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Mikael Böörs1 • Tobias Wängberg2 • Tom Everitt3,4 • Marcus Hutter3,4

Accepted: 10 October 2021 / Published online: 1 December 2021
� The Author(s) 2021

Abstract
In this paper, we provide a detailed review of previous classifications of 2� 2

games and suggest a mathematically simple way to classify the symmetric 2� 2

games based on a decomposition of the payoff matrix into a cooperative and a zero-

sum part. We argue that differences in the interaction between the parts is what

makes games interesting in different ways. Our claim is supported by evolutionary

computer experiments and findings in previous literature. In addition, we provide a

method for using a stereographic projection to create a compact 2-d representation

of the game space.

Keywords Classification � Symmetric games � 2� 2 Games � Decomposition �
Cooperation and conflict � Simplicity

1 Introduction

What makes a game such as the Prisoner’s Dilemma interesting? It is the tension

between the common interest and self-interest, we argue in this paper. Indeed, in the

Prisoner’s Dilemma, the players’ self interest directly opposes the common interest,

often leading to mutual defection and tragedies of the commons. Meanwhile, in Stag

Hunt, the conflict part pulls the players away from mutually more beneficial

outcomes by counteracting the players’ common interest. The Leader and Hero
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games, also referred to as the symmetric Battle of the Sexes, exhibit yet another

kind of tension, where the most payoff can be gained from alternating between

outcomes in repeated games. Unfortunately, the conflict part makes such

cooperation more difficult. Based on these observations we hypothesize that games

with different tensions between common interest and self-interest should be

interesting in different ways, and that differences in tensions is what distinguishes

the standard games from each other. Indeed, all standard games (Prisoner’s

Dilemma, Chicken, Stag Hunt, Leader and Hero) exhibit different tensions between

common interest and self-interest.

To explore this idea further, we establish a simple way to enumerate the possible

tensions, and consider the classification of the space of 2� 2 games that these

tension classes induce (Sect. 4). Analysis of the regions show that they correctly

separate the standard games, and make several further distinctions previously

considered in the literature (Sect. 5). Computer experiments of iterated versions of

the games give preliminary empirical support1 for our hypothesis that tension

classes separate the space of symmetric 2� 2 games in strategically cohesive

classes (Sects. 6 and 7).

A well-established scientific principle (e.g. Baker, 2007) says that a good

scientific hypothesis should be:

1. simple and parsimonious, and

2. explain relevant observations.

Simplicity is important, as simple scientific theories have a much better track

record, and tend to generalize better (cf. Occam’s razor). In particular, classifica-

tions should avoid adding conditions ad hoc, as this increases complexity and tends

to reduce generalisability. As for 2., a hypothesis that does not explain the relevant

observations is either false or too vague. In the case of game classifications, a good

classification hypothesis will separate significantly different games into different

classes, while keeping similar games in the same class. Similarity between games

has not been formally defined, but a consensus has emerged around which games

should be grouped together and not (Harris, 1969; Huertas-Rosero, 2003; Rapoport

et al., 1978).

Previous classifications have arguably failed to simultaneously satisfy both 1. and

2. Several works have suggested similar classes of games (Harris, 1969; Huertas-

Rosero, 2003; Rapoport et al., 1978), but without basing the groupings on a simple

principle. They therefore fail to meet 1. Other works have classified games based on

simple mathematical principles (Borm, 1987; Robinson & Goforth, 2003), but with

less convincing classes as a result, thereby failing to satisfy 2. Section 3 discusses

these works in more detail.

In this paper, we argue that our classification based on the tension between

common interest and conflict yields the right classes based on a simple principle,

thereby satisfying both 1. and 2.

1 One might argue that computer simulations of this kind do not count as empirical evidence. We do

however hold the view that such simulation studies do provide some empirical support, but its

significance for justifying our classification can be debated.
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Outline. We begin with some background (Sect. 2), followed by a review of

previous classifications of 2� 2 games (Sect. 3). Focus is then shifted to our

classification, defined in Sect. 4. The resulting regions are analyzed in Sect. 5.

Computer experiments based on genetic algorithms provide preliminary empirical

support for our classification (Sects. 6 and 7). We conclude the paper by

summarizing our findings and presenting some open questions for further research

(Sect. 8).

2 Preliminaries

In this section, we give a very brief review of game theory definitions. See for

example the textbook by Gonzalez-Diaz et al. (2010) for more details and

explanations. This section may be skipped by a reader knowledgeable in game

theory.

Definition 2.1 (Strategic game) Let P be a set of players with jPj ¼ n. For all

i 2 P, let Si be the non-empty set of strategies of player i. Define the set of strategy

profiles as S,
Q

i2P Si. For all i 2 P, let ui : S ! R be the pay-off function of player

i and let U,fu1; u2; . . .; ung bet the set of payoff functions. A triple G ¼ ðS;U;PÞ is
called an n-player strategic game for the set of players P.

Strategic games with 2 players are often represented as pairs of matrices. Each

matrix represents the payoffs for each player. The position k, l in payoff matrix P1

corresponds to the payoff player 1 receives from strategy profile fk; lg, i.e.

u1ðk; lÞ ¼ P1k;l . These payoff matrices are combined into a payoff bimatrix which

represents the game. An example is shown in Fig. 1 where for example the strategy

profile s ¼ f0; 1g results in payoff u1ð0; 1Þ ¼ b of player 1 and payoff u2ð0; 1Þ ¼ f
of player 2.

Three important types of games.
We next define three special types of games that play a central role in our

investigations: symmetric, zero-sum, and common-interest games.

Definition 2.2 (Symmetric game) A n� n game G ¼ ðS;U;PÞ with jPj ¼ 2 and

payoff bimatrix P ¼ ðP1;P2Þ is called a symmetric game if

P1 ¼ PT
2 :

In this paper we will focus on symmetric 2� 2 games and often refer to the

standard 2� 2 symmetric game presented in Table 1.

P1 =
[
a b
c d

]
P2 =

[
e f
g h

]
P = (P1, P2) =

[
(a, e) (b, f)
(c, g) (d, h)

]

Fig. 1 The payoff matrices of player 1 and player 2 and the resulting payoff bimatrix
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A zero-sum game is a game where the payoffs of every strategy profile add up to

zero. Intuitively this means that what one player gains, the other player loses. Hence

the two players have completely opposite interests in this type of game.

Definition 2.3 (Zero-sum game) An m� n game G ¼ ðS;U;PÞ with jPj ¼ 2 and

payoff bimatrix P ¼ ðP1;P2Þ is called a zero-sum game if

P1 þ P2 ¼ 0m�n:

The opposite of a zero-sum game is a common interest game. In a common

interest game, the two players get the same payoff in every outcome and therefore

have the same interests.

Definition 2.4 (Common interest game) An m� n game G ¼ ðS;U;PÞ with jPj ¼
2 and payoff bimatrix P ¼ ðP1;P2Þ is called a common interest game if

P1 ¼ P2:

Strategic equivalence. To reduce the number of cases, it is natural to consider

games strategically equivalent if their payoffs are positive linear transformations of

each other, or if their players or actions are renamed. Under reasonable assumptions,

such translations never affect the strategic analysis of the game.

Definition 2.5 (Strategic equivalence) Two n� n games with payoff bimatrices P
and P0 respectively are said to be strategically equivalent, denoted P�P0, if P0 can
be obtained by permuting the rows, columns or players in P (renaming players or

actions), or if

9a 2 R; b 2 Rþ : P0 ¼ aJn þ bP

where Jn is the n� n matrix of ones (positive linear transformation of payoffs).

Equilibria concepts. Nash equilibrium, abbreviated NE, is an important concept

in game theory. Intuitively if a strategy profile is a NE, it means that no player has

an incentive to change strategy given that no other player changes strategy.

Table 1 Standard symmetric 2� 2 game

Player 2

0 1

Player

1

0 (a, a) (b, c)

1 (c, b) (d, d)

Both players can choose between action 0 and action 1. The outcomes of the games are denoted ij where
i 2 f0; 1g is the action of player 1 and j 2 f0; 1g is the action of player 2
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Definition 2.6 (Nash equilibrium) Given a game G ¼ ðS;U;PÞ, a strategy profile

s 2 S is said to be a Nash equilibrium if

8i 2 Puiðs�i; siÞ > uiðs�i; s
0
iÞ; 8s0i : s0i 6¼ si:

A concept related to NE is the concept of Altruistic Equilibrium, abbreviated AE.

It was used by Huertas-Rosero (2003) (although under a different name), to classify

symmetric 2� 2 games. AE is not as commonly known as NE, but as we will see in

this paper it can help us understand some aspects of many games. Intuitively, a

strategy profile is AE if neither player has an incentive to change his strategy given

that he tries to maximize his opponents’ payoff. In 2� 2 games, this means that AE

is equivalent to NE in the transposed payoff bimatrix.

Definition 2.7 (Altruistic equilibrium) Given a game with a set of strategy profiles

S and a set of payoff functions U, a strategy profile s 2 S is said to be an Altruistic
Equilibrium if

8i 2 P8j 2 P : j 6¼ i ujðs�i; siÞ > ujðs�i; s
0
iÞ; 8s0i : s0i 6¼ si:

In the literature review, we will consider dominant strategies and best response

correspondences.

Definition 2.8 (Strictly dominant strategy) A strategy si for player i is called strictly
dominant if

8s0i : s0i 6¼ si 8s�iuiðs�i; siÞ[ uiðs�i; s
0
iÞ:

Intuitively Definition 2.8 states that a strategy is dominant if every other strategy

yields a lower payoff, regardless of what strategy the other players use.

Definition 2.9 (Dominant strategy equilibrium) A game is said to have a dominant
strategy equilibrium if there exists a strategy profile s 2 S such that all strategies in

s are dominant.

If the dominant strategy equilibrium exists, it is unique, this follows immediately

from its definition.

Definition 2.10 (Best response correspondence) Let G ¼ ðS;U;PÞ be a strategic

game such that for all i 2 P there exists ni 2 N such that Si � Rni , Si 6¼ ; and Si is
compact. The correspondence Bi : S�i ! Si is called the best response correspon-
dence for player i and is defined as

Biðs�iÞ,fs�i 2 Si : uiðs�i; s
�
i Þ� uiðs�i; s

0
iÞ8s0i 2 Sig:

for any given s�i 2 S�i
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If a strategy profile s� 2 S is such that s�i 2 Biðs��iÞ for every player i 2 P, then s�

is a Nash equilibrium. Definition 2.10 can be extended to mixed extension games

and this extension is used in Sect. 3.3.

2.1 Standard games

Below we list the symmetric 2� 2 games, referred to as the symmetric standard

games. For more information about these games, see for example Rapoport et al.

(1978). The Leader and Hero games are also referred to as symmetric versions of

the asymmetric standard game Battle of the Sexes (Harris, 1969).

3 Literature review

In this section, we review five different approaches to classifying 2� 2 games. The

focus of the review is to provide an accessible explanation of each work, and to

evaluate how well they satisfy the following desiderata:

1. Simplicity and parsimony, and

2. Well-justified regions.

As discussed in the introduction, simplicity is important for generalization. Well-

justified regions mean that the classification groups games in a way that corresponds

to important strategic considerations. One would for example expect that the well

established standard games discussed in Sect. 2.1 are considered different types of

games in a classification. The primary conclusion of the review is that none of the

reviewed works satisfy both desiderata. A more detailed review can be found in

Böörs and Wängberg (2017), Chapter 2.2.
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3.1 A hierarchical approach to classifying 2· 2 games (Rapoport et al., 1978)

In the book The 2� 2 Game, Rapoport et al. (1978) present a taxonomy of all 2� 2

games (not just the symmetric ones). The authors create a discretized version of the

game space by considering games within an ordinal scale. Each player has 4

payoffs, ranked from lowest to highest, that can be placed in 4 different cells. The

game space is therefore made up of 4!� 4! ¼ 576 games. By grouping strategically

equivalent games (Sect. 2.5), they reduce the number of classes to 78, which they

organize hierarchically according to five different properties. Inspired by systems of

classification in biology, the authors divide the game space first into different phyla,

then divide each phylum into classes, followed by orders and finally genera. This

system of classifying is perhaps the most intuitive and a natural approach to

classifying objects of any kind. It does not require any advanced theory and a

structured division of the game space is gained.

The authors use several interesting properties to sort the games. They use

concepts such as degree of conflict, which means how aligned the players’ interests

are. For example, the game has no conflict if both players’ interests are aligned on

the same outcome. In contrast, a zero-sum game is a game with full conflict. They

also classify by the existence of different kinds of pressure. Pressures are used to

describe different situations where the players may have an incentive to deviate

from the Nash equilibrium. Depending on the type of conflict and the amount of

pressure acting on the game, the authors label the games as having different degrees

of stability. The concept of pressure becomes relevant in repeated play, where the

players might be tempted (or forced) to change from their equilibrium strategies. An

example is competitive pressure, which is described as a game where a player

prefers an outcome where he gets a higher relative payoff compared to the opposing

player, and would thereby deviate from an equilibrium outcome even though it

would result in a lower absolute payoff.

Rapoport et al. provide extensive experimental support for their classification,

establishing the relevancy of their classification to human strategic play in 2� 2

games. This classification therefore fulfills Desideratum 2. Although a structured

and systematic sorting of the game space is achieved, the classification lacks in

mathematical simplicity. It therefore fails to satisfy Desideratum 1.

3.2 A parameter based classification of 2· 2 symmetric games (Harris, 1969)

Harris (1969) classifies the symmetric2 2� 2 games by positioning them on a plane

according to the following two parameters:

2 Harris (1969) classifies a generalization of symmetric games that he calls interval-symmetric. An

interval-symmetric game is a game that is symmetric up to a positive linear transformation of one of the

players’ payoff matrix.
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r3 ¼
d � b

c� b

r4 ¼
c� a

c� b

ð1Þ

where a, b, c and d are the players’ payoffs, as in Table 1. The constraint that c[ b
is also imposed. This is to make the inequalities for r3 and r4 in terms of the payoff

parameters a, b, c and d unambiguous, and means that player 1 gets smaller payoff

for outcome f0; 1g and larger for f1; 0g.
Harris introduces inequalities on the parameters that partition the ðr3; r4Þ-plane

into 12 different regions based on the signs and relative size of r3 and r4. An
advantage of this approach is its mathematical structure and simplicity. Since any

desired inequality of the payoffs can be expressed using the r3 and r4 parameters,

this classification is easily modified to other classification conditions. One can also

algebraically compare it to other classifications because of the mathematical

structure. Furthermore, the parametrisation approach enables a visual representation

of the game space. Unfortunately, Harris method lacks a clear principle for selecting

inequalities by which to partition the plane. Therefore, it does not satisfy

Desideratum 1, which we identify as a weakness of this classification. On the

other hand, the author puts a lot of effort into justifying the resulting classes, and we

therefore conclude that Desideratum 2 is fulfilled.

3.3 A classification of 2· 2 bimatrix games (Borm, 1987)

In the article A classification of 2� 2 bimatrix games, Borm (1987) defines a

classification that partitions the space of mixed 2� 2 games into 15 classes. The

main idea of the classification is to divide games into different classes based on the

structure of the two players’ best reply correspondences (BRC), which is an

extension of Definition 2.10 to mixed extension games. Borm shows that for the

mixed extension of 2� 2 games there are four basic types of BRCs for each player

(Fig. 2). The backbone in the classification is unordered pairs (one for each player)

of these BRC types. There are in 10 such unordered pairs in total.

The pair of the players’ BRCs in a game is important because it has a close

connection to Nash equilibria, as a mixed strategy profile is NE if and only if it is in

the intersection of the two players BRC. However, even though there are 10 BRC

combinations there are 15 types of NE sets in mixed 2� 2 games. Borm argues that

it is important to isolate all 15 types of NE in different classes, and as Fig. 3

illustrates, the BRC pairs alone do not. Therefore Borm defines four variables as

linear combinations of the payoffs. The combination of the BRC pairs and the value

of the four variables are enough to isolate all 15 types of NE in different classes and

these 15 classes are the final partition of the space of mixed 2� 2 games i Borm’s

classification.

This method of classification differs from the ones previously presented in

several ways. It is, for example, a classification system that applies to mixed 2� 2

games, not only strictly ordered or pure ones. It also differs in that it classifies

games based on fewer concepts than the others, essentially just taking Nash
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equilibria into account. This might be considered a disadvantage, since this means

the classification misses some important distinctions, for example the alignment of

the common interest and the self-interests of the players. This (dis-)alignment

accounts for the difference between vastly different types of games, such as

Prisoner’s Dilemma and Deadlock which have the same NE but differs in this

alignment. However, the simplicity of this method is also a strength since it allows

Borm to divide the set of all mixed 2� 2 games into just 15 classes, which is a

relatively small number. Despite this we conclude that the classification is simple

and parsimonious, i.e. that Desideratum 1. is fulfilled. Unfortunately, Borm provides

no empirical or theoretical evidence that suggests that all of his classes are

interestingly different. We conclude that the classification fails to fulfil Desideratum

2.

3.4 A cartography for 2· 2 symmetric games (Huertas-Rosero, 2003)

In the article A Cartography for 2� 2 Symmetric Games, Huertas-Rosero (2003)

presents a classification that divides the space of symmetric 2� 2 non-zero sum

games into 12 different classes3 based on their type of Nash equilibria and on their

type of Altruistic Equilibria (see Definition 2.7). Huertas-Rosero observes that a

symmetric 2� 2 non-zero sum game can have NE in either one diagonal outcome,

in both diagonal outcomes or both anti-diagonal outcomes and that the same is true

Fig. 2 Suppose that both players can choose to play action a1 or action a2. If player 1 chooses a1 with
probability p and player 2 chooses a1 with probability q then every mixed strategy profile is a point
(p, q) in the unit rectangle. For every q we can plot the BRC of player 1 and since there are four basic
types of BRC there are four basic types of the resulting graph. These are the four graphs illustrated in the
figure. The graph of player 2’s BRC can be illustrated as the transpose of one of the graphs in the figure

Fig. 3 Graphs illustrating two
NE sets with the same BRC type

3 We have proved that one of Huertas-Rosero’s 12 classes is empty (Böörs & Wängberg, 2017,

chapter 2.2.4).
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for AE. The 8 combinations of the type of NE and the type of AE forms the

foundation for this classification.

Huertas-Rosero has a rather elegant way of defining his 8 base classes. By

defining an isometry that allows him to express the game space in well-chosen

parameters in R4, he can express the NE and AE conditions using only two

parameters each. Using the properties of additive- and multiplicative invariance he

fixates one parameter to 0 and normalize the resulting game vector so that every

game is represented as a point on the unit sphere in R3. The NE and AE conditions

defines four pairwise orthogonal planes through the origin that split the sphere into

14 pieces. Some of the 14 regions are strategically equivalent, and after taking this

into account Huertas obtains his 8 base classes. The 8 base classes are then divided

further into 12 classes based on whether the NE payoffs are higher than the AE

payoffs or not.

Huertas-Rosero’s geometrical approach to representing and classifying games is

mathematically simple. The NE and AE conditions used as a base for the

classification are easily expressed within the geometrical representation, and the

conditions for the classification could be generalized to higher dimensions. In

addition, Huertas-Rosero does not introduce any ad hoc conditions to divide any of

his classes. We therefore conclude that the classification satisfies Desideratum 1.

The concept of NE is commonly accepted as an important concept in game theory

and therefore we believe that Huertas-Rosero is justified to use this as a base for his

classification. However, the concept of AE is not well known and Huertas-Rosero

does not justify why it is an important concept. Neither does the author justify why

the AE condition defines interestingly different regions. Hence the classification

fails to satisfy Desideratum 2.

3.5 A topologically-based classification of the 2· 2 ordinal games (Robinson
& Goforth, 2003)

In the article A Topologically-Based Classification of the 2� 2 Ordinal Games by
Robinson, a classification system based on defining a topology on the 2� 2 games

is proposed. Robinson criticise the hierarchical classification system of Rapoport

et al. presented in Sect. 3.1. They claim that a lot of games with no topological

relation can end up in the same class when classifying in this way. The authors

formalize what it means for games to be similar to each other, which they use to

create the topology. They argue that using the hierarchical approach, the deep

relations between games are often not understood. The authors therefore propose a

topological approach to classifying all 2� 2 games which they claim captures how

games are related to each other.

In general, a topology is a set of points together with a neighbourhood relation. In

this case, the points will be the classes of 2� 2 games with the same ordinal

relationship between the payoffs. The neighborhood relation is based on the smallest

possible change you can make to a game that affects strategic play. When changing

the payoff function continuously, strategic play changes only when the preference

order is changed. The authors therefore define the operation, which we will denote
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Si;pðGÞ, that swaps the i:th ranked payoff for the iþ 1:th of player p in game G. For
example, using S1;2 on the game in Table 2 results in the game in Table 3 where the

lowest and second-lowest payoff for player 2 have been swapped. Following the

reasoning above leads to Definition 3.1.

Definition 3.1 (Neighbouring games) The set of neighbours N(G) of game G is

defined as

NðGÞ ¼ fSi;pðGÞ : i 2 f1; 2; 3g; p 2 f1; 2gg:

The definition states that a game G is a neighbour of G0 if Si;pðGÞ ¼ G0 for some

i 2 f1; 2; 3g, p 2 f1; 2g. Note that every game has a total of 6 neighbours since

there are 6 possible swap operators.

The topological space is created by starting with an arbitrary game and then

applying all possible concatenations of the Si;p operation on that game. This results

in a space containing 144 unique 2� 2 games. Depending on which game is chosen

to start with and what swap operations are used, different configurations of the map

will be created. By restricting to fewer swap operations than the 6 defined above you

can create subspaces of the topological space. The classification is made by

partitioning the topological space into a number of closed subspaces, containing

games that are topologically similar to each other. Depending on what subspaces are

investigated, different classifications will be obtained. The authors, for example,

begin by investigating the subspace created by restricting to the S1;p and S2;p swaps.
They motivate this by that swapping the lowest-ranked payoffs likely has a lower

impact on strategic play than swapping the highest-ranked payoff. The games

contained in this subspace would therefore be similar to each other.

The topological approach is in our view an elegant way of representing the game

space. The advantage of this approach is therefore clearly its mathematical

structure, i.e. that it fulfils Desideratum 1. However, even though the topological

approach has some justification, the resulting classes lack further empirical or

theoretical justification. Hence we conclude that Desideratum 2 is not fulfilled.

Table 2 Payoff matrix before using the S1;2 swap operation

Player 2

0 1

Player

1

0 (2, 4) (4, 3)

1 (1, 2) (3, 1)
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3.6 Conclusions

The conclusion from this literature review is that none of the classification

approaches here reviewed are able to fulfill both Desiderata 1. and 2. The

conclusions are summarized in Table 4.

4 Classification by decomposition

In this section, we introduce our classification. Section 4.1 presents a theorem

stating that any 2� 2 game can be decomposed into a common interest game and a

zero-sum game, and show how this can be used to describe the tension between the

common interest and the self interest of the players. Section 4.2 then considers the

classification of symmetric 2� 2 games this gives rise to.

4.1 Decomposition of symmetric 2· 2 games

Any game can be decomposed into a common interest game and a zero-sum game

(Kalai & Ehud, 2013). This is shown in Proposition 4.1 using the following natural

convention for addition of bimatrices:

Table 3 Payoff matrix after using the S1;2 swap operation

Player 2

0 1

Player

1

0 (2, 4) (4, 3)

1 (1, 1) (3, 2)

Table 4 This table summarises which of the desiderata defined in the beginning of this section that are

satisfied

Author Desideratum 1: simplicity and

parsimony

Desideratum 2: well-justified

regions

Rapoport et al. (1978) No Yes

Harris (1969) No Yes

Borm (1987) Yes No

Huertas-Rosero (2003) Yes No

Robinson and Goforth

(2003)

Yes No

Each classification receives a Yes if it manages to fulfil a desideratum and a No otherwise
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ðP1;P2Þ þ ðP0
1;P

0
2Þ ¼ ðP1 þ P0

1;P2 þ P0
2Þ:

Proposition 4.1 (Decomposition) A 2-player game with payoff bimatrix P can
always be decomposed into the sum of a zero-sum game with payoff bimatrix Z and
a game of common interest with payoff bimatrix C:

P ¼ C þ Z:

Proof Let P be the payoff bimatrix of an arbitrary 2-player game. P can be

decomposed as follows:

P ¼ ðP1;P2Þ

¼ 1

2
ðP1 þ P2Þ; ðP1 þ P2Þð Þ þ 1

2
ðP1 � P2Þ; ðP2 � P1Þð Þ

¼ C þ Z:

Here C ¼ 1
2
ððP1 þ P2Þ; ðP1 þ P2ÞÞ is a common interest game (Definition 2.4), and

Z ¼ 1
2
ððP1 � P2Þ; ðP2 � P1ÞÞ is a zero-sum game (Definition 2.3). h

Theorem 4.1 shows how a general 2-player game bimatrix can be decomposed

into one common interest game and a zero-sum game. We will interchangeably refer

to the zero-sum game as the conflict part of the game, since the players’ incentives

are completely opposed in these games. In the special case of 2� 2 symmetric

games, the decomposition of the payoff matrix has the following form:

ða; aÞ ðb; cÞ
ðc; bÞ ðd; dÞ

� �

¼
ða; aÞ ðbþ c

2
;
bþ c

2
Þ

ðbþ c

2
;
bþ c

2
Þ ðd; dÞ

2

6
4

3

7
5

þ
ð0; 0Þ ðb� c

2
;� b� c

2
Þ

ð� b� c

2
;
b� c

2
Þ ð0; 0Þ

2

6
4

3

7
5:

ð2Þ

Fig. 4 The payoffs to the left is the common interest part of the payoff matrix and to the right is the
conflict part of the payoff matrix. In the picture the eight variables that describe the preferences of both
players are illustrated as arrows
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The decomposition separates the common interest part from the conflict part of the

game. We define the variables c1, c2 and z1 for the incentives in the common interest

and the zero-sum parts (see Fig. 4). In the definition, uCi and uZi are the payoffs for

player i in the common interest part and the zero-sum part, respectively.

c1 ¼ uC1 ð10Þ � uC1 ð00Þ ¼
bþ c

2
� a ð3Þ

c2 ¼ uC2 ð11Þ � uC2 ð10Þ ¼ d � bþ c

2
ð4Þ

z1 ¼ uZ1 ð10Þ � uZ1 ð00Þ ¼ � b� c

2
� 0 ¼ � b� c

2
: ð5Þ

Remark 4.2 In symmetric 2� 2 games we only need c1; c2 and z1 to describe the

incentives in the common interest and the zero-sum parts. For general 2� 2 games

one could also define c3 ¼ uC2 ð01Þ � uC2 ð00Þ; c4 ¼ uC1 ð11Þ � uC1 ð01Þ and define z2; z3
and z4 analogously. However in symmetric 2� 2 games c1 ¼ c3; c2 ¼ c4 and zk ¼
zl8k; l 2 f1; 2; 3; 4g as shown in Fig. 4.

The variables c1; c2 and z1 allow us to compare the strength of the incentives in

the common interest part with the strengths of the incentives in the conflict part, and

to check whether the incentives are aligned or not. For example, if c1 [ 0, then

player 1 prefers outcome f1; 0g in the common interest matrix over outcome f0; 0g.
The sign of the variables determine what outcomes the players prefer. In Fig. 4 we

represent these preferences as arrows, where a positive sign of the variables mean

that the arrows point in the direction shown in the figure, and in the opposite

direction if the sign is negative. The vertical arrows represent the preferences of

player 1 and the horizontal arrows represent the preferences of player 2. The

absolute value of the variables c1, c2 and z1 represent the strengths of the players’

preferences.

In the five standard games (Prisoner’s Dilemma, Chicken, Stag Hunt, Leader and

Hero), the conflict part of the decomposition counteracts the common interest part

of the decomposition. Expressed in our variables, this means that the conflict

variable z1 and at least one of the common interest variables c1 or c2 have opposite

Fig. 5 The common interest part (middle) and the conflict part (right) of the decomposed payoff bimatrix
of the Prisoner’s Dilemma payoff matrix (left)
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signs and that the value of z1 is greater than this variable. Consider for example the

decomposition of Prisoner’s Dilemma in Example 4.3.

Example 4.3 In Prisoner’s Dilemma, the players have to choose between

cooperation and defection. The temptation of the selfish choice is stronger than

the incentive to cooperate and as result f1; 1g (both players defect) is the unique NE

even though both players could get a higher payoff from cooperating. The game

below is an example of a Prisoner’s Dilemma game. In Fig. 5 below, the

decomposition of the Prisoner’s Dilemma bimatrix is presented. As suggested by the

arrows, the conflict part of the decomposition draws the players toward the selfish

outcome and it is strong enough to counteract both of the common interest variables

that draw the players toward the cooperation outcome.

In the common interest game both players prefer outcome f0; 0g (cooperation)

and hence the arrows point in this direction. In the conflict game player 1 prefers the

f1; 0g outcome and player 2 prefers the f0; 1g outcome. As a result, their combined

incentives draw them toward the f1; 1g outcome, as the arrows suggest. Because the

payoff differences in the conflict game is larger than those in the common interest

game, the incentives in the conflict game counteracts the incentives in the common

interest game. This can be told from the conflict and common interest variables. We

have z1 ¼ 1:5 and c1 ¼ c2 ¼ �0:5. Because the z1 variable and the c1 and c2
variables have different signs the conflict counteracts the common interest and since

jz1j[ maxðjc1j; jc2jÞ, the conflict is strong enough to overpower the common

interest. Therefore the selfish outcome f1; 1g is the NE of the game.

Strategic equivalence Games with different payoffs and tension vectors may be

strategically equivalent. Indeed, except for the zero-conflict game with z1 ¼ 0, all

games are equivalent to a game with z1 ¼ 1.

Proposition 4.4 Every game with non-zero conflict is strategically equivalent with
a game with z1 ¼ 1:

Proof According to Definition 2.5, if the payoff matrix of a game can be

constructed by permuting the rows and columns of another game’s payoff matrix,

then the games are strategically equivalent. This means that the two matrices in

Eq. 6 are strategically equivalent:

A ¼
a b

c d

� �

�
d c

b a

� �

¼ A0: ð6Þ

These matrices have the following decomposition.

A ¼
a b

c d

� �

¼
a

bþ c

2
bþ c

2
d

2

6
4

3

7
5þ

0
b� c

2

� b� c

2
0

2

6
4

3

7
5 ð7Þ
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A0 ¼
d c

b a

� �

¼
d

bþ c

2
bþ c

2
a

2

6
4

3

7
5þ

0 � b� c

2
b� c

2
0

2

6
4

3

7
5: ð8Þ

That is, c1 ¼ �c02, c2 ¼ �c01 and z1 ¼ �z01 and from this we can tell that every point

in R3 with z1\0 represents a game that is strategically equivalent with a game such

that z1 [ 0. Hence we only need to consider games with z1 � 0.

Scalar invariance defined in Definition 2.5 states that to games with payoff

matrices A and A0 respectively are strategically equivalent if there exists a[ 0 such

that A0 ¼ aA. Multiplying the game matrix with a constant a is equivalent with

multiplying all of the payoffs with a. Since z1 ¼ � b�c
2
, the relation A0 ¼ aA implies

that z01 ¼ � ab�ac
2

¼ az1. This means that every game with z1 [ 0 has a strategically

equivalent game with z1 ¼ 1. Combined with the observation above, this completes

the proof. h

4.2 Classification

The common interest and conflict variables c1, c2, z1 locate games in R3 via the

vector ½c1; c2; z1	t. It is easily shown that every game with negative z1 is strategically
equivalent with a game with positive z1 (see proof of Proposition 4.4). A partition of

R2 � Rþ thereby groups games into classes. The arguably simplest partitioning of

R2 � Rþ is given by the planes spanned by any two coordinate axes:

c1 ¼ 0 ð9Þ

c2 ¼ 0: ð10Þ

This turns out to be a far too coarse classification, with significantly different games

such as Prisoner’s Dilemma and Stag Hunt sharing regions. The second simplest set

of planes is arguably the diagonal planes:

c1 ¼ c2 c1 ¼ �c2 ð11Þ

c1 ¼ z1 c1 ¼ �z1 ð12Þ

c2 ¼ z1 c2 ¼ �z1: ð13Þ

Splitting R2 � Rþ with the planes defined in Eqs. 9–13 gives a accurate game

classification.

Proposition 4.5 The planes c1 ¼ 0; c2 ¼ 0; z1 ¼ 
c1; z1 ¼ 
c2 and c1 ¼ 
c2
divide R2 � Rþ into 24 different regions.

Proof The first two planes defines 2 regions each and since they are pairwise

orthogonal this results in 22 ¼ 4 regions in total. The lengths jc1j; jc2j and jz1j can be
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ordered in 3! ¼ 6 ways independently of the signs of c1 and c2. Hence the planes

divide R3 into 22 � 3! ¼ 24 regions in total. h

By employing Proposition 4.4 we can visualise the classification through its

intersection with z1 ¼ 1. The visualisation is shown in Fig. 6.

As we will establish in the next subsection, all of the standard games have their

own regions. For example, the four Prisoner’s Dilemma regions can be found in the

high-conflict part of the map. The Common Interest regions consist of games where

the conflict variable is weaker than both of the common interest variables, or where

the conflict variable and the common interest variables have the same sign. In the

Partial Conflict regions the conflict variable and one of the common interest

Fig. 6 An illustration of the partition of the space of symmetric 2� 2 games into 24 classes. The lines are
defined by the intersection of the z1 ¼ 1 plane and the planes described in Proposition 4.5. In the yellow
area jz1j[ jc1j, the conflict incentive is stronger than the cooperation incentive c1. Similarly, in the blue
area jz1j[ jc2j, the conflict incentive is stronger than the cooperation incentive c2. In the middle rectangle
where z1 dominates both c1 and c2, the conflict is stronger than the common interest incentives. When z1
and ck have the same sign, k 2 f1; 2g, the incentives z1 and ck point in the same direction. Since z1 ¼ 1 in
the map, when ck is positive there is no tension between the interests represented by z1 and ck. Therefore
the first quadrant is a no-conflict area. In the outer white regions, jz1j\minðjc1j; jc2jÞ, i.e. the common
interest is stronger than the conflict. Most of the standard games are found in the more central, coloured
regions, where the conflict is stronger (colour figure online)
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variables have opposite signs and the conflict variable is strong enough to dominate

the common interest variable.

4.3 Interpreting the boundaries

What explains the success of this classification principle is that the planes generated

by Eqs. 9–13 capture points where either the alignment between common interest

and conflict turns to disalignment, or the relative strength between two components

c1, c2, z1 shifts. In the following subsections we analyse interpretations and

implications of the planes more closely, and link our 24 regions to the some of the

standard games. We also determine where Nash equilibria (NE), Definition 2.6, and

Altruistic Equilibria (AE), Definition 2.7, are located in different regions.

4.3.1 Bijective transformation

As a first step for our more careful analysis, we will add an auxiliary variable x in

addition to c1, c2 and z1, to make the transformation from the payoff parameters a, b,
c, d bijective. In Fig. 4 we define the variables c1; c2 and z1 according to the

transformation

c1

c2

z1

2

6
4

3

7
5 ¼ 1

2

�2 1 1 0

0 � 1 � 1 2

0 � 1 1 0

2

6
4

3

7
5

a

b

c

d

2

6
6
6
4

3

7
7
7
5
: ð14Þ

The transformation in Eq. 14 is not invertible. To make it invertible, we add the

auxiliary variable x, aþbþcþd
2

. The resulting transformation

x

c1

c2

z1

2

6
6
6
4

3

7
7
7
5
¼ A

a

b

c

d

2

6
6
6
4

3

7
7
7
5
¼ 1

2

1 1 1 1

�2 1 1 0

0 � 1 � 1 2

0 � 1 1 0

2

6
6
6
4

3

7
7
7
5

a

b

c

d

2

6
6
6
4

3

7
7
7
5

ð15Þ

is invertible, with determinant jAj ¼ �1.

Note that changing the auxiliary variable x is equivalent to adding a constant to

the payoffs. It preserves strategic equivalence. This in combination with the fact that

the transformation in Eq. 15 is invertible and Proposition 4.4 implies that every

point in the map in Fig. 6 represents exactly one strategic equivalence class of

games. It also means that every strategic equivalence class of games is represented

by exactly one point in the map. This is desirable since there is no interesting

difference between strategically equivalent games. Hence it is not meaningful to

represent the same strategically equivalence class with more than one point in a

classification map.

By inverting the transformation matrix A in Eq. 15, we can express the payoffs a,
b, c, d, in terms of c1; c2; z1 and x:
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a

b

c

d

2

6
6
6
4

3

7
7
7
5
¼ A�1

x

c1

c2

z1

2

6
6
6
4

3

7
7
7
5
¼ 1

4

2 � 3 � 1 0

2 1 � 1 � 4

2 1 � 1 4

2 1 3 0

2

6
6
6
4

3

7
7
7
5

x

c1

c2

z1

2

6
6
6
4

3

7
7
7
5
: ð16Þ

Being able to convert between our variables c1; c2; z1 and the payoffs a, b, c, d will

be useful in establishing Propositions 4.7 and 4.8 below. The next three subsections

will investigate each of the planes generated by Eqs. 9–13 in turn.

4.3.2 The ci = – z1 conditions, and NE and AE regions

We next state and prove two propositions expressing conditions for NE and AE in

terms of our cooperation and conflict variables c1; c2 and z1. The concept of NE is

standard in game theory. The concept of AE is not as commonly known as NE, but

it does nevertheless play an important part in many games, for example Deadlock,
Chicken and in the symmetric version of Battle of the Sexes.

To be able to express the NE and AE conditions in terms of c1, c2 and z1 we need
to introduce Lemma 4.6.

Lemma 4.6 The following list states the NE conditions expressed in terms of
a, b, c and d.

1. f0; 0g is NE iff a� c:
2. f0; 1g is NE iff b� d and c� a:
3. f1; 0g is NE iff c� a and b� d:
4. f1; 1g is NE iff d� b:

Proof We provide the proof for the first case. The proof for the other three cases are

analogous. According to Definition 2.6, f0; 0g is NE if and only if u1ð0; 0Þ >
u1ð1; 0Þ and u2ð0; 0Þ > u2ð0; 1Þ. But u1ð0; 0Þ > u1ð1; 0Þ , a� c and

u2ð0; 0Þ > u2ð0; 1Þ , a� c. That is f0; 0g is NE iff a� c. h

Proposition 4.7 In any symmetric 2� 2; two-player game G with cooperation and
conflict variables c1; c2 and z1; the following statements are true:

(i) f0; 0g is NE if and only if z1 þ c1 � 0;
(ii) f0; 1g and f1; 0g are NE if and only if z1 þ c1 � 0 and z1 þ c2 � 0;
(iii) f1; 1g is NE if and only if z1 þ c2 � 0:

Proof Let y~¼ ða; b; c; dÞT be a vector with the payoffs for G, and let

v~¼ ðx; c1; c2; z1ÞT ¼ Ay~;

where A is the matrix in Eq. 15. Equation 16 gives us that the payoff vector y~can be

written y~¼ A�1v~, and hence
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a ¼ 1

4
ð2x� 3c1 � c2Þ b ¼ 1

4
ð2xþ c1 � c2 � 4z1Þ

c ¼ 1

4
ð2xþ c1 � c2 þ 4z1Þ d ¼ 1

4
ð2xþ c1 þ 3c2Þ:

ð17Þ

Combining the list and Eq. 17 with Lemma 4.6, we can express these conditions in

terms of the variables c1, c2 and z1.

(i) f0; 0g is NE if and only if

a� c () 1

4
ð2x� 3c1 � c2Þ�

1

4
ð2xþ c1 � c2 þ 4z1Þ () z1 þ c1 � 0:

(ii) f0; 1g and f1; 0g are NE if and only if b� d and c� a.

b� d () 1

4
ð2xþ c1 � c2 � 4z1Þ�

1

4
ð2xþ c1 þ 3c2Þ () z1 þ c2 � 0:

Similarly, c� a () z1 þ c1 � 0.

(iii) f1; 1g is NE if and only if

d� b () z1 þ c2 � 0:

h

Proposition 4.7 implies that the planes z1 þ c1 ¼ 0 and z1 þ c2 ¼ 0 divide R3

into four regions with different types of NE. Both of the planes that separates games

with different types of NE are used in our model to partition the game space. This in

every region in our model, all of the games have the same type of NE. Recall that in

Fig. 6, z1 ¼ 1, which means that the lines c1 ¼ �1 and c2 ¼ �1 divide the map into

the four NE regions (see Fig. 7).

Fig. 7 In the left map the bold lines are the NE conditions from Proposition 4.7 and they divide the plane
into four regions with different types of NE. In the right map the bold lines are the AE conditions from
Proposition 4.8 and they divide the plane into four regions with different types of AE. It is easy to see that
there are nine possible combinations of NE and AE in symmetric 2� 2 games

123

482 M. Böörs et al.



Proposition 4.8 provides the analogous analysis for AE. The lines c1 ¼ 1 and

c2 ¼ 1 divide the games according to their AE types in the same way that c1 ¼ �1

and c2 ¼ �1 divide the NE regions.

Proposition 4.8 In any symmetric 2� 2; two-player game G with cooperation and
conflict variables c1; c2 and z1; the following statements are true:

(i) f0; 0g is AE iff z1 � c1;
(ii) f0; 1g and f1; 0g are AE iff z1 � c1 and z1 � c2;
(iii) f1; 1g is AE iff z1 � c2:

Proof Let y~¼ ða; b; c; dÞT be a vector with the payoffs for G, and let

v~¼ ðx; c1; c2; z1ÞT ¼ Ay~;

where A is the matrix in Eq. 15. We can express the payoffs a , b, c and d associated

with v~ as in Eq. 17. In a 2� 2 symmetric game AE is equivalent to NE in the

transposed payoff matrix. This means that

1. f0; 0g is AE iff a� b,
2. f0; 1g and f1; 0g are AE iff b� a and c� d,
3. f1; 1g is AE iff d� c.

Using Eq. 17, these conditions can be expressed in the variables c1, c2 and z1 as

follows.

(i) f0; 0g is AE if and only if

a� b () a
4
ð2x� 3c1 � c2Þ�

a
4
ð2xþ c1 � c2 � 4z1Þ () z1 � c1:

(ii) f0; 1g and f1; 0g is AE if and only if b� a and c� d.

b� a () z1 � c1

c� d () a
4
ð2xþ c1 � c2 þ 4z1Þ�

a
4
ð2xþ c1 þ 3c2Þ () z1 � c2:

(iii) f1; 1g is AE if and only if

d� c () z1 � c2:

h

Proposition 4.8 states that all four types of AE are described by the planes

z1 � c1 ¼ 0 and z1 � c2 ¼ 0. Just as the NE planes, they divide R3 into four

different regions with different types of AE and the planes are used in our model to

describe the strength relationship between jz1j, jc1j and jc2j. In Fig. 7 the four NE

regions and the four AE regions in the map from Fig. 6 are shown.

Propositions 4.7 and 4.8 show that our method of classification, which is

intended to divide games into groups depending on their type of decomposition,
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captures all different types of NE and AE. Since NE and AE4 have been argued to

be important aspects of games, the results support our hypothesis that tension

between the common interest and self-interest is what makes a game interesting, and

that games are interesting in different ways because they have different common

interest–self-interest tensions.

4.3.3 The c1 = – c2 conditions

Now we know the meaning of the planes z1 ¼ 
c1; c2. The next step is to analyze

the meaning of the planes c1 ¼ 
c2. The plane c1 ¼ �c2 determines the difference

between the two diagonal outcomes, as

c1 [ � c2 () � 2aþ bþ c[ bþ c� 2d () a[ d:

Thus, the players prefer outcome f0; 0g over f1; 1g when c1 [ � c2, and the f1; 1g
outcome over the f0; 0g outcome otherwise. An interpretation of this condition is

that when c1 þ c2 [ 0, the common interests are more aligned than disaligned with

the zero-sum incentive.

This difference is exactly the difference between Prisoner’s Dilemma and

Deadlock. In Prisoner’s Dilemma c1 þ c2\0, meaning that the summed common

interests are disaligned with the zero-sum incentive. In Deadlock on the other hand

c1 þ c2 [ 0 and hence the summed common interests are aligned with the zero-sum

incentive. Indeed, in Fig. 6 the c1 ¼ �c2 line is the border between Prisoner’s

Dilemma and Deadlock.

The plane c1 ¼ c2 is not a border between any standard games. It does however

have some interesting properties. Note that

c1 [ c2 () � 2aþ bþ c[ � b� cþ 2d () bþ c[ aþ d:

This means that when c1 [ c2, the mean of the payoffs in the anti-diagonal positions

are higher than the mean of the diagonal positions. Therefore, in some of the regions

c1 [ c2, the players can cooperate by alternating between the two anti-diagonal

positions in iterated play. However the c1 þ c2 ¼ 0 condition is arguably not as

important as the c1 � c2 ¼ 0 condition. Remember that the latter decides whether or

not the common interest incentives are more aligned than disaligned with the zero

sum incentives. The c1 � c2 ¼ 0 condition has no direct connection to the zero sum

incentives and therefore one might expect this condition to have a smaller impact on

the games than the c1 þ c2 ¼ 0 condition.

4.3.4 The ci = 0 conditions

The ci ¼ 0 conditions decide the common interest incentives and in general the

direction of the ci arrows are important. However, since the ci incentives are small

near the boarder ci ¼ 0 they will be dominated by the zero sum incentives.

4 We do not in fact see the strategic relevance of AE, but mention this to stress that our classification do

capture information about this. We found that the AE separating planes have less impact on strategic play

compared to the NE separating planes for example.
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Therefore it seems likely that the change of direction of the ci arrows will not make

a clear distinction between interestingly different games. Indeed, in the map in

Fig. 6 these condition does not separate any standard games. Instead one might

expect a gradual change in the games as ci changes signs.

4.4 Comparison with other classifications

In this section we compare our proposed classification with those reviewed in

Sect. 3 that have a similar approach as us. We prove that our classification is at least

as fine-grained as the classifications by Harris and Huertas-Rosero. Moreover, we

capture the conditions which Harris add ad hoc to divide certain regions further.

Since our approach to classifying games differs quite a bit from the classifications

by Rapoport et al. and Robinson and Goforth, we do not compare our classification

with theirs. The classification by Borm is also hard to compare with, since he

classifies mixed extension 2� 2 games. We leave these comparisons as open

questions in Sect. 8.

4.4.1 Huertas-Rosero (2003)

Huertas-Rosero (2003) classifies non-zero sum symmetric 2� 2 games based on NE

and AE locations, and on whether or not the payoffs in the NE outcomes are larger

than the payoffs in the AE outcomes. As stated in Propositions 4.7 and 4.8, the NE

and AE locations are determined by our classes. Further, in each of our 24 classes

one can tell whether the payoffs in the NE outcomes are larger than the payoffs in

the AE outcomes. A proof for this can be found in Böörs and Wängberg

(2017), Chapter 3.2. This means that all of Huertas-Rosero’s classes except one can

Fig. 8 The 11 non-empty
classes of Huertas-Rosero
named as in Huertas-Rosero
(2004). The twelfth and empty
class is the part of 2.1.1 that lies
above the line c2 ¼ �c1. As
suggested by the figure, Huertas-
Rosero fails to capture the
different sub-regions of
Prisoner’s Dilemma and Stag
Hunt, and the two standard
games Leader and Hero belong
to the same class in his
classification
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be found in our classification. However, this remaining class is empty (Böörs and

Wängberg 2017, chapter 2.2.4). Thus, our classification contains all 11 non-empty

classes of Huertas-Rosero. Figure 8 shows Huertas-Rosero’s 11 non-empty classes

in our classification map.

All the aspects of the classification provided by Huertas-Rosero are found in our

classification as well, despite his rather different starting point based on NE and AE

locations. This supports our hypothesis that the interesting differences between

games are explained by the differences in their decomposition.

4.4.2 Harris (1969)

Harris uses a geometrical approach to classifying games (see Sect. 3.2). In that

respect his method is similar to our classification method. We can therefore easily

compare the parameters that are used in Harris1969’ classification to ours, and

prove that they are in fact equivalent. Harris defines the two parameters

r3 ¼
d � b

c� b
r4 ¼

c� a

c� b
:

He partitions the space of symmetric 2� 2 games by dividing the r3r4�plane with

the lines defined by

r3 ¼ 1 r4 ¼ 0 r3 ¼ 0 r3 þ r4 ¼ 1 r4 ¼ 1: ð18Þ

Supposing that c 6¼ b, we can express these lines in terms of our variables using the

definition of r3 and r4 and Eq. 17. If c ¼ b, the game lies on the border between two

of our classes:

r3 ¼ 1 () c ¼ d () z1 ¼ c2

r4 ¼ 0 () c ¼ a () z1 ¼ �c1

r3 ¼ 0 () d ¼ b () z1 ¼ �c2

r4 ¼ 1 () b ¼ a () z1 ¼ c1

r3 þ r4 ¼ 1 () d ¼ a () c2 ¼ �c1:

ð19Þ

Harris also uses two ad hoc conditions to divide only his Prisoner’s Dilemma

region. These extra conditions also correspond to conditions in our classification, as

can be easily demonstrated:

r4 ¼
1

2
() bþ c ¼ 2a () c1 ¼ 0

r3 ¼
1

2
() bþ c ¼ 2d () c2 ¼ 0:

ð20Þ

In Fig. 9 Harris’ classes are drawn in our map to show the similarities and the

differences between his classification and ours. Harris’ classes are a subset to the set

of our classes. This again supports the idea that the interesting elements of a game is

defined by its decomposition. Our classification also captures the different variants

of Prisoner’s Dilemma and Chicken without the need for ad hoc conditions.
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5 Analysis of game regions

In this section we analyse the regions associated with standard games, and compare

them with relevant literature. The comparisons are made both with the classifica-

tions reviewed in Sect. 3, and other research. Many of our regions have attracted

interest from authors approaching the topic from very different starting points. In

the analysis we will be referring to the payoff parameters a, b, c and d, as in

Table 5.

5.1 Prisoner’s dilemma regions

In one-shot scenarios where the game is played only once the variations are not

very interesting, as f1; 1g is the only NE (see Table 6). However, the variations

become interesting in iterated play, where a player may sacrifice short term payoff

to increase the chances of the opponent cooperating in the future (Axelrod &

Hamilton, 1981).

Fig. 9 The classes of Harris. The 12 main classes that are the result of the lines in Eq. 19 are drawn with
bold lines. As can be seen in the map, all standard games are isolated in Harris1969’ classification. With
the extra conditions of Eq. 20 depicted with bold dashed lines, he divides the Prisoner’s Dilemma and the
Chicken regions into sub-regions to capture the different variations of the games. However, he does not
capture the sub-regions in Stag Hunt and he does not differentiate between the non-conflict games CI 1
and 4 and the partial conflict games PC 1 and 2 (cf. Fig. 6)

Table 5 Symmetric 2� 2 game with payoff parameters a, b, c and d

0 1

0 (a, a) (b, c)

1 (c, b) (d, d)
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In terms of the payoff parameters, the Prisoner’s Dilemma regions correspond to:

P1 bþ c\2d
P2 2d\bþ c\2a and a� c\b� d
P3 2d\bþ c\2a and a� c[ b� d
P4 bþ c[ 2a:

In P4, the players may start to alternate between the strategy profiles f0; 1g and

f1; 0g because it gives both players higher payoff than cooperating when the game

is repeated. Some argue that this makes the distinction between cooperation and

defection too vague, since the players can cooperate by taking turns exploiting each

other (Axelrod & Hamilton, 1981; Harris, 1969).

In the P1 region, the inequality bþ c\2d () b� d\d � c holds. This means

that the cost for signalling for cooperation (b� d) is less in magnitude than the gain

of inducing the opposing player to initiate cooperation first (d � c). Some argue that

this is not a true representative of the Prisoner’s Dilemma (Harris, 1969; Lave,

1965).

Therefore many researchers refer to the Restricted Prisoner’s Dilemma shown in

Table 6 (P2 and P3), where the inequality 2d\bþ c\2a is satisfied, as the true

version of the game (Axelrod & Hamilton, 1981; Harris, 1969; Radinsky, 1971;

Rapoport & Albert, 1965; Scodel, 1962). Many also use representations of PD

where this inequality is satisfied, without stating it (Andreoni & Miller, 1993; Lave,

1965).

The Restricted Prisoner’s Dilemma is however divided into two different games,

depending on whether c1 [ c2 (P2) or whether c1\c2 (P3).

We found no previous discussion of the P2–P3 distinction. We did however find

an intuitive meaning: it affects the cost of signalling for cooperation and the cost for

accepting it given that the game is repeated and in NE.

For example, in the P3 instance in Table 6, signalling is expensive compared to

accepting the signal to cooperate. The cost for signalling, by switching from action

Table 6 Four representatives of the P1, P2, P3 and P4 regions

Harris (1969) distinguishes between P1 and P4 and regards P2 and P3 as the same game. All the versions

of PD above are regarded as the same game by Huertas-Rosero (2003), Rapoport et al. (1978) and

Robinson and Goforth (2003) reviewed in Sect. 3
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1 to action 0, and ‘‘telling the opposing player that you wish to cooperate’’ is

jb� dj ¼ j � 1� 1j ¼ 2, but the cost of responding to the signal is only

ja� cj ¼ j4� 5j ¼ 1. In the P2 example in Table 6 the situation is reversed. The

cost for signalling is lower whereas the cost for accepting the signal is

comparatively high. In this case player 1 pays a small cost of jd � bj ¼ j0� 1j ¼
1 to signal to player 2 that he would like to cooperate and player 2 pays a higher cost

of ja� cj ¼ j3� 5j ¼ 2 for agreeing to cooperate. We leave it as an open question

whether this has any significant impact on strategic play.

5.2 Stag Hunt regions

The Stag Hunt regions are characterised by having two NE, with one of the Nash

equilibria Pareto dominating all other outcomes. What makes the Stag Hunt games

interesting is a conflict incentive that although weak, may still push cautious, non-

trusting players towards the worse NE. The first version of Stag Hunt S1 has a

weaker push towards good NE with c2 [ 0, whereas the second one S2 has a

stronger push towards the good NE with c2\0. Examples of the games are

displayed in Table 7.

Stag Hunt was overlooked in the classification by Harris (1969) and called a no-

conflict game. However, this game has received a lot of attention from other authors

(Dubois et al., 2012; Rapoport et al., 1978; Skyrms, 2004).

A Nash equilibrium outcome is said to be payoff-dominant if it is not strictly

Pareto dominated by any other outcome. A low-risk equilibrium can be interpreted

as the intersection of the maximin strategies introduced by Rapoport et al. (1978).

Several authors have analyzed Stag Hunt to see whether players will choose the

payoff-dominant or the low-risk equilibrium strategies (Dubois et al., 2012;

Rapoport et al., 1978).

A natural conjecture is that c2\0 (S2) makes the payoff-dominant equilibrium

more frequent and that c2 [ 0 (S1) makes the risk-dominant equilibrium played

more often. Dubois et al. (2012) conducted human experiments where three

different versions of Stag Hunt, displayed in Table 8, were played repeatedly over

75 rounds. The authors found that the frequency of cooperation (payoff-dominant

strategy) was higher in Game 1 (S2), with c2 ¼ �9\0 than in Game 2 (S1) and

Table 7 Two variants of Stag Hunt, one from each region

Cooperation tends to be more frequent in the right game (Dubois et al. 2012), which may be explained by

the common interest incentive c2 being positive in S1 and negative in S2
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Game 3 (S1) with c2 ¼ 3:5[ 0 and c2 ¼ 7[ 0 respectively. The authors also found

that cooperation was slightly more frequent in Game 3 than in Game 2, but that the

difference became negligible in the last 25 rounds. This provides support for the

conjecture above, that there is an important difference between region S1 and S2.

Rapoport et al. (1978) discuss the difference between Stag Hunt and the

Cooperation Dominant game found in regions CI7 and CI8 (see Table 9). Although

similar, the difference is that c2\� z1 in the Cooperation Dominant game, which

makes cooperation a dominant strategy. Unsurprisingly, empirical results by

Rapoport et al. showed that cooperation is much more frequent in the Cooperation

Dominant game than in Stag Hunt.

5.3 Chicken regions

Similar to Stag Hunt, Chicken has two Nash equilibria. The Chicken region is

separated into two regions depending on whether c1 is positive or negative

(Table 10).

Ells and Vello (1966) argue that the proper Chicken game (C1) should satisfy

Eq. 21:

Table 8 The three versions of Stag Hunt used in the experiments by Dubois et al. (2012) together with

parameter values

A result from the experiments was that the frequency of cooperation over the last five rounds (71–75) was

43.75% in game 1, 24.38% in game 2 and 30.94% in game 3

Table 9 Cooperation dominant game

0 1

0 (6, 6) (3, 5)

1 (5, 3) (2, 2)
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bþ c\2a () c1\0: ð21Þ

The motivation behind this is the same as for the Prisoner’s Dilemma. If bþ c[ 2a
the players will receive a higher payoff from alternating between action profiles

f0; 1g and f1; 0g than by sticking to action 0. The idea behind Chicken is that

cooperation is achieved when both players choose action 0, which is a different

coordination problem than the C2 version. Rapoport et al. (1978) also show in their

experiments that players relatively quickly find out how to take advantage of the

fact that bþ c[ 2a. Hence there is support for distinguishing between C1 and C2.

5.4 Leader and Hero regions

The Leader and Hero games may be viewed as symmetric version of The Battle of

the Sexes, where the two NE reside on the anti-diagonal rather than the diagonal

(Harris, 1969; Rapoport et al., 1978; Rasmusen, 1994). None of the NE are Pareto

Optimal, with the players preferring different NE. The difference between the

games is that only in Hero is jc1j[ jc2j, which makes the maximin strategy 0 in

Leader and 1 in Hero (Table 11).

The names Leader and Hero stem from the slightly different coordination

problems the games pose. In iterated versions of both games, a cooperative and fair

strategy is for the players to alternate between f0; 1g and f1; 0g. However, in want

of such coordination, both players may choose their maximin strategies (0 in

Leader; 1 in Hero). In this case, both players will receive a higher payoff if one of

Table 10 Two variants of Chicken, one from each region

In C1 the players receive the highest payoff from strategy profile f0; 0g, whereas in C2 more payoff is

gained by alternating between f0; 1g and f1; 0g in iterated play

Table 11 Leader and Hero games

In Leader, the first player to switch from the maximin strategy gets a benefit; in Hero the player who stays

benefits
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them switch action, but lower payoff if they both switch. Thus, in order for the

players to increase their payoff, one of the players has to take initiative and change

action, while the other waits. The difference between the games is that in Leader the

player who shifts gets a higher payoff than the one who waits, but in Hero the

switcher gets less payoff (Rapoport et al., 1978). Whence the names of the games.

Unsurprisingly perhaps, human players choose the maximin strategy much more

frequently in Hero than in Leader (Rapoport et al., 1978). The Leader and Hero

distinction is also included in Harris (1969) classification.

5.5 Conclusions

In this section we analyzed the standard game regions and compared to other

relevant research. In the remaining regions we found that the tension between the

common interest and self-interest is low, and it is therefore easy for the players to

coordinate on the most favourable outcome. So we do not think any strategical

insight is gained from analysing these games in further detail. Many of our regions

have support from authors that conduct research on these games from starting points

other than that of classifying. This therefore provides support for our classification.

6 Computer experiments

In this section we present an evolutionary computer experiment of the best strategies

in various iterated symmetric 2� 2 games. The design is somewhat inspired by the

computer tournaments held by Axelrod and Hamilton (1981), though not restricted

to Prisoner’s Dilemma. The experiments provide some empirical evidence for our

classification, showing that optimal strategies often change drastically between

regions, while only undergoing continuous changes within regions.

6.1 Experiment design

The setup of the experiment is that strategies with memory length 1 compete on

iterated symmetric 2� 2 games in an evolutionary process. We describe each of the

components in the following subsections.

6.1.1 Iterated games

By iterated 2� 2 game we mean a 2� 2 game that is played repeatedly for a given

number of rounds. The players’ payoffs will increase accumulatively in each

iteration according to the same payoff function defined for the one-shot game.

6.1.2 Strategies with memory length 1

In Definition 6.1 below a formal definition of what we mean with deterministic
strategy with memory length one is presented.
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Definition 6.1 Let G ¼ ðS;U;PÞ be a symmetric 2� 2 game. A strategy in
iteration n si;n 2 Si is a strategy of player i 2 P in the n:th iteration of the game,

n 2 N. We say that fsi;ngn2N is deterministic with memory length one if si;0 ¼ a 2
Ai and si;n ¼ fiðsi;n�1; s�i;n�1Þ for n[ 0, where fi : Ai � A�i ! Ai.

Definition 6.1 states that a strategy is deterministic with memory length one if it

has a deterministic starting action and if the action in the n:th iteration, n[ 0, of an

iterated game is uniquely determined by the outcome of the n� 1 iteration of the

game. An example of a deterministic strategy of memory length one is presented in

Example 6.2.

Example 6.2 In a symmetric 2� 2 game an example of a deterministic strategy of

length one is presented as in the Table 13. This strategy states that the player starts

by playing action 0. If the outcome is f0; 0g the action in the first iteration will be 0

again but if the outcome is f0; 1g the action in the first iteration is 1. This strategy is

in fact designed to imitate the last move of the opponent in every iteration. With 0

being the cooperative action and 1 the defective action, this strategy is referred to as

Tit for Tat (Axelrod and Hamilton 1981).

Since jAij ¼ 2 there are jA0 � A1j ¼ 4 possible outcomes in a symmetric 2� 2

game. Player i has 2 possible actions to take as a response to each outcome and 2

possible starting positions and this means that there are 25 ¼ 32 possible

deterministic strategies with memory length one. We denote the set of these

strategies with SD. Each of the two players can choose a strategy independently of

the other player which means that there are 322 ¼ 1024 deterministic strategy

profiles with memory length one for each symmetric 2� 2 game.

6.1.3 Evolutionary process

The main steps of the evolutionary process is the following. Given an iterated game

G and an initial population N of strategies with memory length one, the following

steps repeats until stable statistics can be computed:

1. First, all strategies meet all other strategies in a round-robin tournament.

2. Based on the relative payoffs of the strategies, a fitness for each strategy is

computed.

3. A new population N 0 is generated, where strategies in N are represented in

proportion to their fitness, save for random mutations to the strategies.

4. Start over with Step 1 with the new population N 0.

Population A population of strategies is simply a multi-set of deterministic

strategies with memory length one. It is important to note that a population of

strategies does not have to be a subset of the set of all deterministic strategies with

memory length one, SD, since we allow for the same strategy s 2 SD to occur in a

population more than once. Formally a population of strategies N is a multi-set of
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strategies s such that s 2 N ) s 2 SD. A population of order n� 1 is a population

N with jN j ¼ n.
Fitness We need a measure that tells us how good a certain strategy performs in

comparison to the other strategies in the population. This motivates Definition 6.3.

Definition 6.3 (Total payoff) Given a game G and a specific population of strategies

N , let pij denote the sum of payoffs over m games gained by strategy si 2 N in a

fight Fmðsi; sjÞ against strategy sj 2 N . We define the total payoff of strategy i as
pi ¼

P
sj2N pij.

We say that a strategy si is fitter than a strategy sj in population N if pi [ pj.

However, just knowing if a strategy is fitter than another strategy is not enough for

our purposes. Hence we introduce a measure of fitness in a population. We define

the fitness of strategy i with weight a as

fai ¼
jN j � ea�scorei

P
sj2N ea�scorej

:

Here the score of player i is the normalized payoff given by

scorei ¼
pi �minsj2N pj

maxsk2N pk �minsj2N pj
if maxsk2N pk �minsj2N pj [ 0

0 otherwise:

8
<

:

The definition of fitness guarantees that for each strategy si 2 N , 0� fai � jN j and
that

P
si2N fai ¼ jN j, so the population size remains fixed. It also guarantees that if

si is fitter than sj, i.e. pi [ pj then fai [ faj . The parameter a is used to alter the

evolutionary pressure, with higher values of a the evolutionary pressure increases.

We multiply with the size of the population, jN j, so that the fitness of strategy i will
correspond to the number of offspring strategy i gets in the following generation of

strategies.

New population Given a game G, the idea is to start with the population of

strategies N ¼ SD and let every pair of strategies fight each other, i.e. play G a

given number of iterations. When every fight is done the fitness fai is calculated for

every strategy si 2 N and a new population N new is generated such that the strategy

si 2 N occurs in the new population exactly bfaic þ 1 times if the decimal part of fai
is greater than the decimal part of the fitness of the other strategies and bfaic
otherwise. This is to ensure that the jN newj ¼ jN j. We denote the number of

offspring of strategy s 2 N as rðsÞ.
This means that strategies with high fitness relative to the other strategies get

more offspring than the other strategies and weak strategies get less or no offspring.

We also introduce the concept of mutation, denoted !, to the algorithm. When the

new population is generated the mutation can randomly cause some of the strategies

to mutate, i.e turn into some other strategy in SD. This is done so that extinct

strategies can always be reintroduced and challenge the dominating strategies.

This whole cycle is then repeated with N ¼ N new as starting population a given

number of generations g 2 N. The idea is that strategies that are good in the
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particular game being played will dominate the majority of the populations given

that g is large enough.

6.2 Execution

The algorithm has four hyper parameters, m, n, t and a. In our particular case we set
m, the number of rounds in a fight, to 50, n, the number of generations, to 1,000,000,

t, the probability of mutation, to 0.000001, and a, the evolutionary pressure, to 0.5.

These parameters where set so that the convergence of the new populations where

stable and gave room for mutations.

7 Results of computer experiments

In this section we describe and analyse the results of the experiments. Following a

description of how we visualise the data in Sect. 7.1, we provide an of analysis

action frequencies and strategy frequencies in Sect. 7.2. For a more detailed

analysis, see Böörs and Wängberg (2017).

7.1 Visualisation of data

To be able to plot data from any 2� 2 symmetric game in a finite 2d-plot, we

visualise the data in a slightly different way than in Fig. 6. (In the Fig. 6

visualisation, games span all of R2.) Thus, rather than normalising games to z1 ¼ 1,

we instead normalise games to the unit sphere

f½c1; c2; z1	t 2 R3 : c21 þ c22 þ z21 ¼ 1g:

We then apply stereographic projection (Coxeter and Greitzer 1967) to bring it

down to R2, via

½c1; c2; z1	7!ðc01; c02Þ ¼
c1

1� z1
;

c2
1� z1

� �

: ð22Þ

The projection is illustrated in Fig. 10.

As we show in Proposition 4.4 (Fig. 11), every game with z1\0 is strategically

equivalent to a game with z1 [ 0. Thus we can restrict our attention to games with

z1\0. These games all project inside the unit circle. Applying the equivalent

Fig. 10 The stereographic
projection maps every game P
on the three dimensional unit
sphere onto the two dimensional
plane
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conditions as in Fig. 6 to the ðc01; c02Þ-plane gives Fig. 12, where all regions fit inside
the unit circle.

7.2 Analysis of results

By use of the generic algorithm presented in Sect. 6, we attempt to find the

evolutionary equilibrium in the different game regions. This is to verify that the

evolutionary equilibrium does not change abruptly inside regions, but only between

regions, which would provide support for our classification. By evolutionary

equilibrium we mean the limiting distribution of strategies from the described

evolutionary process. When the limiting distribution does not exist, we are instead

interested in the averaged distribution over the full cycle. We approximate the

evolutionary equilibrium by taking the average distribution over the last 2000

rounds out of 1,000,000. Furthermore, we focus on 2 types of data in our analysis:

(i) the frequency of actions in the five different contexts (past outcomes and start)

displayed in Table 12 and (ii) the frequency of the 32 different strategies used in the

experiments.

Visualisation of action frequencies is shown in Fig. 11. The colour encodes the

action frequency, with black for 100% action 0, and white for 100% action 1; the

location encodes the payoff parameters, as described in Sect. 7.1. The most

Fig. 11 Plots of action frequencies in the different contexts of Table 12. The colour encodes action
frequency, with black for 100% action 0, and white for 100% action 1. The location encodes the payoff
parameters, as described in Sect. 7.1
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important takeaway from the analysis of this data type is that there is no distinct

change in action frequency inside any of our regions.

In Figs. 13 and 14 we provide the plots visualising the strategy frequencies. We

only plot strategies that have a higher frequency than 15% to prevent the

randomness of the mutation from interfering with our analysis. The result is that all

classification conditions stated in Eqs. 9–13, except one, separate at least one type

of strategy. We provide plots corresponding to Figs. 13 and 14 for all 32 strategies

in Figs. 15 and 16 in Appendix 2 where we also observe that the evolutionary

equilibrium does not change abruptly within any of our regions. The condition that

fails to distinctively separate any strategies is the c17c2 inequality. This separates

regions where the c1 and c2 arrows point in the same direction which is a potential

reason for why the relative strength between c1 and c2 does not make any important

difference. In Table 14 we summarise which strategy of Figs. 13 and 14 is separated

by what boundary.

The main conclusion we drew from the analysis of the computer experiments is

that almost all conditions add interesting information about strategic play. Also

Fig. 12 In this map the game
regions from Fig. 6 are shown
after the stereographic
projection

Table 12 A strategy with memory length one can be represented with a vector in S5, with one action for

each possible previous outcome, and one entry for the starting strategy

f0; 0g f0; 1g f1; 0g f1; 1g Start

s00 s01 s10 s11 sstart
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Fig. 13 In this figure the experimental result for strategies of memory length 1 (described in Tables 12
and 13) is plotted in gray scale in individual subplots. The label at the top of each subplot consists of the
strategy represented in the plot as well as its maximum observed frequency in the experiment. The color
of the dots (games) represents its frequency in the experiment. A dark color means that the strategy is
frequent in the game. In every plot the frequencies have been normalized so that the game where the
strategy is most frequent is black (colour figure online)

Fig. 14 In this figure the experimental result for strategies of memory length 1 (described in Tables 12
and 13) is plotted color in individual subplots. The label at the top of each subplot consists of the memory
length one strategy represented in the plot along with its maximum frequency in the experiments (colour
figure online)
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there are no distinct borders in any of the figures presented earlier in this section

where there is no line defined by some of our classification inequalities. This

indicates that all important information is included in our classification. For a more

detailed analysis, we refer to Böörs and Wängberg (2017).

8 Discussion

In this section we briefly summarize the paper and present a few open questions for

further research.

8.1 Summary

A good theory for the classification of games is important for many reasons. It is a

systematic way of studying games to understand what games are essentially

different and why. It also provides an overview of possible strategical dilemmas,

which can pose problems in many real-world situations (e.g. nuclear arms race).

These dilemmas are thereby important to properly understand and be aware of.

In the beginning of the paper we reviewed existing classifications of games based

on whether or not the classification conditions are well justified, in that it explains

relevant observations, and have a simple and parsimonious structure. We considered

the classification to be well justified if the authors provided some evidence to

support their classification conditions. The motivation behind the reviewing

desideratum of a simple structure is that simple theories generalize better and have

a better track record. We found that none of the classifications reviewed have the

Table 14 The table shows which classification boundaries each of the strategies shown in Figs. 13 and 14

is separated by

Boundary Strategy

c1 ¼ 0 01010

c2 ¼ 0 11011

c1 ¼ �c2 00111

z1 ¼ c1 10101

z1 ¼ �c1 00100

z1 ¼ c2 10011

z1 ¼ �c2 10101

Table 13 Tit for tat is an example of a deterministic strategy of length one

f0; 0g f0; 1g f1; 0g f1; 1g Start

0 1 0 1 0
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desired combination of well justified conditions and simple structure. This

motivated us to define a classification of our own.

Building on the work of Kalai and Ehud (2013) we present the result that the

payoff matrix of any 2� 2 game can be decomposed into a non-conflict part and a

zero-sum part. In all of the standard games the zero-sum games counteract the

interests in the non-conflict games. This inspired us to create a partition of the space

of symmetric 2� 2 games based on the interest of the players in the decomposed

parts of the games. We show that the resulting 24 classes capture every aspect

captured by the reviewed authors that have a similar approach as us. We do, for

example, provide results that state that every class has a specific type of NE and that

every standard game has its own class. We also found support for our classes by

comparing to other research. In addition, we prove that the concept of AE5 used by

Huertas-Rosero is captured by our classification, and that either all of the games in a

class or none of them have a dominant strategy equilibrium. This supports the

conjecture that the relevant strategic aspects of a game are determined by its

decomposition.

To further justify the relevance of our classes we conducted computer

experiments to see if the empirical data generated would support our class borders.

Moreover, we create a compact 2-d map of our regions, unlike the previous

classifications reviewed, enabling visualization of the results of our experiments and

random sampling of games. The experiments showed that all but one of the

conditions defining the classes made a difference for what strategies succeeded in

the evolution-like setup in our experiments. This provides some support for our

proposed classes. Perhaps even more important is the fact that the experiments did

not suggest that we have missed any important distinction between games within

any of our classes. Because the experiment only provides results concerning

strategies with memory length one, we cannot make any conjectures about other

types of strategies.

To conclude we add our classification to Table 4 which was used to summarize

the literature review, see Table 15. Our classification is based only on the simplest

relations between three parameters: c1, c2 and z1. Hence we claim Desideratum 1. is

satisfied. Furthermore, the parameters have an intuitive meaning, and are based on

the conjecture that what makes a game interesting is the conflict working against the

common interest. Furthermore, the regions are justified both by previous consensus

on which games are interestingly different (Andreoni & Miller, 1993; Axelrod &

Hamilton, 1981; Dubois et al., 2012; Harris, 1969; Lave, 1965; Radinsky, 1971;

Rapoport & Albert, 1965; Rasmusen, 1994; Scodel, 1962; Skyrms, 2004), and

computer experiments. Furthermore, the computer experiments and comparison to

other research serves the purpose of justifying our regions. Desideratum 2. is

thereby arguably satisfied.

5 The Altruistic Equilibrium (AE) concept may not have any strategic relevance, but we mention this to

stress that our classification captures all information that the other comparable classifications contain.
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8.2 Outlooks

In this work we have restricted to symmetric 2� 2 games. Since many strategic

interactions of interest involve more players and actions where the available actions

of each player may differ, a natural continuation is to attempt to generalize this

classification to all 2� 2 games and beyond.

The decomposition that our classification is based on can also be generalized. For

example, Candogan et al. (2011) show that games can be decomposed into a

potential, a harmonic, and a non-strategic part of the game, where the harmonic and

potential parts are related to the common interest and zero-sum components used in

this paper.

In the case of symmetric 2� 2 games, we can represent games with just three

variables, c1; c2 and z1 that are linear combinations of the payoffs. Our class

boundaries define a relatively small number of classes and each class could be

studied and verified in this article. Naturally, if one were to consider larger game

spaces, the number of parameters required to represent a game would grow, and so

would the number of classes. This can make it more difficult to study the properties

of each class. For example, to represent symmetric 3� 3 games using common

interest variables and zero-sum variables analogous to the ones used to represent

2� 2 games, one would need 5 common interest variables and 3 zero sum variables,

that is 8 variables in total. This increase of dimensionality makes it more difficult to

study the properties of each individual class. However, this can be an interesting

topic for future work.

Table 15 In this table we add our classification to Table 4

Author Desideratum 1: Simplicity and

parsimony

Desideratum 2: Well-justified

regions

Rapoport et al. No Yes

Robinson and Goforth

(2003)

Yes No

Harris (1969) No Yes

Borm (1987) Yes No

Huertas-Rosero (2003) Yes No

Böörs, Wängberg Yes Yes

Each classification receives a Yes if it manages to fulfill a desideratum and a No otherwise
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Appendix 1: List of notation

Symbol Explanation
R;N; . . . Set of real,natural numbers

k; l 2 N Indices for the natural numbers

Jn The n� n matrix of ones

i; j 2 N Indices for players

G Game

P Set of players

ui Payoff function for player i
U Set of payoff functions

Ai Set of actions available to player i
a Action profile

si Strategy of player i
s�i Strategy profile for all players except player i
Si Set of strategies of player i
s Strategy profile

S Set of strategy profiles

Pi Payoff matrix of player i
CðGÞ The mixed extension of a game G
Bi The best response/reply correspondence of player i

h End of proof

} End of example

v~ Vector

� Strategical equivalence

NE Nash equilibrium

AE Altruistic Equilibrium

zk Conflict parameter

ck Common interest parameter

a, b, c, d Payoff parameters

fk; lg Specific action/ strategy profile

vt Transpose of vector v

Appendix 2: Computer experiment results

See Figs. 15 and 16.

cFig. 15 In this figure the experimental result for strategies of memory length 1 (described in Tables 12
and 13) is plotted in gray scale in individual subplots. The label at the top of each subplot consists of the
strategy represented in the plot as well as its maximum observed frequency in the experiment. The color
of the dots (games) represents its frequency in the experiment. A dark color means that the strategy is
frequent in the game. In every plot the frequencies have been normalized so that the game where the
strategy is most frequent is black (colour figure online)
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Appemdix 3: Dominant strategy equilibria

In this section we prove that the any game residing in the interior of one our classes

have a dominant strategy equilibrium if and only if the games in the class have a

unique NE. This is not true for games on the border between two classes. To make

the presentation more clear, we use two lemmas to prove the main theorem,

Theorem 11.3.

Lemma 11.1 (Unique Nash in symmetric games) Let G be a symmetric 2� 2 game
with distinct payoffs, i.e. no pair of payoffs are equal. Then G has a dominant
strategy equilibrium if and only if G has a unique NE. Also, the NE is the dominant
strategy equilibrium.

Proof Suppose that the payoff matrix of a game is the following.

Suppose further that a, b, c and d are distinct so that no pair of payoffs are equal.

Then Lemma 4.6 states that

1. f0; 0g is NE iff a[ c.

2. f0; 1g is NE iff b[ d and c[ a.
3. f1; 0g is NE iff c[ a and b[ d.
4. f1; 1g is NE iff d[ b.

We will use the best response correspondence (Definition 2.10), to prove the

lemma. Note that a strategy s1 2 S1 is a strictly dominant strategy for player 1 if and

only if B1ð0Þ ¼ B1ð1Þ ¼ fs1g. Also, in a symmetric game there is no difference

between the best response correspondences of the two players, i.e. B1 ¼ B2 and

hence it is enough to consider player 1 in this proof.

Of course, 2 is true if and only if 3 is true. So neither f0; 1g nor f1; 0g can be a

unique NE. That leaves us with two possible unique NE.

Suppose f0; 0g is a unique NE so that 1 is true but 2,3 and 4 are false. Then we

know that a[ c and d\b and hence if player 2 plays 0, player 1 will play 0 and if

player 2 plays 1 player 1 will play 0. This can be expressed as

B1ð0Þ ¼ B1ð1Þ ¼ f0g. That is playing 0 is a strictly dominant strategy for player

b Fig. 16 In this figure the experimental result for strategies of memory length 1 (described in Tables 12

and 13) is plotted color in individual subplots. The colours have been chosen so that strategies that are
strong in similar areas have the same colour. The label at the top of each subplot consists of the memory
length one strategy represented in the plot along with its maximum frequency in the experiments (colour
figure online)
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1. Because of symmetry, the exact same reasoning is true for player 2. In this case 0

is a strictly dominant strategy for both players. This proves that if f0; 0g is a unique

NE, then f0; 0g 2 S is a strictly dominant strategy profile. According to

Definition 2.9, this means that f0; 0g is a dominant strategy equilibrium.

Now suppose that f1; 1g is the unique NE so that 1, 2 and 3 are false but 4 is true.

This means that a\c and d[ b and therefore B1ð0Þ ¼ B1ð1Þ ¼ f1g. From this we

can tell that f1; 1g 2 S is a strictly dominant strategy profile and that f1; 1g is a

dominant strategy equilibrium.

There are no other possible unique NE outcomes. Therefore if a 2� 2 symmetric

game with distinct payoffs has a unique NE, then that outcome is also a dominant

strategy equilibrium.

Suppose now that the game has two NE. This means that either f0; 1g and f1; 0g
or f0; 0g and f1; 1g are the two NE. If f0; 1g and f1; 0g are the NE, then we know

that b[ d and c[ a. Hence B1ð0Þ ¼ f1g and B1ð1Þ ¼ f0g. Since B1ð0Þ 6¼ B1ð1Þ
there is no strictly dominant strategy profile in the game and as a result there is no

dominant strategy equilibrium. Similarly, if f0; 0g and f1; 1g are the NE, then a[ c
and d[ b. Hence B1ð0Þ ¼ f0g 6¼ B1ð1Þ ¼ f1g and there is no strictly dominant

strategy profile.

We have proved that if there is a unique NE in a symmetric 2� 2 game with

distinct payoffs, then the NE outcome is also a dominant strategy equilibrium. Also,

if such a game has two NE, then there is no dominant strategy equilibrium. Since a

symmetric 2� 2 game with distinct payoffs has either one or two NE, we have that

such games have a dominant strategy equilibrium in an outcome x iff x is a unique

NE. h

Next we need a result that states that every game that belong to exactly one of our

24 classes have distinct payoffs. Lemma 11.2 provides such result.

Lemma 11.2 (Distinct payoffs) Let G be a symmetric 2� 2 game. If G belongs to
exactly one class in our classification, then the payoffs of G are distinct.

Proof In Eq. (17) we show that the following holds.

a ¼ 1

4
ð2x� 3c1 � c2Þ b ¼ 1

4
ð2xþ c1 � c2 þ 4z1Þ

c ¼ 1

4
ð2xþ c1 � c2 � 4z1Þ d ¼ 1

4
ð2xþ c1 þ 3c2Þ:

ð23Þ

This means that a ¼ b () z1 ¼ �c1 so any game with a ¼ b will lie on the border

z1 ¼ �c1 between two or more classes (see Fig. 6 on page 15). In the same way we

have:

a ¼ c () z1 ¼ c1 a ¼ d () c1 ¼ �c2 b ¼ c () z1 ¼ 0

b ¼ d () z1 ¼ �c2 c ¼ d () z1 ¼ c2:

That is, whenever two payoffs are equal, the game lies on the border between two of

our classes. h

123

506 M. Böörs et al.



Now we present an important theorem that divides our 24 classes into two

categories based on if the classes contain games that have a dominant strategy

equilibrium or not.

Theorem 11.3 (Existence of dominant strategy equilibria) Let G be a symmetric
2� 2 game such that G belong to exactly one class in our classification. Then G has
a dominant strategy equilibrium if and only if G has a unique NE. Also the NE is the
dominant strategy equilibrium.

Proof Let G be a game such as described in Theorem 11.3. Lemma 11.2 states that

G has distinct payoffs and Lemma 11.1 states that G has a dominant strategy

equilibrium in outcome x if and only if G has a unique NE in x. h

In Fig. 17 classes of games that have a dominant strategy equilibrium are

coloured yellow and classes that does not have a dominant strategy equilibrium are

coloured blue. Remember that games on the border between two or more classes are

not included in Theorem 11.3.
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