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Abstract
In this paper, we study the problem of estimating smooth Generalized Linear Models (GLM) in
the Non-interactive Local Differential Privacy (NLDP) model. Different from its classical setting,
our model allows the server to access some additional public but unlabeled data. Firstly, motived
by Stein’s lemma, we show that if each data record is i.i.d. sampled from zero-mean Gaussian
distribution, we show that there exists an (ε, δ)-NLDP algorithm for GLM. The sample complexity of
the public and private data, for the algorithm to achieve an α estimation error (in `2-norm) with high
probability, is O(pα−2) and O(p3α−2ε−2), respectively. This is a significant improvement over the
previously known exponential or quasi-polynomial in α−1, or exponential in p sample complexity of
GLM with no public data. Then, by a variant of Stein’s lemma, we show that there is an (ε, δ)-NLDP
algorithm for GLM (under some mild assumptions), if each data record is i.i.d sampled from some
sub-Gaussian distribution with bounded `1-norm. Then the sample complexity of the public and
private data, for the algorithm to achieve an α estimation error (in `∞-norm) with high probability,
is O(p2α−2) and O(p2α−2ε−2), respectively, if α is not too small (i.e., α ≥ Ω( 1√

p )), where p is the
dimensionality of the data. We also extend our idea to the non-linear regression problem and show
a similar phenomenon for it. Finally, we demonstrate the effectiveness of our algorithms through
experiments on both synthetic and real world datasets. To our best knowledge, this is the first paper
showing the existence of efficient and effective algorithms for GLM and non-linear regression in the
NLDP model with public unlabeled data.
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LDP GLM ESTIMATION

1. Introduction

Generalized Linear Model (GLM) is one of the most fundamental models in statistics and machine
learning. It generalizes ordinary linear regression by allowing the linear model to be related to
the response variable via a link function and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value. GLM was introduced as a way of unifying
various statistical models, including linear, logistic and Poisson regressions. It has a wide range of
applications in various domains, such as social sciences (Warne, 2017), genomics research (Takada
et al., 2017), finance (McNeil and Wendin, 2007) and medical research (Lindsey and Jones, 1998).
The model can be formulated as follows.

GLM: Let y ∈ [0, 1] be the response variable that belongs to an exponential family with natural
parameter ψ. That is, its probability density function can be written as p(y|ψ) = exp(ψy −
Φ(ψ))h(y), where Φ is the cumulative generating function. Given observations y1, · · · , yn such
that yi ∼ p(yi|ψi) for ψ = (ψ1, · · · , ψn), the maximum likelihood estimator (MLE) can be written
as p(y1, y2, · · · |ψ) = exp(

∑n
i=1 yiψi − Φ(ψi))Π

n
i=1h(yi). In GLM, we assume that ψ is modeled

by linear relations, i.e., ψi = 〈xi, w∗〉 for some w∗ ∈ Rp and feature vector xi. Thus, maximizing
MLE is equivalent to minimizing 1

n

∑n
i=1[Φ(〈xi, w〉)− yi〈xi, w〉]. The goal is to find w∗, which is

equivalent to minimizing its population version

w∗ = arg min
w∈Rp

E(x,y)[Φ(〈x,w〉)− y〈x,w〉]. (1)

One often encountered challenge for using GLM in real world applications is how to handle
sensitive data, such as those in social science and medical research. As a commonly-accepted
approach for preserving privacy, Differential Privacy (DP) (Dwork et al., 2006) provides provable
protection against identification and is resilient to arbitrary auxiliary information that might be
available to attackers.

As a popular way of achieving DP, Local Differential Privacy (LDP) has received considerable
attention in recent years and been adopted in industry (Ding et al., 2017; Erlingsson et al., 2014; Tang
et al., 2017). In LDP, each individual manages his/her proper data and discloses them to a server
through some DP mechanisms. The server collects the (now private) data of each individual and
combines them into a resulting data analysis. Information exchange between the server and each
individual could be either only once or multiple times. Correspondingly, protocols for LDP are called
non-interactive LDP (NLDP) or interactive LDP. Due to its ease of implementation (e.g. no need to
deal with the network latency problem), NLDP is often preferred in practice.

While there are many results on GLM in the DP and interactive LDP models (Chaudhuri et al.,
2011; Bassily et al., 2014; Jain and Thakurta, 2014; Kasiviswanathan and Jin, 2016), GLM in NLDP
is still not well understood due to the limitation of the model. (Smith et al., 2017; Wang et al., 2018;
Zheng et al., 2017) and (Wang et al., 2019b) comprehensively studied this problem. However, all
of these results are on the negative side. More specifically, they showed that to achieve an error of
α, the sample complexity needs to be quasi-polynomial or exponential in α−1 (based on different
assumptions) (Wang et al., 2019b; Zheng et al., 2017) or exponential in the dimensionality p (Smith
et al., 2017; Wang et al., 2018) (see Related Work section for more details). Recently, (Dagan and
Feldman, 2020) showed that an exponential lower bound (either in p or α−1) on the number of
samples for solving the standard task of learning a large-margin linear separator in the NLDP model.
Due to these negative results, there is no study on the practical performance of these algorithms.
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LDP GLM ESTIMATION

Methods Sample Complexity Measure Loss Function With public data? Data

(Smith et al., 2017) O(pε−2α−2) Excess Risk Linear Regression No `2-norm Bounded

(Smith et al., 2017) Õ(4pα−(p+2)ε−2) Excess Risk Lipschitz No `2-norm Bounded

(Smith et al., 2017) Õ(2pα−(p+1)ε−2) Excess Risk Lipschitz and Convex No `2-norm Bounded

(Wang et al., 2018) Õ
(
(c0p

1
4 )pα−(2+ p

2
)ε−2

)
Excess Risk (8, T )-smooth No `2-norm Bounded

(Wang et al., 2018) Õ(4p(p+1)D2
pε
−2α−4) Excess Risk (∞, T )-smooth No `2-norm Bounded

(Wang et al., 2019b, 2020) p ·
(
C
α3

)O(1/α3)
/εO( 1

α3 ) Excess Risk Lipschitz Convex GLM No `2-norm Bounded

(Zheng et al., 2017) p( 8
α)O(log log( 1

α
))(4

ε )
O(log( 1

α
)) Excess Risk Convex∞-Smooth GLM No `2-norm Bounded

This paper O(p3α−2ε−2) `2-norm Error
Smooth GLM
(with additional assumptions)

Yes Gaussian

This paper
O(p2α−2ε−2)
for α ≥ Ω( 1√

p)
`∞-norm Error

Smooth GLM
(with additional assumptions)

Yes
`1-norm Bounded
and Sub-Gaussian

Table 1: Comparisons on the sample complexities (for private data) for achieving error α under
different measurements, where c0, C is a constant and Dp is a function of p. For bounded
norm case we assume that ‖xi‖ ≤ 1 for every i ∈ [n], for Gaussian case we assume
xi ∼ N (0,Σ) with some unknown Σ.

To address this high sample complexity issue of NLDP, a possible way is to make use of some
recent developments on the central DP model. Quite a few results (Bassily and Nandi, 2019; Hamm
et al., 2016; Papernot et al., 2016, 2018; Bassily et al., 2018) have suggested that by allowing the
server to access some public but unlabeled data in addition to the private data, it is possible to reduce
the sample complexity in the central DP model, under the assumption that these public data have
the same marginal distribution as the private ones. It has also shown that such a relaxed setting is
likely to enable better practical performance for problems like Empirical Risk Minimization (ERM)
(Hamm et al., 2016; Papernot et al., 2016). Thus, it would be interesting to know whether the relaxed
setting can also help reduce sample complexity in the NLDP model.

With this thinking, our main questions now become the following. Can we further reduce
the sample complexity of GLM in the NLDP model if the server has additional public but
unlabeled data? Moreover, is there any efficient algorithm for this problem in the relaxed
setting?

In this paper, we provide positive answers to the above two questions, see Table 1 for our results.
Specifically, our contributions can be summarized as follows:

1. Firstly, motived by Stein’s lemma, we show that when the feature vector x is some (unknown)
Gaussian distribution with zero mean, i.e., x ∼ N (0,Σ) with some Σ ∈ Rp×p, there exists
an (ε, δ)-NLDP algorithm for GLM, the sample complexity of the public and private data for
the algorithm to achieve an α estimation error (in `2-norm) with high probability, is O(pα−2)
and O(p3α−2ε−2) (with other terms omitted), respectively. We note that this is the first result
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that achieves a fully polynomial sample complexity for a general class of loss functions in the
NLDP model with public unlabeled data.

2. Then we show that when the feature vector x of GLM is sub-Gaussian with bounded `1-norm,
there is an (ε, δ)-NLDP algorithm for GLM (under some mild assumptions) whose sample
complexities of the private and public data, for achieving an error of α (in `∞-norm), are
O(p2ε−2α−2) and O(p2α−2) (with other terms omitted), respectively, if α is not too small
(i.e., α ≥ Ω( 1√

p)).

3. We then extend our idea to the non-linear regression problem. By using Stein’s lemma and the
zero-bias transformation (Goldstein et al., 1997), we show that when x is either Gaussian or
sub-Gaussian with bounded `1-norm, it exhibits the same phenomenon as GLM.

4. Finally, we provide extensive experimental study of our algorithms on both synthetic and real
world datasets. The experimental results suggest that our methods are efficient and effective,
which is consistent with our theoretical analysis. Moreover, based on these results we also find
some aspects that need further theoretical investigation.

2. Related Work

Private learning with public unlabeled data has been studied previously in (Hamm et al., 2016;
Papernot et al., 2016, 2018; Bassily et al., 2018). These results differ from ours in quite a few ways.
Firstly, all of them consider either the multiparty setting or the centralized model. Consequently,
none of them can be used to solve our problems. Specifically, (Hamm et al., 2016) considered the
multiparty setting where each party possesses several data records and each party uses their data
to get a classifier, however, this approach could not be extended to local DP model since now each
party only has just one data point and it is impossible to get any useful classifier based one data
point. (Papernot et al., 2016, 2018) investigated the DP model, used sub-sample and aggregate to
train some deep learning models, but provided no provable sample complexity. (Bassily et al., 2018)
also studied the DP model by combining the distance to instability and the sparse vector techniques,
and showed some theoretical guarantees. However, both the sub-sample/aggregate and the sparse
vector methods cannot be used in the NLDP model. Moreover, public data in their methods are also
used quite differently from ours. Secondly, all of the above results use the private data to label the
public data and conduct the learning process on the public data, while we use the public data to
approximate some crucial constants. Finally, all of the previous methods rely on the known model or
loss functions, while in our algorithms the loss functions could be unknown to the users; also the
server could use multiple loss functions with the same sample complexity.

The problems considered in this paper can be viewed as restricted versions of the general ERM
problem in the NLDP model. Due to its challenging nature, ERM in NLDP has only been considered
in a few papers, such as (Smith et al., 2017; Wang et al., 2018, 2019b; Zheng et al., 2017; Daniely
and Feldman, 2018; Wang and Xu, 2019), see Table 1 for a summary. (Smith et al., 2017) gave
the first result on convex ERM in NLDP and provided an algorithm with a sample complexity of
O(2pα−(p+1)ε−2). They showed that the exponential dependency on the dimensionality p is not
avoidable for general loss functions. Later, (Wang et al., 2018) showed that when the loss function
is smooth enough, the exponential term of α−Ω(p) can be reduced to polynomial, but not the other
exponential terms. Recently, (Wang et al., 2019b, 2020) further showed that the sample complexity
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for any 1-Lipschitz convex GLM can be reduced to linear in p and exponential in α−1, which extends
the work in (Zheng et al., 2017), whose sample complexity is linear in p and quasi-polynomial in
α−1 for smooth GLM. In this paper, we show, for the first time, that the sample complexity of GLM
can be reduced to fully polynomial with the help of some public but unlabeled data and some mild
assumptions on GLM. There are also works on some special loss functions. For example, (Wang and
Xu, 2019) studied the high dimensional sparse linear regression problem and (Daniely and Feldman,
2018) considered the problem of learning halfspaces with polynomial samples. Since these results
are only for some special loss functions (instead of a family of functions), they are incomparable
with ours.

3. Preliminaries

Since in this paper we mainly focus on sub-Gaussian distribution, we first recall its definition, more
details can be found in (Vershynin, 2018).

Definition 1 (Sub-Gaussian) For a given constant κ, a random variable x ∈ R is said to be
sub-Gaussian if it satisfies supm≥1

1√
m
E[|x|m]

1
m ≤ κ. The smallest such κ is the sub-Gaussian

norm of x and it is denoted by ‖x‖ψ2 . A random vector x ∈ Rp is called a sub-Gaussian vector if
there exists a constant κ such that for any unit vector v, we have ‖〈x, v〉‖ψ2 ≤ κ.

For sub-Gaussian data, we need the following assumption on its distribution throughout the paper.

Assumption 1 For a random vector x that is sub-Gaussian with zero mean and covariance matrix
Σ, we assume the following conditions hold

• For the matrix Σ, its corresponding Σ
1
2 is diagonally dominant. 1

• Its distribution is supported on a `1-norm ball of radius r.

• Let v = Σ−
1
2x be the whitened random vector of x, each vi has constant first and second con-

ditional moments (i.e., ∀j ∈ [p] and w̃ = Σ
1
2w∗, E[vij |

∑
k 6=j w̃vik] and E[v2

ij |
∑

k 6=j w̃vik]
are deterministic).

Differential Privacy (DP): In DP, we have data universe X and Y , and a dataset D ∈ (X × Y)n

whose size is n and the dataset is stored in some trusted curator. Each data record (x, y) ∈ D sampled
from some distribution P , where x ∈ Rp is the feature vector and y ∈ R is the label of response.
We say that two datasets D,D′ ⊆ X are neighbors if they differ by only one data record, which is
denoted as D ∼ D′.

Definition 2 (Differential Privacy (Dwork et al., 2006)) We call a randomized algorithm Q is
(ε, δ)-differentially private (DP) if for all neighboring datasets D,D′ and for all events E in the
output space of Q, the following holds

P(Q(D) ∈ E) ≤ eεP(Q(D′) ∈ E) + δ.

When δ = 0, A is ε-DP.

1. A square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the diagonal entry
in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries in that row.
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Local Differential Privacy (LDP): Instead of the trusted curator, in LDP model (Kasiviswanathan
et al., 2011), each player (data provider) perturb his/her private data record locally via some DP
algorithms before sending it to the curator. Specifically, n players with each holding a private
data record (x, y) ∈ X × Y sampled from some distribution P , and a server that is in charge of
coordinating the protocol. An LDP protocol proceeds in T rounds. In each round, the server sends a
message, which is often called a query, to a subset of the players, requesting them to run a particular
algorithm. Based on the query, each player i in the subset selects an algorithm Qi, runs it on her own
data, and sends the output back to the server.

Definition 3 (Local Differential Privacy (Kasiviswanathan et al., 2011)) A randomized algorithm
Q is (ε, δ)-locally differentially private (LDP) if for all pairs x, x′ ∈ D, and for all events E in the
output space of Q, we have

P(Q(x) ∈ E) ≤ eεP(Q(x′) ∈ E) + δ.

When δ = 0, A is ε-LDP. A multi-player protocol is (ε, δ)/ε-LDP if for all possible inputs and runs
of the protocol, the transcript of player i’s interaction with the server is (ε, δ)/ε-LDP. If T = 1, we
say that the protocol is (ε, δ)/ε non-interactive LDP (NLDP).

In this paper, we will mainly focus on (ε, δ)-NLDP and we will mainly use Gaussian mechanism
(Dwork et al., 2006) guarantee (ε, δ)-LDP.

Lemma 4 (Gaussian Mechanism (Dwork et al., 2006)) Given any function q : (X × Y)n → Rd,
the Gaussian mechanism is defined asMG(D, q, ε) = q(D) + Y, where Y is drawn from Gaussian

Distribution N (0, σ2Id) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ε . Here ∆2(q) is the `2-sensitivity of the function
q, i.e., ∆2(q) = supD∼D′ ||q(D) − q(D′)||2. Gaussian mechanism preserves (ε, δ)-differential
privacy.

Our Model: Different from the above classical NLDP model where only one private dataset
{(xi, yi)}ni=1 exists, the NLDP model in our setting allows the server to have an additional public
but unlabeled dataset D′ = {xj}n+m

j=n+1 ⊂ Xm, where each xj is sampled from Px, which is the
marginal distribution of P (i.e., they have the same distribution as {xi}ni=1).

4. Privately Estimating Generalized Linear Models

In this section, we study GLM in our model and privately estimate w∗ in (1) by using both of the
private data {(xi, yi)}ni=1 and the public unlabeled data {xj}n+m

j=n+1. Our goal is to achieve a fully
polynomial sample complexity for n and m, i.e., n,m = Poly(p, 1

ε ,
1
α , log 1

δ ), such that there is an
(ε, δ)-NLDP algorithm with estimation error less than α (with high probability).

4.1. Gaussian case

We first consider a simpler case that each data record is sampled from some unknown Gaussian
distribution N (0,Σ). The idea of our method is motivated by the following result, which is from
Stein’s lemma (Brillinger, 2012).
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Lemma 5 ((Brillinger, 2012)) If x ∼ N (0,Σ), then w∗ in (1) can be written as w∗ = cΦ × wols,
where cΦ is the fixed point of z 7→ (E[Φ(2)(〈x,wols〉z)])−1 (if we assume that E[Φ(2)(〈x,wols〉z)] 6=
0) and wols = Σ−1E[xy] is the Ordinary Least Squares (OLS) vector. 2

From Lemma 5, we can see that to obtain w∗, it is sufficient to estimate wols and the underlying
constant cΦ. Specifically, to estimate wols in a non-interactive local differentially private manner, a
direct way is to let each player perturb her sufficient statistics, i.e., xixTi and yixi. After receiving
the private OLS estimator ŵols,3 the server can then estimate the constant cΦ by using the public
unlabeled data and ŵols. From the definition, it is easy to see that cΦ is independent of the label
y. Thus, cΦ can be estimated by using the empirical version of E[Φ(2)(〈x,wols〉z)]. That is, find
the root of the function 1− c

m

∑n+m
j=n+1 Φ(2)(c〈xj , ŵols〉). Several methods are available for finding

roots, and in Algorithm 2 we use the Newton’s method which has a quadratic convergence rate.
However, there is a difficulty of this approach. That is, Lemma 5 needs x to be Gaussian, which

implies that the sensitivity of the terms ‖xixTi ‖F and ‖yixi‖2 could be unbounded. To solve this
issue, we will use the concentration bound for Gaussian distribution, this can help us filter some
’outliers’ and keep other records bounded. Specifically, we will use the following lemma:

Lemma 6 (Gaussian case of (Hsu et al., 2012)) Let x ∼ N (0,Σ) ∈ Rp. For all t > 0,

P(‖x‖22 ≥ trace(Σ) + 2
√

trace(Σ2)t+ 2‖Σ‖2t) ≤ e−t. (2)

Since trace(Σ) ≤ p‖Σ‖2 and trace(Σ2) ≤ (trace(Σ))2, from Lemma 6 we have with probability

at least 1 − ζ, ‖x‖2 ≤
√

5p‖Σ‖2 log 1
ζ for a fixed x. That is, with probability at least 1 − ζ, we

have ‖xi‖2 ≤
√

5p‖Σ‖2 log n
ζ . Thus to make the sensitivity of the term ‖xi‖2 bounded we can

check whether each ‖xi‖2 is upper bounded by
√

5p‖Σ‖2 log n
ζ , if this is true, then we just use the

Gaussian mechanism, otherwise we will filter it. However, we can see this upper bound depends on
the term of ‖Σ‖2, which is unknown in advance. To estimate this term, we can use the empirical
covariance matrix of the public data {xj}n+m

j=n+1. See Algorithm 1 for details.

Theorem 7 For any 0 < ε, δ < 1, Algorithm 1 is (ε, δ) non-interactive LDP.

The following theorem shows the error bound of the output in Algorithm 1, before that we need the
following assumptions for loss functions.

Assumption 2 We assume

• |Φ(2)(·)| ≤ L and Φ(3)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the condition
of f(c̄) ≥ 1 + τ , where wols is in Lemma 5 and x ∼ N (0,Σ).

• The derivative of f in the interval [0, c̄] does not change the sign (i.e., its absolute value is
lower bounded by some constant M > 0), where cΦ is in Lemma 5.

2. Φ(2) is the second order derivative of function Φ, the similar to Φ(3) and Φ(1).
3. Note that when n is large enough we can show ŵols is well defined, see Appendix for details.
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Algorithm 1: Non-interactive LDP for smooth GLM with public data (Gaussian)
Input: Private data {(xi, yi)}ni=1 ∈ (Rp × [0, 1])n, where |yi| ≤ 1, {xi}n+m

j=1 ∼ N (0,Σ) for some
unknown Σ and {xj}n+m

j=n+1 are public. loss function Φ : R 7→ R, privacy parameters ε, δ,
and initial value c ∈ R, failure probability ζ.

for The server do
Calculate Σm = 1

m

∑n+m
j=n+1 xjx

T
j and send it to each user.

end
for Each user i ∈ [n] do

Check whether ‖xi‖2 ≤
√

5‖Σm‖2p log n
ζ ; If not, release ⊥;

Otherwise denote r =
√

5‖Σm‖2p log n
ζ , release x̂ixTi = xix

T
i + E1,i and x̂iyi = xiyi + E2,i,

where E1,i ∈ Rp×p is a symmetric matrix and each entry of the upper triangle matrix is sampled

from N (0,
32r4 log 2.5

δ
ε2

) and E2,i ∈ Rp is sampled from N (0,
32r2 log 2.5

δ
ε2

Ip).
end
for The server do

Let X̂TX =
∑
x̂ixTi and X̂T y =

∑
x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

Find the root ĉΦ such that 1 = ĉΦ
m

∑n+m
j=n+1 Φ(2)(ĉΦỹj) by using Newton’s root-finding method

(or other methods):
for t = 1, 2, · · · until convergence do

c = c− c 1
m

∑n+m+1
j=n+1 Φ(2)(cỹj)−1

1
m

∑n+m+1
j=n+1 {Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

end
end
return ŵglm = ĉΦ · ŵols.

Note that the first condition means Φ(1) is Lipschitz. The second and the last condition are to ensure
that the function f − 1 has a root and ĉΦ is close to cΦ for large enough m, see Remark 18 for more
comments and some concrete instances that satisfy the assumption.

Theorem 8 Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x ∼ N (0,Σ). Moreover,
under Assumption 2, for sufficiently large m,n such that

n ≥ Ω
(τ−2c̄4‖Σ‖32p3‖w∗‖22 log2 n

ξ log 1
δ log p2

ξ

c2
Φε

2λmin(Σ) min{λmin(Σ), 1}
)

(3)

m ≥ Ω
(
‖Σ‖2‖w∗‖22pτ−2c−2

Φ ), (4)

with probability at least 1− exp(−Ω(p))− ξ

‖ŵglm − w∗‖2 ≤ O
(‖Σ‖ 3

2
2 p

3
2 ‖w∗‖22 log n

ξ

√
log 1

δ log p
ξ2

c2
Φελ

1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+ c−2
Φ ‖Σ‖

1
2
2 ‖w

∗‖22

√
p

m

)
where G,L,M, c̄ are assumed to be O(1) and thus omitted in the Big-O and Big-Ω notations (see
Appendix for the explicit form of m and n).
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Corollary 9 Theorem 8 suggests that if we omit all the other terms and assume that ‖w∗‖2 = O(1),
then for any given error α, there is an (ε, δ)-LDP algorithm whose sample complexity of private (n)
and public unlabeled (m) data, to achieve an estimation error of α (in `2-norm), is O(p3ε−2α−2)
and O(pα−2), respectively. We note that m ≤ n, which means that the sample complexity of the
public data is less than that of the private data. We also note that the sample complexity of the public
data is independent of the privacy parameters ε, δ. All these are quite reasonable in practice.

Remark 10 It is notable that public unlabeled data is only used in several steps in Algorithm 1 (and
all other algorithms in the paper), where we use it to find a root of some function. It is still an open
problem whether we use can use the same idea to the original LDP model (i.e., there is no public
unlabeled data). One possible way is to adopt our idea to a 2-round LDP algorithm. That is, in the
first round we get ŵols by using half of the data and the server send it to all the users. In the second
round, each user j in the left group computes a noisy version of ỹj = xTj ŵols and sends it to the
server, which then uses it to estimate the constant of cΦ. We note that due to the noise we added in
the second round for each term of ỹj , there could be a large amount of error for the term of ĉΦ to
estimate cΦ, which may cause the private estimator to have large error.

Remark 11 Actually, there is one possible way to improve the practical performance of Algorithm 1
(and all other algorithms in the paper). The key observation is that in the procedure of estimating
the OLS estimator, the covariance matrix ˆXTX does not depend on labels. Thus, we can use those
public unlabeled data to give a more precise estimator of the covariance matrix, that is we can let

X̂TX = 1
m+n(

∑n
i=1 x̂ix

T
i +

∑n+m
j=n+1 xjx

T
j ) and X̂T y = 1

n

∑n
i=1 x̂iyi. However, we note that here

the upper bounds of error will be asymptotically the same as the bound in Theorem 8 (and all other
theorems in the paper), sowe will omit the details of this improved approach. In the experiments part
we will use this improved method.

4.2. Sub-Gaussian case

We note that Lemma 5 is only for Gaussian distribution. The following lemma extends Lemma 5 to
bounded sub-Gaussian with an additional additive error of O(‖w

∗‖2∞√
p ). We fist give the assumptions

for the data distribution.

Lemma 12 ((Erdogdu et al., 2019)) Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x
that is zero-mean sub-Gaussian with covariance matrix Σ and satisfies Assumption 1. Let v = Σ−

1
2x

be the whitened random vector of x and denote ‖v‖ψ2 = κx. If and the function Φ(2) is Lipschitz with
constant G, then for cΦ = 1

E[Φ(2)(〈xi,w∗〉)]
(assuming E[Φ(2)(〈xi, w∗〉)] 6= 0), the following holds for

GLM in (1)

‖ 1

cΦ
· w∗ − wols‖∞ ≤ O(Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

), (5)

where ρq for q = {2,∞} is the conditional number of Σ in `q norm and wols = (E[xxT ])−1E[xy]
is the OLS vector.

Lemma 12 indicates that we can use the same idea as above to estimate w∗. Note that the forms
of cΦ in Lemmas 5 and 12 are different. However, due to the closeness of w∗ and wols in (5), we
can still use 1

E[Φ(2)(〈xi,wols〉c̄Φ])
to approximate cΦ, where c̄Φ is the root of cE[Φ(2)(〈xi, wols〉c)]− 1

9
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Algorithm 2: Non-interactive LDP for smooth GLM with public data (General)
Input: Private data {(xi, yi)}ni=1 ⊂ (Rp × [0, 1])n, where ‖xi‖1 ≤ r and |yi| ≤ 1, public unlabeled

data {xj}n+m
j=n+1, loss function Φ : R 7→ R, privacy parameters ε, δ, and initial value c ∈ R.

for Each user i ∈ [n] do
Release x̂ixTi = xix

T
i + E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each entry of the

upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

).

Release x̂iyi = xiyi + E2,i, where E2,i ∈ Rp is sampled from N (0,
32r2 log 2.5

δ
ε2

Ip).
end
for The server do

Let X̂TX =
∑n

i=1 x̂ix
T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

Find the root ĉΦ such that 1 = ĉΦ
m

∑n+m
j=n+1 Φ(2)(ĉΦỹj) by using Newton’s root-finding method

(or other methods):
for t = 1, 2, · · · until convergence do

c = c− c 1
m

∑n+m+1
j=n+1 Φ(2)(cỹj)−1

1
m

∑n+m+1
j=n+1 {Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

end
end
return ŵglm = ĉΦ · ŵols.

and it could be approximated by using the public unlabeled data. Combining these ideas, we have
Algorithm 2.

Theorem 13 For any 0 < ε, δ < 1, Algorithm 2 is (ε, δ) non-interactive LDP.

The following theorem shows the sample complexity of the bounded sub-Gaussian case. Just as
Assumption 2, we need the following assumptions for loss function.

Assumption 3 We assume

• |Φ(2)(·)| ≤ L and Φ(3)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the condition
of f(c̄) ≥ 1 + τ , where wols is in Lemma 12 and the distribution of x satisfies Assumption 1.

• The derivative of f in the interval [0,max{c̄, cΦ}] does not change the sign (i.e., its absolute
value is lower bounded by some constant M > 0), where cΦ is in Lemma 12.

It seem like Assumption 3 is similar to Assumption 2. However, since these two assumption rely on
the underlying distribution of (x, y), which are different in these two assumptions. Thus, these two
assumptions are quite different. Moreover, the third conditions in Assumption 3 and Assumption 2
are different due to the different interval and the different form of cΦ.

Theorem 14 Under Assumption 1 and 3, for sufficiently large m,n such that

m ≥ Ω
(
‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}ρ2ρ

2
∞p

2
)
,

n ≥ Ω
(ρ2ρ

2
∞‖Σ‖22p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p
ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)
, (6)

10
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with probability at least 1− exp(−Ω(p))− ξ, the output ŵglm in Algorithm 2 satisfies

‖ŵglm − w∗‖∞ ≤ O
(ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m

+
ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+
ρ2ρ

2
∞‖Σ

1
2 ‖∞‖w∗‖3∞max{1, ‖w∗‖∞}√

p

)
,

(7)

where G,L, τ,M, c̄, r, κx,
1
cΦ

are assumed to be O(1) and thus omitted in the Big-O notations (see
Appendix for the explicit form of m and n).

Corollary 15 Similar to Corollary 9, Theorem 14 suggests that if we omit all the other terms and
assume that ‖w∗‖∞ = O(1), then for any given error α ≥ Ω( 1√

p), there is an (ε, δ)-LDP algorithm
whose sample complexity of private (n) and public unlabeled (m) data, to achieve an estimation
error of α (in `∞-norm), is O(p2ε−2α−2) and O(p2α−2), respectively. We will also see that in
practice we do not need large amount of public data (see Section 6.1 in Appendix for details).

Compared with the complexity in the Gaussian case, it seems like the complexity in the sub-
Gaussian case is less. However, due to different measure of estimation error (`2-norm v.s. `∞-norm)
and different assumption (‖w∗‖2 = O(1) v.s. ‖w∗‖∞ = O(1)), these two results are incomparable.

There are also some previous work on LDP linear regression. It seems that our sample complexi-
ties for the more general GLM is worse than theirs. However, these results are not really comparable
due to their different settings. Specifically, when ‖xi‖2 ≤ 1 and ‖w∗‖2 ≤ 1 (Smith et al., 2017)
proposed an algorithm with a sample complexity of Õ(pα−2ε−2) for the optimization error. While
in this paper we mainly focus on the estimation error. Moreover, for the Gaussian case we assume
‖xi‖2 ≤ O(

√
p) and for the sub-Gaussian case we assume ‖w∗‖∞ ≤ O(1). (Zheng et al., 2017)

proposed an algorithm whose sample complexity is O(α−4ε−2 log p) for the optimization error,
under the assumptions of ‖xi‖1 ≤ 1 and ‖w∗‖1 ≤ 1, which are different with ours in the paper.
Recently, (Wang and Xu, 2019) also considered the `2-norm statistical error, it relies on assumptions
that w∗ is 1-sparse, which is not needed in ours. However, we also have to say that, in this paper, we
need some additional assumptions ( i.e., Assumption 1) on the data distribution compared with the
those previous results.

Remark 16 Algorithm 1 and 2 have several advantages over existing techniques. Firstly, different
from the approach of using Gradient Descent methods to solve DP-ERM (e.g., (Wang et al., 2017)),
our algorithm is parameter-free. That is, we do not need to choose a specific step size, an iteration
number or initial vectors. Secondly, comparing with some previous work such as (Zheng et al., 2017;
Smith et al., 2017; Wang et al., 2019b), all of our above results do not need to assume that the loss
function is convex. Thirdly, since the private data contributes only to obtaining the OLS estimator,
and only the constant ĉΦ depends on the loss function Φ, this means that with probability at least
1− T exp(−Ω(p))− ξ, our algorithm can simultaneously use T different loss functions to achieve
the same errors and with the same sample complexity. This implies that we can answer at most
O(exp(O(p)) number of GLM queries with constant probability to achieve error α for each query
with the same sample complexity as in Theorem 14 (Theorem 8). To our best knowledge, this is the

11
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first result which can answer multiple non-linear queries in the NLDP model with polynomial sample
complexity. Previous results are either for linear queries (Blasiok et al., 2019; Bassily, 2018), or in
the central DP model (Ullman, 2015). Moreover, we can see when the dimensionality p increases, we
could answer more GLMs queries. It sounds unintuitive that with more dimensions, one can handle
more losses. However, we note that here we also need more data samples to achieve a fixed error of
α.

Note that in Theorem 14, Φ(2) is assumed to be bounded. This is a quite common assumption in
related works such as (Wang et al., 2018, 2019a). Actually, this condition can be relaxed by only
assuming that Φ(2)(〈x,w〉) is sub-Gaussian in some range of w.

Assumption 4 For a random vector x that is sub-Gaussian with zero mean and covariance matrix
Σ, we assume the following conditions hold

• sup
w:‖w−Σ

1
2wols‖2≤1

‖Φ(2)(〈x,w〉)‖ψ2 ≤ κg for some constant κg and Φ(3)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the condition
of f(c̄) ≥ 1 + τ , where wols is in Lemma 12 and the distribution of x satisfies Assumption 1.

• The derivative of f in the interval [0,max{c̄, cΦ}] does not change the sign (i.e., its absolute
value is lower bounded by some constant M > 0), where cΦ is in Lemma 12.

Theorem 17 Under Assumption 1 and 4, for sufficiently large m,n such that

m ≥ Ω̃
( 1

µ̃2
ε2n
)
, n ≥ Ω

(p2ρ2ρ
2
∞‖Σ‖22‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)
, (8)

the following holds with probability at least 1− exp(−Ω(p))− ξ,

‖ŵglm − w∗‖∞ ≤ O
(pρ2ρ

2
∞‖Σ

1
2 ‖2‖w∗‖∞max{1, ‖w∗‖3∞}

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
+

ρ2ρ
2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}√

p
+
√
ρ2ρ∞‖w∗‖∞max{1, ‖w∗‖∞}

1

µ̃

√
p2 logm

m

)
, (9)

where µ̃ = E[‖x‖2]√
p , the terms of r, κx, κg, G,M, τ, c̄, 1

cΦ
are assumed to be constants, and thus

omitted in the Big-O notations (see Appendix for the explicit forms of m and n).

From the above theorem, we can see that with more relaxed assumptions, the sample complexity in
Theorem 17 increases by a factor of O(logm) to achieve an upper bound on the statistical error ( in
`∞-norm) that is asymptotically the same as the one in Theorem 14.

Remark 18 A not so desirable issue of Theorems 8, 14 and 17 is that they need quite a few
assumptions/conditions. Although almost all of them commonly appear in some related work, the
assumptions on function f seem to be a little weird. Fortunately, this is a not big issue in both
practice and theory. In the following, motivated by (Erdogdu et al., 2019), we will provide two

12
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examples which satisfy Assumption 2. Moreover, as we will see later, our experiments show that the
algorithm actually performs quite well for many loss functions that may not satisfy these assumptions
(such as the cubic function). Also, we note that the error bounds in Theorem 14 and 17 are dependent
on the `1-norm of the upper bound of xi, while such a dependency is on the `2-norm in previous
work such as (Smith et al., 2017; Zheng et al., 2017). We leave the problem of relaxing/lifting these
assumptions to future research.

Theorem 19 (Logistic Loss) Consider the model (1) where the function Φ(z) = log(1 + ez) (then
|Φ(2)(·)| ≤ 1 and Φ(2)(·) is 1-Lipschitz), x ∼ N (0, 1

pIp), ‖w∗‖2 =
√
p

4 and ‖wols‖2 =
√
p

20 . Then
when c̄ = 6 and τ = 0.22, the function f(c) = cE[Φ(2)(〈x,wols〉c)] > 1 + τ . Moreover, f ′(z) is
bounded by constant M = 0.1 on [0, c̄] from below and cΦ < c̄.

Theorem 20 (Boosting Loss) Consider the model (1) where the function Φ(z) = z
2 +

√
1 + z2

4

(then |Φ(2)(·)| ≤ 1
4 and Φ(2)(·) is 3

16 -Lipschitz), x ∼ N (0, 1
pIp), ‖w∗‖2 =

√
p

4 and ‖wols‖2 =
√
p

20 .
Then when c̄ = 6 and τ = 0.22, the function f(c̄) = c̄E[Φ(2)(〈x,wols〉c̄)] > 1 + τ . Moreover, f ′(z)
is bounded by constant M = 0.1 on [0, c̄] from below and cΦ < c̄.

5. Privately Estimating Non-linear Regressions

In this section, we extend our ideas in the previous section to the problem of estimating non-linear
regression in the NLDP model with public unlabeled data. We assume that there is an underlying
vector w∗ ∈ Rp with ‖w∗‖2 ≤ 1 such that

y = f(〈x,w∗〉) + σ, (10)

where x is the feature vector sampled from some distribution (for simplicity, we assume that the
mean is zero) and y is the response. σ is the zero-mean noise which is independent of x and bounded
by some constant C = O(1) (i.e., σ ∈ [−C,C]). f is some known differentiable link function with
f(0) 6=∞ 4. We note that these assumptions are quite common in related work such as (Wang and
Xu, 2019; Duchi and Ruan, 2018). In our model, the goal is to obtain some estimator wpriv of w∗,
based on the private dataset {(xi, yi)}ni=1 and the public unlabeled dataset {xj}n+m+1

j=n+1 via some
NLDP algorithms.

5.1. Gaussian Case

Just as in the previous section, we first consider the case where x ∼ N(0,Σ) with some unknown
Σ ∈ Rp×p. Similar to Lemma 5, by using Stein’s lemma, we first show the following result.

Theorem 21 If x ∼ N (0,Σ), thenw∗ in (10) can be written asw∗ = cf×wols, where cf is the fixed
point of z 7→ (E[f ′(〈x,wols〉z)])−1 (if we assume that E[f ′(〈x,wols〉z)] 6= 0) andwols = Σ−1E[xy]
is the OLS vector.

We observe that the result in Theorem 21 is similar as Theorem Lemma 5. Thus, similar to Algorithm
1 we have Algorithm 3 when x is Gaussian.

Just as in the previous section, we need the following assumption for link function.

4. This assumption can be relaxed to ”there is a point x such that f(x) 6= 0”.

13
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Algorithm 3: Non-interactive LDP for smooth Non-linear Regression with public data (Gaussian)
Input: Private data {(xi, yi)}ni=1 ⊂ Rp × R with {xi}n+m

j=1 ∼ N (0,Σ) for some unknown Σ and
{xj}n+m

j=n+1 are public. Link function f : R 7→ R, privacy parameters ε, δ, and initial value
c ∈ R.

for The server do
Calculate Σm = 1

m

∑n+m
j=n+1 xjx

T
j and send it to each user.

end
for Each user i ∈ [n] do

Check whether ‖xi‖2 ≤
√

5‖Σm‖2p log n
ζ ; If not, release ⊥;

Denote
√

5‖Σm‖2p log n
ζ . Release x̂ixTi = xix

T
i + E1,i, where E1,i ∈ Rp×p is a symmetric

matrix and each entry of the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

).
Release x̂iyi = xiyi + E2,i, where the vector E2,i ∈ Rp is sampled from

N (0,
32r2(Lr+|f(0)|+C)2 log 2.5

δ
ε2

Ip).
end
for The server do

Denote X̂TX =
∑n

i=1 x̂ix
T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

Find the root ĉf such that 1 =
ĉf
m

∑n+m
j=n+1 f

′(ĉf ỹj) using Newton’s root finding method:
for t = 1, 2, · · · until convergence do

c = c− c 1
m

∑n+m+1
j=n+1 f ′(cỹj)−1

1
m

∑n+m+1
j=n+1 {f ′(cỹj)+cỹjf (2)(cỹj)}

.

end
end
return ŵnlr = ĉf · ŵols.

Assumption 5 We assume

• |f ′(·)| ≤ L and f (2)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function `(c) = cE[f ′(〈x,wols〉c)] satisfies the condition
of `(c̄) ≥ 1 + τ , where wols is in Theorem 21.

• The derivative of ` in the interval [0, c̄] does not change the sign (i.e., its absolute value is
lower bounded by some constant M > 0), where cf is in Theorem 21.

Theorem 22 For any 0 < ε, δ < 1, Algorithm 3 is (ε, δ) non-interactive LDP. Moreover, let
x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x ∼ N (0,Σ), under Assumption 5, for
sufficiently large m,n such that

n ≥ Ω
(τ−2c̄4‖Σ‖32p3‖w∗‖22 log2 n

ξ log 1
δ log p2

ξ

c2
f ε

2λmin(Σ) min{λmin(Σ), 1}
)

(11)

m ≥ Ω
(
‖Σ‖2‖w∗‖22pτ−2c−2

f ), (12)

14
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with probability at least 1− exp(−Ω(p))− ξ

‖ŵnlr − w∗‖2 ≤ O
(‖Σ‖ 3

2
2 p

3
2 ‖w∗‖22 log n

ξ

√
log 1

δ log p
ξ2

c2
f ελ

1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+ c−2
f ‖Σ‖

1
2
2 ‖w

∗‖22

√
p

m

)
where G,L,M, c̄ are assumed to be O(1) and thus omitted in the Big-O and Big-Ω notations (see
Appendix for the explicit form of m and n).

5.2. Sub-Gaussian Case

To solve this problem, we first use the zero-bias transformation (Goldstein et al., 1997) and the
techniques in (Erdogdu et al., 2019) to get a lemma similar to Lemma 12.

Definition 23 (Zero-bias Transformation) Let z be a random variable with mean 0 and variance
σ2. Then, there exists a random variable z∗ that satisfies E[zf(z)] = σ2E[f ′(z∗)] for all differen-
tiable functions f . The distribution of z∗ is called the z-zero-bias distribution. When z is Gaussian,
then z∗ = z, this is just Stein’s Lemma.

Theorem 24 Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x that is zero-mean
sub-Gaussian with covariance matrix Σ and satisfies Assumption 1. Let v = Σ−

1
2x be the whitened

random vector of x and denote ‖v‖ψ2 = κx. If each vi has constant first and second conditional
moments and function f ′ is Lipschitz continuous with constant G, then for cf = 1

E[f ′(〈xi,w∗〉)] , the

following holds, where wols is the OLS vector.

‖ 1

cf
· w∗ − wols‖∞ ≤ O(Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

).

From Theorem 24, we can see that it shares the same phenomenon as Lemma 12 (i.e., the OLS vector
with some constant could approximate w∗ well). Thus, a similar idea to Algorithm 2 can be used to
solve this problem for the bounded sub-Gaussian case, which gives us Algorithm 4 and the following
theorem. The same as in the previous section, we need the following assumptions for link function.

Assumption 6 We assume

• |f ′(·)| ≤ L and f (2)(·) is G-Lipschitz.

• For some constant c̄ and τ > 0, the function `(c) = cE[f ′(〈x,wols〉c)] satisfies the condition
of `(c̄) ≥ 1 + τ , where wols is in Theorem 24.

• The derivative of ` in the interval [0,max{c̄, cf}] does not change the sign (i.e., its absolute
value is lower bounded by some constant M > 0), where cf is in Theorem 24.

Theorem 25 For any 0 < ε, δ < 1, Algorithm 4 is (ε, δ) non-interactive LDP. Under the assump-
tions of Theorem 24, and if the link function f satisfies Assumption 6, then for sufficiently large m,n
such that

m ≥ Ω
(
‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}ρ2ρ

2
∞p

2
)
, (13)

n ≥ Ω
(ρ2ρ

2
∞‖Σ‖22p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p
ξ

ε2λmin(Σ)

)
, (14)
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Algorithm 4: Non-interactive LDP for smooth Non-linear Regression with public data (General)
Input: Private data {(xi, yi)}ni=1 ⊂ Rp × R with ‖xi‖1 ≤ r, public unlabeled data {xj}n+m

j=n+1.
Link function f : R 7→ R, privacy parameters ε, δ, and initial value c ∈ R.

for Each user i ∈ [n] do
Release x̂ixTi = xix

T
i + E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each entry of the

upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ
ε2

).
Release x̂iyi = xiyi + E2,i, where the vector E2,i ∈ Rp is sampled from

N (0,
32r2(Lr+|f(0)|+C)2 log 2.5

δ
ε2

Ip).
end
for The server do

Denote X̂TX =
∑n

i=1 x̂ix
T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

Calculate ỹj = xTj ŵ
ols for each j = n+ 1, · · · , n+m.

Find the root ĉf such that 1 =
ĉf
m

∑n+m
j=n+1 f

′(ĉf ỹj) using Newton’s root finding method:
for t = 1, 2, · · · until convergence do

c = c− c 1
m

∑n+m+1
j=n+1 f ′(cỹj)−1

1
m

∑n+m+1
j=n+1 {f ′(cỹj)+cỹjf (2)(cỹj)}

.

end
end
return ŵnlr = ĉf · ŵols.

with probability at least 1− exp(−Ω(p))− ξ, the output of Algorithm 4 satisfies

‖ŵnlr − w∗‖∞ ≤ O
(ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
+

ρ2ρ
2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+
ρ2ρ

2
∞‖Σ

1
2 ‖∞‖w∗‖3∞max{1, ‖w∗‖∞}√

p

)
,

(15)

where the terms of G,L, τ,M, c̄, r, κx, C,
1
cf

are assumed to be O(1) and thus omitted in the Big-O
notations (see Appendix for the explicit form of m and n).

Just as in the Theorem 19 and 20, in the following we will provide an example that satisfies the
assumptions in Theorem 25.

Theorem 26 (Sigmoid Link Function) Consider the model (10) where the link function f(z) =
1

1+e−z , x ∼ N (0, 1
pIp), ‖w∗‖2 =

√
p

4 and ‖wols‖2 =
√
p

20 . Then when c̄ = 6 and τ = 0.22, the
function `(c) = cE[f ′(〈x,wols〉c)] > 1 + τ . Moreover, `′(z) is bounded by constant M = 0.1 on
[0, c̄] from below and cf ≤ c̄.

16



LDP GLM ESTIMATION

6. Experiments

In this section, we evaluate the performance of our methods on both synthetic and real world datasets.
The experiments demonstrate the convergence results of our algorithms and suggest that they are
practically efficient.

Link Functions: In this paper, we mainly study estimating GLMs and non-linear regression. For
GLM, we consider the problem of binary logistic regression i.e., Φ(〈x,w〉) = ln (1 + exp (〈x,w〉))
and Poisson regression i.e., Φ(〈x,w〉) = e〈x,w〉 in (1). For non-linear regression, we consider the
case where the link function is either cubic i.e., f(x) = 1

3x
3 or logistic loss i.e., f(x) = log(1 + e−x)

in (10).

Synthetic Data Generation: In this paper, we assume the data feature distribution is either Gaus-
sian or sub-Gaussian with bounded `1-norm. When the distribution is Gaussian, we also consider
two cases where the covariance matrix is either diagonal or not. For the case where the covariance
matrix is diagonal, we sample each diagonal entry from the uniform distribution of [0, 1]. For general
covariance case, we will randomly generate an orthogonal matrix. In the sub-Gaussian case, the
features are generated independently from a Bernoulli distribution Pr

(
xi,j = ±1

p

)
= 0.5. For GLM,

the label is generated according to its definition in (1). In non-linear regression model, the label is
generate according to (10) where σ is bounded by C = 0.001.

Experimental Setting for Synthetic Data: For data with Gaussian features, we will use squared
`2-norm relative error ‖ŵ−w

∗‖22
‖w∗‖22

to measure performance, otherwise we will use squared `∞-norm

relative error ‖ŵ−w
∗‖2∞

‖w∗‖2∞
. We will first study the relative error with respect to different privacy

parameters ε ∈ {10, 5, 3, 2} with δ = 1
n1.1 . In these experiments, we estimate the relative error with

the fixed dimensionality p = 10 and the population parameter w∗ = (1, 1, ..., 1)/
√
p. The sample

size n is chosen from the set 104 · {1, 3, 5, ..., 29}. We assume that the same amount of public
unlabeled data is available. For each problem we then evaluate the impact of the dimensionality.
In these experiments, we fix the privacy parameters ε = 10, δ = 1

n1.1 , and tune the dimensionality
p ∈ {5, 10, 12, 15}.5 w∗s are the same as above. The sample size takes values from n ∈ 104 ·
{10, 12, 14, ..., 48} and the same amount of public unlabeled data is assumed. . For each experiments
above, we run 100 times and take the average of the errors.

Experimental Setting for Real-world Data: We conduct experiment for GLM with logistic loss
on the Covertype dataset (Dua and Graff, 2017). Before running our algorithm, we first normalize
the data and remove some co-related features. After the pre-processing, the dataset contains 581012
samples and 44 features. There are seven possible values for the label. Since multinomial logistic
regression can not be regarded as a Generalized Linear Model, we consider a weaker test, which
is to classify whether the label is Lodgepole Pine (type 2) or not. The chosen algorithm is still
binary logistic regression. We divide the data into training and testing, where ntraining = 406708 and
ntesting = 174304 and randomly choose the sample size n ∈ 104 · {1, 2, 3, ..., 39} from the training
data and use the same amount of public data. Regarding the privacy parameter, we take δ = 1

n1.1 and
let ε take value from {20, 10, 5}. We measure the performance by the prediction accuracy. For each
combination of ε and n, the experiment is repeated 1000 times.

5. Note that in the studies on LDP ERM, ε is always chosen as a large value such as (Bhowmick et al., 2018). Moreover,
we can use the shuffling technique in (Erlingsson et al., 2019) for privacy amplification.
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(a) (b)

Figure 1: GLM under Gaussian design with different levels of privacy. The left plot show the squared
`2-norm relative error of logistic regression where the covariance matrix is diagonal.
The right plot show the squared `2-norm relative error of Poisson regression, where the
covariance matrix is a random orthogonal matrix.

(a) (b)

Figure 2: GLM under Gaussian design with different dimensionality p. The left plot show the squared
`2-norm relative error of logistic regression where the covariance matrix is diagonal.
The right plot show the squared `2-norm relative error of Poisson regression where the
covariance matrix is a random orthogonal matrix.

We also conduct experiment for GLM with logistic loss on the SUSY dataset (Baldi et al., 2014).
The task is to classify whether the class label is signal or background. After the pre-processing and
sampling, the dataset contains 500000 samples and 18 features. Then we divide the data into training
and testing, where ntraining = 350000 and ntesting = 150000 and randomly choose the sample size
n ∈ 104 · {1, 3, · · · , 33} from the training data and use the same amount of public data. Regarding
the privacy parameter, we take δ = 1

n1.1 and let ε take value from {20, 10, 5}. We measure the
performance by the prediction accuracy. For each combination of ε and n, the experiment is repeated
1000 times.
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Figure 3: GLM with logistic loss under i.i.d Bernoulli design. The left plot shows the squared
relative error under different levels of privacy. The right one shows relative error under
different dimensionality.

(a) (b)

Figure 4: Poisson regression under i.i.d Bernoulli design. The left plot shows the squared relative
error under different levels of privacy. The right one shows relative error under different
dimensionality.
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Figure 5: Cubic regression with i.i.d Bernoulli design. The left plot shows the squared relative
error under different level of privacy. The right one shows relative error under different
dimensionality.
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Figure 6: GLM with logistic loss on real dataset. Left is for Covertype and right is for SUSY.
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Figure 7: The effect of the number of public unlabeled samples. The left plot shows the relative
error of GLM with logistic loss. The right one shows the relative error of cubic regression.
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6.1. Experimental Results

Evaluation on synthetic data: Figure 1, 2 are the results for Gaussian feature vectors, and Figure
3, 4, 5 are the results for Bernoulli feature vectors. We can see that the square of relative error
is inversely proportional to the number of samples n. In other words, in order to achieve relative
error α, we only need the number of private samples n ∼ 1

α2 if we omit the dependency on the
other parameters. Besides, we also observe that the square of relative error is proportional to 1

ε2
,

which matches our theoretical result. Moreover, we can see that the relative error increases as the
dimensionality increases. It may seem a little weird that it is not linear in the dimensionality. We
note that as the dimensionality p changes, some other parameters, for example, the l2 norm of the
covariance matrix and w∗∞ also change, which bring other effects to the relative error.

Evaluation on real data From Figure 6 we can observe that when ε takes a reasonable value, the
performance is approaching to the non-private case, provided that the size of private dataset is large
enough. Thus, our algorithm is practical and is comparable to the non-private one.

The effect of public unlabeled data We use similar setting as our synthetic experiments in Sec-
tion 6.1. For GLM we consider the problem of binary logistic loss i.e., Φ(〈x,w〉) = ln (1 + exp (〈x,w〉))
in (1) while for non-linear regression we will set f(x) = 1

3x
3 in (10). We compare relative error

‖ŵ−w∗‖∞
‖w∗‖∞ with respect to different privacy parameters ε ∈ {10, 5, 3} with δ = 1

n . In these ex-
periments, we fix dimensionality p = 10 and the population parameter w∗ = (1, 1, ..., 1)/

√
p.

We also fix the private sample size n = 200000 and the public data size is chosen from the set
104 · {2, 4, ..., 16}. We assume that the same amount of public unlabeled data is available. The
features are generated independently from a Bernoulli distribution Pr

(
xi,j = ±1

p

)
= 0.5 and the

label is generated according to the logistic model or the model (10). In non-linear regression model, σ
is bounded by C = 0.001. The results are shown in Figure 7(a) and 7(b). We can see that sometimes
there is no need to use as large amount of public data as our theoretical result requires to guarantee a
good performance, as is shown by Figure 7(a).

7. Conclusion and Open Problems

In this paper, motivated by Stein’s lemma and its variants, we propose the first efficient algorithm with
polynomial sample complexity for Generalized Linear Model estimation in the Non-interactive Local
Differential Privacy model with some public unlabeled data. The main idea of our algorithm is to use
OLS (Ordinary Least Square) estimator to approximate the underlying one. The key observation
is that, after multiplying the OLS vector some constant, we can get a new estimator which can
approximate the underlying estimator very well. Thus, we use the private data to estimate the OLS
vector and the public unlabeled data to get the constant. Moreover, we use the same technique to the
non-linear regression problem and show the same phenomenon.

There are still many open problems left. First, in this paper we mainly focused on the low
dimensional case, where n � p. How to generalize to the high dimensional sparse case, that is
n� p and ‖w∗‖0 ≤ k? Here since the Stein’s lemma will not be hold, so we need new techniques.
Second, from the experimental results we can see that, even if the loss function and the dataset do not
satisfy our assumptions, they will still have good performance. Thus, how to relax the assumptions
and reduce the sample complexity of public unlabeled data in our theoretical results? Finally, for
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the sub-Gaussian case, our estimator is biased and the error is Ω( 1√
p), can we get an unbiased and

consistent estimator?
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Appendix A. Background and Auxiliary Lemmas

Notations For a positive semi-definite matrix M ∈ Rp×p, we define the M -norm for a vector w
as ‖w‖2M = wTMw. λmin(A) is the minimal singular value of the matrix A. For a semi-definite
positive matrix M ∈ Rp×p, let its SVD composition be M = UTΣU , where Σ = diag(λ1, · · · , λp),
then M

1
2 is defined as M

1
2 = UTΣ

1
2U , where Σ

1
2 = diag(

√
λ1, · · · ,

√
λp).

Lemma 27 (Weyl’s Inequality (Stewart, 1990)) Let X,Y ∈ Rp×p be two symmetric matrices,
and E = X − Y . Then, for all i = 1, · · · , p, we have

|σi(X)− σi(Y )| ≤ ‖E‖2,

where σi(M) is the i-th eigenvalue of the matrix M .

Lemma 28 Let w ∈ Rp be a fixed vector and E be a symmetric Gaussian random matrix where the
upper triangle entries are i.i.d Gaussian distribution N (0, σ2). Then, with probability at least 1− ξ,
the following holds for a fixed positive semi-definite matrix M ∈ Rp×p

‖Ew‖2M ≤ σ2Tr(M)‖w‖2 log
2p2

ξ
.

Proof [Proof of Lemma 28] Let M = UTΣU denote the eigenvalue decomposition of M . Then, we
have

‖Ew‖2M = wTETUTΣUEw =

p∑
i=1

σi

p∑
j=1

[UE]2ijw
2
i .

Note that [UE]i,j =
∑p

k=1 Ui,kEj,k where Ei,j is Gaussian. Since U is orthogonal, we know that
[UE]i,j ∼ N (0, σ2). Using the Gaussian tail bound for all i, j ∈ [d]2, we have

P( max
i,j∈[p]2

|[UE]i,j | ≥

√
σ2 log

2p2

ξ
) ≤ ξ.
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Lemma 29 (Theorem 4.7.1 in (Vershynin, 2018) ) Let x be a random vector in Rp that is sub-
Gaussian with covariance matrix Σ and ‖Σ−

1
2x‖ψ2 ≤ κx. Then, with probability at least 1 −

exp(−p), the empirical covariance matrix 1
nX

TX = 1
n

∑n
i=1 xix

T
i satisfies

‖ 1

n
XTX − Σ‖2 ≤ Cκ2

x

√
p

n
‖Σ‖2.

Lemma 30 (Corollary 2.3.6 in (Tao, 2011)) Let M ∈ Rp×p be a symmetric matrix whose entries
mij are independent for j > i, have mean zero, and are uniformly bounded in magnitude by 1. Then,
there exists absolute constants C2, c1 > 0 such that with probability at least 1− exp(−C2c1p), the
following inequality holds ‖M‖2 ≤ C

√
p.

Below we introduce some concentration lemmas given in (Erdogdu et al., 2019).

Lemma 31 Let Bδ(w̃) denote the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w :
‖w − w̃‖2 ≤ δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d isotropic sub-Gaussian random vectors
with ‖xi‖ψ2 ≤ kx, and µ̃ = E[‖x‖2]√

p . For any given function g : R 7→ R that is Lipschitz continuous
with G and satisfies supw∈Bδ(w̃) ‖g(〈x,w〉)‖ψ2 ≤ κg, with probability at least 1− 2 exp(−p), the
following holds for np > 51 max{χ, χ2}

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ c(κg +
κx
ũ

)

√
p logm

m
,

where χ =
(κg+κx

µ̃
)2

cδ2G2µ̃2 . c is some absolute constant.

Lemma 32 Let Bδ(w̃) be the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w : ‖w− w̃‖2 ≤
δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d sub-Gaussian random vectors with covariance matrix Σ.
For any given function g : R 7→ R that is uniformly bounded by L and Lipschitz continuous with G,
the following holds with probability at least 1− exp(−p)

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ 2{G(‖w̃‖2 + δ)‖Σ‖2 + L}
√
p

m
.

The following lemma shows that the private estimator ŵols is close to the unperturbed one.

Lemma 33 Let X = [xT1 ;xT2 ; · · · ;xTn ] ∈ Rn×d be a matrix such that XTX is invertible, and
x1, · · · , xn are realizations of a sub-Gaussian random variable x whose `2 norm is bounded by
r. Moreover if x satisfies the condition of ‖Σ−

1
2x‖ψ2 ≤ κx = O(1) and Σ = E[xxT ] is the the

population covariance matrix. Let w̃ols = (XTX)−1XT y denote the empirical linear regression

estimator. Then, for sufficiently large n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

), the following holds with probability at

least 1− exp(−Ω(p))− ξ,

‖ŵols − w̃ols‖22 = O
(pr2(1 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
, (16)

where ‖xi‖2 ≤ r is sampled from some bounded distribution.
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Proof [Proof of Lemma 33] It is obvious that X̂TX = XTX + E1, where E1 is a symmetric

Gaussian matrix with each entry sampled fromN (0, σ2
1) and σ2

1 = O(
nr4 log 1

δ
ε2

). X̂T y = XT y+E2,

where E2 is a Gaussian vector sampled from N (0, σ2
2Ip) and σ2

2 = O(
nr2 log 1

δ
ε2

).

We first show that X̂TX is invertible with high probability under our assumption.
It is sufficient to show that XTX + E1 � XTX

2 , i.e., ‖E1‖2 ≤ λmin(XTX)
2 . By Lemma 30, we

can see that with probability 1− exp(−Ω(p)),

‖E1‖2 ≤ O(
r2
√
pn log 1

δ

ε
).

Also, by Lemma 29 and Lemma 27 we know that with probability at least 1− exp(−Ω(p)),

λmin(XTX) ≥ nλmin(Σ)−O(κ2
x‖Σ‖2

√
pn).

Thus, it is sufficient to show that nλmin(Σ) ≥ O(
κ2
x‖Σ‖2r2

√
pn log 1

δ

ε ), which is true under the

assumption of n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

). Thus, with probability at least 1 − exp(−Ω(p)), it is
invertible. In the following we will always assume that this event holds.

By direct calculation we have

‖ŵols − w̃ols‖2 = −(XTX + E1)−1E1w̃
ols + (XTX + E1)−1E2.

Thus, by Cauchy-Schwartz inequality we get

‖ŵols − w̃ols‖22 = O
(
‖E1w̃

ols‖2(XTX+E1)−2 + ‖E2‖2(XTX+E1)−2

)
.

Since we already assume that XTX + E1 � XTX
2 , by Lemma 28 we can obtain the following with

probability at least 1− ξ

‖E1w̃
ols‖2(XTX+E1)−2 ≤ O

(nr4 log 1
δ

ε2
‖w̃ols‖22Tr((XTX)−2) log

4p2

ξ

)
‖E2‖2(XTX+E1)−2 ≤ O

(nr2 log 1
δ

ε2
Tr((XTX)−2)

4p

ξ

)
.

Thus, we have

‖ŵols − w̃ols‖22 ≤ C1n ·
r2(1 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2
Tr((XTX)−2).

For the term of Tr((XTX)−2), we get

Tr((XTX)−2) ≤ (Tr((XTX)−1))2 ≤ p‖(XTX)−2‖22 =
p

λ2
min(XTX)

≤ O(
p

n2λ2
min(Σ)

),

where the last inequality is due to the fact that λmin(XTX) ≥ nλmin(Σ) − O(κ2
x‖Σ‖2

√
pn) ≥

1
2nλmin(Σ) (by the assumption on n). This completes the proof.

Let wols = (E[xxT ])−1E[xy] denote the population linear regression estimator. The following
lemma bounds the estimation error between w̃ols and wols. The proof could be found in (Erdogdu
et al., 2019) or (Dhillon et al., 2013).
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Lemma 34 (Prop. 7 in (Erdogdu et al., 2019)) Assume that E[xi] = 0, E[xix
T
i ] = Σ, and Σ−

1
2xi

and yi are sub-Gaussian with norms κx and γ, respectively. If n ≥ Ω(κxγp), the following holds

‖w̃ols − wols‖2 ≤ O
(
γκx

√
p

nλmin(Σ)

)
,

with probability at least 1− 3 exp(−p).

Appendix B. Proofs of LDP

The LDP proof of Algorithm 1 and 2 follows from Gaussian mechanism and the composition property
of DP.

For Algorithm 4, it is (ε, δ)-LDP due to the `2-norm bound on ‖xiyi‖2 = ‖xi‖2‖f(〈x,w∗〉) +
σi‖2 ≤ ‖xi‖2(L‖x‖2 + |f(0)|+C), where the last inequality is due to the fact that f ′ is L-bounded
and ‖w∗‖2 ≤ 1. That is, |f(〈x,w∗〉)− f(0)| ≤ L|〈x,w∗〉 − 0| ≤ L‖x‖2‖w∗‖2.

Appendix C. Proofs and Comments in Section 4

Since Theorem 17 is the most complicated one, we will first prove it and then Theorem 14.

C.1. Proof of Theorem 17

Since r = O(1) (by assumption), combining this with Lemmas 33 and 34, we have that with
probability at least 1− exp(−Ω(p))− ξ and under the assumption on n, there is a constant C3 > 0
such that

‖ŵols − wols‖2 ≤ C3

κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
. (17)

Lemma 35 Let Φ(2) be a function that is Lipschitz continuous with constantG, and f : R×Rp 7→ R
be another function such that f(c, w) = cE[Φ(2)(〈x,w〉c)] and its empirical one is

f̂(c, w) =
c

m

m∑
j=1

Φ(2)(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Under the assumptions in Lemma

33 and Eq. (17), if further assume that ‖Σ−
1
2x‖ψ2 ≤ κx, supw∈Bδ(w̄ols) ‖Φ(2)(〈x,w〉)‖ψ2 ≤ κg,

and there exist c̄ > 0 and τ > 0 such that f(c̄, wols) ≥ 1 + τ , then there is c̄Φ ∈ (0, c̄) such that
1 = f(c̄Φ, w

ols). Also, for sufficiently large n and m such that

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖22 log 1
δ log p2

ξ ‖Σ‖2
}
)
, (18)

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
)
, (19)
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with probability at least 1 − 2 exp(−p), there exists a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1.

Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in the absolute value (i.e., does
not change sign) by M > 0 in the interval c ∈ [0, c̄], then the following holds

|ĉΦ − c̄Φ| ≤ O
(
M−1c̄(κg +

κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

(20)

Proof [Proof of Lemma 35] We divide the proof into three parts.

Part 1: Existence of c̄Φ: From the definition, we know that f(0, wols) = 0 and f(c̄, wols) > 1.
Since f is continuous, we known that there exists a constant c̄Φ ∈ (0, c̄) which satisfies f(c̄Φ, w

ols) =
1.

Part 2: Existence of ĉΦ: For simplicity, we use the following notations.

δ = C3

κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nmin{λ1/2

min(Σ), 1}
, δ′ =

‖Σ‖
1
2
2 δ

λ
1
2
min(Σ)

, (21)

where C3 is the one in (17). Thus, ‖Σ
1
2 ŵols − Σ

1
2wols‖2 ≤ δ′.

Now consider the term of |f̂(c, ŵols)− f(c, ŵols)| for c ∈ [0, c̄]. We have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, ŵols)| ≤ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, w)− f(c, w)|, (22)

where Bδ′Σ(wols) = {w : ‖Σ
1
2w − Σ

1
2wols‖2 ≤ δ′}.

Note that for any x, we have 〈x,w〉 = 〈v,Σ
1
2w〉, where v = Σ−

1
2x follows an isotropic sub-

Gaussian distribution. Also, by definition we know that w ∈ Bδ′Σ(wols) is equivalent to Σ
1
2w ∈

Bδ′(w̄ols). Thus, we have

sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, ŵols)− f(c, ŵols)|

≤ c̄ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ

1
2w〉c)|

= c̄ sup
c∈[0,c̄]

sup

Σ
1
2w∈Bδ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ

1
2w〉c)|

= c̄ sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|. (23)

By Lemma 31, we know that when mp ≥ 51 max{χ, χ−1}, where

χ =
(κg + κx

µ̃ )2

cδ′2G2µ̃2
= Θ

((κg + κx
µ̃ )2

G2µ̃2

ε2nλmin(Σ) min{λmin(Σ), 1}
pr4‖wols‖22 log 1

δ log p2

ξ ‖Σ‖2

)
,
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the following holds with probability at least 1− 2 exp(−p)

sup
w′∈Bc̄δ(w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)| ≤ O((κg +
κx
µ̃

)

√
p logm

m
). (24)

By the Lipschitz property of Φ(2), we have that for any w1 and w2,

sup
c∈[0,c̄]

|f(c, w1)− f(c, w2)| ≤ Gc̄2E[〈v,Σ
1
2 (w1 − w2)〉]

≤ κxGc̄2‖Σ
1
2 (w1 − w2)‖2. (25)

Taking w1 = ŵols and w2 = wols, we have

sup
c∈[0,c̄]

|f(c, ŵols)− f(c, wols)| ≤ O
(
κxGc̄

2‖Σ‖
1
2
2

δ

λ
1
2
min(Σ)

)
.

Combining this with (23), (24), (25), and taking δ as in (21), we get

sup
c∈[0,c̄]

|f̂(c, ŵols)−f(c, wols)| ≤ O
(
c̄(κg+

κx
µ̃

)

√
p logm

m
+Gc̄2‖Σ‖

1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min min{λ1/2

min(Σ), 1}

)
.

(26)
Let B denote the RHS of (26). If c = c̄, we have f̂(c, ŵols) ≥ 1 + τ − B. Thus, if B ≤ τ , there
must exist a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ

ols) = 1.
To ensure that B ≤ τ holds, it is sufficient to have

O(c̄(κg +
κx
µ̃

)

√
p logm

m
) ≤ τ

2

and

O(Gc̄2‖Σ‖
1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2
.

This means that

m ≥ Ω
(
c̄2(κg +

κx
µ̃

)2p logmτ−2
)
,

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
)
,

which are assumed in the lemma.

Part 3: Estimation Error: So far, we know that f̂(ĉΦ, ŵ
ols) = f(c̄Φ, w

ols) = 1 with high
probability. By (22), (23) and (24), we have

|1− f(ĉΦ, ŵ
ols)| = |f̂(ĉΦ, ŵ

ols)− f(ĉΦ, ŵ
ols)| ≤ O(c̄(κg +

κx
µ̃

)

√
p logm

m
).
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By the same argument for (26), we have

|f(ĉΦ, ŵ
ols)− f(ĉΦ, w

ols)| ≤ Gκxc̄2‖Σ‖
1
2
2

δ

λ
1
2
min(Σ)

.

Thus, using Taylor expansion on f(c, wols) around cΦ and by the assumption of the bounded
derivative of f , we have

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|
≤ |f(ĉΦ, w

ols)− f(ĉΦ, ŵ
ols)|+ |f(ĉΦ, ŵ

ols)− 1|

≤ O
(
c̄(κg +

κx
µ̃

)

√
p logm

m
+Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

Next, we prove our main theorem.
Proof [Proof of Theorem 17] By definition, we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − w∗‖∞

≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − cΦw

ols‖∞ + ‖cΦw
ols − w∗‖∞. (27)

We first bound the term of |c̄Φ− cΦ|. Since c̄ΦE[Φ(2)(〈x,wols〉c̄Φ)] = 1 and cΦE[Φ(2)(〈x,w∗〉)] = 1
(by definition), we get

|f(c̄Φ, w
ols)− f(cΦ, w

ols)| = |cΦE[Φ(2)(〈x,w∗〉)]− f(cΦ, w
ols)|

≤ cΦ|E[Φ(2)(〈x,w∗〉)− Φ(2)(〈x,wols〉cΦ)]

≤ cΦG|E[〈x, (w∗ − cΦw
ols)〉]

≤ cΦG‖(w∗ − cΦw
ols)‖∞E‖x‖1

≤ cΦGr‖cΦw
ols − w∗‖∞,

where the last inequality is due to the assumption that ‖x‖1 ≤ r.
Thus, by the assumption of the bounded deviation of f(c, wols) on [0,max{c̄, cΦ}], we have

M |c̄Φ − cΦ| ≤ |f(c̄Φ, w
ols)− f(cΦ, w

ols)| ≤ cΦGr‖cΦw
ols − w∗‖∞.

By Lemma 12, we have

|c̄Φ − cΦ| ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

. (28)

Thus, the second term of (27) is bounded by

‖c̄Φw
ols − cΦw

ols‖∞ ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p
‖wols‖∞

≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖3∞√
p

(
1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
M−1r3κ6

xG
3ρ2ρ

2
∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, cΦ}

)
, (29)
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where the last inequality is due to Lemma 12.
By Lemma 12, the third term of (27) is bounded by 16cΦGrκ

3
x
√
ρ2ρ∞

‖w∗‖2∞√
p .

For the first term of (27), by (17) and Lemma 35 we have

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤ |ĉΦ| · ‖ŵols − wols‖∞ + |ĉΦ − c̄Φ| · ‖wols‖∞

≤ O
(
c̄
κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

+ ‖wols‖∞(M−1c̄(κg +
κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)
)
.

(30)

For the first term of (30), we have

c̄
κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
≤ c̄

κxpr
2‖wols‖∞

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

≤ c̄
κxpr

2‖w∗‖∞
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
c̄
pκ4

x
√
ρ2ρ∞Gr

3‖w∗‖∞max{1, ‖w∗‖∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}
)
. (31)

For the second term of (30), we have

‖wols‖∞M−1c̄(κg +
κx
µ̃

)

√
p logm

m

≤ c̄‖w∗‖∞(κg +
κx
µ̃

)

√
p logm

m
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

≤ O
(
Grκ3

x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}
)
. (32)

For the third term of (30), we have

‖wols‖∞M−1Gκ2
xc̄

2‖Σ‖
1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
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nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)

≤M−1Gκ2
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2
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log 1
δ log p2
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nλ

1/2
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(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)2

≤ O
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2 ‖2

pr4‖w∗‖2∞max{1, ‖w∗‖2∞}
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log 1
δ log p2
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√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
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)
. (33)
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Thus, the first term of (27) is bounded by (since m ≥ Ω(n))

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤ O
(
c̄
pκ4

x
√
ρ2ρ∞Gr

3‖w∗‖2∞max{1, ‖w∗‖∞}
√

log 1
δ log p2
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ε
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κx
µ̃

)
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p logm
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max{1, 1

cΦ
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κx
µ̃

)G3κ8
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2ρ2ρ
2
∞‖Σ

1
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×
pr4‖w∗‖∞max{1, ‖w∗‖3∞}

√
logm log 1

δ log p2

ξ

ε
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nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
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)
.

Putting all the bounds together, we have

‖ŵglm − w∗‖∞ ≤ Õ
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2 ‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3∞}

√
log 1

δ log p2
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ε
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nλ
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min(Σ) min{λ1/2
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Grκ3
x
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κx
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)

√
p logm

m
max{1, 1

cΦ
}
)
. (34)

Next, we bound the probability. We assume that Lemma 33, 34 and 35 hold with probability at least
1− exp(−Ω(p))− ρ. They hold when

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖22 log 1
δ log p2

ξ

}
)
, (35)

n ≥ Ω(max{κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
,
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
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}
)
. (36)

Since ‖wols‖2 ≤
√
p‖w∗‖∞( 1

cΦ
+ 16Grκ3

x
√
ρ2ρ∞

‖w∗‖∞√
p ), it suffices for n

n ≥ Ω
(
G4c̄4‖Σ‖22

p2r6κ10
x ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p2
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)
. (37)
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C.2. Proof of Theorem 14

Lemma 36 Let c̄Φ, c̄, τ, f, f̂ be defined the same as in Lemma 35. If further assume that |Φ(2)(·)| ≤
L for some constant L > 0 and is Lipschitz continuous with constant G, then, under the assumptions
in Lemma 33 and (17), with probability at least 1−4 exp(−p) there exists a constant ĉΦ ∈ [0, c̄] such
that f̂(ĉΦ, ŵ

ols) = 1. Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in absolute
value (i.e., does not change the sign) by M > 0 in the interval c ∈ [0, c̄], then with probability at
least 1− 4 exp(−p), the following holds

|ĉΦ − c̄Φ| ≤ O
(M−1GLc̄2κ2

xr
2‖Σ‖

1
2
2
√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(38)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(39)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (40)

Proof [Proof of Lemma 36 ] The main idea of this proof is almost the same as the one for Lemma 35.
The only difference is that instead of using Lemma 31 to get (24), we use here Lemma 32 to obtain
the following with probability at least 1− exp(−p)

sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|

≤ O
(
(G(‖w̄ols‖2 + c̄δ′)‖I‖2 + L)

√
p

m

≤ O
(
(G‖Σ‖

1
2
2 (‖wols‖2 + c̄

δ

λ
1
2
min(Σ)

) + L)

√
p

m

)
. (41)

Thus, by (23), (25) and (41), we have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, wols)| ≤ O
(
G‖Σ‖

1
2
2 ‖w

ols‖2
√
p

m
+

Gκxc̄‖Σ‖
1
2
2 ‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ L

√
p

m

)
. (42)

Let D denote the RHS of (42), we have

f̂(c̄, ŵols) ≥ 1 + τ −D.

It is sufficient to show that τ > D, which holds when

O(Gc̄2‖Σ‖
1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2
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and

O(
Gκxc̄‖Σ‖

1
2
2 L‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
) ≤ τ

2
.

That is,

n ≥ Ω
(G2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(43)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (44)

Then, there exists ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1. We can easily get

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|

≤ O
(Gc̄2κ2

xr
2‖Σ‖

1
2
2
√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+
Gκxc̄‖Σ‖

1
2
2 ‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ LG‖Σ‖

1
2
2 ‖w

ols‖2
√
p

m

)
(45)

≤ O
(GLc̄2κ2

xr
2‖Σ‖

1
2
2
√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+ LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
. (46)

Proof [Proof of Theorem 14 ] The proof is almost the same as the one for Theorem 17. By definition,
we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − w∗‖∞

≤ ‖ĉΦŵ
ols − c̄Φw

ols‖∞ + ‖c̄Φw
ols − cΦw

ols‖∞ + ‖cΦw
ols − w∗‖∞. (47)

The second term of (47) is bounded by

‖c̄Φw
ols − cΦw

ols‖∞ ≤ O
(
M−1r2κ7

xcΦG
3ρ2ρ

2
∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
. (48)

By Lemma 12, the third term of (47) is bounded by 16cΦGrκ
3
x
√
ρ2ρ∞

‖w∗‖∞√
p . The first term is

bounded by

‖ĉΦŵ
ols − c̄Φw

ols‖∞ ≤

O
(M−1G3Lc̄2κ8

xr
4ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

×max{ 1

cΦ
, 1}2

+
M−1G3Lc̄2κ6

xr
2ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
×max{ 1

cΦ
, 1}2

)
. (49)
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Thus, in total we have

‖ŵglm − w∗‖∞ ≤ O
(M−1G3Lc̄2κ6

xr
2ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
×max{ 1

cΦ
, 1}2

+
G3Lc̄2κ6

xr
4ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

max{ 1

cΦ
, 1}2

+M−1r2κ7
xcΦG

3ρ2ρ
2
∞‖Σ

1
2 ‖∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
. (50)

The probability of success is at least 1− exp(−Ω(p))− ξ. The sample complexity should satisfy

m ≥ Ω
(
G2L2‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}G2r2κ6

xρ2ρ
2
∞p

2τ−2 max{1, 1

cΦ
}2
)

(51)

n ≥ Ω
(ρ2ρ

2
∞G

4τ−2c̄4‖Σ‖22κ10
x p

2‖w∗‖2∞r6 max{1, ‖w∗‖2∞} log 1
δ log p3

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
. (52)

C.3. Proof of Theorem 8

Proof By Lemma 4 we know that with probability 1 − ξ, ‖xi‖2 ≤
√

5p‖Σm‖2 log n
ξ for each

i ∈ [n]. Next we will bound the term of ‖Σm‖2. By Lemma 29 we can see that when m ≥ Ω(p),

with probability at least 1 − exp(−p), ‖Σm‖2 ≤ (1 + C1

√
p
m)‖Σ‖2 ≤ 2‖Σ‖2. Thus ‖xi‖2 ≤√

10p‖Σ‖2 log n
ξ with probability at least 1− ζ − exp(−p). In the following we will assume this is

true.
Combining this with Lemmas 33 and 34, we have that with probability at least 1−exp(−Ω(p))−ξ

and under the assumption on n, there is a constant C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

√
p3‖Σ‖2‖wols‖2 log n

ξ

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
. (53)

The same Lemma 36, we have the following lemma.

Lemma 37 Let c̄Φ, c̄, τ, f, f̂ be defined the same as in Lemma 35. If further assume that |Φ(2)(·)| ≤
L for some constant L > 0 and is Lipschitz continuous with constant G, then, under the assumptions
in Lemma 33 and (17), with probability at least 1−4 exp(−p) there exists a constant ĉΦ ∈ [0, c̄] such
that f̂(ĉΦ, ŵ

ols) = 1. Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in absolute
value (i.e., does not change the sign) by M > 0 in the interval c ∈ [0, c̄], then with probability at
least 1− 4 exp(−p), the following holds (note that for the Gaussian case cΦ = c̄Φ)

|ĉΦ − cΦ| ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖2 log n

ξ

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(54)
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for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖32p3‖wols‖22 log2 n

ξ log 1
δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(55)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (56)

Next we bound ‖ŵglm − w∗‖2 = ‖ĉΦŵ
ols − cΦw

ols‖2. We have

‖ĉΦŵ
ols − cΦw

ols‖2 ≤ |ĉΦ − cΦ|‖ŵols‖2 + cΦ‖ŵols − wols‖2. (57)

For the second term of (57), by (53) we have

cΦ‖ŵols − wols‖2 ≤ O(
c̄p

3
2 ‖Σ‖2‖wols‖2 log n

ξ

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
).

For the first term of (57), by Lemma 37 and (53) we have

|ĉΦ−cΦ|‖ŵols‖2 ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖22 log n

ξ

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖22

√
p

m

)
Take wols = w∗

cΦ
we can get the proof.

C.4. Proof of Theorem 19

Proof We can see that

Φ(2)(z) =
ez

(1 + ez)2
,Φ(3)(z) =

ez − e2z

(1 + ez)3
,Φ(4)(z) =

ez(1− 4ez + e2z)

(1 + ez)4

We can see |Φ(2)(·)| ≤ 1 and Φ(2)(·) is 1-Lipschtitz, and Φ(2) and Φ(4) are even functions. Using
the local convexity for z ≥ 0 around z = 2.5 we have

Φ(2)(z) ≥ a− bz,

where a = Φ(2)(2.5)− 2.5Φ(3)(2.5) ≈ 0.22 and b = −Φ(3)(2.5) ≈ 0.06. Denote W ∼ N (0, 1), φ
as the density function of W and ζ as the cumulative distribution function of W , we have

f(z) = zE[Φ(2)(〈x,wols〉z)] = zE[Φ(2)(
Wz

20
)]

= 2z

∫ ∞
0

Φ(2)(
wz

20
)φ(w)dw ≥ 2z

∫ 20a
bz

0
(a− bwz

20
)φ(w)dw

= 2z(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 )).

Thus take c̄ = 6 we have f(c̄) > 1 + 0.22.
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Next we will show cΦ ≤ c̄. Recall that cΦ = 1
E[Φ(2)(〈xi,w∗〉)]

, thus we need to proof

E[Φ(2)(〈xi, w∗〉)] >
1

6
.

This is because

E[Φ(2)(〈x,w∗〉)] = E[Φ(2)(
W

4
)]

= 2

∫ ∞
0

Φ(2)(
w

4
)φ(w)dw ≥ 2

∫ 4a
b

0
(a− bw

4
)φ(w)dw

= 2(aζ(
4a

b
)− a

2
− b

4
√

2π
(1− e

−8a2

b2 )) >
1

6
.

Finally, we will show that f ′(z) is bounded by constant M = 0.19 on [0, c̄] from below. Since x
follows the Gaussian distribution, by Stein’s lemma (Definition 23) we have

f ′(z) = E[Φ(2)(
Wz

20
)] +

z2

202
E[Φ(4)(

Wz

20
)].

Thus

f ′(z) ≥ E[Φ(2)(
Wz

20
)]− 9

100
|Φ(4)|

≥ 2(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 ))− 9

800
> 0.1

C.5. Proof of Theorem 20

Proof By simple calculation we can see that

Φ(2)(z) =
1

4
(1 +

z2

4
)−

3
2 ,Φ(3)(z) = − 3

16
z(1 +

z2

4
)−

5
2 ,Φ(4) =

3

64

5z2(1 + z2

4 )−2 − 4

(1 + z2

4 )
5
4

,

we can see that |Φ(2)(·)| ≤ 1
4 , |Φ(2)(·)| is 3

16 -Lipschitz and these two functions are even. Using the
local convexity for z ≥ 0 around z = 2 we have

Φ(2)(z) ≥ a− bz,

where a = Φ(2)(2)− 2Φ(3)(2) ≈ 0.22 and b = −Φ(3)(2) ≈ 0.066. Denote W ∼ N (0, 1), φ as the
density function of W and ζ as the cumulative distribution function of W , we have

f(z) = zE[Φ(2)(〈x,wols〉z)] = zE[Φ(2)(
Wz

20
)]

= 2z

∫ ∞
0

Φ(2)(
wz

20
)φ(w)dw ≥ 2z

∫ 20a
bz

0
(a− bwz

20
)φ(w)dw

= 2z(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 )).
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Thus take c̄ = 6 we have f(c̄) > 1 + 0.22.
Next we will show cΦ ≤ c̄. Recall that cΦ = 1

E[Φ(2)(〈xi,w∗〉)]
, thus we need to proof

E[Φ(2)(〈xi, w∗〉)] >
1

6
.

This is because

E[Φ(2)(〈x,w∗〉)] = E[Φ(2)(
W

4
)]

= 2

∫ ∞
0

Φ(2)(
w

4
)φ(w)dw ≥ 2

∫ 4a
b

0
(a− bw

4
)φ(w)dw

= 2(aζ(
4a

b
)− a

2
− b

4
√

2π
(1− e

−8a2

b2 )) >
1

6
.

Finally, we will show that f ′(z) is bounded by constant M = 0.1 on [0, c̄] from below. Since x
follows the Gaussian distribution, by Stein’s lemma we have

f ′(z) = E[Φ(2)(
Wz

20
)] +

z2

202
E[Φ(4)(

Wz

20
)].

Thus

f ′(z) ≥ E[Φ(2)(
Wz

20
)]− 9

100
|Φ(4)|

≥ 2(aζ(
20a

bz
)− a

2
− bz

20
√

2π
(1− e

−200a2

b2z2 ))− 27

1600
> 0.1

Appendix D. Proofs in Section 5

D.1. Proof of Theorem 21

Proof [Proof of Theorem 21] Denote φ(·,Σ) as the multivariate normal density with mean 0 and
covariance matrix Σ, by simple calculation we have dφ(x,Σ)

dx = −Σ−1xφ(x,Σ). By the setting of
(10) we have.

E[xy] = E[xf(〈x,w∗〉)] =

∫
xf(〈x,w∗〉)φ(x,Σ)dx

= −Σ

∫
f(〈x,w∗〉)dφ(x,Σ)

dx
dx

= Σw∗E[f ′(〈x,w∗〉)],

where the last equation is deduced by integration by part. Thus

w∗ =
1

E[f ′(〈x,w∗〉)]
wols.
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D.2. Proof of Theorem 24

The idea of the proof follows the one in (Erdogdu et al., 2019).
Proof [Proof of Theorem 24] By assumption, we have

E[xy] = E[xf(〈x,w∗〉)] = Σ
1
2E[vf(〈v, ŵ∗〉)],

where ŵ∗ = Σ
1
2w∗. Now, consider each coordinate j ∈ [p] for the term E[vf(〈v, ŵ∗〉)]. Let v∗j

denote the zero-bias transformation of vj conditioned on Vj = 〈v, ŵ∗〉 − vjŵ∗j . Then, we have

E[vjf(〈v, ŵ∗〉)] = EE[vjf(vjŵ
∗
j + Vj)|Vj ]

= ŵ∗jEE[f ′(v∗j ŵ
∗
j + Vj)|Vj ]

= ŵ∗jEE[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)|Vj ]
= ŵ∗jE[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)].

Thus, we have wols = Σ−
1
2DΣ

1
2w∗, where D is a diagonal matrix whose i-th entry is E[f ′((v∗j −

vj)ŵ
∗
j + 〈v, ŵ∗〉)].

By the Lipschitz condition, we have

|E[f ′((v∗j − vj)ŵ∗j + 〈v, ŵ∗〉)]− E[f ′(〈v, ŵ∗〉)]| ≤ G|ŵ∗j |E|(v∗j − vj)|.

By the same argument given in (Erdogdu et al., 2019), we have

E|(v∗j − vj)| ≤ 1.5E[|vj |3].

Using the bound of the third moment induced by the sub-Gaussian norm, we have

L|ŵ∗j |E|(v∗j − vj)| ≤ 8Gκ3
x max
j∈[p]
|ŵ∗j | ≤ 8Gκ3

x‖Σ
1
2w∗‖∞.

Thus, we get

max
j∈[d]
|Djj −

1

cf
| ≤ 8Gκ3

x‖Σ
1
2w∗‖∞.

This means that

‖wols − 1

cf
w∗‖∞ = ‖Σ−

1
2 (D − 1

cf
I)Σ

1
2w∗‖∞

≤ max
j∈[p]
|Djj −

1

cf
|‖Σ−

1
2 ‖∞‖Σ

1
2 ‖∞‖w∗‖∞

≤ 8Lκ3
xρ∞L‖Σ

1
2 ‖∞‖w∗‖2∞.

Due to the diagonal dominance property we have

‖Σ
1
2 ‖∞ = max

i

p∑
j=1

|Σ
1
2
ij | ≤ 2 max Σ

1
2
ii ≤ 2‖Σ‖

1
2
2 .

Since we have ‖x‖2 ≤ r, we write

r2 ≥ E[‖x‖22] = Trace(Σ) ≥ p‖Σ ≥ p‖Σ‖2
ρ2

.

Thus we have ‖Σ
1
2 ‖∞ ≤ 2r

√
ρ2

p .

40



LDP GLM ESTIMATION

D.3. Proof of Theorem 25

By the same argument in the proof of Lemma 33, we can show that when n ≥ Ω(
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

),
with probability at least 1− exp(−Ω(p))− ξ, the following holds

‖ŵols − w̃ols‖22 = O
(pC2r2(L2r2 + C2 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
. (58)

Thus, by Lemma 34 we have

‖ŵols − wols‖2 ≤ O
(CLκx√pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
. (59)

In the following, we will always assume that (59) holds. By the same argument given in Lemma 36,
we have the following Lemma, which can be proved in the same way as Lemma 36.

Lemma 38 Let f ′ be a function that is Lipschitz continuous with constant G and |f ′(·)| ≤ L, and
g : R× Rp 7→ R be another function such that g(c, w) = cE[f ′(〈x,w〉c)] and its empirical one is

ĝ(c, w) =
c

m

m∑
j=1

f ′(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Then, under the assumptions in

Lemma 33 and Eq. (59), with probability at least 1− 4 exp(−p), there exists a constant ĉf ∈ [0, c̄]
such that ĝ(ĉf , ŵ

ols) = 1. Furthermore, if the derivative of c 7→ g(c, wols) is bounded below in
absolute value (i.e., does not change the sign) by M > 0 in the interval of c ∈ [0, c̄], then with
probability at least 1− 4 exp(−p), the following holds

|ĉf − c̄f | ≤ O
(M−1CGLc̄2r2‖Σ‖

1
2
2
√
p‖wols‖2 log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w

ols‖2
√
p

m

)
(60)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(61)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (62)

where r = maxi∈[n] ‖xi‖2.

D.4. Proof of Theorem 22

The proof is almost the same as the proof of Theorem 8. We know that when n ≥ Ω(
‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

),
with probability at least 1− exp(−Ω(p))− ξ, the following holds

‖ŵols − w̃ols‖22 = O
(pC2r2(L2r2 + C2 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
, (63)

41



LDP GLM ESTIMATION

where r =
√

10p‖Σ‖2 log n
ξ . Thus, by Lemma 34 we have that with probability at least 1 −

exp(−Ω(p))− ξ and under the assumption on n, there is a constant C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

√
p3‖Σ‖2‖wols‖2 log n

ξ

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
. (64)

The same Lemma 37, we have the following lemma.

Lemma 39 Let f ′ be a function that is Lipschitz continuous with constant G and |f ′(·)| ≤ L, and
g : R× Rp 7→ R be another function such that g(c, w) = cE[f ′(〈x,w〉c)] and its empirical one is

ĝ(c, w) =
c

m

m∑
j=1

f ′(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Then, under Eq. (64), with

probability at least 1 − 4 exp(−p), there exists a constant ĉf ∈ [0, c̄] such that ĝ(ĉf , ŵ
ols) = 1.

Furthermore, if the derivative of c 7→ g(c, wols) is bounded below in absolute value (i.e., does not
change the sign) by M > 0 in the interval of c ∈ [0, c̄], then with probability at least 1− 4 exp(−p),
the following holds

|ĉf − cf | ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖2 log n

ξ

√
log 1

δ log p
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ελ
1
2
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1
2
min(Σ), 1}
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n

+M−1LG‖Σ‖
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ols‖2
√
p

m

)
(65)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖32p3‖wols‖22 log2 n

ξ log 1
δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(66)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (67)

Next we bound ‖ŵnlr − w∗‖2 = ‖ĉf ŵols − cfwols‖2. We have

‖ĉf ŵols − cfwols‖2 ≤ |ĉf − cf |‖ŵols‖2 + cf‖ŵols − wols‖2. (68)

For the second term of (68), by (64) we have

cf‖ŵols − wols‖2 ≤ O(
c̄p

3
2 ‖Σ‖2‖wols‖2 log n

ξ

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
).

For the first term of (68), by Lemma 39 and (53) we have

|ĉf−cf |‖ŵols‖2 ≤ O
(M−1GLc̄2‖Σ‖

3
2
2 p

3
2 ‖wols‖22 log n

ξ

√
log 1

δ log p
ξ2

ελ
1
2
min(Σ) min{λ

1
2
min(Σ), 1}

√
n

+M−1LG‖Σ‖
1
2
2 ‖w
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√
p

m

)
Take wols = w∗

cf
we can get the proof.
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D.5. Proof of Theorem 26

Proof We can easily see that f ′(·) is just the function Φ(2)(·) in Theorem 19 for the logistic loss
function. Thus the function f ′ satisfies the assumptions in Theorem 25, which was showed in the
Theorem 19.
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