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Cannibals are dark matter particles with a scattering process that allows three particles to annihilate to
two. This exothermic process keeps the gas of the remaining particles warm long after they become
nonrelativistic. A cannibalizing dark sector which is decoupled from the standard model naturally arises
from a pure-glue confining hidden sector. It has an effective field theory description with a single massive
interacting real scalar field, the lightest glueball. Since warm dark matter strongly suppresses the growth of
structure, cannibals cannot be all of the dark matter. Thus, we propose a scenario where most dark matter is
noninteracting and cold but about 1 percent is cannibalistic. We review the cannibals’ unusual scaling of the
temperature and energy and number densities with redshift and generalize the equations for the growth of
matter density perturbations to the case of cannibals. We solve the equations numerically to predict the
scaling of the Hubble parameter and the characteristic shape of the linear matter power spectrum as a
function of model parameters. Our results may have implications for the σ8 and H0 problems.
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I. INTRODUCTION

Darkmatter could be a single species of particleswith only
gravitational interactions as in the cosmological standard
model, Λ cold dark matter (ΛCDM). Alternatively, it might
have multiple components. If there is a dominant non-
interacting component then other components can have
interesting nongravitational interactions. Recent observa-
tions of the cosmic microwave background (CMB) and
matter power spectrum (MPS) are already sensitive to
nonstandard dark matter components which comprise only
a fewpercent of the total, and stage 4 experimentswill be able
to push the sensitivity below the percent level. Interestingly,
precision fits with current cosmological data show some
tension with predictions of ΛCDM for the expansion rate of
the Universe H0 [1,2] and the amplitude of fluctuations in
theMPSon galaxy cluster scales, σ8 [3–8].1Motivated by the
significant projected improvement in measurements of the
MPS we propose and explore the possibility that a small
component of dark matter is “cannibalistic.”
Cannibal dark matter consists of massive particles

with an efficient number-changing self-interaction [29].

The most important process that such interactions mediate
is from three particles in the initial state to two particles in
the final state. In such a 3 → 2 process mass is turned into
kinetic energy of the outgoing particles which heats the
gas of particles.2 If there are also rapid 2 → 2 interactions
the cannibalizing particle gas remains in thermal and
chemical equilibrium, and can be described by the
Boltzmann distribution with a temperature TðaÞ and
vanishing chemical potential. Because of the cannibaliza-
tion process the temperature drops only logarithmically
with the scale factor T=m ∼ 1= log a. This is very different
from the case of nonrelativistic matter which cools very
quickly, T=m ∼ 1=a2. Cannibal matter also has an unusual
scaling of its number and energy densities. The number
density dilutes like ncan ∼ 1=ða3 log aÞ where the 1=a3 is
the usual volume dilution while the 1= log a comes from the
cannibalization. Ignoring kinetic energy, the energy density
is then simply ρcan ≈mncan. Thus, the energy density of
cannibals scales intermediate between ordinary matter for
which ρm ∼ 1=a3 and radiation where ρr ∼ 1=a4. Note that
for these scalings to hold it is necessary that the cannibal
particles are isolated from all other sectors, i.e., no
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1For recent work motivated by these discrepancies, see [9–28].
2Cannibals cannot constitute the entirety of the dark matter in

the Universe precisely because they are heated up by their self-
interactions and that interferes with the formation of structure
[30,31]. Proposed solutions to this problem are to let cannibalism
end much before matter domination [32–35] or to cool it through
couplings to the standard model, like in the ELDER [36] or SIMP
[37] paradigms. The SIMP mechanism has been the object of
intense study in recent years [38–46].
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significant interactions, so that any heat produced from
cannibalization does not dissipate to other sectors.
We now discuss the impact of the cannibal fluid on

cosmology with particular attention to the MPS. First, note
that since the cannibal temperature decays very slowly the
cannibal fluid has significant pressure P=ρ ≈ T=m. This
pressure prevents growth of density perturbations in the
cannibal fluid; instead, one obtains “cannibal acoustic
oscillations.” Overdensities in the cannibal fluid remain
small and make only negligible contributions to the gravi-
tational potential. On the other hand, the cannibal fluid does
contribute to the overall energydensity of theUniversewhich
determines theHubble expansion rate. Since thegravitational
potential drives the growth of structure whereas the Hubble
expansion acts to slow it (“Hubble friction”) the net effect of
the cannibal fluid is to suppress the MPS. This is the main
result of our paper.
In Sec. III we derive this result quantitatively. The

connection to the physical explanation in the previous
paragraph will become clear after we derive the Mészáros
equation for the growth of CDM perturbations δcdm in the
presence of the cannibal fluid:

a2δ00cdm þ 3

2
aδ0cdm −

3

2

ρcdm
ρcdm þ ρcan

δcdm ¼ 0: ð1Þ

This equation is valid during matter domination and for
perturbations which are deep inside the horizon.3 Here the
derivatives are with respect to the scale factor a, and ρcdm
and ρcan are the background (average) energy densities
of the cold dark matter and the cannibals, respectively.
For zero cannibal energy density this has the usual linear
growth of the matter perturbations δcdm ∼ a as a solution.
Expanding for small energy density in cannibals
ρcan ≪ ρcdm, one finds a suppressed rate of growth: δcdm ∼
a1−γ with γ ¼ 3

5
ρcan=ρcdm. Given that current data suggest a

suppression of matter perturbations by ∼5% and that the
Universe expands by a factor of atoday=aequality ∼ 103 during
matter domination we see that the preferred parameter
space should have on the order of 1% of matter in
cannibals, i.e., a fraction ρcan=ρcdm ∼ 1% which slowly
changes in time due to the extra 1= log a in ρcan.
The minimal field theoretic model which exhibits can-

nibalism has a real scalar field with the Lagrangian

L ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 − κ3mλ

ϕ3

3!
− κ4λ

2
ϕ4

4!
: ð2Þ

In this minimal cannibal (MC) model m is the mass of
the particle, λ denotes the overall strength of ϕ interactions,
and κ3;4 are numbers which we will take to be of order 1.
The interactions mediate ϕ-number preserving ϕϕ → ϕϕ

processes as well as ϕ-number-changing processes such as
ϕϕϕ → ϕϕ (with a rate proportional to λ6). At temperatures
above the ϕ mass the ϕ particles can be described by an
interacting relativistic fluid in equilibrium. Once the ϕ fluid
cools below the mass of the particles, the 3 → 2 cannibal-
ism interaction starts processing mass into temperature.
This slows the cooling of the fluid. The fluid remains
in thermal equilibrium during cannibalization because
the 2 → 2 interactions are very rapid compared with the
cannibal interactions and with the expansion rate of the
Universe and rethermalization the fluid. Furthermore, since
the ϕ particles are isolated from all other fluids (such as the
standard model and the cold dark matter) and heat cannot
be dissipated to the other sectors, the comoving entropy in
the ϕ fluid is conserved. Eventually, at late times, the
number density of ϕ particles becomes too small for the
3 → 2 interactions to compete with the expansion rate and
they turn off, bringing cannibalism to an end. At that point
the surviving particles become cold dark matter, their
number density diluting with the volume and their temper-
ature dropping rapidly proportional to 1=a2.
This thermal history is summarized in the following

table: the ϕ fluid cools like radiation while its temperature
is above the ϕ mass, at a ∼ acan it enters the cannibalistic
phase where the temperature drops logarithmically, and at
a ∼ anr the 3 → 2 interactions decouple and it cools like
ordinary nonrelativistic matter.

Relativistic Cannibal Nonrelativistic

a < acan acan < a < anr anr < a

T ∼ 1=a T ∼ 1= log a T ∼ 1=a2

ρ ∼ 1=a4 ρ ∼ 1=ða3 log aÞ ρ ∼ 1=a3

In Fig. 1 we plot the temperature-to-mass ratio as a
function of scale factor for an example point in parameter
space of the minimal cannibal model. Note the transition
from relativistic behavior to cannibalism at T=m ∼ 1=3 ↔
acan ∼ 10−6 and the decoupling transition to nonrelativistic
matter at anr ∼ 10−1. The ratio of scale factors between the
start and end of the cannibalistic phase anr=acan ∼ 105

depends on the strength of the interaction λ. We will be
interested in models where λ is strong (between 1 and 4π);
then the duration of cannibalism anr=acan is between 10−4

and 10−5 with only a mild dependence on other model
parameters.
From preceding discussions it is clear that we can choose

parameters in the cannibal sector such that the cannibalistic
phase overlaps with the matter-dominated era of the
Universe. This choice of parameters is the most interesting
because then the cannibals suppress the matter power
spectrum. We dedicate most of this paper to its study. In
Fig. 2 we show the evolution of the energy density of the
cannibal fluid (green) in a model where the cannibal
transition happens at ac ∼ 10−5 and decoupling at anr ∼ 1.

3We have simplified further by dropping terms which are
suppressed by T=m of the cannibals.
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For comparison, we show the total energy density in the
ΛCDM components (black) with its radiation-, then matter-,
and finally cosmological constant-dominated scale depend-
ence.We also show the energy densities for two differentMC
models: one where the cannibal transition happens well after
matter-radiation equality (orange) so that the cannibals act as
radiationwhile they have significant energy densities. Such a
model is indistinguishable from amodel with extra neutrinos
ΔNeff . The other model (blue) is one in which the cannibal
transition happens so early that the cannibal interactions
already decouple before matter-radiation equality. Then the
cannibals behave like ordinary cold dark matter.

The MC model in Eq. (2) is ugly because the cannibal
mass is unprotected from quadratically divergent quantum
corrections and has a naturalness problem. Fortunately,
natural UV completions are easy to construct. Our favorite
is a simple non-Abelian gauge sector without matter (i.e.,
pure-glue). Such a model has a single coupling constant,
the gauge coupling. The theory is asymptotically free in the
UV. The gauge coupling becomes strong in the IR, the
theory confines, and the spectrum is one of glueball
resonances. The effective low-energy description below
the confinement scale is the MC model Eq. (2) where ϕ is
the lightest glueball, m is its mass, and λ ∼ 4π. In addition
to the renormalizable interactions shown in Eq. (2) one also
obtains higher-dimensional couplings of the form
λn−2ϕn=mn−4 which contribute to scattering with the same
parametrics as the renormalizable couplings. The cannibal-
ism phase is not sensitive to the precise form of the
interactions: what matters is that the number-changing
transitions are faster than the Hubble expansion. Then
the cannibal fluid satisfies thermal and chemical equilib-
rium and its evolution becomes independent of the details
of the spectrum of glueballs and interactions. Note also that
this UV completion very naturally explains the absence of
couplings between ϕ and the standard model. In the UV
theory gauge invariance forbids any renormalizable cou-
pling between the two sectors. We describe such UV
completions and study the dependence of our results on
the UV completion in Sec. IV.
Finally, we do not consider but cannot resist mentioning

the possibility that the cold dark matter required in our
model might be “Baryons” or “Mesons” made of heavy
dark quarks charged under the dark gauge group [47],
although important details of the confining phase transition
and entry into the cannibal phase would change from what
we study in this paper.
We study the MCmodel of Eq. (2) and its thermal history

in Sec. II where we also estimate the boundaries of the
preferred parameter space. Within these boundaries we
compute the effects of cannibalism on the matter power
spectrum in Sec. III. Section IV gives possible UV
realizations of the MC model in terms of simple confining
(pure-glue) non-Abelian gauge theories. We also study the
dependence of our results on the UV completion of the MC
model. In the Conclusions (Sec. V) we discuss the shape of
the predicted MPS as a function of model parameters. We
review the derivation of the background and perturbation
equations for the cannibal fluid starting from the
Boltzmann equation in an Appendix; our results agree
with those given in [48].

II. THE MINIMAL CANNIBAL:
THERMAL HISTORY AND PARAMETERS

In this section we study the thermal history of the MC
model fluid, identify the most useful parameters to describe
it, and explore their parameter space. In order to do this we
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FIG. 1. Temperature-to-mass ratio as a function of scale factor
a for the MC model. The temperature drops like 1=a while the
particles are relativistic, it drops logarithmically in a while the
particles cannibalize, and it drops like 1=a2 after the cannibal-
izing interaction decouples and the particles cool like ordinary
nonrelativistic matter. The temperature curve shown here was
found by solving the background equations (A32) numerically
and includes the decoupling of 3 → 2 interactions.
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FIG. 2. Energy densities for MC models with mass and
temperature chosen such that ρcan < ρΛCDM. A MC model for
which cannibalism occurs throughout matter domination is
shown in green with its characteristic ρcan ∼ 1=ða3 log aÞ dilution.
The orange model has a late onset of cannibalism, making the ϕ
fluid behave like radiation throughout most of the history of the
Universe. In the blue model the cannibalism phase is shifted very
early so that cannibalism stops before matter domination. Then
the ϕ fluid behaves like cold dark matter. For comparison, we also
show the total energy density in the components of ΛCDM
(black).
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need to consider what the properties of the cannibal
fluid are.
During its relativistic and cannibalistic phases the ϕ fluid

is in both thermal and chemical equilibrium. This means
that its phase space distribution function fðp; aÞ is entirely
parametrized by the mass of the particles m and the
temperature T of the fluid:4

fðp; aÞ ¼ 1

eE=TðaÞ − 1
; ð3Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the energy of the ϕ particles. Here

we only consider the homogeneous and isotropic back-
ground of the cannibal fluid which means that f does not
depend on position. We will study x-dependent perturba-
tions about this background in the following section. The
time dependence of f, encoded in the scale factor aðtÞ,
arises solely from that of the temperature. All other back-
ground quantities that describe the ϕ fluid (such as energy
and number densities) are momentum integrals of f, and
therefore they depend on the two parameters m and TðaÞ.
Since the cannibal fluid has no interactions with other

fluids its (comoving) entropy Scan is conserved. This makes
Scan a useful parameter of the MC model. We now derive
formulas for the temperature and energy density of the ϕ
fluid in terms of the model parametersm and Scan. From the
second law of thermodynamics:

Scan ¼ a3
ρcan þ Pcan

T
: ð4Þ

In the relativistic limit, T ≫ m, the phase space distri-
bution function, Eq. (3), is easily integrated to obtain
expressions for the energy density ρ ¼ π2

30
T4 and pressure

P ¼ ρ=3 so that

Scan ¼ a3
2π2

45
T3: ð5Þ

Solving for T we find

T ¼
�
45

2π2

�
1=3 S1=3can

a
; ρcan ¼

3

4

�
45

2π2

�
1=3 S4=3can

a4
: ð6Þ

Note that T ∼ 1=a and ρcan ∼ 1=a4, as expected for radi-
ation components.5

Once T ∼m the ϕ fluid enters its cannibalistic phase.
After the temperature drops sufficiently far below the
mass, an expansion in T=m becomes appropriate,

and the dominant contribution to the energy density
comes from the mass of the particles, ρcan ≈mncan, where
ncan ¼ ðmT

2π Þ3=2e−m=T is the equilibrium number density of
ϕ. The contribution of the pressure Pcan ≈ Tncan to the
entropy in Eq. (4) is smaller by T=m relative to ρcan so that

Scan ≃ a3
ρcan
T

≃
a3m3

ð2πÞ3=2
�
T
m

�
1=2

e−m=T; ð7Þ

and solving for T and ρcan in a leading-log approximation
we have

T ≃
m

3 log
�
mS−1=3canffiffiffiffi

2π
p a

� ; ρcan ≃
mScan

3a3 log
�
mS−1=3canffiffiffiffi

2π
p a

� : ð8Þ

Note that T ∼ 1= loga and ρcan ∼ 1=ða3 log aÞ as stated in
the previous section.
Having written T and ρcan as functions of a and the

parameters m and Scan, we now study the parameter space.
Our goal is to estimate the values of the parameters for
which the cannibal sector suppresses the matter power
spectrum by about the amount that is preferred by the σ8
measurements. As shown in the Introduction, this requires a
fraction of dark matter energy density in the ϕ fluid
fcan ≡ ρcan=ρcdm ∼Oð1%Þ. Of course, since ρcdm ∼ 1=a3

but ρcan ∼ 1=ða3 log aÞ, this fraction evolves as
fcan ∼ 1= loga. But the change in fcan during matter
domination is small enough (of order of a few) that we
ignore it for the purpose of estimating the rough region of
m − Scan parameter space where we can expect to find good
fits. The good region of parameter space is the one in which
the cannibalism phase overlaps with matter domination,
which corresponds to conditions on ac and anr, and in
which fcan ∼Oð1%Þ. In the remainder of this section we
use these conditions to derive that

eV≲m≲ keV;
Scan
SSM

∼ 0.1

�
1 eV
m

�
: ð9Þ

A reader who is not interested in the following somewhat
tedious derivation of these boundaries of the relevant
parameter space may skip ahead to Sec. III where we
derive and solve the density perturbation equations.
We first derive the lower bound on m. We define the

scale factor a ¼ acan at which TðacanÞ≡m=3, i.e., where
the ϕ fluid stops being relativistic and starts cannibalizing.
From Eq. (8) we obtain acan ∼ 10S1=3can=m. Since we want
cannibalism to act during matter domination, we require the
start of cannibalism to be before matter-radiation equality,
i.e., acan < aeq. Ignoring the log a dependence (for sim-

plicity) and using acan ∼ 10S1=3can=m we express ρcan in
Eq. (8) in terms of acan

4Here TðaÞ denotes the temperature of the cannibal fluid which
may be different from the temperature of the standard model (e.g.,
photons).

5Equation (5) contains a factor of g that accounts for the
degrees of freedom (d.o.f.) of the dark sector. This factor is 1 in
the ϕ cannibal model but will be different in UV completions.
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ρcan ∼
m4

103ða=acanÞ3
: ð10Þ

We solve this for m, substitute ρcan ¼ fcanρcdm, evaluate it
today (a ¼ 1) and impose acan < aeq to obtain

m4 ∼ 103 ×
fcan;0ρcdm;0

a3can
> 103 ×

fcan;0ρcdm;0

a3eq
; ð11Þ

which for aeq ≈ 3 × 10−4 gives the lower bound:

m≳ 1 eV ×

�
fcan;0
0.01

�
1=4

�
ρcdm;0

10−11 eV4

�
1=4

: ð12Þ

At the edge of the preferred parameter space, when m
saturates the bound, the ϕ fluid enters its cannibalistic
phase right at matter-radiation equality. Then the UV
completion of the ϕ model is needed to determine the
cannibal sector energy density for a < aeq. Thus in this
case the matter power spectrum is sensitive to details of the
UV completion such as the glueball spectrum and the size
of the UV gauge group. We will study this model
dependence in Sec. IV. For masses much smaller than
the bound the cannibal sector is still relativistic at aeq. In
that case the cannibal fluid behaves like extra radiation
(ΔNeff ) at the time of the CMB. Imposing observational
bounds on ΔNeff bounds the energy density in the cannibal
fluid at aeq and by the time cannibalism turns on at acan >
aeq the energy density in the cannibal fluid has already
become negligible compared with that in ΛCDM (orange
curve of Fig. 2). Thus, this is not a region in parameter
space that we are interested in.
We can also derive an upper bound on m. To do so we

first solve for the scale factor anr when the 3 → 2
interactions decouple and the ϕ fluid transitions from
cannibal behavior to standard nonrelativistic behavior.
Dimensional analysis allows us to estimate the nonrelativ-
istic 2 → 2 and 3 → 2 scattering cross sections in the ϕ
theory from Eq. (2):

σ22v ≈
α2

m2
⇒ Γ22 ≡ ncanhσ22vi ≈

α2

m3
ρcan; ð13Þ

σ32v2 ≈
α3

m5
⇒ Γ32 ≡ n2canhσ32v2i ≈

α3

m7
ρ2can; ð14Þ

where α ∼ λ2=ð4πÞ, Γij are the i → j interaction rates, and
we have been cavalier with factors of order 1 and π.
Keeping in mind a strongly coupled UV completion of the
cannibal sector we expect α somewhere between 1 and 4π.
Eventually Γ32 cannot keep up with the rate of expansion

of the Universe H and the 3 → 2 interactions decouple and
cannibalism stops at anr. Setting Γ32 ¼ H and using
Eqs. (14) and (10) we can solve for the duration of the
cannibalistic phase

anr
acan

≈
α1=2

10

�
m

HðanrÞ
�

1=6
: ð15Þ

Note the small exponent of 1=6. This shows that
the duration of the cannibalism phase is only weakly
dependent on the model parametersm and Sc. In particular,
the duration of the cannibalism phase is rather insensitive
to when the decoupling occurs. For example, if canniba-
lism ends at matter-radiation equality (anr ¼ aeq) then
ðHðaeqÞ=eVÞ1=6 ∼ 10−5; whereas if it ends today
(anr ¼ 1), then ðH0=eVÞ1=6 ∼ 10−6; a change of only 1
order of magnitude. The duration of the cannibalistic phase
is therefore between 4 and 5 decades in the scale factor:

anr
acan

≈ 105 ×

�
λ

4π

��
m

1 eV

�
1=6

�
10−33 eV
HðanrÞ

�
1=6

: ð16Þ

We will use the approximation acan ∼ 10−5anr.
Substituting this in Eq. (10) yields

m4 ∼ 1018 ×
fcan;0ρcdm;0

a3nr
: ð17Þ

In order to find an upper bound on the interesting range
of m we impose a condition on anr, the scale factor when
cannibalism stops. Demanding that cannibalism lasts
throughout matter domination and does not end before
today so as to maximize the suppression of the MPS is a
possibility. But this is really too aggressive because
even when cannibalism stops midway through matter
domination the MPS is suppressed relative to ΛCDM.
We impose—admittedly somewhat arbitrarily—that
anr ≳ 10−2. This, together with Eq. (17), implies

m≲ 1 keV ×

�
fcan;0
0.01

�
1=4

�
ρcdm;0

10−11 eV4

�
1=4

: ð18Þ

For masses much larger than this bound the end of
cannibalism occurs too close to (or before) matter-radiation
equality, so that the ϕ fluid clusters like cold dark matter
during matter domination as discussed in the previous
section (blue curve in Fig. 2). Comparing Eqs. (18) and (12)
we see the range of masses, eV < m < keV, which satisfies
both constraints.
Having restricted the mass of the ϕ particles to a range

for which cannibalization has an interesting effect on the
MPS we now focus our attention on the other parameter of
the MC model, the entropy. Starting again from the
relationship between the energy density and the entropy
in Eq. (8), approximating log a−1can ∼ 8, demanding that the
energy density in cannibals be a small fraction f of that in
the ΛCDM sector, and evaluating energy densities today
we obtain
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Scan ∼
SSM
10

�
2.2× 10−11 eV3

SSM

��
fcan;0
0.01

��
ρcdm;0

10−11 eV4

��
1 eV
m

�
;

ð19Þ

where we have chosen to write the comoving cannibal
sector entropy Scan in terms of the comoving entropy in the
standard model sector today, SSM ¼ 2.2 × 10−11 eV3. One
sees that the values of Scan which give the correct
suppression of the MPS are inversely proportional to m.
Finally, let us verify that thermal (kinetic) equilibrium is

maintained until today in the region of parameter space we
have obtained. We must check that the rate of 2 → 2
interactions is faster than the expansion rate of the
Universe. From Eq. (13)

Γ22;0 ≈ 1022½10−33 eV�
�
α

4π

�
2
�
1 eV
m

�
3
�
fcan;0
0.01

��
ρcdm;0

10−11 eV4

�
;

ð20Þ

which is clearly bigger than H0 ∼ 10−33 eV. This is not
surprising because 2 → 2 interactions are much more rapid
than 3 → 2 interactions which are suppressed by an addi-
tional power of the particle number density.
In summary, in order for the cannibalistic phase to

overlap with matter domination and suppress the matter
perturbations at galaxy cluster scales by about 5% we need
fcan;0 ∼ 0.01 and acan ≲ aeq and anr ≳ 10−2. This corre-
sponds to the parameter range in Eq. (9).

III. DENSITY PERTURBATIONS
IN THE CANNIBAL MODEL

With the thermal history and parameter space of the MC
model determined we now study the effects of the cannibal
fluid on density perturbations. In particular, we derive the
suppression of the MPS and solve for the region in
parameter space with the correct amount of suppression
to address the large-scale structure discrepancy on σ8. We
start from the equations governing the evolution of the
cosmological perturbations in the energy density and
velocity of the different components of the Universe,
focusing on the dark matter and cannibal fluids. In this
section we simply state the equations and study their
solutions, first numerically and then analytically using
simplifying approximations. We review the derivation of
the perturbation equations in the Appendix.
The equations for the cannibal and CDM perturbations in

Fourier space are [48]

_δcan ¼ −ð1þwcanÞðθcan − 3 _φÞ− 3Hðc2s −wcanÞδcan; ð21Þ

_θcan ¼ −Hð1 − 3c2sÞθcan þ k2
�
ψ þ c2s

1þ wcan
δcan

�
; ð22Þ

_δcdm ¼ −θcdm þ 3 _φ; ð23Þ

_θcdm ¼ −Hθcdm þ k2ψ ; ð24Þ

where the dots represent derivatives with respect to con-
formal time η; k is the Fourier momentum mode,
H≡ aH ¼ _a=a, δ≡ δρ=ρ, and θ are the density contrast
and the velocity divergence perturbations; while φ and ψ
are the scalar perturbations of the metric.6 Finally,
wcan ≡ Pcan=ρcan is the equation of state of the ϕ sector,
while c2s ≡ _Pcan=_ρcan ¼ wcan −

_wcan
3Hð1þwcanÞ is the speed of

sound of the ϕ fluid. Recall that during the cannibalistic
phase ρcan ≈mncan and Pcan ≈ Tncan and therefore
wcan ≈ T=m ∼ 1= log a.
For the rest of this section we make the following

simplifications: (i) ignore the baryons, adding their energy
density to that of CDM, (ii) ignore the anisotropic stress of
the neutrinos, taking φ ¼ ψ , and (iiii) add the neutrino
energy density to that of the photons. Since we are only
interested in the effects of cannibals on the MPS, we will
compare the MPS in the theory with cannibals to the MPS
in ΛCDM, evaluated today, and denote the ratio by RðkÞ:

RðkÞ≡ MPSðkÞc
MPSðkÞΛ

				
today

¼ ðρcdmδcdm þ ρcanδcanÞ2c
ðρcdmδcdmÞ2Λ

				
today

¼
�
δcdm;c

δcdm;Λ
þ fcan

δcan
δcdm;Λ

�
2
				
today

; ð25Þ

where the index c denotes the value in the theory with
cannibals, while Λ means ΛCDM. With the assumptions
mentioned above, we solved Eqs. (21)–(24) numerically
and calculated RðkÞ. We now describe the solutions for δcan
and δcdm, and the resulting RðkÞ.
The evolution of the δcan perturbations can be appre-

ciated in Fig. 3, for different choices of the parameters m
and Scan of the MC model, having fixed α ¼ 4π. One
choice of the parameters corresponds to early decoupling
(blue curve), where the cannibalistic phase ends well before
equality and the perturbations behave just like CDM.
Another choice shows late cannibalization (orange line)
in which the ϕ sector behaves just like radiation throughout
most of the history of the Universe. In this case δcan
oscillates like radiation perturbations do. Since in this case
the cannibalistic phase only starts when ρcan is already a
negligible contribution to the total energy density, the
cannibalism itself has no impact on the MPS. The green
curve corresponds to the case of most interest: the
cannibalistic phase overlaps with matter domination. The
early part of the curve shows that cannibal perturbations

6δ and θ are part of the stress-energy-momentum tensor Tμν of
their corresponding fluid, and their equations are obtained from
the continuity equation ∇μTμν ¼ 0. For details see the Appendix.
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perform acoustic oscillations after entering the horizon.
The oscillations are due to the pressure term proportional to
the speed of sound c2s during cannibalism. Once the
cannibalistic phase ends at anr the ϕ particles become
nonrelativistic and the speed of sound quickly drops
c2s ≈ T=m ∼ a−2. This causes the δcan perturbations to stop
oscillating and to start growing by falling into the gravi-
tational potentials sourced by the already clustered dark
matter. This can be seen in the large-a behavior of the green
curve in Fig. 3.
The cannibal fluid affects the perturbation equations for

the CDM in two ways: through its contributions to the
gravitational potential term k2ψ in Eq. (24) and through its
contribution to the energy densities in the Hubble friction
term −Hθcdm in Eq. (24); the _ϕ term in Eq. (23) is
negligible for the modes of interest. Since δcan oscillates
and does not grow during the cannibalistic phase its
contributions to the gravitational potential ψ remain neg-
ligible and will not enhance the growth of CDM perturba-
tions. On the other hand, the contribution of ρcan to the
Hubble expansion rate during matter domination and
therefore to the Hubble friction term is significant. The
net effect, no enhancement of the potential but more
friction, is to slow the growth of CDM perturbations
relative to ΛCDM. Thus the MPS is suppressed in theories
with cannibals. This is the main result of our paper.
Figure 4 illustrates this result. We plot the ratio of δcdm in

the presence of cannibals to its value in ΛCDM as a
function of the scale factor a for the mode k ¼ 0.2hMpc−1.
The three curves correspond to three models with param-
eters m and Scan chosen such that the MPS today for that
mode is suppressed by 10% [i.e., Rð0.2hMpc−1Þ ¼ 0.9].
Note that after some transitory behavior after the mode first
enters the horizon the suppression increases monotonically
during matter domination. This shows that the rate of

growth in the presence of cannibals is smaller than in
ΛCDM. This ratio behaves approximately like a power law
in a, with a slight decrease of its slope which comes from
the time dependence of fcan ≡ ρcan=ρcdm.
In Fig. 5 we show the m − Scan parameter space,

with Scan normalized to the entropy of the standard model
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FIG. 3. The cannibal perturbations for three choices of the MC
model parameters, compared with the CDM perturbation from
ΛCDM (black curve). The choice with early end of cannibalism is
shown in blue, that with a late start of cannibalism in orange,
while in green is that with the cannibalistic phase overlapping
with matter domination. We have chosen k ¼ 0.2hMpc−1 with
h ¼ 0.68; this corresponds to perturbations at the wave length
which σ8 is most sensitive to.
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FIG. 4. Evolution of the perturbation δcdm for wave number
k ¼ 0.2hMpc−1 in the presence of cannibals compared to its
value in ΛCDM, for three different choices of model parameters.
Models were chosen to give a 10% suppression in the MPS today
(i.e., R ¼ 0.9). The three choices of m and Scan are also indicated
as red, green, and blue points in Fig. 5.
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FIG. 5. m versus Scan=SSM parameter space where SSM ¼ 2.2 ×
10−11 eV3 is the entropy in the standard model today. The black
lines are contours of the ratio of the MPS in the presence of
cannibal dark matter to that of ΛCDM. The brown dotted curves
correspond to constant fcan;0. The green band is an estimate for
the suppression that gives a σ8 within 1σ of the value quoted in
[4]. The orange region corresponds to MC models that enter the
cannibalistic phase after matter-radiation equality, while the blue
one corresponds to those for which cannibalism ends before
a ¼ 10−2. In red are those models whose ρcan contributes to
ΔNeff jBBN > 0.66 [49] when they are in their radiation phase.
The red, green, and blue points correspond to the three choices of
m and Scan in Fig. 4.
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today SSM. The black contour lines show Rð0.2hMpc−1Þ. In
all the calculations for this plot we chose α ¼ 4π. We will
study the (very small) dependence of the suppression RðkÞ
on the choice of α at the end of this section. The brown
dotted lines show the fraction fcan;0 of cannibal dark matter
today. The green band in Fig. 5 represents the region of
parameter space that yields a suppression in the value of the
MPS today within 1σ of the preferred value of σ8 according
to [4], about a 10% suppression [Rð0.2hMpc−1Þ ¼ 0.9].
We see that this roughly corresponds to fcan;0 ∼ 1%. The
orange region corresponds to the lower bound on m we
estimated in Sec. II, made up of those parameter values
for which acan > aeq. Deep inside this region the ϕ fluid
behaves just like radiation. The blue region corresponds to
the upper bound also estimated in Sec. II, for which
anr < 10−2. Deep inside this region the ϕ fluid behaves
like ordinary CDM. Finally, the red band corresponds to a
region in parameter space in which the ϕ fluid would

contribute too much radiation (ΔNeff > 0.66) to the energy
density of the Universe at the time of big bang nucleo-
synthesis [49]. However, as we will show in Sec. IV this
constraint is relaxed in UV completions of the MC model
because the energy density in radiation in the UV is reduced
in such models.
The black contours showing the values for RðkÞ were

calculated for α ¼ 4π. Since the value of α determines the
scale factor at which the 3 → 2 interactions decouple and
cannibalism ends, we expect some dependence of the
predicted MPS on α. However, within the range of param-
eters in Fig. 5 this dependence is very weak. The two main
effects are that cannibal perturbations stop oscillating and
start catching up to the dark matter perturbation after
decoupling. If they have enough time to grow they can have
a non-negligible impact on the MPS via the second term in
Eq. (25) and they contribute to the gravitational potential.
However for the points that we are interested in the cannibal
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FIG. 6. Plots of a3ρcan (left) and δcdm ratio (right) for different UV completions with second order phase transitions compared to the
MC model that gives Rð0.2hMpc−1Þ ¼ 0.9 and acan ¼ aeq (i.e., m ¼ 1.8 eV, Scan=SSM ¼ 0.04, corresponding to the red dot in Fig. 5).
The black lines correspond to ΛCDM while the colored lines to the cannibal fluid in different models. The energy densities are
continuous in a, because entropy is conserved throughout the transition. For the different UV completions we vary the number of UV
d.o.f. g� ¼ 2ðN2 − 1Þ corresponding to dark gauge groups SUðNÞ as well as the massesM of the heavier glueball states. The MPS ratio
is less suppressed, from R ¼ 0.905 to R ¼ 0.925 for the N ¼ 2 andM=m ¼ 3 (solid blue) and N ¼ 7 andM=m ¼ 1.25 (dashed green)
lines, respectively.
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perturbations remain too small to be important. A numeri-
cally more significant effect is that when the cannibal fluid
stops cannibalizing its energy density transitions from
scaling like 1=ða3 logaÞ to 1=a3. Thus, a model in which
the ϕ particles stop cannibalizing earlier will have more
energy density in cannibals and therefore more Hubble
friction. This effect is somewhat more important but still
small. For example, choosingm andScan as for the blue dot in
Fig. 5 but choosing α ¼ 1 and α ¼ ∞ (i.e., no decoupling of
the 3 → 2 interactions) we obtain R ¼ 0.92 and R ¼ 0.902
for the MPS ratio, respectively, a very small effect.
Having shown that the presence of cannibals suppress the

MPS by numerically solving the equations for the perturba-
tions, we devote the rest of this section to understanding this
result from Eqs. (21)–(24). We will only be interested in k
modes which are well inside the horizon during matter
domination, i.e., modes for which k ≫ 1=ηeq ∼ 0.01Mpc−1.
Let us start with the cannibal perturbations. For modes

deep inside the horizon the gravitational potential is
approximately constant so that we can ignore derivatives
of ψ . In addition, we can use wcan ≪ 1, c2s ≪ 1 to drop all
subleading terms in Eqs. (21) and (22). Then, taking the
second derivative of δcan and substituting Eq. (22) into
Eq. (21) yields

δ̈can þH_δcan þ k2c2sδcan ¼ −k2ψ ; ð26Þ

where the term on the right-hand side is the solution of the
Poisson equation

−k2ψ ¼ 3

2

a2

3M2
Pl

X
i

ρiδi: ð27Þ

Anticipating that the CDM contribution dominates the
sum during matter domination, and that perturbations in
the CDM fluid grow linearly, δcdm ∼ a, one sees explicitly
that ψ is constant during matter domination. Thus, Eq. (26)
is a simple harmonic oscillator with friction and the
gravitational potential corresponds to a constant shift of
the zero point. The solutions are oscillatory as long as
kcs > H ∼ 1=η, i.e., as long as the k modes are small
compared to the sound horizon, 2π=k ≪ csη. Recalling that
c2s ≈ wcan ≈ T=m ∼ 1= log a for cannibals and η ∼

ffiffiffi
a

p
dur-

ing matter domination, it is clear that modes which are
inside the Hubble horizon also enter the growing sound
horizon csη ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a= log a

p
and oscillate. However, once

cannibalism ends, cs ∼ 1=a. Then the sound horizon csη ∼
1=

ffiffiffi
a

p
shrinks and the mode eventually exits the sound

horizon, stops oscillating, and starts growing. However, for
the region of parameter space that we are interested in,
the cannibal perturbations do not catch up to the CDM
perturbations, thus justifying our approximation to only
keep the CDM term in the gravitational potential, Eq. (27).

We now turn our attention to the CDM perturbations.
Following the same procedure as before, combining
Eqs. (23) and (24) gives

δ̈cdm þH_δcdm þ k2ψ ¼ 0; ð28Þ

where ψ is given by Eq. (27) but only keeps the CDM
contribution ρcdmδcdm in the sum. Using this, rewriting the
Hubble parameter in terms of the energy density during
matter domination ρtot ≃ ρcdm þ ρcan, and changing varia-
bles from η to a we can write

ðρcdm þ ρcanÞa2δ00cdm þ 3

2
ðρcdm þ ρcanÞaδ0cdm

−
3

2
ρcdmδcdm ¼ 0: ð29Þ

Were it not for the cannibals, this would be the Mészáros
equation during matter domination, whose growing sol-
ution is δcdm ∼ a. Equation (29) shows that cannibal dark
matter increases the Hubble friction (δ0cdm-term) felt by the
CDM perturbations but does not contribute to the gravita-
tional pull from the Poisson term. This explains the
smaller rate of growth of δcdm we discovered in our numerical
solutions.
To get a rough idea of what this change in the growth rate

is let us further simplify Eq. (29) by taking ρcan=ρcdm ≪ 1
and dividing by ρcdm þ ρcan to arrive at Eq. (1). This is
easily integrated in an approximation where we neglect the
slow log a dependence of ρcan. In fact, this equation for the
growth of perturbations without the loga dependence
applies to a model with CDM and a subdominant compo-
nent of dark plasma [11,19]. The solution for the growing
mode is the power law δcdm ∼ a1−

3
5
ρcan=ρcdm [11,19,50], a

growth rate smaller than the linear one from the usual
Mészáros equation. For the decaying mode, one finds
a−

3
2
þ3

5
ρcan=ρcdm . In the cannibal case the exponent is a slowly

varying integral function of fcan that depends on a (because
of the slow logarithmic decay of fcan), which explains the
change in the slope of the suppression we saw in Fig. 4.

IV. NATURAL UV COMPLETIONS FROM
SECLUDED GAUGE SECTORS

In this section we discuss our favorite UV completion of
the MC model, a simple non-Abelian pure-glue gauge
sector which confines at low energies and produces
cannibalistic glueballs.
Consider an SUðNÞ gauge theory with no light matter

fields. Such a theory has two marginal operators, the gauge
kinetic term

−
1

4g2D
F2
μν ð30Þ
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and the CP-violating θFF̃ term. We set θ ¼ 0 mostly
because it makes no qualitative difference but also because
it is zero if the dark sector preservesCP. All other operators
as well as couplings to the SM are irrelevant (in the sense of
their scaling with energy) and therefore do not impact the
confining dynamics and cannibalism. The dark sector could
be coupled to the SM in the UV by heavy matter fields
which are charged under both the SM and dark SUðNÞ
gauge group. Then it would be natural for the two sectors to
have a common temperature in the UV. However, if
inflation and reheating occur at temperatures below the
coupling of the two sectors or if there is a phase transition
or there are heavy particles with associated entropy
production then the two sectors may end up with very
different temperatures. We take the temperature of the
cannibal sector to be a free parameter T.
Assuming that the SUðNÞ gauge coupling in the UV is

not too small, the coupling runs strong in the IR and the
theory confines at temperatures below some scale Λc. The
confining gauge theory has a spectrum of stable glueball
states with varying spin and parity quantum numbers
[51–54]. The most important of these glueballs for cosmol-
ogy is the lightest glueball ϕ with mass m ∼ Λc which is a
parity even scalar and carries no conserved quantum
number. It has number-changing interactions and its low-
energy effective description is the Lagrangian equation (2)
plus higher-dimensional operators of the form ϕn=mn−4.
The important parameters of this low-energy theory are the
glueball massm and the entropy in the glueballs Scan. There
is also a dependence on the coupling λ which determines
the end of the cannibalism phase when Γ32 ¼ H. For a
strongly coupled SUðNÞ theory naive dimensional analysis
predicts λ ≃ 4π=

ffiffiffiffi
N

p
. Changing this coupling by a factor of

2 would change the duration of the cannibalism phase by
1=2; [see Eq. (16)] this has very little impact on the
cosmology. Note that the number density of heavier glue-
balls ϕH is exponentially suppressed relative to ϕ at low
temperatures even if they are stable because they can
efficiently annihilate ϕH þ ϕ̄H → ϕþ ϕ.
Since the ϕ particles have no conserved quantum number

they are unstable to decay. ϕ has no other particles to decay
to in the dark sector but it can decay to gravitions or SM
particles through higher-dimensional operators. For exam-
ple, the width to decay into gravitons is roughly
m5=M4

Planck ∼ 10−108 eV½m=eV�5. This is much smaller
than the Hubble constant today for the masses we consider.
In fact, even decays mediated by a dimension 6 operator
suppressed by a scale of 1 GeV are too slow to be
cosmologically relevant for m ∼ 1 eV. This justifies treat-
ing the ϕ particles as stable.
This completes our description of the UV completion of

the MC model. In most of the interesting parameter space,
Fig. 5, the UV completion is not needed for the compu-
tation of the MPS. This is because either (i) the confining
transition happens well before matter-radiation equality and

the energy density in the cannibal sector is negligible
during and before the transition or (ii) because the con-
fining transition happens well after matter-radiation equal-
ity. In the latter case the cannibal sector is “gluon” radiation
well into matter domination and its energy density redshifts
to being negligible before cannibalism even starts. Thus,
only in models where the confinement transition happens
close to matter-radiation equality (red dot in Fig. 5) is the
UV completion needed for the computation of the MPS.
We study this special case in the remainder of this section.
Computing the cosmological evolution of the cannibal

fluid through the confining phase transition exactly is very
difficult as one would have to solve for the dynamics of a
strongly coupled thermal gauge theory [55]. We take a
simplified approach and match the UV theory with N2 − 1
weakly interacting gluons onto the confined theory of the
lightest glueball ϕ. This matching depends on the size of
the gauge group, N, the details of the phase transition (it
can be first or second order), the glueball spectrum, and
couplings in the strongly coupled regime. It is believed that
for N ¼ 2 the phase transition is second order so that
entropy is conserved in the phase transition; for N ¼ 3 it is
probably weakly first order and for higher N strongly first
order [56,57]. Note that in the presence of extra matter with
mass near the confinement scale, the order of the phase
transition can change. Thus, we treat the order of the phase
transition as an additional uncertainty. In the case of a
strongly first order phase transition, the gluon plasma
supercools below the confinement scale before critical
bubbles of the confined phase appear. In such a scenario,
the entropy increases during the phase transition, and
because of the supercooling only the lightest glueballs
are abundant after the phase transition.
The model dependence due to unknown physics of the

phase transition enters into the matching onto the UV
theory. A single IR theory which is specified by giving Sc
and m can match onto different UV theories, with different
values of N and possibly different phase transitions. To
study the sensitivity of the MPS predictions to this model
dependence we look at two simplified cases: a smooth
second order phase transition with conserved entropy and a
simplified glueball spectrum and a very strongly first order
phase transition with a jump in entropy and temperature
(see, e.g, [58]).
To model the second order phase transition (see Fig. 6)

we assume that the full theory is described by g� ¼
2ðN2 − 1Þ bosonic d.o.f. The lightest, ϕ, has mass m,
and the others have a common massM which we vary from
1.25m to 3m. We also assume entropy conservation and
that the theory remains in chemical and thermal equilibrium
throughout the phase transition. Then all distributions are
simply given by Boltzmann distribution functions for the
2ðN2 − 1Þ d.o.f. In the UV, when all masses can be ignored,
this reproduces the physics of free SUðNÞ gluons. In the
transition region where T ∼m the “heavy glueballs” of
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massM pair annihilate into the lightest glueballs ϕ. And in
the IR, when the temperature drops below m, only the
cannibals remain.
For the very strongly first order phase transition (see

Fig. 7) we match a UV theory of N2 − 1 massless gluons
onto the IR theory with a jump in entropy at a scale factor
acan. We choose the matching scale factor such that the
temperature evaluated in the IR theory (the theory of the
cannibal ϕ) equals m=3 at the matching scale. There we
match onto the UV theory with g� ¼ 2ðN2 − 1Þ massless
bosonic d.o.f. and a jump in entropy (increasing from the
UV to the IR) by a multiplicative factor which we vary from
1 to 2. The discontinuity in d.o.f. and entropy at the
matching point also implies a discontinuity in other back-
ground quantities.

V. CONCLUSIONS

We have studied the possibility that a subdominant
component of the dark matter might posses a cannibalistic
phase. If this phase overlaps with matter domination then
the most significant impact is on the matter power spec-
trum. This is particularly interesting because there is 2σ–3σ
tension in direct observations of the matter power spectrum,
which at 8 Mpc−1 scales with the matter power spectrum
inferred from ΛCDM and the precision fit to the CMB data
from Planck [3–8]. Even if one dismisses the hints for new
physics from this source, observations of the matter power
spectrum are going to improve significantly in the coming
years with much more precision on the full spectral shape
(as a function of k) expected. Thus, we find it interesting to
explore what impact different types of new physics may
have on the shape of the matter power spectrum.
The simple cannibal model of Eq. (2) has three param-

eters which characterize its fluid description. Given our
preference for strongly coupled UV completions of the
simple model, one of them is more or less fixed: α ∼ 4π. Its
significance is to determine the scale factor at which the
3 → 2 interactions decouple and the ϕ particles stop
cannibalizing and turn into cold dark matter. Smaller values
of α would lead to a shorter period of cannibalization. The
other two parameters characterizing the cannibal fluid are
its entropy Scan and the mass m of the cannibal particle. We
conclude this section with two plots which show the impact
of these two parameters on the predicted matter power
spectrum shape.
Figure 8 shows the dependence of the MPS on the

decoupling scale anr. For fixed α ¼ 4π we have roughly
anr ∼ 105acan ∼ 106S1=3can=m; thus, anr depends on the ratio
of S1=3can and m. This scale is when cannibalism stops;
therefore, any wave mode k which enters the (sound)
horizon after this scale cannot be affected by the cannibal
fluid oscillations and will take on the same value as in
ΛCDM. Thus, anr can be understood to determine the
smallest values of k which are suppressed by cannibalism.

Therefore, changing the ratio S1=3can=m which changes anr is
equivalent to shifting the MPS suppression curve in the
horizontal k direction. For the purposes of this plot we fixed
the fraction of the energy density in the cannibal fluid today
relative to the ordinary dark matter energy density to
fcan;0 ¼ 0.01 for all models. The ΛCDM reference power
spectrum which we compare to (the denominator of R) has
1% of additional dark matter instead of the cannibal fluid
so that all models being compared have the same value of
H0. This removes the background effect of the additional
energy density in the cannibal fluid.
Figure 9 shows the dependence on the orthogonal

combination of parameters, i.e., varying S1=3can and m while
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anr > aeq) then fcan is bigger earlier in the Universe, because of
its logarithmic scaling, and this enhances the suppression.
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(mScan=4.4×10- 11eV4)

FIG. 9. MPS ratio RðkÞ for different values of the productmScan
but fixed ratio S1=3can=m (i.e., fixed acan). This corresponds to
different fractions fcan;0 of cannibals, from 1% (purple) to 10%
(red). We have normalized R such that there is a corresponding
extra amount of CDM in the ΛCDM theory, in order to cancel out
some background effects. With a fixed anr it is clear that the same
k modes are suppressed, but the amount of suppression is dialed
by fcan;0.
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holding their ratio fixed. This keeps the scales in k at which
the suppression occurs fixed but it changes the overall
energy density in the cannibal fluid and therefore changes
mostly the amplitude of the suppression.
Note that this second dependence is similar to that of the

MPS on neutrino mass [59]. However, the smallest k
affected by nonzero neutrino masses is constrained to
within a factor of a few of kNR ∼ 0.01 Mpc−1 whereas
for cannibals the onset of the suppression in the MPS can
lie anywhere within k ∼ 0.001–0.1 Mpc−1 (see Fig. 8).
Finally, we wish to mention the other “anomaly” in

cosmological precision fits: the discrepancy between the
value ofH0 inferred from the Planck CMB data (and BAO)
within ΛCDM and the direct measurement of H0 from
[1,2]. To see if cannibals could also help with this anomaly
while remaining consistent with everything else would
require a global fit of the cannibal model.
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APPENDIX: CANNIBAL EQUATIONS
FROM THE BOLTZMANN EQUATION

In this Appendix we derive the equations that describe
the ϕ fluid from the statistical description of its particles,
and show that the self-interactions of the fluid do not
appear. In particular we obtain Eqs. (21) and (22).

1. The Boltzmann equation

The fluid description for a fluid ϕ can be derived from its
one-particle distribution function fðp;x; ηÞ for a ϕ particle
of mass m, momentum p, energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

and position x, at a conformal time η. To zeroth order,
the Universe is isotropic and homogeneous, and thus
it is described by the Friedmann-Lemaître-Robertson-
Walker metric. Therefore, its distribution function is
similarly homogeneous and isotropic to zeroth order.
Expanding around this background to first order in small
inhomogeneities:

fðp;x; ηÞ ¼ fð0Þðp; ηÞð1þ Ψðp;x; ηÞÞ; ðA1Þ

where Ψ is the small perturbation in the distribution
function that codifies the inhomogeneities and anisotropies
of the ϕ fluid. Since we are ultimately interested in the
MPS, we Fourier transform f and Ψ with regards to x to
arrive at equivalent expressions for the Fourier transforms
with x → k.
From the distribution function one can calculate the

quantities that describe the ϕ fluid ([48]):

n̄ðηÞ þ δnðk; ηÞ≡
Z

Dpfð0Þð1þΨÞ; ðA2Þ

ρ̄ðηÞð1þ δðk; ηÞÞ≡
Z

Dpfð0Þð1þΨÞE; ðA3Þ

P̄ðηÞ þ δPðk; ηÞ≡
Z

Dpfð0Þð1þ ΨÞ p
2

3E
; ðA4Þ

ðρ̄þ P̄Þθðk; ηÞ≡
Z

Dpfð0ÞΨðik · pÞ; ðA5Þ

with Dp≡ g d3p
ð2πÞ3 being the phase space element, assuming

each ϕ particle has g d.o.f. From now on we take g ¼ 1, as
in our MC model. For brevity we also drop the overline
denoting a background (average) quantity.
The Boltzmann equation describes the evolution of the

distribution function:

_f þ ik
p
E
p̂ · k̂f þ p

∂f
∂p

�
−Hþ _φ − ik

E
p
p̂ · k̂ψ

�

¼ a
2E

ð1þ ψÞC½f�; ðA6Þ

where ψ , φ are the Newtonian gauge scalar perturbations of
the metric, a is the scale factor, and the dots are derivatives
with respect to conformal time. The left-hand side describes
the free evolution of the distribution function, whereas the
right-hand side encodes the change in f due to collisions,
and it is appropriately called the collision operator C½f�.
Since we are interested in identifying our ϕ sector with

our cannibal fluid, we will assume that the particles have
2 → 2 and 3 → 2 interactions, and therefore write
C½f�≡ C22½f� þ C32½f�. The change in f arising from
collisions must be proportional to the distributions of the
particles involved, as well as to the amplitude squared of
the interactions. We can then write the collision term for
f1 ≡ fðp1;k; ηÞ as

C22½f1� ¼
Z

dΠ2dΠ3dΠ4F22; ðA7Þ

C32½f1� ¼
Z

dΠ2dΠ3dΠ4dΠ5F32; ðA8Þ
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F22 ≡ 1

1!2!
ð−f1f2 þ f4f3ÞjM22ðp1; p2;p3; p4Þj2ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ; ðA9Þ

F32 ≡ 1

2!2!
ð−f1f2f3 þ f4f5ÞjM32ðp1; p2; p3;p4; p5Þj2ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5Þ

þ 1

1!3!
ðf4f2f3 − f1f5ÞjM32ðp4; p2; p3;p1; p5Þj2ð2πÞ4δ4ðp4 þ p2 þ p3 − p1 − p5Þ; ðA10Þ

where dΠi ≡ Dpi
2Ei

is the Lorentz-invariant momentum space

element, while, e.g., jM32ðp1; p2; p3;p4; p5Þj2 is the
3 → 2 scattering amplitude squared, and we have used
that the matrix element squared is invariant under permu-
tation of the identical initial particles, final particles, and
time reversal (swap of initial and final states). Note that for
brevity we have not included the Bose enhancement factors
(1þ fi), but this does not affect any of our arguments.
When the ϕ particles are nonrelativistic the Bose enhance-
ment reduces to 1.
For the 2 → 2 scattering factor in Eq. (A9) we have

labeled the momenta as p1 þ p2 ↔ p3 þ p4. A plus sign
denotes a “gain” in the distribution function of f1 because
of the appearance of a particle with momentum p1, while a
minus sign denotes a “loss” of the same, due to the inverse
process. The symmetry factors correspond to the different
permutations of the initial and final state particles, once p1

has been selected.
For the 3 → 2 scattering in Eq. (A10) there are two places

for p1: it can either be part of the set of three particles, or of the
set of two. For this reason we have two different amplitudes
and energy-momentum conserving Dirac deltas: one corre-
sponding to the scattering p1 þ p2 þ p3 ↔ p4 þ p5, and
another to p4 þ p2 þ p3 ↔ p1 þ p5. Once again, each of
these two options has also its reversed version, which
translates into a gain or a loss of a particle of momentum
p1. Finally, note that the symmetry factors are different
depending on whether the momentum p1 is part of the set of
three or the set of two.

2. Continuity and Euler equations

We now have the necessary ingredients to obtain the
equations governing the evolution of theϕ fluid: according to
Eqs. (A2)–(A5) we can multiply Eq. (A6) by the appropriate

functions of p1 and integrate to obtain the equations for ρ, δ,
θ, and so forth.Aswewill show in thisAppendix, forρ, δ, and
θ the collision terms vanish, since their corresponding
weights inside the integrals in Eqs. (A3) and (A5) are the
energy E and momentum p, which are conserved by the
interactions.
From Eq. (A6) we can obtain the evolution of ρ, δ, and θ

using Eqs. (A3) and (A5), to zeroth or first order in Ψ. The
left-hand side gives the well-known results ([48]):

_ρþ 3Hðρþ PÞ; ðA11Þ

_ρδþ ρ_δþ 3Hðρδþ δPÞ − 3 _φðρþ PÞ þ ðρþ PÞθ; ðA12Þ

ðρþ PÞ_θ þ ð_ρþ _Pþ 4Hðρþ PÞÞθ − k2ðρþ PÞψ
− k2δPþ k2ðρþ PÞσ: ðA13Þ

Here ðρþ PÞσ ≡ −
R
Dp p2

E ððk̂ · p̂Þ2 − 1
3
Þfð0ÞΨ is the

anisotropic stress.
Let us now focus on the right-hand side of Eq. (A6), the

collision operators. Starting with the 2 → 2 term we obtain

Z
Dp1

1

2E1

C22½f1�W1 ¼
Z Y4

i¼1

dΠiF22W1; ðA14Þ

whereW1 ≡Wðp1Þ is some weight function of the momen-
tum p1, according to Eqs. (A2)–(A5):W1 ¼ 1 if wewant the
equations forn,W1 ¼ E1 forρ and δ,W1 ¼ ik · p1 for θ, and
so forth.
Since we are integrating over all the momenta we are free

to relabel them atwill. Changing 12 ↔ 34 in the second term
of Eq. (A9) and making use of jM22ðp3; p4;p1; p2Þj ¼
jM22ðp1; p2;p3; p4Þj takes Eq. (A14) to

Z Y4
i¼1

dΠijM22ðp1; p2;p3; p4Þj2ð2πÞ4δ4ðΣipiÞ
1

1!2!
f1f2ð−W1 þW3Þ: ðA15Þ

Similarly, the integrals remain the same if we exchange 1 ↔ 2, and 3 ↔ 4. Doing this and taking the half sum of these
exchanges gives [60]

Z Y4
i¼1

dΠijM22ðp1; p2;p3; p4Þj2ð2πÞ4δ4ðΣipiÞ
1

2!2!
f1f2ð−W1 −W2 þW3 þW4Þ: ðA16Þ

CANNIBAL DARK MATTER AND LARGE SCALE STRUCTURE PHYS. REV. D 98, 083517 (2018)

083517-13



It is clear that if the weight W is a quantity conserved by the 2 → 2 interactions (such as energy, momentum, or particle
number) this collision term vanishes.
Let us now focus on the 3 → 2 collision term:

Z
Dp1

1

2E1

C32½f1�W1 ¼
Z Y5

i¼1

dΠiW1F32: ðA17Þ

In the first term of F32 [Eq. (A10)] we can see that the labels 1, 2, and 3 can be permuted without altering the result of the
integration, while in the second term it is the 1 and 5 labels. Doing this to Eq. (A17) yields

Z Y5
i¼1

dΠi
1

3!2!
½jM32ðp1; p2; p3;p4; p5Þj2ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5Þð−f1f2f3 þ f4f5ÞðW1 þW2 þW3Þ

þ jM32ðp4; p2; p3;p1; p5Þj2ð2πÞ4δ4ðp4 þ p2 þ p3 − p1 − p5Þðf4f2f3 − f1f5ÞðW1 þW5Þ�: ðA18Þ
Changing the labels 1 ↔ 4 in the second term

Z Y5
i¼1

dΠi
1

3!2!
jM32ðp1; p2; p3;p4; p5Þj2ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5Þ

× ð−f1f2f3 þ f4f5ÞðW1 þW2 þW3 −W4 −W5Þ; ðA19Þ

which again vanishes if the weight W is conserved by the
3 → 2 collisions, like energy or momentum. Note that
particle number is not conserved in these interactions.
Combining the results for both collision terms with the left-
hand sides in Eqs. (A11)–(A13) we get the standard
equations for the background and perturbations of the ϕ
fluid:

_ρþ 3Hðρþ PÞ ¼ 0; ðA20Þ

_δþ ð1þ wÞðθ − 3 _φÞ þ 3Hðc2s − wÞδ ¼ 0; ðA21Þ

_θ þHð1 − 3c2sÞθ − k2
�
ψ þ c2s

1þ w
δ − σ

�
¼ 0; ðA22Þ

which are the continuity equation (for both background
and perturbation energy densities) and the Euler equation.
We have used the equation of state w≡ P=ρ, and the
fact that δP ¼ c2sρδ and c2s ¼ _P

_ρ is the sound speed squared
for adiabatic perturbations. Clearly from Eq. (A20),
c2s ¼ w − _w

3Hð1þwÞ.
Finally, there remains the matter of the higher moments

of the Boltzmann equation, which are obtained from
Eq. (A6) by performing integrations with the appropriate
weights Wðp1Þ, e.g., the equation for _σ. It can be shown
[61] that for fluids with very fast self-interactions (i.e.,
perfect fluids) all these moments vanish. Taking our
cannibal fluid to be one such fluid, with fast 2 → 2
interactions, σ ¼ 0 and then Eqs. (A21) and (A22) reduce
to Eqs. (21) and (22), and they are enough to describe the ϕ
perturbations.

3. Number density and temperature

We now write down the equation for the background
number density n and, together with Eq. (A20), show that
we can solve for the temperature as a function of the scale
factor, TðaÞ. In order to obtain the equation for n we
integrate the Boltzmann equation (A6) according to
Eq. (A2), to zeroth order in Ψ. This corresponds to taking
W1 ¼ 1 in Eqs. (A16) and (A19) for the collision operators.
The contribution from the operator C22 vanishes, while that
from C32 does not, because 2 → 2 interactions conserve
particles number but 3 → 2 do not. The result is

_nþ 3Hn ¼ a
Z Y5

i¼1

dΠi
1

3!2!
jM32j2ð2πÞ4δ4ðΣipiÞ

× ð−fð0Þ1 fð0Þ2 fð0Þ3 þ fð0Þ4 fð0Þ5 Þ: ðA23Þ

The right-hand side is difficult to compute for general
fð0Þ. Nevertheless, we can make some simplifying assump-
tions. In particular, if we assume very fast 2 → 2 self-
interactions then the ϕ fluid is in thermal equilibrium, i.e.,
there is a sensible temperature T that can be associated with
it. Therefore, under this assumption we can write

fð0ÞðpÞ ¼ 1

e
E−μ
T − 1

ðA24Þ

for our bosonic cannibal dark matter particles, with μ their
chemical potential.
We can further simplify the right-hand side of the

number density equation by concerning ourselves only
with nonrelativistic ϕ particles, since we know that when
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they are relativistic they are in chemical equilibrium. Indeed,
in the relativistic regime, dimensional analysis implies
that the 3 → 2 interaction rate is Γ32 ∼ α3T ∝ a−1, which
remains bigger than the Hubble expansion rate of the
Universe H during both radiation and matter domination.
Therefore, for the relativistic caseΓ32 ≫ H and the fluid is in
chemical equilibriumwhere the number and energy densities
can be determined from entropy conservation.
For nonrelativistic particles E ∼m ≫ T and therefore we

can write

fð0ÞðpÞ ≃ eμ=Tfð0Þch ; with fð0Þch ≡ e−E=T ; ðA25Þ

the subindex standing for chemical equilibrium, when
μ ¼ 0. This means that we can write the ϕ-fluid back-
ground quantities in terms of their values in chemical
equilibrium:

n ≃ eμ=Tnch; ρ ≃ eμ=Tρch; P ≃ eμ=TPch; ðA26Þ

with nch ≈m3

�
T=m
2π

�
3=2

e−m=T

�
1þ 15

8

T
m
þ 105

128

T2

m2

�
;

ðA27Þ

ρch ≈m4

�
T=m
2π

�
3=2

e−m=T

�
1þ 27

8

T
m
þ 705

128

T2

m2

�
; ðA28Þ

Pch ≈m4

�
T=m
2π

�
3=2

e−m=T

�
T
m
þ 15

8

T2

m2

�
; ðA29Þ

obtained simply by integrating Eqs. (A2)–(A4) and expand-
ing for T=m ≪ 1. Note that ρch ≈mnch and Pch ≈ Tnch are
valid to lowest order in T=m and therefore only suitable for
a qualitative analysis such as the one presented in the main
body of this paper. In order to accurately solve the differ-
ential equations for ρ and nwe use the expressions found in
Eqs. (A27)–(A29).
With this in mind, we can finally write the background

number density equation:

_nþ 3Hn ¼ −ahσ32v2in2ðn − nchÞ; ðA30Þ

hσ32v2i≡ 1

n3ch

Z Y5
i¼1

dΠi
1

3!2!
fð0Þch;1f

ð0Þ
ch;2f

ð0Þ
ch;3

× jM32ðpiÞj2ð2πÞ4δ4ðΣipiÞ; ðA31Þ

where we have used fð0Þch;4f
ð0Þ
ch;5 ≈ e−

E4þE5
T ¼ e−

E1þE2þE3
T ≈

fð0Þch;1f
ð0Þ
ch;2f

ð0Þ
ch;3. As a consistency check, if Γ32 ≡

hσ32v2in2 ≫ H then n ≈ neq and the dark matter is in
chemical equilibrium (i.e., μ ≈ 0).
With the aid of Eq. (A26) we can write Eq. (A20) also in

terms of ρch and eμ=T . Doing this, and changing variables to
the scale factor, Eqs. (A20) and (A30) become

a
d
da

ðeμ=TρchÞ þ 3eμ=Tðρch þ PchÞ ¼ 0;

a
d
da

ðeμ=TnchÞ þ 3eμ=Tnch ¼ −
hσ32v2in3ch

H
ðe3μ=T − e2μ=TÞ: ðA32Þ

These are two coupled differential equations for μðaÞ and TðaÞ, which we solve numerically in order to obtain the
evolution of the background quantities of the ϕ fluid.
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