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Abstract 13 

The timing of leaf emergence in temperate and boreal forests is changing, which has 14 

profound implications for a wide array of ecosystem processes and services. Spring phenology 15 

models, which have been widely used to predict the timing of leaf emergence, generally assume 16 

that a combination of photoperiod and thermal forcing control when leaves emerge. However, 17 

the exact nature and magnitude of how photoperiod and temperature individually and jointly 18 

control leaf emergence is the subject of ongoing debate. Here we use a continuous development 19 

model in combination with time series of land surface phenology measurements from MODIS to 20 

quantify the relative importance of photoperiod and thermal forcing in controlling the timing of 21 

canopy greenup in eastern temperate and boreal forests of North America. The model accurately 22 

predicts biogeographic and interannual variation in the timing of greenup across the study region 23 

(median RMSE = 4.6 days, median bias = 0.30 days). Results reveal strong biogeographic 24 

variation in the period prior to greenup when temperature and photoperiod influence greenup that 25 

covaries with the importance of photoperiod versus thermal controls. Photoperiod control on leaf 26 

emergence is dominant in warmer climates, but exerts only modest influence on the timing of 27 

leaf emergence in colder climates. Results from models estimated using ground-based 28 

observations of cloned lilac are consistent with those from remote sensing, which supports the 29 

realism of remote sensing-based models. Overall, results from this study suggest that apparent 30 

changes in the sensitivity of trees to temperature are modest and reflect a trade-off between 31 

decreased sensitivity to temperature and increased photoperiod control, and identify a transition 32 

in the relative importance of temperature versus photoperiod near the 10 ºC isotherm in mean 33 

annual temperature. This suggests that the timing of leaf emergence will continue to move earlier 34 
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as the climate warms, and that the magnitude of change will be more pronounced in colder 35 

regions with mean annual temperatures below 10 ºC. 36 

Keywords: spring phenology, climate change, deciduous forests, photoperiod, temperature 37 

sensitivity, Bayesian, hierarchical modeling, MODIS, land surface phenology 38 

39 
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1. Introduction  40 

There is overwhelming evidence that leaf emergence is occurring earlier in temperate and 41 

boreal forests (Menzel et al., 2006; Schwartz et al., 2006). However, a number of recent papers 42 

have concluded that the sensitivity of leaf emergence to changes in temperature has decreased in 43 

recent decades (Fu et al., 2015; Piao et al., 2017) and that the period when trees are sensitive to 44 

thermal forcing is becoming shorter (Fu et al., 2019; Güsewell et al., 2017; Wenden et al., 2020). 45 

These results complicate interpretation of observed trends and exacerbate challenges involved in 46 

forecasting how the phenology of trees will change in the future. These challenges are further 47 

complicated by fundamental issues in the way that the sensitivity of phenological events to 48 

temperature is generally quantified (Keenan et al., 2019). Because changes in phenology impact 49 

important ecosystem functions (Keenan et al., 2014; Richardson et al., 2013), understanding how 50 

changes in climate affect phenology is critical to forecasting how ecosystems will respond to 51 

future climate change (Peñuelas et al., 2009; Piao et al., 2019). 52 

To address this, a variety of recent studies have focused on improving understanding of 53 

bioclimatic controls on plant phenology (Liu et al., 2017; Zohner et al., 2016). Results from both 54 

lab- and field-based experimental studies have provided insights (Montgomery et al., 2020; 55 

Richardson et al., 2018a), but are limited by the fact that phenological behavior in controlled 56 

laboratory- and field-based warming experiments differs from behavior observed in natural 57 

ecosystems (Clark et al., 2014a; Wolkovich et al., 2012). Further, the manner in which 58 

environmental conditions are perturbed in such experiments (e.g., 2 ºC warming) is not 59 

representative of climate changes expected in the future, which are predicted to occur gradually, 60 

but with large year-to-year variability (Schewe et al., 2019; Walther et al., 2002). These issues 61 

are compounded by the fact that the geographic sampling of data sets used in these studies is 62 
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often limited and does not reflect the full biogeographic range of species examined (Richardson 63 

et al., 2013). Hence, geographic variation in the relative importance of different climate drivers 64 

on phenology, both within and across plant communities, is not well understood (Piao et al., 65 

2019).  66 

One widely used strategy for investigating the response of plant phenology to climate change 67 

is to calibrate mechanistic models using weather data in combination with long-term records of 68 

phenology collected on the ground (Basler, 2016; Fu et al., 2019) or from remote sensing (Liu et 69 

al., 2017; Melaas et al., 2018). In addition to thermal controls, photoperiod is widely assumed to 70 

control the timing of leaf emergence by regulating the entrance of ecodormancy, triggering 71 

thermal forcing to stimulate bud swelling and leaf emergence (Chuine et al., 2016; Jackson, 2009; 72 

Körner and Basler, 2010). Hence, many models include explicit representation of photoperiod 73 

(e.g., Blümel and Chmielewski, 2012; Masle et al., 1989; Basler, 2016; Migliavacca et al., 2012). 74 

To capture the role of thermal forcing, mechanistic models generally use aggregated bioclimatic 75 

variables such as growing degree days or winter chilling as their primary inputs. However, Clark 76 

et al. (2014a) have suggested that the use of such aggregated quantities is problematic because 77 

values for prescribed variables required by these models (e.g., start date of forcing accumulation) 78 

are not identifiable.  79 

In recent years, data-driven models based on state-space representations of phenological 80 

processes have been developed that overcome many of the weaknesses of both mechanistic and 81 

experimental approaches (e.g., Clark et al., 2014b; Qiu et al., 2020; Senf et al., 2017; 82 

Seyednasrollah et al., 2018).  By modeling phenological dynamics directly from data, these 83 

models avoid issues arising from misspecification of functional relationships between forcing 84 

variables and processes that regulate phenological development (Clark et al., 2014b). Building on 85 
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this approach, here we use a data-driven spring onset model in combination with gridded weather 86 

data and time series of ground-based and remotely sensed observations of spring greenup dates 87 

to explore biogeographic patterns in photoperiod and thermal controls on the timing of spring 88 

greenup.  Specifically, we use this model to : (1) quantify the relative importance of thermal 89 

forcing, photoperiod, and winter chilling in controlling spring greenup; (2) identify the pre-90 

season period when plants are sensitive to bioclimatic controls; and (3) characterize how 91 

covariance among thermal forcing, photoperiod, and the length of the pre-season period control 92 

the biogeography of spring greenup in deciduous forests of eastern temperate and boreal North 93 

America.  94 

 95 

2. Methods 96 

2.1. Study Region 97 

The study region includes the Northern Forests and Eastern Temperate Forest ecoregions 98 

included in level 1 of the US EPA Ecoregions of North America (Fig. A1). To distinguish 99 

deciduous forests from evergreen forests and other land cover types within the study area, the 100 

500 m Collection 6 MODIS Land Cover Type product was used. This product provides annual 101 

land cover maps based on machine learning that are post-processed using a multi-temporal state-102 

space modeling framework that reduces spurious land cover change introduced by classification 103 

uncertainty in individual years (Abercrombie and Friedl, 2016; Sulla-Menashe et al., 2019).  104 

The continuous development spring onset model (Section 2.3) is estimated on an equal-area 105 

grid, where each grid cell is 4.67 km x 4.67 km (10 × 10 MODIS pixels; ~22 km2). In each grid 106 

cell, only pixels labeled as deciduous broadleaf or mixed forests throughout the entire study 107 

period from 2001-2017 were included in the analysis. To ensure analyses were based on grid 108 
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cells dominated by deciduous forest cover, we excluded model grid cells where the fraction of 109 

MODIS pixels labeled as deciduous broadleaf or mixed forests was less than 50% (Fig. A1).  110 

 111 

2.2. Spring Greenup and Meteorological Data 112 

To identify the timing of springtime leaf emergence from 2001 to 2017, we used the 113 

Collection 6 MODIS Land Cover Dynamics product (MCD12Q2; Gray et al., 2019). This 114 

product uses time series of the two-band Enhanced Vegetation Index (EVI2) to identify the 115 

timing of six key phenophase transition dates during each growing season in each 500-m MODIS 116 

pixel. Numerous studies have reported that this product provides a reliable measure of vegetation 117 

phenology (Moon et al., 2019; Richardson et al., 2018b) and seasonal changes in ecological 118 

function and surface biophysical characteristics (Melaas et al., 2013; Moon et al., 2020). For this 119 

analysis, we use the MCD12Q2 ‘greenup’ metric, which is defined by the Land Cover Dynamics 120 

product as the day of year (DOY) during the greenup phase in spring when the EVI2 time series 121 

at each pixel crosses 15% of its seasonal amplitude (Gray et al., 2019).  122 

To provide the meteorological data required for model estimation, we used the Version 3 123 

Daymet dataset for North America (Thornton et al., 2017) (https://daymet.ornl.gov). This data 124 

set uses digital elevation data in association with a land-water mask and meteorological 125 

observations collected at ground-based stations to create gridded time series of surface 126 

meteorological fields at daily time step and 1 km spatial resolution for the period 1980 to present. 127 

For this work, we used daily maximum and minimum 2-m air temperatures from 2000 to 2017 128 

along with daylength, resampled to 500 m and co-registered to the MODIS data over all grid 129 

cells included in our analysis.  130 

 131 
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2.3. Continuous Development Spring Onset Model 132 

To estimate the sensitivity of different climatological controls on springtime phenology, we 133 

developed a continuous development spring onset model (hereafter, CDSOM) based on a 134 

hierarchical Bayesian framework that predicts the timing of springtime greenup using three 135 

drivers: photoperiod, thermal forcing, and chilling units. The original form of this model was 136 

proposed by Clark et al. (2014b), who used the same general approach to show that because 137 

conventional process-based phenology models (e.g., Hufkens et al., 2018.) aggregate daily air 138 

temperature time series into cumulative sums or mean values for each year or season, they 139 

misrepresent how thermal forcing controls the timing of phenology.  140 

Similar to Clark et al. (2014b), the CDSOM we use here tracks the continuous response of 141 

phenological development to variation in environmental controls at daily time step. To do this, 142 

the model uses a state-space framework that includes an unobservable latent state (h), which 143 

responds continuously to environmental controls and captures ecological responses to 144 

bioclimatic forcing: 145 

ℎ�,�,��� = ℎ�,�,� + 
ℎ�,�,� (1) 

where ℎ�,�,� is the latent state for grid cell g and sample (i.e., pixel) s on day d. In this framework, 146 


ℎ�,�,� is the increment in h from day d to day d + 1, which is estimated using: 147 


ℎ�,�,� = �  (��,�,� × ��)(1 − ℎ�,�,�/ℎ���),     
ℎ�,�,� ≥ 0
0,                                                          
ℎ�,�,� < 0  (2) 

where ��,�,� is a matrix of predictor variables that includes the daily mean temperature (��,�,�),  148 

day-length (i.e., photoperiod; ��,�,�), and chilling units (CU�,�; defined below) on each day, and 149 

where daily mean temperature is computed as the average of daily maximum and minimum 150 
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temperatures from Daymet in each 500 m MODIS pixel. ��  is a vector of estimated model 151 

coefficients for each grid cell (g), and ℎ��� is the final state value of h, which is prescribed to be 152 

100. Note that: (1) even though a linear formulation is used to describe the relationship between 153 

model predictors and coefficients, the model accommodates nonlinear responses in phenological 154 

responses to environmental controls using an asymptotic limit for the latent state (i.e., ℎ�,�,�/155 

ℎ���); and (2) the latent state increment is always non-negative.  156 

To convert the continuous scale of the latent state (h) into a form that identifies discrete 157 

phenological events (i.e., the timing of spring greenup onset), a logit transformation is used: 158 

� !"#$%�,�,�& = ' + ( × ℎ�,�,� (3) 

where %�,�,� is the probability that the onset occurs at sample pixel s in grid g on day d, and κ and 159 

λ are the intercept and slope of the transformation, respectively. Because greenup onset is 160 

defined to be a discrete event, %�,�,� follows a Bernoulli distribution: 161 

)�,�,�  ~ +,-. /��"(%�,�,�) (4) 

where )�,�,� indicates whether or not greenup onset has occurred for sample s in grid g on day d. 162 

Following convention, chilling units (CU�,�) were defined as: 163 

CU�,� = 0 1(��,�,� < �2)
34,5

�634,7
 

(5) 

Hence, CU�,� is defined as the number of days below prescribed threshold �2 during the period 164 

after the onset of dormancy until an unobserved date 8�,�  when the chilling requirement is 165 

satisfied. Previous studies have suggested that boreal and temperate tree species respond to air 166 
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temperatures ranging from -5 to 10 ºC as a threshold for chilling requirements (Hänninen et al., 167 

2019). Here we used 0 ºC because the study area covers a large range of climate conditions. 168 

Further, and more importantly, sensitivity analyses revealed that model results were not sensitive 169 

to variation in �2 (not shown), which is supported by results indicating that chilling control on 170 

the timing of greenup is minor (see Results).   171 

 172 

2.4. CDSOM Estimation  173 

As we described above, the CDSOM was estimated using a regular grid, with each grid 174 

cell composed of 100 MODIS pixels. We excluded all pixels with more than one land cover type 175 

label between 2001 and 2017 (i.e., that nominally experienced change) and excluded all cells that 176 

were composed of less than 50% deciduous or mixed forests. Because the CDSOM is 177 

computationally expensive, we used a two-stage sampling approach to estimate the model for 178 

randomly selected grid cells in each of the 13 MODIS tiles that intersect the study region. In the 179 

first stage, we randomly sampled grid cells within each MODIS tile that met the criteria listed 180 

above. If less than 300 valid grid cells were available within a tile, we included all valid grid 181 

cells. If more than 300 grid cells were available in a tile, we randomly selected a sample of 300 182 

cells. In the second stage, we randomly selected MODIS pixels located in each grid cell across 183 

time. To minimize the impact of spatial and temporal correlation, we used a sub-sample of 100 184 

pixel-years (i.e., 100 unique greenup dates randomly selected across 17 years) to estimate a 185 

unique model for each cell. Each sample was selected from a total pool of between 850-1700 186 

sample points (i.e., 50-100 pixels per year in each grid across 17 years).  187 

For each year, December 1st of the previous year and DOY 250 (~Sept. 7) of the current year 188 

were used as the start and end dates of latent state development, respectively. Posterior sampling 189 
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was performed using the “R2jags” package in R (Su and Yajima, 2015), with 10,000 iterations 190 

and 3,000 burn-in periods. As a final step, to reduce noise in our results, we excluded grid cells 191 

where estimated model coefficients were outside 95% of the range of estimated model 192 

coefficients across all grid cells. This yielded a final data set consisting of 1,685 grid cells with 193 

valid results.  194 

 195 

Model results from a representative grid cell are shown in Fig. 1. Overall, predicted onset 196 

dates are well aligned with observed onset dates at this grid cell, with a root-mean-square error 197 

(RMSE) of 3.7 days across the time series (Fig. 1a). Because the input forcing data are 198 

normalized prior to model estimation (i.e., having a mean of 0 and a standard deviation of 1 for 199 

each of the input variables in each grid g and sample s), the posterior distributions for each 200 

model coefficient, which reflect the dependence of phenological development on each input 201 

variable, show differences that are independent of the magnitude or units of each input variable 202 

(Fig. 1b). Time series of the latent state generated by the model (Fig. 1c) provide information 203 

regarding the timing and duration of the pre-season period prior to greenup onset. This period 204 

has been previously described as “as the most temperature-sensitive period preceding the 205 

phenological event” (Güsewell et al., 2017) or “the period before leaf unfolding for which the 206 

partial correlation coefficient between leaf unfolding and air temperature is highest” (Fu et al., 207 

2015). Here we define this period as corresponding to the time interval when phenological 208 

development is affected by bioclimatic forcing, and we use the CDSOM to identify the “pre-209 

season period” as starting on the DOY when the latent state variable (h) starts to increase and 210 

ending on the DOY when greenup onset occurs (i.e., the period indicated by the arrow in Fig. 1c).  211 
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 212 

Fig. 1.  Model results for a randomly selected grid cell. (a) Relationship between the greenup 213 

onset dates from MODIS and onset dates estimated by the model. (b) The distribution of model 214 

coefficients for each control variable (i.e., the relative dependence on each climate control; 215 

Therm.: thermal forcing; Photo.: photoperiod; Chill.: chilling units). (c) Time series of the latent 216 

state (red line) and the length of the pre-season (identified by the horizontal arrow). In panel (a), 217 

each dot (total n = 100) represents an individual pixel-year sampled from the grid cell comprised 218 

of 10 by 10 MODIS pixels across 17 years of the study period (i.e., 100 out of the total 1,700 219 

pixel-years). 220 

 221 
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2.5. Quantifying the Relative Importance of Bioclimatic Forcing Variables 222 

To address our goal of quantifying the relative importance (and geographic variation thereof) 223 

among bioclimatic controls on the timing of springtime phenology, we compute a normalized 224 

index with values that range from -1 to +1 that captures this effect. Because each of the input 225 

variables in each grid g and sample s have been normalized to have a mean of 0 and a standard 226 

deviation of 1, model coefficients can be directly compared to assess the relative importance of 227 

each control variable. To quantify this, we calculated the relative importance (RI) of each control 228 

variable relative to each other variable using a normalized index computed from CDSOM model 229 

results. For example, to compute the relative importance of photoperiod versus thermal forcing 230 

in any given grid cell, we computed: 231 

91 = �: − �;�: + �; 
(6) 

where �:  and �;  are the average model coefficients for thermal forcing and photoperiod 232 

(respectively) during the pre-season period, which are estimated for each grid cell by the 233 

CDSOM. 234 

 235 

2.6. CDSOM Assessment and Comparison with Conventional Phenology Models  236 

To provide a baseline comparison against previously developed and widely used springtime 237 

phenology models (hereafter, the ‘conventional models’), we compared results from the CDSOM 238 

with four widely used process-based phenology models included in the “phenor” package in R 239 

(Hufkens et al., 2018). Specifically, we compared our results against the thermal time (TT) 240 

model, the photo-thermal time (PTT) model, the exponential photo-thermal time model (M1), 241 

and the alternating (AT) model, as described by Hufkens et al. (2018). These models are 242 
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fundamentally different from the CDSOM in that they assume a linear relationship between 243 

spring thermal forcing and the rate of phenological development, and that spring onset occurs 244 

when accumulated forcing (after a prescribed start date) reaches a critical threshold (<∗). The TT 245 

model relies only on thermal forcing (daily air temperature in each MODIS pixel, ��,�,�) with no 246 

additional inputs. In this model, the state of forcing (>?) increases each day until <∗ is reached, 247 

when leaves emerge (Chuine et al., 1999; Hunter and Lechowicz, 1992):  248 

9$��,�,�& = @0                          A - ��,�,� ≤ �2��,�,� − �2         A - ��,�,� ≥ �2  
(6) 

>? = 0 9$��,�,�&
C

C7
 

(7) 

where #D is the starte date. For consistency with the CDSOM, we set #D and �2 to December 1st 249 

and 0 ºC, respectively. The PTT model includes day-length (i.e., photoperiod; ��,�,� ) as an 250 

additional factor that regulates the rate of thermal forcing (Črepinšek et al., 2006; Masle et al., 251 

1989): 252 

>? = 0 9$��,�,�&
C

C7
× ��,�,�24  

(8) 

The exponential M1 model also includes photoperiod, but treats the relationship between 253 

photoperiod and >?  as an exponential (Blümel and Chmielewski, 2012): 254 

>? = 0 9$��,�,�&
C

C7
× I��,�,�24 JK

 
(9) 

where L is an empirically estimated constant. Finally, the AT model includes the number of days 255 

when the daily mean temperature falls below �2 (i.e., the number of chilling days; NCD), and 256 



 

15 
 

treats NCD as an exponential function that reduces the thermal forcing accumulation required for 257 

spring onset to occur (Cannell and Smith, 1983): 258 

<∗ = M + N × exp [8 × NCD(#)] (10) 

where a, b, and c are empirically estimated constants, and NCD(#) is defined as the number of 259 

chilling days since December 1st. A table summarizing the variables and main characteristics of 260 

the CDSOM and conventional models is provided as an appendix (Table A1). 261 

For this analysis, we assessed model performance for both the CDSOM and the conventional 262 

models in two ways. First, we assessed results from model-based predictions for the timing of 263 

spring greenup based on all available years (from 2001 to 2017). Second, to provide a more 264 

robust  assessment of model performance, we held out two years (2010 and 2012) with 265 

anomalously warm springs in much of the study region (Friedl et al., 2014), and evaluated model 266 

performance for each of these years. In this way, we were able to assess not only how well the 267 

models performed under average conditions, but also how well they performed under unusual 268 

springtime weather conditions that were not represented in the data used to estimate the models.  269 

 270 

2.7. CDSOM Estimation Using Ground-Based Observations 271 

As a final element of our analysis, to complement model results based on remotely sensed 272 

greenup dates and to provide an independent basis for assessing the realism and robustness of 273 

our results, we estimated the CDSOM using time series of leaf unfolding dates for cloned lilac 274 

(Syringa x chinensis ‘Red Rothomagensis’) (Rosemartin et al., 2015). By applying the model to 275 

data from cloned plants, genetic variability is eliminated, and which allows us to investigate how 276 

differences in the timing of leaf unfolding between different individuals are caused by 277 
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differences in local environmental controls. Unlike our approach using MODIS spring greenup 278 

dates, the model is estimated by pooling site-years across the region because the number of lilac 279 

leaf-out dates for each location is too small to accurately estimate models for each site. The 280 

dataset includes 254 leaf unfolding dates from 60 locations across the study region, spanning the 281 

period from 2001 to 2008 (Fig. A1). For reasons we explain below, we stratified the dataset into 282 

‘warm’ versus ‘cold’ sites based on whether the mean annual temperature at each site is above or 283 

below 10 ºC. Based on this stratification, the model was applied to 182 and 72 leaf unfolding 284 

dates for the colder and warmer regions, respectively.  285 

 286 

3. Results 287 

The CDSOM accurately predicts biogeographic and interannual variation in the timing of 288 

springtime greenup across the study region. The median RMSE between predicted and observed 289 

spring greenup dates was 4.6 days (Fig. 2), which is roughly equivalent to the uncertainty in 290 

spring greenup dates estimated from MODIS (Moon et al., 2019). Inspection of results from the 291 

conventional spring onset models show that median RMSEs were ~20% larger (~5.5 days vs. 4.6 292 

days) relative to those obtained from the CDSOM (Fig. 2b). Further, RMSEs for years with 293 

anomalous springs (2010 and 2012) were unchanged for the CDSOM, but increased by roughly 2 294 

days for conventional models when 2010 and 2012 were excluded during model estimation (Fig. 295 

3). For completeness, Fig. A2 shows the relationship between anomalies in MODIS greenup 296 

dates and anomalies in predicted onset set dates, and demonstrates that the CDSOM outperforms 297 

the conventional models in capturing year-to-year variations in spring onset dates. These results 298 

suggest that the CDSOM not only provides more accurate predictions of greenup relative to 299 

predictions from conventional phenology models, but that the CDSOM more effectively captures 300 
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the impact of geographic and year-to-year variation in bioclimatic controls. More generally, the 301 

accuracy of CDSOM results indicates that the model realistically captures the nature and 302 

magnitude of ecophysiological responses to interannual and biogeographic variation in climate 303 

controls that regulate the timing of greenup.  304 

 305 

 306 

Fig. 2. Continuous Development Spring Onset Model (CDSOM) performance. (a) Geographic 307 

variation in model root-mean-square error (RMSE) between greenup onset dates observed from 308 

MODIS and onset dates predicted by the CDSOM model. (b) Boxplots showing the distribution 309 

of RMSEs for the CDSOM model and four widely used conventional spring greenup models.  310 

M1: The exponential photo-thermal time model; PTT: The photo-thermal time model; TT: The 311 

thermal time model; AT: The alternating model. In panel (b), boxplots are presented in 312 

increasing order of magnitude with respect to mean RMSE. 313 

 314 

 315 
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316 
Fig. 3. RMSE results across models for anomalous years. (a) Boxplots of RMSEs for each model 317 

for 2010 and 2012. (b) Boxplots showing increase in RMSEs for model predictions for all years 318 

versus anomalous years (i.e., RMSEs for 2010 and 2012 – RMSEs for 2001-2017) at each grid 319 

cell. CDSOM: continuous development spring onset model; M1: The exponential photo-thermal 320 

time model; PTT: The photo-thermal time model; TT: The thermal time model; AT: The 321 

alternating model. Boxplots are presented in increasing order of magnitude with respect to mean 322 

RMSE. 323 

 324 

 325 
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 326 

Fig. 4. Geographic variation in the dependence of spring greenup onset date to: (a) thermal 327 

forcing, (b) photoperiod, and (c) chilling units. In panel (d), boxplots show the distribution of 328 

model coefficients for each control variable during the pre-season period prior to leaf emergence 329 

in Northern Forests (blue) versus Eastern Temperate Forests (red). Differences between the 330 

means in both cases are statistically significant (p < 0.001). 331 

 332 
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The dependence of spring greenup on thermal forcing estimated by the CDSOM is higher in 333 

Northern Forests than in Eastern Temperate forests (Fig. 4), but overall differences, while 334 

statistically significant, are modest. In contrast, dependence on photoperiod control exhibits 335 

systematic geographic variation across the study domain, with large differences between each 336 

ecoregion. Eastern Temperate Forests, which are warmer, show substantially higher dependence 337 

on photoperiod relative to the Northern Forests ecoregion, which is much cooler (Fig. 4b and 4d). 338 

This difference is especially pronounced in Eastern Canada where dependence on photoperiod is 339 

low, versus the Southern United States, where photoperiod dependence is high. Dependence of 340 

spring onset on chilling units is uniformly low throughout the study region, which indicates that 341 

the influence of chilling control, relative to photoperiod and thermal forcing, is effectively 342 

negligible (Fig. 4c and 4d). 343 

Geographic patterns in the RI of photoperiod versus thermal forcing indicates that 344 

photoperiod exerts proportionally more control on the timing of spring greenup in warmer 345 

regions, while thermal forcing exerts proportionally more control in colder regions (Fig. 5a). By 346 

plotting the RI in climate space (i.e., as a function of mean annual temperature and precipitation) 347 

(Fig. 5b), the pattern becomes even more clear. In regions where mean annual temperature is 348 

above ~10 ºC, photoperiod exerts stronger control on the timing of spring greenup than thermal 349 

forcing. Conversely, in regions where mean annual temperature is less than ~10 ºC, thermal 350 

forcing is more important. RI values near the 10 ºC isotherm in mean annual temperature are 351 

generally close to zero, indicating equal influence of thermal forcing and photoperiod (plotted as 352 

purple points in Fig. 5). These results suggest that the 10 ºC isotherm in mean annual 353 

temperature identifies a transition zone between regions where thermal forcing versus 354 

photoperiod is more dominant. 355 
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 356 

 357 

Fig. 5. Relative importance (RI) of thermal forcing versus photoperiod. Circles in red and blue 358 

show locations where thermal forcing and photoperiod, respectively, exert stronger control on 359 

the timing of spring greenup; purple circles identify locations where the magnitude of thermal 360 

forcing and photoperiod are roughly equivalent. The size of each circle is proportional to the 361 

magnitude of RI in each cell. 362 

 363 

Results from applying CDSOM to ground-based observations of leaf unfolding dates for 364 

cloned lilac reveal that even though the individual lilac plants are genetically identical, the 365 

relative dependence of leaf unfolding dates on thermal forcing versus photoperiod depends on 366 

local bioclimatic conditions (Fig. 6). Consistent with previous studies (Basler and Körner, 2012; 367 

Schwartz et al., 2006), model coefficients and RI values indicate that leaf unfolding in cloned 368 

lilac depends more strongly on thermal forcing than on photoperiod, irrespective of location. 369 

However, thermal control is stronger in colder regions and RI values are significantly smaller 370 
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(i.e., thermal control is less dominant) in warm sites than in cold sites. In addition, comparison of 371 

cloned lilac data against greenup dates from MODIS for the same location show that MODIS 372 

greenup dates are biased late relative to lilac unfolding dates (Fig. A3), especially in warmer 373 

areas with earlier greenup dates, which supports the conclusion that lilacs are sensitive to 374 

temperature. 375 

 376 

 377 

Fig. 6. Dependence of cloned lilac leaf unfolding date on thermal forcing and photoperiod, and 378 

relative importance (RI). 254 total leaf unfolding dates from cloned lilac were divided into two 379 

groups based on mean annual temperature (≤ 10 ºC, n = 182; > 10 ºC, n = 72).  The left panel 380 

plots the mean dependence of leaf unfolding on thermal forcing and photoperiod estimated by 381 

the CDSOM. The right panel plots the mean RI in each group. Positive RI indicates stronger 382 

control by thermal forcing relative to photoperiod. Vertical lines show ±1 standard deviation. 383 

 384 
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Finally, results from the CDSOM reveal patterns of covariance among pre-season period 385 

length, photoperiod, and thermal forcing that jointly control the timing of greenup that are not 386 

captured in conventional models. In particular, geographic variation in the pre-season period is 387 

strongly and negatively correlated with geographic variation in the relative importance of 388 

photoperiod on spring greenup. Fig. 7b shows that this relationship follows a power law, where 389 

photoperiod control decreases (R2 = 0.70, p < 0.001) as the length of the pre-season period 390 

increases. Fig. 7b also reveals modest heteroscedasticity in the relationship between pre-season 391 

period length and photoperiod control, which reflects the fact that spring greenup in locations 392 

with cooler mean annual temperatures and longer pre-seasons have lower dependence on 393 

photoperiod and higher dependence on thermal forcing (Fig. 5). In contrast, the relationship 394 

between pre-season period and dependence on thermal forcing is statistically significant, but 395 

much weaker (R2 = 0.13; Fig. A4).  396 

 397 

 398 
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Fig. 7. Variation in pre-season period and the relationship between greenup dependence on 399 

photoperiod and length of pre-season period. (a) Geographic pattern in pre-season period, and (b) 400 

log-log relationship between the dependence of greenup on photoperiod and the length of the 401 

pre-season period. 402 

 403 

4. Discussion 404 

We assessed the relative importance of photoperiod, chilling, and thermal forcing in 405 

controlling the timing of leaf emergence in Eastern Temperate and Boreal Forest ecoregions of 406 

North America. To do this, we used a hierarchical Bayesian model in combination with time 407 

series of land surface phenology measurements from remote sensing. The former provides a 408 

data-driven framework for investigating how different bioclimatic controls influence the timing 409 

of leaf emergence (Clark et al., 2014b; Seyednasrollah et al., 2020); the latter provides a robust 410 

and repeatable means of measuring and monitoring phenological dynamics over large areas 411 

(Bolton et al., 2020; Zhang et al., 2018).  412 

The core hypotheses that motivate this research include two main elements. First, the 413 

ecophysiological processes that control leaf emergence respond continuously to variation in 414 

environmental controls throughout pre-season period prior to greenup in a manner that is not 415 

represented in conventional models (Clark et al., 2014b). Second, rather than simply acting as a 416 

cue for entering ecodormancy, photoperiod exerts continuous control on the timing of greenup 417 

during the pre-season period. The results presented in this study suggest that both hypotheses are 418 

supported. The preseason period, which corresponds to the period when the CDSOM latent state 419 

variable (h) responds to bioclimatic forcing (Fig. 1c), ranges from roughly 2-12 weeks over the 420 

study domain (Fig. 7a). Throughout this period, changes in h reflect the net effect of daily 421 
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changes thermal and photoperiod controls. By estimating the model in a spatially explicit fashion 422 

over a large geographic and climatic range, CDSOM results provide an empirical basis for 423 

quantifying not only how thermal forcing and photoperiod individually and jointly influence the 424 

timing of greenup, but more generally, how the length of the preseason period and relative 425 

importance of photoperiod versus thermal forcing vary over the study domain.   426 

Conventional models calibrated using long-term observations of phenological events such as 427 

those used in this study have been widely used to simulate and forecast phenological events for 428 

decades (Chuine and Régnière, 2017). Like the CDSOM, these models generally use air 429 

temperature, photoperiod, and chilling units in different configurations and combinations to 430 

parameterize the response of plants to bioclimatic controls and predict the timing of phenophase 431 

transitions (Basler, 2016; Hufkens et al., 2018). However, as we described previously, Clark et al. 432 

(2014a, 2014b) argue that most conventional phenology models are fundamentally limited 433 

because: (1) they aggregate measurements with substantial day-to-day variability over periods of 434 

weeks-to-months into single parameters and therefore do not capture how short-term variability 435 

in control variables influences the timing of leaf emergence; (2) they rely on parameters that are 436 

not identifiable; and (3) they do not account for uncertainty in model predictors or leaf 437 

emergence data. As a solution, Hänninen et al. (2019) argue that carefully designed factorial 438 

experiments provide the most robust basis for improving understanding of processes that control 439 

leaf emergence, and hence, for developing and testing process-based models. However, 440 

implementing such studies is difficult and expensive, and collecting sufficient sample data to 441 

support robust and generalizable models is generally not possible. Reflecting these challenges, 442 

results from a meta-analysis of warming studies showed that phenological changes observed in 443 
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such experiments do not replicate the magnitude of phenological responses to natural variation in 444 

air temperature observed in natural systems (Wolkovich et al., 2012).     445 

Data-driven models like the CDSOM are not a panacea, but they do resolve several of the 446 

issues discussed above. In addition to addressing the three limitations identified by Clark et al. 447 

(2014a, 2014b), functional relationships among control variables in CDSOM are entirely 448 

estimated from data. Hence the CDSOM avoids issues related to misspecification of functional 449 

relationships that are inherent to conventional models. Further, by exploiting time series of 450 

remote sensing observations collected over large areas that span nearly two decades, the 451 

CDSOM results presented here capture and reflect a much broader range of climate regimes and 452 

climate variability than is generally possible using designed experiments. Indeed, we posit that 453 

natural variability captured through interannual variability in climate over large geographic 454 

scales provides an important and useful strategy for characterizing and understanding the 455 

sensitivity of plant phenology to climate change (Friedl et al., 2014). 456 

Moreover, and perhaps most importantly, while the patterns presented in Figs. 4-7 are 457 

superficially consistent with results from previous studies suggesting that the timing of spring 458 

greenup in deciduous forests has become less sensitive to thermal forcing and that the so-called 459 

‘temperature sensitive period’ of temperate and boreal trees is changing (Fu et al., 2019, 2015; 460 

Piao et al., 2017). We suggest that this inference may be spurious. Specifically, results from the 461 

CDSOM show that thermal forcing control on the timing of greenup is heterogeneous and 462 

exhibits weak covariance with pre-season period. Hence, apparent decreases in temperature 463 

sensitivity actually reflect shorter pre-season periods with increased photoperiod control (Keenan 464 

et al., 2019). Stated another way, as the climate warms, higher temperatures tend to increase the 465 

relative importance of photoperiod, while dependence on temperature has remained relatively 466 
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constant. Further, in regions where mean annual temperature is below ~10 ºC, which 467 

encompasses a significant proportion of the temperate zone and all of the boreal zone, 468 

photoperiod control is modest and thermal forcing is clearly the dominant control. Indeed, our 469 

results suggest that the biogeographic range in which the relative importance of photoperiod 470 

control is increasing is restricted to locations with mean annual temperatures between ~8-10 ºC, 471 

and hence, is relatively narrow.  472 

The simplest explanation for why photoperiod control varies geographically is provided by 473 

the “law of the minimum”, which states that plant growth is controlled by the scarcest resource 474 

rather than by the total resources available (Liebig et al., 1841). Our results are, to a first order, 475 

consistent with this law. In cold regions (i.e., identified here as regions where mean annual 476 

temperature is less than ~10 ºC; Fig. 5), temperature is the primary limiting factor that controls 477 

the timing of greenup. In warmer regions where temperature is less limiting, light (or moisture) 478 

becomes the primary limiting resource. Invoking a similar argument, Park et al. (2019) suggest 479 

that extensive areas of high-latitude ecosystems that were previously constrained by temperature 480 

are becoming more sensitive to photoperiod. Further, the results from our study are consistent 481 

with recent experimental results from Zohner et al. (2016), who concluded that springtime 482 

phenology in deciduous trees at lower latitudes tended to depend more strongly on photoperiod, 483 

while species at high latitudes leafed out independent of photoperiod. Hence our results are 484 

consistent with both long-established and more recent ecological literature. 485 

Lastly, it is important to note several limitations of the current study. First, rather than 486 

modeling the role of chilling in controlling spring greenup using continuous (i.e., daily) forcing 487 

(Hänninen et al., 2019; Murray et al., 1989), the CDSOM uses chilling units, which provide an 488 

accumulated measure chilling requirements. This suggests that the role of the chilling units may 489 
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not be fully accounted for in this study, and may explain the relatively minor role of chilling 490 

units in predicting the timing of spring greenup that we observed in this study (Fig. 4c and d) 491 

(c.f., Heide and Prestrud, 2005; Laube et al., 2014). Second, to capture the effect of thermal 492 

forcing, the CDSOM used daily mean temperature as opposed to other measures of thermal 493 

forcing such as daily maximum and minimum temperature, which some studies have suggested 494 

may be better predictors. However, results from CDSOM using daily maximum and minimum 495 

temperatures as inputs did not show significant differences from results based on daily mean 496 

temperatures (not shown), and more generally, results from studies that have explored this 497 

question are somewhat inconsistent (c.f., Huang et al., 2020; Piao et al., 2015; Shen et al., 2018). 498 

That said, because continuous development models are explicitly designed to capture the effects 499 

of short-term variability in forcing variables, selection of optimal metrics to this variability is 500 

clearly important and merits more investigation.  501 

 502 

5. Conclusions  503 

Changes in springtime phenology are among the most obvious and observable responses of 504 

organisms to climate change, but the mechanisms behind these changes are poorly understood 505 

(Parmesan and Yohe, 2003; Piao et al., 2019). By directly estimating and mapping the 506 

geographic dependence of greenup on photoperiod and thermal forcing, results from this study 507 

elucidate how the nature and magnitude bioclimatic control on spring phenology depend on 508 

geography and climate, and provide a novel and nuanced explanation for why the temperature 509 

sensitivity of deciduous forests appears to be decreasing. Specifically, our results indicate that 510 

apparent changes in temperature sensitivity may reflect a misinterpretation of the data, and where 511 

present, observed decreases actually reflect increased dependence on photoperiod. The results 512 
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also help to clarify the mechanisms behind observed changes and have important implications 513 

for a variety of ecological processes, such as the role of safety mechanisms that are widely 514 

ascribed to photoperiod constraints on spring phenology (Körner and Basler, 2010). For example, 515 

Fig. 5 shows that the relative importance of photoperiod decreases as mean annual temperature 516 

decreases, which suggests that safety mechanisms related to photoperiod provide only modest 517 

protection in colder climates (Richardson et al., 2018a). More generally, our results support the 518 

argument posited by Zohner et al. (2016) who reported that tree species with strong photoperiod 519 

control on leaf-out tend to be located in warmer regions, and challenge the idea that photoperiod 520 

provides a safeguard against early leaf emergence in temperate woody species.  521 
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Appendix 535 

Table A1. Models descriptions   536 

Model  Model type Variables Main characteristics & Statistical assumptions of the model 

CDSOM Date-driven 
ℎ; 
ℎ; ℎ���; �; �; �; CU; �; %; '; (; ); �2 

Phenological development responses continuously to variations in environmental 
controls at daily time step throughout pre-season period; Invoking no assumptions 
about functional relationships between control variables  

TT Knowledge-driven <∗; >?; �; �2 Greenup onset occurs when accumulated forcing reaches a critical threshold, which 
sorely relies only on thermal forcing with no additional factors 

PTT Knowledge-driven <∗; >?; �; �2; � Greenup onset occurs when accumulated forcing reaches a critical threshold, but the 
rate of thermal forcing is regulated by photoperiod 

M1 Knowledge-driven <∗; >?; �; �2; �; L Greenup onset occurs when accumulated forcing reaches a critical threshold, but the 
rate of thermal forcing is regulated by photoperiod as an exponential 

AT Knowledge-driven <∗; NCD; M; N; c 
Greenup onset occurs when accumulated forcing reaches a critical threshold, but the 
rate of thermal forcing is regulated by the number of chilling days 

CDSOM: Continuous Development Spring Onset Model; TT: Thermal Time model (TT); PTT: Photo-Thermal Time model (PTT); 537 

M1: Exponential Photo-Thermal Time model (M1); AT: Alternating model; ℎ: latent state; 
ℎ: daily latent state increment; ℎ���: 538 

theoretical final state of ℎ; �: matrix of predictor variables �, �, and CU (daily mean temperature, day-length, and chilling units, 539 

respectively); �: vector of estimated model coefficient for �, �, and CU; %: probability that greenup onset occurs; ' and (: intercept 540 

and slope for logit transformation, respectively; ): Bernoulli trial indicating whether or not greenup onset has occurred; �2: base 541 

temperature for chilling requirement; <∗: critical threshold that spring greenup onset occurs when the state of forcing (>?) reaches it; L: 542 

exponential coefficient for M1; NCD: number of chilling days; estimated constants for AT 543 
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 544 

 545 

Fig. A1. Map of the study area. Extents of the US EPA Northern Forest and Eastern Temperate 546 

Forest ecoregions, along with the proportion 500 m MODIS pixels labeled as deciduous forests 547 

in each grid cell according to the Collection 6 MODIS Land Cover Type product. Red crosses 548 

show the USA-National Phenology Network site locations where lilac data are collected. Note 549 

that because the MODIS Land Cover Type product uses a threshold of 60% cover to define 550 

forest classes, the map shown in Fig. A1 modestly over-represents the actual proportion of 551 

deciduous forest cover. 552 

  553 
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 554 

Fig. A2. Relationship between anomalies in MODIS onset dates and anomalies in model-555 

predicted onset dates. Panels (a)-(e) show results for the Continuous Development Spring Onset 556 

Model (CDSOM),  the thermal time model (TT), the photo-thermal time model (PTT), the 557 

exponential photo-thermal time model (M1), and the alternating model (AT), respectively. 558 

Dashed lines and correlation coefficients (r) show the results from standard major axis regression. 559 

 560 
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 561 

Fig. A3. Relationship between MODIS greenup dates and leaf unfolding dates from the USA-562 

NPN cloned lilac dataset. The colder (red dots) and warmer (blue dots) sites are divided based on 563 

mean annual temperature (i.e., colder ≤ 10 ºC; warmer > 10 ºC). n (= 198) is different from the 564 

total number of USA-NPN leaf unfolding dates (n = 254) due to cases where no MODIS dates 565 

were available because the lilac site was not located in a location dominated by deciduous or 566 

mixed forest at the scale of MODIS pixels.   567 

  568 
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 569 

Fig. A4. Relationship between pre-season period length and dependence on thermal forcing. 570 

  571 
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List of Figure Captions  776 

Fig. 1.  Model results for a randomly selected grid cell. (a) Relationship between the greenup 777 

onset dates from MODIS and onset dates estimated by the model. (b) The distribution of model 778 

coefficients for each control variable (i.e., the relative dependence on each climate control; 779 

Therm.: thermal forcing; Photo.: photoperiod; Chill.: chilling units). (c) Time series of the latent 780 

state (red line) and the length of the pre-season (identified by the horizontal arrow). In panel (a), 781 

each dot (total n = 100) represents an individual pixel-year sampled from the grid cell comprised 782 

of 10 by 10 MODIS pixels across 17 years of the study period (i.e., 100 out of the total 1,700 783 

pixel-years). 784 

 785 

Fig. 2. Continuous Development Spring Onset Model (CDSOM) performance. (a) Geographic 786 

variation in model root-mean-square errors (RMSE) between greenup onset dates observed from 787 

MODIS and onset dates predicted by the CDSOM model. (b) Boxplots showing the distribution 788 

of RMSEs for the CDSOM model and four widely used conventional spring greenup models.  789 

M1: The exponential photo-thermal time model; PTT: The photo-thermal time model; TT: The 790 

thermal time model; AT: The alternating model. In panel (b), boxplots are presented in 791 

increasing order of magnitude with respect to mean RMSE. 792 

 793 

Fig. 3. RMSE results across models for anomalous years. (a) Boxplots of RMSEs for each model 794 

for 2010 and 2012. (b) Boxplots showing increase in RMSEs for model predictions for all years 795 

versus anomalous years (i.e., RMSEs for 2010 and 2012 – RMSEs for 2001-2017) at each grid 796 

cell. CDSOM: continuous development spring onset model; M1: The exponential photo-thermal 797 
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time model; PTT: The photo-thermal time model; TT: The thermal time model; AT: The 798 

alternating model. Boxplots are presented in increasing order of magnitude with respect to mean 799 

RMSE. 800 

 801 

Fig. 4. Geographic variation in the dependence of spring greenup onset date to: (a) thermal 802 

forcing, (b) photoperiod, and (c) chilling units. In panel (d), boxplots show the distribution of 803 

model coefficients for each control variable during the pre-season period prior to leaf emergence 804 

in Northern Forests (blue) versus Eastern Temperate Forests (red). Differences between the 805 

means in both cases are statistically significant (p < 0.001). 806 

 807 

Fig. 5. Relative importance (RI) of thermal forcing versus photoperiod. Circles in red and blue 808 

show locations where thermal forcing and photoperiod, respectively, exert stronger control on 809 

the timing of spring greenup; purple circles identify locations where the magnitude of thermal 810 

forcing and photoperiod are roughly equivalent. The size of each circle is proportional to the 811 

magnitude of RI in each cell. 812 

 813 

Fig. 6. Dependence of cloned lilac leaf unfolding date on thermal forcing and photoperiod, and 814 

relative importance (RI). 254 total leaf unfolding dates from cloned lilac were divided into two 815 

groups based on mean annual temperature (≤ 10 ºC, n = 182; > 10 ºC, n = 72).  The left panel 816 

plots the mean dependence of leaf unfolding on thermal forcing and photoperiod estimated by 817 

the CDSOM. The right panel plots the mean RI in each group. Positive RI indicates stronger 818 

control by thermal forcing relative to photoperiod. Vertical lines show ±1 standard deviation. 819 
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 820 

Fig. 7. Variation in pre-season period and the relationship between greenup dependence on 821 

photoperiod and length of pre-season period. (a) Geographic pattern in pre-season period, and (b) 822 

log-log relationship between the dependence of greenup on photoperiod and the length of the 823 

pre-season period. 824 

 825 

Fig. A1. Map of the study area. Extents of the US EPA Northern Forest and Eastern Temperate 826 

Forest ecoregions, along with the proportion 500 m MODIS pixels labeled as deciduous forests 827 

in each grid cell according to the Collection 6 MODIS Land Cover Type product. Red crosses 828 

show the USA-National Phenology Network site locations where lilac data are collected. Note 829 

that because the MODIS Land Cover Type product uses a threshold of 60% cover to define 830 

forest classes, the map shown in Fig. A1 modestly over-represents the actual proportion of 831 

deciduous forest cover. 832 

 833 

Fig. A2. Relationship between anomalies in MODIS onset dates and anomalies in model-834 

predicted onset dates. Panels (a)-(e) show results for the Continuous Development Spring Onset 835 

Model (CDSOM),  the thermal time model (TT), the photo-thermal time model (PTT), the 836 

exponential photo-thermal time model (M1), and the alternating model (AT), respectively. 837 

Dashed lines and correlation coefficients (r) show the results from standard major axis regression. 838 

 839 
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Fig. A3. Relationship between MODIS greenup dates and leaf unfolding dates from the USA-840 

NPN cloned lilac dataset. The colder (red dots) and warmer (blue dots) sites are divided based on 841 

mean annual temperature (i.e., colder ≤ 10 ºC; warmer > 10 ºC). n (= 198) is different from the 842 

total number of USA-NPN leaf unfolding dates (n = 254) due to cases where no MODIS dates 843 

were available because the lilac site was not located in a location dominated by deciduous or 844 

mixed forest at the scale of MODIS pixels.   845 

 846 

Fig. A4. Relationship between pre-season period length and dependence on thermal forcing. 847 

 848 




