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Abstract 44 

Near-term ecological forecasts provide resource managers advance notice of changes in 45 

ecosystem services, such as fisheries stocks, timber yields, or water and air quality. Importantly, 46 

ecological forecasts can identify where uncertainty enters the forecasting system, which is 47 

necessary to refine and improve forecast skill and guide interpretation of forecast results. 48 

Uncertainty partitioning identifies the relative contributions to total forecast variance 49 

(uncertainty) introduced by different sources, including specification of the model structure, 50 

errors in driver data, and estimation of initial state conditions. Uncertainty partitioning could be 51 

particularly useful in improving forecasts of high-density cyanobacterial events, which are 52 

difficult to predict and present a persistent challenge for lake managers. Cyanobacteria can 53 

produce toxic or unsightly surface scums and advance warning of these events could help 54 

managers mitigate water quality issues. Here, we calibrate fourteen Bayesian state-space models 55 

to evaluate different hypotheses about cyanobacterial growth using data from eight summers of 56 

weekly cyanobacteria density samples in an oligotrophic (low nutrient) lake that experiences 57 

sporadic surface scums of the toxin-producing cyanobacterium, Gloeotrichia echinulata.  We 58 

identify dominant sources of uncertainty for near-term (one-week to four-week) forecasts of G. 59 

echinulata densities over two years. Water temperature was an important predictor in calibration 60 

and at the four-week forecast horizon. However, no environmental covariates improved over a 61 

simple autoregressive (AR) model at the one-week horizon. Even the best fit models exhibited 62 

large variance in forecasted cyanobacterial densities and often did not capture rare peak density 63 

occurrences, indicating that significant explanatory variables in calibration are not always 64 

effective for near-term forecasting of low-frequency events. Uncertainty partitioning revealed 65 

that model process specification and initial conditions uncertainty dominated forecasts at both 66 
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time horizons. These findings suggest that observed densities result from both growth and 67 

movement of G. echinulata, and that imperfect observations as well as spatial misalignment of 68 

environmental data and cyanobacteria observations affect forecast skill. Future research efforts 69 

should prioritize long-term studies to refine process understanding and increased sampling 70 

frequency and replication to better define initial conditions. Our results emphasize the 71 

importance of ecological forecasting principles and uncertainty partitioning to refine and 72 

understand predictive capacity across ecosystems.  73 

 74 

Keywords: Bayesian model, blooms, dynamic linear model, ecological forecasting, hindcast, 75 

lake, oligotrophic, phytoplankton, scums, state-space model, uncertainty partitioning, variance 76 

partitioning 77 

 78 

 79 

I. Introduction 80 

Near-term ecological forecasts, defined as daily to decadal predictions of the state of 81 

ecosystems (Clark et al. 2001, Dietze et al. 2018), can be helpful to resource managers in 82 

systems ranging from fisheries stocks to disease outbreaks in protected species populations 83 

(Kuikka et al. 2014, Hobbs et al. 2015). For example, near-term forecasts have been used to 84 

provide projections for alternate management decisions (Kuikka et al. 2014, Thomas et al. 2018, 85 

2020), help managers allot fisheries take quotas (or used to avoid bycatch; Hobday et al. 2019 86 

and references therein), and provide advance notice of public safety hazards such as red tides 87 

(Stumpf et al. 2009, McGowan et al. 2017). Effective near-term forecasts include fully-specified 88 

uncertainty by quantifying the total variance around a prediction and identifying the relative 89 
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contributions of different sources of uncertainty (Dietze et al. 2018; Box 1).  90 

Uncertainty in ecological forecasts may arise from several different sources, including: 91 

initial conditions uncertainty, parameter uncertainty, process uncertainty, observation 92 

uncertainty, driver or covariate data uncertainty, and random effects uncertainty (Dietze 2017a; 93 

Table 1). Partitioning the variance associated with a forecast into these components allows for 94 

more targeted efforts to understand and improve forecasts. For example, the dominant 95 

contributor to uncertainty in weather forecasts is from initial conditions because the 96 

atmosphere’s internal instability amplifies even small errors in initial condition estimates and the 97 

physical processes controlling weather given a set of current conditions are relatively well-98 

defined (Dietze 2017b). This has directed weather forecasters to prioritize efforts to better 99 

measure starting atmospheric conditions (Shuman 1989, Bauer et al. 2015). In contrast, the 100 

dominance of process uncertainty in a forecast indicates that researchers need to consider 101 

alternative model structures and additional or different explanatory variables to describe the 102 

biological or ecological process of interest (Page et al. 2017, Thomas et al. 2018). Formal, 103 

standardized uncertainty partitioning can guide improvements to ecological forecasts and 104 

ultimately lead to more informed management of natural resources (Bauer et al. 2015, Page et al. 105 

2018). 106 

Estimating uncertainty has become more common in ecological analyses that generate 107 

forecasts (see studies in Table S1 for examples). However, formal uncertainty partitioning that 108 

includes all the potential sources of forecast uncertainty is less common and methods are not 109 

standardized, making it difficult to compare how different components of uncertainty contribute 110 

across ecological systems or among focal state variables.  For example, while studies by Gertner 111 

et al. 1996, Valle et al. 2009, Wang et al. 2009, and Thomas et al. 2018 (Table S1) all forecast 112 
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different metrics of forest biomass and productivity, differences in how they estimate and 113 

partition uncertainty limit synthetic understanding of the predominance of process structure or 114 

estimation of drivers or parameters to uncertainty in forecasts about forest productivity. 115 

Forecasting freshwater cyanobacterial dynamics has been a persistent challenge for 116 

researchers and water quality managers (Janssen et al. 2019, Rousso et al. 2020), and uncertainty 117 

partitioning analysis could help refine and advance forecasting capacity in this system. 118 

Cyanobacteria are increasing in many lakes and reservoirs worldwide due to climate and land-119 

use change, posing substantial problems for drinking water managers and other stakeholders 120 

(Schindler and Vallentyne 2008, Paerl et al. 2011, Carey et al. 2012b, O’Neil et al. 2012). Many 121 

cyanobacterial taxa create toxic or unsightly scums that cause taste and odor problems and clog 122 

filters at drinking water treatment plants; consequently, knowing when cyanobacterial density is 123 

likely to increase could allow managers to take pre-emptive action to mitigate deleterious water 124 

quality effects (van Dolah et al. 2015, Ibelings et al. 2016, Stroom and Kardinaal 2016). 125 

However, despite substantial research on drivers of cyanobacterial dominance (e.g., Carey et al. 126 

2012b, Paerl and Otten 2013) and recent technological developments permitting high-frequency 127 

observations of cyanobacterial density (e.g., Le Vu et al. 2011, Catherine et al. 2012), near-term 128 

cyanobacterial abundance model predictions often deviate substantially from observations 129 

(Hamilton et al. 2009, Rigosi et al. 2010, Reynolds et al. 2014, Janssen et al. 2019) and few 130 

studies have examined forecast uncertainty (Rousso et al. 2020; but see Huang et al. 2013, Page 131 

et al. 2017, Massoud et al. 2018). The challenges in forecasting cyanobacteria may be 132 

attributable to the rate of cyanobacterial growth relative to the frequency of most sampling 133 

campaigns. Cyanobacterial densities can change rapidly on timescales of days to weeks (Dokulil 134 

and Teubner 2000, Huisman and Hulot 2005, Rolland et al. 2013, Carpenter et al. 2020), with 135 
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densities in many lakes remaining relatively low for much of the year and then rapidly increasing 136 

from one sample period to the next (e.g., Bormans et al. 2005, Rolland et al. 2013, Carey et al. 137 

2014a).  138 

Cyanobacterial blooms are often associated with high nutrient levels (Dokulil and 139 

Teubner 2000), and so much of the effort to predict cyanobacterial densities has been focused on 140 

nutrient-rich lakes (Rousso et al. 2020). As a result, prediction efforts for high-density 141 

cyanobacterial events in oligotrophic lakes have lagged behind, and understanding why 142 

cyanobacterial densities change over the short term in low-nutrient lakes is especially 143 

challenging. However, teasing apart the different sources of uncertainty and their relative 144 

importance to cyanobacterial forecast precision may help prioritize research efforts in 145 

economically important oligotrophic waterbodies. Increases in the occurrence of high-density 146 

cyanobacterial events have been documented in north temperate oligotrophic lakes throughout 147 

the United States (Carey et al. 2012a), Canada (Winter et al. 2011), and Europe (Freeman et al. 148 

2020), and these increases are often associated with significant economic losses and public 149 

health concerns (Dodds et al. 2009, Mueller et al. 2016, Stoddard et al. 2016). High water quality 150 

in oligotrophic lakes provides substantial economic benefit through recreational use and high 151 

lakeside property values (Wilson and Carpenter 1999, Dodds et al. 2009, Mueller et al. 2016, 152 

Stoddard et al. 2016). Moreover, some oligotrophic systems are permitted as drinking water 153 

sources with reduced filtration requirements when their water quality meets United States 154 

Environmental Protection Agency (U.S. EPA) standards, thereby reducing water treatment costs 155 

(U.S. EPA 1991, Kauffman 2016, Ravindranath et al. 2016).  156 

Prior studies provide several hypotheses for what environmental drivers likely trigger 157 

cyanobacterial growth or accumulation of cyanobacterial surface scums, including: increased 158 
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growth at higher temperatures (Paerl and Huisman 2008, Hamilton et al. 2009); light-induced 159 

triggering of cell germination and growth (Roelofs and Oglesby 1970, Karlsson-Elfgren et al. 160 

2004); more recruitment of dormant cells from the sediment and/or dilution of surface water 161 

cyanobacterial density due to water column mixing, which can occur due to temperature 162 

changes, precipitation events, or wind (Jennings et al. 2012, Carey et al. 2014, de Eyto et al. 163 

2016, Kuha et al. 2016); greater incidence of surface scums during periods of stronger thermal 164 

stratification (Carey et al. 2012b); and aggregation of cells or colonies in nearshore zones by 165 

wind (Roelofs and Oglesby 1970, Cyr 2017). The development of forecast models with 166 

uncertainty partitioning is needed to compare and evaluate these hypotheses in a predictive 167 

framework.  168 

While there are a variety of techniques that can be used to develop forecast models with 169 

partitioned uncertainty, Bayesian state-space models are particularly suitable (Clark 2007, Hobbs 170 

and Hooten 2015, Dietze 2017a). State-space models focus on estimating the true, latent state of 171 

the system by explicitly accounting for observation and process uncertainty. These dynamic 172 

models are structured so that each modeled latent state is a function of the previous latent state, 173 

independent of observations at other time points (Hobbs and Hooten 2015, Dietze 2017a; Fig. 1). 174 

Bayesian state-space models use distributions rather than fixed values to represent all unknown 175 

values, including parameters, initial conditions, and as-yet-unobserved future values for driver 176 

variables, allowing for quantification of uncertainty associated with each of these components 177 

and missing data. 178 

We developed and evaluated a suite of Bayesian state-space models with different 179 

structures and tested different environmental variables hypothesized to be important in driving 180 

cyanobacterial density, including water temperature, thermal stability, wind, and light. We 181 
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calibrated each model to weekly cyanobacterial densities measured from 2009-2014 in Lake 182 

Sunapee, NH, USA, an oligotrophic lake that exhibits variable densities of the toxin-producing 183 

cyanobacterium Gloeotrichia echinulata. We then generated hindcasts (defined in Table 1) of 184 

cyanobacterial density for 2015-2016. We assessed and conducted uncertainty partitioning of our 185 

hindcasts to address the following questions: A) Which model structures and environmental 186 

covariates best predict oligotrophic lake cyanobacterial density over one to four week forecast 187 

horizons? B) What are the dominant sources of uncertainty in oligotrophic lake cyanobacterial 188 

forecasts? and C) How do the relative contributions of different sources of uncertainty vary 189 

among models with differing complexity and environmental covariates? We discuss how our 190 

results inform future efforts to forecast oligotrophic lake cyanobacterial density and relate to 191 

patterns of predictive uncertainty observed in other ecosystems. 192 

 193 

 194 

II. Methods 195 

Focal cyanobacterium 196 

Gloeotrichia echinulata is a colonial, filamentous cyanobacterium commonly found in 197 

oligotrophic north temperate lakes in the United States, Canada, and Europe (Karlsson-Elfgren et 198 

al. 2005, Winter et al. 2011, Carey et al. 2012a, Freeman et al. 2020). G. echinulata is capable of 199 

forming surface scums and producing toxins (Karlsson-Elfgren et al. 2005, Carey et al. 2012a). 200 

Occurrence of G. echinulata surface scums in oligotrophic north temperate lakes has been 201 

increasing in recent decades (Carey et al. 2008, 2012a, Winter et al. 2011), motivating 202 

researchers to improve understanding and prediction of G. echinulata density in these 203 

ecosystems. While nutrients are often a driver of cyanobacterial growth in eutrophic lakes 204 
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(Dokulil and Teubner 2000), current understanding of dynamics in oligotrophic systems suggests 205 

that other environmental drivers may be important for determining G. echinulata densities 206 

(Roelofs and Oglesby 1970, Karlsson-Elfgren et al. 2004, Carey et al. 2014, Cyr 2017). 207 

 208 

Study site 209 

 We sampled G. echinulata surface abundance and collected environmental data weekly in 210 

May-October from 2009-2016 at two nearshore sites in Lake Sunapee, NH, USA, a recreational 211 

lake with high property values that also serves as a public drinking water supply (Fig. 2). Lake 212 

Sunapee is a large, oligotrophic lake (lat 43°24′N, long 72°2′W, max. depth = 33.7 m, surface 213 

area = 16.69 km2, volume = 1.94 × 10 m3, mean depth = 11.6 m, Lake Sunapee Protective 214 

Association (LSPA), unpublished data). High-nutrient (eutrophic) lakes can have total 215 

phosphorus (TP) concentrations ≥ 24 μg L-1 and total nitrogen (TN) concentrations ranging from 216 

~400-1600 μg L-1 (Carlson 1977, Carlson and Simpson 1996, Gibson et al. 2000). Mean TP 217 

concentration in the surface waters of Lake Sunapee between 2009-2016 was 6.3 ± 1.7 μg L-1 218 

(mean ± 1 S.D.), and mean Secchi depth was 6.6 ± 0.6 m (LSPA, unpub. data). Mean TN 219 

concentration from 2009-2012 at our study site was 172 ± 25 μg L-1 (Cottingham 2020). Lake 220 

Sunapee typically thermally stratifies from June-September with a mean thermocline depth of 7-221 

9 m from 2009-2016. The watershed (~107 km2 not including lake surface area) is 80% forested 222 

but shoreline development has been increasing in recent decades (Cobourn et al. 2018). 223 

Our research team began a weekly G. echinulata monitoring program at two sampling 224 

sites in collaboration with the Lake Sunapee Protective Association (LSPA) in 2005 (Carey et al. 225 

2008, 2014b). Our focal sampling site for this study (Site 1; Fig. 2) was chosen because it 226 

frequently exhibits high densities of G. echinulata. We used data from the second nearshore site 227 
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(Site 2) only to generate informed priors for G. echinulata observation error and nearshore water 228 

temperature and these data were not included in any hindcasting analyses. We focused our 229 

analyses on 2009-2016 for this study because those years had at least 20 weeks of sampling data 230 

(Cottingham et al. 2020a); however, during our eight-year study period there were six missing 231 

weekly G. echinulata observations, four of which occurred during the 2015-2016 hindcasting 232 

period. 233 

 234 

G. echinulata data collection and sample processing 235 

 G. echinulata surface abundance at both nearshore sites was sampled each week in the 236 

top 1 m of the water column by combining two vertical tows from 1 m to the surface using a 30 237 

cm diameter, 80 μm mesh plankton net (Wildlife Supply Co., Yulee, Florida). G. echinulata 238 

were transferred from the net and preserved in opaque plastic bottles using Lugol’s iodine (Carey 239 

et al. 2014). Total G. echinulata samples were counted using a Leica MZ12 dissecting 240 

microscope (Leica, Buffalo Grove, Illinois). Density was quantified according to the number of 241 

colonies and filament bundles (immature, developing colonies) per liter rather than biovolume 242 

following protocols used in previous studies of G. echinulata (Roelofs and Oglesby 1970, 243 

Barbiero and Welch 1992, Karlsson-Elfgren et al. 2005). We then converted abundance to 244 

density by dividing the total number of colonies and filament bundles in each sample by the 245 

volume of water sampled by the plankton net (Carey et al. 2014b). All data are publicly available 246 

through the Environmental Data Initiative repository (Cottingham et al. 2020a, 2020b, LSPA et 247 

al. 2020a, 2020b; Lofton et al. 2020). 248 

 249 

 250 
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Environmental driver data 251 

 To capture the effect of temperature on G. echinulata growth, water temperature was 252 

monitored hourly using Onset loggers at our nearshore sampling sites (Sites 1 and 2; Fig. 2; 253 

Cottingham et al. 2020b). Growing degree days (GDD), a measure of heat accumulation during 254 

the growing season, were calculated using these water temperatures for each day when G. 255 

echinulata was sampled. To investigate effects of thermal stratification on G. echinulata surface 256 

density, water temperature profiles from the Global Lake Ecological Observatory Network 257 

(GLEON) buoy, deployed in the lake by the LSPA since 2007 (Site 3), were used to calculate 258 

Schmidt stability, a measure of thermal stratification strength that indicates the amount of energy 259 

required to homogenize temperature across the water column (Idso 1973, LSPA et al. 2020b). To 260 

examine whether wind could drive nearshore aggregation of G. echinulata colonies, wind data 261 

from the LSPA/GLEON buoy (Site 3) were aggregated from minute and hourly scales, 262 

respectively, to calculate daily summary statistics (LSPA et al. 2020a). Solar radiation data from 263 

the North American Land Data Assimilation System Phase 2 (NLDAS-2) forcing dataset 264 

(https://ldas.gsfc.nasa.gov/nldas; Lofton et al. 2020) and photosynthetically active radiation 265 

(PAR) data from the LSPA/GLEON buoy (LSPA et al. 2020a) were similarly aggregated to 266 

determine whether light was an important predictor of G. echinulata density. Finally, we 267 

calculated summary statistics of daily precipitation data from the Parameter-elevation 268 

Relationships on Independent Slopes Model (PRISM) model (http://www.prism.oregonstate.edu; 269 

Lofton et al. 2020) to examine the effect of storm events and subsequent water column mixing 270 

on G. echinulata pelagic populations (see Text S1 for further information on environmental data 271 

processing).  272 

 273 
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Selection of environmental covariates for Bayesian models 274 

We performed a standardized selection process to determine which potential 275 

environmental drivers of G. echinulata density to include in Bayesian state-space models (Text 276 

S2). We examined associations between natural log-transformed G. echinulata density from 277 

2009-2014 (calibration period) and 82 summary statistics of candidate environmental covariates 278 

identified as potential drivers in previous studies (Roelofs and Oglesby 1970, Karlsson-Elfgren 279 

et al. 2004, Paerl and Huisman 2008, Hamilton et al. 2009, Carey et al. 2012b, 2014, Jennings et 280 

al. 2012, de Eyto et al. 2016, Kuha et al. 2016, Cyr 2017). We used Spearman correlations to 281 

prioritize inclusion in our Bayesian models (Text S2). The full list of covariate summary 282 

statistics is in Table S2. This approach identified eight drivers for further evaluation (Table 2): 283 

daily minimum water temperature on the sampling day (MinWaterTemp), daily minimum water 284 

temperature with a one-week lag (MinWaterTempLag), seven-day moving average of water 285 

temperature (WaterTempMA), weekly difference in median Schmidt stability (ΔSchmidt), daily 286 

maximum Schmidt stability with a one-week lag (SchmidtLag), daily mean of a wind direction 287 

indicator variable with a two-day lag (WindDir; see Text S1 for details on wind indicator 288 

variable calculation), growing degree days (GDD), and daily sum of precipitation (Precip). 289 

 290 

Development of Bayesian state-space models 291 

A suite of Bayesian state space models were fit to data collected from Site 1 and 292 

increased in complexity from a random walk with no covariates (intercept model) to models 293 

containing one or two of the eight prioritized driver variables (Fig. 3; Table 2). We calibrated 294 

each model over a 6-year period from 2009-2014, assessed model performance during a two-year 295 

hindcasting period of 2015-2016, and then conducted uncertainty partitioning. We investigated 296 
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whether sequential increases in model complexity translated to changes in the relative 297 

contributions of different uncertainty sources to total hindcast uncertainty, increases in skill of G. 298 

echinulata density hindcasts, or both (Fig. 3; Table 2).  299 

We assessed hindcast skill of the twelve models including environmental covariates 300 

compared to two baseline models: first, a model with a random walk process and an informed 301 

prior for observation error developed using data from Site 2 (RW model; Fig. 3; Text S3), and 302 

second, a linear autoregressive process model with a single lag (AR model; Fig. 3; Table 2). We 303 

also assessed a random walk model with a random year effect as a possible baseline model but 304 

determined during model calibration that the estimated year effect was not substantially different 305 

from 0 in any year (Table S3); as a result, we did not include a random year effect in subsequent 306 

models. We next incorporated a single environmental covariate into the linear AR(1) process 307 

model based on our environmental covariate selection process (MinWaterTemp, 308 

MinWaterTempLag, WaterTempMA, ΔSchmidt, SchmidtLag, WindDir, Precip, and GDD). The 309 

influence of GDD was visibly non-linear in our preliminary analyses (Fig. S1) and thus, a 310 

quadratic term was included in the model to evaluate GDD influence on G. echinulata growth.  311 

We subsequently developed two-covariate models based on the performance of the 312 

single-covariate models during the hindcasting validation period (Schmidt+Temp, 313 

Schmidt+Precip, Temp+Precip, Precip+GDD). Finally, following observations that model 314 

ensembles can provide more skilled predictions than a single model even when some ensemble 315 

members are low-performing (Johansson et al. 2019), we generated a simple, unweighted model 316 

ensemble to determine if it could out-perform our individual models (see Text S4 for model 317 

ensemble details). 318 

 319 
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Calibration using 2009-2014 data 320 

We calibrated each Bayesian state-space model to observed weekly data collected in 321 

2009-2014 using the R packages rjags and runjags (rjags v.4-8, runjags v. 2.0.4-2, Denwood 322 

and Plummer 2019, Plummer et al. 2019) in the R statistical environment (R version 4.0, R Core 323 

Development Team, 2020). Models were structured as an annual loop for 20 weeks per year, 324 

with each season extending from the last week in May to the first week in October. We natural 325 

log-transformed G. echinulata densities and standardized all covariates using Z-scores to 326 

facilitate model convergence. We ran three Markov chain Monte Carlo (MCMC) chains for each 327 

model, with an adaptation period of 5,000 iterations, a burn-in of 10,000 iterations, and a sample 328 

size of 50,000 iterations, which we thinned to 7,500 samples for hindcasting and model 329 

assessment. We evaluated convergence using the potential scale reduction factor of the Gelman-330 

Rubin statistic, sometimes referred to as �̂�, where a value approaching 1 indicates that the model 331 

has converged well on a parameter estimate both within and among MCMC chains (Table S4; 332 

Table S5). Missing data occurred for several of our candidate environmental drivers, so NA 333 

values were imputed using a missing data model with a Gaussian prior with mean and variance 334 

of observations from the same week across the calibration period (2009-2014). 335 

 336 

Hindcasting validation using 2015-2016 data 337 

 To validate our Bayesian state-space models, we conducted one-week-ahead and four-338 

week-ahead hindcasts of G. echinulata density in 2015-2016 using each of the fourteen models. 339 

We assimilated data by iteratively adding one week of data to our model input dataset and re-340 

running our Bayesian models in runjags to update parameter calibrations and initial conditions. 341 

The posterior output of each re-calibrated model was then used to produce hindcasts at one and 342 
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four weeks into the future. We hindcasted “future” driver data for each environmental covariate 343 

using data observations from 2009-2014 for the 2015 hindcasts and from 2009-2015 for the 2016 344 

hindcasts. These historical driver timeseries were resampled with replacement for each of the 345 

7,500 hindcast model iterations to account for week-to-week autocorrelation in driver data. As 346 

hindcasts were running, driver data from 2015-2016 were assimilated along with G. echinulata 347 

observations and thereby used to update posteriors throughout the hindcasting period. 348 

 Our primary criterion for hindcast model selection was based on predictive loss, 349 

calculated using the root mean square error (RMSE) of predictions and the variance of the 350 

predictive interval (defined in Table 1) via the following equation: 351 

Predictive loss =  √𝑅𝑀𝑆𝐸2 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 eqn. 1 352 

The model with the smallest predictive loss at a particular forecast horizon indicates the best-353 

performing model at that horizon (Gelfand and Ghosh 1998). We further compared models by 354 

subtracting the predictive loss of the best-performing model from the predictive loss of all other 355 

models to calculate change in predictive loss (ΔPL), with smaller ΔPL indicating better-356 

performing models. We also calculated the standard deviation of the predictive interval 357 

(predictive S.D.), the percent of observations falling within the 95% predictive interval 358 

(coverage), the mean difference between median predicted and observed values (bias), and the 359 

difference in weeks between when maximum G. echinulata density was observed during the 360 

hindcasting period and when each model predicted maximum G. echinulata density (peak 361 

timing; Table 3). 362 

 363 

 364 

 365 
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Uncertainty partitioning of 2015-2016 hindcasts 366 

 We conducted uncertainty partitioning of our 2015-2016 cyanobacterial density hindcasts 367 

using a one-at-a-time ahead approach, where all sources of uncertainty were initially held at 368 

fixed values and then sequentially added back into the hindcasts. For example, all model 369 

parameter values were initially set to the mean of the posterior distribution of the calibrated 370 

model for all 7,500 hindcasting iterations; then, when we wanted to add parameter uncertainty to 371 

our hindcasts, we allowed parameter values to be drawn from the full posterior distribution, 372 

resulting in a variety of possible parameter values and subsequent estimation of uncertainty in 373 

those parameters. We added sources of uncertainty to our hindcasts in the following order: initial 374 

condition uncertainty, parameter uncertainty, driver data uncertainty, and process uncertainty. 375 

The order of uncertainties is important to specify as different sources of uncertainty can interact 376 

with each other. We were then able to calculate the relative contribution of each uncertainty 377 

source to total hindcast variance based on the incremental increase in variance as each source of 378 

uncertainty was added. Not all models included all the potential sources of uncertainty (e.g., the 379 

random walk model does not have driver data uncertainty because it does not include any 380 

environmental covariates).  381 

Observation uncertainty is not included in our partitioning results because it does not 382 

propagate and therefore does not affect our uncertainty about the latent state of the system 383 

(Dietze 2017). However, to examine the relative importance of observation error in our study 384 

system, we assessed the estimated value of τobs, which is the precision (
1

𝑆.𝐷.2
) of the normal 385 

distribution used to fit G. echinulata latent states to G. echinulata observations in the data model 386 

component of our Bayesian state-space models (Fig. 1). We also examined the increase in 387 

variance between our 95% credible interval (CI) and our 95% predictive interval (PI; CI and PI 388 
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are defined in Table 1). 389 

All code used for data processing, model calibration and validation, uncertainty 390 

partitioning, and assessment of hindcast output are publicly available on the GLEON Github 391 

repository (https://github.com/GLEON/Bayes_forecast_WG/tree/eco_apps_release; 392 

DOI:10.5281/zenodo.3878781).  393 

 394 

 395 

III. Results 396 

Variability in G. echinulata abundance  397 

Median G. echinulata density during the entire study period from 2009-2016 was 0.25 ± 398 

8.2 colonies L-1 (median ± 1 S.D.; Fig. 4). During the model calibration period (2009-2014), G. 399 

echinulata density ranged from an annual maximum density of 1.2 colonies L-1 in 2012 to 81.6 400 

colonies L-1 in 2013. Notably, while the calibration years included two periods of high G. 401 

echinulata density with visible surface scums (42.1 colonies L-1 in August 2010 and 81.4 402 

colonies L-1 in September 2013), maximum density during the 2015-2016 hindcasting validation 403 

period was 14.1 colonies L-1 (Fig. 4). Temporal variability in environmental drivers of G. 404 

echinulata density included in state-space models is reported in Text S5 and Figures S2 – S9. 405 

 406 

Models of G. echinulata growth  407 

 G. echinulata growth was dependent on G. echinulata density at the previous timestep, as 408 

indicated by a converged coefficient value ranging from 0.63 to 0.76 ± 0.06 to 0.10 for the 409 

AR(1) term across models (Table S4). Parameter estimates from calibrated models indicated that 410 

G. echinulata growth was positively associated with increases in water temperature, high 411 
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Schmidt stability, and a higher daily proportion of wind blowing towards the focal nearshore site 412 

(see Table S4; Table S5 for model coefficient values). The coefficient on the quadratic term for 413 

growing degree days based on water temperature (GDD) converged at -0.59 ± 0.17 (Table S5), 414 

indicating that increases in GDD at high values (i.e., late in the sampling season) were associated 415 

with decreasing G. echinulata growth.  416 

 Some variables that seemed promising based on our covariate selection protocol had 417 

estimated model coefficients close to 0 in calibrated state-space models (Precip, ΔSchmidt), 418 

indicating a limited effect on G. echinulata growth. The daily sum of precipitation (Precip) and 419 

weekly difference in median Schmidt stability (ΔSchmidt) model coefficients did not differ from 420 

zero (Table S5). Model coefficient values did not substantially change when environmental 421 

covariates were combined in two-covariate models (Schmidt+Temp, Schmidt+Precip, 422 

Temp+Precip, Precip+GDD, Table S5). 423 

  424 

Environmental drivers no better than AR model at one-week-ahead hindcasts 425 

 All single and two-covariate models and the AR model had improved performance over 426 

the null RW model for one-week-ahead hindcasts based on predictive loss. Three models (AR, 427 

ΔSchmidt, and Precip) had a predictive loss of 2.25 ln(colonies L-1) and were also comparable in 428 

terms of RMSE, coverage, and bias (Table 3; Fig. 5; models not shown in Fig. 5 can be found in 429 

Fig. S10, S11). Other environmental covariates that had non-zero model coefficients (�̂� 430 

parameters; Table S5), such as the water temperature covariates, SchmidtLag, and WindDir, 431 

were not good predictors of G. echinulata densities at the one-week horizon (Table 3).   432 

No model correctly predicted the week or magnitude of peak G. echinulata density for 433 

the 2015-2016 hindcasting period (10 September 2015) at the one-week horizon; however, the 434 

ESSOAr | https://doi.org/10.1002/essoar.10510778.1 | CC_BY_4.0 | First posted online: Wed, 16 Mar 2022 10:58:07 | This content has not been peer reviewed. 



19 

best-performing AR model was able to predict when peak density occurred with only a one week 435 

lag after the observed peak (Table 3).  436 

 437 

Water temperature models more skilled than AR at four-week forecast horizon 438 

Models containing water temperature covariates out-performed the AR model at the four-439 

week horizon (Table 3; Fig. 6; models not shown in Fig. 6 may be found in Fig. S12, S13). The 440 

three best-performing models at the four-week horizon were MinWaterTempLag, 441 

WaterTempMA, and Schmidt+Temp, all with a predictive loss of 2.42 ln(colonies L-1). Other 442 

models containing water temperature covariates (MinWaterTemp, GDD, Temp+Precip, 443 

Precip+GDD) also performed relatively well at the four-week horizon, all with ΔPL = 0.01 444 

ln(colonies L-1). Models containing water temperature covariates tended to have lower bias and 445 

lower predictive S.D. than other models at the four-week horizon; however, the reduction in 446 

predictive S.D. corresponded to a loss in coverage (Table 3).  447 

Despite the improvement of water temperature models over the AR model, no examined 448 

model successfully predicted the timing of peak G. echinulata density at the four-week horizon, 449 

and all models missed the peak by 12 or 14 weeks. Given the structure of our models (seasonal 450 

for-loop), this means that models missed the 10 September 2015 peak altogether (Fig. 6).  451 

The unweighted model ensemble was not among the top-performing models at either the 452 

one-week or four-week forecast horizon, with a ΔPL of 0.05 ln(colonies L-1) at the one-week 453 

horizon and 0.09 ln(colonies L-1) at the four-week horizon (Table 3; Text S4). 454 

 455 

 456 

 457 
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Process uncertainty dominates hindcast credible intervals 458 

Process uncertainty represented the largest proportion of uncertainty in the credible 459 

interval for all models. The proportion of the variance attributed to process uncertainty increased 460 

with hindcast horizon, largely due to a reduction in initial conditions uncertainty (Fig. 7; models 461 

not shown in Fig. 7 can be found in Fig. S14). Neither increases in model structural complexity 462 

or differences in model covariates substantially decreased the proportional contribution of 463 

process uncertainty (Fig. 8). The mean contribution of process uncertainty across the hindcasting 464 

period ranged from 73% of hindcast uncertainty in the RW model to 81% in the 465 

MinWaterTempLag model for one-week-ahead hindcasts, and from 83% in the SchmidtLag 466 

model to 93% in the AR model for four-week-ahead hindcasts. However, the relative 467 

contribution of process uncertainty to total hindcast uncertainty did vary across the hindcasting 468 

period for individual models (mean, minimum, and maximum contributions of all uncertainty 469 

sources during 2015-2016 can be found in Tables S6-S7). Excluding the RW and AR models, 470 

whose credible intervals became almost completely comprised of process error as the forecast 471 

horizon progressed, process error was sometimes as low as 54% (ΔSchmidt, SchmidtLag, 472 

WindDir) or as high as 96% (ΔSchmidt, Precip) for one-week-ahead hindcasts, and as low as 473 

73% (SchmidtMaxLag) or as high as 95% (Precip) for four-week-ahead hindcasts. 474 

The second largest component of uncertainty in hindcasts was due to initial conditions 475 

estimation, although this source of uncertainty quickly declined to negligible levels by the four-476 

week-ahead forecast horizon for all models (Fig. 7; Fig. 8). Averaged across the hindcasting 477 

period, initial conditions uncertainty contributed from 13% (MinWaterTempLag; 478 

Schmidt+Temp) to 27% (RW) of the uncertainty for one-week-ahead hindcasts but comprised 479 

only from 1 % to 9% of total uncertainty for four-week ahead hindcasts. Initial conditions 480 
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uncertainty was largest (30-43% of total uncertainty) for one-week-ahead hindcasts following a 481 

week with a missing G. echinulata observation (Fig. S15a). 482 

Parameter and driver error had negligible contributions to total hindcast uncertainty for 483 

both one-week-ahead and four-week-ahead hindcasts (Fig. 7; Fig. 8; Fig. S14 and Tables in 484 

Supplemental Material). 485 

 486 

Observation uncertainty in 95% PI  487 

 Observation uncertainty was a substantial component of uncertainty for all models and 488 

τobs ranged from 1.72 to 1.89 ± 0.35 to 0.38 ln(colonies L-1)-2 across models. This corresponds to 489 

a standard deviation of ~0.75 ln(colonies L-1) or ~2.1 colonies L-1, which is large considering 490 

that median G. echinulata density during the hindcasting period was 0.56 ± 2.9 colonies L-1. 491 

These relatively large estimates of observation uncertainty contributed to an average increase of 492 

0.94 ln(colonies L-1) in the 95% predictive interval (PI) over the 95% credible interval (CI; mean 493 

range 4.88 ± 0.40 ln(colonies L-1)) across all models for one-week-ahead hindcasts (Fig. 5). The 494 

difference in PI was higher for the four-week-ahead hindcasts, with a 1.16 ln(colonies L-1) 495 

increase over the 95% CI (mean CI range 5.61 ± 1.11 ln(colonies L-1)) across all models (Fig. 6). 496 

Again considering the relatively low density of G. echinulata during our hindcasting period, 497 

these 95% PI – 95% CI range differences translate to a large contribution of observation 498 

uncertainty to predicted G. echinulata densities (95% PI – 95% CI range differences of 2.56 499 

colonies L-1 at the one-week horizon and 3.12 colonies L-1 at the four-week horizon).  500 

 501 

 502 

 503 
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IV. Discussion 504 

Understanding ecological systems to better forecast future events is a critical challenge 505 

for managing resources and public health. Use of standardized ecological forecasting approaches 506 

provides a much-needed framework for prioritizing research efforts to meet this challenge. While 507 

there are numerous hypotheses and studies linking environmental drivers to the G. echinulata 508 

surface scums that challenge water quality management in oligotrophic lakes (e.g., Roelofs and 509 

Oglesby 1970, Istv́anovics et al. 1993, Hyenstrand et al. 2000, Karlsson-Elfgren et al. 2005, 510 

Carey et al. 2014, Napiórkowska-Krzebietke and Hutorowicz 2015), few have fully evaluated the 511 

predictive influence of these environmental variables. We calibrated models to evaluate how 512 

well environmental variables that had previously been associated with cyanobacterial density 513 

explain changes in density over near-term timescales and evaluated each model for forecast skill. 514 

We demonstrate that significant explanatory variables in calibration or best-fit models are not 515 

necessarily effective driver variables in near-term ecological forecasts, and that driver variables 516 

that may adequately capture low densities may not successfully predict rare high-density events. 517 

The dominance of process and initial conditions uncertainty in our forecasts emphasizes that G. 518 

echinulata densities are likely a product of both growth and movement of colonies, that spatial 519 

and temporal misalignment of driver data and density observations are ongoing challenges in this 520 

forecasting system, and that imperfect observation of both G. echinulata density and 521 

environmental covariates substantially affect forecast skill. 522 

Of all the environmental covariates we examined, water temperature metrics were 523 

important in both calibration and hindcast models and may be a promising suite of drivers for 524 

predicting G. echinulata density. Both lagged and moving average measures of water 525 

temperature (MinWaterTempLag, WaterTempMA) were positively associated with changes in 526 
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G. echinulata density and more skilled than the baseline AR model in hindcasting G. echinulata 527 

density at the four-week horizon. This is consistent with studies demonstrating that 528 

cyanobacteria benefit from warmer temperatures (e.g., Paerl and Huisman 2008, Carey et al. 529 

2012b), that water temperature is a good predictor of cyanobacterial density (Rousso et al. 2020), 530 

and that antecedent conditions can affect cyanobacterial growth and phytoplankton community 531 

structure (Bormans et al. 2005, Madgwick et al. 2006). Our results further suggest that a 532 

minimum water temperature predictor (MinWaterTempLag) may be useful for forecasting G. 533 

echinulata density, which agrees with findings from a previous study examining predictors of 534 

Lyngbya majuscula blooms in an Australian bay (Hamilton et al. 2009). However, we were 535 

unable to identify any environmental covariates that improved G. echinulata density predictions 536 

over the AR model at the one-week horizon, suggesting that water temperature is likely not 537 

adequate to forecast cyanobacterial densities at this time scale.  538 

Process uncertainty dominated hindcast uncertainty across all models. Neither increases 539 

in model structural complexity nor differences in model covariates substantially decreased the 540 

proportional contribution of process uncertainty to forecast uncertainty. The predominance of 541 

process uncertainty, coupled with low parameter uncertainty (Fig. 8), indicates a substantial need 542 

for research to better understand how and why G. echinulata densities change. Some of the 543 

environmental covariates we explored may sufficiently explain weekly differences in frequently-544 

observed low densities but none of the models we calibrated had skill at forecasting peak 545 

abundances, which appeared and declined suddenly. In theory, it is possible that G. echinulata 546 

dynamics are dominated by stochasticity (e.g., Carpenter et al. 2020), in which case 547 

improvement to model structure would not effectively reduce process uncertainty. However, our 548 

results suggest that a process model more aligned with the biology of the focal cyanobacterium, 549 
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as well as more frequent sampling events, could be promising avenues for model development to 550 

reduce process uncertainty and improve forecast skill. 551 

The low-frequency surface scum events in Lake Sunapee likely result from the compound 552 

effects of cyanobacterial population growth in the water column, recruitment of dormant cells 553 

from the sediments, movement of colonies within the lake, and accumulation on the lake surface 554 

(Roelofs and Oglesby 1970, Karlsson-Elfgren et al. 2005, Carey et al. 2014, Cyr 2017). Each of 555 

these may be best predicted by different drivers at different temporal or spatial scales, and many 556 

more years of data are likely needed to identify significant predictors of these low-frequency, 557 

high-density cyanobacterial growth events. Absent the possibility of data-driven models to 558 

predict low-frequency events, more mechanistic process structure in the forecasting model is 559 

needed. Changes in the relative importance of driver and process uncertainty in our hindcasts 560 

may elucidate when during the season currently unaccounted-for ecological processes are 561 

important and how we could better align environmental driver and G. echinulata density 562 

sampling in future studies. For example, one of the best-performing models at the four-week 563 

horizon (MinWaterTempLag) exhibited low driver uncertainty but high process uncertainty 564 

during the last five weeks of the 2015 sampling season (Fig. S16). This suggests that G. 565 

echinulata were responding to variables other than water temperature and a careful examination 566 

of other environmental conditions during this period could illuminate additional ecological 567 

processes that should be included in forecasting models. Further, incorporating more mechanistic 568 

representations of explanatory variables that were significant during model calibration but not 569 

skilled at forecasting, such as wind direction and thermal stratification (SchmidtLag), might help 570 

constrain process uncertainty. Models including both temperature-dependent growth rate 571 

equations and a process representation of the effect of thermal stratification on surface scum 572 
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formation or of colony transport via wind-driven mixing (e.g., Wallace et al. 2000, Ndong et al. 573 

2017, Cyr 2017) might generate better forecasts. A more complex mechanistic model could also 574 

include additional life history stages of G. echinulata beyond vegetative growth in the water 575 

column. For example, it is well-documented that recruitment from the sediments to the pelagic 576 

zone is an important life stage for G. echinulata, potentially contributing 4-40% of the water 577 

column population each week (e.g., Barbiero and Welch 1992, Carey et al. 2014b). 578 

While the contribution of driver data uncertainty (accuracy of driver measurements and 579 

forecasts) to our hindcasts was small, spatial mismatches between driver data and response 580 

variable data may also contribute to process uncertainty. Thus, the inclusion of more nearshore 581 

site variables, rather than variables collected in the deep-water pelagic zone, might reduce 582 

process uncertainty by better characterizing the effect of environmental drivers on localized 583 

nearshore processes. For example, we did not consider nearshore nutrient concentrations. G. 584 

echinulata can both fix nitrogen and sequester excess phosphorus in the sediments before 585 

recruiting to the water column, thereby providing its own nutrients for pelagic growth (Barbiero 586 

and Welch 1992, Cottingham et al. 2015); moreover, our study lake has very low nitrogen and 587 

phosphorus concentrations. However, it is possible that nearshore nutrient concentrations could 588 

have an effect on G. echinulata growth. In addition, local site variables have been found 589 

important in driving benthic recruitment (Carey et al. 2014), so inclusion of more nearshore 590 

drivers could be a complementary approach to including benthic recruitment in models. 591 

Forecast skill in this system could also be improved by refining our estimates of initial 592 

conditions. In particular, both total hindcast variance and the proportional contribution of initial 593 

condition uncertainty exhibited large increases immediately after missing G. echinulata density 594 

observations, and this increase perpetuated through the four-week horizon (Fig. S11). This 595 
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suggests that increasing the spatial or temporal frequency of observations could improve forecast 596 

skill (e.g., Fox et al. 2018), as cyanobacterial densities can be spatially heterogeneous (Franks 597 

1997, Serizawa et al. 2008, Wynne and Stumpf 2015) and change quickly on short timescales 598 

(Dokulil and Teubner 2000, Huisman and Hulot 2005, Rolland et al. 2013). Because sampling 599 

and counting G. echinulata is labor-intensive, increasing observational frequency might 600 

necessitate assimilating other measures of cyanobacterial abundance into forecasts, such as 601 

fluorescence-based biomass measurements (e.g., Catherine et al. 2012) and spectrophotometric 602 

pigment analysis (e.g., Küpper et al. 2007, Thrane et al. 2015). Furthermore, as phytoplankton 603 

counts are notoriously variable (Rott et al. 2007, Vuorio et al. 2007), increased spatio-temporal 604 

sampling frequency and incorporation of measures of cyanobacterial abundance besides counts 605 

might constrain the high observation uncertainty in G. echinulata density data, thereby 606 

improving comparisons of models to data. However, before investing in costly increased in-situ 607 

monitoring, the potential benefit of increased sampling effort could be determined through 608 

simulated data experiments exploring how different sampling techniques and frequencies affect 609 

forecast precision (following Dietze 2017a). 610 

Our uncertainty partitioning results from oligotrophic lake cyanobacterial density 611 

hindcasts have some commonalities with other uncertainty partitioning efforts, contributing 612 

insight into the dominant sources of uncertainty across near-term forecasts in ecological systems. 613 

Our hindcasts were dominated by process uncertainty and emphasize the need for research to 614 

better understand the ecology of phytoplankton density changes in nutrient-poor systems. Similar 615 

results have been reported for ecological forecasts at decadal and multi-decadal timescales 616 

predicting variables ranging from forest biomass and productivity (Thomas et al. 2018) to 617 

vertebrate species distributions (Diniz-Filho et al. 2009, Watling et al. 2015). In addition, our 618 
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finding that initial conditions uncertainty is an important contributor to forecast uncertainty is 619 

consistent with terrestrial carbon forecasts at the annual scale (Fox et al. 2018) and lake 620 

chlorophyll-a forecasts at the weekly scale (Huang et al. 2013). However, several other aquatic 621 

and terrestrial forecasts that could leverage good process understanding found that driver data 622 

uncertainty dominated ecological forecasts (e.g., Mbogga et al. 2010, Dietze 2017b, Ouellet-623 

Proulx et al. 2017, Jiang et al. 2018, Thomas et al. 2020). Across ecosystems, a skillful process 624 

model and correspondingly low process uncertainty are likely prerequisites for other forms of 625 

uncertainty, such as driver data uncertainty, to dominate.  626 

Developing forecasts for low-frequency events, like cyanobacterial growth events, is 627 

especially challenging and uncertainty partitioning in these highly dynamic systems can help 628 

prioritize research to improve process understanding or increase sampling frequency in space or 629 

time. Standardized and formal uncertainty partitioning across studies and ecosystems could 630 

identify consistent or contrasting patterns in forecast skill at different horizons in ecosystems 631 

where low-frequency or rare events have significant consequences, such as cyanobacterial 632 

blooms (Kim et al. 2014) and insect (Hobbs et al. 2015) and disease outbreaks (Grünwald et al. 633 

2000). Overall, despite considering dozens of possible environmental covariates, our hindcasts 634 

were not skilled enough to predict the sudden, infrequent increases in cyanobacterial density that 635 

cause concern for water resource managers and other stakeholders in both oligotrophic and 636 

eutrophic lakes. However, formal uncertainty partitioning provided insight on how to target data 637 

collection and modeling efforts, following  Dietze et al. (2018). Even if our initial forecasting 638 

efforts are not very skilled, the process of iteratively confronting our models with data and 639 

quantitatively examining forecast uncertainty teaches us how to improve (Bauer et al. 2015). 640 

Access to data and standardized expectations for uncertainty partitioning are critical to the 641 
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iterative improvement of forecast skill. Our study was enabled both by collaborative sharing of 642 

long-term data through the Global Lake Ecological Observatory Network, which facilitated 643 

calibration and validation of hindcasting models over many years (Cottingham et al. 2020a, 644 

2020b, LSPA et al. 2020a, 2020b), and access to publicly available R code examples of how to 645 

conduct uncertainty partitioning (https://github.com/EcoForecast/EF_Activities). As such, our 646 

study illustrates the importance of open science and findable, accessible, interoperable, and 647 

reusable (FAIR) scientific practices with respect to data and code (Wilkinson et al. 2016, Powers 648 

and Hampton 2019) to reduce barriers to adoption of techniques such as uncertainty partitioning 649 

and advance the field of ecological forecasting. 650 

 651 
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Tables 1001 

Table 1: Terms associated with partitioning uncertainty in ecological models and forecasts. Definitions are adapted from Dietze 1002 

(2017a) unless otherwise specified. 1003 

Term Definition Example 

Credible interval Interval within which a parameter or model 

prediction falls with a specified probability; does 

not include observation uncertainty 

95% interval of possible latent values of chorophyll-a 

forecasted for tomorrow, incorporating initial conditions, 

process, parameter, and driver data uncertainty 

Driver data 

uncertainty 

Uncertainty arising from observation uncertainty 

in the estimate or measurement of driver data 

(environmental predictors of the forecasted state)  

Uncertainty in observations of soil temperature needed to 

drive a soil respiration model; uncertainty in weather 

forecasts  

Hindcast Predictions of a past time period with specified 

uncertainty using data (withheld from model 

calibration) that are iteratively assimilated into the 

model (Jolliffe and Stephenson 2003) 

Making model predictions for tick abundances observed 

two years ago using a model calibrated to observations 

from ten years prior.   

Initial conditions 

uncertainty 

Uncertainty associated with the starting conditions 

of a forecasting model run 

Uncertainty in initial focal states, such as fish abundance, 

chlorophyll-a, or soil carbon stock 

Observation 

uncertainty 

Difference between the observed data and the true 

(latent) state that the model is designed to predict; 

does not propagate forward, so it does not affect 

the credible interval. 

Calibration uncertainty in a temperature sensor; sampling 

uncertainty when estimating species abundance  

Parameter 

uncertainty 

Variance around the model parameter estimates Uncertainty in the growth rate parameter in a timber yield 

model  

Predictive interval Interval within which predicted observations are 

expected to fall with a specified probability; 

includes observation uncertainty; should be used 

when comparing models to observed data 

95% interval of possible observations of chorophyll-a 

forecasted for tomorrow  

Process uncertainty Uncertainty due to model specification (ecological 

processes that are simplified, absent, or incorrectly 

represented by the model) or inherent stochasticity 

in the system  

Uncertainty arising from not including an important life 

history stage in a population growth model; uncertainty 

arising from demographic stochasticity in plankton 

communities 

Random effects 

uncertainty 

Uncertainty associated with estimation of random 

effects, which are used to describe shared variance 

across groups in space and time 

Uncertainty in the value of a random site effect in a 

metacommunity model including many different 

sampling sites 
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Table 2: List of Bayesian state-space models and covariates. mt is the latent state of G. echinulata density at time t, N() represents a 1005 

normal distribution with mean and precision (τproc). x, x1 and x2 are environmental covariates in single-covariate and two-covariate 1006 

models. β represents parameters for the process model equations. 1007 
Model name   Model description Process model  Covariates  

RW  Random walk 𝑚𝑡+1 = 𝑁(𝑚𝑡, 𝜏𝑝𝑟𝑜𝑐)   

AR  Autoregressive with one 

lag (AR(1)) 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡), 𝜏𝑝𝑟𝑜𝑐)  

MinWaterTemp AR(1) with a single 

linear covariate  
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ 𝑥𝑡+1), 𝜏𝑝𝑟𝑜𝑐) minimum water temperature on sampling day 

MinWaterTempLag AR(1) with a single 

linear covariate  
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ 𝑥𝑡), 𝜏𝑝𝑟𝑜𝑐) minimum water temperature 1 week prior to 

the sampling day  

WaterTempMA AR(1) with a single 

linear covariate  
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ 𝑥𝑡), 𝜏𝑝𝑟𝑜𝑐) seven-day moving average of water 

temperature including the sampling day  

ΔSchmidt AR(1) with a single 

linear covariate 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ (𝑥𝑡+1 − 𝑥𝑡)), 𝜏𝑝𝑟𝑜𝑐) difference in median Schmidt stability 

between 1 week prior to the sampling day and 

the sampling day 

SchmidtLag AR(1) with a single 

linear covariate 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ 𝑥𝑡), 𝜏𝑝𝑟𝑜𝑐) maximum Schmidt stability 1 week prior to 

sthe sampling day 

WindDir AR(1) with a single 

linear covariate 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ 𝑥𝑡), 𝜏𝑝𝑟𝑜𝑐) proportion of daily wind measurements 

blowing towards Site 1 with a two-day lag  

Precip AR(1) with a single 

linear covariate 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 +  𝛽2 ∗ 𝑥𝑡), 𝜏𝑝𝑟𝑜𝑐) sum of daily precipitation on the sampling day 

GDD AR(1) with a single 

quadratic covariate 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 + 𝛽2 ∗ 𝑥𝑡 + 𝛽3 ∗ 𝑥𝑡

2), 𝜏𝑝𝑟𝑜𝑐) growing degree days 

Schmidt+Temp AR(1) with two linear 

covariates 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 + 𝛽2 ∗ 𝑥1𝑡 + 𝛽3 ∗ 𝑥2𝑡), 𝜏𝑝𝑟𝑜𝑐) difference in median Schmidt stability 

between 1 week prior the sampling day and 

the sampling day and seven-day moving 

average of water temperature including the 

sampling day 

Schmidt+Precip AR(1) with two linear 

covariates 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 + 𝛽2 ∗ 𝑥1𝑡 + 𝛽3 ∗ 𝑥2𝑡), 𝜏𝑝𝑟𝑜𝑐) difference in median Schmidt stability 

between the previous sampling day and the 

day of sampling and sum of daily 

precipitation on the sampling day 

Temp+Precip AR(1) with two linear 

covariates 
𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 + 𝛽2 ∗ 𝑥1𝑡 + 𝛽3 ∗ 𝑥2𝑡), 𝜏𝑝𝑟𝑜𝑐) seven-day moving average of water 

temperature including the sampling day and 

sum of daily precipitation on the sampling day 

Precip+GDD AR(1) with one linear 

and one quadratic 

covariate 

𝑚𝑡+1 = 𝑁 ((𝛽0 + 𝛽1 ∗ 𝑚𝑡 + 𝛽2 ∗ 𝑥1𝑡 + 𝛽3 ∗ 𝑥2𝑡                 

+ 𝛽4 ∗  𝑥2𝑡
2), 𝜏𝑝𝑟𝑜𝑐) 

sum of daily precipitation on the sampling day 

and growing degree days 
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Table 3: Hindcasting results across models for the 2015-2016 hindcasting period. RMSE = root mean square error; Predictive variance = 1009 

mean variance of the predictive interval; Predictive loss = √𝑅𝑀𝑆𝐸2 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒; Δ Predictive loss = the difference between 1010 

predictive loss for each model and the best-performing model for that forecast horizon; Coverage = the percent of observations falling 1011 

within the 95% predictive interval; Peak timing = the number of weeks between peak G. echinulata density during the hindcasting period 1012 

and when the model predicted peak density; Bias = mean difference between median predicted and observed values. Note that all 1013 

assessment metrics are conducted on log-transformed data except for mean bias. *best-performing models at either the one-week or four-1014 

week forecast horizon based on evaluation of Δ Predictive loss. 1015 

 1016 

 

RMSE 

natural log 

colonies L-1 

Predictive 

S.D. 

natural log 

colonies L-2 

Predictive 

loss 

natural log 

colonies L-2 

Δ Predictive 

loss (ΔPL) 

natural log 

colonies L-2 

Coverage 

% 

Peak timing 

weeks 

Bias 

colonies L-1 

Model name 1 wk 4 wk 1 wk 4 wk 1 wk 4 wk 1 wk 4 wk 1 wk 4 wk 1 wk 4 wk 1 wk 4 wk 

RW 1.89 2.23 1.63 2.98 2.5 3.72 0.25 1.3 97.2 100 1 14 -0.41 -0.96 

AR* 1.67 1.61 1.51 2.08 2.25 2.63 0 0.21 97.2 100 1 14 -0.92 -1.52 

MinWaterTemp 1.82 1.59 1.43 1.83 2.31 2.43 0.06 0.01 94.4 93.5 14 12 -0.93 -1.41 

MinWaterTempLag* 1.79 1.62 1.45 1.79 2.3 2.42 0.05 0 91.7 87.1 14 12 -1 -1.45 

WaterTempMA* 1.78 1.59 1.45 1.83 2.3 2.42 0.05 0 94.4 93.5 14 12 -0.95 -1.42 

Schmidt* 1.66 1.62 1.52 2.08 2.25 2.63 0 0.21 94.4 100 1 14 -0.91 -1.52 

SchmidtLag 1.75 1.58 1.46 2.04 2.28 2.58 0.03 0.16 97.2 100 14 14 -0.9 -1.41 

WindDir 1.78 1.55 1.5 2 2.33 2.53 0.08 0.11 94.4 100 1 14 -0.96 -1.51 

Precip* 1.66 1.62 1.52 2.09 2.25 2.64 0 0.22 94.4 100 1 14 -0.92 -1.51 

GDD 1.84 1.59 1.43 1.84 2.33 2.43 0.08 0.01 94.4 96.8 14 12 -1.08 -1.41 

Schmidt+Temp* 1.79 1.61 1.46 1.81 2.31 2.42 0.06 0 91.7 87.1 14 14 -0.97 -1.44 

Schmidt+Precip 1.66 1.62 1.53 2.08 2.26 2.64 0.01 0.22 97.2 100 1 14 -0.92 -1.52 

Temp+Precip 1.78 1.61 1.46 1.83 2.3 2.43 0.05 0.01 94.4 93.5 14 12 -0.96 -1.43 

Precip+GDD 1.81 1.59 1.44 1.84 2.31 2.43 0.06 0.01 97.2 96.8 14 14 -0.88 -1.31 

Ensemble 1.76 1.55 1.49 1.97 2.3 2.51 0.05 0.09 97.2 100 14 14 -0.96 -1.48 

 1017 

 1018 
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Figure legends 1019 

Figure 1: Conceptual figure of a Bayesian state-space model, where yt is the observed 1020 

cyanobacterial density at time t, xt are driver data (environmental covariates) at time t, mt is the 1021 

estimated true, or latent, cyanobacterial density at time t, β is a vector of parameters in the 1022 

process model (slope, intercept, etc.), and τproc and τobs are the precisions of normal distributions 1023 

representing process error and observation error, respectively. Parameters (rounded-edge 1024 

rectangle) are modeled as distributions in the parameter model. Parameters, along with driver 1025 

data, determine the predicted latent states (ovals; also modeled as a distributions) in the process 1026 

model, which are fitted to observations using the data model. 1027 

Figure 2: Map of Lake Sunapee, New Hampshire, USA with locator map (inset). Data from Site 1028 

1 were used for Bayesian state-space models, data from Site 2 were used to inform priors for Site 1029 

1 models, and data from Site 3 provided lake-level covariates for Site 1 models. 1030 

Figure 3: Model development workflow diagram. Model equations and descriptions of 1031 

covariates included in each model can be found in Table 2. 1032 

Figure 4: Timeseries of G. echinulata density at Site 1 in Lake Sunapee from 2009-2016 (a, c); 1033 

panels b) and d) show a reduced scale to better illustrate variability at low density. 1034 

Figure 5: Timeseries of median predicted and observed G. echinulata density for one-week-1035 

ahead hindcasts in 2015 for the best-performing models (b-g; Table 3), as well as the RW null 1036 

model (a). Similar figures for 2016 hindcasts and models not shown here may be in found in the 1037 

supplemental material (Fig. S10, S11).  1038 

Figure 6: Timeseries of median predicted and observed G. echinulata density for four-week-1039 

ahead hindcasts in 2015 for the best-performing models (b-g; Table 3), as well as the RW null 1040 

model (a). Similar figures for 2016 hindcasts and models not shown here may be in found in the 1041 
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supplemental material (Fig. S12, S13). Note the y-axis change between Figures 5 and 6 to 1042 

accommodate larger credible and predictive intervals at the four-week forecast horizon. 1043 

Figure 7: Uncertainty partitioning of the one-week-ahead to four-week-ahead credible interval 1044 

for hindcasts averaged across the 2015-2016 hindcasting period for the best-performing models 1045 

(b-g; Table 3), as well as the RW null model (a). Similar figures for other models may be found 1046 

in the supplemental material (Fig. S14).  1047 

Figure 8: Uncertainty partitioning for a) one-week-ahead and b) four-week-ahead hindcasts 1048 

averaged across the 2015-2016 hindcasting period across models. White triangles indicate a best-1049 

performing model at the respective forecast horizon as assessed by Δ Predictive loss (Table 3). 1050 
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Figures 1051 

Figure 1 1052 
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Figure 2 1066 
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Figure 3 1072 
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Figure 4 1082 
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Figure 5 1084 

 1085 

 1086 

 1087 

ESSOAr | https://doi.org/10.1002/essoar.10510778.1 | CC_BY_4.0 | First posted online: Wed, 16 Mar 2022 10:58:07 | This content has not been peer reviewed. 



54 

Figure 6 1088 
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Figure 7 1093 
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Figure 8 1097 
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