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A B S T R A C T   

Fractional Vegetation Cover (FVC) represents the planar fraction of the land-surface covered by green foliage, 
and its dynamics are important for an enhanced understanding of ecosystems especially how they respond to 
climate change. The lack of global near-real-time satellite-based products restricts the application of FVC in 
ecosystem modeling, climate change, and vegetation phenology studies. Earth Polychromatic Imaging Camera 
(EPIC) onboard Deep Space Climate Observatory (DSCOVR) spacecraft provides daily spectral reflectance of the 
entire sunlit Earth in the near Hotspot directions. Hotspot observations (i.e., observation in Hotspot direction 
which has the peak backscattering reflected radiation) with only sunlit vegetation and sunlit soil components are 
more suitable for FVC estimation with a two-endmember mixture model as such observations exclude contri-
butions from shaded vegetation and soil components. In this study, an algorithm for retrieving quasi-daily FVC 
from EPIC based on two-endmember mixture and gap fraction models is developed. Analyses of its performance 
predict that the average Root-Mean-Square Deviations (RMSDs) of retrievals in FVC units is below 0.050 when 
compared with reference values. The RMSD is 0.043 when compared to field-based Landsat reference FVC, which 
confirms lower retrieval uncertainty than FVC retrieved from Low-Earth-Orbit (LEO) satellite products such as 
MODIS, VIIRS, and GEOV2 with RMSDs 0.049– 0.087. The comparison analyses suggest a good consistency 
between EPIC FVC and FVC products from LEO and geostationary (GEO) satellites sensor, SEVIRI, with RMSD 
values less than 0.129. EPIC allows for quasi-daily FVC estimation across the global terrestrial surface at 10 km 
resolution, which is an important development for numerous biophysical applications.   

1. Introduction 

Biophysical variables such as Fractional Vegetation Cover (FVC), 
defined as the planar fraction of the land-surface covered by photo-
synthetically active foliage (Carlson and Sanchez-Azofeifa, 1999; Dear-
dorff, 1978; Lu et al., 2003; Ormsby et al., 1987; Sellers et al., 1996), are 
used to monitor vegetation dynamics. Accurate long-term high-fre-
quency (even near-real-time) monitoring of FVC at large scales is 
important to climate change, ecosystem models, vegetation phenology, 
and other related terrestrial studies (Crowther et al., 2015; Hansen et al., 

2013; Hirano et al., 2004; Richardson et al., 2013). Models related to the 
land-surface and climate usually require near-real-time datasets, and 
with regional or global coverage (CTOS, 2010; García-Haro et al., 2019). 
Foley et al. (1996) demonstrated that neglecting FVC dynamics could 
cause substantial biases in climate change simulations. Accurately 
monitoring vegetation phenology depends primarily on the temporal 
frequency of satellite products (Ahl et al., 2006; Houborg and McCabe, 
2018). Since rapid “green-up” may occur within 10 to 12 days for de-
ciduous broadleaf forests (DBF; Ahl et al., 2006) and the temporal trend 
of the start/end of the growing season generally ranged from 0.2–8.2 
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days per year (Jeong et al., 2011; Liu and Zhang, 2020; Zhang et al., 
2007) means using an 8- or 16-day composite product introduces errors 
when estimating the spring phenology signal (Ahl et al., 2006). Geo-
stationary (GEO) satellites enable more frequent monitoring of vegeta-
tion phenology when compared to Low-Earth-Orbit (LEO) satellites 
(Sobrino et al., 2013; Yan et al., 2016a), yet such GEO products only 
cover specific regions. Therefore, globally consistent high-frequency (e. 
g., quasi-daily) FVC estimation will benefit global climate-earth system 
models and terrestrial land-surface studies. 

Most global FVC products use LEO satellite remote sensing data at 
weekly to yearly temporal frequencies. Composite vegetation products 
from the Advanced Very High Resolution Radiometer (AVHRR), the 
Moderate-resolution Imaging Spectroradiometer (MODIS), the Visible 
Infrared Imaging Radiometer (VIIRS), and the Project for On-Board 
Autonomy-Vegetation (PROBA-V; product name: bioGEOphysical 
Vegetation product, GEOV) have temporal frequencies of 7 to 30 days 
(Baret et al., 2013; Ding and Zhu, 2018; Gutman and Ignatov, 1998; Jia 
et al., 2015; Myneni et al., 2015). Some regional FVC products, such as 
the GEO satellite Land Surface Analysis (LSA) FVC, have daily temporal 
frequencies (García-Haro et al., 2019). A global FVC product at a high 
temporal frequency (< 8 days) is still unavailable. 

Among FVC-estimation approaches for global production, the two- 
endmember linear mixture model (Eq. (1)) is one of the simplest, 
which scales Vegetation Index (VI) of pure vegetation (Vv) and bare soil 
(Vs) (Gutman and Ignatov, 1998; Jiapaer et al., 2011; Mu et al., 2018), 
as: 

FVC =
V − Vs

Vv − Vs
(1) 

V refers to any vegetation indices such as the Difference Vegetation 
Index (DVI), Normalized Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI), etc. Both Vv and Vs are VI values in ideal situ-
ations. Vv is the VI value when vegetation fully covered the pixel area, 
which is hard to obtain via direct observation in arid and semi-arid 
areas. While it is a challenge to directly observe Vs in some forests. 
However, the mixture model is very sensitive to the values of Vv and Vs 
(Donohue et al., 2014; Montandon and Small, 2008; Mu et al., 2021; Yan 
et al., 2021). Mu et al. (2018) improved the VI-based model by devel-
oping a Multi-angle VI method (MultiVI) to estimate Vv, Vs, and FVC. 
The MultiVI is easy to implement and is as accurate as other physical 
models and machine learning methods in FVC estimation (Jia et al., 
2015; Mu et al., 2018; Xiao et al., 2016). Additionally, numerous re-
searchers improved this mixture model by adding more endmembers 
(Zhang et al., 2019; Gao et al., 2020; Defries et al., 1999; Guan et al., 
2012). 

In 2015, the Earth Polychromatic Imaging Camera (EPIC) onboard 
Deep Space Climate ObserVatoRy (DSCOVR) was launched to the Sun- 
Earth Lagrangian (L1) point. EPIC measures reflected sunlight in near- 
backscattering directions with the scattering angle between 168.5◦

and 175.5◦ (Marshak et al., 2018; Wen et al., 2019). The spectral 
reflectivity of the vegetated surface exhibits a sharp increase when the 
scattering direction approaches the direction of the Sun, which is known 
as the Hotspot effect in optical remote sensing (Kuusk, 1991; Nilson, 
1991; Qin et al., 1996). EPIC provides images of the entire sunlit globe 
every 65– 110 min in 10 narrow spectral bands ranging from the ul-
traviolet to visible (4 bands) and near-infrared (NIR; 2 bands) at spatial 
resolutions of 10 km, resulting in multiple observations of each Earth’s 
pixel in backscattering directions under different Solar Zenith Angles 
(SZAs). The daily maximum number of images available for the entire 
sunlit Earth’s surface ranges from 13 (24 h × 60 min/h / 110 min) to 23 
(24 h × 60 min/h / 65 min) following the winter-summer Earth-Sun 
illumination cycle. This provides a daily multi-SZA Hotspot dataset. 

The Hotspot effect depends on both the reflective property of leaves 
and background as well as the illumination and observation geometry 
and spatial distributions of vegetation elements within the field of view 
of the sensor and therefore has potential for diagnosing canopy 

geometric structure (Hapke et al., 1996; Kuusk, 1991; Qin and Xiang, 
1994; Qin et al., 1996). Studies have proved that the observations in 
near Hotspot direction is highly correlated with vegetation structure 
parameters (Cerstl and Simmer, 1986; Jupp and Strahler, 1991; Kuusk, 
1985; Myneni and Kanemasu, 1988; Pisek et al., 2021; Qin and Xiang, 
1994; Verstraete et al., 1990; Yang et al., 2017) and are critical for 
monitoring phenological changes in dense vegetation such as equatorial 
forests (Gorkavyi et al., 2021; Ni et al., 2021; Sun et al., 2021). Shadows 
that occurred in non-Hotspot observations had different amounts of 
impact on the VIs, with all indices significantly differing between the 
shaded and sunlit areas. These differences have proved to affect vege-
tation estimation (Barnes et al., 2015; Jiang et al., 2019; Zhang et al., 
2015). Observations in the Hotspot direction, therefore, minimize the 
shadow impact (Hapke et al., 1996; Kuusk, 1991) and will allow for 
better FVC estimation. 

To obtain global high-frequency (i.e., quasi-daily herein) FVC by 
using the near Hotspot daily observations from EPIC, our objectives are:  

(i) developing a Multi-SZA HotSpot VI (MultiHSVI) based technique 
(which is primarily based on the MultiVI method) to estimate 
FVC;  

(ii) assessing uncertainties by analyses of FVC retrieved from a 
simulated EPIC dataset, and comparison between FVC derived 
from EPIC and field measurements; and.  

(iii) analyzing consistency between EPIC FVC and FVC from MODIS, 
VIIRS, GEOV, and LSA. 

2. Data and materials 

2.1. Hotspot dataset 

Our primary dataset is the version 1 EPIC Level 2 (L2) Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) product (10 km; 
65– 110 min; Lyapustin et al., 2021), which is atmospherically corrected 
spectral Bidirectional Reflectance Factor (BRF) in the near Hotspot di-
rections (https://asdc.larc.nasa.gov/project/DSCOVR/DSCOVR_EPIC_ 
L2_MAIAC_01; last accessed 12/November/2021). The original EPIC 
image is 2048 × 2048 pixels. All bands (except for the band centered on 
443 nm) have been downscaled and resampled to 1024 × 1024 pixels 
via a 2 × 2 moving window (Herman et al., 2018; Lyapustin et al., 2021; 
Marshak et al., 2018). By considering the effect of the optical point- 
spread function, the EPIC L2 product has a unified resolution of 10 
km. Since the effective resolution decreases as the secant of the angle 
between EPIC’s sub-Earth point and the normal to the Earth’s surface, 
the effective resolution doubles at a viewing angle of 60◦ (20 km; 
Marshak et al., 2018). This resampling step alleviates the difference of 
the observed areas from different angles to a certain extent (Widlowski 
et al., 2008; Widlowski et al., 2006). EPIC MAIAC surface BRF is pro-
duced using the normalized 10 km resolution images (Lyapustin et al., 
2021). The geometric positional accuracy has been verified by assessing 
the width of major rivers in Brazil and Egypt (Herman et al., 2018; 
Marshak et al., 2018). The radiometric resolution of EPIC data is 12 bits 
per pixel, which is the same as MODIS (Geogdzhayev and Marshak, 
2018). The radiometric calibration has been investigated between EPIC, 
MODIS, and VIIRS, and was shown to agree within 5% (Geogdzhayev 
and Marshak, 2018 their Table 2; Yu and Wu, 2016 their Table 3). 

Fig. 1 shows the daily numbers of global cloud-free observations per 
terrestrial pixel in EPIC L2 MAIAC images for 2016 according to the Day 
Of Year (DOY) and latitude, respectively. Here we used the SZA to group 
the cloud-free BRF. The threshold of 55◦ was used to determine the 
number of usable cloud-free BRF in a day as for SZA larger than this the 
reflectance values are usually unstable (Marshak, 2020; Marshak and 
Ward, 2018). On average there were up to 6 cloud-free daily BRF values 
per pixel during winter in 2016 which increased to 10 during summer 
(Fig. 1(a)). According to Fig. 1(b), cloud-free BRF with small SZA (i.e., 
SZA < 45◦) appears between 65◦ north latitude (65◦N) and 65◦ south 
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latitude (65◦S), and usable cloud-free BRF appears (i.e., SZA ≤ 55◦) 
between 77◦N and 77◦S. The ocean pixels are removed in Fig. 1, which is 
why there is no cloud-free BRF near 60◦S in Fig. 1(b). 

The surface BRF product (Lyapustin et al., 2021) are available at 6 of 
the 10 narrow spectral bands centered at: (i) 340 nm (band-width (BW) 
3.0 nm); (ii) 388 nm (BW 3.0 nm); (iii) 443 nm (BW 3.0 nm); (iv) 551 nm 
(BW 3.0 nm); (v) 680 nm (BW 2.0 nm); and (vi) 779.5 nm (BW 2.0 nm). 
EPIC began measurements in June 2015. We use BRF data in the red 
(680 nm) and NIR (779.5 nm) bands in 2016 (i.e., the first complete 
calendar year of EPIC data). 

2.2. Simulated EPIC dataset 

The three-dimensional (3D) radiative transfer (RT) simulation 
framework, LESS (large-scale remote sensing data and image simulation 
framework over heterogeneous 3D scenes; http://lessrt.org/; last 
accessed 12/November/2021), was used to generate a simulated data-
set. Qi et al. (2019) showed that LESS is faster and has similar or even 
better accuracy than other 3D RT models. Herein, both Hotspot reflec-
tance in red (680 nm) and NIR (779.5 nm) bands as well as Red-Green- 
Blue (RGB) orthogonal projection images for three scenes (100 m × 100 
m) were simulated. The three scenes are: (i) homogeneous scene (HOM; 
Fig. S1 (a) and Table S1); (ii) heterogeneous scene with spherical crowns 
(HET1; Fig. S1 (b) and Table S1); and (iii) heterogeneous scene with 
spherical and cylinder-shaped crowns (HET2; Fig. S1 (c) and Table S1). 
Nine Leaf Area Index (LAI) levels (i.e., 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 5.5 
and 6.0) were used to represent a range of vegetation coverage condi-
tions. Uniform and spherical Leaf Angle Distributions (LADs) were 
simulated. The two groups of soil reflectance were selected to represent 
dark and bright underground; Soil 1 and 2 in Table S2 represent high 
and low soil reflectivity, respectively. Full details are provided in Sup-
plementary Material (Sec. S1). 

2.3. Reference dataset 

Field measurements of FVC were made at 26 plots for the primary 
vegetation types at Saihanba, in northern China (Fig. 2; Table S4) using 
digital camera photography (Mu et al., 2015). The plot size was 45 m ×
45 m to represent a Landsat pixel. The digital images were processed to 
obtain field-measured FVC by using an automatic and shadow-resistant 
algorithm (SHAR-LABFVC) with an uncertainty of less than 0.025 (Song 
et al., 2015). 

Landsat 8 Operational Land Imager (OLI) atmospherically corrected 
surface reflectance data (30 m; 16 days; https://www.usgs.gov/ 
land-resources/nli/landsat/; last accessed 12/November/2021; Ver-
mote et al., 2016) was obtained to generate reference FVC for validation 

in 10 km spatial resolution, following a generic four-step up-scaling 
approach (McVicar et al., 1996a; McVicar et al., 1996b; Mu et al., 2015). 
Firstly, NDVI was calculated based on the Landsat surface reflectance. 
Secondly, an empirical transfer function (Eq. (2) was used herein) was 
established to convert NDVI into FVC. In Eq. (2), a, b, and k are con-
version coefficients that are dependent on land type and growth date. 
We obtained the conversion coefficients using the field-measured FVC at 
26 vegetation plots and a desert plot (a plot with very low vegetation 
coverage; Table S4) as well as the Landsat NDVI spatially and temporally 
close to the field measurements. Thirdly, Eq. (2) was applied to the 
whole Landsat NDVI images at the Saihanba area in 2016 to estimate the 
30 m field-based Landsat FVC images. Fourthly, the 30 m FVC located in 
the same 10 km EPIC pixel area were arithmetically averaged to obtain 
the 10 km field-based Landsat reference FVC (Fig. 3). 

FVC = (a∙NDVI + b)k (2)  

2.4. Similar satellite-based products 

To analyze the utility of our method, four other satellite vegetation 

Fig. 1. The number of daily cloud-free land-surface BRFs in EPIC images per terrestrial pixel for 2016. Part (a) shows the global average numbers according to Day Of 
Year, and (b) presents the averaged numbers according to latitude, where the positive value means north latitude and the negative value means south latitude. 
Numbers are broken down into BRF with the SZA (i) above 55◦ (grey); (ii) between 45◦ and 55◦ (dark blue); and (iii) below 45◦ (light blue). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Land cover types in the Saihanba area (50 km × 60 km) from 500 m 
MODIS land cover type product (MCD12Q1 from Collection 6) in 2016. Land 
cover type 3 for the MODIS-derived Leaf Area Index (LAI) and Fraction of 
Photosynthetically Active Radiation (FPAR) scheme (Friedl et al., 2010) is used 
herein. Red stars locate the 26 FVC field-sites. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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products (Table 1) were compared, being: (i) MODIS LAI suite 
(MCD15A2H; Myneni et al., 2015) and MODIS Clumping Index (CI) data 
(He et al., 2012); (ii) VIIRS Green Vegetation Fraction (GVF; Ding and 
Zhu, 2018; Vargas et al., 2013); (iii) second version of GEOV (GEOV2) 
FVC from PROBA-V (Verger et al., 2014ab); and (iv) LSA FVC from 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the 
GEO Meteosat Second Generation (MSG) platform (García-Haro et al., 
2019). 

We chose three 10◦ by 10◦ regions as study areas. The Mississippi 
region (centered on 35◦0′E, 91◦4′W) in the southern USA was selected as 
it exhibited a rich diversity of vegetation types (Fig. 4) having a good- 
quality EPIC data in 2016. Study regions (Fig. 5) in central Africa 
(centered on 5◦0′N, 25◦0′E) and southern Africa (centered on 25◦0′S, 
27◦34′E) were located in the center of SEVIRI coverage provided 
different vegetation types (i.e., shrubs and evergreen broadleaf forests 
(EBF)) to those found in the Mississippi region (i.e., grass/cereal crops, 
broadleaf crops, savannas, and DBF). 

3. Theory and methodology 

3.1. Hotspot observations 

The signal received by the satellite sensor can be modeled as a 
composite of reflected light from vegetation, background, and their 
shadows within the field of view. Thus, it can be presented as a linear 
combination of four components and their areal proportions (Li and 
Strahler, 1985; Li and Strahler, 1992; Strahler and Jupp, 1990; Wood-
cock et al., 1997). 

S = KCC+KgG+KtT +KzZ (3) 

In Eq. (3), S is the signal of a pixel, Kc, Kg, Kt, and Kz represent the 
areal proportions of sunlit vegetation, sunlit background, shaded vege-
tation, and shaded background with C, G, T, and Z being the spectral 
signatures of the respective components. However, in Hotspot obser-
vations, there is no shaded vegetation and shaded background in the 
field of view. Thus, Eq. (3) can be simplified as the combination of the 
remaining two components. 

S = KCC+KgG (4) 

The VI-based two-endmember mixture model is commonly used in 
FVC estimation (Donohue et al., 2014; Ding and Zhu, 2018; Gao et al., 
2020; Gutman and Ignatov, 1998; Zeng et al., 2000). It assumes that a 
pixel is a mixture of only vegetation and background (Gutman and 
Ignatov, 1998), yet the VI values are considerably influenced by 
shadows (Barnes et al., 2015; Jiang et al., 2019; Zhang et al., 2015). 
Noting that shadows appear relatively darker in red band images than 
NIR band images as vegetation generally absorbs red light and scatters 
NIR light (Barnes et al., 2015; Jiang et al., 2019; Zhang et al., 2015). 
Therefore, using the Hotspot observations is expected to improve the 
accuracy of FVC estimation using the two-endmember mixture model. 

Fig. 3. Field-based Landsat reference FVC at 10 km spatial resolution in the 
Saihanba area on 31 July 2016. The white colour in this image represents non- 
estimated value. The data are shown in the same sinusoidal projection as the 
EPIC data. The average standard deviation of 30 m field-based Landsat refer-
ence FVC in each 10 km resolution EPIC pixel is 0.126. 

Table 1 
Satellite-based vegetation products used to compare with EPIC FVC. All data links were last accessed on 12/November/2021.  

Project/ 
Satellite 
sensor 

Product Resolution Algorithm (FVC 
estimation; Noise 
reduction) 

Validation & 
Uncertainty 

Reference Data link 

MODIS 1) MCD15A2H 
(LAI) 
2) CI 

1) 500 m; 
8 days 
2) 500 m; 
1 year 

Gap fraction model; 
8-day composition 

1) RMSD =
0.6; 
bias = ±1 
2) R2 = 0.76 

Myneni et al., 2015 
He et al., 2012 

https://modis.gsfc.nasa.gov/data/dataprod/mod15. 
php 
https://daac.ornl.gov/VEGETATION/guides/Global_ 
Clumping_Index.html 

VIIRS Green Vegetation 
Fraction (GVF) 

4 km; 1 day VI-based two-endmember 
linear mixture model; 
A daily rolling 15-week 
Gorry filter 

RMSD =
0.116 

Ding and Zhu, 2018 https://viirsland.gsfc.nasa.gov/Products/NOAA 
/GVF.html 

GEOV2 FVC ≈1 km; 
10 days 

Neural network method; 
2– 4 months’ Savitzky- 
Golay filter 

RMSD =
0.14 

Verger et al. 2014a; 
Verger et al., 2014b 

https://land.copernicus.eu/global/products/fcover 

LSA FVC 3.1 km; 1 
day 

Stochastic spectral 
mixture model; 
A recursive scheme using 
a 20-day composite 
window 

RMSD =
0.17 

García-Haro et al., 
2019 

https://navigator.eumetsat.int/product/EO:EUM: 
DAT:MSG:FVC-SEVIRI?query=&filter=satellite__ 
MSG&filter=themes__Land&results=40&s=extended  

Fig. 4. Land cover map from MODIS (MCD12Q1) for 2016 over the 10◦ by 10◦

Mississippi region. 
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3.2. MultiHSVI FVC estimation method 

MultiHSVI, developed herein, takes advantage of Hotspot observa-
tions to better estimate FVC. It is developed for estimating Vv and Vs 
values, which in turn, are used to estimate FVC based on the VI-based 
two-endmember mixture model (Eq. (1)). Herein, we use the two-band 
EVI (EVI2; Jiang et al., 2008) as an example for FVC estimation, as it 
has a stronger correlation with vegetation biophysical parameters (e.g., 
FVC, LAI) than NDVI (Houborg et al., 2007; Morcillo-Pallarés et al., 

2019; Xiao et al., 2004) and avoids the uncertainty of using the blue 
band to calculate EVI (Huete, 1988). 

MultiHSVI produced global quasi-daily FVC using the Hotspot 
dataset from EPIC in two steps: (i) retrieving Vv and Vs of EVI2 and (ii) 
FVC estimation. Fig. 6 is the flowchart to estimate EPIC FVC by 
MultiHSVI. 

3.2.1. Retrieving Vv and Vs of EVI2 
The Vv and Vs retrieval procedure combines the EVI2-based two- 

endmember non-linear mixture model (Choudhury et al., 1994; Gitel-
son, 2004, 2013; Gitelson et al., 2002) 

f (θ) =
(

V(θ) − Vs

Vv − Vs

)
n (5)  

and the gap fraction model (Nilson, 1971) 

p(θ) = e− G(θ)∙Ω(θ)∙LAI/cosθ (6) 

Here f(θ) is the directional vegetation cover, which describes the 
vegetation coverage at View Zenith Angle (VZA) θ. f(θ) and FVC are 
identical when θ equals zero. V(θ) denotes EVI2 for VZA as θ. n is the 
nonlinearity coefficient, which is used to fit the slight nonlinear V(θ) and 
f(θ) relationship. This nonlinear relationship usually appears in very 
dense vegetation when multiple scattering effects are substantial and the 
saturation problem occurs (Choudhury et al., 1994; Gitelson, 2004, 
2013; Gitelson et al., 2002). G is the geometry factor that is related to 
LAD (Goel and Strebel, 1984; Wang et al., 2007). The directional 
vegetation cover f(θ) equals “1 − p(θ)”. Therefore, Eqs. (5) and (6) can 
be combined as 

1 −
(

V(θ) − Vs

Vv − Vs

)
n = e− G(θ)∙Ω(θ)∙LAI/cosθ (7) 

Then, the EVI2 in different VZAs is used to estimate Vv, Vs, and n. 
EVI2 (V(θ1), V(θ2), V(θ3), ……, V(θi), V(θj), ……, V(θx)) at a pixel is 
sorted according to VZA (θ1 < θ2 < θ3…… < θi < θj……θx). Every two 
adjacent sets of observations (both angularly and temporally) are 
grouped as a pair. Eq. (7) can be reorganized with a pair of observations 
(denoted as θi and θj herein) as:   

G(θ) and Ω(θ) in Eq. (8) are often assumed as constant for satellite- 

Fig. 5. Land cover maps from MCD12Q1 for 2016 over (a) central Africa and 
(b) southern Africa regions. 

Fig. 6. Processing flowchart to generate EPIC FVC, with VZA denoting the View Zenith Angle. Vv and Vs denote the EVI2 of fully-covered vegetation and bare soil, 
respectively. 
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based vegetation studies (Chen et al., 1999; He et al., 2012; Mu et al., 
2018; Roujean et al., 1992; Song et al., 2017; Wanner et al., 1995), 
especially for VZA around 57.5◦ (Mu et al., 2018; Weiss et al., 2004). 
Moreover, the angular variation of cosθ is relatively larger than the 
angular variation of G(θ)•Ω(θ) at large VZA (Section 5.1 and S3). 
Therefore, G(θ)•Ω(θ) can be assumed as an unknown constant when 
estimating Vv, Vs, and n with observations at VZA larger than 45◦ herein 
(Fig. 6). This means that e− G(θi)∙Ω(θi)∙LAI approximates e− G(θj)∙Ω(θj)∙LAI. Eq. 
(8) can be rewritten as below: 
(

1 −

(
V(θi) − Vs

Vv − Vs

)
n
)

cosθi =

(

1 −

(
V
(
θj
)
− Vs

Vv − Vs

)
n

)

cosθj (9) 

Eq. (9) only relates to V(θ) and parameters Vv, Vs, and n for a single 
pixel. Vv, Vs, and n can be obtained with at least three pairs of angular 
observations. 

3.2.2. FVC estimation 
The FVC estimation procedure is based on the EVI2-based two-end-

member mixture model (Eq. (1)). In Eq. (1), Vv and Vs have been esti-
mated in Section 3.2.1, and the VI of the pixel should be the EVI2 at a 
VZA of zero. Herein, EVI2 with small VZA (i.e., VZA < 45◦) at each pixel 
are arithmetically averaged and used for the estimation of FVC as only a 
few pixels were observed at nadir for the EPIC sensor. Then, FVC can be 
calculated as Eq. (10) 

FVC =
V(θsmall) − Vs

Vv − Vs
(10)  

where, V(θsmall) is the averaged EVI2 with small VZA (θsmall). The un-
certainty of zenith angle variation in FVC estimation is discussed in Sec. 
5.2.3. 

3.3. Implementation based on EPIC data 

MultiHSVI was applied to the EPIC MAIAC surface multi-SZA Hot-
spot BRF product. In this product, VZA is close to SZA as the EPIC sensor 
observes the Earth essentially in the Hotspot direction. Thus, the SZA 
from EPIC MAIAC BRF product was used for Vv, Vs, and FVC production 
herein. 

During Vv and Vs production, Hotspot EVI2 over all 2016 was used to 
provide sufficient observations, as these two parameters are mainly 
determined by vegetation type and soil type, respectively (Ding et al., 
2016 their Fig. 4; Montandon and Small, 2008 their Table 1; Zeng et al., 
2000 their Table 1). To provide parsimonious model parameterization, 
which was based primarily on EPIC data, other influences such as intra- 
year vegetation changes (e.g., crops) and soil moisture changes were not 
considered. The abnormal Hotspot EVI2 values (e.g., ≤ 0.01) were 
excluded, which means observations influenced by snow, ice, water, and 
other noises are excluded. Hotspot EVI2 with an SZA greater than 55◦

was also removed to avoid the instability due to very large SZA 
(Marshak, 2020; Marshak and Ward, 2018). The boundary values of Vv 
and Vs were optimized based on the statistics of EVI2 from EPIC and 
global soil spectral libraries (Clark et al., 1992; Garrity and Bindraban, 
2004). 

To avoid the error caused by the non-uniform distribution of SZA, we 

added a four-step equation selection procedure for retrieving Vv and Vs. 
Firstly, all the Hotspot EVI2 pairs for each pixel mentioned in Section 
3.2.1 are sorted based on their maximum values (i.e., according to the 
larger EVI2 value in each pair). Secondly, the EVI2 pairs were divided 
into groups of large EVI2 and low EVI2. Thirdly, four pairs of EVI2 
uniformly distributed (i.e., at the top of each quartile of the accumula-
tive histogram) in each group were selected to estimate Vv and Vs based 
on Eq. (9). Fourthly, Vv estimated from the group of larger EVI2 values 
was set as the Vv at this pixel (as higher EVI2 values are closer to Vv) and 
Vs estimated from the group of lower Hotspot EVI2 values was set as the 
Vs at this pixel (as lower EVI2 values are closer to Vs). 

FVC was estimated for the pixels that have at least one cloud-free 
BRF (the number of globally averaged daily cloud-free BRF is pro-
vided in Fig. 1). FVC estimates beyond the physically plausible 0 to 1 
range were set to 0 and 1 (as appropriate) during production. A corre-
sponding quality file recorded which estimates were beyond the physi-
cally plausible range and which estimates were from observations with 
large SZA (45◦ ≤ SZA ≤ 55◦; Fig. 6 and dark blue in Fig. 1). 

4. Evaluation results 

4.1. FVC results analysis using simulated EPIC dataset 

Fig. 7 presents the evaluation of MultiHSVI using data simulated in 
Section 2.2 and Sec. S1. Each data point represents the FVC obtained 
from one scene. We implemented the newly developed MultiHSVI, the 
original MultiVI, and the traditional gap fraction model method, 
respectively. Here, the Normalized Difference between Hotspot and 
Darkspot (NDHD) index calculated from the simulated dataset was used 
to estimate CI in the gap fraction model, which was used to characterize 
the heterogeneity of vegetation (Chen et al., 2005). LAI needed in the 
gap fraction model and the reference FVC (Table S3) were obtained from 
the simulated scenes. EVI2 with LAI values from 0.5 to 6.0 representing 
a range of vegetation conditions (i.e., FVC: 0.1– 1.0) were simulated. 

According to Fig. 7(a), FVC estimated by MultiHSVI has lower un-
certainty than the original MultiVI and the traditional gap fraction 
model method. In these simulated scenes, the R2 between MultiHSVI 
FVC and the reference as well as MultiVI FVC and the reference are all 
greater than 0.970, while the R2 between gap fraction model retrieved 
FVC and the reference is 0.877. The p-value in the significance t-test with 
a confidence level equal to 90% is less than 0.001. Meanwhile, the FVC 
estimated by MultiHSVI and MultiVI have less uncertainty (i.e., a 
smaller RMSD) than the FVC estimated by the gap fraction model. The 
RMSDs for MultiHSVI and MultiVI are 0.046 and 0.070, respectively, 
while for the gap fraction model, it is 0.125 (Fig. 7(a)). The error could 
come from LAI and/or CI. 

Additionally, MultiHSVI has lower uncertainty than MultiVI and gap 
fraction model method under different vegetation conditions. Fig. 7(b) 
~ (d) show the FVC estimation comparison for a range of vegetation 
conditions. Sparse vegetation conditions (i.e., LAI = 0.5, 1.0, 1.5; FVC <
0.5 for most simulations) represents arid and semi-arid regions where 
vegetation coverage is always sparse. Medium vegetation conditions (i. 
e., LAI = 2.0, 3.0, 4.0; 0.3 < FVC < 0.8 for most simulations) represents 
the growing period of vegetation such as crops and deciduous forests. 
Dense vegetation conditions (i.e., LAI = 5.0, 5.5, 6.0; FVC > 0.7) 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(

1 −

(
V(θi) − Vs

Vv − Vs

)
n
)

cosθi = e− G(θi)∙Ω(θi)∙LAI

(

1 −

(
V
(
θj
)
− Vs

Vv − Vs

)
n

)

cosθj = e− G(θj)∙Ω
(
θj
)
∙LAI (8)   
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represents areas such as the tropical humid region where vegetation is 
always dense. The RMSDs for MultiHSVI under sparse (0.030) and me-
dium (0.034) vegetation conditions are all below 0.050. While the 
RMSD under dense vegetation conditions is 0.051 due to NIR band 
saturation, which highly affects EVI2. However, for MultiVI, there is a 
relatively large uncertainty (as quantified by RMSD) compared with 
MultiHSVI for all three vegetation conditions with RMSDs from 0.054 to 
0.089 for MultiVI yet being only 0.030 to 0.051 for MultiHSVI (Fig. 7(b) 
~ (d)). The gap fraction model method has lower uncertainty in dense 
vegetation conditions (RMSD = 0.060) than sparse (RMSD = 0.164) to 
medium (RMSD = 0.129) vegetation conditions. However, it has higher 
uncertainties than MultiHSVI over all three vegetation conditions. 
Therefore, we conclude that the MultiHSVI method is an improvement 
over the MultiVI method, as it introduced a lower uncertainty of around 
0.050 in FVC units when analyzed with this simulated dataset. Addi-
tionally, both MultiHSVI and MultiVI methods are independent of 
vegetation structure parameters such as LAI and CI and yield lower 
uncertainty than the gap fraction model. 

4.2. Comparison with the field-based Landsat FVC 

Comparisons between EPIC FVC and FVC from MODIS, VIIRS, and 
GEOV2 products with the field-based Landsat reference FVC (Fig. 3) are 
shown in Fig. 8. The field-based Landsat FVC on 31 July 2016 was used 
as most field-measurements (Table S4) were implemented between 29 
July and 3 August. The temporal information of EPIC, MODIS, VIIRS and 
GEOV2 is listed in Table 2. 

According to Fig. 8, EPIC FVC estimated by MultiHSVI has lower 
uncertainty than MODIS, VIIRS, and GEOV2 FVC (Table 1). EPIC FVC 
agrees well with the reference FVC with an R2 of 0.725 (p-value 

Fig. 7. Analysis of FVC estimation using simulated EPIC dataset based on the LESS model. Comparison of retrieved FVC versus the reference for (a) all vegetation 
conditions (i.e., LAI from 0.5 to 6.0), (b) sparse vegetation conditions (i.e., LAI = 0.5, 1.0, 1.5), (c) medium vegetation conditions (i.e., LAI = 2.0, 3.0, 4.0), and (d) 
dense vegetation conditions (i.e., LAI = 5.0, 5.5, 6.0). 

Fig. 8. Comparison of retrieved FVC from EPIC, MODIS, VIIRS, and GEOV2 
with field-based Landsat reference FVC over the Saihanba area. 
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<0.001), an RMSD of 0.043, and a bias of 0.012. FVC from MODIS 
(RMSD = 0.049) and VIIRS (RMSD = 0.050) have the similar uncer-
tainty and the biases are 0.028 and 0.024, respectively. Because VIIRS 
was designed to be “the successor” to MODIS, they are onboard similar 
satellites (having a similar observation mode concerning the timing of 
data acquisition and orbital parameters) and have similar spectral 
bands. The RMSD between GEOV2 FVC and the reference FVC is 0.087, 
which is worse than that reported for the other three FVC products in 
this comparison. However, GEOV2 FVC has greater correlation with the 
reference FVC with an R2 of 0.907 (p-value <0.001). According to Fig. 8, 
GEOV2 overestimates FVC in dense vegetation areas (FVC > 0.7; bias =
0.073). This concords with Verger et al.’s (2014a) conclusion that 
GEOV2 FVC has a tendency to overestimate cropland measurements, 
mainly for medium to high FVC values (i.e., 0.3– 1.0). This over-
estimation is likely due to the fixed rescaling factor used in GEOV2 FVC 
production (Baret et al., 2013; Verger et al., 2014a). Thus, we concluded 
that MultiHSVI has advantages when applied to EPIC data. Note that the 
uncertainties in field-based Landsat reference FVC values will also affect 
these FVC comparison results. 

4.3. Comparison of FVC from MODIS, VIIRS, GEOV2, and LSA 

The comparisons between EPIC FVC and FVC from MODIS, VIIRS, 
GEOV2, and LSA were made in the Mississippi region (Fig. 4) and the 
two African regions (Fig. 5; noting that LSA data do not cover the Mis-
sissippi region). Detailed spatial and temporal information of each 
product is listed in Table 3. 

4.3.1. Comparison of spatial pattern 
The per-pixel comparisons of FVC from EPIC, MODIS, VIIRS, and 

GEOV2 were conducted over the Mississippi region (Fig. 9 and S2) 
which is more heterogeneous than the Saihanba area used in Section 4.2 
and the central and southern Africa regions, where LSA FVC estimates 
were additionally used in the comparison (Figs. 10, S3, and S4). Here the 
central Africa and southern Africa regions in Fig. 5 were combined for 
statistics. According to Fig. 9(a) ~ (c) and 10(a) ~ (d), the differences 
(RMSD) between EPIC FVC and FVC from MODIS, VIIRS, GEOV2, and 
LSA are less than 0.129, which is consistent with the reported uncer-
tainty of these products (Table 1). The overall correlation between EPIC 
FVC and the FVC from the other 4 products are over 0.758 (R2); the 
correlations over the Africa regions are higher than Mississippi since its 

land cover is relatively homogenous. This means that EPIC FVC can 
capture the spatial variation of vegetation over a wide range of regions 
(Fig. 9(a) ~ (c) and 10(a) ~ (d)). 

The differences among FVC from MODIS, VIIRS, GEOV2, and LSA are 
relatively higher. The overall correlation (R2) and difference (RMSD) 
among EPIC, MODIS, VIIRS, GEOV2, and LSA are around 0.758– 0.951 
and 0.066– 0.151, respectively (Figs. 9 and 10). These differences are 
influenced by both land cover type and the FVC estimation method. The 
difference between MODIS and VIIRS FVC over the Mississippi region 
(RMSD = 0.151) is the largest of all comparison results, while the RMSD 
is only 0.100 over the two African regions. Considering that MODIS and 
VIIRS FVC have the most consistency over Saihanba areas (Fig. 8), this 
difference could be explained by the land covers. LSA FVC has been 
reported to have a good consistency with GEOV1 FVC (Camacho et al., 
2018) which is also consistent with GEOV2 FVC (Baret and Weiss, 
2019). According to Fig. 10(j), the R2 between GEOV2 and LSA is 0.945 
with an RMSD of 0.079 and a bias of 0.037. The relative relations be-
tween EPIC FVC and FVC from GEOV2 and LSA are similar (Fig. 10(c) 
and (d)). The artificial truncation along the right-hand edge of the data 
cloud of MODIS (at 0.9 FVC) and LSA (at 0.97 FVC) in Fig. 10(a) and (d), 
respectively, is caused by saturation in the MODIS LAI and LSA FVC 
products. This artificial truncation issue is seen elsewhere (e.g., Fig. 11 
(e) and Fig. S6(b)). 

4.3.2. Comparison of land cover types 
Since the uncertainty of FVC products can be land-cover-type- 

dependent, the performances of five FVC products for six major land 
cover types were analyzed, i.e., (i) grass/cereal crops (e.g., rice and 
wheat); (ii) shrubs; (iii) broadleaf crops (e.g., soybean and cotton); (iv) 
savannas; (v) EBF; and (vi) DBF. The land cover type information was 
derived from MCD12Q1 for 2016. Herein, the majority class of the 500 
m resolution MODIS pixels contained in a 10 km EPIC pixel are used to 
define the class of each EPIC pixel. The per-pixel comparisons between 
EPIC and MODIS, and between EPIC and GEOV2 over different land 
cover types are shown in Figs. 11 and 12, with EPIC-VIIRS and EPIC-LSA 
provided in Figs. S5 and S6, respectively. 

Fig. 11 shows that EPIC FVC is lower than MODIS FVC over broadleaf 
crops areas and agrees well with MODIS FVC over grass/cereal crops 
when MODIS LAI has good accuracy (Yan et al., 2016b their Table 3). As 
for the uncertainty of MODIS FVC from LAI and CI products, it is re-
ported that MODIS LAI has good accuracy over grass/cereal crops areas 
(Yan et al., 2016b their Table 3) and usually underestimates both cereal 
and broadleaf crops LAI (Fang et al., 2019 their Fig. 11). According to 
Fig. 11(a), the difference (RMSD) between EPIC and MODIS FVC is 
0.087 with a bias of 0.018 for grass/cereal crops, which is the smallest 
bias among all land cover types. However, EPIC FVC is higher than 
MODIS FVC over broadleaf crops areas (Fig. 11(c)). Therefore, EPIC FVC 
should have good accuracy over grass/cereal crops areas and lower 
uncertainty than MODIS FVC over broadleaf crops. The EBF areas have 
dense vegetation, and saturation problems are often encountered when 
using remote sensing to estimate LAI/FVC in this area. 

According to Fig. 12(c), (e), and (f), EPIC FVC agrees well with 
GEOV2 FVC for the broadleaf crops but is lower than GEOV2 for EBF and 
DBF where GEOV2 usually overestimated FVC (Pérez et al., 2019 their 
Fig. 46 and Annex III; Verger et al., 2014a their Table 1 and Fig. 11). 
GEOV2 FVC has an uncertainty of around 0.1 over grass, crops, and 
forest areas (Camacho et al., 2013 their Fig. 19; Pérez et al., 2019 their 
Fig. 46 and Annex III). In addition, it has good accuracy for the crops, yet 
overestimates FVC for EBF and DBF with high FVC (Pérez et al., 2019; 
Verger et al., 2014a). Therefore, the difference between EPIC and 
GEOV2 FVC over grass/cereal crops (RMSD = 0.083, bias = 0.005) re-
veals that EPIC should have good accuracy over grass/cereal crops. The 
biases between EPIC and GEOV2 FVC over EBF (RMSD = 0.180, bias =
− 0.165) and DBF (RMSD = 0.089, bias = − 0.029) are negative, 
meaning that the EPIC FVC estimate is lower than that from GEOV2 for 
these two land cover types. 

Table 2 
Temporal information of the EPIC, MODIS, VIIRS, and GEOV2 FVC products 
during 2016.  

Project / Satellite sensor Target time Temporal composition period 

EPIC 31 July 23 July to 7 August 
MODIS 31 July 27 July to 11 August 
VIIRS 31 July 25 July to 6 August 
GEOV2 31 July 1 June to 30 September  

Table 3 
Spatial and temporal information of the FVC from EPIC, MODIS, VIIRS, GEOV2, 
and LSA during 2016.  

Project /Satellite 
sensor 

Spatial 
coverage 

Target 
date 

Temporal composite 
period 

EPIC Mississippi 
Africa 

10 June 
30 April 

1 to 16 June 
22 April to 9 May 

MODIS Mississippi 
Africa 

10 June 
30 April 

9 to 16 June 
30 April to 7 May 

VIIRS Mississippi 
Africa 

10 June 
30 April 

4 to 16 June 
24 April to 6 May 

GEOV2 Mississippi 
Africa 

10 June 
30 April 

1 March to 30 June 
11 April to 10 August 

LSA Africa 30 April Not mentioned by the 
producer  
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4.3.3. Comparison of time series 
Comparison of FVC time-series from EPIC, MODIS, VIIRS, GEOV2, 

and LSA over the Mississippi (Fig. 13(a)) and southern Africa (Fig. 13 

(b)) regions were conducted over 2016. The five products show similar 
FVC temporal dynamics. The seasonality differences of the north and 
south hemispheres are obvious in Fig. 13, as are the much higher peak 

Fig. 9. Per-pixel comparison for FVC from EPIC, MODIS, VIIRS, and GEOV2 at 10 km resolution over the Mississippi region on or containing 10 June 2016. Red lines 
on each plot represent the 1:1 line and the colors of the data cloud represent the density of data ranging from yellow (highest) to blue (lowest). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Per-pixel comparison for FVC from EPIC, MODIS, VIIRS, GEOV2, and LSA at 10 km resolution over the two Africa regions on or containing 30 April 2016. 
Red lines on each plot represent the 1:1 line and the colors of the data cloud represent the density of data ranging from yellow (highest) to blue (lowest). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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FVC values experienced across the Mississippi region when compared to 
the southern Africa region. 

EPIC FVC has more fluctuations than others due to the missing data 
caused by the cloud. The FVC estimates from VIIRS, GEOV2, and LSA are 
smoother than those based on MODIS and EPIC. This is because VIIRS, 
GEOV2, and LSA have been smoothed to remove atmospheric contam-
ination observations and to fill gaps (Tables 1 and 2). Herein, no 
smoothing filter or composite window was applied to EPIC FVC. In 
Fig. 13(a), FVC has a substantial decrease around DOY 225, which is 
captured by both quasi-daily EPIC and 8-day composite MODIS FVC 
estimates. This rapid FVC decrease is observed using VIIRS with an 

approximate 10-day delay mainly due to the daily rolling and 15-week 
smoothing schemes (Table 1). GEOV2 doesn’t capture this signature. 

In Fig. 13(b), EPIC FVC is lower than VIIRS FVC when FVC is low. 
Research has revealed that both VIIRS FVC (Ding and Zhu, 2018 their 
Fig. 17) and GEOV2 FVC (Pérez et al., 2019 their Fig. 46 and Annex III) 
overestimate FVC when it is low (i.e., FVC < 0.3) when compared with 
field-based results. In Fig. 13(a), EPIC FVC is substantially lower than 
VIIRS and GEOV2 before DOY 100 when vegetation coverage is sparse. 
In Fig. 13(b), EPIC FVC is lower than VIIRS FVC and GEOV2 FVC after 
DOY 200. This means that EPIC FVC reduced the severity of the over-
estimation problem compared to VIIRS and GEOV2 FVC when FVC is 

Fig. 11. Per-pixel comparison between EPIC FVC and MODIS FVC retrievals of six major land cover types in the Mississippi region and the two Africa regions. Data in 
(a), (c), (d), and (f) are from the Mississippi region. Data in (b) and (e) are from the southern and central Africa regions, respectively. The red line on each plot is the 
1:1 line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Per-pixel comparison between EPIC FVC and GEOV2 FVC. The same as Fig. 11 except that EPIC retrievals are compared with GEOV2 retrievals.  
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low. In the southern Africa region (Fig. 13(b)) which is mainly covered 
by grass/cereal crops and shrubs (Fig. 5(b)), EPIC has the most consis-
tency in terms of FVC magnitude with LSA. 

4.4. Global pattern of EPIC FVC 

Global Vv and Vs images were produced in this study (Fig. 14). A 
simple linear spatial interpolation method was used to fill in the gaps 
due to data quality. Table 4 presents the global average and standard 
deviation of Vv and Vs for each land cover type. Broadleaf crops, sa-
vannas, and forests (i.e., EBF, DBF, evergreen needleleaf forests (ENF), 
and deciduous needleleaf forests (DNF)) have higher Vv than grass/ 
cereal crops and shrubs with relatively less standard deviation. The Vv 
differences among different land cover types are mainly due to the dif-
ferences in vegetation optical properties and structures. Considering 
that both broadleaf crops and forests usually have very dense vegetation 
coverage conditions and global averaged LAIs are all greater than 2.0 
(Yan et al., 2016b their Table 3), this explains the similarity of Vv for 
broadleaf crops and forests. Although savannas exhibit a smaller global 

averaged LAI (1.46) than broadleaf crops and forests, it is still greater 
than grass/cereal crops (1.32) and shrubs (0.21; Yan et al., 2016b their 
Table 3), which results in that the global averaged Vv for savannas being 
greater than Vv for grass/cereal crops and shrubs, and less than the Vv for 
broadleaf crops and forests. The standard deviations of Vs are higher 
than the corresponding standard deviations of Vv for all land cover types 
(Table 4) as the soil type varies spatially and soil moisture varies spatial- 
temporally within each vegetation type affecting the background 
reflectivity (Idso et al., 1975). 

Every 3 months global maximum FVC from EPIC is presented in 
Fig. 15. The Amazon Forest, Congo Forest, and forest in Southeast Asia 
are all located in the equatorial area and are mainly covered by EBF with 
high FVC values in the whole year. The maximum FVC value is over 0.9 
in the 3rd season (July ~ September; Fig. 15(c)). While the east of China, 
east of North America, and Europe are located in the subtropical and 
temperate zone in the northern hemisphere, where most vegetation is 
grass/cereal crops, broadleaf crops, savannas, or DBF. FVC values for 
these areas in the 2nd (April ~ June; Fig. 15(b)) and 3rd (July ~ 
September; Fig. 15(c)) seasons are substantially higher than others 
(Fig. 15(a) and (d)). The maximum appears in the 3rd season in the 
boreal summer. 

5. Discussion 

5.1. The angle issues in MultiHSVI 

The key parameters for the two-endmember model, Vv and Vs, are 
both assumed to have a weak dependence on VZA herein. Vv is defined as 
the vegetation index for a homogenous, fully-covered vegetated pixel. 
Due to the saturation problem of BRF in NIR bands, the variation range 
of EVI2 decreased with increasing LAI. Studies have shown that the 
yearly averaged EVI, which is highly consistent with EVI2 (Jiang et al., 
2008), over the nearly homogenous and fully-covered Amazon Forest is 
about 0.55 and the seasonal variation is about 0.06 (de Moura et al., 

Fig. 13. The time series of daily (366 products/per year) EPIC, VIIRS, and LSA FVC and low-frequency MODIS (8-day; 45 products/per year) and GEOV2 (10-day; 36 
products/per year) FVC in 2016. After being smoothed using a 30-day Savitzky-Golay filter, the quasi-daily EPIC FVC is shown as the black curve denoted as “EPIC- 
filter” in the legend. (a) and (b) are the Mississippi region and southern Africa region, respectively. 

Fig. 14. Global distribution of (a) Vv and (b) Vs in 2016. The blue colour in these images represents the ocean and white is for filled value. The data are shown in the 
same sinusoidal projection as the EPIC data are provided. Note while (a) and (b) use the same colour range they are scaled differently. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Land cover-based information of global Vv and Vs estimation. The mean values 
and standard deviations (Std) are listed. The numbers in parentheses are the 
number of 10 km pixels in each land cover type.  

Land Cover Type Vv Vs 

Mean Std Mean Std 

Grass/Cereal crops (321,605) 0.661 0.044 0.071 0.038 
Shrubs (217,080) 0.636 0.048 0.083 0.037 
Broadleaf crops (33,220) 0.692 0.019 0.087 0.038 
Savannas (245,681) 0.689 0.018 0.095 0.038 
Evergreen broadleaf forests (EBF; 146,756) 0.696 0.011 0.043 0.037 
Deciduous broadleaf forests (DBF; 52,974) 0.697 0.010 0.077 0.040 
Evergreen needleleaf forests (ENF; 64,393) 0.693 0.013 0.090 0.039 
Deciduous needleleaf forests (DNF; 18,390) 0.695 0.007 0.086 0.028  
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2017 their Fig. 14; Hilker et al., 2017 their Fig. 12). This amount of 
variation in Vv (i.e., assuming that the EVI2 of Amazon Forest represents 
Vv) can lead to an absolute error of 0.08 in the estimation of Amazon 
Forest FVC via the EVI2-based two-endmember mixture model (i.e., 
EVI2 = 0.55; Vv = 0.696, Vs = 0.034 according to Table 4). Therefore, 
the FVC estimation error caused by the variation of Vv with VZA is less 
than 0.08 (in FVC units) over Amazon Forest, and should be even less 
over other vegetated areas. This is because that the variation of Vv has 
more impact over dense vegetation based on model simulation (i.e., 
typically FVC > 0.6; Mu et al., 2021 their Fig. 12; Yan et al., 2021 their 
Fig. 12), with the Amazon Forest being an example of extremely dense 

vegetation. As for Vs, by assuming the soil background as Lambertian 
herein (Widlowski et al., 2015; Widlowski et al., 2013), it is independent 
of VZA. 

When estimating Vv and Vs, MultiHSVI assumes that there is no angle 
dependence for the G function and Ω. According to model simulation, G 
decreases with increasing VZA for most LADs except for the spherical 
and erectophile distributions and is constant for spherical LAD for a 
variety of vegetation including soybean, wheat, sorghum, oaks, and 
grass (Goel and Strebel, 1984; Mu et al., 2018 their Fig. 9). However, Ω 
increases with increasing VZA for most vegetation types in theory as has 
been shown for data collected and model validated over crops (i.e., 

Fig. 15. Global FVC distributions in 2016. The seasonal maximum FVC is presented. (a) ~ (d) show the 4 seasons, respectively. The blue colour in these images 
represents the ocean and white is for filled value. The data are shown in the same sinusoidal projection as the EPIC data are provided. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Analysis of EVI2 versus vegetation cover using the simulated EPIC dataset based on the LESS model (described in Section 2.2). (a) ~ (c) are EVI2 versus 
directional vegetation cover f(θ) for the homogeneous scene (HOM), the heterogeneous scene with spherical crowns (HET1), and the heterogeneous scene with 
spherical and cylinder-shaped crowns (HET2), respectively. (d) ~ (f) are EVI2 versus FVC in HOM, HET1, and HET2, respectively. SZA is 40◦ for EVI2 in non- 
Hotspot direction. 
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tested on maize, soybean, sorghum), forests (i.e., aspen, Jack pine, black 
spruce), and grasslands (Peng et al., 2018 their Fig. 2; Fang et al., 2018 
their Fig. 7; Braghiere et al., 2020; Kucharik et al., 1999 their Fig. 5; 
Nouvellon et al., 2000). Thus, the variations of G and Ω cancel each 
other out to a certain extent when multiplied together and their overall 
influences are reduced (Sec. S3). The variation of G•Ω is small and 
negligible (≈ 6%; Table S5) when compared to the corresponding 
variation of 1/cosθ (19%) for large VZA (45◦ ≤ VZA ≤ 55◦). The error 
caused by 5% variation of G•Ω is less than 2% in FVC units (Mu et al., 
2018 their Fig. 11) across a wide range of vegetation cover. 

5.2. The analysis of MultiHSVI FVC estimation methods based on model 
simulation 

5.2.1. The advantage of hotspot observations 
Herein, we improved the MultiVI method (Mu et al., 2018) by 

introducing the Hotspot EVI2 data into Vv and Vs estimation and the FVC 
retrieval. Section 3.1 explains the theoretical advantage of using Hotspot 
observations and here we augment this theory by analysis of the simu-
lated dataset described in Section 2.2. Fig. 16 shows the V(θ) in the 
Hotspot directions and non-Hotspot directions (SZA = 40◦) versus f(θ) 
when VZA varies from 0◦ to 60◦. Based on the simulated dataset, the 
relationship between V(θ) and f(θ) are non-linear especially for densely 
vegetated and highly heterogeneous vegetation conditions (Fig. 16(b) 
and (c)) at both the Hotspot and non-Hotspot directions. This illustrates 
the feasibility of using the non-linear mixture model (Eq. (5)) to estimate 
Vv and Vs. 

However, the relationship between nadir Hotspot EVI2 and FVC is 
generally linear whereas non-Hotspot EVI2 and FVC is still nonlinear at 
nadir (Fig. 16(d) ~ (f)). The absolute value of the first term of the 
quadratic coefficients of nadir Hotspot EVI2 versus FVC (0.077– 0.140) 
are smaller than non-Hotspot EVI2’s (0.138– 0.487) and the R2 is also 
larger for the Hotspot cases when compared to the non-Hotspot cases 
(Fig. 16(d) ~ (f)). The variation of nadir non-Hotspot EVI2 is due to both 
vegetation structure and the spectral difference between sunlit and 
shaded components. However, for nadir Hotspot EVI2 there is no shaded 
vegetation nor shaded background components, so vegetation structure 
is the major impact factor. This illustrates the feasibility of using the 
two-endmember linear mixture model (Eq. (1)) when estimating FVC 
based on the EPIC Hotspot dataset. 

5.2.2. The feasibility of angle selection in Vv and Vs estimation 
Observations with large VZAs (45◦ ≤ SZA ≤ 55◦) were used in 

MultiHSVI for Vv and Vs estimation. Fig. 17 analyzes the relative dif-
ference of EVI2 with large VZAs according to LAI and how it impacts the 
estimation of Vv and Vs. Fig. 17(a) presents the relative difference be-
tween V(45◦) and V(55◦). A larger relative difference between V(45◦) 
and V(55◦) increase the stability of Eq. (9), which can help the estima-
tion of Vv and Vs. Hotspot EVI2 has over 0.090 (±0.027) relative dif-
ferences for the range of LAI (i.e., 0.5 to 6.0; Fig. 17(a) blue line). As we 
can see, EVI2 in non-Hotspot directions only has relative differences 
below 0.100 (±0.040; Fig. 17(a) orange line). Therefore, Hotspot EVI2 is 
more sensitive to the VZA than non-Hotspot ones at large VZAs, and is 
superior in solving Eq. (9) for Vv and Vs estimation. A larger relative 
differences appear in low and middle LAI ranges (representing sparse 
and medium vegetation conditions herein, i.e., LAI from 0.5 to 4.0; 
Fig. 17(a)). 

To show how these relative differences affects the Vv and Vs esti-
mation, Fig. 17(b) presents the MultiHSVI estimated Vv and Vs based on 
the EVI2 simulated using each previously described LAI increment from 
0.5 to 6.0. The Vv and Vs estimated from EVI2 based on LAI from 0.5 to 
6.0 is taken as the references (dashed horizontal lines in Fig. 17(b)). We 
can see that when LAI is relatively low (LAI ≤ 2.0; representing sparse 
vegetation conditions herein), Vv is usually underestimated and has a 
relatively large variation (blue error bar in Fig. 17(b)) due to different 
vegetation distributions. When LAI is relatively large (LAI ≥ 4.0; rep-
resenting dense vegetation conditions herein), since the EVI2 relative 
differences are small and EVI2 almost saturates, the Vv estimations 
horizontally asymptote. On average, Vv estimated from the LAI simula-
tions conducted herein will cause a relative error of 11.5%. Meanwhile, 
the estimations for Vs have large uncertainty. The difference between Vs 
and the reference is 0.054, which means the relative error can reach 
114.6%. These show that the Vv and Vs estimations have relatively large 
uncertainty in sparse and dense vegetation areas, respectively (Fig. 17 
(b)). We can conclude that Vv and Vs estimation using observations at a 
single LAI level introduces unacceptable uncertainty. Therefore, when 
implementing MultiHSVI using EPIC data, we used the Hotspot EVI2 
over the entire 2016 to guarantee a sufficiently large range of vegetation 
coverage (and LAI) conditions for Vv and Vs estimation. 

5.2.3. The uncertainty of SZA variation in FVC estimation 
Since EPIC cannot provide nadir Hotspot observations for all pixels, 

Fig. 18 presents the uncertainty (RMSD) of FVC retrieval due to SZA 

Fig. 17. Analysis of EVI2 relative differences with large VZA (45◦ and 55◦) and its impact using the simulated EPIC dataset based on the LESS model (described in 
Section 2.2). (a) shows the relative differences between V(45◦) and V(55◦) and (b) shows the Vv and Vs estimation according to each LAI level. Error bars in both (a) 
and (b) represent the positive and negative standard deviation around the mean. The blue curve in (b) represents Vv (refer to the left Y-axis) while the orange curve is 
for Vs (right Y-axis). Dashed horizontal lines are Vv and Vs results estimated using the MultiHSVI method and VIs based on LAI from 0.5 to 6.0. The horizontal dotted 
lines show the mean ± standard deviation for Vv and Vs estimates. Note that the mean of Vv estimates (blue dashed line) is 0.899 and the standard deviation of this Vv 
is 0.001. SZA = 40◦ for EVI2 in non-Hotspot direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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variation. In the modeling to generate Fig. 18, Vv and Vs are the same as 
Fig. 7(a), only SZA varies when estimating FVC (Eq. (10)). Generally, 
uncertainty is essentially constant for SZA ranging from 0◦ to 20◦, and 
beyond that uncertainty increased markedly as SZA increases (Fig. 18). 
The FVC estimated with EVI2 at SZA greater than 45◦ is specially marked 
in the quality file, considering that the current FVC products’ un-
certainties are all less than 0.20 (Table 1). 

5.2.4. The influence of different VI on MultiHSVI 
Theoretically, MultiHSVI is suitable to all VIs that can distinguish 

vegetation and background. Herein, we take EVI2 as an example to 
analyze its advantage, feasibility, and uncertainty and to produce EPIC 
FVC based on the simulated EPIC dataset in Section 2.2. Fig. 19 presents 
the retrieved FVC results when EVI2, NDVI, and DVI are applied to 
MultiHSVI. As shown in Fig. 19(a), both EVI2 and NDVI have good ac-
curacy with RMSD of 0.037 and 0.030, respectively. However, NDVI is 
very sensitive to soil background (Huete, 1988; Rocha and Shaver, 
2009), when soil reflectance changed, the RMSD for NDVI case increases 
to 0.124 while EVI2 still has an RMSD of 0.034 (Fig. 19(b)). DVI results 

in less accuracy than EVI2 and NDVI, with RMSD of 0.074 and 0.114 for 
the two different soil backgrounds. The R2 for all three VIs over the two 
soil backgrounds is greater than 0.95 (Fig. 19). The p-value in the sig-
nificance t-test with a confidence level equal to 90% is less than 0.001. 

5.3. The feasibility of global quasi-daily FVC Production from EPIC data 

According to Sections 3.2 and 3.3, the number of selected observa-
tions (45◦ ≤ SZA ≤ 55◦; dark blue in Fig. 1(a)) for Vv and Vs retrieval is 
less than 2/day on average from September to April and around 2/day 
from May to August. To maintain enough observations for solving Eq. 
(9) and to obtain a stable and efficient solution, observations in a time 
series (e.g., all 2016) are necessary to retrieve Vv and Vs globally. In 
theory, at least one observation per day is required for daily FVC 
calculation based on Eq. (10). Areas between 78◦N and 76◦S, have suf-
ficient observations for FVC retrieval based on EPIC data in 2016 (Fig. 1 
(b)). 

When considering cloud (Delgado-Bonal et al., 2020; Wilson and 
Jetz, 2016), smoke, and other atmospheric conditions, there are pixels 
without daily EPIC observations. Thus we obtained quasi-daily FVC 
product through MultiHSVI based on EPIC data (i.e., for a single pixel, it 
might not has FVC result every day). Since EPIC observes the entire 
sunlit Earth’s surface up to 13 to 23 times every day (Marshak et al., 
2018), it will increase the temporal frequency of the global FVC products 
when compared to LEO-based FVC products (generally 8-days and 
longer). Additionally, EPIC has the advantage of global coverage when 
compared to GEO satellites (Song et al., 2018). 

5.4. The Prospect of EPIC FVC 

MultiHSVI is used to produce global 10 km quasi-daily FVC products 
with the EPIC dataset, which is helpful to climate change, vegetation 
phenology, bushfire monitoring, and other researches that consider 
vegetation dynamics. This coarse spatial resolution FVC products can be 
used in terrestrial climate and vegetation models such as the regional 
climate model (RegCM3; Pal et al., 2007), the Weather Research and 
Forecasting (WRF; Skamarock et al., 2008), the Lund-Potsdam-Jena 
Dynamic Global Vegetation Model (LPJ-DGVM; Sitch et al., 2003). It 
is also able to work with satellite-based atmospheric carbon dioxide 
products (Pan et al., 2021 their Table 1). This implicates that the high- 
frequency vegetation product from EPIC can be used to analyze the 
carbon cycle between the atmosphere and biosphere. According to 
Fig. 13, EPIC FVC can capture quasi-daily vegetation dynamics over the 
global land surface, which is conductive to the terrestrial vegetation 
phenology analysis (Ahl et al., 2006; Sobrino et al., 2013; Yan et al., 
2016a). 

Fig. 18. Uncertainty of FVC estimation using the MultiHSVI method due to SZA 
variation. FVC was estimated with Hotspot EVI2 at different SZAs over a wide 
range of vegetation conditions (i.e., LAI from 0.5 to 6). Each light blue bar 
indicates the mean RMSD value for each SZA; each dark blue error bar repre-
sents the positive/negative one standard deviation. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 19. Analysis of FVC estimation using the MultiHSVI method with EVI2, NDVI, and DVI. Comparison of retrieved FVC versus the reference for a range of 
vegetation conditions (i.e., LAI = 1.0, 3.0, 5.0). The experiment compares the FVC retrieved under two different soil backgrounds. 
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6. Conclusion 

Fractional Vegetation Cover (FVC) is a basic biophysical structural 
parameter and is widely used in climate and land-surface research. 
However, the compromise among temporal frequency, spatial resolu-
tion, and spatial coverage of current FVC products (i.e., MODIS, VIIRS, 
GEOV2, and LSA) limit their utility in some circumstances. 

In this study, an improved FVC estimation method based on Multi- 
SZA HotSpot VI (MultiHSVI) was developed, which enabled produc-
tion of a global quasi-daily FVC estimates using the recently published 
EPIC near Hotspot dataset. MultiHSVI uses the multi-SZA Hotspot EVI2 
from EPIC and the combination of EVI2-based two-endmember mixture 
model and gap fraction model to estimate FVC and the two key pa-
rameters (Vv and Vs) without depending on any prior knowledge. The 
uncertainty (RMSD) of MultiHSVI FVC was around 0.050 according to 
the analyses using the simulated dataset for three typical scenes (i.e., a 
homogeneous scene, a heterogeneous scene with spherical crowns, and a 
heterogeneous scene with spherical and cylinder-shaped crowns). By 
taking the field-based Landsat FVC as the reference, EPIC FVC has an 
RMSD of 0.043 with a bias of 0.012 in the Saihanba area in northern 
China. The R2 between EPIC MultiHSVI FVC and FVC from MODIS, 
VIIRS, GEOV2, or LSA, is larger than 0.758, and the difference (RMSD) is 
less than 0.129 in FVC units. The comparisons were conducted at the 
Mississippi region in the northern hemisphere, the southern Africa re-
gion in the southern hemisphere, and the central Africa region near the 
equator. 

Our results demonstrate that EPIC FVC can be accurately generated, 
and it increases the temporal frequency of large-scale satellite-based 
FVC products. The global quasi-daily EPIC FVC is expected to improve 
climate change, vegetation phenology, and other related terrestrial 
research. 
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Nouvellon, Y., Bégué, A., Moran, M.S., Seen, D.L., Rambal, S., Luquet, D., Chehbouni, G., 
Inoue, Y., 2000. PAR extinction in shortgrass ecosystems: effects of clumping, sky 
conditions and soil albedo. Agricult. For. Meteorol. 105, 21–41. 

Ormsby, J.P., Choudhury, B.J., Owe, M., 1987. Vegetation spatial variability and its 
effect on vegetation indices. Int. J. Remote Sens. 8, 1301–1306. 

Pal, J.S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X., Rauscher, S.A., Francisco, R., 
Zakey, A., Winter, J., 2007. Regional climate modeling for the developing world: the 
ICTP RegCM3 and RegCNET. Bull. Am. Meteorol. Soc. 88, 1395–1410. 

Pan, G., Xu, Y., Ma, J., 2021. The potential of CO2 satellite monitoring for climate 
governance: a review. J. Environ. Manag. 277, 111423. 

Peng, J., Fan, W., Wang, L., Xu, X., Li, J., Zhang, B., Tian, D., 2018. Modeling the 
directional clumping index of crop and forest. Remote Sens. 10, 1576–1598. 
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Eenmäe, A., Essery, R., Gastellu-Etchegorry, J.-P., Gobron, N., Grau, E., Haverd, V., 
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