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Vegetation foliage clumping significantly alters the radiation environment and affects

vegetation growth as well as water, carbon cycles. The clumping index (CI) is useful in

ecological and meteorological models because it provides new structural information

in addition to the effective leaf area index. Previously generated CI maps using a

diverse set of Earth Observation multi-angle datasets across a wide range of scales

have all relied on the single approach of using the normalized difference hotspot and

darkspot (NDHD) method. We explore an alternative approach to estimate CI from space

using the unique observing configuration of the Deep Space Climate Observatory Earth

Polychromatic Imaging Camera (DSCOVR EPIC) and associated products at 10 km

resolution. The performance was evaluated with in situ measurements in five sites of

the Australian Terrestrial Ecosystem Research Network comprising a diverse range of

canopy structure from short and sparse to dense and tall forest. The DSCOVR EPIC

data can provide meaningful CI retrievals at the given spatial resolution. Independent but

comparable CI retrievals obtained with a completely different sensor and new approach

were encouraging for the general validity and compatibility of the foliage clumping

information retrievals from space. We also assessed the spatial representativeness of

the five TERN sites with respect to a particular point in time (field campaigns) for satellite

retrieval validation. Our results improve our understanding of product uncertainty both in

terms of the representativeness of the field data collected over the TERN sites and its

relationship to Earth Observation data at different spatial resolutions.
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INTRODUCTION

The clumping index (CI) quantifies the level of foliage
grouping within distinct canopy structures relative to a random
distribution (Nilson, 1971; Chen and Black, 1992). It provides
best agreement between transmittance through clumped canopy
and Beer’s exponential transmission law (Nilson, 1971; Kuusk,
2018). CI equals unity with leaves completely randomly
distributed. Canopy foliage is usually clumped into various sub-
canopy structures such as crowns, branches, and twigs, thus
clumping is defined as a situation where CI < 1. Regularly
distributed foliage results in CI greater than unity. Clumping
affects the interception and distribution of solar radiation within
a canopy (Chen et al., 2003, 2005; Hill et al., 2011; Wei et al.,
2019). In addition, the distribution of foliar nutrients and canopy
evapotranspiration (ET) were found to be significantly influenced
by CI (Thomas et al., 2011). Both ground and satellite ET
estimates are greatly underestimated if CI is not considered
(Chen et al., 2016). CI is also an important parameter for accurate
canopy-level gross primary production (GPP) modeling (Ryu
et al., 2011; Chen et al., 2012).

Global and regional scale CI maps have been generated
from a diverse set of Earth Observation multi-angle datasets:
POLarization and Directionality of the Earth’s Reflectances
(POLDER) data at ∼6 km resolution (Chen et al., 2005); the
Bidirectional Reflectance Distribution Function (BRDF) product
fromModerate Resolution Imaging Spectroradiometer (MODIS)
at 500m resolution (He et al., 2012; Wei and Fang, 2016;
Jiao et al., 2018), and Multi-angle Imaging SpectroRadiometer
(MISR) data at 275m resolution (Pisek et al., 2013).

All the products listed above share the common feature
of estimating CI through a single approach—its empirical
relationship with the normalized difference between the hotspot
and darkspot (NDHD) (Chen et al., 2005; Leblanc et al., 2005a):

CI = A · NDHD+ B (1)

where A and B are coefficients determined by the linear
regression, based on a set of model simulations made with the
4-Scale model in Chen et al. (2005). The coefficients vary with
assumed crown shape and solar zenith angle [see Table 2 in Chen
et al. (2005)]. The NDHD index is defined as:

NDHD =
HS− DS

HS+ DS
(2)

where HS and DS mark the canopy reflectance at the hotspot
and darkspot, respectively (Leblanc et al., 2001). The hotspot
corresponds to the backscatter peak when the solar radiation and
view directions coincide, leading to minimum shading in that
view direction. The darkspot exists in the direction opposite to
that of the hotspot, where the maximum shadow area can be seen
leading to minimum reflectance.

This brief research report explores a new, alternative approach
to NDHD how to estimate CI from Earth Observation data.
The approach exploits unique observation data and products
from a new satellite that is quite different from traditional polar-
orbiting or geostationary satellites. The Deep Space Climate

Observatory (DSCOVR) is a satellite positioned near the first
Lagrange point (or L1). It offers the continuous observations of
full, sunlit side of the Earth. The DSCOVR satellite carries on-
board a spectroradiometer—the Earth Polychromatic Imaging
Camera (EPIC). EPIC can provide spectral images of the entire
sunlit face of the Earth with 10 narrow channels (from 317
to 780 nm) (Marshak et al., 2018) every 1–2 h in summer and
winter, respectively.

The CI retrievals with DSCOVR/EPIC product data are
validated in this study using available in situ measurements
obtained with digital hemispherical photography (DHP), carried
over select sites belonging to the Australian Terrestrial Ecosystem
Research Network (TERN; Lowe et al., 2016) comprising a
diverse range of canopy structure from short and sparse to dense
and tall forest.

METHOD

DSCOVR EPIC Vegetation Earth System
Data Record (VESDR) Product
The DSCOVR EPIC version 1 Vegetation Earth System Data
Record (VESDR) provides Leaf Area Index (LAI) as well as
diurnal courses of Sunlit Leaf Area Index (SLAI), Normalized
Difference Vegetation Index (NDVI), Fraction of incident
Photosynthetically Active Radiation (FPAR) absorbed by the
vegetation and Directional Area Scattering Function (DASF).
The product at 10 km sinusoidal grid with 65–110min temporal
frequency is generated from the upstream DSCOVR EPIC L2
MAIAC surface reflectance product (Lyapustin et al., 2018). With
the exception of LAI, all VESDR parameters vary with the sun-
sensor geometry. The VESDR files also include Solar Zenith
Angle (SZA), Solar Azimuthal Angle (SAA), View Zenith (VZA),
and Azimuthal (VAA) angles at the same temporal and spatial
resolutions. A quality assessment variable (QA_VESDR) is also
provided. For this analysis, only the EPIC observations with best
quality flags (QA_VESDR = 0) were used for the CI retrieval.
It is noted that the DSCOVR EPIC VESDR product is currently
released at a provisional quality level. The EPIC level 2 VESDR
product and accompanying documentation are available from the
NASA Langley Atmospheric Science Data Center (https://asdc.
larc.nasa.gov/project/DSCOVR). The VESDR product data were
downloaded through NASA’s Open-source Project for a Network
Data Access Protocol (OPeNDAP; https://opendap.larc.nasa.gov/
opendap/).

Foliage Clumping Retrieval With DSCOVR
EPIC Data
Available DSCOVR/EPIC VESDR products of sunlit leaf area
index (SLAI) and leaf area index (LAI) allow to estimate sunlit
fraction of leaf area (Knyazikhin et al., 2017):

SF =
SLAI

LAI
. (3)

CI provides best agreement between directional uncollated
transmittance through clumped canopy, t0(θ), and Beer’s
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exponential transmission law, exp (−τ ), which is applicable for
completely randomly distributed leaves. Here

τ (θ) =
G(θ) · LAI · CI(θ)

cos θ
, (4)

where G is the geometry factor as a function of viewing direction
θ . We approximate SF based on Beer’s law (WarrenWilson, 1967,
Yang et al., 2017), i.e.,

SF =
1− exp (−τ )

τ
(5)

Using SF from Equation (3) allows us to solve Equation (5) for τ .
Finally, CI can be then estimated from Equation (4) as:

CI(θ) =
τ (θ) · cos θ

G(θ) · LAI
(6)

The geometry factor may not be always precisely known, but
G approaches a value of 0.5 around 57 degrees irrespective of
orientation of canopy elements (Ross, 1981; Jupp et al., 2009;
Woodgate et al., 2015). We adopt the G value of 0.5 in the
CI retrieval while using VESDR products collected with the
suitable sun-sensor geometry—observations with view zenith
angle around 57 degrees—as an input.

Study Sites and Data for Validation
Australia’s Terrestrial Ecosystem Research Network (TERN)
is a distributed research infrastructure providing intensive
monitoring of the physical and chemical environmental and
biological components of ecosystems (Karan et al., 2016). In-
situ measurements of CI at different heights using towers were
collected at five of the TERN’s SuperSites, which together offer a
diverse range of canopy structure from short and sparse to dense
and tall forest. Their locations and vegetation characteristics are
summarized in Table 1.

The Cumberland Plain flux station is located in a dry
sclerophyll forest in the Hawkesbury Valley in central New
SouthWales (site coordinates: 33.6152S, 150.7236E). The canopy
is dominated by Eucalyptus moluccana and Eucalyptus fibrosa,

which host an expanding population of mistletoe. Average
canopy height is 23m. The Wombat forest research site
(37.42S, 144.09E) is located in the Wombat State Forest,
Victoria, SE Australia. The site is a secondary regrowth Eucalypt
forest that was last harvested in 1980. Dominant tree species
are Messmate Stringybark (Eucalyptus obliqua), Narrow Leaf
Peppermint (Eucalyptus radiata) and Candlebark (Eucalyptus
rubida) with an average canopy height of 25m. The understory
consists mainly of patchy grasses. The second dry sclerophyll
site at Whroo (36.67 S, 145.03E) in Victoria, Australia is box
ironbark woodland with lower tree height and canopy cover.
The vegetation was dominated by two main Eucalypt species:
Gray Box (Eucalyptus microcarpa) and Yellow Gum (Eucalyptus
leucoxylon). The mean tree height at Whroo was 15.3 ±

0.2m. The Tumbarumba flux station is located in the Bago
State forest in south eastern New South Wales (35.6566S,
148.1517E). The forest is classified as wet sclerophyll, the
dominant species is Eucalyptus delegatensis, and average tree
height is 40m. The Bago State Forest is adjacent to the south
west slopes of southern New South Wales and the 48,400 ha
of native forest have been managed for wood production for
over 100 years. Warra Long Term Ecological Research (LTER)
site (43.09S, 146.66E; Neyland et al., 2000) is located in SW
Tasmania, Australia. It represented a tall E. obliqua wet forest
with rainforest understory and a dense man-fern (Dicksonia
antarctica) ground-layer. The forests around the Warra site
had mature heights in excess of 55 m: the tallest E. obliqua
within the LTER reaches a height of 90m. Both Tumbarumba
and Warra sites experienced bushfires in the last 2 years.
Our site descriptions, in situ validation data, as well as the
retrievals with DSCOVR EPIC data correspond to the pre-
fire period.

The vertical profiles of CI (i.e., Cl for all vegetation above the

given height) were obtained by climbing scaffolding/flux towers

and taking leveled digital hemispherical photos (DHPs) along the

climbed height. At each profile, usually several series of DHPs

were acquired using a Nikon CoolPix 4500 digital camera with a

Nikon FC-E8 fisheye lens under diffuse illumination conditions,

following the protocol of Zhang et al. (2005). No leaves were

TABLE 1 | Study site characteristics.

Site code Site name Lat (deg) Lon (deg) Forest type Overstory Tree

height (m)

LAI References In-situ data

collection

CBLP Cumberland plain −33.62 150.72 Remnant eucalypt

woodland

EMo, EF 23 1.20 Beringer et al., 2016 2019/2

TUMB Tumbarumba −35.66 148.15 Managed open wet

schlerophyll eucalyptus

forest

EDe, EDa 40 2.4 Keith et al., 2009 2019/2

VICD–Whroo Whroo −36.67 145.03 Box woodland EMi, EL 15.3 ± 0.2 1.0 Beringer et al., 2016 2013/7

VICD-Wombat Wombat −37.42 144.09 Open eucalypt woodland EO, ERa,

ERu

25 1.75 Haverd et al., 2013 2013/7

WRRA Warra −43.10 146.65 Tall wet eucalypt forest EO 55 5.84 Neyland et al., 2000 2013/8

In the column “Overstory” EMo, Eucalyptusmoluccana; EF, Eucalyptus fibrosa; EDe, Eucalyptus delegatensis; EDa, Eucalyptus dalrympleana; EMi, Eucalyptus microcarpa; EL, Eucalyptus

leucoxylona; EO, Eucalyptus obliqua; ERa, Eucalyptus radiata; ERu, Eucalyptus rubida.
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present directly above the camera to obscure its field of view.

The towers were masked from the photos before the analysis. The
reference DHPs were obtained above the top of the tree canopy.
Gap fraction profiles were extracted from the blue channel at
view zenith angle 57◦ with the DHP software (v4.5; Canada
Center for Remote Sensing, Ottawa, Canada). Various methods
exist to estimate CI (see Gonsamo and Pellikka, 2009; Woodgate

et al., 2015; Chianucci et al., 2019). The method of Leblanc

et al. (2005b) was previously shown to provide reliable clumping

estimates in both simulated and real canopies (Pisek et al., 2011;
Leblanc and Fournier, 2014; Woodgate et al., 2017; Yan et al.,
2019):

CICLX (θ) =
n ln[P (θ)]

∑n
k=1 ln [Pk (θ)] /CICCk(θ)

(7)

where CICLX(θ) is CI determined with the method of Leblanc
et al. (2005b), CICCk(θ) is the CI of segment k using the corrected

FIGURE 1 | Continued
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FIGURE 1 | (A–J) Shortwave BRF composites centered at TERN sudy sites. Variogram estimators (points), spherical model results (dotted curves), and sample

variances (solid straight lines) obtained over the sites with OLI subsets and spatial elements of 1, 6, and 10 km as a function of distance between observations.

Variogram legend explanations: a–variogram range; var–sample variance; c–variogram sill; c0–nugget variance.

Chen and Cihlar (1995) method by Leblanc (2002), Pk (θ) is the
gap fraction of segment k, n is the total number of segments
(segment size = 15◦), P (θ) is the mean gap fraction, and θ is the
view zenith angle. The segment size was set to 15◦ as it produced
the smallest error out of three segment sizes tested (15, 45, and
90◦) in the mimicked virtual Eucalypt stand by Woodgate et al.
(2017). Equation (7) is used to estimate CI at each climbed height.

Spatial Representativeness Assessment
An analysis of the surface heterogeneity representativeness
(Román et al., 2009; Wang et al., 2017) was used in this study
to determine whether direct “point-to-pixel” comparisons
were appropriate for all validation sites. The method employs
variograms calculated using surface albedos obtained using
shortwave near nadir surface reflectances (0.25–5.0 um)
generated from cloud free 30m Landsat/Operational Land
Imager (OLI) data (Román et al., 2009). To facilitate the 10 km
subset, the Landsat imagery was resampled to 90m spatial
resolution. The OLI data were collected as close to the sampling

date as possible. Where valid imagery was not available within
a reasonable window of the sampling date, imagery from the
corresponding season of a different year was used. As such, the
analysis was done to illustrate the representativeness of the tower
site with respect to a particular point in time.

When a measurement site is spatially representative, the
overall variability between the internal (1.0 km) components
(here Landsat pixel reflectances) of the measurement site and its
adjacent landscape corresponding to the satellite pixel footprint
should be similar in magnitude. The variogram estimator
(variance of the albedo values obtained from the resampled
90m spatial resolution Landsat imagery at the given distance)
usually levels off upon reaching the variogram range indicating
the distance where they are no longer spatially correlated
(e.g., Figure 1B, points). The site can be simply judged to
be spatially representative with respect to the given footprint
when the sill value (i.e., the ordinate value of the range at
which the variogram levels off to an asymptote) is <5.0e-04
(Román et al., 2009; Wang et al., 2017).
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RESULTS

The spatial representativeness was evaluated at three different
footprint sizes: 1, 6, and 10 km (Figure 1). All five sites may
be considered spatially representative at the smallest 1 km pixel
footprint around the time of in situ measurements, although the
variogram curve did not reach clear asymptote at Cumberland
Plain (Figure 1B). The spatial heterogeneity increased with the
footprint for all sites (here indicated with an increase in sill
value). Only two sites (Tumbarumba and Warra) preserved
the spatial representativeness all the way to the nominal pixel
resolution of 10 km for the DSCOVR EPIC VESDR product
(sill value < 5.0e-04).

The landscape heterogeneity within the DSCOVR EPIC
VESDR product pixel resolution also manifested itself in the
agreement with the in situ measured values of CI over the
different sites. Good agreement between the EPIC CI-derived
value and in situ measurements (i.e., EPIC CI retrievals
intersecting with the vertical profiles collected with DHP)
was observed over the most homogeneous sites, Tumbarumba
(Figure 2B) and Warra (Figure 2E). The EPIC CI values did
not show agreement with the vertical profiles of CI at Whroo
(Figure 2C) and Wombat (Figure 2D). The EPIC CI value was
found to intersect the range of CI variation with height at
Cumberland Plain site (Figure 2A).

DISCUSSION

This study explored the potential of using an alternative
approach, along with unique observations and products from the
Earth Polychromatic Imaging Camera (EPIC) onboard the Deep
Space Climate Observatory (DSCOVR) satellite, to estimate the
clumping index (CI).

First, it must be acknowledged that our measurements are
limited to single location (tower) and moment in time for a
vertical profile at each site. Any factors that cause an increase in
the variance of gap fraction (e.g., canopy type and size, density,
disturbances) would imply that a higher number of samples
is needed (Nilson et al., 2011). The relatively coarse nominal
resolution of the EPIC sensor at 10 km makes the product
validation with in situ data a particularly challenging exercise.
Out of five TERN sites with available in situ CI measurements
included in this study, only Tumbarumba and Warra may be
deemed to be spatially representative of the relatively coarse
EPIC nominal pixel footprint. It is encouraging that CI values
obtained with EPIC data provided good agreement with the
in situ measurements over these two sites (Figures 2B,E). It
shall be noted that the spatial representativeness approach used
in this study does not include land cover or vegetation type
information. Many modeling studies using flux tower data will
use classification layer and assess the various proportions of
classes to determine whether a site is representative. Using
Landsat OLI data and variograms as originally proposed by
Román et al. (2009) and applied in this study may provide more
detail and catch possible variation that may not be assessed
with the land cover or vegetation type based evaluation. It shall
be noted that our spatial representativeness evaluations may be

FIGURE 2 | Vertical profiles of foliage clumping from in-situ measurements

with ±1 standard deviation bars. (A) Cumberland Plain, (B) Tumbarumba,

(C) Whroo, (D) Wombat, and (E) Warra. Clumping index values from DSCOVR

EPIC data obtained around the same time of the year are marked with vertical

purple line (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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valid only for the indicated moments in time. Although all five
sites are classified as broadleaf evergreen vegetation dominated
by Eucalypts, they may still experience seasonal dynamics of
vegetation growth and decay (Duursma et al., 2016). The spatial
representativeness of individual sites may change accordingly
throughout seasons as well. Additionally, Tumbarumba and
Warra sites experienced intensive bushfires in 2019 and 2020,
which may have affected their current spatial representativeness
as well. We recommend that future studies would follow our
example and carry the spatial representativeness assessments
to match the moment in time when the in situ measurements
are collected.

The best agreement was usually not observed with the in
situ measurements acquired close to the ground (h =2m),
but rather with those taken at a distance higher up in the
canopy. Similar behavior was previously observed in case of
CI estimates obtained with other EO sensors as well (Pisek
et al., 2013, 2015), as satellite measurements respond primarily
to the structural effects in upper levels of canopies (Pisek
et al., 2015). This feature will be further exacerbated if the
observations are made under oblique angles (Biriukova et al.,
2020), like in our study. Ground measurements may be also
biased by any lower vegetation/understory layers that would
make the foliage distribution more random. Indeed there was
an understory layer present at Tumbarumba and Warra when
the in situ measurements were taken and the comparison with
DSCOVR EPIC data was done (i.e., pre-2019/2020 fire period).
Lower shrubs are also present around Cumberland Plain, another
site where the EPIC CI retrievals intersected with the vertical
profile of CI measured along the tower height (Figure 2A).
This agreement might be purely coincidental and treated with
caution, since the Cumberland Plain site was the least spatially
representative site at the EPIC nominal resolution. The actual
EPIC measurements used in this study may in fact come even
from an area twice as large due to the large oblique angles around
the hinge region (Delgado-Bonal et al., 2020). The two sites
from Victoria, Whroo and Wombat, were found to be spatially
non-representative at the EPIC nominal resolution. EPIC CI
estimates correspondingly did not match with the available in situ
measurements (Figures 2C,D), presumably because they did not
capture the variability within the greater area within the EPIC
pixel footprint. The general range of the in situ measured CI
reported in this study agreed with values reported from other
Eucalyptus-dominated sites in Australia (Macfarlane et al., 2007;
Woodgate et al., 2017).

Our exploratory study is very pertinent to the on-going efforts
to map and incorporate clumping information in ecosystem
modeling at different scales (Ryu et al., 2012; He et al., 2018).
It is very encouraging we showed it is possible to obtain such
good quality results using a different approach and different

EO data that are very much comparable to previous efforts of
mapping CI from space (Chen et al., 2005; Pisek et al., 2013;
Wei and Fang, 2016; Jiao et al., 2018). This general agreement
between different retrieval strategies and input data sources is
important for increasing overall confidence, justification, and
general validity of clumping information retrieval from space in
the future.

As a part of the analysis, we also assessed the spatial
representativeness of the five TERN forest ecosystem sites for
validation of satellite retrievals using a different approach and
extending the analysis all the way to the spatial resolution of EPIC
sensor compared to Griebel et al. (2020). Our results improve
our understanding of product uncertainty both in terms of the
representativeness of the field data collected over the TERN
sites and its relationship to Earth Observation data at different
spatial resolutions.
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