified scheme showing the working principle of a
Surface Plasmon Resonance (SPR) sensor.

When phase-matching conditions are met, the evanescent field is strongly absorbed

by the ≈50nm-thick gold layer, thanks to the abundance of free electrons in the metal

(’electron plasma’ = plasmon) (Schasfoort, 2017). The absorption generates a ’dip’
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in the measured reflected intensity on the other side of the prism, measured by the

photodetectors. The specific angle of incidence θSPR which meets the phase-matching

conditions depends very strongly on the refractive index in proximity of the gold layer,

as described below.

Briefly, when one considers the wavevectors of the incident and evanescent fields

respectively, Snell’s law requires the components parallel to the metal-dielectric in-

terface to match (kx,i = kx,ev = kx when considering xy as the plane of incidence as

shown in Figure 2·9). Therefore, the p-component of the wavevector kp,ev assumes

the form (Tang et al., 2010):

kp,ev =
√
k2x + k2y,ev =

2π

λ
nglass sin(θi) (2.23)

On the other hand, by applying Fresnel equations for a three-layer interface, the

wavevector at which it is possible to achieve plasmon excitation for a thin gold layer

in the SPR configuration (glass-gold-solution) can be calculated (Tang et al., 2010;

Schasfoort, 2017; Kurihara and Suzuki, 2002):

kp,PE =
2π

λ

√
n2
solutionn

2
gold

n2
solution + n2

gold

(2.24)

Where kp,PE stands for Plasmon Excitation (PE). By imposing phase matching

at the interfaces, one can derive the optimal incidence angle θi = θSPR to obtain

resonant coupling of the evanescent field with the plasmon excitation (Tang et al.,

2010; Schasfoort, 2017; Kurihara and Suzuki, 2002):

θSPR = sin−1

(
1

nglass

√
n2
solutionn

2
gold

n2
solution + n2

gold

)
(2.25)

SPR biosensors provide real-time monitoring of interactions of a wide range of an-

alytes, enabling fast, sensitive and specific kinetic measurements. In the past decade,



37

SPR platforms have been utilized for the detection of viruses, bacteria, biosimilar

molecules and proteins. Studies show that accurate and early recognition of infec-

tious diseases biomarkers can be performed in real-time (Saylan et al., 2019). Today,

these biosensors are utilized in many areas, including basic biochemical studies such

as interactions between protein and protein, or DNA-DNA, in clinical, environmental,

and agricultural settings (Bakhshpour and Denizli, 2020).

For many applications, however, SPR is not an ideal solution, as there are sev-

eral disadvantages to the technique. First of all, measuring kinetics of low molecular

weight (LMW) analytes, also defined as small molecules (SMs, MW<1kDa, (Piehler

et al., 1996)) is not ideal on SPR, since the surface chemistry utlilized on SPR chips

requires probe molecules to be immobilized in thick hydrogels. This helps increas-

ing the binding signal by creating multiple layers of probes, but, on the other hand,

it causes most reactions to be diffusion limited (Li et al., 2015; Nikolovska-Coleska,

2015). Moreover, SPR is incredibly sensitive to environmental conditions: measure-

ments can be affected by temperature or pH shifts, vibrations, and slight changes in

the refractive index of the running solution (General Electrics Company, 2012). The

latter is a challenging issue when working with small molecules, since low-molecular

weight compounds are usually insoluble in acqueous buffers, therefore high-refractive

index solvents are needed to dissolve them. One of the most commonly utilized sol-

vents is dimethyl sulfoxide (DMSO), which has a refractive index n=1.479 at visible

wavelength - much higher than that of the typical running buffer, phosphate buffer

saline (PBS - n=1.335). The signal generated on SPR by a solution containing 1%

DMSO is hundred times larger than the signal generated by binding of low molecular

weight analytes (General Electrics Company, 2012). These difficulties, together with

the complexity of operating an SPR instrument and the elevated cost of both the

system and its consumables, draw attention to the need for a simpler, more robust
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and cheaper method for biomolecular kinetic analysis.

Another example of a biosensor widely utilized and well established in the field

is Bio-Layer Interferometry (BLI). Similar to the IRIS, the working principle of BLI

sensors is also based on interferometry. However, in this case, probe molecules are

immobilized on the tip of an optical fiber that contains an internal reference reflecting

layer. The functionalized fiber tip is submerged in a microwell plate containing the

analyte solution. White light is coupled to the fiber, and reflected light from the fiber

tip is acquired. Measurable reflectance shifts occur when analyte molecules bind to

the fiber tip. Then, the tip is moved to a different well that contains an analyte-free

buffer solution for the wash step. A graphical scheme of the working principle of BLI

is shown in Figure 2·10.

Figure 2·10: A simplified scheme showing the working principle of a
Bio-Layer Interferometry (BLI) sensor.
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The main advantages of BLI are its ease of operation, its reduced cost with respect

to SPR, its high throughput, and the fact that it is compatible with well-plate systems.

However, diffusion limit remains a problem since the analyte diffusion obtained by

shaking and rocking the well plate is not as effective as flowing an analyte solution

across the surface. Moreover, functionalizing fiber tips can be cumbersome and time

consuming. And finally, when moving the fiber tip from one well to another, an

artifact in the measured signal appears, which requires post-processing of the data in

order to be removed.

In terms of bulk effect corrections, both SPR and BLI utilize a negative channel,

or a negative well, which has an environment similar in refractive index to that of the

active channel, and where a blank solution is flowed (or added for BLI). Such blank

signal is subtracted from the kinetic data in post-processing. This is not an ideal

approach, since the outcome is extremely vulnerable to slight differences between the

active and inactive well or channel. While the IRIS system is not as susceptible to

bulk effect as these two techniques, when working with small molecules, even the

slightest background change can affect the quality of the signal. Therefore, we have

implemented a method for bulk-free measurements that will be explained in detail

in Section 3.4.1. Moreover, functionalization of the IRIS chip is much simpler with

respect to both SPR and BLI consumables. A simple polymeric coating is enough

to produce a monolayer of probe molecules, that will be stably immobilized while

preserving their structure. A more detailed explanation of how surface chemistry can

affect kinetic measurements will be given in Section 3.5.
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Chapter 3

System Optimization

3.1 Noise Analysis

3.1.1 Shot noise limited operation and averaging

Building an instrument that can characterize targets with very different biophysical

properties requires optimization of all possible parameters, in order to perform accu-

rate measurements at both extremes of the molecular weight spectrum. Particularly,

detection of small molecules (SMs) in a label-free fashion requires extremely high

sensitivity, as we discussed in Section 1.2.1. Here, we will review the main limiting

factors to the sensitivity of the IRIS, as well as the ultimate sensitivity limit in terms

of physical properties of the system.

The first element to consider when analyzing the sensitivity of an imaging system

is the camera sensor; the sensor currently employed on the IRIS is a scientific grade

CMOS camera. Generally, noise sources in CMOS sensors include dark current noise

(σD), read noise (σR), fixed pattern noise (σF ), and shot noise (σS). Dark current

noise is temperature dependent, and is defined as the noise produced by thermal

excitation of the electrons in the junction. It can be quantified as dark current (ID)

times the exposure time (t): σD =
√
ID × t This type of noise can be relevant when

the sensor is overheated, but is generally negligible if the camera does not exceed

room temperature during experiments. Read noise is dependent on sensor design,

particularly the production of the electronic signal, while fixed pattern noise depends

on the fabrication quality of the sensor chip; scientific grade cameras are typically
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designed and carefully fabricated to minimize both these noise sources. Finally, shot

noise originates from the discrete nature of light and electric charge, and this source

of noise can often dominate in bright field imaging. The effective noise results from

combining the contributions from each of these noise sources:

σeff =
√
σ2
D + σ2

R + σ2
F + σ2

S (3.1)

In the product specifications of the FLIR BFS-U3-17S7M camera (used in the IRIS

system), the sum of read noise and dark noise values is given as 3.1x10-4 Noise/Signal.

To experimentally verify this value, we measured the level of noise produced in the

sensor when there is no light impacting it for two hours. The measured noise level was

around 10-5 Noise/Signal (Marn, 2021), which is negligible compared to shot noise.

This demonstrates that the signal acquired by the IRIS is shot-noise limited.

Shot noise is defined as the statistical noise associated with the arrival of photons

at the sensor, and their conversion to electrons. Due to the discrete nature of light,

the occurrence of the event of photons hitting the sensor can be described by a

probability distribution, particularly by a Poisson model, the same that describes

the probability distribution of coin tosses. The signal to noise ratio (SNR) in a

Poisson distribution increases as the square root of the number of events
√
N , where

N in this case is the number of photons hitting the sensor; thus, the easiest way to

improve the SNR is to increase the amount of light on the camera. In CMOS sensors,

the maximum collectable signal corresponds to the full well capacity (FWC) of the

sensor’s pixels. Shot noise cannot be infinitely reduced, and even the best camera

sensors available on the market are affected by it, especially since there is a limit to

the largest obtainable value for the FWC. Particularly, in order for us to achieve small

molecule sensitivity on the IRIS system, selecting a sensor with a very large FWC

was not enough. We therefore implemented an additional SNR improvement method
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by performing temporal and spatial, or ensemble, averaging of signal collected by

adjacent pixels.

Figure 3·1: A graphical representation of a) temporal and b) ensemble
averaging, as the two main methods utilized on the IRIS platform to
improve the SNR. The insets in the binding curves in b) show the
level of noise before (blue) and after (burgundy) performing ensemble
averaging.

A temporally averaged signal value is obtained by averaging the intensity from the

same pixel in subsequently acquired frames, while a ensemble average is performed

by averaging the signal acquired from adjacent pixels on the same image. Practically,

temporal averaging is also referred to as frame averaging, which in our case is carried

out during acquisition, and consists of acquiring a predefined number of frames (Nf ),

summing the acquired intensity, then dividing it by Nf , obtaining a single, averaged

image. The frame rate of the camera, together with the amount of performed tem-
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poral averaging, defines the temporal resolution of the system. On the other hand,

an example of ensemble averaging on the IRIS is the average of the signal from pix-

els belonging to the same probe spot. When there are more spots with the same

probe condition on the surface, signal from identical spots can also be averaged. An

illustration of the meaning of ensemble and temporal averaging is shown in Figure

3·1.

Since we are working in shot-noise limited operation, the noise is quantified as the

standard deviation over the signal. Figure 3·2a and 3·2b show the theoretical noise

reduction expected from temporal and ensemble averaging in a shot noise-dominated

model (blue dashed lines), as well as the experimentally measured noise reduction

(black lines). Figure 3·2a depicts the noise-to-signal ratio for one single pixel when

an increasing number of frames is averaged, confirming the dependence of the noise

on
√
N . In our case, the optimal number of averaged frames was a hundred frames.

This number was obtained as a compromise between minimizing the noise and not

impacting time resolution. On the other hand, Figure 3·2b reports the trend of the

noise-to-signal level when all the pixels belonging to an increasing number of 100µm

microarray spots (5024 pixels each) are averaged. This noise reduction is calculated

on top of 100 averaged frames for every considered spot. It has to be pointed out

that the deviation of the experimental trend from the theoretical model in Figure 3·2b

should be attributed to the fact that the spots are not identical to each other, and

also to the noise generated by particles and small bubbles passing across the surface

of the chip through solution flow.
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Figure 3·2: The effect of averaging on the IRIS signal. Theoretical and
experimental reduction in the noise level due to (a) temporal averaging
and (b) ensemble averaging. Reproduced with permission from (Chiodi
et al., 2020a).

This results shows the effect of averaging on the SNR of acquired data on the

shot-noise limited IRIS system, highlighting the importance of optimizing averaging

parameters when running small molecule detection experiments. Results obtained by

applying this model to SMs characterization data are shown in Section 4.1.

3.1.2 Ultimate sensitivity limit

In a shot-noise dominated model, the performances of the sensor strictly depend on

the available hardware. Not only does the FWC of the camera sensor play a crucial

role, but also its frame rate and field of view, since those two characteristics influence

our capabilities to perform ensemble and temporal averaging. Moreover, the radiance

of the available LEDs limits the amount of light that we can shine on our sensor,

posing another limit in terms of how much signal can be collected. Even if a camera

with an extremely large FWC existed, we would still be limited by the performances

of the LED source.
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Here, we would like to calculate what would be the ultimate limit in sensitivity

of the IRIS platform by considering ideal hardware (LEDs with maximum possible

power, minimized losses, camera with the largest possible FWC). What would be the

limiting factor in that case?

First, we will remove the limit on the FWC of the camera: we will hypothesize

using a camera with an unlimited FWC, thus able to potentially collect an enormous

amount of signal. In that case, the maximum signal we can acquire for one frame

will be limited by the shutter time, which will limit our time resolution, and by the

radiance of the LED source.

Ideally, if we could irradiate our chip with an incredibly large amount of light in

a small time, the shutter time would not be a limiting factor anymore, but rather the

amount of light we would be able to shine on our chip. We will therefore assume the

chip to be irradiated with a very large amount of light, and ask ourselves what is the

maximum amount of light we can shine on the surface before that becomes a limiting

factor.

We will start by considering the highest power LEDs available at present time on

the market. Visible wavelength LEDs from ThorLabs have a maximum power output

in the order of 1000 mW = 1W (ThorLabs M415L4, Violet). However, some of that

power will be dissipated as heat, and, as it can be found in the LEDs specifications,

the measured irradiance with no focusing measured at 200mm from the source is in the

order of 10µW/mm2. Calculating the radiance of an LED from its intensity measured

at a certain distance can be done by approximating it to a point source emitting

forward, and integrating its emission over the full-width half-maximum (FWHM)

angle given in its specification. In this case, the FWHM angle is 120◦, which results

in a polar angle of 60◦. The area of the irradiated screen will therefore be:



46

A = πR2 = π(d× cos θ

sin θ
)2 (3.2)

A = π
200mm√

3
= 41, 187mm2 (3.3)

Thus the total radiance will be:

10
µW

mm2
× 41, 187mm2 = 412mW (3.4)

Which is around 40% of the maximum LED emitted power. We will now ignore

the losses due to propagating the radiation through the optics, and we will assume to

be focusing all that light in a small spot on the surface of the chip. In our case, the

size of such spot can be calculated by using the field number of the objective, that is

the diameter of the maximum field of view obtainable with that objective multiplied

by its magnification, and can be found in the objective specifications. On the h-IRIS

system, analog measurements are performed with a 5X objective with a field number

of 22mm, therefore the diameter of the maximum obtainable FOV is 22/5 = 4.4mm,

which results in a spot area of π(2.2 mm)2 =15.2mm2.

When focusing light onto a small spot, part of the radiation will contribute to

heat up the irradiated area. The power in mW corresponds to the amount of mJ/s

delivered to the surface. Therefore, the maximum heat produced in a second will be

418mJ. We can calculate how that heat would affect the system. In our case, the

irradiated area is around 15mm2, and is composed of a 1mm-thick layer of glass, a

130µm-thick layer of solution and a 1.5mm-thick silicon chip. Glass and water are

mostly transparent to visible light, therefore most of the radiation is absorbed and

dissipated by the silicon chip. Out of the three materials, silicon is the one with the

lowest heat capacity and greatest heat conductivity, thus it would probably easily

dissipate the heat produced by the light. However, if we imagine that all 418mW are
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focused on a 15.2mm2 area on the silicon chip, that would mean all the heat will be

concentrated on a cylinder of silicon with a base area of 15.2mm2 and a thickness of

1.5mm, which can be converted to mass in grams by using density:

mSi = ρSi × V Si = 2.33
g

cm3
× 0.0228cm3 = 53.1mg (3.5)

The specific heat of silicon is cSi = 0.7Jg−1◦C−1. Using the simple thermodynam-

ics formula for conservation of heat (∆Q = mc∆T ), we find that:

∆T =
0.418J

0.053g × 0.7Jg−1◦C−1
= 11.1◦C (3.6)

So would the surface of the chip increase temperature this fast? Not really, since

silicon has a great thermal conductivity (τSi = 1.3Wcm−1◦C−1) and would dissipate

the heat incredibly fast. Therefore, the heat would certainly propagate through our

chip: we can thus apply the formula above for our entire chip, which was weighed

and measures mchip =0.5±0.01 g.

∆T =
0.418J

0.5g × 0.7Jg−1◦C−1
= 1.18◦C (3.7)

If the chip was isolated, and all the irradiated LED power was focused on it, the

temperature increase it would experience would be ∆T = 1◦C every second. However,

the chip lays on an aluminum chuck (the chip holder fixture) which is a cube of

approximately 5cm-side. Therefore, the heat would dissipate through the metal, at

a speed dictated by the aluminum thermal conductivity, which is even higher than

that of silicon (τAl = 2.39Wcm−1◦C−1). So, a standard LED, even the most powerful

one, assuming no propagation losses, would not be able to heat up our system by an

amount that would cause a problem with the measurements.

Assuming that more powerful LEDs will be produced in the future, we will now



48

calculate how much power is needed to heat up the system to a temperature harmful

for the functionality of the molecules. We will consider a final temperature around

70◦C, since it is above the denaturation temperature of most proteins (Loveday, 2016).

Assuming that the experiment starts at room temperature (25◦C), in order to heat

the chip by 70-25 = 45◦C, the absorbed radiation should produce:

∆Q = (0.5g × 0.7Jg−1◦C−1 + 337.5g × 0.89Jg−1◦C−1)× 45◦C = 13532J (3.8)

Which we can divide by the energy produced by the LED in one second (418mJ),

resulting in ∆t = 9 hours needed to heat up the chuck to that temperature. Con-

sidering that the chuck is connected to the aluminum box enclosing the instrument,

which will also dissipate part of the heat, it would certainly take longer. However, if

we assume that more powerful LEDs will be produced, or to utilize a different light

source, it would be possible that the focused light would heat up the system to a

point that measurements would not be performable. Ultimately, that would pose a

limit to the reachable sensitivity on the IRIS system.

3.1.3 Long-term stability for low kOFF analytes

One other important aspect to consider when optimizing a system for diverse an-

alytes is stability, since several biomolecular interactions at high affinity have very

long dissociation times. Therefore, in order to be able to measure association and

dissociation constants accurately, it is fundamental to have a system that is stable

in time, for running 3-4h long experiments. To make an example, SPR systems are

highly unstable: the laser alignment varies incredibly with environmental factors such

as vibrations and temperature (Wu et al., 2003).

The IRIS system is a very robust platform, mostly insensitive to vibrations and
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temperature shifts, and its long term stability primarily depends on robust optical

setup and on the chosen light source. After a brief warm up period (10 to 30 minutes),

LEDs reach thermal equilibrium and are usually stable for a long time (Della Corte

et al., 2020). Moreover, ThorLabs LEDs have lifetimes of 100,000 hours. This gives

potential to the IRIS platform to be an incredibly time-stable instrument.

In order to practically demonstrate this concept, we have performed a multiplexed,

long dissociation experiment, where we flowed both DNA targets as well as high

affinity, low-kOFF antibodies across the surface of an IRIS chip functionalized with

complementary probes. For these experiments, we immobilized both DNA and human

IgG probes on the substrate. After spotting and blocking, we stabilized the surface of

the chip with PBS for five minutes, then we ran the complementary molecules, an anti-

human IgG at 20nM concentration, which bound to the IgG probes, and the surface

probe-matching DNA sequence at 1µM, which obviously bound to the DNA probes.

We measured the dissociation rate over three hours. The results of the experiment are

shown in Figure 3·3a. As expected, DNA dissociation over the analyzed time period

is negligible, while the antibody dissociation rate is accurately measurable, and was

estimated to be kOFF = (1.317 ± 0.002) × 10−5 s−1 (blue fit line). In this case, the

estimated association constant is kON = (2.132 ± 0.009) × 105 s−1M−1 (red fit line),

which leads to a value for the equilibrium constant ofKd = kOFF/kON = 61.8±0.4pM.

Figure 3·3b shows an inset of the measurement over one hour, the typical duration of

a biosensing experiment with other techniques. As it can be observed in the graph,

the dissociation of the antibody is almost negligible on such a short timescale, leading

to inaccurate kOFF measurements. Using the MATLAB curve fitting tool, we fitted

the dissociation data on such time window, obtaining a similar but less precise result

(kOFF = (1.58± 0.01)× 10−5 s−1). Figure 3·3c shows the fitted dissociation curve on

the entire 3h dissociation period.
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Figure 3·3: Multiplexed measurement of DNA and antibody bind-
ing kinetics on long dissociation timescales. Inset b) shows the curve
cropped on a 60-minutes time window and c) shows the fitting of the
antibody dissociation phase.

3.2 Four-color imaging and wavelength optimization

The working principle of the IRIS system is based on determining the thickness of a

thin layered substrate by using light at different wavelengths. However, continuous

acquisition at multiple wavelengths causes issues in terms of stability, since it requires

LEDs to be turned on and off repeatedly. Additionally, fitting the multi-wavelength

data points to the reflectance equation for each acquired image is computationally

heavy, and storing multiple images for each time point is cumbersome, as well as

affecting the time resolution.

In the past, our group has demonstrated that acquiring a single multicolor image
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at the beginning of the experiment is sufficient to create a reflectance look-up table,

which can then be applied to single-wavelength data under the assumption that the

increase in thickness generates a linear reflectance response at that wavelength (Sev-

enler and Ünlü, 2016). We have demonstrated that this method can be improved by

using a color camera, as discussed below in Section 3.2.1.

The linearity assumption, however, is only valid for a certain biomass accumula-

tion range, which depends on the wavelength used. For example, with blue wavelength

(452nm) - the standard wavelength used for analog measurements - the assumption

only applies for a total biomass accumulation value that does not exceed 10 nm in

thickness - a condition that is satisfied for most proteins, antibodies and oligonu-

cleotides binding to our sensor. The approximation though cannot be applied if the

studied analyte is a vesicle or a nanoparticle, since such samples would form a much

thicker layer on the sensor. Therefore, in Section 3.2.2 we will discuss how to optimize

wavelength choice for detecting large analytes in an analog fashion.

Finally, in Section 3.2.3, we will talk about analog detection of spaced out nanopar-

ticles and show the results from simulations using the Boundary Element Method

(BEM) software.

3.2.1 Thickness measurements with color camera

For small molecule measurements, it is crucial to precisely know the thickness of the

silicon oxide substrate, to perform bulk effect removal and to achieve sensitive mea-

surements, as further detailed in Section 3.4.1. In general, estimating the thickness of

the oxide layer is important in order to determine the exact amount of biomass accu-

mulating on the chip surface. On the first generation of the IRIS, a multicolor image

was acquired with four-color LEDs at each time point, so that the thickness d of the

substrate could be precisely calculated for every reflectance datapoint. This method

resulted in time-consuming acquisitions and was computationally heavy. Moreover,
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performing the thickness calculation at each datapoint is unnecessary once the initial

thickness of the oxide is a known parameter of the measurements. As a matter of

fact, calculating the biomass accumulation value from the reflectance values at a sin-

gle wavelength is simple if the initial thickness is known and if the reflectance-biomass

correlation is assumed to be linear, which is true for molecular binding (∆d<10nm).

More recently, the system was improved so that a single four-color image was

acquired at the beginning of each experiment, which was then used to generate a look-

up table for single wavelength reflectance-to-thickness conversion. Here, we propose

an even more simplified version of that method, where a white light source substitutes

the multicolor LED, and the sensor is a color (RGB) camera. With the proposed

method, the thickness measurement is performed on a separate, very straightforward

IRIS platform, which provides in-advance information on the substrate thickness; this

allows for chip pre-selection when a particular oxide thickness is needed, for example

for bulk effect free measurements.

The thickness measurement platform features the same optical path as the analog

IRIS system, in a vertical configuration; a broad wavelength visible light source (white

light); and a color RGB camera sensor (FLIR BlackFly BFS-U3-16S2C-CS). The

white light source allows for faster and simpler acquisition: only one image per chip

is needed, while four images were necessary with the single-channel sensor. Moreover,

the exposure time is automatically adjusted and normalized by the RGB sensor at

all wavelengths.

The software is a custom MATLAB plugin that takes the reflectance RGB values

and then utilizes the reflectance equation to calculate the thickness of the oxide (Eq.

2.7). Figure 3·4 shows a picture of the system as it is now. The white light source

has not been incorporated yet, instead the platform is currently utilizing multicolor

LEDs that are all being turned on at the same time.



53

Figure 3·4: The chip thickness measurement platform. a) A graphical
scheme of the optical path and components and b) a photograph of the
physical instrument.

3.2.2 Wavelength simulations for large analytes

Large analytes such as biological nanoparticles (BNPs) can be complex to study at

an analog level. The reason for that is the heterogeneity in their structure and size,

which results in a ’rough’, non-uniform layer of biomass on the surface of the sensor.

Small extracellular vesicles (SEVs) are a collection of bi-lipidic membranous BNPs

that range in size between 30-100nm, and in order to study their kinetics we have

employed the analog IRIS sensor as detailed in Section 4.2.1.

The standard wavelength utilized to measure biomass accumulation on the IRIS

is blue (452 nm). The reason for this choice is that reflectance at blue wavelength

has the maximum variation for small amounts of molecular binding, that is, it is

the wavelength that provides the most sensitive measurements. However, when the

thickness increases above a certain value, this high sensitivity is partially lost: for

thicknesses above 130nm (110nm SiO2 + 30nm accumulated material), the derivative
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of the reflectance curve at blue wavelength gets closer and closer to zero, meaning that

for increases in thicknesses there will be a very small increase in signal. Therefore, it

is not the ideal wavelength when it comes to studying large analytes.

Figure 3·5: Simulations of the change in reflectance for increasing
amounts of biomass accumulation on an IRIS chip, at the four wave-
lengths corresponding to the center wavelengths of the employed LEDs.

Simulations shown in Figure 3·5 demonstrate that green wavelength (center λ =

518nm) is the best choice for studying larger analytes at the analog level, particu-

larly small extracellular vesicles (SEVs), whose size range is between 30-100nm, with

the majority of them concentrated in the range 40-70nm (Section 4.2.1, Figure 4·9).

Indeed, Figure 3·5 shows that, for green wavelength, the increase in reflectance with

biomass accumulation is positive for larger thickness values: the derivative of the

reflectance equation is larger than zero for biomass accumulation values up to 64nm,

with respect to blue (center λ=452nm), where it’s positive only up to 42nm. This
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result demonstrates that a better signal to mass density correlation can be obtained

for large analytes such as EVs when using green LED light.

3.2.3 Nanoparticle scattering simulations

As discussed above, one of the conditions for visualizing the signal produced by

nanoparticles at the analog level, in most cases, is to obtain a uniform carpet of

particles captured on the sensors’ surface. This only happens under precise condi-

tions - high particle concentration in the sample, low steric hindrance. Here, we will

aim to study gold nanoparticle complexes (GNPs) at the analog level. The motiva-

tion for these studies arises from the possibility of simulating real-time lateral flow

assays, as well as to study the behavior of complex analytes, such as antibody-particle

complexes (mAb-GNPs), as we mentioned in Section 1.2.3.

However, reaching the condition of capturing a full carpet of mAb-GNPs on the

surface of an IRIS chip is in practice very challenging: the concentration of the

particles must be very high (>1010 part/mL), which in most cases is impossible

due to the small amount of sample available. Moreover, surface probes’ conditions

have to be optimized and steric hindrance must be minimized. As shown in the

Results Section 4.3, at the tested concentrations, GNPs were never observed to form

a full carpet, always keeping a minimum of one-nanoparticle distance between one

another. A reason for this behavior might reside in the combination of polymer

and antibody molecules that coat the GNPs’ surface, causing steric hindrance and

repulsion, resulting in a larger average distance between particles.

However, the scattering signal produced by gold nanoparticles is large, specifi-

cally, it is orders of magnitude larger than that produced by EVs or other biological

nanoparticles. Thus, while in the case of EVs a full NPs carpet was needed in order

to measure an analog signal, it is possible that for GNPs such condition might not be

necessary. In other words, we studied the possibility of measuring the analog signal
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produced by GNPs that accumulate without fully covering the surface. Particularly,

we aim at maximizing constructive interference by studying the dependance of the

measured intensity on the thickness of the oxide layer, the numerical aperture of the

system and the average distance between the particles. In the following paragraphs,

we will show simulation results obtained with the MATLAB toolbox MNPBEM,

which we used to simulate the signal produced by single gold nanoparticles in a two

dimensional space on our sensor.

Illumination wavelength should be the first parameter to be discussed. However,

we have already determined in the previous section that the best illumination wave-

length for large analytes is green, therefore we will fix the value of λ = 518nm and

we will begin our discussion with some considerations regarding the thickness of the

oxide layer. Experiments for detecting mAb-GNPs complexes on the h-IRIS system

have to simulate sandwich assays, where a protein is captured by the active sensor

first, then a mAb-GNP complex binds to the captured target. Thus, the chosen ox-

ide thickness must work for detecting signal produced by accumulated molecules as

well as nanoparticles. For analog measurements of biomolecules, the best thickness

has been determined to be 110nm of oxide. On the other hand, for single parti-

cle detection, the chosen thickness is usually 60nm of oxide, because it provides the

maximum NP-background contrast (Yurdakul, 2021). In order to determine if one of

these thicknesses would work for hybrid experiments, we have simulated the contrast

generated by a single 80nm GNP on an IRIS chip with various oxide thicknesses. The

results of the simulations are shown below in Figure 3·6. The surrounding medium

was assumed to be PBS, which is the standard buffer used in the experiments (n =

1.335).

As expected, simulations show that the best contrast (Smax−Smin) is achieved for

60nm of SiO2. However, the signal generated on 110nm of SiO2 is still high, and the
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Figure 3·6: Simulations of the signal produced by a single GNP cap-
tured on the surface of an IRIS chip, assuming an elevation of 10nm
from the surface (polymer and capture probe), for a range of oxide
thicknesses.

contrast is not excessively low, enabling digital measurements. Therefore, 110nm of

SiO2 could definitely be a fair choice for both analog and digital detection of GNPs.

Next, we verified how the measured scattering signal changes when varying the

numerical aperture of the system. Figure 3·7 shows the loss in resolution when moving

from NA=0.7 (Figure 3·7a) to NA=0.45 (Figure 3·7b) for digital detection of a single

gold nanoparticle. Here, the conditions are the ones described above (PBS buffer

medium, particle elevated 10nm above the surface of a 110nm SiO2 IRIS chip), and

the simulated illumination is at green wavelength (λ = 518nm). The particle is

shown at the focal position that yields the maximum contrast. Despite the loss in

resolution at the edges, the particle is still clearly resolvable with 0.45 NA, justifying

the use of a 0.45 NA, 20X objective for digital detection on the h-IRIS. Moreover,
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in Figure 3·7c, the signal produced by a single particle in the analog configuration

is shown (NA=0.15). As expected, the contrast is incredibly low, and the particle is

non resolvable. Additionally, the reflectance does not change when varying the focal

position.

Figure 3·7: Simulations of the signal produced by a single GNP cap-
tured on the surface of an IRIS chip for different numerical aperture
values: a) NA = 0.7 b) NA = 0.45 c) NA=0.15. The color axes indicate
the total scattered signal (Sscat + Sref ).

We then simulated several particles on the surface of a 110nm-SiO2 IRIS chip,

to study the constructive interference generated by neighboring particles. In or-

der to mimic a real GNPs binding experiment, we simulated a relatively large area

(0.16mm2) on the IRIS chip, and distributed numerous GNPs on the surface in a

random configuration. In order for these simulations to be realistic, a large number

of particles needs to be considered: our best estimate, from experimental results is

between 5000-50’000 part/mm2. Using the BEM tool, it is possible to simulate the

signal produced by each of the particles individually at a different position, randomly

chosen inside the selected area. However, simulating such a large number of individual

particles is computationally very heavy. Thus, we assumed all GNPs to be identical,

and - under this assumption - it was possible to calculate the electric field generated

by a single particle, then move the particle across the image, in different positions,

recursively summing the scattered electric fields.
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We started by simulating the electric field generated by a single particle placed in

the center of a 400µm2 square on the surface of the IRIS chip. We made sure the scat-

tered field dropped to zero at the edges, to avoid border artifacts. Then, we created a

0.16mm2 (160,000µm2) dark image where we randomly positioned the single-particle

matrix, summing the generated electric field at each iteration, with an exclusion con-

dition on occupation of the same pixels. Finally, we calculated the total measured

intensity by taking the square modulus of the sum of the scattered and reference field.

When positioning 1000 particles in such area, the particle density is 6000part/mm2.

We simulated this condition for the two numerical aperture values used for digital

(NA = 0.45) and analog (NA = 0.15) detection, and the result is shown in Figure

3·8. The figure was cropped to a smaller 0.04mm2 area in order for the particles to be

more visible. These simulations are a good approximation of experimental data, and

again show how the numerical aperture affects the resolution of the acquired image, as

well as the amount of measured signal. Despite that, however, they also demonstrate

that it is still possible to visualize the intensity generated by non-adjacent particles

as a collective scattering signal, justifying analog measurements at low NA.

Figure 3·8: Simulations of the signal produced by 6000 GNPs/mm2

captured on the surface of an IRIS chip for a) digital (NA=0.45) and
b) analog (NA=0.15) detection on the h-IRIS platform. The color axes
indicate the total scattered signal (Sscat + Sref ).
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Furthermore, if the number of particles on the surface is increased, the relative

distance between them will drop. This increases the amount of signal measurable in

analog conditions. Below, in Figure 3·9, an example of the analog signal measured

when 60,000 GNPs/mm2 are accumulated on the simulated surface. The surface

density of particles shown in Figure 3·9 is very close to the highest density that is

obtainable experimentally. The results from these simulations will be compared to

experimental data acquired on the h-IRIS system in Section 4.3.

Figure 3·9: Simulations of the signal produced by 60,000 GNPs/mm2

captured on the surface of an IRIS chip for a) digital (NA=0.45) and
b) analog (NA=0.45) detection on the h-IRIS platform. The color axes
indicate the total scattered signal (Sscat + Sref ).

On the same note, one can simulate how the measured analog signal would increase

with particle density. This might be non-trivial since we are considering a combination

of constructive and destructive interference, as it can be observed in Figures 3·9b

and 3·8b. Hypothetically, if the impact of destructive interference was negligible, the

signal would increase linearly with particle accumulation, then saturate when no more

binding sites are available. Indeed, if we plot the average analog normalized signal

calculated for a particle density increasing from 600 to 120,000 GNPs/mm2, we notice

that the signal increases monotonically with the particle density, as shown in Figure
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3·10. This can also be observed when looking at the simulated analog images on the

same color scale (Figure 3·11). These results confirm once again the potential of the

h-IRIS system to detect and quantify the analog signal generated by single scatterers.

Figure 3·10: Simulations of the average normalized signal (scattering
signal/reference signal) produced for increasing GNPs density on the
surface of an IRIS chip, in analog detection mode. The signal is plotted
on a log-log scale and is fitted with the equation y = a× x0.7.

3.3 Illumination uniformity

As we strive for higher sensitivity, we have to consider the impact of illumination

artifacts on our system. In a shot-noise limited system, since the noise level depends

on the measured signal, variation of the illumination intensity across the imaged

surface causes spatial-dependent noise - the spots in the darker region of the surface

will be subject to a higher level of noise with respect to those in a better illuminated

area.

So far, we have presented two different illumination schemes: critical illumination,
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Figure 3·11: Simulations of the average total signal (Stot + Sref ) pro-
duced by increasing GNPs density accumulating on the surface of an
IRIS chip, in analog detection mode, for a) 6000 GNPs/mm2 b) 30,000
GNPs/mm2 c) 60,000 GNPs/mm2.

which is the direct focusing of the source on the sample plane, and Köhler illumination,

where the source plane is conjugated with the back focal plane of the objective. It

has been demonstrated that Köhler illumination improves illumination uniformity in

digital configuration, since it provides a source-free image. However, when using for

example a 2X objective in full NA illumination mode, the maximum aperture of the

integrating sphere is smaller than the back aperture of the objective, resulting in a

bright spot in the center. Therefore, for analog measurements, Köhler illumination is

not ideal.

In order to achieve both analog and digital measurements on the same system,

we had to compromise on the illumination scheme. We compared the efficiency of

both schemes; we chose to implement a Köhler scheme, since it has a sensible impact

on the contrast of single nanoparticles, and for what concerns analog, the difference

in terms of illumination uniformity is negligible with respect to critical illumination,

as reported below (Section 3.3.1). However, there is room for improvement, and

we are developing new optical design ideas that will improve the uniformity of the

illumination across the surface.
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3.3.1 Comparison of critical and Köhler illumination schemes and the
impact of pixel-to-pixel variation

In order to determine the impact of illumination artifacts on our measurements, we

acquired 2X images of the surface of an IRIS chip with both the standard analog

system (critical illumination) and the h-IRIS (Köhler illumination). We then plotted

the illumination profile, obtaining a gaussian profile in both cases, as expected. The

profiles are shown in Figure 3·12a. Köhler illumination (green line in Figure 3·12a)

plays a role in having a brighter center on the h-IRIS setup. Despite this, however,

the two profiles are not extremely different, confirming that choosing Köhler illumi-

nation would most probably not influence analog measurements significantly. The

slightly higher signal measured in critical configuration (yellow line in Figure 3·12a)

is probably due to the fact that the source is focused on the sample plane, there-

fore more light is collected. However, the difference is negligible. Moreover, on the

h-IRIS, analog measurements are usually performed with a 5X objective; the illumi-

nation profile obtained with the 5X objective is shown in Figure 3·12b. It can be

observed the profile obtained with the 5X objective results more uniform, and clearly

the higher magnification has an impact, reducing the field of view and thus making

border effects less visible.

When sectioning the image along a line that contains microarray spots, the profile

of the spots will be convoluted with that of the illumination. They are still clearly

discernible, as shown in Figure 3·13, however both the measured signal and the back-

ground slightly vary depending on the spot position. One way of minimizing the

impact of the illumination on the acquired data is then to perform differential mea-

surements, where a donut-shaped region around the spot acts as a background. This

ensures that illumination of the background is similar to that of the enclosed spot.

Additionally, we are working on the design of novel light integrating devices that
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Figure 3·12: a) The illumination profiles obtained on the analog IRIS
system with critical illumination (yellow) and on the h-IRIS system
with Köhler illumination, with a 2X objective. b) The illumination
profile obtained on the h-IRIS system with a 5X objective.

Figure 3·13: a) The light profile obtained on the IRIS system when
sectioning a microarray image along the line shown in b) containing
200µm sized spots.

will provide major improvements to the illumination uniformity and increase the total

light intensity delivered to the surface of the chip, leading to more consistent, more

sensitive analog measurements.

Finally, it is important to observe that when using a color camera to measure the

thickness of the chips, one pixel on the color camera is divided into smaller pixels,
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corresponding to different channels (R,G,B). Since the RGB value will then be used to

calculate the reflectance curve, it is crucial to demonstrate that the standard deviation

between adjacent pixels is minimal. We plotted the profile obtained by selecting

ten adjacent pixels in the center of the image (Figure 3·14), and realized that the

noise/signal ratio is 0.009 = 0.9%, which can be considered negligible if an average

of few pixels is taken into consideration when making the thickness calculation.

Figure 3·14: a) The signal variation measured on the IRIS system
when considering 10 adjacent pixels, along the orange line shown in b).
The average value is shown as a dashed blue line.

However, when performing digital measurements, a 0.9% error between adjacent

pixels can be relevant: one particle only occupies a few pixels when imaged in a

single particle detection experiment. It is therefore important to minimize all sources

of noise for single particle imaging, including fabrication noise which can generate

a physical pattern on the sensor’s pixel and therefore affects the particle imaging

sensitivity.

3.4 Solution effects

One of the main causes of artifacts in label-free biosensing resides in the optical

properties of the utilized solutions. Most label-free biosensors measure the change



66

in refractive index at an interface, and correlate such change with an increase or

decrease in biomass accumulation. However, variations in the refractive index of the

surrounding medium can also generate a signal, causing confusion when interpreting

binding data. This occurrence is referred to as the bulk effect. Organic solvents

such as methanol or dymethyl sulfoxide (DMSO) are the main agents responsible for

this effect, since they are often utilized to dissolve low molecular weight compounds

that are insoluble in water, and their refractive index is very high with respect to

commonly used running buffers such as phosphate buffer saline (PBS).

When a high refractive index solution comes in contact with the interface of an

optical-based biosensor, an artificial jump in signal is recorded. There are several

possible methods to eliminate this artifact from binding data. In order to prevent it,

one could perform ’buffer matching’, where the running buffer is matched as closely

as possible in composition to the sample solution. Even so, sometimes, the very

presence of the target molecules is what causes most of the bulk RI change, making

buffer matching quite useless. Some sensors, such as SPR, utilize a blank channel,

that is, an unfunctionalized channel where the same exact solutions are flowed at the

same time as the active channel, then perform a differential measurement. This is

a pretty straightforward method, yet, if the conditions of the two channels are not

exactly the same, an artifact could still occur.

In the next section we will briefly describe a simple method that has been ap-

plied to IRIS measurements in order to completely remove the bulk effect. Then,

we will discuss an alternative method, which is less rigorous but can be more easily

implemented.

3.4.1 Bulk effect elimination method

The IRIS platform bases its sensing principle on thin-film reflectance. When bioma-

terial accumulates on the surface of an IRIS chip, the reflectance spectrum shifts,
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and, thanks to constructive interference, an increase in signal is generated at a par-

ticular wavelength. As explained in Section 2.1, usually an IRIS measurement starts

by acquiring a multi-wavelength image of the substrate, which is then subsequently

fitted to the reflectance equation to extract a look-up table. The look-up table cor-

relates changes in reflectance with changes in thickness of the oxide layer. However,

when the refractive index of the surrounding solution varies, the reflectance curve also

undergoes a change: as it can be deduced from Equations 2.7 and 2.8, variations in

the medium refractive index cause the curve to shrink along the y-axis.Figure 3·15a

compares the bulk effect-related change in reflectance to that generated by biomass

accumulation.

Figure 3·15: a) The signal generated on the analog IRIS system by
biomass accumulation (circle markers) and by bulk effect (cross mark-
ers) with blue LED illumination. The red line indicates the bulk-effect
free thickness at 113nm. b) The signal generated by bulk effect with
blue and green LED illumination. When the thickness of the substrate
resides between the two purple lines, blue and green LED light can be
utilized simultaneously to eliminate the bulk signal.

We have demonstrated that, for every thickness of the oxide layer, a particular

wavelength exists for which the reflectance signal is insensitive to bulk changes and

only responds to thickness variations. For a substrate thickness comprised between
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d=113 and d=132nm, such wavelength resides on the spectrum between λ=452nm

and λ=518nm, which are the peak wavelengths of the blue and green LEDs used

(Figure 3·15b). Thus, we have experimentally shown that a precise combination of

green and blue light can be used as illumination source in order to achieve bulk-

effect free measurements in the presence of a solution containing 1%DMSO, with

small molecule sensitivity (Marn et al., 2021a). To compare, on SPR, a solution of

1%DMSO causes a bulk signal that is hundreds of times larger than that of small

molecules (Schasfoort, 2017).

The implemented method, however, has some drawbacks: it requires two LEDs to

be turned on at the same time, which can cause overheating. Alternatively, they can

be powered on sequentially one at a time, which can, on the other hand, cause insta-

bility. Moreover, the bulk effect free wavelength changes depending on the thickness

of the chip: this would not be a big issue if chip fabrication process had a small error

on the thermally grown layer, however, that is unfortunately not the case. Chips with

a nominal thickness of 110nm of thermally grown oxide suffer from a 10% variation

in thickness from one wafer to another, and 5% error across the same wafer (these

accuracy data were provided by our vendor, Silicon Valley Microelectronics - SVM).

Consequently, the bulk-effect free wavelength has to be determined every time a new

chip is utilized, requiring a calibration step with known refractive index solutions.

This can be cumbersome and time-consuming, with a potential to affect the spotted

molecules if they are particularly delicate.

Hence, we have decided to implement a new process in order to prevent bulk effect

from affecting our measurements: since the bulk effect free wavelength varies with

the substrate thickness, we have calculated the substrate thickness which corresponds

to bulk-free operation at the center wavelength of our blue LED. The bulk-effect free

thickness is 113nm, as shown in Figure 3·15a by the red dashed line. Thus, instead
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of adapting the wavelength to a certain chip, we have chosen to adapt the chip to a

certain wavelength. Before preparing a chip, the thickness is precisely measured with

the color camera setup described above (Section 3.2.1). If the thickness is very close

to 113nm, the chip is then prepared and used. Otherwise, it is saved and utilized

for other experiments. This is the advantage of this method and of developing a

versatile platform: since not all measurements are affected by bulk artifacts, but

mostly small molecule kinetics experiments that require high percentages of solvent

in the solution, the excluded chips can be used for other applications. This method

reduces the amount of time and effort to produce bulk-effect free data, and ensures

consistency across all experiments.

3.5 Surface chemistry

One of the disadvantages of label free biosensors is the fact that one of the two

molecular reacting partners (the probe) needs to be attached to a surface, namely the

sensor itself. This is obviously less trivial with respect to reactions that are carried

out in solution, where both partners are free to wander around and explore various

configurations in order to bind. When the probe is anchored, the part closer to the

surface will be harder to reach for the analyte molecules: therefore, if the active

binding site on the probe is too close to the surface, it will be hindered and the

analyte will not be able to bind. Steric hindrance caused by the presence of other

probe molecules can also be a cause of less efficient binding: the congestion caused by

the physical presence of the surrounding ligands can diminish the binding efficiency

due to the fact that some binding sites might be unreachable by the analyte molecules.

Moreover, immobilizing a molecule requires the application of a slight pulling force

on its structure, which can cause it to bend and distort, thus causing denaturation and

loss of reactivity. While oligonucleotides also suffer from interaction problems related
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to ’laying flat’ on the surface, this issue mostly regards proteins, where structure and

functionality are closely related. Some proteins are more prone to denaturation than

others: those are referred to as soft proteins, which relates to the number of disulfide

bonds present in their structure (Faccio, 2018). While hard proteins contain a high

number of disulfide bonds per molecule (a good example is bovine serum albumin

- BSA, with seventeen disulfide bonds), soft proteins contain less, and are therefore

more easily deformable. An example of a soft protein is α-lactalbumin, with only

four disulfide bonds. Most immunoglobulins (IgG) also are considered soft, which is

relevant considering that IgGs are very often used as probes for biological assays.

In this regard, surface chemistry development is a research field whose goal is

achieving efficient immobilization of biomolecules onto a rigid substrate, while main-

taining a uniform surface morphology. The functionality of biosensing substrates,

particularly microarrays, is strongly dependent on the structure of the surface, which

can influence both the sensitivity of the measurements as well as the reactivity of the

probes. For example, for digital detection of nanoparticles, surface roughness could

disguise the particles, impacting the measured contrast and therefore the detection

capability. On the other hand, for all specific molecular assays, both analog and

digital, it is fundamental that the probes maintain their molecular structure in order

to keep their native functionality. Moreover, they need to be spaced and distributed

enough that the target can easily reach them. Maintaining a specific orientation of

the probe molecules is also helpful in order to maximize binding (Trilling et al., 2013).

Many different approaches are utilized for this purpose, from coating the surface

with epoxisilane-based polymeric thin films (Nimse et al., 2014; Seurynck-Servoss

et al., 2007) or with matrix-structured polymers whose tridimensional properties can

contribute to preserving the structure of the molecules (Pirri et al., 2004; Chiodi

et al., 2022). Another interesting approach utilizes nanostructures (Kim et al., 2008),
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a method that allows for specific control of the wettability of the surface (Khranovskyy

et al., 2012; Tsougeni et al., 2018).

As another example, SPR sensors utilize thick hydrogel matrices in order to im-

prove the probe density and increase the binding signal. However, these dense poly-

meric matrices cause diffusion effects, which in turn contribute to generate artifacts in

the measured binding constants (Drake et al., 2012). SPR software for data analysis

have developed diffusion-influenced kinetic models in order to remove the contribution

given by mass transport limitation: however, the correction they provide is still inac-

curate, due to the fact that - in the best of cases - they utilize a first order correction

with a two-compartment model, which is not representative of the real diffusive pro-

cesses happening in the matrix. This topic will be further discussed in Section 3.5.3.

Some common functionalization methods are summarized and graphically represented

in Figure 3·16.

Figure 3·16: Graphical representation of some of the most common
surface chemistry functionalization methods. a) Copoly(DMA-NAS-
MAPS) developed by Chiari et al. (Pirri et al., 2004) b) Dextran ma-
trix typically utilized for SPR c) Epoxysilane d) Biotin-streptavidin on
copolymer e) Thiol-gold SAM linkage f) DNA-directed oriented immo-
bilization.

Our approach utilizes a soft, hydratable and anti-fouling polymeric coating that
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has been developed and optimized for creating a single layer of molecules on the

surface of the sensor. The polymer is approximately 2 nm-thick when dry, and 10

nm-thick when hydrated (Yalçın et al., 2009). Its ability to hydrate and create a thin

tridimensional layer allows the molecules to maintain their structure, avoiding de-

naturation. The polymer has been developed by Chiari et al. (Pirri et al., 2004)

and is a N, N-dimethylacrylamide (DMA) with N-Acryloyloxysuccinimide (NAS)

and 3-(Trimethoxysilyl)propyl methacrylate (MAPS) based polymer which forms a

thin film on different materials by a combination of physi and chemisorption. This

copoly(DMA-NAS-MAPS) is commercially available under the name of MCP-2, and

in an effort to taylor surface properties, it has been recently modified by introducing

various building blocks to create different functionalities such as - for example - azide,

alkyne, dibenzocyclooctine, maleimide moieties. This has been achieved by exploiting

the reactivity of NAS with amino groups, which has enabled its transformation into

other functional groups by post polymerization modification (PPM) reactions. The

common backbone of DMA and MAPS shared by all polymers in the family confers

them adhesive properties on a variety of surfaces.

In the following Sections, we will explore the effect of surface chemistry on reaction

kinetics, probe immobilization efficiency and diffusion. We will start by presenting the

microarray preparation protocol that has been utilized for most of the experiments

narrated in this dissertation, from chip cleaning to insertion into the IRIS system.

Then, we will describe an innovative technique that we recently developed to analyze

multiple surface chemistry approaches simultaneously. Finally, we will briefly discuss

the impact of diffusive effects on kinetic measurements and how to minimize the

impact of mass transport with thin tridimensional coatings.
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3.5.1 Standard microarray preparation

The IRIS platform is a surface-based biosensor, which therefore requires an active

substrate accommodating the probe molecules, while the analyte molecules will be

dissolved in solution and then flowed across the surface. As mentioned in Section 2.1,

our active substrate is a Si/SiO2 chip, 12.5mm wide x 25mm long. Chips are supplied

by Silicon Valley Microelectronics (SVM) in pre-cut wafers coated in photoresist film

and with laser-drilled inlet and outlet holed for fluidics measurements. In order to

remove the photoresist coating, chips are placed in a glass petri dish, then a 5M

solution of sodium hydroxide (NaOH) is poured on top. The chips are swirled for

a couple minutes in the NaOH solution, then rinsed in NanoPure water and dried

under nitrogen stream.

To coat the chips in MCP-2 polymer, they are oxygen plasma activated for 10

minutes and subsequently immersed in an aqueous solution containing the polymer

(1%, w/v MCP-2 in 20% saturated ammonium sulfate) for 30 minutes. Afterwards,

they are washed with NanoPure water and again dried under nitrogen stream. Finally,

to complete the dip-and-rinse coating procedure, they are dried in a vacuum oven at

80◦C for 15 minutes. At the end of this procedure, chips are ready to be spotted.

Spotting can be performed using a robotic spotter (M2 iTwo Precision Liquid Handler)

or by hand, utilizing a simple pipette tip (Celebi et al., 2020). Spotting of antibodies

and proteins was always performed at 70% humidity, while DNA spotting can be

handled at lower humidity levels, usually around 65%.

The spotted chips are then incubatet overnight in a NaCl saturated humid cham-

ber. Finally, a one-hour blocking step with a 50mM ethanolamine solution (pH=9)

is performed to inactivate the residual amine groups on the surface. After blocking,

the chip is washed with PBS and then quickly dipped in water, dried gently under

nitrogen stream, and is ready to use.
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3.5.2 Comparison of various surface chemistry methods

In an effort to determine the properties and immobilization efficiency of different

polymers in the MCP family, we have engineered a new method to compare the

performances of distinct surface chemistries on the same sensing substrate, on the

IRIS system. Namely, we have utilized a robotic spotter to isolate several reactive

polymers on different regions of the same chip. A simplified scheme of the technique

compared to the standard flat coating approach is represented in Figure 3·17a and b.

Generally, in order to test multiple surface chemistries with a standard protocol, it

is necessary to coat several chips, then immobilize molecules in a microarray modality

on top of them, and finally run several experiments. The detail of this standard pro-

cedure will be described in the following section on microarray preparation (Section

3.5.1). Despite coating with MCP polymers being a much simpler process with re-

spect to most of the other surface chemistry methods available, having to perform this

process numerous times is still time consuming and expensive. Thus, we developed

a technique which allowed us to localize 11 different reactive polymers on the same

chip, then run a single experiment to determine both their immobilization capacity

as well as the efficiency of the binding reaction for each of them. The polymers we

evaluated in these experiments were amphoteric, positively and negatively charged

polymers belonging to the MCP family, some of them containing succinimide esters,

some were azide-modified.

Chip preparation for these experiments required spotting of pL-quantities of the

polymer solutions, then co-spotting probe molecules in the same exact position. First,

polymer solutions were prepared by diluting them up to 0.014% in water with sucrose

monolaurate 0.01% w/v, Then, 400 pL of either native (on standard MCP) or DBCO

modified (on azido-MCP) α-lactalbumin 1mg/mL were spotted on top. The spotted

chips were incubated overnight in a NaCl saturated humid chamber, then blocked with
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Figure 3·17: Left: a comparison of the localized chemistry technique
(a) and the standard flat coating technique (b). Right: an example of an
IRIS image of one of the chips utilized for the experiments. Reproduced
with permission from (Chiodi et al., 2020b).

a 0.5% solution of ethylene propylene diene monomer (EPDMA) w/v in water for 15

minutes. This creates a polymeric layer surrounding the polymer spots, uniforming

the surface of the chips. Finally, the chips were washed in DI water and dried under

nitrogen, and they were ready to use. As described above, prior to starting the IRIS

kinetic experiment, the chips were topped with an adhesive spacer and an AR coated

glass slide to form a chamber for in-liquid measurements.

Chips were used to run an in-liquid IRIS experiment. An example of an IRIS

image of one of the chips is reported in Figure 3·17, while an example of binding curves

obtained during the experiments are shown in Figure 3·18. Filtered PBS buffer was

initially flowed into the system for 15 minutes, to stabilize the surface. Afterwards,

anti-α-lactalbumin antibody at 1ug/mL (≈7nM) was injected for 20 minutes. PBS

buffer was then injected again as a washing buffer for another 20 minutes. Finally, the

surface was restored by flowing a 100 mM glycine solution at pH=2 for 5 minutes. The

sudden pH change enabled fast debinding of the antibody molecules from the probes
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without damaging the probes. Each point of the curve in Figure 3·18 corresponds to

one acquired image.

Figure 3·18: Binding curves obtained for the interaction of antiα-
lactalbumin antibody with the target protein on the localized chemistry
chip. Reproduced with permission from (Chiodi et al., 2020b).

As it can be seen from Figure 3·17, some polymers ensured better immobilization

than others (brighter spots). We measured the accumulated mass and determined

that the charged polymers were particularly efficient in immobilizing a large quantity
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of protein. However, when analyzing the binding rates, the more ’crowded’ spots

were not necessarily better at efficiently binding the antibody: this could be due to

steric hindrance due to the high concentration of probes on the surface, or to electro-

static interactions between analyte and probe molecules due to the charged surface.

Denaturation could also be caused by electrostatic attraction and repulsion of the

probes. In the end, we have established that - for our purposes - a neutral chemistry

was the best choice. With this technique, we also demonstrated characterization of

differently-modified molecules on the same support.

3.5.3 Diffusion effects and mass transport limitation

Diffusion is a common cause of artifacts in kinetic measurements. In order to mea-

sure precise kinetic association constants, the analyte molecules need to be efficiently

transported to the immobilized probe molecules by a fast flow. The flow needs to be

fast enough that when molecules bind, the layer of solution close to the surface main-

tains its original concentration, that is, it does not suffer from depletion. However,

the flow cannot be too fast, otherwise the molecules will not spend enough time close

to the surface, and will not be able to explore the configurations that would allow

them to bind. When depletion occurs, the system is said to be mass-transport limited,

or diffusion limited. On the other hand, when the flow is too fast and molecules do

not have time to bind, the system is referred to as reaction limited (Squires et al.,

2008). The ’sweet spot’ between these two regimes is a system in which the concen-

tration of the analyte is maintained constant by a sustained flow, and the molecules

are transported efficiently to the sensor, allowing for reaching a true dynamic equilib-

rium, the only condition in which it is possible to measure an accurate binding rate.

The parameters to achieve this ideal regime are defined by the size of the sensor, the

thickness of the measurement chamber, the affinity of the molecules and the flow rate

(Squires et al., 2008).
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In practice, in order to achieve efficient transport and rapid solution exchange to

the surface of the sensor, diffusive and convective forces must be carefully balanced.

If convective forces are too high, the molecules will be swept away before they have

time to diffuse down to the immobilized probes. If convective forces are too low,

diffusion will occur slowly and the available analyte concentration will be depleted.

The ratio of the diffusive time to the convective time is called the Peclet number and

can be described by (Squires et al., 2008):

PeH =
Q

DWc

(3.9)

where Q is the volumetric flow, D is the diffusivity of the target molecule and

and Wc is the channel width (Squires et al., 2008). Most sensors, such as SPR and

BLI, suffer from mass transport limitations when working with high affinity molecules

(Schuck and Zhao, 2010; Karlsson, 2016). BLI sensors utilize a shaking mechanism to

deliver the molecules to the sensing tip, which usually does not successfully overcome

mass transport limitation. On SPR, probe immobilization is usually carried out by

using thick hydrogel matrices made of carboxymethyl dextran (CM-dextran). Specif-

ically designed for SPR sensors, CM-dextran is a carbohydrate polymer that creates

a tridimensional structure by adding 50-1500nm of thickness to the sensor surface,

allowing for most of the evanescent wave penetration depth to be filled with probe

molecules. This reduces the bulk effect while increasing the effective volume where

target molecules can bind and generate a signal (Nikolovska-Coleska, 2015; Li et al.,

2015). The number of probes per unit volume can also be tuned, by having different

hydrogel densities, as shown in Figure 3·19.

This approach solves some of the issues of SPR sensors; however, the fact that the

probe molecules are submerged in a thick solid matrix also introduces non-negligible
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Figure 3·19: SPR chips commercially available from Xantec, Inc. (©
Xantec 2021, all rights reserved).

artifacts, limiting the kinetics of the reaction and leading to mass transport limita-

tion. The inherently slow diffusion through the hydrogel limits the velocity at which

the solution is replaced by the flow. In most cases, the reaction is therefore diffu-

sion limited, and the measured binding rate is actually the volumetric diffusion rate.

Furthermore, given the exponential-decaying nature of the evanescent wave, the tar-

get molecules binding closer to the gold layer generate a bigger signal with respect

to those binding further away from the surface. This creates additional confusion

when interpreting SPR data, causing a discrepancy in the calculated association and

dissociation constants.

In order to address some of these issues, available fitting software for SPR data
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such as EvilFit (Svitel et al., 2003; Svitel et al., 2007) provide various mass transport

limited binding models, which consider first-order corrections to the fitting model.

In this first-order approximation, the flow channel is treated as a two compartment

system, where a depletion zone is defined as the section of the channel close to the

gold surface, containing the dextran matrix and extending slightly into the solution.

When mass transport limitation is present, the concentration of analyte inside the

depletion zone is lowered due to binding, and the on and off rates are affected by this

change in concentration, causing the reaction to be diffusion limited (Squires et al.,

2008). More specifically, if mass transport limitation were not present, the surface

binding of a single class of analytes to a single class of ligands (1:1 interaction) would

follow a simple rate equation as described by Equations 1.4 - in Section 1.1. In those

equations, C is a constant since the concentration of the analyte is assumed to be

constant throughout the experiment. Now, the two compartment model considers a

depletion of the analyte molecules in the volume close to the surface, resulting in a

variation of the concentration from the value C to a lower ’depleted’ value Cd < C,

which is not constant, but rather changes with time, as the surface binding sites start

to saturate:

dCd

dt
= kTR(C − Cd)−

N∑
i=1

dSi

dt
(3.10)

For N binding sites considered, i = 1, · · · , N . Here, the transport rate parameter

(kTR) is introduced, which has been demonstrated to approximately depend on the

diffusion coefficient D of the analyte as:

kTR ≈ 1.282v1/3hl−1/3D2/3 (3.11)

where v is the flow rate, h and l are the height and length of the flow channel

respectively. Therefore, equation 1.3 mentioned above assumes the form:
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dSi

dt
= kON,iCd(Smax − Si)− kOFF,iSi, (3.12)

which in turn produces distinct association and dissociation rates for each binding

site. The discrete increment of bound analyte to single probes can be approximated

to a continuous function, in order to obtain single kON , kOFF and kTR values by

numerically solving the following system of differential equations for S(t):


dS/dt = (kONCd(t)− kOFF )S(t)

dCd/dt = kTR(C − Cd(t))− dS(t)/dt

S(t = 0) = 0;S(t = tsat) = Smax

(3.13)

where tsat is the time where all binding sites are saturated, and the maximum

reachable signal is measured (Smax) (Svitel et al., 2007).

This discussion shows that having a three-dimensional distribution of probes is

not an ideal solution to compensate for the lack of sensitivity of the biosensing plat-

form. On the contrary, working with a monolayer of probes is highly desirable; this

however requires extreme sensitivity when working with small molecules (SMs), since

detecting a single layer of bound low-molecular weight analyte is non-trivial. The op-

tical signal generated is indeed proportional to the refractive index variation caused

by the biomass and will therefore be incredibly small for SMs, as we discussed in the

Introduction (Section 1.2.1).

On the IRIS system, we achieve small molecule characterization with a single

layer of probes (as discussed in Section 4.1) immobilized on a semi-tridimensional

soft polymer, MCP-2 (Pirri et al., 2004). Considering Equation 3.9, on the IRIS

system with DNA as the analyte being investigated and a volumetric flow rate of

200 µL/min, the Peclet number is approximately 105, confirming convection as the

dominant factor. Thus, depletion is negligible for most analytes - down to nM affinity.
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The combination of the IRIS detection system with the surface chemistry provided

by the MCP-2 polymer provides a really good balance between high molecular probe

density and sensitive kinetic measurements.
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Chapter 4

Experimental results

4.1 Small molecules characterization

Small molecules (SMs) are defined as the chemical compounds with a molecular weight

(MW) below 1kDa (Fechner et al., 2014). Reliable characterization of SMs is still

an unmet need in the field of biotechnological development, since most available

biosensing platform require to either label the SMs - which is an invasive process

that could alter the functionality of the molecule - or are affected by mass transport

and diffusion limitations, as discussed in Section 3.5.3. Here, we demonstrate small

molecule sensitivity on the IRIS. We will start by showing a simple proof-of-concept

experiment, biotin binding to a streptavidin surface, where we determine the limit of

detection (LOD) of the sensor and once again highlight the importance of reducing

the noise by averaging, on a shot-noise limited system such as the IRIS. Then, we

will present a relevant biotechnological application with the characterization of a corn

toxin, fumonisin B1, whose detection is of utmost importance in food quality control

and toxicology.

4.1.1 Biotin

In order to experimentally measure the LOD of our sensor for SMs detection, we

have implemented a simple, proof-of-concept biotin-streptavidin binding experiment

(Chiodi et al., 2020a). Biotin belongs to the category of SMs (MW = 244.31Da)

and is one of the most utilized chemical compounds in biology and biotechnology
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applications. Its interaction with streptavidin is the strongest non-covalent interaction

in nature, which makes these two molecules suitable for strongly anchoring other

biomolecules to a surface (Wong et al., 1999). Here, the biotin-streptavidin interaction

is used as a proof-of-concept to optimize the acquisition parameters of the sensor.

For this experiment, streptavidin molecules were immobilized on MCP-2-coated

IRIS chips in a microarray modality, at a spotting concentration of 1mg/mL (≈

18µM). The resulting spots were around 100µm in diameter. Biotin was flowed

across the streptavidin spots at a 1µM concentration for 20 minutes, at a flow rate

of 200µL/min. Binding of biotin molecules to the streptavidin probes is extremely

fast, as is expected if one considers the very low KD of the interaction (≈ 1pM).

Therefore, the obtained binding curve has the appearance of a step (Figure 4·1).

Figure 4·1: The effect of averaging on a streptavidin-biotin exper-
iment. Biotin was flowed at a concentration of 1µM across a chip
where 50 streptavidin spots were previously printed. (a) Biotin signal
without spatial averaging (single spots) (b) compared to biotin signal
with spatial averaging (50 spots). Temporal averaging was fixed at
100 frames/image. Reproduced with permission from (Chiodi et al.,
2020a).

Here, the averaging techniques discussed in Section 3.1 were applied in order to

achieve the best possible sensitivity. Precisely, 100 frames were averaged in time
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for each image in the experiment, and 50 microarray spots (5024 pixels each) were

analyzed. The data in Figure 4·1a, shows the average signal value for each of these 50

microarray spots. When these 50 microarray spots are averaged together, the result,

seen in Figure 4·1b, shows a clear binding step and an SNR of 34. The noise level

achieved was 1pg/mm2 (Chiodi et al., 2020a).

4.1.2 Fumonisin toxin

Toxins are poisonous substances produced by living organisms. Most toxins fall into

the previously defined category of SMs (Wishart et al., 2015). In particular, mycotox-

ins are low-molecular weight (<800Da) secondary metabolites produced by microfungi

which can be easily found in fresh produce, as a result of fungal infections. Myco-

toxins are harmful to both humans and animals, provoking diseases (mycotoxicoses)

which might lead to cancer formation (Chu and Li, 1994). Given the serious effects

that they provoke on human health, the food industry is facing the critical issue of

trying to detect the presence of mycotoxins in food products during quality control

procedures.

The noise-optimized IRIS system is applied here to the study of the binding kinet-

ics of Fumonisin B1, a 721.8Da mycotoxin produced by the Fusarium fungal species.

This fungus usually attacks corn crops and acts by weakening the core structure of

corn cobs.

For these experiments, twenty antibodies that tested positive to the toxin in an

enzyme-linked immunoassay (ELISA) were immobilized onto a MCP-2-coated IRIS

chip, where twenty spots were devoted to each antibody, for a total of 440 active

spots that were imaged simultaneously (Figure 4·2, 20 antibodies, each printed on

20 equal spots, and 40 control spots). Each antibody was originally at a different

concentration, , due to variations in the purification yield, and therefore the spots

have different initial mass densities, which relates to varying intensities as shown
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in Figure 4·2; thus, the steady state signal level may not be predictive of binding

kinetics.

Figure 4·2: An IRIS image of the 440 antibody spots on one of the
chips used for the experiments. The first and 12th columns are devoted
to the control (bovine IgG); columns 2 to 11 are devoted to fumonisin
B1-CTxB antibodies (CTx1-10), and columns 13 to 22 are devoted to
fumonisin B1-KLH antibodies (KLH1-10). The different intensity of
the spots is due to differences in concentration of the spotted samples.
Reproduced with permission from (Chiodi et al., 2020a).

Fumonisin at a concentration C0 = 100µM was flowed across the surface of the

chip for 20 minutes at 200µL/min, followed by PBS-1X at 200µL/min for 20 more

minutes. Binding was detected on 18 out of the 20 antibodies, and representative

binding curves are reported in Figure 4·3. A simple 1:1 Langmuir model (Equation

1.3) was used to fit the curves and obtain the association and dissociation constants,

reported in the Appendix (Table A.1). The remaining 14 binding curves are reported

in the Supplementary Material (Figures A·1 and A·2).
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Figure 4·3: Binding and debinding curves of the fumonisin B1 toxin at
a concentration of 100µM to six different antibodies. The association
part of the fit is shown in red, solid line. The dissociation part is shown
in blue, solid line. The control spots’ trend is shown in black, dotted
line. Reproduced with permission from (Chiodi et al., 2020a).

From our measurements, the antibodies produced with fumonisin B1-CTxB, seem

to have a higher affinity to fumonisin B1. Particularly, the antibody that we have

labeled as CTx5 has the highest association constant and lower equilibrium constant

(KD).

Moreover, we have calculated the theoretical mass density that a single layer of

fumonisin molecules would produce on our sensor. More precisely, we have predicted

the expected biomass accumulation for a certain range of analyte sizes (in daltons).

We have calculated how many probe molecules would fit inside a 100µm-diameter

spot, by simulating them as spheres with a diameter in the nm range. Streptavidin

can be modeled as a 4.66nm-diameter sphere (Reth, 2013), while IgG antibodies

can be assumed to roughly occupy the volume of a 7.5nm-diameter sphere (Williams
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et al., 2012). For a monolayer of adjacent probes, the average center-to-center dis-

tance between two molecules corresponds to their size. If the spot is saturated with

probe molecules, the probes will form a monolayer; however, we also considered the

situation when the probes are more sparse, given that in our experiments the initial

spotting concentration was sometimes very low. Then, we predicted the biomass ac-

cumulation for target molecules of different sizes. The resulting simulated results are

shown in Figure 4·4, and the two labels indicate the expected biomass accumulation

for Fumonisin B1 (≈ 27pg/mm2) and for biotin (≈23pg/mm2) on a monolayer of

immobilized probes.

As expected, the binding mass density decreases exponentially decrease with in-

creasing distance between probes. This poses two issues: bigger probes will take up

more space on the spot and therefore their average number will decrease, leading to

a lower binding signal. Additionally, if the probes are sparse due to low spotting con-

centration, the binding density will be even less, becoming potentially undetectable.

The results in Figure 4·4 stress the fact that having a high density of probes on the

surface is fundamental, and therefore spotting optimization procedures need to be

considered when the concentration of the spotting solution is very low. This might

also be a potential explanation for the lack of detected binding on low-concentrated

antibody spots. The scarcity of probes could have affected the instrument’s ability to

detect binding: even if fumonisin had saturated the surface, the density could have

been below the LOD.

To compare theoretical and experimental values, we can consider for example the

mean binding density of fumonisin across all the eighteen antibodies, which is 20.9±7

pg/mm2. The huge standard error reflects the fact that fumonisin bound with a

different affinity to each antibody, as well as the impact of probe concentration on the

surface. On the other hand, the experimental result for biotin is 40.3±1.5 pg/mm2,
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Figure 4·4: Calculated values for binding mass density for a range
of analyte sizes (100-1500Da) and center-to-center average distance be-
tween probes (4-10nm). The labels indicate the theoretical values for
Fumonisin B1 (red label) and biotin (green label) assuming a monolayer
of adjacent probes on a 100µm-sized spot. Reproduced with permission
from the supplementary materials of (Chiodi et al., 2020a).

which is almost double the expected value (≈ 23pg/mm2, Figure 4·4). However, the

simulations consider a 1:1 probe-analyte interaction. This is certainly realistic for

the case of fumonisin, since the capture antibody possesses only two binding sites for

the toxin, one of which could be inaccessible because involved in the immobilization

(Figure 4·5b). However, in the case of biotin, every streptavidin molecule has four

binding sites, uniformly distributed around the molecule. Therefore, the probability

that - on average - two binding sites might be available is higher, thus doubling the
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predicted biomass accumulation from ≈ 23pg/mm2 to ≈ 46pg/mm2, which is closer to

the experimental value (Figure 4·5a). Therefore, the fact that two biotin molecules are

still smaller than one molecule of fumonisin does not necessarily imply that detecting

biotin requires more sensitivity than the toxin, because the accumulated mass will be

similar or even higher, in accordance with experimental data.

Figure 4·5: Schematic representation of immobilized streptavidin (a)
and fumonisin antibody (b) molecules. Considering the disposition of
the binding sites of the molecules, on average, two molecules of biotin
will bind to each molecule of streptavidin, while only one molecule of
fumonisin will bind to each antibody.

4.2 Real-time detection and imaging of extracellular vesicles

Extracellular Vesicles (EVs) are cell-secreted biological nanoparticles that contain

genetic material and protein fragments. Recently, they have attracted significant at-

tention as novel biomarkers for early diagnosis of cancer and degenerative diseases,

since their properties are closely related to specific clinical conditions, as we have
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discussed in Section 1.2.2. Here, we would like to demonstrate complete characteriza-

tion of EVs both at the analog and digital level. We have performed binding kinetic

measurements of cell-culture purified EVs on multiplexed chips in order to optimize

measurement conditions such as flow rate, probe concentration and type. Then, we

have analyzed human EVs samples from both healthy individuals and lung cancer

patients, to investigate the possibility to use these BNPs as lung cancer biomarkers.

4.2.1 Analog real-time characterization

Developing experiments that involve EVs phenotyping is usually highly challenging

and time-consuming, due to laborious optimization steps. First, the samples must

be purified by from cell culture supernatant or human plasma by ultracentrifugation

or other purification methods; then, the vesicles need to be captured on the sensor

surface, where capture probes have been immobilized. In order to perform end-point

measurements, the capture reaction needs to saturate, that is, the vesicles must have

occupied all the available binding sites on the surface. This step often requires in

an extremely long incubation time. A typical phenotyping experiment involves a

12h- or overnight incubation of the sensor chips with the EVs sample, thus causing a

significant delay in data acquisition.

To address the need for faster and more high-throughput EVs characterization

methods, we have demonstrated real-time, kinetic analysis of EVs binding to the

surface of a chip where we had previously prepared 18 different probe conditions, on

the analog IRIS system. The results of this work are reported in (Chiodi et al., 2021a).

Surface probe conditions were varied by immobilizing three different antibodies, each

spotted at six different concentrations, on the same substrate. Since probe density

and spot homogeneity plays a huge role in EVs analysis, the first control experiment

was performed as an optimization of the spotting conditions.

For this work, three tetraspanin-specific antibodies (aCD9, aCD63, aCD81) were
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used as EVs capture agents. In order to maintain a good spot conformation, the

density of the active antibodies was tuned by diluting them with a solution of a

different antibody, a generic Mouse IgG2a, at different ratios. This allowed for keeping

the same molecular concentration of the spotting solution (3 mg/mL) while varying

the percentage of the active molecules. Ideally, by using this method, the percentage

of tetraspanin specific antibody within each spot should change linearly depending on

their ratio with respect to the negative molecule. The idea behind this technique is

to maintain a constant surface biomass density for all spots, therefore controlling the

spot conformation and uniformity, while creating multiple concentration conditions.

An initial IRIS image of the spotted chip is shown in Figure 4·6a. It can be noticed

that the spots look similar in terms of initial intensity, since the immobilized biomass

is comparable for all of them.

Figure 4·6: IRIS images of the chips utilized for the experiment a)
before incubation, and differential images after incubation with b) an-
tibodies and c) small EVs. To be noted that a similar level of signal
doesn’t necessarily correspond to the same increase in thickness, since
a different wavelength is used for each experiment. Reported with per-
mission from (Chiodi et al., 2021a).

Theoretically, the six concentrations of each antibody (in terms of active molecule

percentage) were 100%, 50%, 25%, 12%, 6%, 3%. As a negative control, two spots of

100% Mouse IgG2a were also printed. Since the yield of the immobilization process is

not ideal, though, the actual amount of active probe within each spot was measured

by running a simple control experiment on the IRIS system. For this experiment, a
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generic IgG1 antibody was flowed across the surface of a chip that was functionalized

as described above. Since the utilized anti-tetraspanin probes are immunoglobulins,

and particularly belong to the family of IgG1, the positive control aIgG1 could bind

to all of them, and control binding curves were generated. A differential image of

the IRIS chip after the control experiment can be observed in Figure 4·6b, while the

binding curves are depicted in Figure 4·7. For this experiment, blue LED wavelength

was used, since it is a standard analog antibody-antibody interaction.

Figure 4·7: Binding curves of a generic IgG1 to one of the antibody
chips used for the experiments. The insets focus on the association
phase of the curves, which are fitted with a bivalent model. Reported
with permission from (Chiodi et al., 2021a).

In order to characterize the antibodies, we utilized a bivalent interaction model

(A+A+B
kON,1−−−−⇀↽−−−−
kOFF,1

AB+A
kON,2−−−−⇀↽−−−−
kOFF,2

AAB) which was solved numerically in MATLAB.

The dissociation constant was measured for all of them to be in the order of KD ≈
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10−9M , which is consistent with values found in the literature for similar antibodies

(Bakhshpour et al., 2022).

From the equilibrium values reached by the binding curves, as well as from the

initial slopes, the amount of immobilized probe can be estimated, and compared

with the theoretical value. A comparison of the expected and experimental values

for the initial concentration of the probes is reported in Figure 4·8. As expected,

both the initial slope and the equilibrium binding signal measured for the antibodies

increase proportionally to the spotted ratio of active to inactive molecules. This is

therefore an effective method to tune the probe density by maintaining a uniform

spot conformation.

Figure 4·8: Verification of the amount of active antibody on the sur-
face. The spotted percentage of active probe versus a) the initial slope
of the binding curves in Figure 4·7 and b) the maximum signal ob-
tained on the same dataset. Reported with permission from (Chiodi
et al., 2021a)

For the EVs characterization experiment, a sample of HEK cell culture purified

EVs was utilized. The EVs were purified by ultracentrifugation, and the sample was

utilized fresh. The size distribution of the vesicles was analyzed on the ExoView

system, a commercial EVs characterization platform which utilizes the SP-IRIS tech-

nology. The resulting size histogram is reported in Figure 4·9, along with a label
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free image of the particles captured on three anti-tetraspanin spots. As expected, all

vesicles range in size between 30-70nm.

Figure 4·9: a) The size distribution of EVs captured on CD9, CD81,
CD63 spots and b) label-free images of the particles on one of the spots.
Reported with permission from (Chiodi et al., 2021a).

Prior to the EVs real-time binding experiment, the sample was centrifuged once

more, at 60’000 rpm for 10 minutes, in order to remove large aggregates. The super-

natant was then collected and diluted (2X), then flowed across the surface of the IRIS

chip. The experiment included 10 minutes of surface stabilization under PBS flow,

then the EVs sample was flowed for 20 minutes, and finally PBS was flowed again as

a washing step for 10 minutes. The binding curves obtained for EVs accumulation

are shown in Figure 4·10. For this experiment, we utilized green LED illumination in

order to have a better signal-thickness correlation for large analytes, as explained in

detail in Section 3.2.2.

Results shown in Figure 4·10 demonstrate the ability of the IRIS system to de-

tect EVs accumulation in an analog fashion. Moreover, under high flow conditions

(200µL/min) the surface was nearly saturated after only 20 minutes of sample flow.

We attempted to run stop-flow measurements, with the intent to measure a difference
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Figure 4·10: Real-time binding curves of EVs accumulating onto three
different probes, each at six different concentrations. The insets focus
on the association phase of the curves, which was fitted with a mul-
tivalent model that separates an initial, fast association rate kon,fast
from a slower, subsequent rate kon,slow. Reported with permission from
(Chiodi et al., 2021a).

in accumulation rate when the incubation is static versus kinetic, however the flow

variations caused debris accumulation on the surface of the chip, making the measure-

ment impossible. Nonetheless, with these measurements we could demonstrate that

aCD81 is the best capture probe under the tested conditions, and that a constant

flow improves EVs capture - the reaction reached saturation after less than half an

hour, while most static methods require overnight incubations. The reason for this

behavior can be found in the diffusion mechanisms that govern the capture reaction

in a static system versus a dynamic one: in absence of flow, brownian motion is the
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only factor that contributes to the particles diffusing and exploring configurations

close to the surface that will eventually lead them to bind. On the other hand, when

in-flow recirculation is involved, the number of configurations per unit time that the

particles are allowed to explore is much higher, leading to a much faster reaction with

a shorter saturation time.

For what concerns the fitting model utilized to determine the kinetic parameters

of EVs binding, we utilized a model proposed by Li et al. (Li et al., 2014) which

describes the kinetics of NP binding considering the effect of probe avidity. Avidity

effects occur when an object expressing more than one receptor molecules binds to

a surface that is functionalized with a capture probe targeting that receptor. When

the capture reaction takes place, a multivalent interaction occurs, and the particle

occupies a large number of probe binding sites. This reduces the probability of other

particles binding in its vicinity. The mechanism is similar to steric hindrance, yet

instead of it being caused by the spatial presence of an object, it is related to its

probe occupancy. The proposed model considers the target particles as if they were

divided between a certain amount of slow binders and fast binders. The fast binders

are particles that bind to the surface at the beginning of the experiments, when all

probe molecules are still available, and can therefore occupy as many binding sites

as possible without any external interference. The slow binders, on the other hand,

reach the surface when it is already partially saturated, and therefore have less space

and probe binding sites to interact with, therefore finding it more difficult to reach

a stable configuration to bind. This model defines the fast binders binding rate as

kON,fast and that of the slow binders as kON,slow. The same reasoning is applied to

the dissociation phase, but in reverse: at this point, fast binders will be more stably

anchored to the surface, therefore their dissociation will be slow, while slow binders

will be attached to a smaller number of probe molecules, and will therefore be washed
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away more easily - leading to a faster dissociation rate. To avoid confusion, in this

discussion kOFF,fast will still refer to the dissociation rate of fast binders, and kOFF,slow

to that of slow binders.

Figure 4·11: Comparison of simulated and real binding curves of EVs.
a) Simulated curves, where increasing percentages of fast binders versus
slow binders are considered. Here, kON,fast = 104M−1s−1, kOFF,fast =
10−5s−1, kON,slow = 103M−1s−1, kOFF,slow = 10−10s−1. b) EVs binding
curves to aCD9 (orange) and aCD81 (blue). The black line indicates
the fit. Reported with permission from (Chiodi et al., 2021a)

In order to fit the data with this model, we first needed to establish the con-

centration of fast to slow binders in our case. We have then simulated the effect of

having varying amounts of fast and slow binders in a solution, by using the param-

eter ρfast2slow to indicate the ratio of fast to slow binders. Since this ratio depends

on particles’ size, probe affinity, the number of multivalent sites on each particle and

the concentration of the sample, we decided to simulate the kinetics for values of

ρfast2slow that ranged from 0 (all slow binders) to 1 (all fast binders), looking for the

model that best represented our data. The result is shown in Figure 4·11a. The ratio

ρfast2slow that best fits our data is ρfast2slow= 0.4, meaning 40% of fast binders. The

fitted data are shown in Figure 4·11b, and R2 = 0.998 for this model. The obtained

binding constants are also consistent with the ones which were used as an input for
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the simulations, resulting as follows: kON,fast = 104M−1s−1, kOFF,fast = 10−5s−1,

kON,slow = 103M−1s−1, kOFF,slow = 10−10s−1.

To summarize, in this Section we have shown analog characterization of EVs on

the IRIS platform. These experiments were a proof of concept, to demonstrate that

this method can be utilized as an optimization step for more efficient capture and

characterization of BNPs. With further optimization, this technique has the potential

to accelerate EVs analysis in diagnostics and clinical studies.

4.2.2 Digital imaging: INDEX

While analog-based characterization of EVs is incredibly useful for optimization of

probe concentration and affinity, as well as incubation conditions, it does not enable

characterization of some specific features of the vesicles, including size population and

cancer-specific markers. As a matter of fact, cancer cells-derived EVs often express

on their surface a fraction of cancer-specific proteins, although, in most cases, they

only constitute a small minority of their cargo and therefore would not enable analog

phenotyping, due to the limited amount of signal their accumulation would produce.

Digital imaging of EVs can overcome this difficulty, by enabling single particle

characterization in number, size, and protein cargo. Still, label-free imaging of these

membranous objects is challenging, as they are composed of a bi-lipidic layer full

of liquid, making them very similar in refractive index to the surrounding medium.

Fluorescence labeling techniques for specific visualization of single EVs have recently

been developed, and are commonly utilized to observe the presence of specific markers

on the membrane or in the cargo of the vesicles (Mallick et al., 2020). However,

fluorescent markers are subject to a number of issues including non-specific tagging

and photobleaching. Another common method for single-particle characterization

of EVs is transmission electron microscopy (TEM), which in turn requires specific

treatments for fixation of the sample on a glass slide, and that could damage the
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structure of the vesicle.

In the context of the European Grant Program Horizon 2020 (H-2020), the INDEX

project proposed to utilize the IRIS single particle detection technology to characterize

single EVs for size, number, and disease-specific surface markers. Particularly, four

markers commonly found in lung cell-derived EVs were utilized for characterizing EVs

that were purified from the plasma samples belonging to 34 human patients (17 lung

cancer patients and 17 healthy controls). The vesicles were either purified through

a fluidized bed of magnetic nanoparticles (Pereiro et al., 2017) or by DNA-directed

capture and separation (Brambilla et al., 2021). The utilized capture probes were

aCD9, aEpCAM, aTS8, aEFGR and aCD151. The first one is an antibody against

CD9 tetraspanins which we also used for analog detection of EVs (Section 4.2.1), while

the other ones are cancer-specific EVs markers. Specifically, Epithelial Cell Adhesion

Molecule (EpCAM) is a glycoprotein mediating cell-cell adhesion in skin cells, and

epithelial tumor cells have been shown to secrete EpCAM-presenting EVs (Kahlert

and Kalluri, 2013); Epidermal Growth Factor Receptor (EGFR) is a transmembrane

receptor tyrosine kinase protein whose overexpression has been associated with the

presence of various cancers, including lung cancer (Sorensen et al., 2014); CD151 is a

surface glycoprotein that has been shown to promote metastasis formation in cancer

cells (Tokuhara et al., 2001); finally, TS8 is a tetraspanin that is also overexpressed in

tumor tissues, and it is particularly useful as a biomarker for lung cancer (Sandfeld-

Paulsen et al., 2016a).

We spotted IRIS chips with the selected probes, and each probe was immobilized

in three replicate spots. To produce the EVs quantification data, we acquired initial

images of the spotted chips, then incubated them with the purified EVs samples for

three hours recirculating at low speed (2µL/min), followed by a PBS wash at high

speed (200µL/min) and finally the chamber was gently dried with nitrogen flow and
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imaged again to visualize the captured particles. Below, in Figure 4·12, is an image of

an area of an aCD9 spot before and after incubation with one of the healthy control

samples.

Figure 4·12: Pre- and post-incubation images of an INDEX chip that
was incubated with extracellular vesicles purified from healthy donor’s
plasma.

As expected, cancer patients’ samples showed a higher capture rate on cancer

specific biomarkers with respect to the healthy marker, as shown in Figure 4·13.

However, the difference was not significant enough to be considered relevant, espe-

cially due to the large standard deviation measured in the case of cancer patients’

samples. These experiments should therefore be repeated and the statistics should

be improved. More averaging would certainly help in terms of reducing the error on

event counting, moreover, the visibility of the vesicles should be improved in order to

allow for in-liquid, real time detection. For example, EVs could be conjugated with a

metallic nanoparticle, which would dramatically increase their refractive index. This

could be an interesting application of the hybrid IRIS platform, as discussed in the

Future work Section.
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Figure 4·13: Two examples of differential EVs count on each antibody
marker for a) plasma from a healthy donor and b) from a lung cancer
patient.

4.3 Study of gold nanoparticle-conjugated analytes

4.3.1 Proof of concept: Human aIgG-IgG

In this Section, we will present the kinetic analysis of complexes of gold nanoparticles

and antibodies (mAb-GNPs), which complete the collection of multi-sized analytes

discussed in this dissertation. In order to demonstrate parallel analog and digital

detection of NPs, we started from a proof of concept experiment where we utilized

IgG-spotted chips and captured aIgG-functionalized GNPs. The experiment was per-

formed on the h-IRIS system, with green LED as an illumination source. The utilized

chips had an oxide thickness of 110nm, which, in combination with green wavelength,

provides decent reflectance signal for both analog and digital measurements, as dis-

cussed in Section 3.2.3.

The IgG spotted chips were incubated with PBS for 5 minutes prior to the injection
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of the nanoparticle sample. Then, the particles were flowed at 200µL/min for 15

minutes, followed by PBS again, as a washing buffer, for 5 minutes. Below, in Figure

4·14 is reported the binding curve of the NPs to the antibody surface. Here, BSA has

been used as a negative control.

Figure 4·14: Binding of 80nm aIgG-GNS complexes to an IgG surface,
at a concentration of 1010particles/mL. The negative control is a BSA
spot.

Digital defocus scans were acquired before and after incubation with the particle

sample, in order to perform differential imaging. Pre- and post- digital images are

reported in Figure 4·15.

The concentration of the nanoparticles injected was 1010particles/mL. The sample

was recirculated in the chamber for the duration of the experiment, in order to reduce

sample volume. The amount of signal obtained is comparable with what predicted

by simulations, as it will be better discussed below in Section 4.3.3.
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Figure 4·15: Pre (a-c) and post (b-d) images of of 80nm aIgG-GNS
complexes bound to an IgG surface (+) as well as a BSA spot (-) at a
concentration of 1010particles/mL.

4.3.2 Hepatitis B antibody sandwich assay

Hepathitis B viral infection (HBV) affects more than 300 million people worldwide

every year, and is a common cause of liver cancer. In some patients, HBV can

develop into a chronic infection, leading to a lifelong disease. As of today, chronic

HBV can be controlled with medications, but cannot be cured (Liang, 2009; Peters,

2019). The probability to develop a chronic version of the infection is particularly

high in patients with chronic liver conditions such as cirrhosis. As for any viral

infection, early stage detection of HBV is essential to prevent transmission. It has

been recently demonstrated that gold nanoparticle-based Lateral Flow Assays (LFAs)

can be utilized to detect the genetic material within the virus (Lin et al., 2021). Here,

we propose to demonstrate a real-time gold nanoparticle-based assay to simulate a

HBV detection LFA at the single molecule level.

For these experiments, we performed a sandwich assay by capturing, then labeling
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HBV core antigen. We utilized an antibody pair targeting two different domains on

the protein, one for capturing and one for labeling. This method has the potential

to be impactful in diagnostics, where it could lead to single molecule detection of

pathogen markers at low concentration in purified patients’ plasma samples. At this

stage, though, the main purpose of this method is to allow lateral flow assay developers

to optimize capture conditions for the chosen sandwich antibodies, recreating exactly

the same conditions as in the LFA device.

We immobilized two different HBVp-targeting antibodies on the surface of the

chip, at a concentration of 1mg/mL. The chip was incubated in PBS prior to the

sample run, and digital initial defocus scans were acquired. The first sample to be

flowed was the HPV core protein (HBVp), at a concentration of 10µg/mL, for 10

minutes at 200µL/min, followed by PBS for five minutes, and finally the nanoparticle

sample, constituted by aHBVp-functionalized 80nm GNPs. The binding curves for

this sandwich assay are reported in Figure 4·16, while the digital pre- and post- images

are reported in Figure 4·17.

Clearly, the HBVp target has a different kinetic behavior with respect to the

nanoparticles. Diffusion and avidity affect binding of larger analytes, as discussed in

Section 3.5.3. The signal drop measured when the nanoparticles reach the sample

chamber can be attributed to the scattering from the free NPs solution, as well as

accumulation of particles on the glass window that seals the sample cell. Both here

and in Figure 4·14, the measured values are displayed as normalized signal, without

converting to mass per unit area. The reason for this choice is consistency with the

BEM simulated data, where the measured quantity is the signal from the particles

divided by the reference signal. Moreover, since the measured signal can not be

attributed to a uniform increase in thickness, the mass density approach would lack

accuracy.
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Figure 4·16: Sandwich assay for detection of hepatitis B core pro-
tein (HBVp) with gold-nanoparticle labeling. Two different surface
probes were utilized, which target two different epitopes on the HPVp
molecule.

Figure 4·17: Pre (a-c) and post (b-d) images of 80nm aHBVp-GNS
complexes bound to a HBV antigen-antibody sandwich.
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4.3.3 Comparison with simulated data

In order to determine the feasibility of analog measurements of GNPs accumulation,

we ran some simulations using the BEM software, a MATLAB tool that enables

visualization of the scattering signal emitted by metallic nanoparticles under various

conditions. The results of such simulations are presented in Section 3.2.3. Here, we

would like to verify the consistency of those results with the analyzed experimental

data.

We will start by comparing the measured analog signal from Figures 4·14 and

4·16 with the average low NA signal obtained when simulating a similar density of

NPs on the surface. In order to determine which density of NPs corresponds to the

largest measured analog signal, we have compared the acquired digital post-images

with simulated digital images at different values of number of particles/mm2, and

we have determined that the situation that best represents the experimental data is

when the simulated particle density is around 3×104 particles/mm2, as represented

in Figure 4·18.

To validate this hypothesis, we measured the average particle-to-particle distance

on the acquired images on a cropped sample area on the digital image shown in Figure

4·17 of 1600µm2. Particle-to-particle distance was measured by tracing 50 segments

connecting the particles and calculating the average length. The average particle-

to-particle distance was estimated to be 4.2±1.4µm. On the simulated image, for a

particle density of 3×104 particles/mm2, the average particle-to-particle distance is

4.9±1.8µm. An example of simulated image where the measured particle-to-particle

distances have been labeled is shown in Figure 4·19.

Once determined what particle density is the most similar to that obtained ex-

perimentally, we then compared the average simulated signal from Figure 3·10. We

calculated the normalized signal by dividing by the reference field, and the obtained
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Figure 4·18: Comparison of a) simulated images at a particle density
of 3×104 particles/mm2 with b) the experimental data from Figure
4·17. The color axis indicates the total scattered signal (Sscat + Sref ).
The two compared areas are identical.

mean value at 3×104 particles/mm2 was around 2×10−4. Experimentally, we obtained

a higher measured value for the normalized signal (≈ 5 × 10−3) by calculating the

difference from the equilibrium point reached by the antibody in Figure 4·16 (orange

line).

The reason for this discrepancy between simulations and experimental data can

depend on several factors. On the experimental side, for example, free protein in

the sample can lead to an increase in mass density that can not be discriminated

with respect to the scattering signal. On the simulations’ side, when simulating a

large number of particles we consider a 400µm2 area surrounding the particle, but
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Figure 4·19: Simulated image at a particle density of 3×104

particles/mm2, where the measured particle-to-particle distances have
been labeled and numbered. The color axis indicates the total scattered
signal (Sscat + Sref ).

the produced scattering field might extend further, leading to an underestimation of

the simulated signal.

Nevertheless, this method is dramatically improving the sensitivity of the IRIS:

in standard analog configuration, for antibody molecules to be detected, they need

to form a continuous film on the surface. This signifies that the average distance

between two captured antibody molecules needs to be less than 10nm, as antibodies

can be modeled as a 7.5nm-diameter sphere (Williams et al., 2012). Here, the aver-

age distance between captured particles in the HBV sandwich assay is 4.2±1.4µm,

three orders of magnitude larger, and an analog signal is still produced. Moreover,
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measurements at the single molecule level can be carried out, thanks to the possi-

bility to switch to digital imaging. Thus, the increase in sensitivity achieved on the

h-IRIS is key in order to establish the IRIS technology as breakthrough for diagnostic

applications.
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Chapter 5

Conclusions

5.1 Summary of the dissertation

The goal of this work was to introduce an improved version of the Interferometric

Reflectance Imaging Sensor (IRIS), which has been optimized to perform the kinetic

characterization of a wide range of analytes. The molecular weight of the analytes

ranges from low molecular weight (small) molecules (MW<1kDa) to biological and

synthetic nanoparticles (MW>1MDa). The IRIS platform has been developed in over

a decade of research, and has been widely applied to kinetic characterization of pro-

teins and oligonucleotides. In its digital - or single-particle counting - configuration,

it has been shown to successfully perform counting and phenotyping of biological

particles such as viruses and extracellular vesicles.

Here, the IRIS system has been further engineered by addressing a multidimen-

sional optimization problem, where we considered each instrumental and experimental

parameter and precisely tuned them in order to achieve the highest possible sensi-

tivity, as well as the largest possible dynamic range in terms of analyte size. We

combined simulations with the results of proof of concept experiments in order to

generate an instrument that can virtually intake any target analyte and produce

kinetic constants, as well as digital data down to the single molecule level.

After proving that the system is shot noise-limited, we optimized the level of

averaging required to obtain small molecule sensitivity. We demonstrated the square

root trend of the averaged number of electrons, and compared various camera sensors
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in order to select one that could combine high sensitivity, fast analog measurements

with good resolution digital measurements. All optical parameters, including the

illumination configuration and the numerical aperture of the objectives, have been

analyzed and refined to allow for performing measurements in both configurations.

Furthermore, simulations have been carried out in order to choose the proper thickness

of the silicon oxide layer and illumination wavelength for analog measurements of

biomass accumulation from large analytes.

Another crucial parameter for label-free measurements is surface chemistry, which

has been shown to play a fundamental role in performing accurate kinetic measure-

ments. After presenting the theory behind diffusion-limited measurements, a newly

developed method is introduced which allows to study multiple surface chemistries

at once on the same substrate thanks to localized polymer functionalization. As an

additional advantage, this technique enables direct comparison of molecular probes

that would generally not be allowed to be immobilized on the same chip, such as

peptides and proteins.

For the first time, experimental results are presented for small molecule kinetic

characterization on the IRIS, particularly biotin (MW= 243 Da) which has been stud-

ied as a proof of concept for determining the sensitivity of the system, and fumonisin

toxin (MW = 721Da), as a demonstration of a relevant biotechnological application.

Additionally, fumonisin has been successfully characterized across a multiplexed array

of twenty antibodies, achieving the highest level of multiplexing ever demonstrated

on the IRIS system.

Characterization of extracellular vesicles (EVs) is shown both at the analog and

digital level, on two separate platforms - the standard analog and digital versions of

the IRIS. On the other hand, antibody-conjugated gold nanoparticle samples (mAb-

GNPs) have been characterized both at the analog and digital level on the same
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platform, the hybrid IRIS (h-IRIS) instrument, with minimal hardware adjustments

to switch from one configuration to the other. We showed the consistency between

simulated and experimental data for the analog and digital signal produced by GNPs,

and we showed how using GNPs as a mass label for sandwich assays crucially increases

the sensitivity of the IRIS system, improving the limit of detection by three orders of

magnitude.

5.2 Future work

Additional optimization steps that would further improve the performances of the

h-IRIS platform include: new integrating sphere designs that would improve illumi-

nation uniformity and reduce losses; the addition of an objective turret to allow for

seamless transition between analog and digital detection; and multi-channel fluidic

chamber designs that would increase the instrument throughput for drug development

applications. The first two ideas are currently being implemented and tested, while

the latter is still at the design stage.

For what concerns the software, we are working towards the development of an

integrated software capable of handling both analog and digital acquisition, as we cur-

rently utilize custom-developed Python software that is distinct for each application.

Automated particle tracking and counting is also under way.

One potential emerging application of the h-IRIS system could be the detection of

even more complex biomarkers, such as metal-labeled biological nanoparticles (Draz

et al., 2020). In this work, Draz et al. describe a method for labeling single viral

particles with nm-sized platinum NPs. If a similar technique were to be applied to

extracellular vesicles, for example, that would dramatically increase their refractive

index and allow for analog detection of a much lower density of particles on the h-

IRIS, improving the LOD. Digital imaging would then be performed, which - thanks
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to the increase in refractive index - could potentially be performed in liquid.

Overall, the h-IRIS is a highly versatile biosensing platform, that has been thor-

oughly optimized to achieve state-of-the-art performances on a wide dynamic range

of targets. Further optimization could lead to a broader impact in the development

of new, emerging biotechnological applications.
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Appendix A

Supplementary material

Figure A·1: Binding and debinding curves of the fumonisin toxin
at a concentration of 100µM to eight different antibodies generated
by immunizing mice with Fumonisin B1 conjugated to Keyhole limpet
hemocyanin (KLH); The solid red line indicates the 1:1 fitted associ-
ation curve, while the solid blue line indicates the fitted dissociation
curve. The dotted line represents the control spots’ trend.
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Table A.1: Association, dissociation and equilibrium constants calcu-
lated for eighteen antibodies against Fumonisin B1, as calculated with a
simple 1:1 Langmuir model from the fitted curves of figures 4·3,A·1,A·2.

Antibody kon(M−1s−1) koff (10−4s−1) KD(µM)

CTx-1 15.6± 2.2 6.8± 3.2 44± 22

CTx-2 11.0± 2.2 8.8± 4.4 80± 43

CTx-3 13.1± 3.0 9.5± 4.3 73± 37

CTx-4 27.4± 4.6 15.9± 4.6 58± 19

CTx-5 30.8± 2.7 5.1± 1.9 17± 6

CTx-6 1.1± 0.2 53.7± 11.8 4986± 1461

CTx-7 12.5± 4.8 41.1± 18.7 329± 196

CTx-8 20.0± 2.1 5.3± 2.1 27± 11

CTx-9 31.0± 33.4 106± 118 341± 530

CTx-10 13.6± 2.7 3.9± 3.2 28± 24

KLH-1 8.2± 1.5 17.9± 4.7 219± 70

KLH-2 4.0± 0.7 15.2± 3.3 377± 103

KLH-3 9.3± 1.1 14.1± 3.0 151± 37

KLH-4 31.9± 5.7 21.5± 5.3 67± 22

KLH-5 N/A N/A N/A
KLH-6 6.6± 0.9 3.0± 27.6 46± 415

KLH-7 N/A N/A N/A
KLH-8 11.9± 2.2 31.6± 7.5 266± 81

KLH-9 10.0± 2.8 16.6± 7.2 166± 85

KLH-10 20.0± 3.5 16.1± 4.8 81± 28
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Figure A·2: Binding and debinding curves of the fumonisin toxin at
a concentration of 100µM to seven different antibodies generated by
immunizing mice with Fumonisin B1 conjugated to Cholera toxin B
subunit (CTx-B); The solid red line indicates the 1:1 fitted association
curve, while the solid blue line indicates the fitted dissociation curve.
The dotted line represents the control spots’ trend.
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