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Abstract

We study the accuracy of differentially private mechanisms in the continual release model. A continual
release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each
input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as
one batch and produces a single output.

We provide the first strong lower bounds on the error of continual release mechanisms. In particular,
for two fundamental problems that are widely studied and used in the batch model, we show that
the worst case error of every continual release algorithm is Ω̃(T 1/3) times larger than that of the best
batch algorithm. Previous work shows only a polylogarithimic (in T ) gap between the worst case error
achievable in these two models; further, for many problems, including the summation of binary attributes,
the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems
closely related to summation—specifically, those that require selecting the largest of a set of sums—are
fundamentally harder in the continual release model than in the batch model.

Our lower bounds assume only that privacy holds for streams fixed in advance (the “nonadaptive”
setting). However, we provide matching upper bounds that hold in a model where privacy is required
even for adaptively selected streams. This model may be of independent interest.
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1 Introduction

In fields ranging from healthcare to criminal justice, sensitive data is being analyzed to identify patterns
and draw population-level conclusions. Differentially private (DP) data analysis [10] studies the design
of algorithms that publish such aggregate statistics about input datasets while preserving the privacy of
individuals whose data they contain. Differential privacy has been extensively studied and DP algorithms
have been deployed in both industry and government. Current government deployments, notably at the US
Census Bureau [6], operate in the batch model : that is, they collect their input all at once and produce a
single output. However, in many situations, the data are collected over time, and the published statistics
need to be updated regularly. An example of such a statistic is the number of COVID-19 cases. To investigate
privacy in these situations, Dwork et al. [11] and Chan et al. [8] introduced the continual release model. In
this model, a mechanism receives a sensitive dataset as a stream of T input records and produces, after
receiving each record, an accurate output on the obtained inputs. Intuitively, the mechanism is differentially
private if releasing the entire vector of T outputs satisfies differential privacy. The main challenge for privacy
is that each individual record contributes to outputs at multiple time steps.

Dwork et al. [11] and Chan et al. [8] considered the problem of computing summation in the continual
release model when each record consists of one bit. They designed a continual release mechanism, called
the binary tree mechanism, that achieves (additive) error O(log2 T ) for this problem. Dwork et al. [11] also
showed that an error of Ω(log T ) is necessary to privately release all running sums. (Further related work is
discussed in Section 1.2.)

1.1 Our Contributions

We ask what price differentially private algorithms must pay in accuracy to solve a problem in the continual
release model instead of the batch model. The largest previously known gap in accuracy between the two
models is logarithmic in T , exhibited by the result of [11] on summation. We show that for two fundamental
problems, which are related to summation and widely studied in the batch model, the gap is exponentially
larger.

In the first problem, called MaxSum, each input consists of d binary attributes and the goal is to approx-
imate the maximum of the attribute sums. We define the error of a mechanism as the maximum error over
all the time steps. For MaxSum, the error at each time step is the absolute value of the difference between
the true answer and the output of the mechanism at that time step. The second problem, SumSelect, is
the “argmax” version of MaxSum: the goal is to find the index of the largest attribute sum. The error at a
particular time step for this problem is the absolute difference between the maximum sum and the attribute
sum at the index returned by the mechanism at that time step. Both problems are abstractions of practically
relevant tasks. For instance, if the data collected by a public health agency (e.g., the US CDC) consists of
records indicating which of d medical conditions each person suffers from, then MaxSum corresponds to the
number of cases of the most common condition that occurred so far, and SumSelect corresponds to the name
of this condition. Algorithms for these tasks are key ingredients in differentially private solutions to more
complex problems such as synthetic data generation [16] and high-dimensional optimization [27]. We prove
tight bounds on the error for these two problems in the continual release model in terms of the parameters
T , called the time horizon, and d, called the dimension, discussed above, as well as the privacy parameter ε.

To provide a comparison to the continual release model, we assume here that algorithms in the batch
model get input datasets of size T . Intuitively, a batch algorithm A is (ε, δ)-differentially private if, for all
datasets x and x′ that differ in one record, all events under the distributions A(x) and A(x′) have similar
probabilities. In the case of δ = 0 (also referred to as pure differential privacy), these probabilities differ
by at most a factor of eε. In the case of δ > 0 (referred to as approximate differential privacy), if these
probabilities are p and p′, they must satisfy p ≤ eε · p′+ δ. (See Definition 2.2). To give a meaningful privacy
guarantee, the parameter δ has to be small: in our case, δ = o(ε/T ). For continual release mechanisms, we
study event-level privacy, where each user’s data appears in a single record, as opposed to user-level privacy,
where a user’s data could be distributed over multiple records. (See [11] for the discussion of these two
variants.)
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Approximate DP (δ > 0) Pure DP (δ = 0) Reference

MaxSum
Ω̃
(

min
{

3

√
T
ε2 ,
√
d
ε , T

})
Ω̃
(

min
{√

T
ε ,

d
ε , T

})
Thm. 3.1

Õ
(

min
{

3

√
T
ε2 ,
√
d polylog(T )

ε , T
})

Õ
(

min
{√

T
ε ,

d polylog(T )
ε , T

})
Cor. 5.6, 5.9

SumSelect
Ω̃
(

min
{

3

√
T log2 d
ε2 ,

√
d
ε , T

})
Ω̃
(

min
{√

T log d
ε , dε , T

})
Thm. 4.1

Õ
(

min
{

3

√
T log2 d
ε2 ,

√
d polylog(T )

ε , T
})

Õ
(

min
{√

T log d
ε , d polylog(T )

ε , T
})

Cor. 5.6, 5.9

Table 1: Our results on the error of (ε, δ)-DP mechanisms in the continual release model. The corresponding
upper and lower bounds differ only in the polylog(T ) terms, highlighted in blue. For approximate differential
privacy, the lower bounds apply when δ = o(ε/T ), and the upper bounds apply when δ > poly

(
1
T

)
.

We demonstrate a strong separation between the continual release and the batch models. For approximate
differential privacy, we show that when d is sufficiently large, MaxSumd and SumSelectd require Ω̃(T 1/3) and
Ω̃
(
( T

log d )1/3
)

error blowup, respectively, in the continual release model compared to the batch setting. For

pure differential privacy, the blowup (when d is large) is Ω̃(T 1/2) for MaxSum and Ω̃( T 1/2

log1/2 d
) for SumSelect.

Our results are summarized in Table 1. To put our bounds in context, observe that for both problems
we consider, there is a trivial algorithm that ignores its data, always outputs the same value and has error
at most T (since each attribute sum is an integer between 0 and T ). Our bounds on the error should be
contrasted with the error achievable by (ε, 0)-differentially private algorithms in the batch model: O( 1

ε ) for

MaxSum, and O
(

log d
ε

)
for SumSelect. The former is obtained by an instantiation of the Laplace mechanism

from [10] and the latter—by an instantiation of the exponential mechanism of McSherry and Talwar [22].
We obtain our lower bounds by reductions from problems in the batch model. The key is to consider

tasks for which multiple instances of the same base problem on one dataset need to be solved. For MaxSum,
the corresponding task in the batch model is to output all marginals. Each marginal can be thought of
as an instance of computing the (appropriately rescaled) sum of values in the corresponding coordinate.
For SumSelect, the task in the batch model is based on solving independent instances of finding the largest
marginal, each on its own subset of coordinates. We use the lower bounds for batch algorithms for these
problems by Bun et al. [5], Hardt and Talwar [17], and Steinke and Ullman [26].

Each of our lower bounds is the minimum of three terms, corresponding to different parameter regimes.
Our lower bounds are matched (up to polylogarithmic factors in T and 1/δ), in each regime, by two simple
mechanisms and one trivial mechanism. The trivial mechanism always outputs an arbitrary value in the right
range. The first simple mechanism is based on recomputing the value of the desired statistic (e.g., MaxSum) at
regular intervals and providing the same answer until it is recomputed again. The second simple mechanism
uses the binary tree mechanism to track all d coordinates separately and takes the maximum (or, in the case
of SumSelect, argmax) of the noisy values. The guarantees of these mechanisms for MaxSum, SumSelect, and
general functions of sensitivity 1 are stated in Section 5. Together, our mechanisms and our lower bounds
characterize the error for MaxSum and SumSelect up to polylogarithmic factors in T and 1/δ in all regimes.

Our lower bounds apply to the original continual release model of Dwork et al. [11] and Chan et al. [8].
In this model, which we refer to as the nonadaptive setting, privacy is defined for streams fixed in advance.
However, our matching upper bounds hold even when privacy and accuracy are required for adaptively
selected streams. In the adaptive version of the model, each record in the stream is chosen by an adversary
after it sees all the answers of the mechanism from the prior time steps. This model gives more power to the
adversary and therefore places more stringent requirements on privacy and accuracy. This model may be of
independent interest.
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1.2 Further Related Work

Event-level privacy Bolot et al. [3] and Perrier et al. [23] extended the tree mechanism of Dwork et
al. [11] to work for weighted sums with exponentially decaying coefficients and for sums of bounded real
values, respectively. Song et al. [25] generalized the model to graph data and obtained a continual release
mechanism for graph statistics, such as the degree distribution and subgraph counts, on bounded degree
graphs. Fichtenberger et al. [14] studied a variety of other graph problems in the continual release setting,
including minimum cut and densest subgraph. Differentially private online learning is investigated in a
sequence of works [19, 15, 1] that use the summation primitive developed by Dwork et al. to obtain sublinear
regret guarantees for many hypothesis classes. The adaptive continual release model arises implicitly in those
works, but to our knowledge it was not formulated explicitly. Cardoso and Rogers [7] study, among other
problems, SumSelect (called top-1 selection with unrestricted `0 sensitivity in their work) in the continual
release model. Their focus is on empirical performance on streams that arise in practice, in which the index
of the largest sum changes seldom. The recomputation-based algorithm we present for SumSelect can be seen
as a special case of their KnownBase algorithm. They evaluate the accuracy of the algorithm empirically
whereas our work provides theoretical bounds on the error. One of the contributions of [7] is making the
algorithms work in a more restrictive computational model, in which the algorithm only stores the current
values of the sums at any given time step and the seed of a pseudorandom function. The algorithms we
present here can also be implemented in their model using the techniques in their paper.

User-level differential privacy User-level privacy in the continual release model was first studied by
Dwork et al. [11] and Chan et al. [8]. User-level privacy is more stringent than event-level privacy, so the
lower bounds in our paper apply directly to that model. Even though, in general, event-level privacy does
not imply user-level privacy, the recomputation technique used in some of our algorithms gives user-level
privacy whenever the mechanism employed for the recomputations is user-level private.

Pan-Privacy Pan-privacy, defined by Dwork et al. [12], is a model that protects against intrusions into
the memory of the algorithm as it processes a stream. In pan-privacy, as in continual release, the input is
presented as a stream. However, the requirement of pan-privacy is orthogonal to that of continual release;
see [12] for details.

2 Definitions

2.1 Preliminaries on Differential Privacy

We first introduce the notion of (ε, δ)-indistinguishability.

Definition 2.1 ((ε, δ)-Indistinguishability). Random variables R1 and R2 over the same outcome space Y
are (ε, δ)-indistinguishable (denoted R1 ≈ε,δ R2) if for all subsets S ⊆ Y, the following hold:

Pr[R1 ∈ S] ≤ eε Pr[R2 ∈ S] + δ;

Pr[R2 ∈ S] ≤ eε Pr[R1 ∈ S] + δ.

A dataset x = (x1, . . . , xn) ∈ Xn is a vector of elements, called records, from a universe X . Two datasets
are neighbors if they differ in one record (i.e., one coordinate). Informally, differential privacy requires that
an algorithm’s output distributions are similar on all pairs of neighboring datasets. In the batch model, the
algorithm receives datasets as one batch as opposed to in an online fashion.

Definition 2.2 (Differential Privacy in Batch Model [10, 9]). A randomized algorithm A : Xn → Y is
(ε, δ)-differentially private (DP) if for every pair of neighboring datasets x,x′ ∈ Xn,

A(x) ≈ε,δ A(x′).
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The case δ = 0 is referred to as pure differential privacy, whereas the case δ > 0 is called approximate
differential privacy.

Differential privacy protects groups of individuals.

Lemma 2.3 (Group Privacy [10]). Every (ε, δ)-DP algorithm A is (`ε, δ′)-DP for groups of size `, where

δ′ = δ e
`ε−1
eε−1 ; that is, for all datasets x,x′ such that ‖x− x′‖0 ≤ `,

A(x) ≈`ε,δ′ A(x′).

Differential privacy is closed under post-processing.

Lemma 2.4 (Post-Processing [10, 4]). If A is an (ε, δ)-DP algorithm with output space Y and B is a
randomized map from Y to Z, then the algorithm B ◦ A is (ε, δ)-DP.

Definition 2.5 (Sensitivity). Let f : Xn → Rm be a function. Its `1-sensitivity is

max
neighbors x,x′∈Xn

‖f(x)− f(x′)‖1.

To define `2-sensitivity, we replace the `1 norm with the `2 norm.

Our algorithms use the standard Laplace mechanism to ensure differential privacy.

Definition 2.6 (Laplace Distribution). The Laplace distribution with parameter b and mean 0, denoted
Lap(b), has probability density

h(r) =
1

2b
e−
|r|
b for all r ∈ R.

Lemma 2.7 (Laplace Mechanism). Let f : Xn → Rm be a function with `1-sensitivity at most ∆1. Then
the Laplace mechanism is algorithm

Af (x) = f(x) + (Z1, . . . , Zm),

where Zi ∼ Lap
(

∆1

ε

)
. Algorithm Af is (ε, 0)-DP.

Lemma 2.8 (Exponential Mechanism [22]). Let L be a set of outputs and g : L × Xn → R be a function
that measures the quality of each output on a dataset. Assume that for every m ∈ L, the function g(m, .)
has `1-sensitivity at most ∆. Then, for all ε, n > 0 and for all datasets y ∈ Xn, there exists an (ε, 0)-DP
mechanism that outputs an element m ∈ L such that, for all a > 0, we have

Pr

[
max
i∈[L]

g(i, y)− g(m, y) ≥ 2∆
(ln |L|+ a)

ε

]
≤ e−a.

Definition 2.9 (Gaussian Distribution). The Gaussian distribution with parameter σ and mean 0, denoted
N (0, σ2), has probability density

h(r) =
1

σ
√

2π
e−

r2

2σ2 for all r ∈ R.

2.2 Preliminaries on ρ-zCDP

This section contains preliminaries about “zero-concentrated differential privacy” (zCDP). The difference be-
tween zero-concentrated differential privacy and (ε, δ)-differential privacy is that zCDP requires output distri-
butions on all pairs of neighboring datasets to be ρ-close (Definition 2.11) instead of (ε, δ)-indistinguishable.
In Section 5 we analyse the privacy of our upper bounds in terms of zCDP and then use the fact that zCDP
implies (ε, δ)-differential privacy (Lemma 2.15) to compare our upper and lower bounds.
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Definition 2.10 (Rényi Divergence [24]). Let Q and Q′ be distributions on Y. For ξ ∈ (1,∞), the Rényi
divergence of order ξ between Q and Q′(also called the ξ-Rényi Divergence) is defined as

Dξ(Q‖Q′) =
1

ξ − 1
log

(
E

r∼Q′

[(
Q(r)

Q′(r)

)ξ−1
])

. (1)

Here Q(·) and Q′(·) denote either probability masses (in the discrete case) or probability densities (when they

exist). More generally, one can replace Q(.)
Q′(.) with the the Radon-Nikodym derivative of Q with respect to Q′.

Definition 2.11 (ρ-Closeness). Random variables R1 and R2 over the same outcome space Y are ρ-close
(denoted R1 'ρ R2) if for all ξ ∈ (1,∞),

Dξ(R1‖R2) ≤ ξρ and Dξ(R2‖R1) ≤ ξρ,

where Dξ(R1‖R2) is the ξ-Rényi divergence between the distributions of R1 and R2.

Definition 2.12 (zCDP in Batch Model [4]). A randomized batch algorithm A : Xn → Y is ρ-zero-
concentrated differentially private (ρ-zCDP), if, for all neighboring datasets y,y′ ∈ Xn,

A(y) 'ρ A(y′).

One major benefit of using zCDP is that this definition of privacy admits a clean composition result. We
use it when analysing the privacy of the algorithms in Section 5.

Lemma 2.13 (Composition [4]). Let A : Xn → Y and A′ : Xn ×Y → Z be batch algorithms. Suppose A is
ρ-zCDP and A′ is ρ′-zCDP. Define batch algorithm A′′ : Xn → Y ×Z by A′′(y) = A′(y,A(y)). Then A′′ is
(ρ+ ρ′)-zCDP.

The Gaussian mechanism is used in Section 5. It estimates a real-valued function on a database by
adding Gaussian noise to the value of the function.

Lemma 2.14 (Gaussian Mechanism [4]). Let f : Xn → R be a function with `2-sensitivity at most ∆2. Let
A be the batch algorithm that, on input y, releases a sample from N (f(y), σ2). Then A is (∆2

2/2σ
2)-zCDP.

The final lemma in this section relates zero-concentrated differential privacy to (ε, δ)-differential privacy.

Lemma 2.15 (Conversion from zCDP to DP [4]). For all ρ, δ > 0, if batch algorithm A is ρ-zCDP, then A
is (ρ+ 2

√
ρ log(1/δ), δ)-DP.

2.3 The Continual Release Model with Nonadaptively Chosen Inputs

A mechanism in the continual release model [11, 8] is an algorithm that receives its input x = (x1, . . . , xT ) ∈
X T as a stream. At each time step t ∈ [T ], it gets a record xt and outputs an answer at. The output stream
(a1, . . . , aT ) is denoted by a. We use x[t] = (x1, . . . , xt) for t ∈ [T ] to denote the first t records in a stream x
(similarly, a[t] = (a1, . . . , at).) The total number of records in the stream, denoted by T , is called the time
horizon. For simplicity, we assume T is known to the mechanism.

We consider two variants of the continual release model. In the nonadaptive model of [11, 8], the input
stream x is fixed before the mechanism runs. The adaptive model, defined in Section 5.1, allows an adversary
to choose each input record xt for t ∈ {2, . . . , T} based on the previous outputs a1, . . . , at−1 of the mechanism.
The adaptive model gives the adversary more power. Therefore, the nonadaptive model provides weaker
guarantees in terms of both privacy and accuracy. All our lower bounds are for the nonadaptive model and,
consequently, imply the same lower bounds for the adaptive model. In contrast, all our algorithmic results
are for the adaptive model (and, consequently, they also hold in the nonadaptive model).

We refer to standard algorithms that get their input in one batch and produce one output as batch
algorithms. For clarity, we refer to continual release algorithms as mechanisms.
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Accuracy We start by defining how well a given output approximates the value of a function. We use a
notion of error that depends on the function. Given a function f : X ∗ → Y, a dataset x ∈ X ∗, and an answer
a ∈ Y, let ERRf (x, a) be a nonnegative number that quantifies how far off a is from f(x). Specifically, when
Y = Rk,

ERRf (x, a) = ‖f(x)− a‖∞. (2)

Later (in (3)), we define a different notion of error for the optimization problem SumSelect. Intuitively, the
error for an optimization problem corresponds to the deficit in the objective function.

Definition 2.16 (Accuracy of a Mechanism). In the nonadaptive continual release model, a mechanism M
is (α, T )-accurate for f if, for all fixed input streams x = (x1, . . . , xT ), the maximum error ERRf (x[t], at)
over the outputs a1, . . . , aT of mechanism M is bounded by α with high probability, that is,

Pr
coins of M

[
max
t∈[T ]

ERRf (x[t], at) ≤ α
]
≥ 2

3
.

Privacy Finally, we define privacy in the nonadaptive continual release model.

Definition 2.17 (Privacy of a Mechanism). Given a mechanism M, define AM to be the batch model
algorithm that receives an input dataset x, runs M on stream x, and returns the output stream a of M.
The mechanism M is (ε, δ)-differentially private (DP) in the nonadaptive continual release model if AM is
(ε, δ)-DP in the batch model.

Definition 2.17 refers to event-level privacy, where each user’s data appears in a single record, as opposed
to user-level privacy, where a user’s data could be distributed over multiple records.

2.4 Problem Definitions

We consider two functions on datasets, where each record consists of d binary attributes. The first function,
MaxSumd, returns the maximum attribute sum for the input records. The second function, SumSelectd,
returns the index of such a maximum sum.

Definition 2.18. Let d ∈ N and X = {0, 1}d. For a dataset x ∈ X ∗ and j ∈ [d], the jth attribute of record
xi is its jth coordinate, denoted xi[j]. Let t ∈ N and x[t] ∈ X t. The function MaxSumd : X ∗ → N is

MaxSumd(x[t])
def
= max

j∈[d]

(∑
i∈[t]

xi[j]
)
.

The function SumSelectd : X ∗ → [d] is

SumSelectd(x[t])
def
= arg max

j∈[d]

(∑
i∈[t]

xi[j]
)
.

If multiple indices j attain the maximum sum, the function value is defined to be the smallest such index.

We study the accuracy of differentially private algorithms for computing these two functions. Our ac-
curacy goal, stated in Definition 2.16, uses the notion ERRf . We define the error ERRMaxSum as in (2). For
SumSelect, it is defined by:

ERRSumSelect(x[t], at) = MaxSumd(x[t])−
∑
i∈[t]

xi[at]. (3)
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3 Lower Bounds for MaxSum

In this section, we prove Theorem 3.1 that provides strong lower bounds on the accuracy parameter α for
any accurate mechanism for MaxSumd in the nonadaptive continual release model. Our lower bounds match
the upper bounds from Section 5 for MaxSumd in the adaptive continual release model up to logarithmic
factors in the time horizon T and the number of coordinates d.

Theorem 3.1. For all ε ∈ (0, 1], δ ∈ [0, 1), α ≥ 0, d ∈ N, sufficiently large T ∈ N, and mechanisms M in the
nonadaptive continual release model that are (ε, δ)-differentially private and (α, T )-accurate for MaxSumd,
the following statements hold.

1. If δ > 0 and δ = o(ε/T ), then α = Ω
(

min
{

T 1/3

ε2/3 log2/3(εT )
,
√
d

ε log d , T
})

.

2. If δ = 0, then α = Ω
(

min
{√

T
ε ,

d
ε , T

})
.

MaxSumd can be released in the batch model with α = O(1/ε) via the Laplace mechanism [10]. Hence,
Theorem 3.1 shows a strong separation between the batch model of differential privacy and the continual
release model.

3.1 1-way Marginal Queries in Batch Model

To prove our lower bounds for MaxSum, we reduce from the problem of approximating 1-way marginals
in the batch model. The function Marginalsd : X ∗ → [0, 1]d maps a dataset y of any size n to a vector
(q1(y), . . . , qd(y)), where qj , called the jth marginal, is defined as qj(y) = 1

n

∑n
i=1 y[j]. The error ERRMarginals

is defined as in (2). Next, we define accuracy for batch algorithms.

Definition 3.2 (Accuracy of Batch Algorithms). Let γ ∈ [0, 1], n, d ∈ N, and X = {0, 1}d. Let f : Xn → Rd
be a function on datasets. Batch algorithm A is (γ, n)-accurate for f if for all datasets y ∈ Xn,

Pr
coins of A

[ERRf (y,A(y)) ≤ γ] ≥ 2

3
.

We use the lower bounds from [5, 17] for the problem of estimating Marginalsd in the batch model. They
are stated in Items 1 and 2 of Lemma 3.3 for approximate differential privacy and pure differential privacy,
respectively. Item 2 in Lemma 3.3 is a slight modification of the lower bound from [17] and follows from a
simple packing argument.

Lemma 3.3. For all ε ∈ (0, 1], δ ∈ [0, 1], γ ∈ (0, 1), d, n ∈ N, and algorithms A that are (ε, δ)-differentially
private and (γ, n)-accurate for Marginalsd, the following statements hold.

1 ([5]). If δ > 0 and δ = o(1/n), then n = Ω
( √

d
γε log d

)
.

2 ([17]). If δ = 0, then n = Ω
(
d
γε

)
.

3.2 Proof of Theorem 3.1

Let M be an (ε, δ)-DP and (α, T )-accurate mechanism for MaxSumd in the nonadaptive continual release
model. We use M to construct an (ε, δ)-DP batch algorithm A that is (αn , n)-accurate for Marginalsd. The
main idea in the construction, presented in Algorithm 1, is to forceM to output an estimate of the sum for
one attribute at a time by making the sum in that attribute the largest. First, A streams its own dataset y
toM. Then it sends n additional records with 1 in the first attribute and 0 everywhere else. After this, the
first attribute sum is the largest, and the answer produced by M at this point can be used to estimate the
first marginal. Then A equalizes the number of extraneous 1’s for each attribute by sending n additional
records with 0 in the first attribute and 1 everywhere else. It repeats this for each attribute, collecting the
answers from M, and then outputs its estimates for the marginals.

9



Algorithm 1 Algorithm A for estimating all 1-way marginals

Input: y = (y1, . . . , yn) ∈ Xn, where X = {0, 1}d, and black-box access to mechanism M.
Output: b = (b1, . . . , bd) ∈ Rd.

1: Let ej be a vector of length d with 1 in coordinate j and 0 everywhere else; let ej ← (1)d − ej .
2: Construct a stream x← y ◦ (e1)n ◦ (e1)n ◦ · · · ◦ (ed−1)n ◦ (ed−1)n ◦ (ed)

n with 2dn records.
3: for t ∈ [T ] do
4: Send xt to M and get the corresponding output at.

5: for j ∈ [d] do
6: bj ← a2jn/n− j.
7: Output b← (b1, . . . , bd).

For vectors u = (u1, . . . , u`) and v = (v1, . . . , vm), let u ◦ v = (u1, . . . , u`, v1, . . . , vm). For a vector v, let
vn denote the vector v ◦ v ◦ · · · ◦ v representing n concatenated copies of v.

Lemma 3.4. Let A be Algorithm 1. For all ε > 0, δ ≥ 0, α ∈ R+ and d, n, T ∈ N, where T ≥ 2dn, if
mechanism M is (ε, δ)-DP and (α, T )-accurate for MaxSumd in the nonadaptive continual release model,
then batch algorithm A is (ε, δ)-DP and (αn , n)-accurate for Marginalsd.

Proof. We start by reasoning about privacy. Fix neighboring datasets y and y′ that are inputs to algo-
rithm A. Let x and x′ be the streams constructed in Step 2 of A when it is run on y and y′, respectively. By
construction, x and x′ are neighbors. Since M is (ε, δ)-DP, and A only post-processes the outputs received
from M, Lemma 2.4 implies that A is (ε, δ)-DP.

Now we reason about accuracy. Let x = (x1, . . . , x2dn) be the input stream provided toM when A is run
on dataset y. By construction of x, the marginals qj(y) for all j ∈ [d] and MaxSumd are related as follows:

qj(y) =
1

n

∑
i∈[n]

yi[j] =
1

n

( ∑
i∈[2jn]

xi[j]− jn
)

=
1

n
·MaxSumd(x[2jn])− j. (4)

The attribute with the largest sum in x[2jn] is j because (e1)n ◦ (e1)n ◦ · · · ◦ (ej−1)n ◦ (ej−1)n ◦ (ej)
n

contributes jn ones to this attribute and (j − 1)n ones to each attribute in [n]/{j}, whereas the maximum
sum of any attribute in y is n.

Since the transformation from M to A is deterministic, the coins of A are the same as the coins of M.
By (4) and the computation of the estimates for the Marginalsd in Step 6 of Algorithm 1,

Pr
coins of A

[
ERRMarginals(y,A(y)) ≤ α

n

]
= Pr

coins of A

[
max
j∈[d]
|qj(y)− bj | ≤

α

n

]
= Pr

coins of M

[
max

t∈{2n,...,2dn}

∣∣MaxSumd(x[t])− at
∣∣ ≤ α] ≥ Pr

coins of M

[
max
t∈[T ]

∣∣MaxSumd(x[t])− at
∣∣ ≤ α]

= Pr
coins of M

[
max
t∈[T ]

ERRMaxSum(x[t], at) ≤ α
]

≥ 2

3
,

where we used that M is (α, T )-accurate for MaxSumd. Thus, A is (αn , n)-accurate for Marginalsd.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Observe that the accuracy parameter α is nondecreasing as a function of d, since a
mechanism M for MaxSumd can be used to approximate MaxSumd′ for all d′ < d with the same accuracy
and privacy guarantees by padding each length-d′ input record with d− d′ zeroes.

Recall that both lower bounds on α stated in Theorem 3.1 are the minimum of three terms. To prove
them, it suffices to show that, for all ranges of parameters, one of the terms is a lower bound on α.

First, consider the case when ε ≤ 2
T . We will show that in this case (for both pure and approximate

differential privacy), α > T/9. Since α is a nondecreasing function of d, it is sufficient to show this for d = 1.
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Suppose for the sake of contradiction that α ≤ T/9. Let x = (0)T and x′ = (0)3T/4(1)T/4 be datastreams
that differ on T/4 records. Let aT and a′T be the final outputs ofM on input streams x and x′, respectively.
By accuracy of M, we have Pr[aT ≤ T/9] ≥ 2/3. Applying Lemma 2.3 on group privacy with ε ≤ 2/T and
` = T/4, we get Pr[a′T > T/9] ≤

√
e ·Pr[at > T/9] + 2δ

ε < 2/3 for sufficiently large T , since δ = o(ε/T ). But
MaxSumd(x

′) = T/4, so M is not (T/9, T )-accurate, a contradiction. Hence, α = Ω(T ).
Now assume ε > 2

T , i.e., εT > 2. We start by proving Item 1 (when δ = o(ε/T )). Let A be the algorithm
for Marginalsd with black-box access to M, as defined in Algorithm 1. If T ≥ 2dn and α

n < 1, then by
Lemma 3.4, algorithm A is (ε, δ)-differentially private and (αn , n)-accurate for Marginalsd. (We require α

n < 1
for the accuracy guarantee on A to be meaningful.) We can then use Lemma 3.3 to lower bound α.

Case 1: d ≤ (εT log(εT ))2/3. If there exists a dataset size n ∈ (α, T2d ], then by Item 1 of Lemma 3.3,

n = Ω
(

n
√
d

α·ε log d

)
, and hence α = Ω

( √
d

ε log d

)
. If no such n exists, then α + 1 ≥ T

2d , and hence α =

Ω(Td ) = Ω
(

T 1/3

ε2/3 log2/3(εT )

)
. Combining the expressions for the two parameter ranges, we get that α =

Ω
(

min
{

T 1/3

ε2/3 log2/3(εT )
,
√
d

ε log d

})
.

Case 2: d > (εT log(εT ))2/3. Set d′ = b(εT log(εT ))2/3c. Observe that d ≥ 1 because εT > 2. By
our previous padding argument, a mechanism for MaxSumd can be used to approximate MaxSumd′ for d′ =

(εT )2/3 with the same accuracy and privacy guarantees. Therefore, α = Ω
(

min
{

T 1/3

ε2/3 log2/3(εT )
,
√
d′

ε log d′

})
=

Ω
(

T 1/3

ε2/3 log2/3(εT )

)
. This completes the proof of Item 1.

The proof of Item 2 (with δ = 0) proceeds along the same lines, except that we consider the cases
d ≤
√
εT and d >

√
εT and use Item 2 from Lemma 3.3 instead of Item 1. If a dataset size n ∈ (α, T2d ] exists,

by Item 2 of Lemma 3.3, we get n = Ω
(
nd
αε

)
, and hence α = Ω

(
d
ε

)
. If no such n exists, then α+ 1 ≥ T

2d , and

hence α = Ω(T/d) = Ω(
√
T/ε). If d >

√
εT , a padding argument gives that α = Ω(

√
T/ε).

4 Lower Bounds for SumSelect

In this section, we prove Theorem 4.1 that provides strong lower bounds on the accuracy parameter α of
any (α, T )-accurate algorithm M for SumSelectd in the nonadaptive continual release model. Our lower
bounds match the upper bounds from Section 5 for SumSelectd in the adaptive continual release model up
to logarithmic factors in the time horizon T and the number of coordinates d.

Theorem 4.1. For all ε ∈ (0, 1], δ ∈ [0, 1), α > 0, d ∈ N such that d > 1, sufficiently large T ∈ N,
and mechanisms M in the nonadaptive continual release model that are (ε, δ)-DP and (α, T )-accurate for
SumSelectd, the following statements hold.

1. If 0 < δ = o( εT ), then α = Ω̃
(

min
{
T 1/3 log2/3 d

ε2/3
,
√
d
ε , T

})
.

2. If δ = 0, then α = Ω
(

min

{√
T
ε log

(
2 + d√

εT

)
, dε , T

})
= Ω̃

(
min

{√
T log(d)

ε , dε , T

})
.

4.1 k-Selectd Problem in the Batch Model

To prove our lower bounds for SumSelect in the nonadaptive continual release model, we reduce from the
problem called k-Select that solves k disjoint instances of the problem of selecting the index of the largest
marginal in the batch model.

To define the function k-Select, let n, d, k ∈ N, and X = {0, 1}kd. Let y[i : j] denote the dataset y ∈ Xn
with each record restricted to the coordinates between (and including) i and j. The function k-Selectd :
Xn → [d]k corresponds to dividing the dataset into k blocks y[1 : d],y[d + 1 : 2d], . . . ,y[(k − 1)d + 1 : kd],
with n records each, and applying SumSelectd independently on each block. It maps a dataset y of size n to
a vector (h1(y), . . . , hk(y)), where hr is defined as the SumSelectd function applied to block r:

hr(y) = SumSelectd
(
y [(r − 1)d+ 1 : rd]

)
.
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The accuracy for k-Select is defined as in Definition 3.2. To apply it, we define the error ERRk-Select . Note
that the error is scaled differently than for SumSelect because the goal is to select the index of the largest
marginal in each block, not of the largest sum. For b = (b1, . . . , bk) ∈ [d]k, define ERRk-Select(y,b)

= max
r∈[k]

(
1

n
· ERRSumSelect(y[r(d− 1) + 1 : rd], br)

)
.

Next, we state lower bounds for (ε, δ)-differentially private approximation of k-Select in the batch model.

Lemma 4.2. For all ε ∈ (0, 1], δ ∈ [0, 1], γ ∈ [0, 1
20 ], d, k, n ∈ N, and batch algorithms A that are (ε, δ)-

differentially private and (γ, n)-accurate for k-Selectd, the following statements hold.

1. If δ > 0 and δ = o(1/n), then n = Ω(
√
k·log d

εγ log(k+1) ).

2. If δ = 0, then n = Ω
(
k·log d
εγ

)
.

Item 1 in Lemma 4.2 follows from Theorem 4.3 below.

Theorem 4.3 ([26, 28]). For all ε ∈ (0, 1], δ ∈ (0, 1/n], γ ∈ [0, 1
20 ], d, n, k ∈ N, if Algorithm A is (ε, δ)-

differentially private and (γ, n)-accurate for k-Selectd, then n = Ω(
√
k log d

γε log(k+1) ).

Proof Sketch. We are aware of two proofs of this result, both of which were communicated to us by Jonathan
Ullman [28]. The first uses the top-k selection lower bound of Steinke and Ullman [26]. In that problem,
there is a single collection of d coordinates and the goal is to return the indices of k < d coordinates whose
sums are roughly largest.

For the specific distribution over instances that arises in the lower bound of [26], if one divides the
coordinates into k equal groups, there is a constant probability that the collection of coordinates with the
largest sum in each group is a good approximate solution for the top-k selection problem. An algorithm for
k-Selectd can thus be used to solve the top-k selection (out of dk coordinates) problem for such instances
with roughly the same error and privacy parameter. The lower bound of [26] on n then applies.

Another approach is to use the composition framework of Bun, Ullman and Vadhan [5]. One can use a
folklore result that selection among d > 2m coordinates can be used to mount a reconstruction attack on
an appropriate dataset of size m. Composed with the lower bound for 1-way marginals in [5], one obtains a
lower bound for k-Selectd.

To complete the proof of Lemma 4.2, we prove Item 2 via a standard packing argument.

Proof of Item 2 in Lemma 4.2. For u ∈ [d]k, define y∗u ∈ {0, 1}dk to be the record where each block r ∈ [k]
of d coordinates has a 1 in coordinate ur and all zeros everywhere else. Let yu be the dataset that consists of
2γn copies of y∗u and (1−2γ)n copies of the all-zero record (assuming, for simplicity, that 2γn is an integer).
Since A is (γ, n)-accurate, Prcoins of A [ERRk-Select(yu,A(yu)) ≤ γ] ≥ 2

3 for all u ∈ [d]k. This means that for
all u ∈ [d]k,

Pr
coins of A

[A(yu) = u] ≥ 2

3
.

For all u,u′ ∈ [d], by group privacy, A(yu) ≈(γεn,0) A(yu′), which implies that

Pr [A(yu) = u′] ≥ e−γεn Pr [A(yu′) = u′] ≥ 2

3
e−γεn. (5)

Since the probability of any event is at most 1,

1 ≥ Pr
coins of A

[A(yu) 6= u] =
∑
u′ 6=u

Pr [A(yu) = u′] ≥ 2

3
e−γεn(dk − 1),

where the last inequality holds by (5). We get that eγεn ≥ dk−1
2 · 2

3 , and thus n = Ω
(
k log d
γε

)
.
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4.2 Proof of Theorem 4.1

Let M be an (ε, δ)-DP and (α, T )-accurate mechanism for SumSelect in the nonadaptive continual release
model. We use M to construct an (ε, δ)-DP algorithm A that is (αn , n)-accurate for k-Selectd in the batch
model. We motivate our approach by first discussing an idea that doesn’t quite work. LetM be an accurate
mechanism for SumSelectd in the nonadaptive continual release model and y be a dataset with n records
from {0, 1}dk. A naive approach to solving k-Selectd in the batch model is to run k instantiations of M for
n time steps each, one on each block of d coordinates, to select the coordinate with the maximum sum in
that block. However, running k instantiations of M, as described, would result in a significant degradation
of privacy, because every datapoint is used k times, once for each instantiation of M. We instead reduce to
SumSelectdk and run a single instantiation of M for about nk time steps, where each datapoint in y is sent
to M only once. This approach doesn’t suffer from privacy degradation.

Algorithm A proceeds in k stages; the rth stage is dedicated to selecting the coordinate with the maximum
sum in the rth block. In the first stage, A streams y to M. In order to select the coordinate with the
maximum sum from the first block, A then sends 2n records of the form (1d0d . . . 0d) to M. Then the sums
of the coordinates in the first block of y become much larger than the sums in the other blocks. This ensures
that at the end of the first stage, M selects the coordinate with the maximum sum in the first block. In
the second stage, A sends 2n records of the form (0d1d . . . 1d) to M in order to balance out the number of
extraneous 1’s for each coordinate. In order to select the coordinate with the maximum sum from the second
block, A sends 2n records of the form (0d1d0d . . . 0d) to M. At the end of the second stage, M selects the
coordinate with the maximum sum in the second block. Algorithm A proceeds similarly for every block.

The details of the algorithm appear in Algorithm 2. For ease of indexing, A sends all-zero records in
time steps n+ 1 to 2n in Line 2 of Algorithm 2, to ensure that all stages have 4n time steps.

Algorithm 2 Batch algorithm A for k-Select

Input: k, y = (y1, . . . , yn) ∈ Xn, where X = {0, 1}dk, and black-box access to mechanism M.
Output: b = (b1, . . . , bk) ∈ [d]k.

1: Let vj be a vector of length dk with d ones in coordinates [dj] \ [d(j − 1)] and 0 everywhere else; let
vj ← 1dk − vj .

2: Construct a stream x← y ◦ (0dk)n ◦ (v1)2n ◦ (v1)2n ◦ · · · ◦ (vk−1)2n ◦ (vk−1)2n ◦ (vk)2n with 4kn records.
3: for t ∈ [T ] do
4: Send the record xt to M and get the corresponding output at.

5: for r ∈ [k] do
6: br ← a4rn − d(r − 1). If br 6∈ [d], then br ← 1.

7: Output b← (b1, . . . , bk).

Lemma 4.4. Let A be Algorithm 2. For all ε > 0, δ ≥ 0, α ∈ R+, and T, d, k, n ∈ N, where T ≥ 4kn, if
mechanismM is (ε, δ)-differentially private and (α, T )-accurate for SumSelectdk in the nonadaptive continual
release model, then batch algorithm A is (ε, δ)-differentially private and (αn , n)-accurate for k-Selectd.

Proof. We start by reasoning about privacy. Fix neighboring datasets y and y′ that are inputs to algo-
rithm A. Let x and x′ be the streams constructed in Step 2 of A when it is run on y and y′, respectively.
By construction, x and x′ are neighboring streams. Since M is (ε, δ)-DP, and A only post-processes the
outputs received from M, Lemma 2.4 implies that A is (ε, δ)-DP.

Next, we reason about accuracy. Fix a dataset y and the corresponding data stream x sent to M.
Consider a setting τ of the random coins of A. Since the transformation fromM to A is deterministic, they
correspond to coins used by M when A runs it as a subroutine. Let ατ be the realized error of M with
coins τ , that is,

ατ = max
t∈[4kn]

(
ERRSumSelectdk(x[t], at)

)
,
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where at are the answers with coins τ . Similarly, let γτ be the realized error of A with coins τ , that is,

γτ = ERRk-Selectdk(y,b)

=
1

n
·max
r∈[k]

(ERRSumSelectd(y[(r − 1)d+ 1 : rd], br)) ,

where b = (b1, . . . , bk) is the output of A run with coins τ .
The main observation in the accuracy analysis is that if ατ is small, so is γτ . Note that if α ≥ n, the

accuracy guarantee for A is vacuous. Now assume α < n. For all blocks r ∈ [k], the sums in x[4rn] =

y◦ (0dk)n ◦ (v1)2n ◦ (v1)2n ◦ · · · ◦ (vr−1)2n ◦ (vr−1)2n ◦ (vr)
2n of all coordinates not in block r are smaller than

the sums of coordinates in block r by at least n. Consider coins τ with ατ ≤ α. Since ατ < n, the index
a4rn returned byM is in block r for all r ∈ [k]. Moreover, the error for each block is at most ατ

n . Therefore,
γτ ≤ ατ

n ≤
α
n . Considering the probability of this event over all coins τ, we get

Pr
coins τ of A

[
γτ ≤

α

n

]
≥ Pr

coins τ of M
[γτ ≤ α] ≥ 2

3
,

where the last inequality holds because M is (α, T )-accurate. We conclude that A is (αn , n)-accurate.

Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. This proof’s structure resembles that of Theorem 3.1. First, for the case of ε ≤ 2
T ,

we prove that α = Ω(T ). Let ej be a record of length d with 1 in coordinate j and 0 everywhere else. Let
x = (e1)T/4 ◦ (0d)3T/4 and x′ = (e2)T/4 ◦ (0d)3T/4. Proceeding as in the proof of Theorem 3.1 (using group
privacy and the error associated with selection) yields α = Ω(T ).

For all other values of ε, we reduce from k-Select, relying on the lower bounds for k-Select from Lemma 4.2.
Fix T, d, ε. Given an integer k, the reduction of Lemma 4.4 maps a batch instance of k-Selectd′ of size n
to an instance of SumSelectd with d = d′k and T = 4nk. The reduction applies as long as d′ = d

k ≥ 2 and

n = T
4k ≥ 1 are integers. We will ignore the integrality requirement (which can be addressed by appropriate

padding) and allow any k between 1 and min(d2 ,
T
4 ).

When δ > 0, the reduction leads to a lower bound on the error of min
(
Ω
(√

k log d′

ε log k

)
, n
)

when k and

d′ are sufficiently large constants. In our setting, this translates to a lower bound of Ω(αk) for αk =

min
(√k log(2+d/k)

ε log(2+k) , Tk
)
. (We add 2 inside the logarithms to avoid 0 or subconstant log terms; this does not

change the asymptotics.) Our goal is to select the value of k ∈ [1,min(d2 ,
T
4 )] that maximizes αk. For fixed

T, d, ε, let k∗ = k∗(T, d, ε) = max(1, k′) where k′ denotes the largest value of k where the two terms defining
αk equalize (that is, k′ satisfies k′

√
k′ log(2 + d/k′)/ log(2 + k′) = εT ). We use two basic facts about αk:

first, for d > 15, 000, the function αk is increasing on [1, k∗) and decreasing on (k∗,∞). Second, its maximum

value αk∗ is Ω̃(T
1/3 log2/3 d
ε2/3

).
We consider four regimes for the triple (T, d, ε):

(a) k∗(T, d, ε) = 1: In this case, αk is maximized at k = 1 and we obtain a lower bound of Ω(T/k) = Ω(T ).

(b) k∗(T, d, ε) > min(d2 ,
T
4 ) and 2d ≤ T : In this case, we set k = d/2 and get a lower bound of αk =

√
k log(2+d/k)
ε log(2+k) (since k ≤ k∗), which is Ω(

√
d

ε log(2+d) ) = Ω̃(
√
d
ε ).

(c) k∗(T, d, ε) > min(d2 ,
T
4 ) and 2d > T : This case is not possible for large T . For it to occur, we must have

k∗ > T/4, which implies that αk∗ < 4. Since αk∗ = Ω̃(T
1/3 log2/3 d
ε2/3

), we get that ε > 1 (for sufficiently
large T ), contradicting our assumptions.

(d) k∗(T, d, ε) ∈ [1,min(d2 ,
T
4 )]: In this case, we set k = k∗ and obtain a lower bound of αk∗ = Ω̃(T

1/3 log2/3 d
ε2/3

).
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Thus, for all possible relationships between T, d and ε, we obtain a lower bound that is one of three terms
in the theorem statement.

The setting in which δ = 0 is similar. For a given k ∈ [1,min(d2 ,
T
4 )], we obtain a lower bound of Ω(αk)

for αk = min
(k log(2+ d

k )
ε , Tk

)
. The remaining calculations parallel the case where δ > 0, except that now

αk∗ = Θ
(√

T log d
ε

)
.

5 Adaptive Upper Bounds

In this section, we define the adaptive continual release model and describe differentially private mechanisms
for two types of problems in this model: SumSelectd and approximating functions with bounded sensitivity
(`2 sensitivity in the case of approximate differential privacy and `1 sensitivity in the case of pure DP). Our
mechanisms are (α, T )-accurate, where the upper bounds for α match the lower bounds obtained in previous
sections in the nonadaptive continual release model up to logarithmic factors in the time horizon T , the
number of coordinates d, and the inverse of the privacy parameter 1

δ .

5.1 Adaptive Continual Release

In the adaptive continual release model, the input stream given to a mechanism M is chosen adversarially.
That is, M interacts with a randomized adversarial process Adv that runs for T timesteps; at timestep
t ∈ [T ], the process Adv receives at fromM, updates its internal state, and produces input record xt+1 that
is sent to M at timestep t + 1. Process Adv can choose xt+1 based on the previous input records x[t] and
M’s previous outputs a[t]. We make no assumptions on Adv regarding running time or complexity; its only
limitation is that it does not see the internal coins of M.

Definition 5.1. A mechanismM is (α,T)-accurate for a function f in the adaptive continual release model
if for all processes Adv, the error of M with respect to Adv is at most α with high probability, that is,

Pr
coins of M,Adv

[
max
t∈[T ]

ERRf (at; x[t]) ≤ α
]
≥ 2

3
.

A similar notion of accuracy was considered in work on adversarial streaming [2, 18, 20], though those
articles do not directly address privacy.

Next, we define (event-level) privacy in the adaptive continual release model , which is trickier than in
the nonadaptive continual release model . This concept is implicit in [15], but to our knowledge has not
been previously defined. Privacy is defined with respect to the game ΠM,Adv , described in Algorithm 3,
between mechanismM and an adversary Adv . In all timesteps except one, Adv outputs a single input record
which ΠM,Adv simply forwards to M. However, there is a special challenge timestep t∗ ∈ [T ], selected by

Adv , in which Adv provides two records x
(L)
t∗ and x

(R)
t∗ . The game comes in two versions, specified by its

input parameter side ∈ {L,R} which is not known to Adv or M: in one version, the record x
(L)
t∗ is handed

to M at timestep t∗; in the other, the record x
(R)
t∗ is handed to M instead. The mechanism is private if

the distributions on the adversary’s view, which consists of its internal randomness and the transcript of
messages it sends and receives, are close in the two versions of the game.

When the adversary decides in advance on all T + 1 records that it outputs over the course of the game,
the resulting definition is equivalent to the nonadaptive version (Definition 2.17). The version we give here
captures a richer class of settings.

Intuitively, we may think of x
(L)
t∗ as the data of person t∗, and of x

(R)
t∗ as a dummy value (say, all 0’s).

The parameter side then controls whether the data of person t∗ is included in the computation or not. The
privacy requirement is that an outside attacker cannot tell whether t∗’s data was used, even if the attacker has
full knowledge of the process generating the data stream. The adversary Adv combines the data generation
process and the attack itself in one entity, so that our model allows for an arbitrary relationship between
them.
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Algorithm 3 Privacy game ΠM,Adv for the adaptive continual release model

Input: time horizon T ∈ N, side ∈ {L,R} (not known to Adv).
1: for t = 1 to T do
2: Adv outputs typet ∈ {challenge, regular}, where challenge is chosen once during the game.
3: if typet = regular then
4: Adv outputs xt ∈ X which is sent to M.

5: if typet = challenge then
6: t∗ ← t.
7: Adv outputs (x

(L)
t , x

(R)
t ) ∈ X 2.

8: x
(side)
t is sent to M.

9: M outputs at which is given to Adv .

Definition 5.2. The view of Adv in privacy game ΠM,Adv consists of Adv’s internal randomness and the

transcript of messages it sends and receives. Let V
(side)
M,Adv denote Adv’s view at the end of the game run with

input side ∈ {L,R}.

One could also define the adversary’s view as its internal state at the end of the game. The version we
define contains enough information to compute that internal state, but is simpler to work with.

In addition to (ε, δ)-DP, we consider a related notion, called zCDP [4]. See Appendix 2.2 for background
on zCDP and the notion of ρ-closeness of random variables ('ρ).

Definition 5.3. A mechanism M is (ε, δ)-DP in the adaptive continual release model if, for all adver-
saries Adv,

V
(L)
M,Adv ≈ε,δ V

(R)
M,Adv .

A mechanism M is ρ-zCDP in the adaptive continual release model if for all adversaries Adv,

V
(L)
M,Adv 'ρ V

(R)
M,Adv .

The symbol 'ρ denotes ρ-closeness (Definition 2.11).

5.2 Statements of Adaptive Upper Bounds

In this subsection, we state theorems that summarize the performance guarantees of our mechanisms for
MaxSumd and SumSelectd. We prove these theorems in the following subsections. The upper bounds in
these theorems are attained by two simple mechanisms: one uses the binary tree mechanism and the other
recomputes the target function at regular intervals. We first state results for the binary-tree-based approach.

Theorem 5.4 (zCDP, Binary-Tree-Based Mechanisms). For all ρ ∈ (0, 1], d ∈ N, and sufficiently large
T > 0, there exist ρ-zCDP mechanisms M,M′ in the adaptive continual release model such that M is

(α, T )-accurate for MaxSumd and M′ is (α, T )-accurate for SumSelectd, where α = O

(√
d log T

√
log(dT )

√
ρ

)
.

The next theorem uses the idea of recomputing at regular intervals, which applies quite generally. Item
1 of Theorem 5.5 applies for general sensitivity-1 functions (which include MaxSumd); a similar result holds
for bounded-sensitivity functions with output space Rd.

Theorem 5.5 (zCDP, Mechanisms via Recomputing at Regular Intervals). For all ρ ∈ (0, 1], d ∈ N,
sufficiently large T > 0, and all functions f : X ∗ → R with `2-sensitivity at most 1, there exist ρ-zCDP
mechanisms M and M′ in the adaptive continual release model such that

1. Mechanism M is (α, T )-accurate for f for α = O
(

min
{

3

√
T log T
ρ , T

})
;
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2. Mechanism M′ is (α, T )-accurate for SumSelectd for α = O
(

min
{
T 1/3 log2/3(dT )

ρ1/3
, T
})

.

Combining Theorems 5.4–5.5, using the conversion from zCDP to (ε, δ)-DP from Lemma 2.15 and sub-

stituting ρ = ε2

16 log(1/δ) , we get the following corollary.

Corollary 5.6. For all ε ∈ (0, 1], δ ∈ (0, 1
2 ], d ∈ N, and sufficiently large T > 0, there exist (ε, δ)-DP

mechanisms M and M′ in the adaptive continual release model such that

(1) M is (α, T )-accurate for MaxSumd for α = O

(
min

{
3
√
T log(1/δ) log T

ε2/3
,

√
d log(dT ) log(1/δ) log T

ε , T

})
;

(2) M′ is (α, T )-accurate for SumSelectd for α = O

(
min

{
3
√
T log2(dT ) log(1/δ)

ε2/3
,

√
d log(dT ) log(1/δ) log T

ε , T

})
.

Simple variants of our mechanisms can be used to get the following theorems for (ε, 0)-differential privacy.

Theorem 5.7 (Pure DP, Binary-Tree-Based Mechanisms). For all ε ∈ (0, 1], d ∈ N, and sufficiently large
T > 0, there exist (ε, 0)-DP mechanisms M and M′ in the adaptive continual release model such that M is

(α, T )-accurate for MaxSumd and M′ is (α, T )-accurate for SumSelectd for α = O
(
d(log d) log3 T

ε

)
.

Theorem 5.8 (Pure DP, Mechanisms via Recomputing at Regular Intervals). For all ε ∈ (0, 1], d ∈ N,
sufficiently large T > 0, and all functions f : X ∗ → R with `1-sensitivity at most 1, there exist (ε, 0)-DP
mechanisms M and M′ in the adaptive continual release model such that

1. Mechanism M is (α, T )-accurate for f for α = O

(
min

{√
T log T
ε , T

})
;

2. Mechanism M′ is (α, T )-accurate for SumSelectd for α = O

(
min

{√
T log(dT )

ε , T

})
.

Theorems 5.7–5.8 yield the following corollary.

Corollary 5.9. For all ε ∈ (0, 1], d ∈ N, and sufficiently large T > 0, there exist (ε, 0)-DP mechanisms M
and M′ in the adaptive continual release model such that

1. M is (α, T )-accurate for MaxSumd for α = O

(
min

{√
T log T
ε , T, d(log d) log3 T

ε

})
;

2. Mechanism M′ is (α, T )-accurate for SumSelectd for α = O

(
min

{√
T log(dT )

ε , T, d(log d) log3 T
ε

})
.

5.3 Algorithms based on the Binary Tree Mechanism

In this section, we prove Theorem 5.4 for SumSelectd. Theorem 5.4 for MaxSumd follows from the same anal-
ysis by considering the binary tree mechanism that outputs the highest noisy sum instead of the coordinate
that achieves it.

In order to approximate SumSelectd on a dataset with d attributes, we use the binary tree mechanism
from [8, 11] to privately sum each of the attributes of the records x[t] received so far, and then choose the
attribute with the highest sum. For simplicity of exposition, in this section, we assume that T is a power
of 2. In general, we can work with the smallest power of 2 greater than T . Throughout this section, [i : j],
where i, j ∈ N, denotes the set of natural numbers {i, . . . , j}.

At the high level, the binary tree mechanism constructs a complete binary tree with T leaves. The
leaves correspond to the input records x[t], where each record xi ∈ {0, 1}d. Each internal node in the tree
corresponds to the sum of all the leaves in its subtree. Each node stores the noisy version of the corresponding

sum computed by adding a noise vector drawn from N (0, σ2Id×d) with σ =
√

d(log T+1)
2ρ . The algorithm that

releases the noisy sum is ρ
log T+1 -zCDP. Since each xt participates in only log2 T + 1 sums in the tree, by
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Algorithm 4 Mechanism M for SumSelectd in adaptive continual release model

Input: time horizon T ∈ N, privacy parameter ρ, stream x = (x1, . . . , xT ) ∈ X T , where X = {0, 1}d.
Output: stream (a1, . . . , aT ) ∈ [d]T .

1: Initialization: Construct a complete binary tree with T leaves labeled v[1:1], . . . , v[T :T ]. Label every
internal node v[`:r] if the subtree rooted at that node has leaves v[`:`], . . . , v[r:r]. Initialize the partial sum

s[`:r] ← 0d for each node v[`:r] in the tree.
2: for t = 1 to T do
3: Get record xt from Adv .

. Compute noisy sums for nodes completed at time t
4: for each node v[`:t] do

5: Draw noise Z ∼ N (0, σ2Id×d), where σ =
√

d(log T+1)
2ρ , and set s[`:t] ←

∑r
i=` xi + Z.

. Output Steps:
6: It ← collection of at most log t+ 1 disjoint intervals whose union is [1 : t] and where each interval

labels a node in the binary tree. (See Remark 5.3.)
7: sumt ←

∑
[`:r]∈It s[`:r].

8: Output at ← arg maxj∈[d] sumt[j].

adaptive composition of zCDP (Lemma 2.13), the complete mechanism is ρ-zCDP (Theorem 5.4). The
sum of all the attributes at any timestep can be calculated by adding at most log T of the sums stored in
the tree, one at each level. The algorithm that adds the corresponding noisy sums is (α, T )-accurate for

α ≈ O
(√

d log T log(Td)√
ρ

)
. The formal description of the algorithm appears in Algorithm 4. The algorithm uses

a dyadic decomposition (described in Remark 5.3) to decide which nodes of the tree it accesses to compute
any particular output.

Remark (Dyadic Decomposition). For any natural number t > 1, the interval [1 : t] can be expressed as a
union of at most log t+1 disjoint intervals as follows. Consider the binary expansion of t (which has at most
log t+ 1 bits), and express t as a sum of distinct powers of 2 ordered from higher to lower powers. Then, the
first interval [1 : r] will have size equal to the largest power of 2 in the sum. The second interval will start at
r+ 1 and its size will be equal to the second largest power of 2 in the sum. Similarly, the remaining intervals
are defined until all terms in the summation have been exhausted. For example, for t = 7 = 4 + 2 + 1, the
intervals are [1 : 4], [5 : 6] and {7}.

We present the privacy and accuracy analysis for Algorithm 4 in Lemmas 5.10 and 5.11, respectively,
which together prove Theorem 5.4 for SumSelect.

Lemma 5.10. For all ρ ∈ R+, d, T ∈ N, mechanism M described in Algorithm 4 is ρ-zCDP in the adaptive
continual release model.

Proof. Consider an adversary Adv interacting with the privacy game ΠM,Adv . We want to argue that
the adversary’s view is ρ-close in the two versions of the privacy game (for the two possible values of
side ∈ {L,R}.) We will achieve this by introducing a ρ-zCDP mechanism Mgauss with input side and
reducing our goal to the privacy of Mgauss.

For this, we use a simulation argument similar to those used in cryptography. Specifically, our proof
defines two algorithms: (a) a ρ-zCDP mechanism Mgauss that gets input side ∈ {L,R} and (b) a simulator
Sim with query access to Mgauss that does not know the value of side. The simulator Sim interacts with
adversary Adv and satisfies a key guarantee:

The view of the adversary Adv in its interaction with Sim is identically distributed to its view
in the privacy game ΠM,Adv , defined in Algorithm 3. (Figure 1 illustrates the structure of these
two kinds of interaction.)
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Algorithm 5 Simulator Sim for the proof of Lemma 5.10

Input: time horizon T ∈ N, privacy parameter ρ ∈ R+, black-box access to an adversary Adv and
a mechanism Mgauss.

Output: stream (a1, . . . , aT ) ∈ [d]T .
Adv : At each timestep t ∈ [T ] \ {t∗}, Adv provides Sim with record xt ∈ X , where X = {0, 1}d. At

the challenge timestep t∗ (chosen by Adv), it provides records x
(L)
t∗ , x

(R)
t∗ ∈ X . At each timestep

t ∈ [T ], Sim provides Adv with output at ∈ [d].
Mgauss: Sim exchanges log2 T + 1 messages with Mgauss.

1: Initialization: Perform Step 1 (the initialization phase) of Algorithm 4.
2: j ← 1.
3: for t ∈ [T ] do
4: if t = t∗ then
5: Get input (x

(L)
t∗ , x

(R)
t∗ ) from Adv .

6: for i ∈ [log T + 1] do

7: Send (x
(L)
t∗ , x

(R)
t∗ ) to Mgauss, and get back a response pi.

8: else
9: Get record xt from Adv .

10: for each node v[`,t] do
11: if t∗ 6∈ [` : t] where [` : t] denotes the integers {`, ..., t} then

12: Draw noise Z ∼ N (0, σ2Id×d), where σ =
√

d(log T+1)
2ρ .

13: s[`:t] ← Z +
∑r
i=` xi

14: else
15: v[`:t] ←

∑
i∈[`:t]\{t∗} xi + pj .

16: j ← j + 1.

17: Output Steps: Perform Steps 6–8 (the output steps) of Algorithm 4.

Algorithm 6 Mechanism Mgauss

Input: side ∈ {L,R} (not known to Sim).
Output: A natural number.

1: for i = 1 to log T + 1 do

2: Get records v
(L)
i , v

(R)
i ∈ {0, 1}d from Sim.

3: Draw noise from a multivariate Gaussian distribution Z ∼ N (0, σ2Id×d), where σ =
√

d(log T+1)
2ρ .

4: Output v
(side)
i + Z

Since the simulator’s outputs to Adv are a post-processing of the query responses from Mgauss, we can
argue that the adversary’s view is ρ-close in the two versions of the privacy game ΠM,Adv .

To see why this is helpful, recall that we want to show that the probability of Adv guessing the value of
side in the privacy game is small. If the probability of Adv guessing the value of side is the same in the privacy
game as in its interaction with Sim, then—since the simulator doesn’t know the value of side—Adv can only
learn as much about side from its interaction with Sim as one can learn by querying Mgauss. Intuitively, if
Mgauss does not reveal much about the value of side then neither does M. We now describe Mgauss and the
simulator, and formalize the argument.

The mechanism Mgauss (described in Algorithm 6) gets an input side ∈ {L,R}. It receives at most
log T + 1 queries of the form v(L), v(R) from Sim to which it responds with p = v(side) + Z where the noise

Z is drawn from N (0, σ2Id×d) for σ =
√

d(log T+1)
2ρ . Observe that if Mgauss has only a single interaction

with Sim and outputs a single noised value, then by the privacy guarantee of the Gaussian mechanism
(Lemma 2.14), Mgauss is ρ

log T+1 -zCDP. This can be seen by imagining that Mgauss is computing a function
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Figure 1: An illustration of the simulation argument from the proof of Lemma 5.10. The left-hand side shows
the game used to define privacy with adaptively selected inputs. The right-hand side shows the simulation
structure described in the proof. For each value of side, the adversary’s view is identical in these two settings.

f(side) = xsidei and observing that the `2-sensitivity of f is
√
d. Since there are log T +1 interactions between

Mgauss and Sim, Mgauss is an adaptive composition of log T + 1 algorithms, each of which is ρ
log T+1 -zCDP.

By Lemma 2.13 on composition, Mgauss is ρ-zCDP.
The simulator Sim (described in Algorithm 5) interacts with the adversary without knowing the input

side ∈ {L,R} that is given toMgauss. It queriesMgauss exactly log T + 1 times and uses the query responses
to provide outputs to the adversary. The aim of the simulator is to mimic the behaviour of ΠM,Adv even
though it doesn’t know side. The simulator constructs a binary tree as described in Algorithm 4. For all
nodes in the binary tree except for those whose interval contains the challenge timestep t∗, the computation
of the noisy subtree sums can be done by Sim without any help from Mgauss. For the nodes whose interval

does contain t∗, the simulator sends (x
(L)
t∗ , x

(R)
t∗ ) toMgauss and gets a noisy value of xsidet∗ . It can then compute

the corresponding subtree sum by adding the input records corresponding to the remaining leaves. Notice
that the simulator can produce these outputs online—at the same time that ΠM,Adv would.

The crucial point to note is that the view of the adversary Adv in the privacy game ΠM,Adv is identically
distributed to its view in the interaction withMgauss and Sim. Furthermore, the view of the adversary Adv
when interacting with Sim and Mgauss is simply a post-processing of the outputs provided to it by Sim,
which are a post-processing of the outputs provided to Sim by Mgauss. Hence,

Mgauss is ρ-zCDP =⇒ V
(L)
M,Adv 'ρ V

(R)
M,Adv .

It remains to argue that exactly log T + 1 nodes have a subtree sum that depends on the inputs from the
challenge timestep t∗. Each node v[`,r] whose subtree sum depends on the inputs from timestep t∗ satisfies
t∗ ∈ [` : r]. This holds only for one node at each level of the binary tree created by Sim (because the intervals
represented by the nodes at a particular level are disjoint.) Since the binary tree has depth log T +1, exactly
log T + 1 nodes have a subtree sum that depends on the inputs from the challenge timestep t∗.

Lemma 5.11. For all ρ > 0 and sufficiently large T ∈ N, mechanism M is (α, T )-accurate for SumSelect

in the adaptive continual release model for α = O

(√
d log T

√
log(Td)

√
ρ

)
.

Proof. Consider any adversarial process Adv interacting with M. We first argue that, at every timestep t,
the random variable ERRSumSelectd(x[t], at) corresponding to the error at any timestep t can be upper bounded
by a random variable that is the sum of at most 2 log t independent Gaussian random variables. We then use
tail bounds for Gaussian random variables, along with a union bound, to argue that, with high probability,

20



the maximum value of this random variable is not too large. Finally, we take a union bound over timesteps
to argue that, with high probability, maxt∈[T ] ERRSumSelectd(x[t], at) is not too large.

First, at any timestep t, let sumt represent the vector of noisy sums defined in Step 7 of Algorithm 4.
Therefore, each coordinate of this sum, sumt[j] =

∑
i∈[t] xt[j]+

∑
i∈[|It|] Zi is the sum of at most log t+1 noisy

interval sums. Here, Zi is a Gaussian random variable with mean 0 and standard deviation σ =
√

d(log T+1)
2ρ ,

and all Zis are mutually independent. Hence, by the linearity of expectation, and by the linearity of the
variance of independent random variables, we get that

∑
i∈[|It|] Zi is a Gaussian random variable with

mean 0 and standard deviation
√

d(log T+1)|It|
2ρ ≤

√
d(log T+1)(log t+1)

2ρ . Consider the vector N consisting

of the absolute values of d random variables independently drawn from the distribution N (0, σ2) where

σ =
√

d|It|(log T+1)
2ρ . The distribution of N is identical to the component-wise absolute values of the Gaussian

noise vector sumt −
∑
i∈[t] xi. Then,∑

i∈[t]

xi[at] + max
j∈[d]

N [j] ≥ MaxSumd(x[t])−max
j∈[d]

N [j],

since if at is selected at timestep t, the noisy sum of coordinate at at timestep t is larger than the noisy sums
of all other coordinates at timestep t (see Step 8 in Algorithm 4). Thus,

ERRSumSelectd(x[t], at) = MaxSumd(x[t])−
∑
i∈[t]

xi[at] ≤ 2 max
j∈[d]

N [j].

Next, we reason about maxj∈[d]N [j] using standard probability tools. Set ` =
√

10d(log T+1)(log t+1) log(dT )
2ρ .

By Lemma A.2 on concentration of the maximum of the absolute values of Gaussian random variables, and

since σ ≤
√

d(log T+1)(log t+1)
2ρ , we get that

Pr

[
max
j∈[d]

N [j] > `

]
≤ 2de−

`2

2σ2 ≤ 2de−5 log(dT ) ≤ 2

T 5
.

Then, with probability at most 2
T 5 (over the coins of the algorithm A and the adversarial process Adv),

ERR(x[t], at) > 20

√
d(log T + 1)(log t+ 1) log(dT )

2ρ

≥ 20

√
d(log T + 1)2 log(dT )

2ρ
,

since t ≤ T . By a union bound over all t ∈ [T ], we get that maxt∈[T ] ERRSumSelectd(x[t], at) > 20
√

d(log T+1)2 log(dT )
2ρ

with probability at most 2
T 4 ≤ 1

3 for sufficiently large T . This proves the lemma.

Proof Sketch of Theorem 5.7. The proof of Theorem 5.7 for SumSelectd closely follows the exposition above.

The mechanism used is the same as Algorithm 4, except that in Line 5, Z is drawn from Lap(d(log T+1)
ε )

instead of a Gaussian distribution. The privacy proof is exactly as in Lemma 5.10, except that we use that the
composition of log T + 1 mechanisms that are

(
ε

log T+1 , 0
)
-DP is (ε, 0)-DP instead a composition theorem for

ρ-zCDP. The accuracy proof closely follows that of Lemma 5.11, with the main difference being that the the
vector N is defined as the component-wise absolute value of d random variables independently drawn from

the distribution of the sum of |It| independent random variables distributed as Lap
(
d(log(T )+1)

ε

)
. We then

use the concentration inequality for the maximum of the absolute values of independent Laplace random
variables over d|It| random variables in Lemma A.3 with a = 2 log T to argue that the absolute value
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of each Laplace random variable is smaller than d(log T+1)
ε (log(d|It|) + 10 log T ) with probability at least

1
T 10 . This implies that maxj∈[d]N [j] is smaller than d(log T+1)2

ε (log(d(log T + 1)) + 10 log T ) with probability

at least 1
T 10 , upper bounding |It| by log T + 1. Taking a union bound over T and using the fact that

log(d(log T + 1)) ≤ log d(log T + 1) for sufficiently large T completes the proof.

Theorems 5.4 and 5.7 for MaxSumd are proved analogously. The main difference is that we output
maxj∈[d] sumt[j] instead of arg maxj∈[d] sumt[j] in Line 8 of Algorithm 4.

5.4 Algorithms that Recompute at Regular Intervals

In this section, we prove Item 1 of Theorem 5.5 for sensitivity-1 functions. The proof of Item 2 of Theorem 5.5
builds on the same idea of recomputing SumSelectd every T/m timesteps, but it uses the report noisy max
(with exponential noise) algorithm for SumSelectd [21] instead of adding Gaussian noise to the function. We
omit the details, since the argument is essentially the same as in the rest of this section.

The mechanism recomputes the function every r timesteps. Between recomputations, it outputs the
most recently computed value. We select r to balance the privacy cost of composition with the error due to
returning stale values between recomputations.

Algorithm 7 Mechanism M for sensitivity-1 functions in adaptive continual release model

Input: time horizon T , privacy parameter ρ > 0, recompute period r ∈ [T − 1], function f , stream
x = (x1, . . . , xT ) ∈ Xn where X = {0, 1}d.
Output: stream (a1, . . . , aT ) ∈ RT .

1: m← bT−1
r c.

2: for k = 1 to m do
3: Get input record x(k−1)r+1.

4: Draw Zk ∼ N (0, σ2), where σ =
√

m
2ρ .

5: Output a(k−1)r+1 ← f(x[(k−1)r+1]) + Zk.
6: for t = (k − 1)r + 2 to kr do
7: Get input record xt.
8: Output at ← a(k−1)r+1.

Claim 5.12. For all ρ, T > 0, r ∈ [T − 1], mechanism M defined in Algorithm 7 is ρ-zCDP in the adaptive
continual release model.

Proof. Consider an adversary Adv interacting with M. We define a mechanism Mcomp, similar to Algo-
rithm 6, and a simulator Sim that interacts with the adversary Adv such that the view of adversary Adv
in the interaction with Mcomp and Sim is identically distributed to its view in the privacy game ΠM,Adv ,
defined in Algorithm 3.

Algorithm 8 Mechanism Mcomp

Input: side ∈ {L,R} (not known to Sim)
Output: A natural number.

1: Get neighboring datasets y(L), y(R) ∈ {0, 1}d and a function f with `2 sensitivity at most 1 from Sim.

2: Draw noise Z ∼ N (0, σ2), where σ =
√

m
2ρ .

3: Output f
(
y(side)

)
+ Z

The mechanism Mcomp is defined in Algorithm 8. Since the function f has `2 sensitivity at most 1,
then by the privacy of the Gaussian mechanism, and since the variance of the noise added is m

2ρ ), Mcomp is
ρ
m -zCDP with respect to the dataset consisting of side ∈ {L,R}.
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Algorithm 9 Simulator Sim for the proof of Claim 5.12

Input: time horizon T , privacy parameter ρ > 0, recompute period r ∈ [T − 1], function f . Sim also
has black-box access to an adversary Adv and a process Mcomp.
Output: stream (a1, . . . , aT ) ∈ RT
Adv : At each timestep t ∈ [T ] \ {t∗}, Adv provides Sim with record xt ∈ X . At the challenge timestep t∗

(chosen by Adv), it provides two records x
(L)
t∗ , x

(R)
t∗ ∈ X . At every timestep t ∈ [T ], Sim provides

Adv with output at ∈ R.
Mcomp: Sim exchanges T/r messages with Mcomp.

1: Initialization: m← dTr e, j ← 1.
2: For timesteps t < t∗, run mechanism M in Algorithm 7 with inputs from Adv , with the same T, ρ, r, f .

Let at be M’s output at timestep t.
3: for t ≥ t∗ do
4: if t = t∗ then
5: Get input (x

(L)
t∗ , x

(R)
t∗ ) from Adv .

6: if t 6= t∗ then
7: Get record xt from Adv .

8: if t mod r = 1 then
9: Let y

(side)
t = {x1, . . . , xt∗−1, x

(side)
t∗ , xt∗+1, . . . , xt} for each side ∈ {L,R}

10: at ←Mcomp

(
f,y

(L)
t ,y

(R)
t

)
.

11: else
12: q ← b tr c; output at ← aq+1.

The simulator Sim (described in Algorithm 9) gets inputs from Adv , but it does not know the input
side ∈ {L,R} that is given to Mcomp. It interacts with Mcomp to provide outputs to the adversary Adv .
The aim of the Simulator is to mimic the behaviour of ΠM,Adv even though it doesn’t know side. For
all timesteps t < t∗ before the challenge timestep, the simulator behaves exactly like M. Starting at the
challenge timestep, for every t ∈ [t∗ : T ] where M would recompute the noised value of the sum, Sim sends

Mcomp the function f as well as neighboring datasets y
(L)
t ,y

(R)
t defined by

y
(side)
t = {x1, . . . , xt∗−1, x

(side)
t∗ , xt∗+1, . . . , xt}.

Since Sim queries Mcomp at most m times, by adaptive composition, the output transcript of Mcomp is
ρ-zCDP with respect to the dataset consisting of side.

The view of the adversary Adv in the real privacy game ΠM,Adv is identically distributed to its view in
the interaction with Mcomp and Sim. Furthermore, the view of the adversary Adv when interacting with
Sim andMcomp is simply a post-processing of the outputs provided to it by Sim, which are a post-processing
of the outputs provided to Sim by Mcomp. As argued previously, the output of Mcomp when side = L is

ρ-close to its output transcript when side = R. Hence we have that V
(L)
M,Adv 'ρ V

(R)
M,Adv .

Claim 5.13. Fix ρ > 0, sufficiently large T > 0, and 2 ≤ m ≤ T . Let f : X ∗ → Z be a function with
`2-sensitivity at most 1. Then mechanism M, defined in Algorithm 7 is (α, T )-accurate for f in the adaptive

continual release model where α = T
m +

√
10m logm

ρ .

Proof. Consider any adversarial process Adv interacting with M. Fix a timestep t ∈ [T ]. Consider time
horizon T divided into m stages, where the stage k ∈ [m] is from timestep (k− 1)r+ 1 to kr. Let timestep t
be in stage k. Intuitively, sinceM, defined in Algorithm 7, corresponds to recomputing the noisy sum every
r timesteps (and using each recomputed value for the next r timesteps), the error can be decomposed into
two parts: one caused by the drift in the true value of the function since the last recomputation and the
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other caused by noise addition. By the triangle inequality,

ERRf (x[t], at) =
∣∣at − f(x[t])

∣∣
≤
∣∣f(x[t])− f(x[(k−1)r+1]

∣∣) +
∣∣at − f(x[(k−1)r+1]

∣∣)
≤ T/m+

∣∣a(k−1)r+1 − f(x[(k−1)r+1])
∣∣ ≤ T

m
+ |Zk|.

The second inequality above holds because the `2-sensitivity of f is at most 1, and since we recompute
every r = T/m timesteps, the maximum change in the function f since the last recomputation is T/m.
The third inequality follows from Steps 5 and 8 in Algorithm 7. Finally, observe that Zk for k ∈ [m]

are mutually independent Gaussian random variables with mean 0 and standard deviation
√

m
2ρ . Hence,

applying Lemma A.2 on the concentration of the maximum of the absolute values of Gaussian random

variables (setting ` =
√

10m logm
ρ ), and using the fact that m ≥ 2,

Pr
coins of A,Adv

(
max
t∈[T ]

ERRf (x[t], at) ≥
T

m
+

√
10m logm

ρ

)
= Pr

coins of A,Adv

(
max
k∈[m]

|Zk| ≥

√
10m logm

ρ

)

≤ 2

m9
≤ 1

3
.

Proof of Item 1 in Theorem 5.5. By Claim 5.12, the mechanism M is ρ-zCDP in the adaptive continual
release model.

For ρ ≤ log T
T 2 , consider the mechanism that doesn’t touch the data and always outputs 0. Clearly it is

0-zCDP. Additionally, for this mechanism, α = O(T ). For ρ > log T
T 2 , by Claim 5.13, mechanismM is (α, T )-

accurate for f in the adaptive continual release model, where α = T/m+10
√

m logm
ρ . Setting m = bρ

1/3T 2/3

log1/3 T
c

gives α = O
(

min
{
T, 3

√
T log T
ρ

})
, where the min comes from the option of using the trivial mechanism.

Proof Sketch of Item 1 in Theorem 5.8. The mechanism M used is a variant of Algorithm 7. The only
difference is that in Line 4, instead of the random variable Zk being distributed as a Gaussian, it is distributed
as Lap(mε ). The privacy proof follows a structure similar to that of Claim 5.12, with the main difference
being that instead of using a composition theorem for ρ-zCDP, we instead use that the composition of m
mechanisms that are ( εm , 0)-DP is (ε, 0)-DP.

For accuracy, we can prove a claim phrased exactly as Claim 5.13, with α = T
m+m

ε [logm+2 log T ] instead

of α = T
m +

√
10m logm

ρ . The proof is similar, with the only difference being that instead of using Lemma A.2

on the maximum of i.i.d. Gaussian random variables, we instead use Lemma A.3 on the maximum of i.i.d.
Laplace random variables, with t = 2 log T .

Finally, we prove the theorem as follows: for ε > log T
T , setting m = b

√
εT

log T c in the accuracy claim

gives α = O(
√

T
ε log T ). For ε ≤ log T

T , we can consider the mechanism that always outputs 0 at every

timestep. This mechanism is (0, 0)-DP and (α, T )-accurate for f in the adaptive continual release model
with α = O(T ). This completes the proof.

Proof Sketch of Item 2 in Theorems 5.5 and 5.8. We sketch the proof of Item 2 of Theorem 5.5. The proof
of Item 2 of Theorem 5.8 is essentially the same. The upper bound mechanism M used for this proof is a

variant of Algorithm 7 where we recompute SumSelectd using the exponential mechanism [22] with ε′ =
√

2ρ
m

(for Item 2 of Theorem 5.8 on pure DP, we use ε′ = ε
m ). The quality function of an attribute and dataset

pair is defined to be the sum of that attribute over all entries in the dataset. The exponential mechanism
instantiated as described above is used to privately compute SumSelectd every T/m timesteps. Between
recomputations, the attribute index produced at the last recomputation is used as the output.
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The privacy proof follows a structure similar to that of Claim 5.12. The main difference for this proof
is that the simulator will now interact with an ideal mechanism that takes as input a differentially private
algorithm as well as neighboring datasets to run the algorithm on. In particular, the neighboring datasets

will be the inputs x
(L)
t∗ and x

(R)
t∗ from the challenge timestep, and the algorithm will be the exponential

mechanism hardcoded with all the inputs of the adversary so far (except for the inputs from the challenge

timestep.) The ideal mechanism will run the algorithm with challenge input x
(side)
t∗ and output the result.

The adversary’s view in the privacy game is clearly identical to its view when interacting with the simulator.
Finally, the closeness of the adversary’s view in the simulated world when side = L and when side = R
follows directly from the privacy of the exponential mechanism and adaptive composition [13, 4].

For accuracy, we prove a claim akin to Claim 5.13, with α = T
m + 2

√
m
2ρ [log d + 5 logm]. The proof

is similar to that of Claim 5.13; here, we define |Zk| as the error incurred by the kth instantiation of
the exponential mechanism, and use Lemma 2.8 on the accuracy of the exponential mechanism (setting
a = 5 logm) and take a union bound over the m recomputations to argue that the maximum error is greater

than α = T
m + 2

√
m
2ρ [log d+ 5 logm] with probability at most 1

m4 .

For ρ > ( log(dT )
T )2, by the accuracy claim, mechanismM is (α, T )-accurate for f in the adaptive continual

release model, where α = T
m +2

√
m
2ρ [log d+2 logm]. Setting m = b ρ1/3T 2/3

(log(dT )2/3
c yields α = O

(
T 1/3 log(dT )2/3

ρ1/3

)
.

Finally, for ρ ≤ ( log(dT )
T )2, consider the mechanism that doesn’t touch the data and always outputs 0. It is

clearly 0-zCDP, and has α = O(T ).
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A Useful Concentration Inequalities

Lemma A.1. For all random variables R ∼ N (0, σ2),

Pr[|R| > `] ≤ 2e−
`2

2σ2 .

Lemma A.2. Consider m random variables R1, . . . , Rm ∼ N (0, σ2). Then

Pr

[
max
j∈[m]

|Rj | > `

]
≤ 2me−

`2

2σ2 .

Proof. By a union bound and Lemma A.1,

Pr

[
max
i∈[m]

|Ri| > `

]
= Pr(∃i ∈ [m] such that |Ri| > `)

≤
m∑
i=1

Pr(|Ri| > `) ≤
m∑
i=1

2e−
`2

2σ2 = 2me−
`2

2σ2 .

A similar union bound argument yields the following concentration inequality on the maximum of the
absolute values of i.i.d. Laplace random variables.

Lemma A.3. Fix m ∈ N, λ > 0. Consider m random variables R1, . . . , Rm ∼ Lap(λ). Then for all a > 0,

Pr

(
max
i∈[m]

|Ri| > λ(logm+ log a)

)
≤ e−a.
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