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Abstract

As modern neuroscience improves, our understanding of neuronal systems and the
human brain improves as well. This includes a practical understanding of neurological
diseases and how to treat them as well as a more general understanding of how hu-
mans and animals think and understand the world around them. One key mechanism
for understanding neuronal systems is in experimental measurements. Being able
to sense the electromagnetic signalling system that neurons produce in a network is
essential for understanding their function; so much so that a lack of useful means of
measuring neuron signals severely limits any new information neuroscience research
can provide. Measuring and imaging neuronal signals, however, can be a difficult
process, when measuring signals there is a requirement for a highly sensitive device
that can measure the smallest electromagnetic signal of a neuron at particular regions
of the cell as well as across a dense neuron network. Furthermore, measurements
must be performed in such a way as to not alter the normal function of the cell. Whilst
many technologies for measuring and imaging neuron networks exist, they all have
distinct advantages and disadvantages that limit their effectiveness or applicability.

The nitrogen-vacancy (NV) center is an atomic defect in a diamond lattice whose
unique quantum properties gives the defect great potential to be an extremely sensitive
device for measuring electromagnetic signals. Coupled with its placement in the
biocompatible diamond lattice, the NV center can potentially be used as a novel sensor
of neuron signals in a way that would be vastly superior to current technologies.
However, there are issues with design implementations that limits the potential
benefits of the NV as a neurosensor.

In this thesis, a detailed exploration of the NV as a neurosensor is undertaken
including a unique approach that places the defects in an array of diamond nano-
pillars to improve the capacity to sense neuron signals at specific locations. In this
study, the anatomy and physiology of the neuron are outlined and the current state of
neuron imaging is presented including the role NV neurosensing would play in the
field. The capacity of NV neurosensing is assessed with detailed theoretical modelling
as well as a proof-of-principle growth study of neurons on an array of diamond
nano-pillars.

The results of the growth study and modelling suggest that the NV would be
inappropriate as a magnetic field sensor, but would be useful as an electric field sensor
for neuronal systems. Whilst further study of the NV in its capacity as a neurosensor
is required, the results motivate a more general study of the NV and the various
means that can improve its performance. This includes two separate spin-to-charge
conversion protocols for improved optical contrast, a study of NV photoionisation
spectroscopy for a better understanding of the NVs energy structure and a study of
diamond fabrication techniques for improved optical collection efficiency in the NV.

vii
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viii

This research into NV performance enhancement allows for further consideration of
the NV as a sensor for non-biological applications as well as a qubit for quantum
computing and networking applications. As all the quantum operations in sensing
and computing rely on the same spin-dependent dynamics of the NV itself, any
improvement to NV performance can improve the NV viability in a number of fields
including, but not exclusive to neurosensing.

The primary goal of this thesis is to present the potential of the NV as a novel
sensor for neuron networks. The additional work in improving NV performance
helps the NV function as a better sensor but also improves its capacity to function
as a qubit in a quantum computer. This process leads to the consideration of NV
quantum computing for neuroscience and the development of an algorithm that
utilises quantum computation to better understand the dynamics of large scale
neuron networks. Whilst this research is conceptual only, its research potential is
significant and it widens the scope of this thesis to diamond quantum devices and
their applications to neuroscience.
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to the minimum energy required to perform ionization from the NV
to the diamond conduction band. At 0 K, there is no ionization until
the 0 meV then a sharp increase in the ionization rate. At higher tem-
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predicting the hole density ρ(t) as a function of time b). After the green
laser pulse, the hole density increases, but is predicted to orbit the NV
for a time after the laser is turned off before fully diffusing away from
the NV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Draft Copy – 15 September 2022



xxii LIST OF FIGURES

6.1 Images of various diamond structures and their effect on the NV (pur-
ple) optical emission (red lines). The first is the flat, unstructured
diamond a), where the large refractive index between diamond and air
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with much sharper edges at the corner of the wedge. Source for the
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Chapter 1

Introduction

1.1 Motivation

The study of neuroscience is a growing concern, especially in the modern world.
According to the World health organization’s (WHO) global burden of disease study
from 1990 to 2015, neurological disorders are the second leading cause of death
worldwide after heart disease and the number one cause of disability worldwide [28].
To make matters worse, whilst the study can outline precautions to help prevent some
neurological diseases (such as lifestyle changes to reduce the chance of stroke), many
neurological disorders have little to no preventative measures or treatments that can
be made. The reason for this is that the mechanisms for many neurological disorders
are poorly understood. Imaging and measuring the electromagnetic fields of nerve
cells (neurons) has been the hallmark of understanding modern neuroscience [88].
Advancements in this field have led to a better understanding of how the human brain
operates which leads to improvements in the diagnosis and treatment of neurological
disorders. This means understanding neurons from the perspective of a single cell and
the nanoscopic structures within it as well as the larger-scale perspective of multiple
neurons in a network. Sensing neuron electromagnetics is however a challenging task
because, in order to fully understand neuron excitability and the neuron signal, the
action potential (AP), there are a variety of requirements that must be met. These
requirements can be presented in four major areas.

The first requirement is millisecond or sub-millisecond temporal resolution, this
allows for the measurement of AP changes over fast timescales. Neuron APs are
typically only ms in duration with many APs occurring in quick succession after
one another [88]. It is also important to be able to resolve the timings of multiple
signals correlated in a network. Signal timing is an important factor for understanding
physiological responses [18]. The second requirement is nanoscale resolution across
a field of view that is large enough to encompass multiple neurons in a network
[88]. This includes the imaging of individual neuron compartments, such as dendritic
spines or ion channels [78]. Singular nanoscale neuron structures can have a profound
effect on microscale neuron networks so it is important to be able to measure this
nanoscale process and observe its effect on a larger microscale network [129]. Thirdly
the sensitivity of the probe must be exceptional, a sensor must be able to resolve
millivolt changes in potential within sub-millisecond timescales in order to sense

1
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the smallest signals produced by neurons [87]. Whilst most neuron sensors measure
the larger amplitude signal of a neuron (the AP), being able to measure the smaller
signals that build into the AP is an important factor in neurophysiology that is
often overlooked due to the lack of suitable technology [96]. Finally, the last major
requirement is the compatibility and stability of the sensor, the sensor must be able
to probe a neuron without altering its behaviour. The sensor must also be able to
make many measurements without it failing or having toxic effects on the neuron.
These requirements allow for imaging of neuron changes over a long period of time,
which is important for the study of neuroplastic effects [70]. An ideal sensor would be
biocompatible when measuring neurons within a living subject (in vivo) or neurons
that are cultured externally from a living subject (in vitro).

There are a growing number of different techniques which can meet one or more
of these requirements. Improvements in patch-clamp techniques have pushed to cross-
sectional nanoscale electrophysiology for investigating nanoscopic heterogeneities
in ionic concentrations and local electric fields [105]. Coupled with scanning ion
conductance microscopy, it can perform wide-field imaging of neurons in a resting
state [78]. Voltage-sensitive fluorophores come in a variety of forms, some of which
have been shown to be able to image nano-scale structures such as dendritic spines
with high sensitivity [92]. Microelectrode arrays (MEA’s) come in a variety of forms
from large scale arrays which can measure signals from large networks all the way
to in vivo full brain recordings and nanoelectrodes which can measure signals from
individual cells [111]. However, no single device has the capacity to meet all the listed
requirements at the same time. The patch-clamp technique can only measure APs at a
single point on a neuron, removing the capacity of imaging propagation effects [88].
Voltage-sensitive dyes can be difficult to use, requiring careful tailoring of the correct
dye to a specific cell [88]. In addition to this, any type of fluorophore that could be
injected into a cell has an inherent time limit before photobleaching renders the sensor
inoperable or phototoxicity kills the cell being imaged [88]. MEA’s on a large scale
can only measure the combined signal of multiple neurons at once, reducing spatial
resolution and nanoelectrodes suffer from a lack of electrode density and difficulties
making neuron/electrode contact, reducing sensitivity [111].

Another often overlooked detail to consider when probing neurons at the nanoscale
is how to best theoretically simulate and interpret neuron nano-electromagnetics.
Most spatial predictions of electromagnetics rely on variations of core conductor (CC)
theory [105, 126]. The central assumption of this theory is that the density of ions
inside and outside the neuron remains stationary during an AP. At micron distances
from the membrane, where the ions can form a stable equilibrium this assumption
is true, making CC theory viable. At these length scales, the CC model has been
experimentally verified by measuring the magnetic field of large neurons (200µm in
radius) [126]. However, at nanoscale distances from the membrane, ions flowing in
and out of the neuron is precisely what generates the AP, making the assumption
invalid [105]. The key to obtaining a full understanding of neuron electromagnetics is
to apply a model which accounts for the full motion of charged ions and how they
affect the electric potential both inside and outside the neuron, this is achieved using
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the Poisson-Nernst-Planck theory of neuron electromagnetism [19, 67, 91]. With such
a theory, external probes such as a diamond pillar can be added to the model to
understand how a sensor might affect the natural neuron ion flow as well as assess
whether a sensor can measure the signals being produced by the neuron.

In this thesis, a potential solution to the problem of neuron signal measurement
is presented with the application of the nitrogen-vacancy center (NV) [12, 45]. The
NV is a defect in a diamond lattice consisting of a substitutional nitrogen atom with a
nearest neighbour vacancy [99]. The NV has unique spin-dependent photo-dynamics
that allow its electronic spin to be optically initialized and read out using quantum
protocols. This allows for the NV’s electron spin resonance (ESR) to be measured
using a protocol known as optically detected magnetic resonance (ODMR). The ODMR
resonances shift with perturbations from external electric and magnetic fields [27]
and magnetic fields [99]. Combining this with its atom-like size the NV can perform
highly sensitive nanoscale measurements of electric and magnetic fields.

The NV has been shown to have some of the best sensitivities and spatial reso-
lutions for a room temperature sensor. For DC sensing, single NVs have been able
to measure 2.8×109 mV/m [27] electric fields and 1.26 µT [99] magnetic fields in
a 1 ms acquisition time. In addition to its sensitivity, the NV has been shown to
have sub-millisecond temporal resolution as well as spatial resolutions well into the
nanometre scale [116]. The NV itself is also a very stable atomic system, which does
not suffer from photobleaching, allowing for long term imaging of a single sample
[12]. In addition to its physical capabilities, the NV is situated in a diamond structure.
Diamond has been shown to be biologically compatible, having been successfully
utilized in the past as a substrate to grow biological samples [72]. They have also been
proven to support functioning neurons via growth on unstructured nano-diamond
mono-layers which are assessed with calcium imaging [118]. With these characteristics,
the NV has the potential to revolutionise neuron sensing as they have the capacity to
meet all of the requirements listed before at the same time, something no other sensor
to date can achieve. In fact, Barry et al. have successfully measured neuronal signals
along axons of marine fan worms by placing the axon on a flat diamond substrate
with embedded NVs [12]. In addition, work by Karaveli et al. have demonstrated
NV sensing of 20 mV changes in potential by utilizing it as a charge state sensor [62].
The major issue with the previous work is that it focuses on the magnetometry of
larger neuron structures such as marine fan worm axons which are microns in size.
As sensing moves away from larger worm neurons towards the sensing of smaller
mammalian neuron axons (nanometres in size), the signal will also decrease. It is this
reduction in signal size which is the major barrier to NV neurosensing of mammalian
neurons such as those found in the human brain. The next step in this research process
and the major work of this thesis is to study the NVs performance for neurosensing
and how to improve NV performance to achieve this goal.

The main solution to this problem presented in this thesis was inspired by work
done with diamond nano-optics [8, 73, 74] as well as neuron growth studies on Indium
phosphate pillars by Gautam et al. [35]. The idea is to sense neuron signals with
the fabrication of diamond nanopillars, each with an NV sensor embedded within it.
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The pillar geometry yields three advantages. Firstly, the shape of the pillars and the
diamond’s high refractive index guides the excitation and emission light in and out of
the diamond without significantly illuminating the neurons themselves [74]. This light
coupling phenomenon improves the sensitivity of the NV by up to 5 times [74] and
reduces the phototoxic effect on the neurons from extended illumination. The second
advantage comes from the growth of the neurons on the pillars themselves. It has been
demonstrated using other materials that pillar geometries act like a scaffold for neuron
growth, guiding neurites in a single direction along the tips of the pillars [35, 110].
This enhances the signal at the NV by coordinating neuron growth near the NVs
themselves. In addition, the coordinated growth places a larger number of neurons
structured in close proximity to the NVs. This provides more sites for experiment
compared to an unstructured diamond. The third advantage lies in removing the
Debye layer of the neuron; the key element that is absent in CC theories are the effects
of the Debye screening layer [105]. The Debye layer is the build-up of ions on either
side of the membrane due to the electrochemical forces acting on individual ions [51].
The Debye length is typically around 1 nm [51, 113], and is understood to greatly
screen the electric potential external to the neuron [51, 97, 105], reducing its magnitude
to zero over the course of a few nm. A diamond pillar placed in contact with the
neuron could remove the screening ions, increasing the propagation of the external
electromagnetic field. The assumption is that as long as the surface area where the
nanopillar contacts the neuron membrane is small compared to the surface area of the
enclosing cylindrical segment of the neuron, the removal of screening ions is unlikely
to significantly alter the neuron’s natural function. Based on the Ca2+ studies on an
unstructured diamond [118] as well as Ca2+ studies performed on similar nanopillar
arrays formed from other materials [35, 43, 44, 111], this assumption should be valid.

To assess the NVs potential in mammalian neurosensing two major initial steps
are undertaken, neuromodelling and a proof-of-principle growth study. With the
neuromodelling, the external electromagnetic fields of a simple neuron structure are
simulated in order to assess whether the NV can sense the fields produced by a small
mammalian neuron. With the growth study, a proof-of-principle demonstration of
the diamonds biocompatibility is performed and a study of how diamond nano-pillar
structures aid in sensing is undertaken. The results of these initial studies suggest that
the NV is viable but requires further work to fully realise the technology. Improving
NV sensitivity can make the neurosensing process more robust and easier to use and
there are a variety of different improvement methods available. This motivates further
research in which various techniques are studied to improve NV performance.

Whilst ODMR is a common and robust strategy for NV sensing, it is not the
only method available. In conventional ODMR the ESR is measured as a change in
fluorescence from the NV. Thus the key to measuring a spin resonance and subsequent
electric or magnetic field lies in the optical contrast obtained from the measurement
process. From this logic comes a method for improving optical spin contrast with the
spin-to-charge conversion (SCC) technique. With SCC, the NV spin information is
readout by optically ionizing the defect when it is in a particular spin state. Thus, the
spin of the electron is mapped to the charge state of the NV and spin information is
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obtained by measuring the charge state. This technique has been shown to have a
larger optical contrast compared to conventional intrinsic photo-luminescence cycling
techniques [58, 109, 131], which in turn increases the sensitivity of the NV.

The main approach to SCC in this thesis that is different to other works is with
the use of an external electrode, which can have a variety of advantages in different
settings. At cryogenic temperatures, SCC is not practical for biological sensing as
the cells will die in such conditions, however, electrode-based, cryogenic SCC has
the potential to immensely improve NV based cryogenic sensing as well as quantum
computation. At cryogenic temperatures, the electrode creates a potential well within
the diamond which has the effect of spectrally confining the density of low lying
conduction band states in the diamond. This discretized conduction band has a
two-fold effect. Firstly, it increases the photoionization probability at frequencies
resonant to a discrete transition whilst reducing the probability of photoionization
at other frequencies. Secondly, the electrode creates energy level separation in the
conduction band which is much larger than the separation of levels in the NV ground
state spin triplet. These two factors allow for an SCC protocol where the NV electron
is resonantly ionized out of the ground state into a discrete conduction band state with
a higher probability compared to conventional photoionization. The wide separation
of the conduction band states means that the individual triplet transitions can be
addressed. These factors create a highly selective spin to charge protocol with very
high optical spin contrast. The technique promises to vastly improve the fidelity of
spin readout which has applications for NV based quantum sensing, communications
and computation. The design also creates a discrete three-level system for stimulated
Raman adiabatic passage (STIRAP) experiments [83].

In addition to improving NV performance at cryogenic temperatures, photoion-
ization at cryogenic temperatures has an additional advantage in that it allows for
an in-depth study of fundamental NV physics. The key to NV spectroscopy and its
many applications lies in its unique energy structure that allows for spin selective
readout. Whilst much of the NV energy structure is known, there are still some
energy level splittings that remain mysterious. One key method of understanding
these energy levels is with photoionization. At cryogenic temperatures, an electron
in the NV can be initialised into a particular state then ionized into the diamond
conduction band. By using a laser that can sweep frequencies with a high spectral
resolution, the energy of the transition from an NV state into the conduction band
can then be found by performing the ionization pulse and checking if the electron
was ionized by performing an NV charge state readout. By repeating this process
where the NV electron is initialised into a different state, the energy difference in the
two photoionization processes can be directly related to the energy splitting between
the two energy states in the NV using Koopman’s theorem [114]. This mechanism
allows for a greater understanding of fundamental NV physics which in turn can
help improve the overall performance of the defect as its photodynamics are better
understood. In addition to this, the experimental techniques considered in this section
can be applied to other defects to help understand their structure and function, po-
tentially developing quantum defects that are superior to the NV. The results gained

Draft Copy – 15 September 2022



6 Introduction

from this experiment also permits an SCC readout mechanism that can be performed
with the electrode at ambient conditions.

One key result of the photoionization experiment is the discovery that the energy
for photoionization from the NV singlet states is almost the same as the energy for
the zero phonon line (ZPL). This causes a significant issue with cross-talk where a
single laser pulse will drive two transitions at the same time, creating noise in the
readout when ionizing from the NV singlet state. One solution to this problem is to
use an electrode to provide an electric field that will raise the energy levels in the
NV without significantly affecting the diamond conduction band states. This will
alter the photoionization energy relative to other transitions in the NV and allow for a
unique room temperature SCC protocol that can, among other possibilities, allow for
improved room-temperature readout and sensitivity of the NV for biological sensing.
Whilst the electrode can be utilised in an SCC protocol at both cryogenic temperatures
and at ambient temperatures, it is important to note that the SCC protocol and the
application of the electrode are very different in the two approaches, requiring a very
different approach to their theoretical modelling as well as their potential applications.
The results of this study also have a wide range of potential improvements to the NV
charge state control as well as spin coherence time.

If SCC improves the NV performance via increasing optical contrast, then improv-
ing the overall light obtained from the NV will also improve NV performance. The
NV is a dipole emitter [57, 125] which emits in all directions from the defect. Placing
a detector in one plane away from the NV will only collect some of the light emitted
from the defect. Additionally, the high refractive index of diamond causes a large
amount of reflection at the diamond/air interface which also limits the light collected
during a measurement. Thus, another means of improving NV performance can be
achieved by shaping the diamond structure itself around the NV. This changes the
emission pathway in order to maximise the amount of light entering the detector.
There are a number of known ways to achieve this including solid immersion lenses
(SILs) [57], parabolic mirrors [125] and the nano-pillars already mentioned [74]. New
methods of creating diamond structures can be developed and tested to observe the
improvement in optical collection efficiency.

The main focus of this thesis is the development of the NV as a neurosensor,
however, it has many other applications. Outside of sensing, information can be
encoded onto the NV nuclear spin state as a quantum bit or qubit and the information
extracted via a non-demolition readout of the NV electron spin [16, 90]. Information
can also be encoded via entangling the NV nuclear spins with nearby carbon 13
nuclear spins [16, 90]. This makes the NV a viable candidate for the design of a
quantum computer or quantum network. Whilst the majority of the work in this thesis
is designed to improve the NV as a sensor, most of the work can also improve the
NV as a qubit for computation. This motivates a study of quantum computing as a
potential tool for simulating large scale networks of neuron systems. In this approach,
a digital quantum simulation is studied and applied to a well-known differential
equation for understanding neuron networks [36]. The potential speed-up of this
algorithm can be assessed and the viability of its implementation on a diamond-based
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§1.2 The nitrogen-vacancy center 7

quantum computer can be considered.

1.2 The nitrogen-vacancy center

The nitrogen-vacancy (NV) center is an atomic defect within a diamond carbon lattice.
The defect consists of a substitutional nitrogen atom in place of a carbon atom and an
adjacent empty lattice site (vacancy). Whilst the defect exists naturally in diamonds,
for active use in research they are often engineered either en masse during chemical
vapour deposition (CVD) growth [122] or in small numbers/singular sites with ion
implantation [85]. With the vacancy in place, the carbon and nitrogen unbound
electrons around the vacancy fill the space to create a unique molecular structure.
Five electrons come from the adjacent atoms to create the neutral charge NV0 state.
An extra electron will create the negatively charged NV− state which comes from a
nearby donor in the diamond lattice, often a nitrogen defect. As long as the donor
is close to the NV, the NV− charge state will be relatively stable, however, active
processes can ionize the NV− back into the NV0 state. This is most often achieved
through photoionization, conversely, photoionization can ionize an electron in the
diamond valence band or from another defect to the NV0, returning it to the NV−

charge state. The electronic structure that allows for spin selective readout used in
all NV quantum protocols only occurs in the NV− state. Thus, all further uses of the
term NV will be in reference to the NV− charge state for simplicity. A more detailed
study of the photoionization process is done in chapter 3.

The electronic structure of the NV consists of two orbitals with a well defined
optical zero phonon line transition (ZPL) of 637 nm (1.945 eV) [25]. These orbital
levels are spin triplets labelled 3A2 (ground state) and 3E (excited state). In between
the triplet levels, there are intermediate ground and excited singlet levels labelled
1E and 1A1 respectively which have a ZPL transition of 1042 nm (1.190 eV) [25]. The
triplet states naturally have fine structure splitting from spin-orbit interactions which
split the levels into a singlet level (ms = 0) and degenerate doublet levels (ms = ±1).
These levels have a zero-field magnetic resonance of 2.87 GHz in the ground state and
1.42 GHz in the excited state. The ms = ±1 states can be further split into single levels
with the application of an external magnetic field.

Along with the ZPL is a broad phonon sideband, this occurs as exciting vibrational
modes in the diamond interact with the electronic transitions. During the excitation
from the ground state to the excited state in the triplet manifold, the vibrational overlap
with the electronic transition allows for a broad spectrum of absorption and emission
in the NV. Whilst the resonant electronic transition in the NV triplet is 637 nm, the
phonon sideband allows for excitation from a higher energy photon where the excess
energy is released as phonons. This allows for off-resonant excitation at 532 nm with
high probability, which is a common excitation laser in NV spectroscopy. Conversely,
the phonon sideband allows for a range of emission energy when decaying from
the excited state triplet back to the ground state. This emission spectrum is broad,
with light emissions from 637 nm to 1000 nm, where the excess energy in the lower
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energy transitions are released as phonons. At room temperature the ZPL emission
only accounts for about 4% of the total emission spectrum, requiring a broadband
detection window to measure NV fluorescence (see figure 1.1).

Figure 1.1: NV absorption a) and emission b) spectrum at ambient conditions. The
broad phonon side-band allows for absorption and emission far outside the triplet

ZPL of 637 nm. Image is taken from Michael Barson [103].

Upon excitation from the 3A2 ground state to the 3E excited state, the electrons
can decay via two separate pathways. The first pathway is a spin conserving radiative
transition back down the 3A2 ground state, the second is a non-radiative transition
from the 3E excited state to the excited state singlet 1A1. From this singlet state, there
is a radiative transition to the 1E ground state which can then reach the original
3A2 state via a secondary non-radiative transition (see figure 1.2). The non-radiative
transitions are called inter-system crossings (ISC’s), unlike the radiative transitions
which are spin conserving, these transitions can cross from triplet spin states to the
singlet spin state via a spin-orbit interaction (see figure 1.2).

The ISC’s are the key mechanism for spin readout using ODMR. In the excited
state triplet, the ISC for the ms = 0 is much slower compared to the ms = ±1. This
means that electrons in the ms = 0 state are much more likely to decay via the
radiative transition instead of the ISC compared to electrons in the ms = ±1. Thus,
when measuring the triplet ZPL emission (600 to 1000 nm), there will be much more
fluorescence when the electron is in the ms = 0 compared to the ms = ±1 state,
mapping the NV spin state to its fluorescence. In addition to this, the ISC from the
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Figure 1.2: Electronic levels of the negatively charged NV center. The straight lines
indicate the radiative ZPL transitions whereas the dotted lines indicate the non-

radiative intersystem crossings (ISCs).

ground state singlet (1E) to the ground state triplet (3A2) is roughly the same for both
spin states in the ground state triplet. This process allows for spin initialisation. By
applying a green laser to the NV for a few optical cycles, the electron is statistically
much more likely to stay in the ms = 0. This is due to the high probability of spin
conserving radiative decay rather than spin altering ISC and the fact that the ms = ±1
has a roughly 50% chance of converting to ms = 0 during the ISC from the singlet to
the ground state. Over time this means that the NV electron spin can be initialised
into the ms = 0 with about 70% probability. Initialising into the ms = ±1 state is then
achieved by initialising into the ms = 0 state and applying a 2.87 GHz microwave
pulse to make the zero-field magnetic resonance transition to the ms = ±1.

ODMR is the basic process by which the NV acts like a sensor or a qubit. In
quantum sensing, the zero-field resonances can be altered by external fields such as
electric and magnetic fields, temperature and pressure. ODMR is a process where
a microwave field is applied which sweeps over a range of frequencies and the
fluorescence is measured at each frequency. Most microwave frequencies will be off-
resonant to the spin-triplet transition, so the NV will remain in the ms = 0 state and
the fluorescence will be high, but when the frequency is resonant, the electron will be
more likely to take the non-radiative transition from the ms = ±1 state, causing a drop
in fluorescence. Thus, by sweeping the microwave field over a range of frequencies
and measuring the fluorescence, the drops in fluorescence at particular microwave
frequencies can be attributed to the strength of the external field. For example, in
NV magnetometry, the magnetic field splits the degenerate ms = ±1 state due to the
Zeeman effect[99], allowing for two microwave transitions from ms = 0 to ms = 1
and ms = 0 to ms = −1. Furthermore, the resonances split further and further apart
with a stronger magnetic field. In an ODMR spectrum, this presents as two distinct
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drops in fluorescence at the two separate resonant frequencies where the splitting of
the resonances are linearly proportional to the external magnetic field [99] (see figure
1.3a). In NV electrometry, there is no splitting in the degenerate ms = ±1, however
the resonances shift in the presence of an electric field due to a Stark effect [27] (see
figure 1.3b).

In quantum computation, there is an added complexity as the spin state being read
out is the nuclear spin of the nitrogen or nearby carbon-13 atoms. The nuclear spin is
mapped to the measurement of the NV electronic spin due to a hyperfine interaction.
This allows for a projective non-demolition readout process where the nuclear spin
state is readout via the NV electronic spin state in such a way that preserves the
nuclear spin state [25]. In a quantum computer, various quantum gates are being
applied to alter the nuclear spin states and by extension, the electronic spin states.
However, the process of initialising the spin state and reading the electronic spin state
with ODMR is the same for quantum computing and quantum sensing. This means
that any process which improves electronic readout process has applications in both
fields.
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a) b)

Figure 1.3: a) ODMR image of NV magnetometry from Rondin et al. [99]. As the
magnetic field increases, the NV resonances split further and further apart due to
Zeeman splitting. b) ODMR of NV electometry from Dolde et al. [27]. As the voltage
(and subsequent electric field) changes, the resonance changes due to a Stark shift.

Both processes allow for the NV to act as a sensor for magnetic and electric fields.

1.3 Thesis Outline

The aim of this thesis is to study the NV and its potential applications to neuroscience.
The study begins with the neurosensing project in chapter 2. In section 2.1, a detailed
overview of neurophysiology is performed, including the anatomy and physiology
of neurons as well as the action potential (AP), how it is created and its associated
electromagnetics. The current state of neuron imaging is described in section 2.2,
where the strengths and weaknesses of a variety of technologies are considered
including the potential impact of the NV. In section 2.3, established neuron modelling
techniques are studied with the core conductor (CC) theory as well as the Hodgkin-
Huxley (HH) theory, the strengths and weaknesses of these theories are addressed
which leads to the application of a more fundamental theory of neuron modelling.
In section 2.4, the more basic Poisson-Nernst-Planck (PNP) is applied in a unique
way to simulate the Debye layer of the neuron and how an external sensor interacts
with it. It is in this section that the NV diamond pillar is assessed for its capacity to
measure a neuron signal. The final part of chapter 2 is the growth study in section 2.5,
in this section an experiment was performed of neuron growth on a bed of diamond
nano-pillars to demonstrate how structured diamond can alter the growth pattern of
a neuron network to make sensing of the network much easier.

The result of the neurosensing study is that the NV can theoretically sense the
electric fields of the neuron, however, efforts to improve NV sensitivity will make the
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experimental process considerably easier. Chapters 3, 4 and 5 focus on understanding
and improving the NV performance through photoionization and the spin-to-charge
conversion (SCC) technique. In chapter 3, a unique SCC protocol is introduced with
the application of an electrode and cryogenic temperatures via extensive theoretical
modelling. In section 3.1, the photoionization concept in the NV is introduced in
detail. In section 3.2, the mechanism for electrode-based discretization of the low
lying diamond conduction band is extensively modelled with effective mass theory. In
section 3.3, the major sources of linewidth broadening are considered and in section
3.4, the SCC protocol is detailed along with a calculation of the optical spin contrast
and readout fidelity.

In chapter 4, the photoionization technique is applied to better understand NV, an
experiment was performed in which the ground state energy splitting between the
triplet and singlet manifolds of the NV are measured. In section 4.1, the photoion-
ization experiment is introduced, with its aims and technical considerations for the
experiment. In section 4.2, the diamond vibronic structure is studied to understand
the effects of electron-phonon broadening on the experiment at different temperatures
and in section 4.3, the preliminary results are analysed which motivate the future
direction of the research.

The results of this experiment have a direct relation to the electrode-based ambient
SCC protocol detailed in chapter 5. In this chapter, a new electrode-based ambient
SCC protocol is introduced which relies on using the electrode to shift the energy
levels of the NV relative to the diamond conduction band. In section 5.1, the SCC
mechanism is outlined along with the method for calculating optical contrast using
rate equation modelling. In section 5.2, the rate equation modelling is used to optimise
the electrode-based SCC readout and in section 5.3, the same rate equation modelling
is used to compare and contrast the electrode-based SCC protocol with another
established methods of ambient SCC readout [58]. Finally, in section 5.4, a range
of conceptual applications and advantages of the electrode-based SCC readout are
considered and the future direction of the research is outlined.

In chapter 6, NV performance is considered via the study of optical collection
efficiency. The issues with the standard readout of NV fluorescence is detailed and
solutions are introduced with the shaping of diamond structures around the NV into
solid immersion lenses (SILs) or parabolic mirrors using a focussed ion beam (FIB).
In section 6.1, some basic concepts of diamond optical reflection and transmission
are presented. In section 6.1, the FIB process for creating a parabolic mirror with
a deep NV placement is detailed. In section 6.3, the quality of the FIB process is
analysed with characterisations of the parabolic structure and simulations of how NV
placement and parabolic structure affects the optical collection efficiency. Then in
section 6.4 the results are analysed to guide future experiments.

Whilst these methods help improve NV sensitivity, most of the results have greater
applications to readout fidelity in quantum computing and understanding basic NV
physics. The improvements to NV quantum computing leads the research down
the path of using NV quantum computing for simulating large neuron networks. In
chapter 7, the mathematical model for studying large scale neuron networks using a
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quantum computer is conceptualized. In section 7.1 a known mean-field model for
simulation large networks of connected neurons is introduced [36]. In section 7.2 the
computational complexity of this model is analysed and an alternative method for
simulation using quantum computers is introduced. Some basic means of quantum
encoding in the problem are addressed along with a short analysis on the potential
quantum computer hardware requirements for a useful speed-up are considered.
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Chapter 2

Neurosensing with the NV

The NV has immense capacity to sense neuronal electromagnetic fields, creating
applications in neuroscience medical research. To understand this concept fully, a
study of neuroscience and the NVs application to it must be performed. In this chapter,
a new approach to NV based neurosensing is studied by engineering NV quantum
sensors in diamond nanopillar arrays (figure 2.1) and switching their sensing mode to
detect the changes in the electric fields instead of the magnetic fields which have the
potential to greatly improve signal detection. This proof-of-principle approach allows
for the change from sensing the magnetic field of larger worm axons performed by
Barry et al. [12], to the electric field of smaller mammalian neurons. Allowing for a
much wider range of neuroscience studies to be performed.

Apart from containing the NV quantum sensors, nanopillars also function as
waveguides, delivering the excitation/emission light to improve sensitivity. The more
light that can be collected from the NV during a measurement, the more information
gathered which improves sensitivity. The nanopillars also improve the amplitude of
the neuron electric field sensed by the NV by removing screening charges. When
the nanopillar array is used as a cell niche, they act as cell scaffolds, which make
the pillars function as biomechanical cues that facilitate the growth and formation
of neuronal circuits. Based on these growth patterns, numerical modelling of the
nano-electromagnetics between the nanopillar and the neuron was also performed.

In section 2.1 the neuron anatomy and physiology is studied in order to understand
how and why a neuron creates an electromagnetic signal. This includes a brief
study of the neuron anatomy, the charge distribution inside and outside the neuron,
how ion channels alter this charge distribution to produce a signal and some basic
mathematical theory of the transmembrane potential and Debye layer. In section
2.2 the current state of imaging neuronal signals is addressed and the advantages
and disadvantages of each technology are assessed. This includes patch clamps,
voltage-sensitive dyes, calcium indicators, genetically altered proteins, microelectrode
arrays and a brief analysis of the potential of the NV nanopillar array in comparison
to the other modalities.

Section 2.3 focuses on the established theory of neuromodelling for assessing
the NVs capacity to sense a signal. In particular, the core conductor (CC) theory,
and why it is inappropriate for our purposes. The CC theory leads into the highly

15
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celebrated Hodgkin Huxley (HH) theory for modelling an AP. Section 2.4 applies the
HH theory as a boundary condition along with the Poisson-Nernst-Planck theory or
ionic charge distribution in a unique way in order to create the first model of the full
external neuron electromagnetics (electric potential, electric field, magnetic field as
well as charge and current densities). The solutions to this model are then applied to
understand how external electromagnetics interact with a nanodiamond pillar.

Finally, in section 2.5 the growth study experiment is performed. Some basic
understanding of how neurons grow in relation to the pillars is introduced. An
experiment is undertaken to understand how pillar geometries are affected by growth,
a detailed analysis of how to quantify coordinated growth is performed and an
analysis is performed about how the neurons grow on diamond nanopillars and how
the results can be considered for further experiments.

Figure 2.1: a) Confocal image of the stained neurons (green) grown on a bed of
nanopillars. The cell labelling was performed using immuno-fluorescent dyes for the
neurons and astrocytes and a Hoechst stain for the cell nuclei. b) scanning electron
microscope image of one diamond nanopillar geometry. c) Cutout of a neurite grown
on the pillars. The panel shows the cylindrical neurite with the surrounding positive
ions that form a ≈1 nm thick Debye layer (negative ions not shown). Yellow arrows
inside the cylinder indicate the current flow during an AP, which is depicted by the
yellow line. The net ion charge and current densities generate the electric (E) and
magnetic fields (B), respectively. These fields can be measured by the NVs situated in
the grey diamond pillars. The sensing protocols use a green laser and microwaves to
optically address the NV spin resonance. The pillars confine the laser light and direct
the NV fluorescence. d) Illustration of how the pillar removes the Debye screening
charges by making contact with the neurite membrane. This increases the radial

electric field at the position of the NV.
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2.1 Anatomy and Physiology

The Neuron is the basic cell type that exists in all nervous systems, its primary function
is to connect to other cells in order to communicate signals across an organism.
Neurons can connect from cell to cell in a line as well as to multiple cells is a neural
network. Neurons can form connections to any type of cell to transmit a signal but
primarily connect to other neurons in the large information network of the brain
[3, 51, 61, 93].

The method of signal transmission is an electrical impulse, the way the neuron
achieves this is via the movement of charged ions across the cell membrane. Neurons
establish an electric potential across the cell membrane which encourages ions to pass
through specific membrane channels under particular conditions. The process of ion
channels opening and closing in succession across a neuron allows ion flow. This
process creates longitudinal electric signal propagation in the form of a transverse
wave [3, 51]. In order to understand the specific mechanism for this signal propagation,
it is then important to understand the anatomy of the neuron, the structure of the
membrane, its ion channels as well as the ion concentrations that establish the electric
potentials.

Neurons have a variety of sub-structures that facilitate signal propagation (figure
2.2); they begin with dendrites where an external stimulus begins the propagation of
a signal, the signal will then move to a cell body (Soma). If the signal is large enough
to meet a threshold potential, it will then be amplified and broadcasted down the
axon to an axon terminal where the signal is passed to another cell. This process of a
signal being amplified and moved down an axon is called the action potential (AP). In
the absence of an AP, the neuron maintains a constant potential known as the resting
potential. The point where the cell connects to other cells (either at the dendrite or
axon terminal) is a gap junction which is called the synapse [3].

The dimensions of each neuron can vary considerably; the size scale is typically in
micrometres however some large axons can be millimetres in diameter and metres
long [3]. In this thesis, the dimensions used are average values for mammalian cells
such as those found in rats for experiments or people. The soma has a 15 µm radius
[3], the axon and dendrite have a 0.5 µm radius [3], and the membrane itself has
a 5 nm thickness [51]. The potentials generated by these types of cells, both the
subthreshold events and the APs themselves can also vary in amplitude and duration,
thus average values for mammalian neurons signals are what is primarily considered
in this thesis [3, 51, 61].

Across the cell membrane, many different charged particles can travel, but only
through specific channels, of which there are over 100 different types [3]. For the
purposes of this study, only three major classes are considered, passive leak channels,
active ion pumps and voltage-gated ion channels. Passive leak channels and the ion
pumps work together to create a constant charge separation across the cell membrane
which produces the resting potential. The voltage-gated ion channels work during
electrochemical stimuli to create the AP. The three channel types apply two different
means of allowing ion transport, passive or active. In passive transport, ions move
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Figure 2.2: Photomicrograph of a neuron, note the central soma, with dendrite tendrils
attached to it. The long rough tendril at the bottom of the image is the axon, which
splits into the axon terminal at the very bottom of the image. Source Otify et al. [86].

across the membrane naturally via both their electrical and chemical potential. Electric
potentials move ions to form a charge equilibrium, whereas chemical potentials move
ions to form a concentration equilibrium. Active ion transport utilises cellular energy
and chemical reactions to move ions against these electrochemical potentials [3].

Passive leak channels are protein pores that selectively allow ions to pass through
the membrane per their electrochemical gradient (passive transport). Leak channels
attract charged ions via charged amino acids in the entrance to the pore, the selectivity
of the pore is created by the particular energy of molecular bonding. In solution, the
various ions form complexes with water via weak intermolecular dipole interactions,
each ion uses a different amount of energy when forming these bonds. The leak
channels exploit this when applying their selectivity filter. The proteins for each type
of pore have a similar weak intermolecular dipole bonding energy requirement which
is exactly matched by the energy gained when the water molecules are removed as
ions pass through the pore (fig 2.3). Since different ions have different bonding energy
with water, ions that don’t match the energy required to bond into the leak channel
proteins will not pass through the membrane, thus creating a filter in which only a
particular ion species can pass through. The selectivity of leak channels is extremely
high, potassium leak channels conduct potassium 10,000 times better than sodium
despite the two ions having the same charge and only 0.038 nm difference in diameter.
In addition to this, leak channels can transport 100 million ions per second, as much as
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105 times faster than any ion pump system, making the channel much faster and more
efficient. Finally, it’s important to note that there are typically many more potassium
leak channels compared to any other ion leak channel, this helps create the passive
equilibrium for the resting potential [3].
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Figure 2.3: Diagram of the potassium leak channel. the above image (A), shows both
potassium (left) and sodium (right) bound to water molecules via intermolecular
forces. The bottom images in (B) show the ions interacting with the selectivity filter of
the leak channel, the energy gained from removing water from potassium is exactly
matched by the energy required to bind to the filter and pass through the channel.
Sodium on the other hand is bound to water with less energy and thus does not meet
the requirements to pass through the channel. Source: Alberts, Molecular Biology of

the Cell [3].

The ion pump is a large complex of proteins that utilize the cellular energy,
adenosine triphosphate (ATP) to create strong chemical bonds to ionic species. Upon
binding, the proteins undergo a conformational change which exposes the protein
from one side to the opposing side of the membrane and lowers the binding energy
of the ion-protein bond, allowing the ions to break away into the opposing transmem-
brane space (fig 2.4). This active energy process allows a cell to pump ions in and out
of the cell against the ions passive electrochemical gradient [3].
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Figure 2.4: Diagram of the ion pump, the image shows the pumps two conformations.
The left conformation allows intracellular sodium to bind to the pump whilst releasing
potassium. ATP causes the pump to undergo a conformational change to the right
image whereby sodium is released outside the cell and potassium binds to the pump.

Source: Alberts, Molecular Biology of the Cell [3].

Ion pumps force intracellular sodium Na outside the cell whilst pumping extracel-
lular potassium K into the cell. An important aspect of this transport system is the
ratio of ion transport; from figure 2.4 it is clear that for every 2 potassium ions that
are pumped inside the cell, three sodium ions are pumped out. This helps to create a
charge separation which in part forms the resting potential [3].

The Voltage-gated ion channel is a channel that allows the flow of ions in and out
of the membrane in response to a stimulus potential (often at approximately -55 mV).
When the potential is below this threshold, the proteins in the channel are shaped in
a way that closes the channel completely. During electrochemical stimuli, charged
molecules enter via the dendrite and diffuse towards the voltage-gated ion channels in
the soma, creating a local potential change. This sub-threshold signal is often called a
postsynaptic potential (PSP) as it comes from a synaptic connection from another cell.
If the PSP reaches the threshold value (often by combining with multiple PSPs), then
that will activate the voltage ion channels. This causes a conformational change to
open the channel which results in a rush influx of sodium ions, heavily depolarizing
the cell. It is important to note that the PSPs can be excitatory, increasing the change
of an AP or inhibitory, decreasing the chance of an AP. Structurally, the voltage-gated
ion channel is similar to the leak channel in its speed of flow as well as its selectivity
for sodium over other ions. However, the voltage-gated ion channel has additional
structures which respond to the local potential to undergo the conformational change,
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figure 2.5 [3, 5]. Although the principle is well understood, the physical mechanism
which senses the gradient potential and causes the conformational change is not
known. The main reason for this is that no current technique can measure changes in
electric potentials next to the channel itself (within a few nm). The NV potentially
can, giving it a distinct advantage as an imaging tool [27].

Figure 2.5: Diagram of the voltage-gated ion channel with the various protein subunits
labelled (O.V, V.S, S.F). The middle image shows the channel in the closed conforma-
tion, preventing ion flow during the resting potential. The right image shows the
lower protein subunits opening up to allow ion flow through the channel, although
the concept is clear, the physical mechanism for how the channel opens is not well

understood. Source: Armstrong and Hille [5]

The axon hillock is a region of the neuron where the soma meets the axon (see
fig 2.7. In this region, the density of voltages gated ion channels increases from
approximately 10 per µm to 100 per µm [61]. It is in this region where an external
stimulus from the dendrite can activate the voltage-gated ion channels to begin the
action potential. The principle is that if a stimulus activates one or two voltage-gated
ion channels, the influx of sodium will change the local potential, activating the
channels next to it. This causes a chain reaction that results in a large amount of
sodium entering the cell, heavily changing the electrostatic equilibrium of the cell. As
the sodium diffuses down the axon, more voltage-gated ion channels are activated,
propagating the voltage signal as a transverse wave [3, 61].

Like all mammalian cell membranes, the neuron membrane is a complex structure
primarily made up of phospholipids; along with phospholipids are galactolipids, as
well as various proteins and cholesterol molecules embedded in the cell. The ratio of
phospholipids to other molecules can vary from cell to cell and even across different
parts of the cell. For example, the ratio of phospholipids would increase in parts of
the cell where there is less molecular transport such as the axon but have increased
proteins and ion channels in areas where there is high molecular transport, such as
dendrites [3, 21]. Additionally, the density of phospholipids can change with changing
curvature of the cell itself, densities tend to increase with increasing curvature (or
reduced radius) [21]. Typical mammalian neurons approximate the phospholipid
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density at approximately 5 ∗ 106 lipids per µm2 [3]. The phospholipids themselves
are a largely organic, hydrophobic carbon chain that can be saturated or unsaturated.
At one end of the chain there are negatively charged, hydrophilic phosphate groups.
These lipids come together in non-covalent bonding to form a lipid bilayer, a structure
that consists of a double layer of phospholipids organized with the negatively charged
heads pointing outwards, figure 2.6. This structure creates a hydrophilic membrane
surface with a hydrophobic centre. The total thickness of the average cell membrane
can vary from cell to cell, however from mammalian neurons, the thickness is typically
placed at 5 nm [3, 51].

Figure 2.6: Typical cell membrane featuring the phospholipid bilayer with the charged
heads pointing outwards from the membrane (red balls). The image also features
various large proteins and other molecules which are often embedded in the cell

(green). Source: Alberts et al., Molecular Biology of the Cell (2002) 4th Edition.

The primary role of the membrane is to create a wall that selectively allows various
molecules in and out of the cell domain. In terms of electric potentials, the membrane
has added importance as a charge separation across the inside and outside of the cell
allows the membrane to become a capacitor, building up charges on either side of the
membrane and creating the Debye layer across cell membranes.

With the Anatomy and physiology outlined, it is possible now to consider the
microscopic nature of the cell in terms of ion flow. It is the ions moving in and
out of the cell which generates the electric potentials across the cell. In this regard,
there are three major potential environments to consider: the resting potential, the
post-synaptic potential (PSP) and the action potential (AP).

The resting potential is created when the neuron is not transmitting an electrical
signal, however, must maintain a charge separation in order to create APs when
needed. The resting potential is generated by a steady-state equilibrium of ion flow.
To create a resting potential, a difference of ion concentrations is created across
the membrane of the neuron, this is initially mediated by the active ion pumps [3].
The pumps force intracellular sodium outside the cell whilst pumping extracellular
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potassium into the cell. As the pump moves three positive charges outside the cell for
every two going in, there will be a greater positive charge outside the cell. In addition
to the active pumping, there are also negatively charged proteins produced by the
cell which remain inside the cell. These two processes create an electric potential that
encourages potassium to move inside the cell via the potassium leak channels [3].

It’s important to note that sodium cannot enter the cell as easily as potassium as
there are few sodium leak channels that allow it to move across the membrane and
the voltage-gated pumps for sodium are closed. There is however a large amount of
potassium leak channels to selectively allow potassium flow. Its also important to note
that there are many other ions that exist across the cell membrane which can alter
the potential (e.g. calcium and chlorine), however in mammalian cells, either their
concentration is small or their ability to travel across the membrane is negligible, so
their effect on the potential is minimal. A fuller description of the ionic concentrations
for mammalian neurons is given in table: 2.1 [3, 51, 93].

As potassium flows into the cell along its electrical gradient, the buildup of the ion
creates a concentration gradient which begins to encourage potassium flow outside
the cell via the same leak channels. The potassium ion flow moves towards its
electrochemical equilibrium, whereby the electric potential and the chemical gradient
are equal and the flow of the ion stops. For potassium, its electrochemical equilibrium
is at approximately -90 mV. However, the active ion pump forces potassium into the
cell against its electochemical gradient, keeping the flow of ions across the membrane
in a steady-state equilibrium. This steady-state system is the resting potential and is
often measured at approximately -70 mV for mammalian cells. Note that there is a
strong electric and chemical gradient for sodium to move into the cell, but largely
cannot due to the lack of sodium selective channels, this gradient is utilized in the
action potential [3, 51].

Mammalian
Cell

Intra cellular
concentration
mM

Extra cellular
concentration
mM

K+ 139 4
Na+ 12 145
Cl− 4 116
OA− 138 9
Mg2+ 0.8 1.5
Ca2+ <0.0002 1.8

Table 2.1: Table of ion concentrations inside and outside the cell in the neuron resting
state. The OA− term represents charged proteins produced by the cell. Note how
overall there is still more overall positive charge inside and outside the cell. By
neuroscience convention, the electric potential is defined as the inner concentration

relative to the outer concentration, creating a negative potential [93].

In order to better understand and predict the resting potential, one can consider
that during the resting potential, the ions are in thermal equilibrium. Thus it is
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possible to model the ions using a Boltzmann distribution. Consider the relative
probability of finding a particle in energy state 1 (P1) or state 2 (P2) as the energy
difference between those two states in a Boltzmann distribution:

P2

P1
= Exp(−u2 − u1

kbT
), (2.1)

where u1 and u2 are the energies of state 1 and 2 respectively, kb is the Boltzmann
constant and T is the temperature. It is common to then re-express this equation in
more chemical terms, where the probabilities are termed concentrations: c2

c1
and the

energies are termed as molar energies: U2 −U1. This changes the Boltzmann energy
to RT where R is the universal gas constant:

c2

c1
= Exp(−U2 −U1

RT
), (2.2)

rearranging for the energy difference gives:

U1 −U2 = RTln(
c2

c1
), (2.3)

in equation 2.3 the electrical molar energy difference U1 −U2 of a particular ion
is a direct cause of the electrical potential difference ∆V = V1 −V2 acting on an ion
with charge e, a valency z, and multiplied by Faraday’s constant F. Substituting these
terms in and rearranging:

∆V =
RT
ezF

ln(
c2

c1
), (2.4)

equation 2.4 is well known as the Nernst equation [51]. It describes the electric
potential in terms of the concentration of the ions inside the cell (c1) and the concen-
tration of ions outside the cell (c2). However, the Nernst equation is limited in that it
only considers ions of a single species in equilibrium. The equation can be expanded
to include terms from all contributing ion species:

∆V =
RT
F

ln

(
∑M

i=1 Pi+ci+ ∑N
j=1 Pj−cj−

∑O
k=1 Pk+ck+ ∑P

l=1 Pl−cl−

)
, (2.5)

Where P is the permeability of a particular ion species largely governed by the ion
channels. The sums in i, j, k and l represent the ion concentrations of positive and
negative species outside the cell (i and j respectively) as well as the ion concentrations
of positive and negative species inside the cell (k and l respectively) [51].

The constant term: RT
F is 26.7 mV at human body temperature (310.15 K); meaning

that the sign of the potential is determined by the charge of the ions. The permeabilities
are often described as a ratio relative to potassium; at resting for the major contributing
ions they are given as: PK : PNa : PCl = 1 : 0.05 : 0.45 [51]. With these constants
and the concentrations from table 2.1, the Goldmann equation can accurately predict
the resting potential of mammalian neurons at approximately -70 mV, which can be
confirmed experimentally [3, 51]. The model however has no spatial or temporal
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component. This implies that the Goldmann equation cannot describe dynamic
systems, nor can it describe a system whereby the potential changes with radius. The
equation assumes a situation whereby the electric potential doesn’t change when
approaching the membrane. Section 2.3, describes a model in which the electric
potential can be vastly different at the level of the membrane (PNP model).

Figure 2.7: Graph of an electric potential as a function of time during an AP. The
small hills are the PSPs that are not large enough in amplitude to meet the threshold
for opening the voltage-gated ion channels (-55 mV). If a PSP makes the threshold
potential, then the voltage-gated ion channels open, causing a large depolarising
increase in signal, i.e. the large middle peak. The final drop in potential is the

refractory period. Right image source: Purves et al., Neuroscience [93].

When an AP from a primary cell reaches an axon terminal at the synaptic connec-
tion to another secondary cell, chemical processes release small amounts of molecules
called neurotransmitters into the synapse. Neurotransmitters come in a variety of
forms and chemically bind to ion channels in the secondary neuron to open them and
increase ion flow. The type of channel the neurotransmitter binds to will change the
outcome of the ion flow. If the neurotransmitter binds to ion channels that selectively
allow positive ion flow (e.g. Na+ or K+), then there will be an increase in positive
ions in the secondary neuron increasing the potential from -70 mV towards 0 mV,

Draft Copy – 15 September 2022



§2.1 Anatomy and Physiology 27

depolarising it. If this increase in potential reaches a threshold at the axon hillock
where the voltage-gated ion channels are, then the synaptic event will cause an AP
in the secondary neuron which will transmit a signal to another cell. If however, the
neurotransmitter is a type that binds to ion channels that selectively allow negative
ion flow (e.g. Cl−), then the secondary neuron will experience a decrease in potential,
hyperpolarising it which decreases the chances of an AP occurring. The neurotrans-
mitter event causing a local potential change in another cell is called a postsynaptic
potential (PSP), if the PSP causes a depolarisation, then the PSP is excitatory (EPSP), if
the PSP causes a hyperpolarisation then the PSP is inhibitory (IPSP) [93]. In complex
neuron networks, EPSPs and IPSPs work together to change the probability of a
neuron firing which affects the network. It is important to note that in a network a
synapse can be a connection of multiple neurons. So whilst a neuron might receive
an EPSP from one neuron, increasing the chances of generating an AP, it might also
receive an IPSP from a different neuron at the same time, reducing the chances of
generating an AP. The amount and type of neurotransmitter released by neurons at a
synapse can also change in time as neurons grow and change with response to various
stimuli which in turn alters the probability of neurons firing. This changing nature of
neuron chemistry and structure is known as neuroplasticity [93]. Understanding how
PSPs operate in a complex and changing neuron network is one of the main goals of
neuroscience and is the reason why understanding a nanoscopic structure such as ion
channels at a synapse can have a profound effect on the neuron network as a whole.

When the neuron experiences a stimulus at the dendrite synapse which creates an
EPSP that is large enough to activate the voltage-gated ion channels the AP begins.
During this process, the chain reaction of voltage-gated ion channels causes a rush
influx of sodium ions which depolarizes the membrane potential towards sodium’s
electrochemical equilibrium (approximately +50 mV, figure 2.7) [3, 51]. Once the action
potential has begun, the influx of ions will diffuse inside the axon in all directions.
This has the effect of dispersing the potential wave created by the action potential
activating other nearby voltage-gated sodium ion channels, propagating the signal in
the longitudinal direction. After the depolarization, ion pumps will begin to work
to repolarise the cell by expelling the excess sodium ions. In addition to this, the
voltage-gated potassium channels will pump out potassium from the cell for a short
while during this repolarisation process, this has the effect of shortly hyperpolarizing
the cell after the action potential. This is shown in figure 2.7 as the refractory period
on the voltage graph. This process prevents the local potential from reaching sodium’s
electrostatic equilibrium (maxing out the potential at +40 mV). The purpose of the
refractory period is to drop the local potential around voltage-gated ion channels to
well below the threshold limit; this allows the ions to diffuse in all directions in a
way that activates new voltage-gated ion channels without reactivating the old ones
which have already opened up, unnecessarily recreating the AP. After the AP, the
leak channels and ion pumps will begin to work in order to re-establish the resting
potential, allowing a further action potential to occur if the stimulus persists [3, 51].

As the ions diffuse in the axon, the signal is propagated via the myelin sheath
and the nodes of Ranvier (figure 2.8). The myelin sheath, is simply an insulating
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Figure 2.8: Diagram of the neuron focusing on the axon. The potential moves faster
in the myelinated axon but loses signal strength due to dispersion. At the node of

Ranvier, the signal slows down but is boosted by the voltage-gated ion channels.

membrane, wrapping the axon in segments, the purpose is to cause charge separation
of ions, lowering capacitance on the membrane, and thus reducing the number of ions
in the axon which might impede the ion diffusion of the action potential ions. This
has the effect of increasing the speed of the travelling AP wave. As the ions creating
the signal diffuse, the potential wave will shrink in amplitude due to dispersion. In
between the myelin, sheath segments are nodes of Ranvier, which have voltage-gated
channels. When the AP reaches a node, it causes a further influx of sodium ions into
the axon. The influx has the effect of increasing the density of sodium, thus increasing
the potential, preserving the wave. This process of both boosting the speed of the
wave as well as maintaining its amplitude in 2 part steps is called saltatory conduction,
propagating an electric signal in the form of a transverse wave [3, 51]. Myelin sheaths
and saltatory conduction can increase the speed of an action potential from 2 m/s to
approximately 200 m/s for an axon of the same size. Alternatively, it can allow for
conduction speeds of a large unmyelinated axon to be equivalent to a much smaller
myelinated axon. For example, the conduction speed of an unmyelinated giant squid
axon is approximately the same as a myelinated frog axon (25 m/s) despite the almost
30-fold reduction in axon diameter, allowing for a much more energy-efficient process
[49]. It’s important then to note that not all neurons are myelinated, however, most
are, the neurons being studied in this thesis are unmyelinated as they are simpler to
consider. However, future work would likely lead to studies on myelinated neurons,
necessitating this understanding.

It has been established that the difference in ion concentration across the membrane
creates a charge separation which creates the electric potential. When considering
the electric potential, its important to recognize that with the exception of bound
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molecules on the membrane, all other charges (the ion concentration) aren’t fixed.
The ions can move freely to form an electrostatic equilibrium. During the resting
potential, the negatively charged ions in the cell are built up along the interior of
the membrane due to electrostatic forces. At the outer surface of the cell membrane,
the negatively charged interior, as well as the negatively charged membrane itself,
will encourage the formation of a layer of polar water molecules as well as divalent
positive ions, often calcium and magnesium, although their bulk concentration is
negligible, in this layer their concentration can increase by up to 104 times the bulk
amount [51]. The positive and negative charges on either side of the membrane
together will partially screen the electric potential, causing an exponential decay of the
potential away from the cell membrane, the physical mechanism for this is described
in more detail in section 2.3. At greater distances, the remaining ion concentrations
experience a lower electric potential and continue to screen the potential until the
ions reach an equilibrium. Outside the cell, the equilibrium of positive and negative
charges can become equal, forcing the potential to go to zero. However, inside the
cell, the ion concentrations cannot perfectly equilibrate and will go towards a constant
potential. This is the transmembrane potential (or resting potential in steady-state
equilibrium). This screening layer of ions which creates the exponential decay of
electric potential is often called the Gouy-Chapman or Debye layer, the exponential
decay has a characteristic length scale κ = 1

D where D is the Debye length often
placed at 1 nm [51, 88, 91, 98, 113]. This means that the Gouy-Chapman layer of ions
is typically no larger than 1 to 2 nm away from the membrane before reaching an
equilibrium.

This model of electrical screening is called the Guoy-Chapman-Stern (GCS) model,
it is important to note that the GCS model is purely theoretical as there are no
current experimental techniques that allow probing of the electric potential within
nanometres of a cell membrane. The Goldmann equation describes the electric
potential in the absence of screening produced by the GCS model. At the large radial
limit, (nanometres away from the exterior membrane), it will correctly describe the
resting potential. However, in the limit close to the membrane where all the ions pass
in and out of the cell, the model will fail to predict electric potentials. In this regard,
the diamond NV’s are unique in that they potentially have the ability to measure
the potential of the Debye layer, providing important information about how the cell
membrane functions as an electrical device. If however, the NV can measure the
Debye layer potential, then modelling this effect is important in order to understand
the signal being measured by the NV. To achieve this properly two concepts need
to be understood. The first is the mathematical model of the Debye layer which
is considered in using the PNP model of ion flow in section 2.3. The other is the
understanding of the current state of neuron signal measurements and imaging which
is considered in section 2.2.
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2.2 Current imaging methods

There are many different methods of imaging electromagnetic fields in neurons, each
with their own set of advantages and disadvantages, the more prominent methods are
outlined in this thesis which includes electrode patch clamps, voltage-sensitive dyes,
calcium imaging, genetic marker protein imaging and microelectrode arrays (MEAs).
The NV is also described in more detail in the context of imaging. Its preliminary
sensing capabilities are comparatively considered in this section. To re-iterate from
chapter 1, the ideal neuro-sensor must have the following characteristics:

• Susceptibility - must be able to resolve the smallest possible change in a potential
or electromagnetic field, ideally without the need for signal averaging. The
smallest changes occur during PSPs, which can be as low as 20 mV in magnitude
[93], so the ideal system should be able to sense in this range.

• SNR - must be able to resolve signals with a high signal to noise ratio (SNR).
The combining of susceptibility and SNR creates the overall sensitivity of the
system.

• Spatial resolution - an image must be able to resolve micron-scale areas for
typical imaging and nanoscale areas for measuring a screening field or some
sub-cellular structures.

• Wide-field imaging - there must be a capacity to measure single neurons as well
as multiple neurons at the same time in a large network.

• Temporal resolution - action potentials occur over millisecond timescales, so
ideal systems should have sub-millisecond resolution.

• In vivo capacity - must be able to image neurons in a lab sample (in vitro)
environment as well as in an active organism (in vivo).

• Non-toxic - The system must be able to image neurons over a long period of
time without killing the neuron itself.

Realistically no current imaging technique can achieve all these points, it is likely
the NV’s won’t be the perfect modality either. Additionally, different methods have
multiple brands and types which operate differently and have different strengths and
weaknesses. For simplicity, most techniques have a representative brand which is
described in greater detail than the overall technique itself. Although many systems
can come close on their own to satisfying all the points in the list above, the ideal
method is likely to use multiple imaging tools together [88]. Another important
characteristic that is not directly to do with sensing is the capacity to generate neuron
signals. Good neurosensors can measure neuron signals and also have the capacity to
induce a signal from a neuron which can be subsequently measured. There are a few
different ways to achieve this which are also detailed in this section.
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Patch clamps are well known and operate by physically placing electrodes on
the desired part of a cell in the form of a micro or even nanopipette. The pipette
uses suction and heating techniques to form a resistive seal (giga ohm seal) around a
section of the membrane. Once the seal is formed, any ion flow through the pipette
will create a small current which can then be amplified and converted into a voltage
measurement [34, 46]. Improvements in patch-clamp techniques have pushed to cross-
sectional nanoscale electrophysiology for investigating nanoscopic heterogeneities
in ionic concentrations and local electric fields [105]. Coupled with scanning ion
conductance microscopy, it can perform wide-field imaging of neurons in a resting
state [78] by utilising the pipette as a scanning probe.

There are many different techniques for patch-clamp measurements; including
conventional cell-attached, whole-cell, inside out and outside out measurements
(figure 2.9) [34]. Each method is used for specific types of experiments, in vivo, whole-
cell, extracellular and intracellular studies respectively. The patch-clamp method is
highly sensitive and allows voltage measurements to be made of specific areas of the
cell in real-time, such as an individual ion channel. The sensitivity can be measured
to pico-amp values with the ability to resolve at a sub-millisecond resolution [46].

Patch clamping is so sensitive that it is often considered the gold standard by
which any other method is tested, in addition to its sensing capacity, patch clamps
can also inject a current into the cell, which can alter the cellular potential and create
action potentials which can then be measured by other techniques. The method can
resolve single-shot action potentials as well as sub-threshold events. The drawbacks to
this technique lie in its physical constraints; the patch-clamp often results in physical
perforations of the cell, making the technique invasive and damaging for the cell. In
addition to this, the technique can only be applied to a single micro-scale point on the
outer membrane of a cell, making large scale and/or studies of signal propagation
difficult if not impossible [88].
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a) b)

d)c)

Figure 2.9: Different configurations of the patch-clamp technique. a) is the conven-
tional cell-attached clamp technique for in vivo studies and b) is the inside out excised
patch technique for intracellular studies. c) is the whole-cell technique for entire cell
studies and d) is the outside out technique for extracellular studies. All methods
demonstrate the clamps versatility; however, all these methods have some level of risk

to cell mortality. Source: Gandini et al. [34]

Voltage-sensitive dyes are dyes that have a potentiometric part of their molecular
structure which under optical excitation will change its fluorescence in response to an
external electromagnetic field. They can be injected en mass into a sample of single
or multiple neurons and the electromagnetic field can be measured as a function of
the fluorescence of the dye [88]. One type of dye commonly used is the ANNINE
series dyes. The ANNINE dye was developed in 1996 and has been iterated many
times since its original inception [31, 64]. One of the more recent versions of the dye
is ANNINE-6plus; this dye is a water-soluble, membrane binding chromophore that
measures changes in electric potential via optical excitation and emissions [31] (figure
2.10). The fluorescent emissions are altered in the presence of an external field by
the linear Stark effect [31, 64]. ANNINE-6plus has a voltage susceptibility measured
as a 30% change in intensity per 100mV ((∆F/F)/100 mV where F is the emission
intensity) with a quantum yield of 0.7 [31].

Voltage imaging can in principle measure sub-threshold electrical excitations in a
variety of different cells as well as sub-millisecond and micron-sized measurements of
neuronal activity in vivo as well as in vitro. The technique can image specific areas of
a single neuron as well as large scale networks of neurons and certain dyes have even
been able to measure single-shot neuronal activity for particular dyes without the need
for signal averaging [31, 88]. The disadvantages of the dyes are however numerous, the

Draft Copy – 15 September 2022



§2.2 Current imaging methods 33

a) b)

c) d)

Figure 2.10: Example images of the ANNINE dye; a) and c) are POPC vesicles (artificial
cells), b) and d) are live HEK-293 cells. All cells are labelled with a voltage-sensitive
dye that allows visualisation under optical fluorescence. As the voltage change is
most dramatic across the cell membrane, the dyes are chemically designed to bind
to the cell membranes to maximise fluorescence. The level of fluorescence in the
ANNINE-6plus labelled cells of a) and b) is improved from the older ANNINE-6 dye

labelled in c) and d). Source: Fromherz et al. [31].

principle of these are the chemical constraints. Voltage-sensitive dyes must be water-
soluble with the ability to permeate and ideally bind to the membrane of neurons all
while having high levels of fluorescence to make measurements. However, the dyes
chemical and optical response will often change from cell to cell, requiring extensive
studies to be performed to optimize the right dye for the right experiment [88]. In the
case of ANNINE-6plus, its solubility/binding and voltage susceptibilities are good,
however, its highest susceptibility value occurs at large wavelength excitation. As the
absorption in this regime is low, it results in poor signal to noise ratio’s, lowering
sensitivity. This effect can be alleviated by high-intensity studies, however, if the
intensity is too high, then the neuron will begin to suffer from phototoxicity [64].
This trade-off of signal to noise ratio optimization to cell mortality is very common
amongst voltage-sensitive dyes.

Calcium imaging is a technique that involves genetically or chemically engineering
molecules or proteins into a cell that fluoresce in response to calcium binding to it, in
this sense it is chemically driven fluorescence under optical excitation. During action
potentials, calcium ions are transported in and out of cells; the calcium concentrations
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at parts of the cell can change up to 100-fold during action potentials. Calcium can
then bind to these markers, allowing imaging of electric fields indirectly via calcium
concentrations [39, 115]. One example of this is the indicator CAL-520; this opti-
cally driven molecule is based on BAPTA chemistry (1,2-bis(o-aminophenoxy)ethane-
N,N,N’,N’-tetraacetic acid). CAL-520 can be loaded into neurons via direct injection
into the cell or by sample staining, where the indicator permeates a cell membrane
with chemical assistance. Upon diffusion into the cell or extracellular space, calcium
can then bind the indicator which causes it to undergo a conformational change,
this results in a considerable change in the fluorescence of the indicator which can
be imaged. Calcium molecules typically fluoresce much more brightly than voltage
dyes; in the case of CAL-520, it has a fluorescence susceptibility change of 70% per
action potential (∆F/F/AP) with a quantum yield of 0.75, considerably better than
voltage dyes [115]. This increase in fluorescence, as well as high excitation energy,
allows for two-photon imaging microscopy techniques. Two-photon microscopy is
a technique in which two photons of approximately half the excitation energy of
a fluorophore are used together to create an excitation. The half energy photons
have increased wavelengths which are more penetrating, reducing phototoxicity as
well as scattering noise [23]. Two-photon microscopy requires a bright and sensitive
fluorophore as well a high-energy excitation level. Whilst this can be achieved with
voltage-sensitive fluorophores, these factors are common and more effective in calcium
indicators. The technique allows for a much greater resolution without the need for
count averaging. For CAL-520, it improves the signal to noise ratio to 6.63 for in vitro
imaging and allows for wider scale in vivo imaging [23]. Despite this increase in
optical attributes, calcium imaging has several shortcomings which prevent it from
being clearly superior to voltage imaging. The principle of these is in the fact that
the binding, conformational change and resultant fluorescence of calcium imaging
is a time-consuming process, the timescales of action potentials are often faster than
this chemical process, resulting in poor temporal resolution of 200 ms, at least 100
times longer than the action potential time itself (see figure 2.11) [39, 88]. In addition
to this, calcium imaging struggles to image low voltage events such as subthreshold
voltages as it requires calcium-binding during low calcium concentration events. It
also typically requires signal averaging as the poor temporal resolution does not allow
for single-shot measurements [88].
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Figure 2.11: Example of in-vivo calcium imaging. Rat pyramidal neurons were loaded
with the indicator calcium green-1 that respond to whisker stimulation. The black
and white images a) are slices of a 3D reconstruction of a neuron from two-photon
fluorescence imaging. The line plots in b), c) and d) show the recordings of three
separate neurons which are being stimulated via two different whisking patterns
that are the square wave functions at the bottom of d). The top trace is the calcium
fluorescence and the trace below it is the direct voltage measurement performed by a
sharp micro-electrode. whilst the whisking does not necessarily produce a neuron
response every time, it is clear that the electrode records more spike events than the
dye due to the poor time response of the calcium indicator. Source: Grienberger et al.

[39].

Another technique is to genetically engineer proteins that will bind to specific sites
of a neuron and fluoresce under certain conditions, this could be in direct response to
an electric field or an indirect response such as a molecular binding (similar to calcium
imaging) [88]. One example of genetically engineered voltage-sensitive proteins is the
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Ace mNeon class of protein pairs, this system consists of two proteins: the rhodopsin
protein, Acetabularia acetabulum (Ace) and an mNeon green fluorescent protein
[38] (figure 2.12). The Ace mNeon pair operate via Förster resonance energy transfer
(FRET). The principle of FRET is to combine two optically driven fluorophores together;
in the case of Ace mNeon, the Ace component is a voltage-sensitive dye which under
optical excitation and electrical stimuli will resonantly transfer its excitation energy
non-radiatively to the mNeon protein via a dipole interaction. The excited mNeon
will then produce an optical emission which is then detected. Using this method,
the detection system will sense a drop in the donor fluorescence (Ace) as well as an
increase in the acceptor emission (mNeon) [9, 38]. FRET-based imaging is designed
to couple the sensing capacity of a voltage-sensitive dye with a much more optically
efficient fluorophore. In the case of Ace mNeon, the mNeon component has good
optical characteristics with a quantum yield of 0.8 and a radiative lifetime of 3 ns, and
the Ace component allows for sub-threshold imaging with less than 0.4 ms temporal
resolution and in vivo imaging with low phototoxicity [9].

Figure 2.12: Fluorescence signals from neurons loaded with Ace1Q-mNeon (top) and
Ace2N-mNeon (bottom). The black and white images show the baseline fluorescence
of the mNeon protein and the colour images show the fluorescence response for
a voltage change of 100 mV. The image also includes a legend for fluorescence

susceptibility. Source: Gong et al., [38].
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In general, genetic engineering can be highly specific as it’s designed to bind to
explicit sites, this can allow measurements of specific areas of cells as well as specific
types of cells in a network [88]. FRET-based imaging is especially promising as it can
in principle combine the ideal imaging characteristics of a good fluorophore with a
molecule that is highly sensitive to electric fields in a way that is much faster than
typical Calcium imaging [9]. There are however several drawbacks to this technique,
mainly in protein design. Genetically engineering proteins to permeate, bind then
sense fields can be a challenging process, for FRET imaging, finding a pair of proteins
that will undergo resonance transfer can be difficult and the efficiency of the transfer
can be quite poor [9, 38, 88]. In the case of Ace mNeon, the transfer rate is relatively
low, creating a poor fluorescence sensitivity (∆F/F of 12% per 100 mV) and lacks the
capacity to perform single-shot imaging [38].

Micro-electrode arrays (MEAs) are a broad field of electrode technologies that
are applied to a variety of neuroscience experiments as well as in a clinical setting.
MEAs are essentially an array of electrodes where the conductive part of the electrode
transduces a neuronal voltage signal (moving ion concentrations) into an electrical
current within the electrode that is then measured [84, 111]. One immediate advantage
of this technology is that an electrode can transduce a signal for measurement or it
can provide a current in the electrode which alters the local potential in the neuron,
opening voltage-gated ion channels and inducing an AP. Thus, like a patch-clamp,
MEAs can stimulate neuron activity as well as measure it [84].

MEAs come in a variety of forms, planar microelectrodes can measure the com-
bined signal from a group of neurons in a lab setting (e.g. in vitro cell studies) all
the way to a clinical setting where electrode arrays form electroencephalography
(EEG) that can measure the signal from an entire human brain. Alternatively, the
arrays can be made into micro or even nanostructured pillars or other shapes which
directly connect to a single neuron or neuronal structure to sense individual neuronal
signals [84] (figure 2.13). Some connect via a contact mechanism on the outside of the
neuron membrane whilst others can penetrate the neuron membrane itself to measure
intracellular signals. With the ability to transduce a field in the neuron, MEAs can
also measure using electroporation, where the electric field generated by an electrode
temporarily alters the membrane permeability creating a local means of measuring
the intracellular potential by allowing interior ion flow to pass into the local region
where the electrode is [44].

MEAs have been reported to have sensitivities and resolution that is equivalent
to patch clamps in a way that allows multiple recordings along with a network by
utilising an array of electrodes on a single chip (up to 4096 simultaneous sensors
in one device) [84]. The major difficulties in electrodes are the chip design and the
contact of electrodes with the neurons. In planar MEAs, the number of sensing sites
is large, but the resolution is poor as you are measuring the combined signal from
multiple neurons. By utilising smaller, structured electrodes, the resolution improves,
however, there is difficulty in creating a network of electrodes that are nanoscopic
in size whilst being densely packed as each electrode must have an accompanying
wire system to send signals to a detection system. This means that there is often a
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trade-off of electrode size and density of the array (40 µm pitch between electrodes).
In addition to this, the contact of the electrode to the neuron is not consistent. If an
electrode does not make physical contact with the neuron, then Debye screening will
stop the electrode from sensing a signal unless it is the combined signal of multiple
neurons [84].

Figure 2.13: Scanning electron microscope (SEM) image of neurons growing on an
array of gold-spine micro-electrodes. The images from a) through d) are of the same
array but with different magnifications: 100, 20, 5 and 2 µm for a), b) c) and d)
respectively. The labels c and ax in a) label the soma and axon respectively. Source:

Hai et al., [43].

Diamond based quantum microscopy using the NV is a substantial change from
the other technologies in that it is a quantum device used to sense neuronal signals,
however, there are a lot of similarities between the different technologies. The NV
can be used in a variety of ways for biological applications; as the NV resonances
are sensitive to external electric [27] and magnetic fields [99], either can be used to
sense neuronal signals. Additionally, the NV has been considered for applications
as a sensor for thermal changes in a cell [106] as well as force changes from actively
moving cells [14]. The NV has been applied like an MEA where neurons are grown
on an array of fixed NV sensors [12] but can also be applied like a dye by injecting a
dose of nanodiamond particles into a cell [62].

In this thesis, we focused on a novel way of sensing neuron signals by shaping the
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diamond structure itself into an array of nanopillars similar to an MEA whilst sensing
the field from the neurons using optical microscopy similar to a dye. As mentioned in
chapter 1, the NV has exceptional sensitivity and resolution, as it is able to, in theory,
measure sub-threshold signals with nano-scale spatial resolution and microsecond
temporal resolution. This would make the NV as good as patch clamps (the gold
standard) in terms of sensing capacity. In addition to this, the nano-pillar array would
allow for wide-field imaging like an MEA, the NV won’t suffer from bleaching like a
dye, and the diamond substrate is biocompatible, allowing for high-quality neuron
sensing in a way that is non-perturbing to the neurons natural function.

The NV does have its own inherent drawbacks, unlike MEAs, the NV has no
known way of stimulating a neuronal signal and its optical emissions limits its
capacity to perform in vivo imaging. However, it is likely that the biggest drawback is
the lack of theoretical or experimental proof of the NVs capacity to perform neuron
sensing. The only theoretical study of how the NV interacts with a neuronal signal
was performed by Hanlon et al. [47] (section 2.3). The only experimental proof of
NV-based neuron sensing was performed by Barry et al., successfully measuring
neuronal signals along axons of marine fan worms by placing the axon on a flat
diamond substrate with embedded NVs [12]. However, as mentioned in chapter 1,
this experiment was a magnetometry experiment performed on large worm axons
instead of smaller mammalian neurons. As the neurons get smaller, the magnetic field
will get smaller as well, potentially beyond the sensitivity of the NV for magnetic
fields. As a result, without theoretical and experimental proof, a lot of the potential
benefits of the NV may not be true at all, thus necessitating an in-depth study of NV
based neurosensing and its comparison to other technologies including the other NV
neurosensing experiments already performed.

The first step in assessing the NV for neurosensing is to perform theoretical
modelling of the NV pillar geometry and study how a neuron might interact with
the pillar and what electromagnetic fields from the neuron will be sensed by the NV.
Whilst this modelling is important for assessing the NV specifically, understanding
neuron electromagnetics is useful for assessing a variety of sensing technologies. As a
result, the work performed in section 2.3, whilst being NV specific, has the capacity to
be generalised to a variety of different technologies, helping the wider neuroscience
field.

2.3 Neuromodelling - CC and HH theory

There are a variety of ways to model individual neurons and neuron networks,
however, most theories can be grouped into two major classes of models based on
their underlying assumptions. The Core Conductor (CC) theory is a well established
mathematical model of the electromagnetic fields produced by neurons [17, 94, 101,
126]. The key assumption of the CC model is the idea of a stationary charge density.
This stationary assumption states that although charges move in and out of the neuron,
its overall charge density remains largely static. In other words, the amount of charges
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moving in and out of the neuron is small compared to the total charge of the neuron. If
the charge density is static, then a change in potential can be presented in the absence
of any charges. In stark contrast to the CC model is the Poisson-Nernst-Planck (PNP)
is a model of direct ionic flow [19, 67, 91]. The PNP equation couples an equation
modelling the concentration of ions in solution via the Nernst-Planck drift-diffusion
equation with the Poisson equation for modelling electric potentials from charge
concentrations. Both models can be altered in a variety of ways to suit particular
situations and both models have been successful in simulating real neuron systems
in particular conditions. However, both have drawbacks that limit their applicability
which are largely based on the underlying assumptions that are used to derive them.

The CC model presents a neuron as a structure with one constant conductivity
inside the neuron and another constant conductivity outside the neuron. If the
conductivities are considered static, then Ohm’s laws can be applied. The electric
potential difference across the membrane is then modelled via a circuit theory in
lieu of charge densities. The idea is to consider the membrane of the neuron as a
series of infinitesimally small RC circuits (see figure 2.14). The RC circuits create the
transmembrane potential at the membrane which propagates away from the neuron
and acts on the charges, rather than the charges themselves creating electric potential.

The stationary assumption requires that the charge density remain constant even
during an AP. The rationale for this lies in the premise that during an AP, the speed
of the travelling potential wave is so fast that ions have no time to move or form
an equilibrium. Thus the constant charge density is preserved and Ohms laws will
still apply. If the effect of the charges can be ignored, then the electric potential
can be solved using the Laplace equation. The CC model is based on a theory for
understanding electric potentials being produced by underwater trans-Atlantic cables
created by Lord Kelvin in the 1850s. In this sense, the model is applying assumptions
that allow for a neuron to be treated like a cable, whose solutions are known. For this
reason, the model is often called Cable Theory [126].
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Figure 2.14: Diagram of the circuit modelling of the Core Conductor neuron. Each
infinitesimally small portion of the membrane is modelled as an RC circuit which
creates the transmembrane potential in the absence of any charges. Ω is the resistance,
V is the potential, C is the capacitance, I is the axial current and K is the membrane
current (radial current). The subscripts i e and m refer to the internal, external and

membrane respectively.

One example of the CC model can be derived from Woosley et al. [126], where
Laplace’s equation is applied to calculate the neuronal electric potential. The electric
field can then be calculated from the derivative of the potential and the current density
can be solved using Ohms laws which then can be substituted into the Biot-Savart or
Ampere’s law in order to obtain an expression for the magnetic field. As a result, once
the electric potential is solved, all other fields can be calculated as a function of the
potential. The equations are solved for a cylindrical axon undergoing an AP and the
system is considered to be in a quasi-DC state, whereby there is no self-inductance
from the electric and magnetic fields.

It is important to note that in the Woosley paper, the electric potential is simply
stated and not derived. In order to fully understand where the electric potential comes
from; a derivation is done as a part of this thesis. The remaining current density and
magnetic fields are however derived in the Woosley paper [126]. Beginning from the
Laplace equation for the electric potential:

∇2V(r, z) = 0, (2.6)

Woosley et al. specifically solve for a potential created by an AP, hence there is a
resting potential as well as a wave travelling in the axial direction along the cylinder
(z coordinate), created by the RC circuit. The result is a potential which is a function
of two separate coordinates, if however, the only axial dependence of the potential
lies in the travelling wave, the solutions can be made separable by taking the Fourier
transform of the potential:

V(r, z) = V(r, k)eikz, (2.7)
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where the axial part of the potential is modelled as a travelling wave in Fourier
space, eikz and k is the wavenumber or the spatial frequency of the wave. Substituting
equation 2.7 into the Laplace equation and simplifying gives the following separable
expression:

1
r

∂

∂r
(rV(r, k))− k2V(r, k) = 0, (2.8)

in order to solve equation 2.8 some boundary conditions are required. The first
is the boundary at the outer edge of the solution: as r → ∞ the potential will go to
zero (V(∞, k) = 0). The second boundary condition can be calculated by requiring the
normal component of the radial current density to be continuous across the boundary:

~Jint|r=R = ~Jext|r=R, (2.9)

where the subscripts int and ext refer to the solution inside or outside the neuron.
The R term refers to the full radius of the axon. Note that in this particular deriva-
tion the potential change across the membrane itself is negligible so the membrane
thickness is neglected. The current densities themselves can be expressed by applying
Ohm’s law:

~J = σ∇rV(r, k), (2.10)

where σ is the conductivity of the medium begin solved for (inside or outside the
neuron). Applying Ohm’s law to equation 2.9 gives the following expression:

σint∇rVint(r, k)|r=R = σext∇rVext(r, k)|r=R, (2.11)

equation 2.11 is a charge conservation equation. It essentially states that the
amount of charge going through the membrane must be equal to the amount of
charge going out, whereby the charge can be expressed in terms of the potential and
the conductivity. In addition to this boundary condition, in a stationary environment,
there is no screening layer along the membrane, as the potential is constant from r = 0
up to the membrane itself. This means that the potential jump across the membrane
is equal to the transmembrane potential:

Vint(r, k)|r=R −Vext(r, k)|r=R = Vt(k), (2.12)

where Vt(k) is the transmembrane potential, which will also be the same as the
potential at r = 0. Solving equation 2.8 for the inner and outer neuron potentials gives
the solution as a set of Bessel functions:

Vint(r, z, k) = AI0(kr), (2.13)

Vext(r, z, k) = BK0(kr), (2.14)

where I0 and K0 are the modified Bessel functions of the first and second kind
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respectively (to the zeroth-order). The K0 function satisfies the boundary conditions
as the solution will go to zero as r → ∞. As r → 0 on the interior solution, I0 goes
to a constant and the solution should approach the transmembrane potential Vt(k).
The Core Conductor boundary conditions can now be applied in order to find the
unknown constants. Re-writing equation 2.11 in terms of the potential solution:

σint∇r AI0(kr)|r=R = σext∇rBK0(kr)|r=R, (2.15)

applying the gradient as a derivative in r and solving for the constant A:

A =
−σextBK1(kR)

σint I1(kR)
, (2.16)

substituting solved potentials and equation 2.16 into the second boundary equa-
tion, 2.12 gives an expression for B in terms of a single unknown constant and the
transmembrane potential:

−σextBK1(kR)
σint I1(kR)

I0(kr)− BK0(kr) = Vt(z, k), (2.17)

solving for B:

B = Vt(z, k)

(
1

K0(kR)
+

σint I1(kR)
σextK1(kR)I0(kR)

)
, (2.18)

substituting A and B into the solutions 2.13 and 2.14 gives the final expression for
the potential in Fourier space. Woosley et al. perform some simplifications on the
solutions to obtain them in the following form:

Vint(r, k) =
1

β(|k|)
I0(|k|r)
I0(|k|R)

Vt(k, z), (2.19)

Vext(r, k) =
1

α(|k|)
K0(|k|r)
K0(|k|R)

Vt(k, z), (2.20)

where β and α are given by:

β(|k|) = 1 +
1

σextK1(|k|R)I0(|k|R)
σintK0(|k|R)I1(|k|R)

, (2.21)

α(|k|) = −
(

1 +
σextK1(|k|R)I0(|k|R)
σintK0(|k|R)I1(|k|R)

)
, (2.22)

as previously stated in equation 2.7, the potential solutions are separable, all the
axial dependence lies in the transmembrane potential and the radial dependence lies
in the Bessel functions. As r → ∞ on the external side, the solution still goes to zero.
As r → 0 on the interior side, the solution becomes Vt(k, z), to an approximation,
which is what was expected.
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With the electric potential derived in Fourier space, the radial electric field can
also be derived by applying the following Maxwell’s equation:

~E = −∇V(r), (2.23)

taking a derivative in the radial coordinate will give the electric field, whereas
taking the derivative in the axial coordinate (z) with the conductivity will give the
axial current density (Ohm’s law, equation 2.10) which can be used with Biot-Savarts
law for the magnetic field:

~B(r) =
µ0

4π

∫ ~J(~r′)× (~d−~r′)
|~d−~r′|3

d3~r′, (2.24)

where r′ denotes the vector from the origin to the source point (membrane) and d
denotes the distance from the origin to the measurement point, making |d− r′| the
vector distance from the source to the measurement point. Woosley et al. solve this
equation by applying a vector identity and simplifying the distance term |d− r′| with
a Greens function. The solution is given in Fourier space as:

~Bint(r, k) =
1

2π

∫ ∞

−∞

iµ0Rσintk
β

K1(|k|r)I1(|k|R)I0(|k|r)
I0(|k|R)

Vt(k)dk, (2.25)

~Bext(r, k) =
1

2π

∫ ∞

−∞
iµ0RkI1(|k|R)K1(|k|r)

(σint

β
+

σext

α

)
Vt(k)dk. (2.26)

it’s important to note that the external magnetic field comes from the addition
of the solutions to the magnetic fields from both the internal and external current
densities. The other important point is that all these solutions are in Fourier space,
in order to solve for a real potential, the solutions must undergo an inverse Fourier
transform. This is achieved in this paper by applying a numerical integral to the
solutions.

Roth et al. tested the Woosley model by comparing the theoretical data to an
experiment on a crayfish medial giant axon [101, 126], this particular axon was chosen
for both its ease of access as well as its size: 0.107 mm in radius. The large radius
makes for greater ease of making experimental measurements. The transmembrane
potential was measured using a glass micro electrode clamp. The Magnetic field
was measured using a toroidal pickup coil, which uses magnetic induction to sense
a magnetic field by converting it into a current. The general experimental setup is
shown in figure 2.15.

The experiment produced a transmembrane potential which was approximated
qualitatively using a two Gaussian function (figure 2.16a):

Vt(t) = A1e
− (t−t1)

2

2σ2
1 + A2e

− (t−t2)
2

2σ2
2 − 70, (2.27)

the parameters in equation 2.27 were determined to be: A1 = 64.4 mV A2 = 56.0 mV
σ1 = 0.082 ms σ2 = 0.156 ms, t1 = 0.93 ms, and t2 = 1.065 ms. The −70 mV on the end
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Figure 2.15: Experimental setup, the axon is placed in a crustacean saline called
Van Harreveld’s solution. The electrode clamps can then be placed within 1 mm
of the toroid in order to obtain both transmembrane potential and magnetic field
measurements. The distance from the membrane to the toroid is given as 1.48 mm

and u is the current direction. Source: Roth and Wikswo, [101].

of the equation accounts for the resting potential of the neuron. As the measured
transmembrane potential was performed as a function of time (ms); in order to achieve
a function in space (mm) the time coordinate was multiplied by the speed of the action
potential wave which was stated to be 16.5 m/s. Additionally, as the Core Conductor
model is presented in Fourier space, equation 2.27 must also be Fourier transformed
using equation 2.28; note the use of an asymmetric Fourier transformation:

Vt(k) =
∫ ∞

−∞
Vt(t)eiktdt, (2.28)

Vt(k) =
√

2πσ1A1eikt1−
k2σ2

1
2 +

√
2πσ2A2eikt2−

k2σ2
2

2 − 140πδ(k), (2.29)

where the δ(k) indicates a Dirac Delta function in k. The remaining parameters
were defined from Woosley [126]. The internal and external conductivity’s are given
as: σint = 1.7 Ω−1m−1 and σint = 2.06 Ω−1m−1 respectively. The axon radius and action
potential speed has been previously stated in the previous section to be 0.107 mm and
16.5 m/s respectively.

Figures 2.16a) and 2.16b) show the electric potential and magnetic fields outside
the neuron as a function of the z-axis (axially along the neuron). Although the
transmembrane potential is Gaussian in nature, the solution outside the neuron shows
a derivative in the wave. What is interesting to note is the lack of any serious analysis
of the radial component of the various fields. Woosley et al. derived and solved
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Figure 2.16: Plot of the a) external electric potential and b) external magnetic fields.
The orange, red and blue in the legend indicates the strength of the fields at r =
0.8mm, 1mm and 1.2mm from the membrane respectively. Note that the wave drops
in amplitude as r increases. Also note that the measurements are done millimetres
from the membrane, so effects of nanoscopic ion concentrations are not measured.

Reproduced from Woosley et al., [126].

the equations for use in an experiment where the sensing tool was placed at a fixed
position, far from the neuron (figure 2.15). In addition to this, the effect of screening is
not considered at all in this neuron compared. With Debye screening, the expectation
is that the external potential will be effectively zero at the distances predicted in the
plots. Whilst the magnetic field Woosley predicted is experimentally verified [101],
the electric potential is not and the electric field isn’t considered at all.

Whilst the CC theory does have success, we seek to understand how close an NV
needs to be against a neuron in order to sense an external field, the distances being
considered are nanometres in length. As mentioned at the start of this section, the
main assumption in the CC theory is that the amount of charges moving in and out of
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the neuron is small compared to the total charge of the neuron. If the charge density
is largely static, then a change in potential can be presented in the absence of any
charges. This theory can only work on large length scales, where the overall charge
is larger than the change in charge due to an active process like an AP. However,
at nanometre length scales near the membrane and Debye layer of the neuron, the
local change in charge density cannot be ignored. Given that the goal for the NV
is a nano-scale spatial measurement of local neuron electromagnetic field changes,
the CC theory will not give accurate predictions of NV measurements. This logic
means that a theory that explicitly models ion concentrations must be applied for
understanding nanoscopic neuron electrodynamics e.g. the PNP theory. However,
some of the underlying assumptions in the CC theory can be applied to understand
what the current across the membrane might be. Understanding this allows for a
model of the active membrane currents that are created during an action potential,
which can then be applied to the PNP theory to predict how the membrane current
changes the ion concentrations and subsequent electromagnetic fields. The theory
that is applied to understand membrane currents is the Hodgkin-Huxley (HH) theory
[52].

The HH model is a well known and experimentally verified set of coupled equa-
tions that describe the transmembrane potential, Vm(t), and radial membrane currents
in terms of the ion flow across the membrane-mediated by ion channels opening and
closing [52]. Whilst the charge density is changing in the HH theory, both the HH
theory and the CC theory share the concept of treating the neuron membrane as a
series of infinitesimally small RC circuits. An RC circuit piece of the membrane will
have the following currents based on Kirchhoff’s laws of current conservation:

Cm
∂Vm(t, z)

∂t
+ Iξ(r, z, t) + Ir(R, t) = 0, (2.30)

the first term is the capacitive current where Cm is the membrane capacitance
and Vm(t, z) is the transmembrane potential. The capacitive current is created by the
passive diffusion of ions on and off the membrane in response to a stimulus (i.e. the
dynamic motion of the Debye layer). The second term, Iξ(r, z, t), is an initial current
that drives the system (e.g. from a clamp or a PSP). The third term, Ir(R, t), is the
ionic current at the membrane radial boundary (r = R). This is the major source of the
AP and it is caused by the opening and closing of ion channels along the membrane.
The HH models the radial current in terms of the three most prominent ion channel
types in a given neuron and their respective currents:

Ir(R, t) = INa(R, t) + IK(R, t) + ICl(R, t), (2.31)

where the subscripts indicate the three major ions crossing the membrane during
an AP (sodium, potassium and chlorine respectively) and can be expressed with the
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following:

INa(R, t) =gNam(t)3h(t)(Vm(t)−VNa) + gNaL(Vm(t)−VNa)

IK(R, t) =gKn(t)4(Vm(t)−VK) + gKL(Vm(t)−VK)

ICl(R, t) = gClL(Vm(t)−VCl).

(2.32)

where gx is the maximum conductance for a particular ion species, gxL is the leak
conductance of the same species and Vx is the Nernst potential of an ion species given
by equation 2.4 with the ion concentrations from table 2.1. The maximum conductance
describes the ion flow when voltage-gated ion channels are fully open and the leak
conductance describes the ion flow when these channels are fully closed, allowing
only passive channel ion flow. The m(t), n(t), and h(t) terms are parameters that
describe the opening and closing of ion channels and are described with the following
equations:

dm(t)
dt

= φ(αm(t)
(
1−m(t)

)
− βm(t)m(t))

dh(t)
dt

= φ(αh(t)
(
1− h(t)

)
− βh(t)h(t))

dn(t)
dt

= φ(αn(t)
(
1− n(t)

)
− βn(t)n(t)),

(2.33)

these equations are dependant on the factors αx and βx, which are found through
experimental fitting. Equations 2.30 and 2.33 can be coupled together to solve for the
transmembrane potential across the neuron. Alternatively, these equations can be
solved and input into equation 2.31 to find the membrane current (figure 2.17). Both
of these solutions can be experimentally verified using patch clamps or microelectrode
clamps [52]. This Nobel prize winning work is commonly used in neuroscience to
understand the neuron signal spike and can be altered to understand how changes in
ion channel conductance affects the overall signal [19, 52].
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Figure 2.17: Plots of the a) Hodgkin-Huxley solutions (equation 2.30) for the potential,
b) gating parameters (equation 2.33) and c) the radial current derived from equation

2.31.
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2.4 Neuromodelling - Debye modelling and PNP theory

The key concept being considered in nano-scale neuron electromagnetics is the Debye
layer, this charged layer is not modelled in the CC theory but can be using the PNP
theory. Debye screening is a concept often used in semiconductor physics as well as
plasma physics in order to model electric potentials from mobile charge carriers such
as ionized gases or fluids. The principle is that the presence of moving charges in
response to an external field suppresses or screens the effective interaction between
charges, reducing the spatial extent of the external field. In the case of the neuron,
the build-up of negative charge inside the neuron attracts positive charges in the
extracellular space outside the neuron. As the positive charges build up on the
outside of the neuron, the electric potential far from the membrane will be given by
the accumulated charge density from the positive and negative charges. If an equal
number of positive charges to negative charges builds on the membrane, then the
overall charge density becomes zero and the potential far from the neuron is also
zero. In a typical neuron environment, the solution of charges outside the neuron is
considerably larger than the charges inside the neuron, thus there is always enough
positive charge to fully screen the field outside the neuron. The theory however
requires that the mobile charges have ample time to respond to an external electric
potential in order to form an equilibrium of charges.

As a mathematical example, consider a neutral solid at thermodynamic equilibrium
with a density of electrons ni(V) occupying a given energy level Ei [97]:

ni(0) = Ni f (Ei), (2.34)

where Ni is the density of energy states, adding an external potential V(r) changes
the density in the following way:

ni(V) = Ni f (Ei + ezV(r)), (2.35)

where e is the electric charge constant and z is the valency of the charge. The
electron density can be expressed as a charge density in space ρ(r):

ρi(r) = ezNi( f (Ei + ezV(r))− f (Ei)), (2.36)

with the charge density known, the electric potential can be solved using Poisson’s
equation:

∇2V(r) =
−ρ

ε
=
−e
ε ∑

i=1
( f (Ei + ezV(r))− f (Ei)). (2.37)

In the limit that the potential energy V(r) is smaller than the energy of the states
Ei, the right hand side of equation 2.37 can be approximated as a truncated Taylor
series:

∇2V(r) =
−e
ε

V(r) ∑
i=1

Ni
dF(Ei)

dEi
, (2.38)
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gathering the constants on the right hand side gives an expression for the density
of charges which screens the potential:

q2
0 =
−e
ε ∑

i=1
Ni

dF(Ei)

dEi
. (2.39)

Substituting equation 2.39 into 2.38, creates a simple equation which in spherical
coordinates has a simple analytic solution:

1
r

d2

dr2 (rV(r)) = q2
0V(r), (2.40)

applying the boundary conditions V(∞) = 0 and V(0) = ze2

4πεr , i.e. the solution is
zero far from the charge and is a point charge solution exactly at the charge itself. The
final solution to this equation is:

V(r) =
ze2

4πεr
e−q2

0r (2.41)

equation 2.41 describes how the presence of mobile charges causes the electric
potential to decay at a much faster rate than without any screening. The electric
potential of a point charge on its own will decay as 1

r , however, with screening charges
around it, its decay is exponential [97]. The constant q2

0 describes the characteristic
length scale in which the exponential decay occurs which is the reciprocal of the
Debye length. In a neuron, the charges which create the electric potential are mobile
ions, in this sense, it is expected that the charges can interact with an external field
to create a screening layer which is analogous to this derivation of Debye screening,
with exponential decay and a decay constant of 1 nm [51].

As the charges in Debye screening are mobile carriers in a solution, to model
Debye screening explicitly, we will apply the PNP theory. As mentioned earlier in
this section, the PNP equations couple a drift-diffusion equation of ion flow with a
Poisson equation for obtaining electric potentials. As it explicitly models ion flow,
it is a much more detailed and informative model compared to the CC theory, the
major issue with the PNP equations is that it is highly non-linear and difficult to
solve even in situations where there is geometrical symmetry (such as a cylindrical
axon). Understanding explicit boundary conditions is essential for this theory. In
this thesis, the PNP equations are solved in a novel way in order to obtain external
neuron electromagnetics and how they will be altered in the presence of a diamond
pillar. Particular assumptions are made in order to obtain these solutions, so the
advantages and disadvantages of the PNP model are largely made within the context
of the specific model used.

To model neuron electrophysiology, we are applying the coupled Poisson-Nernst-
Planck (PNP) equations [19, 67, 91] to a cylindrical axon with a radial coordinate r
and an axial coordinate z. In this model we apply a quasi-DC approximation where
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the effect of a time varying vector potential is negligible:

ε∇2V(r, z) = −ρ(r, z) = −e
M

∑
i=1

zici(r, z) (2.42)

∂ci(r, z)
∂t

= −~∇ · [Di(~∇ci(r, z) +
1

kbT
zieci(r, z)~∇V(r, z))], (2.43)

the Poisson equation (2.42) utilises the charged ion concentration to solve for the
potential and the Nernst Planck equation (2.43) utilises the electric potential to model
ion concentrations in terms of the electrostatic and chemical forces that act on them.
In this model, ci(r, z) is the ionic concentration which is proportional to its charge
density ρ(r, z), and V(r, z) is the electric potential, kb is the Boltzmann constant, T
the temperature, e the electric charge, Di is the diffusion constant and zi the ion
valency. The increment i denotes which ionic species is being studied (e.g. sodium or
potassium), so the total potential will be the solution to the coupled equation, summed
over all the participating ion species (up to the total, M). Equations 2.42 and 2.43 are
very difficult to solve even in a cylindrical case where the azimuthal coordinate can
be neglected due to symmetry. Thus we will apply the two key approximations to the
PNP model in order to make solutions possible: reducing the number of participating
ions and a travelling wave approximation. These approximations therefore also play a
role in the derivation of the membrane boundary conditions.

The PNP model can in principle solve for any arbitrary number of ionic species,
however, this is computationally difficult to achieve, so an approximation is made
on the number of contributing species. Although there are many ions contributing
to the electromagnetics of a neuron, the concentrations of many of them are small
enough to be neglected such that we only consider four monovalent species in our
model: sodium (Na+), potassium (K+), chlorine (Cl−) and charged proteins produced
by the cell (OA−) [51, 67] (see table 2.2). These ions are considered individually when
calculating the resting charge density and the HH solution, and are averaged when
calculating the PNP solution such that the positive ion concentration is given by:
c+ = Na++K+

2 and the negative ions concentration is given by: c− = Cl++OA+

2 . As these
ions are monovalent, their effect on the PNP solution should be the same, allowing us
to re-write the PNP equations in the following way:

~f±(r, z) = −D±~∇c±(r, z)∓ µ±c±(r, z)~∇V(r, z) (2.44)

ρ(r, z) = e(c+(r, z)− c−(r, z)) (2.45)

~J(r, z) = e(~f+(r, z)− ~f−(r, z)), (2.46)

where ~f±(r, z) is the flux of the positive or negative ion species, c±(r, z) is the
concentration of the positive or negative ion species, µ± is the ion mobility (µ± = D±e

kbT )

and ~J(r, z) is the current density.
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We then assume that the AP is a travelling wave with constant velocity. This
assumption is well verified in literature for non-myelinated neurons as any non-
linearity that disrupts the travelling wave is small enough to be insignificant [112]. This
allows us to make the following change of variables using the chain rule, removing
the temporal dimension and reducing the problem to a 2D spatial one:

ξ = z− vt
∂

∂t
=

∂ξ

∂t
∂

∂ξ
= −v

∂

∂ξ

∂

∂z
=

∂ξ

∂z
∂

∂ξ
=

∂

∂ξ
.

(2.47)

In order to solve the PNP equations in this formalism, we require explicit boundary
conditions for both the electric potential and the ion concentrations far from the neuron
as well as on the external surface of the membrane. In this model, we only solve the
PNP equations external to the neuron, this is reflected in our choice of boundaries:

V(r, ξ)|r−→∞ = 0 (2.48)

c±(r, ξ)|r−→∞ = cb± (2.49)

∂V(r, ξ)

∂ξ
|ξ−→∞ = 0 (2.50)

f±(r, ξ)|ξ−→∞ = 0, (2.51)

where we expect the potential to be zero far from the neuron radially as the
ions are in an electroneutral equilibrium. The term cb± is the sum of the bulk ion
concentrations for the positive and negative ions respectively which will sum to a zero
charge density outside the neuron (see table 2.2). Axially, far from the AP along the
neuron, we expect the ion concentrations and the electric potential to reach a constant
equilibrium corresponding to the resting potential (-68 mV), thus the derivative of the
axial potential and flux must be zero in this region.

At the membrane, the value for the potential and ion concentrations are less
clear as they are dependent on the current flowing in and out of the cell during an
action potential. In order to solve for these values we apply Gauss’ law which can be
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R qi0

Figure 2.18: Plot of the Gaussian cylinder used in the calculations for the electric field
at the membrane. The Gaussian cylinder is co-axial with the neuron with a radius
R. The black arrows show the direction of the electric field components which are
annotated by terms from the left-hand side of Gauss’ equation 2.52. The red arrows
show the direction of the current flow which are annotated from the right hand terms
of the continuity equation 2.56. Note the radial currents are counter-propagating on
opposite sides of the cylinder. The internal resting charge from equation 2.56 is also

shown.

simplified in the following steps:

∮
~E(r, ξ)·dA =

Qi(ξ)dξ

εr

→ 2πREr(R, ξ)dξ + 2π
∫ R

0
r
(

Eξ(r, ξ) +
∂Eξ(r, ξ)

∂ξ
dξ
)

dr− 2π
∫ R

0
rEξ(r, ξ)dr =

Qi(ξ)dξ

εr

→ 2πREr(R, ξ)dξ + 2πdξ
∫ R

0
r

∂Eξ(r, ξ)

∂ξ
dr =

Qi(ξ)dξ

εr
,

(2.52)

where R is the radius of the Gaussian cylinder coaxial to the neuron which is
the same as the radius of the axon (to the outer surface of the membrane). The first
term on the left hand side of equation 2.52 is the integral for the electric field of the
length of the Gaussian cylinder, and the second term is the solution for the electric
field at end-caps of the cylinder (see figure 2.18). In the equations, εr = ε0εw is the
absolute permittivity of the medium made up of the relative permittivity of water
(εw) multiplied by the absolute permittivity of free space (ε0). The terms Er(r, ξ) and
Eξ(r, ξ) are the radial and axial electric fields respectively and Qi(ξ) is the internal
charge per axial unit length inside the neuron. Applying the relation ~E = −~∇V, the
above can be rewritten in terms of the electric potential:

∂V(r, ξ)

∂r
|r→R = − 1

R

∫ R

0
r

∂2V(r, ξ)

∂ξ2 dr− Qi(ξ)

2πRεr
, (2.53)
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To simplify the integral in equation 2.53 we will make the following substitution:

1
R

∫ R

0
r

∂2V(r, ξ)

∂ξ2 dr =
−γR

2
∂2V(R, ξ)

∂ξ2 , (2.54)

where γ is a constant factor that describes the divergence of the axial electric field
(as a function of r) from a radially uniform electric field. To effectively approximate γ

we consider two extreme cases for the distribution of charge inside the neuron: the
resting case and the peak of an AP. In the resting case near the membrane, the charge
density (and the electric field) increases dramatically forming the Debye layer. In this
case, the derivative of the axial electric field will be much larger than the integrated
derivative of the axial electric field and γ will have to be very small in order to
compensate (γ −→ 0). This makes physical sense as in the resting condition we expect
the change in the axial electric field to be negligible. In the other extreme case, an AP
will cause a depolarizing influx of charge which will cause the interior charge density
to become more radially uniform [67]. In this case, the derivative of the electric field
will become radially constant and γ will become one. Thus, throughout the course of
the neuron going from the resting condition, into the peak of an AP and returning to
the resting condition the value of γ must fall between zero and one. However, even
at its highest value, (γ = 1), this term has a negligible contribution to the overall
electric field. This is due to the charge per unit length inside the neuron being mostly
uniform across the length scales we use (microns), making the net surface integral of
the end caps negligible similar to a line of charge.

The second term in equation 2.53 requires knowledge about the internal charge in
the neuron, Qi(ξ). We can derive this quantity via the continuity equation for charge.
The total internal charge is made up of the charge during the neuron resting condition
plus the currents moving charge in and out of the neuron due to an AP:

Qi(ξ) = qi0(ξ)− v−12π
∫ R

0

∫ ∞

ξ

(
Iξ(r, ξ) +

∂

∂ξ
Iξ(r, ξ)− Iξ(r, ξ)

)
r drdξ − v−12πR

∫ ∞

ξ
Ir(R, ξ ′)dξ ′

→ Qi(ξ) = qi0(ξ)− v−12π
∫ R

0

∫ ∞

ξ

∂

∂ξ
Iξ(r, ξ)r drdξ − v−12πR

∫ ∞

ξ
Ir(R, ξ ′)dξ ′

→ Qi(ξ) = qi0(ξ)− v−12π
∫ R

0
Iξ(r, ξ)r dr− v−12πR

∫ ∞

ξ
Ir(R, ξ ′)dξ ′,

(2.55)

in this equation, qi0(ξ) is the total charge per unit length in the neuron resting
condition, that is, the charge existing in the cell in the absence of an AP. The AP then
alters the total charge by introducing radial membrane (Ir(R, ξ)) and internal axial
(Iξ(r, ξ)) currents which are currents per unit area. We then apply Ohm’s law to turn
the axial current into the integral of the axial electric field.

Qi(ξ) = qi0(ξ) + v−12π
∫ R

0
σi0Eξ(r, ξ)r dr− v−12πR

∫ ∞

ξ
Ir(R, ξ ′)dξ ′, (2.56)
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similar to the approximation we made in equation 2.54, we can re-express the
second term on the right hand side of equation 2.56 by removing the integral and
introducing a constant factor η, to represent the deviation from a uniform potential
and conductivity. This results in a quasi-Ohm’s law approximation where σi0 is the
total internal conductivity.

Qi(ξ) ≈ qi0(ξ)− ηπR2σi0v−1 ∂V(R, ξ)

∂ξ
− v−12πR

∫ ∞

ξ
Ir(R, ξ ′)dξ ′. (2.57)

Approximating η is a little more difficult than γ as we need to consider the
conductivity as well as the electric field. The conductivity is a function of the total
concentration of ions which we know will change with radius due to the Debye layer.
During the peak of an AP, we expect the ion concentration (and conductivity) to be
mostly uniform along with the axial electric field so η will be one in this instance.
During the resting case, the conductivity will be mostly uniform with an increase
at the Debye layer where the concentrations increase. However, increases in the
concentration in the Debye layer have to be dramatic to have an effect on the overall
fields due to the fact that the Debye layer is a very small region of charge compared
to the overall volume of the interior neuron. For this reason, we will approximate η to
one for all times during an AP.

Substituting equation 2.57 into equation 2.53 gives the following:

∂V(r, ξ)

∂r
|r=R = − qi0(ξ)

2πRεr
+

1
2πRεr

(
ηπR2σi0v−1 ∂V(R, ξ)

∂ξ
+ v−12πR

∫ ∞

ξ
Ir(R, ξ)dξ ′

)
−γR

2
∂2V(R, ξ)

∂ξ2 ,

(2.58)

this equation requires the radial membrane current as well as the axial derivative
of the electric potential. To find these quantities we apply the Hodgkin-Huxley (HH)
equations [52, 67, 130]. In the classic HH model, however, the neuron is clamped
during the experiment and in our case, it isn’t so we will need to consider an axial
current as well:

∂Vm(t, z)
∂t

=
1

Cm

(
Ir(R, t) +

1
R

∫ R

0

∂Iξ(r, z, t)
∂z

rdr
)

(2.59)

where the αx and βx terms of the gating parameters are found through experimen-
tal fitting which in this calculation is taken from Zandt et al. [130]. Also note that in
our model, the effects of the Chlorine ion is negligible so it is removed in this version
of the HH equations [67, 130]. As the AP wavelength is orders of magnitude larger
than the radius of the neuron (mm vs µm respectively) [51], we expect the integrated
derivative of the axial current to be much smaller than the radial current as the axial
current will change slowly over the long wavelength of the AP. Therefore, the second
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term on the right-hand side of equation 2.59 can be neglected.
We relate the HH equations to the terms in equation 2.58 by making the following

substitutions from the travelling wave approximation:

∂Vm(t)
∂t

=
−1
C

Ir(t) −→
∂V(R, ξ ′)

∂ξ
=

v−1

C
Ir(R, ξ) (2.60)

∫ ∞

t

∂V(R, t′)
∂t′

dt′ −→ −v
∫ ∞

ξ

∂V(R, ξ)

∂ξ ′
dξ ′ = −v

(
V(R, ∞)−V(R, ξ)

)
=
−1
C

∫ ∞

ξ
Ir(R, ξ ′)dξ ′,

(2.61)

where V(R, ∞) is equivalent the resting potential Vrest. Equations 2.60 and 2.61
relates the HH transmembrane potential and radial current to V(R, ξ) and Ir(R, ξ)
in equation 2.58 which we derived from Gauss’ law. In this formalism, we describe
V(R, ξ) as the cross-sectional average of the potential which is effectively the trans-
membrane potential. This allows us to substitute these terms into equation 2.58 to
obtain a simpler boundary condition whose potential and current terms can be added
in from the HH solutions. We can also use the HH current solution to calculate the
ion flux which can be used as a membrane concentration boundary condition. Putting
all the equations together gives the membrane boundary conditions for the membrane
electric fields as well as the ion flux:

−Er(R, ξ) = −
qi0(ξ)

2πRεr
+

1
2πRεr

(
ηπR2σi0v−2C−1 Ir(R, ξ) + 2πRC

(
Vrest −V(R, ξ)

)
−γRv−1

2C
∂Ir(R, ξ)

∂ξ
(2.62)

∂c+(r, ξ)

∂r
|r=R =

NA

e
2πRIr(R, ξ) (2.63)

∂c−(r, ξ)

∂r
|r=R = 0, (2.64)

where NA is Avogadro’s constant. Equation 2.63 simply states that the rate of
change in the positive ion concentration is directly proportional to the radial current.
Due to the assumption that there is only positive ion flow across the membrane
[67, 130], the negative ion flux is zero.

To obtain the magnetic field boundary conditions we apply Ampere’s laws where
the axial current in the membrane boundary condition is treated in the same way as
equation 2.57.

~∇× ~B(r, ξ) = µ0~J(r, ξ), (2.65)
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where the external current density is given from equation 2.46 and the effect of a
polarizing current is negligible (quasi-DC approximation). The boundary conditions
are as follows:

~B(r −→ ∞) = 0 (2.66)

~B(ξ −→ ∞) = 0, (2.67)

the current densities are zero far from the AP axially and radially, so the magnetic
field will be zero. At the membrane, the magnetic field is dependent on the axial and
radial currents (Iξ and Ir respectively). However, the radial current contribution to the
magnetic field can be considered negligible as each radial current component on the
cylinder would be cancelled out by the radial current component on the opposite side
of the cylinder (see figure 2.18). This assumption is well established in the literature
[126] and means that the magnetic field will be directly proportional to the axial
current, similar to a current-carrying wire:

~Br(r, ξ)|r=R = − µ0

2πR
Iξ(R, ξ), (2.68)

the axial current can be related to the derivative of the potential from Ohms law
(equation 2.57):

~Br(r, ξ)|r=R = −µ0

2
ηRσio

∂V(R, ξ)

∂ξ
, (2.69)

the potential derivative can be related to the radial current using the substitution
equation 2.60:

~Br(r, ξ)|r=R = −µ0

2
ηRσi0C−1v−1 Ir(R, ξ). (2.70)

This means that despite the radial current contributing negligibly to the magnetic
field, it is a driving force in the creation of the axial current which creates the magnetic
field indirectly and can be derived using the HH equations.

The membrane boundary conditions derived above are all that is required to
find the full electromagnetic quantities external to a neuron. Equations 2.62, 2.63
and 2.64 can be used with the PNP equations to solve for the electric potential and
ion concentrations. The ion concentrations can then be used to derive the external
current density which can be used with equation 2.70 and Ampere’s law to find the
external magnetic fields. The parameters used in these equations are given in Table
2.2. Included in the table are the dimensions of the cylindrical neuron used in the
simulation. Although many of the values were obtained from literature, calculations
of the conductivities, mobility’s and resting potential were performed to ensure the
values were self-consistent.

Figure 2.19 is the result of the membrane boundary condition derivations. Figure
2.19a) is the membrane electric field solution from equation 2.62, figure 2.19b) is
the membrane magnetic field from equation 2.70 and figure 2.19c) is the membrane
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Table 2.2: Table of Parameters used in the calculations, all other terms used (e.g.
ion mobility’s or Nernst potentials) are derived from these values. Values that are

un-sourced were chosen by the to suit the model
Description Value Source

Ki Int Potassium Concentration 155 mmol/L [67]
Ke Ext Potassium Concentration 4 mmol/L [67]
Nai Int Sodium Concentration 12 mmol/L [67]
Nae Ext Sodium Concentration 145 mmol/L [67]
Cli Int Chlorine Concentration 4.2 mmol/L [67]
Cle Ext Chlorine Concentration 123 mmol/L [67]
OAi Int Protein Concentration 162.802 mmol/L [67]
OAe Ext Protein Concentration 26 mmol/L [67]
gNa Total Sodium conductance 100 mS/cm2 [130]
gNaL Sodium leak conductance 0.0175 mS/cm2 [130]
gK Total Potassium conductance 40 mS/cm2 [130]
gKL Potassium leak conductance 0.05 mS/cm2 [130]
φ HH time constant 3 ms−1 [130]
C Membrane Capacitance 1 µF/cm2 [130]
T Temperature 310oK -
DK Potassium Diffusion coefficient 1.957× 10−9 m2/sec [102]
DNa Sodium Diffusion coefficient 1.334× 10−9 m2/sec [102]
DCl Chlorine Diffusion coefficient 2.032× 10−9 m2/sec [102]
DOA Protein Diffusion coefficient 2.00× 10−9 m2/sec [102]
εr Absolute Permittivity of water 80× 8.854× 10−12 C/Vm -
µK Potassium mobility 7.328× 10−8 m2 s−1 V−1 [67]
µNa Sodium mobility 4.995× 10−8 m2 s−1 V−1 [67]
µCl Chlorine mobility −7.609× 10−8 m2 s−1 V−1 [67]
µOA Protein mobility −7.489× 10−8 m2 s−1 V−1 [67]
Vrest Resting Potential -68 mV [130]
Rn Radius of neuron 500 nm [66]
Ln axial length of neuron 2 mm -
Rn Radius nano-mesh 10 nm -
Rn Radius of external solution 1.5 µm -

positive ion flux taken from equation 2.63, which is simply the radial current, placed
in units of ions per metre squared.
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Surface plots of the PNP results are displayed in figure 2.20. In the plots, the
500 nm mark corresponds to the external membrane radius. The orange lines are
the travelling wave signal moving axially along the neuron (the curves from figure
2.19). There are also radial line graphs of the solutions, which depict the electric
and magnetic fields at the peak of the AP wave, as well as 1/r model, fits for the
magnetic fields (figure 2.21). These plots also feature a CC solution calculated from
the equations presented in Woosley et al. [126] but altered to match the parameters of
the mammalian neuron considered in this study.

Draft Copy – 15 September 2022



§2.4 Neuromodelling - Debye modelling and PNP theory 61

Membrane radial electric field (uV/m)a)

z (mm)
Membrane magnetic field (nT)b)

Membrane radial charge flux (mol/mm² sec)c)
z (mm)

z (mm)

Figure 2.19: Plots for the a) membrane electric field, b) membrane magnetic field. The
plots were derived from equations 2.62 and 2.70 respectively. c) Plot of the membrane
flux derived from the HH equations. All three of these plots were used as the orange

sketch lines in the 2D surface plots of figure 2.20
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Figure 2.20: Simulation results for the a) electric field, b) magnetic field, c) charge
density and d) axial current density. On the left of a), b) and c), the electric field,
magnetic field and positive ion flux at the membrane are sketched respectively as
orange lines which are plotted in greater detail in figure 2.19. The membrane solutions
are derived from experimentally verified HH equations. These solutions demonstrate

how these quantities longitudinally propagate with the neuron signal

As mentioned, the key result of the PNP calculation that is absent in CC theory is
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the effects of the Debye screening layer [105]. The Debye screening is most evident
in the electric field and charge density solutions. In figure 2.20a, the resting radial
electric field at the membrane (ie where the AP wave has zero amplitude) is ≈
−0.5× 109 mV/m. At the peak of the AP wave, this electric field at the membrane is
significantly different ≈ 3.3× 109 mV/m. However, despite this dramatic change at
the membrane, the Debye screening reduces the change to zero over approximately
3 nm (solid blue line in figure 2.21b). Comparing our PNP and CC solutions, it is
clear that the inclusion of Debye screening in the PNP model has resulted in a much
larger electric field at the membrane, but also a much more rapid radial decay of
the electric field. This result is also similar in the charge density solutions (figure
2.20c), where almost everywhere outside the neuron, the ion concentrations approach
their bulk values, creating a zero net charge density. However, within the Debye layer
and AP wave, the charge density decreases to as low as ≈ −3× 106 C/m3 due to the
positive charge being transferred from outside to inside the axon, thereby increasing
the potential and electric fields. Away from the AP wave, the charge density increases
slightly to ≈ 0.5× 106 C/m3, re-forming the positive charge Debye layer in response
to the internal negative charge present during the neuron resting conditions.

Debye screening has little effect on the magnetic fields (figure 2.20b). The current
density external to the axon is aligned with the internal current density. Consequently,
this external current density reinforces the magnetic field generated by the internal
current density (figure 2.20d). However, the external current density is extremely
small compared to the internal current density (≈ 100 mA/m2 at its peak). Thus, the
total magnetic field enhancement is negligible. The net magnetic field has a 1/r decay
in both the PNP and CC models and so the magnetic field clearly decays radially
much more slowly than the electric field (the magnetic field extending to over ≈ 2 µm,
compared to the ≈ 3 nm of the electric field). Figure 2.21a) shows that there is only a
small difference in magnitude between the magnetic fields of PNP and CC models.
The similar radial decay, however, demonstrates how the PNP model can match the
CC model at micron scales where the CC model is experimentally verified [126]. A
notable outcome of the PNP results is that the axial current density is much smaller
than the radial current density. This is in keeping with the radial current density
being primarily responsible for the change in charge density that generates the AP.
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Figure 2.21: Radial 1D plots of the a) magnetic and b) electric fields taken from the
peak of the AP wave. The magnetic field plots feature the PNP solution, the CC
solution derived from Woosley [126] as well as 1/r model fits for both. The electric
field plots contain solutions to the PNP, CC models and the Laplace solutions for the
electric field in the diamond when the neuron is in contact along the tip as well as
along the side of the diamond pillar. The red axis is for the CC model and the blue

axis is for the other three.

Critically, the magnetic field reaches a maximum of 0.7 nT at the membrane
boundary. Whether the calculation is done using a full PNP simulation, CC theory
[126] or even by approximating the neuron as a current carrying wire [12], the results
tend to suggest that a mammalian neuron can only produce a magnetic field that is
less than a nT in magnitude. This signal is too small to be detected by an NV within
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the millisecond timescale of the neuron signal [99]. Even with the light collection
improvement from the pillar geometry, a 5-fold improvement to the magnetic field
sensitivity still won’t allow for mammalian neuron AP sensing [74]. For electric field
sensing, although the magnitude of the field is larger than the minimum detectable
electric field, the difficulty lies in placing an NV within the Debye layer external to
the membrane. The closest range an NV can be placed to the surface of a diamond is
≈ 5 nm whilst maintaining reasonable coherence and stability [22]. In the simplest
picture, if the diamond tip is in contact with the neuron, at this distance the field will
have decayed to zero, thereby suggesting that NV sensing of both neuron electric and
magnetic fields is impossible.

However, this reasoning is too simplistic and does not consider the effect of the
diamond nanopillar on the screening charge and current densities. As shown above,
the effects of external currents are small, and so the presence of the pillar will have a
negligible effect on the magnetic field. However, the screening charge has profound
effects on the electric field. By removing the screening charge between the neuron
and the pillar tip (via good contact) and accounting for the much lower dielectric
screening in the diamond (ε ≈ 6) compared to the surrounding water (ε ≈ 80), we
expect the electric field inside the pillar to be much larger.

To model this enhancement, we solved Laplace’s equation inside a 200 nm diameter
pillar that is in contact with a neuron, such that the Debye screening layer is removed
from the contact area. This simulation was done for two different co-ordinations of
the pillar and neuron. One where the neuron is on top of the pillar and in contact
with the pillar’s complete circular top surface, and then another where the neuron is
on the side of the pillar near its tip and has a square contact area of the same size.

Consider a geometry where a neuron runs over a single cylindrical diamond pillar
where the tip of the pillar is in full contact with the neuron (figure 2.22). Assume that
the charge inside the neuron is unperturbed by the presence of the pillar and that
Debye screening fixes the electric potential on the sidewalls of the pillar to be zero.
Note that this ignores the small region close to the neuron (i.e. within the Debye layer)
where the potential is non-zero on the sidewalls. We expect these assumptions to be
good as long as the diameter of the pillar isn’t so large that affects the function of
the neuron, but sufficiently large compared to the Debye length (1 nm) such that the
non-zero potential within the Debye layer has negligible influence on the electric field
in the region of the pillar’s central axis. This is where it is desirable to implant the
NV centers. Given these assumptions and adopting the local cylindrical coordinate
system of the pillar depicted in figure 2.22, Laplace’s equation yields the following
electric potential within the nanopillar:

V(r, z) =
(d

k

)
Em J0

( rk
(d/2)

)
e(−k/(d/2))(z−Rmem), (2.71)

where J0 is the zeroth Bessel function, d is the diameter of the diamond pillar
(200 nm), Rmem is the radius of the neurite (500 nm) and k ≈ 2.4, the first zero
solution of the Bessel function. In addition there is Em, the membrane electric field,
i.e. the electric field at z = Rmem = 500 nm, the membrane boundary. This value is
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calculated from equation 2.62 with the same parameters as used in table 2.2 but with
a diamond permittivity (ε ≈ 6) instead of water. This yields a membrane electric
field of 4.54× 1010 mV/m. It then follows from ~E = −~∇V, that the axial electric field
inside the pillar is:

Ez = Em J0

( rk
d/2

)
e(−k/(d/2))(z−Rmem), (2.72)

on the central axis of the pillar where r = 0, the Bessel function becomes 1 and the
electric field propagation becomes:

Ez = Eme(−k/(d/2))(z−Rmem), (2.73)

this axial field decays exponentially from the tip with a decay constant of k/(d/2).
Figure 2.23 depicts a different modelled geometry, where the neurite runs along

the side of the pillar towards the top. In this model, the surface of the pillar which is
in contact with the neurite is the same area as in the case with the neurite running
on top of the pillar. This contact area is considered small compared to the overall
surface area of the enclosing cylinder segment. This small contact area is the basis
for the assumption that the diamond pillar contact won’t affect the natural function
of the neuron. The contact area has the same surface electric field from the neuron
as the previous case (4.54× 1010 mV/m) and the rest of the pillar has its potential
fixed at zero. With these boundary conditions, the electric field propagation inside
the neuron can be solved numerically using COMSOL Multiphysics. The solution in
this geometry is shown as a 2D slice density plot in figure 2.24.
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Figure 2.22: Image of the geometry considered for the electric field inside the diamond
when the neurite (blue) runs over the top of the diamond pillar (grey). The image
features the positive ions forming the Debye layer outside the neuron which doesn’t
exist inside the diamond as well as the coordinate system used to obtain the solution.

The blue dashed line represents the 1D solution used in figure 2.21.
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Figure 2.23: Image of the geometry considered for the electric field inside the diamond
when the neurite (blue) runs across the side of the diamond (grey) towards the tip of
the pillar. a) The diamond pillar the neurite makes contact towards the top of the pillar
and the cutout of the neurite segment b) shows a dark shaded area where the pillar
makes contact with the neuron segment. The contact area is small compared to the
overall surface area of the enclosing cylinder segment. c) The top-down view of the
same system in a)/b). The image features the positive ions forming the Debye layer
outside the neuron which doesn’t exist inside the diamond as well as the coordinate
system used to obtain the solution. The purple dashed line represents the 1D solution

used in figure 2.21.
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200 nm

Figure 2.24: Solution for the electric field with a neurite in contact with the side of the
pillar tip. The geometry with the neurite is shown in figure 2.23. The neurite contact

area is marked by the surface of the tip cut out by the black wire-frame rectangle.

Plots of selected results are shown in figure 2.21b). Specifically, these results are
for the electric field magnitude in the pillar along a line extending from the center
of the contact area along/through the central axis of the pillar for the on-top (blue
dashed line) and on-side (purple dashed line) co-ordination. The electric field of the
on-top coordination has an analytic solution with an exponential decay determined by
a decay constant of ≈ 4.8/d. For an NV depth of ≈ 5 nm and a pillar diameter much
larger than this depth, this implies that an electric field as high as ≈ 3.2× 109 mV/m
will occur at the NV. A value that is in the same order of magnitude as the maximum
electric field measured by the diamond in literature [27]. For the on-side coordination,
the electric field is predicted to be larger than for the on-top coordination at larger
distances. Indeed, the results show that at 100 nm away from the neuron membrane
(i.e. the central axis of the pillar) electric fields as high as ≈ 1.02× 1010 mV/m will
occur. The larger field that arises when the neuron is on-side is due to the curvature of

Draft Copy – 15 September 2022



§2.5 Growth study 69

the contact area. This curvature implies that the distance from a point in the pillar to a
charge on the neuron surface is on-average smaller than for the flat contact area when
the neuron is on top. This leads to a larger electric field for the on-side coordination.

Given the NV electric field sensitivity mentioned above and the geometries stated,
the neuromodelling shows that the NV should easily be able to detect APs within
the signal timescale when the neuron is in both on-top and on-side locations of a
diamond pillar. However, it is important to note that only qualitative information can
be drawn from this type of study. One thing that is not considered in this model is
how internal charges will re-organise in response to the changing electric field the
pillar provides. Although electric field enhancement is still predicted, the magnitude
of such an enhancement cannot be accurately defined without a full model of internal
and external neuron solutions in order to observe how the charges respond to the
presence of the pillar. It should be noted that these simulations are far from trivial as
both the scale of the neuron signal compared to the nanopillar makes approximations
problematic and the presence of the nanopillar itself removes symmetry, making the
full PNP calculations computationally challenging. These simulations will be one of
the focus areas of future work.

One key result of the neuromodelling is that NV electric field sensing is possible as
long as the neurons grow in such a way as to make consistent and close contact with
the nano-diamond pillars, in the next section, this is investigated more thoroughly.
The principle of neuron growth is discussed, and a preliminary growth study is
undertaken in order to understand how neurons grow on diamond nanopillars to
benefit sensing and how future work could improve upon this experimental concept.

2.5 Growth study

In this section, a general hypothesis is discussed for the neuron growth mechanism on
a pillar substrate. The optical wavelengths used in the growth study microscopy are
described, and a general description of the light collection efficiency provided by the
diamond pillars is presented. Table 2.3, shows excitation and emission wavelengths
used in the microscopy, table 2.4 shows the full results of the growth study, figure 2.25
shows the total and ordered growth as a function of averaged diameter, figure 2.26
shows the total and ordered growth as a function of averaged fractional separation
factor and figure 2.27 shows the total and ordered growth as a function of pillar pitch.

Although the specific mechanism for the ordered growth is still unknown, a strong
hypothesis is that ordered growth is centered around mechanosensitive structures in
the neuron cytoskeleton [30]. During neuron growth on a protein layered substrate
(e.g. laminin on a diamond pillar), neurons express proteins such as integrin molecules
in all directions, which bind to the laminin in the extra-cellular matrix forming a
new protein complex. This protein complex then binds to actin on the neuron
cytoskeleton and mechanosensitive ion channels on the cytoskeleton initiate various
mechanotransduction pathways, which encourages cellular growth at the point of the
binding. As this process repeats itself, a regular line of pillar structures can encourage
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the process to continue in a line, thus producing directionally ordered growth. In this
way, external forces on mechanically sensitive ion channels direct neuron growth in
response to physical cues such as a diamond nanopillar [30]. One result of this is that
there is a distance in which, ordered growth is maximized. The protein complexes
produced in the growth process have a finite size, creating a range where the neuron
is mechanosensitive. If the distance between the pillars is larger than this, then there
won’t be a connection of growth between adjacent pillars. However, if the distance
is too small, then the neurons could potentially grow in any direction towards an
adjacent pillar (e.g. diagonally instead of vertically or horizontally) as long as it is
within the range produced by the protein complex, thus producing no ordered growth
at all similar to a flat substrate. This necessitates the need for a growth study to find
the ideal pillar geometry that matches the growth mechanism.

Following the work of Gautam et al. and other neuron growth studies [30, 35, 110]
on indium phosphide (InP) substrates, we fabricated arrays of cylindrical diamond
nanopillars (see experimental section). We then cultured neurons on top of them,
staining them and analysing their growth using fixed cell confocal microscopy. This
confocal experiment is performed in a conventional upright setup, where the optical
excitation and collection occurs from above the neurons in order to directly focus on
the neuron dyes and their relation to the pillar arrays. In the NV sensing experiment,
the confocal microscopy will be performed in an inverted confocal setup with laser
emitting below the diamond substrate in order to take full advantage of the pillar
waveguide effect. Each nanopillar array was 200×200 µm, separated by 400 µm, with
flat diamond between the arrays. This geometry was suitable to grow a small network
of neurons on top of, however much larger pillar arrays (centimetres in area) are
possible in order to support larger neuronal networks. The pillar pitch and diameter
was varied between the arrays. The pitch was varied from 1 to 4 µm in 1 µm steps and
the pillar diameters were either 200 nm or 350 nm. In all arrays the pillar height was
1 µm. Each unique array geometry was fabricated twice (totalling 16 arrays) and we
labelled the arrays 0-15. Growth was prevented on arrays 0, 9 and 12 by air bubbles
and so these arrays did not contribute to our results (see table 2.4. Growth statistics
were obtained for total growth and ordered growth (defined as being aligned with a
pillar column or row) as functions of pitch, diameter and fractional separation factor
((p− d)/p). This statistical analysis was achieved by combining the results obtained
from geometries with the same pitch, diameter or fractional separation, respectively.
Together, the total growth and the ordering metric allow for an understanding of
which diamond nanopillar geometries produce the ideal growth for sensing studies.
The ideal growth being the geometries that maximise the overall amount of neuron
growth as well as the amount of neuron growth that is coordinated in close proximity
to the NVs in the diamond pillars.

The dyes used for the growth study are listed in table 2.3. The table also includes
the excitation and emission wavelengths for the various dyes as well as the Raman line
we used to image the diamond itself. There was some overlap between the diamond
fluorescence and the Glia dye, however as the diamond imaging was only used to
find the pillar patch neurons were growing on, this did not affect the overall results.
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With the above exceptions, the cell labelling and confocal microscopy techniques were
exactly the same as performed by Gautam et al. [35].

The pillar pitches were chosen following work from Gautam et al. [35], where
distances between pillars were chosen to maximize the growth via the binding pro-
tein complexes. The diameters and heights were chosen by following work from
Momenzadeh et al.[74]. In their work, they calculated the size and shape of pillars
which maximizes light collection efficiency for shallow NV implantation. The gen-
eral principle is that the pillar acts like a waveguide, whose size and shape match
fundamental HE (hybrid electric) modes, guiding light out below the pillar into the
detection system. Pillars 1 µm in height with 200 and 350 nm diameters are ideally
shaped to maximize the number of fundamental modes guided in and out of the
pillar.

Table 2.3: Table of fluorescent components used in the confocal microscopy and the
structures being imaged with them.

Technique
Type
Imaged

Laser
Excitation (nm)

Emission
band (nm)

Reference

Tuj1-Alexa Neurons 488 525/50 Gautam et al[35]
GFAP-Alexa Glia (Astrocytes) 561 595/50 Gautam et al.[35]
Hoechst stain Cell nuclei 405 450/50 Gautam et al.[35]
Raman Diamond 561 606 -

The total growth factor was performed by using a region of interest (ROI) image
processing in order to measure the growth of neurons as a fraction of the diamond
pillar patch. Calculating ordered growth required the design of a specific algorithm.
The orientation and length of each neuron can be determined by calculating the center
line of each neurite. A binary mask showing neurite center lines was calculated by
applying a skeletonisation algorithm [65]. This algorithm reduces every neurite and
cell body in the image to a single pixel line without changing the overall structure
of the image. The binary mask was convolved by a 3x3 kernel, such that neurite
ends, midpoints, and intersections can be uniquely identified. Treating the resulting
image as an undirected graph, we can parameterize each neurite by searching the
graph for connected lines of pixels. Our search algorithm starts from any endpoint
or intersection and traverses connected pixels until it finds another endpoint. Each
set of connected pixels is called a path. This process is repeated for each endpoint
until all paths are identified. Each path parametrizes the centerline of a neurite. We
perform the following line integral along these parameterized center lines to estimate
how well the neurite aligns to a pillar line:

Ti =
L

∑
i=1

∫ T

0
| ∂

∂t
~fi|dt (2.74)

To =
L

∑
i=1

∫ T

0
Θ(t)| ∂

∂t
~fi|dt (2.75)
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Table 2.4: Table of the growth results, including patch label, total growth, ordered
growth, fractional separation and volume ratios. Note that patches 0, 9 and 12
had problems with the growth, requiring their data results to be removed from the

published results and analysis.

Patch
Pitch
(p)
(µm)

Width
(d) (µm)

Distance
ratio
(p-d)/d

Volume
ratio
πr2/p2

Total
Growth
%Area

Total
neurite
Ti (µm)

Ordered
neurite
To (µm)

Ordered
growth
Ti
To
(%)

0 1 0.2 0.8 0.031 0 0 0 0
1 1 0.2 0.8 0.031 15.9 3762.5 1116.4 29.7
2 1 0.35 0.65 0.096 13.7 5075.4 1494.5 29.4
3 1 0.35 0.65 0.096 0.7 331.7 116.3 35.1
4 2 0.2 0.9 0.008 12.8 3014.8 1148.4 38.1
5 2 0.2 0.9 0.008 21.1 4119 1593.3 38.7
6 2 0.35 0.825 0.024 2.2 796.4 315.0 39.6
7 2 0.35 0.825 0.024 0.8 475.1 169.9 35.8
8 3 0.2 0.933 0.003 0.3 341.8 95.2 27.9
9 3 0.2 0.933 0.003 0 0 0 0
10 3 0.35 0.833 0.011 6.9 1316.5 356.0 27.0
11 3 0.35 0.833 0.011 4.5 1503.7 433.2 28.8
12 4 0.2 0.95 0.002 0 0 0 0
13 4 0.2 0.95 0.002 10.1 1965.5 521.5 26.5
14 4 0.35 0.913 0.006 2.0 695.9 235.5 33.8
15 4 0.35 0.913 0.006 2.1 1052.5 294 27.9

where Ti is the total length of all the summed neurites (paths), To is the total
length of the aligned (or ordered) neurites and ~fi is the neurite’s vector component
parametrized by the length t:

~fi = x(t)x̂ + y(t)ŷ (2.76)

where the coordinate vectors x̂ and ŷ are chosen to coincide with the directions of
the rows and columns of the nanopillar array.

The Θ(t) term represents a piece-wise function, which defines alignment by
measuring the angle between the neurite vector component and the vector components
of the pillar lines:

Θ(t) =


1, arccos

(
∂~f
∂t ·û

| ∂~f∂t |

)
≤ π

36

0, arccos

(
∂~f
∂t ·û
| ∂ f

∂t |

)
> π

36

where û = x̂ or ŷ. The principle is that the angle between a neurite vector
components and a vertical (ŷ) or horizontal (x̂) line of pillars is measured, if that
angle is larger than our defined value ( π

36 ) then the neurite is considered unaligned
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Figure 2.25: Table summary of growth as a function of diameter, averaged across all
patches of the same diameters. Error bars indicate one standard error of the sample

mean. There is no statistical dependence of diameter on ordered or total growth

with the pillars and discarded. This process is repeated and summed for all neurite
vector components (To) and divided by the total integrated length of all neurites (Ti)
to obtain our order ratio.

Before applying this procedure we preprocessed the raw confocal image of each
patch to isolate the the neuron fluorescence. In particular, we started by masking
large cell bodies, such as glial cells, either by hand or using a disk shaped structuring
element. We then filtered in the colour space to extract the fluorescence from neuron
neurites and applied an intensity threshold to filter out residual fluorescence from
sources other than neurons. The resolution and quality of confocal scan is the most
important factor determining the error in our alignment estimates as well as the
ROI processing for total growth. Some factors are mitigated by preprocessing and
denoising our image. For example, background fluorescence from other features is
mitigated by our preprocessing steps. However, since we needed to apply an intensity
threshold over the image, we also ignored low-intensity fluorescence from neurites.
Another shortcoming of our approach is that it does not correct for discontinuities
in the neurites. This is not a problem when the length of each segment of a neurite
is longer than the gaps. If a neurite shows up as a line of disconnected dots it’s
alignment will not be measured correctly as the dots have no directionality, adding
to the total neurite length as noise. This error can be quantified by measuring the
number of short and singleton paths relative to the total length of the detected neuron.
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p =       1 um          1 um         2 um         3 um        2um        4um          3 um         4 um   
d =       350 nm      200 nm     350 nm      350 nm    200 nm    350 nm    200 nm     2000 nm

Figure 2.26: Table summary of growth as a function of the fractional separation,
averaged across all patches of the same separation. The pitch and diameter for each
separation are displayed above. Error bars indicate one standard error of the sample
mean. The results show that high ordering occurs around 2 µm pitches which is a

similar result when averaged over pitch alone.

A key observation is that all arrays showed non-negligible total growth. However,
due to our small statistical sample size, the standard error is such that no single
nanopillar geometry exhibited statistically significant advantage for total growth.
However, particular geometries had significantly larger growth ordering when con-
sidering pitch or fractional separation. These geometries had 2 µm pitch and either
200 nm or 350 nm diameters. When sampling for pitch, these geometries achieved
38% ordering on average with a standard error of ±0.8%. There was no significant
dependence on pillar diameter. This is likely due to the small range of diameters
that were sampled, which was chosen to approximately match the range of diameters
where the nanopillars maximize optical collection efficiency [8, 74].

The analysis of the model also highlights the importance of having good contact
between the neuron and the nanopillar in the region of the NV and that the location
of this contact influences the electric field at the NV center. Previous neuron growth
studies show that neurons tend to grow towards the tip of a pillar and can form
contact with either the top or side, with contact on the side being more common
[35, 48]. Future growth studies should seek to confirm this in a diamond substrate.
In our results, it was not possible to determine the vertical position of the neuron
in relation to the pillars nor the level of contact between the neuron and the pillar.
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Figure 2.27: Table summary of growth as a function of pitch, averaged across all
arrays of the same pitch. Error bars indicate one standard error of the sample mean.

There is a general trend towards higher ordered growth for 2 µm pitch pillars.

a) b) c)

Figure 2.28: Example Images of the skeletonization process. a) The neuron confocal
image, is processed to remove glia fluorescence and then ’skeletonized’, b) where each
neurite has a line drawn over it. The result is c) a list of lines which can be integrated

to quantify neuron lengths

Super-resolution confocal microscopy or SEM studies should be performed in future
to examine the precise vertical position of the neurons. One proposed means of
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improving neuron to substrate contact is to utilise a peptide coating that has been
demonstrated to promote close contact between neurons and a growth substrate.
These coatings, known as “engulfment promoting peptides” (EPPs), come in a variety
of forms such as poly-L-lysine (PLL), poly-D-lysine, extracellular matrix (ECM) gel
and fibro-nectin [43, 44]. They have been shown to create to closer adhesion of cells
than that of traditional enzyme substrates such as laminin and ornithin, which were
used in this growth study experiment. The effectiveness of these coatings can be
quantitatively assessed using TEM, in addition to this, TEM could also prove useful in
determining the thickness and porosity of the protein coating used to promote neuron
adhesion to the substrate. In this study, the coating was assumed to be dense enough
such that ions couldn’t penetrate the coating and thin enough that its effect on the
propagating field from the neuron was negligible, however these assumptions weren’t
proven in any way and should be proven experimentally in order to be accurately
factored into future simulations.

Finally, it is worth mentioning that whilst this work demonstrated a theoretical
capacity to measure neuron signals, improving NV sensitivity to these signals is
still worthwhile. Improving the range of signals that can be measured along with
improving the simplicity of the measurement process with high sensitivity can make
a future device easier to use in biological research labs. In chapters 3, 4, 5 and 6
different approaches to improved NV sensitivity are considered and their applicability
to NV based neurosensing is addressed.

Draft Copy – 15 September 2022



Chapter 3

Electrode based cryogenic SCC

The key result of the neurosensing project is that the NV has the capacity to sense
the electric field of neuron signals with high sensitivity and resolution in particular
conditions. However, improving NV sensitivity will always make the sensing protocol
more effective and robust. For example, even if the NV can already sense the smallest
signal the neuron is producing, improving sensitivity might allow for faster readout
times which improves temporal resolution. Alternatively, high sensitivity might allow
for a change in the sensing array; if smaller pillars produce better growth metrics but
reduce optical collection efficiency, then having a method of improving sensitivity
might help cover for this shortfall whilst maintaining good neuron growth.

The key to NV sensitivity is in the ability to measure the NV electronic spin state
as its energy level will be directly related to an external field. Accurate readout
of the NV electronic spin state is also a key factor in quantum computation, in an
NV quantum computer or network, NV nuclear spins are initialised and readout by
measuring the associated electronic spin state. In this sense, it could be argued that
the readout of a nuclear spin state in the NV is itself, a sensing protocol. So any
method which improves electronic spin state readout has applications in both NV
quantum sensing and computation.

One such method of improving readout is by using the spin-to-charge conversion
(SCC) technique. To re-iterate from section 1.1, in typical ODMR, the electron spin
resonance (ESR) is readout as a drop in fluorescence when the electron is in a particular
spin state. This change in fluorescence is known as the optical spin contrast. The larger
the contrast, the better the confidence in the spin readout which in turn improves NV
performance in sensing and computation. In SCC readout, the spin state is mapped
to the NV charge state, the NV charge state can be readout with much higher contrast
and fidelity compared to conventional NV readout protocols [58]. Thus, with good
spin initialisation and mapping to the charge state, the readout of the NV spin state
improves because the charge state readout performs better.

In this chapter we introduce a new SCC technique with the application of an
external electrode to the surface of the diamond over a near-surface NV center at
cryogenic temperatures. The electrode discretises the diamond conduction band for
spin-selective resonant photoionization. We use effective mass theory to calculate the
discrete eigenenergies in this new system and use them to formulate a new spin-to-

77
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charge protocol that involves resonant photoionization out the NV ground state into
the diamond conduction band. The major sources of broadening are also addressed
which guide the design of the experiment.

In section 3.1 the concept of photoionization in the NV is detailed in the context
of established SCC protocols as well as the photoionization experiments introduced
in chapters 3, 4 and 5. In section 3.2 the electrode for cryogenic SCC is introduced,
including a brief introduction on how it is fabricated and a detailed explanation of
how the electrode potential discretises the diamond conduction band for improved
photoionization using effective mass theory. In section 3.2 the potential issues with
the protocol are considered as various sources of linewidth broadening are considered
along with their effect on the spin readout protocol. Finally, in section 3.4 the work is
put together to outline the SCC protocol and experimental design, in this section the
overall optical contrast and readout fidelity are also calculated. With this mechanism,
we theorise an optical spin contrast that and an associated spin readout fidelity of
85%. This significant improvement can be applied to a number of cryogenic quantum
technologies.
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Figure 3.1: a) Image of the electrode setup. The grey diamond has an electrode
fabricated onto it made of 5 nm SiOx and 95 nm ITO. The cylindrical section of the
electrode sits over an NV center and a wire connects the electrode to a voltage source.
b) Simulation of the potential well generated by the electrode. The white section is
an electrode that sits on a diamond surface and carries a 10 mV potential. c) Plot of
the simulated wavefunction for the ground state wavefunction viewed from the XZ
(left) and XY plane (right image). d) Plot of the same simulation from c) but for the
first excited state wavefunction. The ∆E term is the difference between the first and

second eignenergies.

3.1 Photoionization in the NV

The key mechanism involved in both NV quantum sensing as well as computing is
the ability to initialise and readout the NV electron spin state. The electronic structure
that allows for spin selective readout is only available when the NV center is in
the negatively charged state (NV−), other charge states do not exhibit spin selective
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properties. This presents a significant problem in NV physics as the center can ionize
into the neutral NV0 state under optical illumination where the electron is excited into
the diamond conduction band. During this process, the spin information is lost and
the NV center isn’t usable until an electron repopulates the defect, converting it back
into NV−. The recombination process is most often achieved by optically exciting
electrons into the NV center from the diamond valence band [7]. This ionization
process limits NV charge state control and is an important issue in NV physics.

As mentioned in chapter 1, ODMR works by using lasers and microwaves to
initialise the NV into a particular spin state and using the ISC to observe the NV spin
state as a change in the NV fluorescence. In SCC, the principle is the same, however,
once the NV is in a particular spin state, a powerful laser ionizes the defect, putting
the electron in the diamond conduction band and the NV into the neutrally charges
NV0 state. One example of this is the room temperature SCC protocol from Jaskula et
al. [58]. In this work, the NV electron is initialised into the ms = ±1 in the same way
as in conventional ODMR, however, with the ms = 0 the electron is excited with a
powerful red laser to ionise the electron and put the NV into the neutral charge state
(figure 3.2). Thus the ms = ±1 state is mapped to the negatively NV charge state and
the ms = 0 is mapped to the neutral NV charge state. The principle is that the NV
charge state can be readout with much higher spin contrast and fidelity compared to
the spin state in conventional ODMR, thus the contrast and fidelity improves.

The charge state can be measured optically with a laser maximally resonant to
NV−[58] or by measuring the photoelectric current induced by ionization [41, 109].
This technique has been shown to have a larger optical spin contrast compared to
conventional intrinsic photo-luminescence cycling techniques [58, 109, 131], which in
turn increases the readout fidelity of measuring a spin state. Whilst SCC methods
improve contrast, the improvement is not very significant. For example, Jaskula et
al. reported an SCC readout contrast of 36% compared to the conventional methods
which have a readout contrast of 25% [58]. The primary reason for the limitation is
that SCC protocols still require shelving the NV electron into the singlet state manifold
via an inter-system crossing (ISC). The branching rate of the ISC is not 100% from the
ms = ±1 state nor is it 0% from the ms = 0 state [37], this lowers the spin-selectivity
and increases the probability of a false readout. Current methods also do not alter the
probability of photoionization itself, the rate of photoionization is set by the intrinsic
nature of the NV center in diamond. Being able to read out an electron spin state
consistently without introducing noise from erroneous photoionization is essential in
producing high fidelity spin measurements for quantum protocols.

We introduce a new mechanism of charge state control with the application of
an external electrode to the surface of the diamond over a near-surface NV center.
The electrode creates a potential well within the diamond which has the effect of
spectrally confining the density of low lying conduction band states in the diamond.
This discretized conduction band has a two-fold effect. Firstly, it increases the pho-
toionization probability at frequencies resonant to a discrete transition whilst reducing
the probability of photoionization at other frequencies. Secondly, the electrode cre-
ates energy level separation in the conduction band which is much larger than the
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(c)

Figure 3.2: Image of the SCC protocol taken from Jaskula et al. [58]. a) An example of
the fluorescence from a spin dependent charge state readout, the change in fluores-
cence for each spin state allows for spin selective readout. b) A simple model of the
SCC protocol, the yellow lines indicate the excitation and ionization as a two-photon
process. When the electron is in the singlet states via the grey ISC, it is shielded from
the ionization pulses, allowing for spin selective ionization. c) The laser and MW
pulse sequence for the SCC protocol, the green laser initialises the NV into the ms = 0
state then the yellow laser excites and the red laser ionizes. A further yellow laser

pulse reads the charge state of the NV.

separation of levels in the NV ground state triplet. These two factors allow for an
SCC protocol where the NV electron is resonantly ionized out of the ground state
triplet into a discrete conduction band state with a higher probability compared to
conventional photoionization. The wide separation of the conduction band states
means that the individual triplet transitions can be addressed. These factors create a
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highly selective spin to charge protocol with very high optical spin contrast. The tech-
nique promises to vastly improve the fidelity of spin readout which has applications
for NV based quantum sensing, communications and computation. The design also
creates a discrete three-level system for stimulated Raman adiabatic passage (STIRAP)
experiments [83]. The key to this process is ensuring that the spectral lines are narrow
enough to be resolved. To achieve this the major sources of broadening need to be
addressed.

3.2 Electrode application and effective mass theory

In our design, the cylindrical electrode is placed over an NV with a thin wire connect-
ing to a voltage source. The electrode and wire have a thin, insulating silicon oxide
(SiOx) layer to prevent charges from moving from the diamond into the electrode.
On top of the SiOx is a transparent indium-tin-oxide (ITO) conductive layer which
carries the electric potential and allows for optical illumination through the electrode.
The dimensions of the electrode were chosen to maximise the energy splitting in the
diamond conduction band (see figure 3.1). Smaller confinement volumes (from smaller
electrodes) have larger energy splitting, making them easier to individually address.
The limiting factor on size comes from the resolution of the nanofabrication process
itself as the wire width must be smaller than the electrode to prevent wavefunctions
occupying the space under the wire.

The electrode was designed to carry a potential that can create the confining
well within the diamond substrate around the NV. Numerical calculations revealed
that smaller confining regions produced larger conduction band splitting which is
necessary for the high contrast spin-to-charge readout mechanism. The length and
width of the electrode control the length and width of the potential well whereas the
depth of the well is largely controlled by the magnitude of the potential at the electrode
rather than its physical height. Stronger electrode potentials reduce the depth of
the confining wavefunction, requiring the placement of NVs closer to the diamond
surface in order to be affected by the electron confinement. This is undesirable as NVs
close to the diamond surface exhibit charge instability[22]. The potential chosen was
designed to create a wavefunction whose center is at the position of the NV which is
approximately 50 nm from the diamond surface. This choice was made to maximise
the eigenenergy splitting whilst maintaining NV stability.

The SiOx was applied to create an insulating layer between the electrode and the
diamond surface and the ITO was chosen for its capacity to carry a potential as well
as its optical transparency so laser illumination can occur over the diamond surface.
The electrode is fabricated using a sputtering process. The diamond is cleaned using a
three-acid boil (sulfuric, nitric and perchloric acid), after which approximately 100nm
of polymethyl methacrylate (PMMA) is spin-coated onto the diamond to be used
as a resist layer. The electrode shape is then etched into the PMMA along with the
electrode wire using electron beam lithography (EBL). The resist is then exposed to
methyl iso-butyl ketone (MIBK) for approximately 1 minute to etch away the PMMA
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exposed by the EBL beam and is further exposed using a low dose oxygen plasma
etch in a barrel etcher. This creates the hole in the resist layer which can be layered
with 5 nm of silicon oxide (SiOx) and 95nm of indium-tin-oxide (ITO) using sputter
deposition. The remaining PMMA layer is removed using a lift-off technique with
acetone where only the SiOx and ITO layers remain. The wire connects to the end of
the diamond which can be layered coarsely with a conductive material (for example
silver paste) that can be more easily connected to a power supply for generating a
potential using a wire bonding process.

In order to calculate the conduction band wavefunctions and eigenenergies which
are confined by the electrode potential we apply effective mass theory. We begin by
solving the Schrodinger equation in the absence of an external potential:

(−h̄2

2
~∇ ·
←→
1
m
· ~∇+ Vc(~k)

)
|Fn(~r)〉 = Ec

n |Fn(~r)〉 , (3.1)

where Ec
n is the eigenenergy of the crystal system for a given energy level n, Vc(~k)

is the crystal potential, m is the effective mass tensor of the electron and Fn is an
envelope function which is related to the electron wavefunction by the following:

ψn = Fn(~r)u~k(~r)e
i~k·~r, (3.2)

where u~k(~r) is the Bloch function for the state of the conduction band minimum
in the bulk diamond unit cell and ~k is its associated wavevector. The exponent
describes the phase difference when going between unit cells and we are considering
n conduction band minima as we expect new minima in different vector directions.

These equations are applicable due to three key assumptions that we apply in
effective mass theory. The first is that for photoionization we only need to consider
states that are energetically close to the conduction band minimum (CBM). This is
due to the fact that we are only ionizing from the NV to the lowest lying states in the
conduction band. This assumption allows us to approximate the electron energy as a
free electron with an effective mass in a confining potential. The second assumption is
that the envelope function varies on a distance much greater than the Bloch function,
allowing it to be considered constant when calculating values over the Bloch function
space. Finally, we assume that the electrode potential isn’t strong enough or varying
enough on the scale of the unit cell such that the Bloch function depends on the
potential.

Expanding out equation 3.1 to include the Bloch function gives:(
T(~r) + Vc(~k)

)
Fn(~r)µ~k(~r)e

i~kn·~r = Ec
nFn(~r)µ~k(~r)e

i~kn·~r, (3.3)

where T(~r) = −h̄2

2
~∇ ·
←→

1
m · ~∇, is the kinetic energy for a free electron with an

effective mass m. For simplicity the Bloch function can be simplified to: µ~k(~r)e
i~kn·~r =

|φ(~r)〉. Expanding equation 3.3 as a product rule whilst multiplying both sides of the
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equation by the complex conjugate 〈φ(~r)| gives the following:

〈φ(~r)|φ(~r)〉 T(~r)Fn(~r) + Fn(~r) 〈φ| T(~r) |φ(~r)〉+
Fn(~r) 〈φ|Vc(~k) |φ(~r)〉 = Ec

nFn(~r) 〈φ|φ〉 ,
(3.4)

note that the envelope function is not acting on the eigenstates. The envelope
function varies on distances much larger than Bloch function between diamond
unit cells. Thus when considering small length scales of the diamond unit cell, the
approximation being made is that Fn is effectively constant and can be moved out of
the inner product. Taking the inner product:

T(~r)Fn(~r) + EbF(~r) = Ec
nFn(~r), (3.5)

where Eb is the energy of the Bloch function for the conduction band minimum.
The other key approximation being made in the above calculation is that an electrode
confining potential isn’t strong enough or varying enough on the scale of the unit cell
such that the Bloch function depends on the potential. This means that the electrode
potential can be added in a new Schrodinger equation as the Bloch function energy is
independent of the electrode potential. Adding in the electrode potential gives the
following equation:

(
T(~r) + V(~r)

)
Fn(~r) = EnFn(~r), (3.6)

where En = Ec
n − Eb so that En becomes the energy of the total wavefunction

relative to the Bloch function.
Three separate solutions from equation 3.1 were obtained to account for the three

effective masses in the separate Cartesian directions along the diamond. In each
solution 6 eigenenergies/wavefunctions were obtained and added together to give
a total of 18 conduction band energy levels. The eigenenergies can then be used to
calculate the transition rate from the NV to a particular conduction band state by
using Fermi’s golden rule:

Λn(E) =
2π

h̄ ∑
n
|µbC(E)

√
AeFn(r)|r=NVE(E)|2L(E− En), (3.7)

where L(E− En) is a Lorentzian function whose peaks are at the energy levels of
the conduction band states En, µb is the transition dipole moment in bulk diamond,
E(E) is the electric field of the interrogating laser and C(E) is the dimensionless
Franck-Condon factor which describes the vibrational overlap of states under a
Born-Oppenheimer approximation. The electron confinement envelope function is
represented by Fn(r)|r=NV which is defined at the position of the NV and is normalised
to the volume of the diamond with the constant Ae using the following equation:

Ae

Vc

∫
V

F∗n FndV = 1, (3.8)
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where Vc is the volume of the diamond unit cell. Equation 3.8 is solved for Ae by
using the results of equation 3.6 and numerically integrating the envelope function
over the diamond volume directly.

For comparison purposes, it is important to derive the transition rates from the
NV to both the diamond conduction band in bulk as well as to the conduction band in
the confining electrode potential. To do this, the first step is to calculate the density of
states for both cases. With the electrode, the density of states is simply the Lorentzian
function with peaks at the given energies calculated from equation 3.1:

ρe(E) = ∑
n
L(E− En), (3.9)

where the Lorentzian function can be explicitly written as:

L(E− En) =
Γ/π

(E− En)2 + Γ2 , (3.10)

and Γ is the total associated linewidth. In bulk diamond it is easier to express the
density of states when the energy is in terms of a wavevector,~k:

ρb(E) = ∑
v

∑
~k

δ(E− E~k), (3.11)

where v denotes a sum over the valleys in the Bloch function. The sum of states
can then be re-expressed as an integral of states over a sphere:

ρb(E) =
4πV
(2π)3

∫ ∞

0
~k2δ(E− E~k)d

~k, (3.12)

by taking an effective mass argument, the energy can be expressed as the energy
for a free particle with an effective mass, m, such that E~k = h̄2

2m
~k2. Rearranging the

equation in terms of~k and substituting it into the integral gives:

ρb(E) =
V

(2π)2

∫ ∞

0

2mE~k
h̄2

√
2mE~k

h̄2
1

2E~k
δ(E− E~k)dE~k, (3.13)

which when solved gives the following:

ρb(E) =
V

2(2π)2

(2m
h̄2

)3/2√
E, (3.14)

note the square root dependence on the energy, which carries into the transition
rate calculation. The transition rate in the bulk diamond is then calculated using
Fermi’s golden rule:

Λb =
2π

h̄

∣∣∣µbC(E)
√

AbFb(r)|r=NVE(E)
∣∣∣2 ∑

~k

δ(E− E~k), (3.15)

where µb is the transition dipole moment in bulk diamond which is constant for
all wavevectors close to the conduction band minimum and the ∑~k δ(E− E~k) term
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is the density of states in bulk diamond. The normalization constant is found by
integrating the envelope function over the bulk diamond volume:

Ab

Vc

∫
V

F∗b FbdV = 1, (3.16)

where Vc is the volume of the diamond unit cell. In bulk diamond, the envelope
function encompasses all block wavefunctions so the probability of an electron existing
in the envelope function will be unity: F∗b Fb = 1, therefore: Ab = Vc/V. Substituting
in the normalisation and the density of states gives the following:

Λb =
1

4πh̄

(2m
h̄2

)3/2√
E
∣∣∣µbC(E)

√
VcE(E)

∣∣∣2, (3.17)

the transition rate in the electrode confined diamond is largely the same but with
a different density of states and a different normalization:

Λe =
2π

h̄ ∑
n
L(E− En)

∣∣∣µnE(E)
∣∣∣2, (3.18)

where the transition dipole moment in the electrode can be expressed in terms
of the bulk dipole moment mediated by the envelope wavefunction for the confined
electron: µn = µbC(E)

√
AeFe(r)|r−NV :

Λe =
2π

h̄ ∑
n
L(E− En)

∣∣∣µbC(E)
√

AeFe(r)|r=NVE(E)
∣∣∣2, (3.19)

the normalization constant Ae found using equation 3.8.
The two transition rates calculated cannot be directly plotted as the dipole moment,

laser electric field and Franck-Condon factor, whilst being common to both equations,
are unknown factors. However, the important factor isn’t the photoionization rates
but the relative change in photoionization cross section from the bulk diamond to the
diamond in the potential well. To understand this the transition rates in equations
3.17 and 3.19 are divided by the common factors mentioned and multiplied by:

1/
(
0.5n

√
ε0µ0
h̄ω

)
where n is the refractive index of diamond and ω is the wavelength of

the photoionization laser. These extra factors places the dimensions of equations 3.17
and 3.19 into a photoionization cross section multiplied by the electric charge squared,
divided by the dipole moment squared, which is a dimensionless quantity. With these
changes, the transition rates can be plotted together, and the relative cross-sections
can be compared.

Figure 3.3 shows the transition cross section for photoionization in a confined
electrode (orange, equation 3.19) and bulk diamond (blue, equation 3.17) for the
first 12 energy levels. Whilst the bulk diamond transition rate is a smooth function
proportional to

√
E, the transition rate in the confined system shows clear Lorentzian

peaks at each eigenenergy calculated using equation 3.1. When the electron is confined,
the probability of resonant ionization to the first conduction band level is 2.4 times
higher compared to bulk diamond, increasing charge state control.
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Figure 3.3: Plot of the transition cross section in both bulk diamond (blue) and in the
confined region created by the electrode (orange). The cross section is proportional
to
√

E in bulk diamond whereas the confined electron has Lorentzian peaks at each
eigenenergy calculated using equation 3.1. The linewidth: φ = 1 GHz, is chosen based
on the error modelling and shows how thin lines are easily distinguishable. Taking
the ratio of the first peak with the equivalent bulk value gives a transition rate that is

2.4 times more likely for a confined electron.

Distinguishing between adjacent transitions is a key aspect of the SCC protocol.
Broadening of the transition lines will increase the probability of an unwanted tran-
sition and will prevent accurate readout of the NV spin state. From figure 3.3, the
transition linewidths are approximated to be about 1 GHz and the transitions are
qualitatively distinguishable, however this needs to be considered in more detail.
The three main sources of linewidth broadening are identified as: fluctuations in the

Draft Copy – 15 September 2022



88 Electrode based cryogenic SCC

confining potential from the electrode, fluctuations in the confining potential due
to surface charge traps and fluctuations in the conduction band energy levels from
electron-phonon broadening. Analysing these major sources of broadening helps us
understand what is possible in the SCC protocol, and what needs to be changed to
fully realise this technology.

3.3 Linewidth Broadening

In order to create the potential well in the diamond, an electric potential must be
applied to the electrode. If however, this potential is unstable, then it will cause a
fluctuating shift in the discretized diamond conduction band energy levels which
will present as linewidth broadening. To model this effect, the simulation can be
performed with a 10 mV electrode potential and it can also be performed with an
offset based on the expected noise in the signal generator: ±0.001 mV. The change in
the potential at the NV (50 nm from the surface of the diamond) can be measured
and the change first conduction band eigenenergy levels can also be measured.

Figure 3.4 shows the electric potential as a function of distance from the diamond
surface for all three electrode potential values. The figure also has the first conduction
band eigenenergy levels labelled for each electrode potential. By taking these energy
levels and plotting them the slope of the values can be calculated to be ≈ 15 GHz/mV
which is shown in figure 3.5. The change in the transition energy (linewidth broaden-
ing) will then be the change in the conduction band energy as a function of potential
( ∂En

∂V ≈ 15 GHz/mV), minus the change in the NV energy as a function of potential
( ∂ENV

∂V ), multiplied by the RMS uncertainty of the electrode:

Γelectrode = σV

(∂Ec

∂V
− 1

h
∂ENV

∂V

)
, (3.20)

where σV is the RMS uncertainty of the electrode which was assumed to be
±0.001 mV and the change in NV energy with potential is linear ( ∂eNV

∂V = −eV) which
can be calculated and converted to −242 GHz/mV. Solving equation 3.20 gives the
linewidth broadening mentioned in the main paper of 0.257 GHz broadening.

Electron-phonon (e-p) scattering is the process by which the energy of an electron
is altered slightly by a phonon interaction. This will alter the transition energy
of photoionization as the conduction band electron states are altered by phonon
interactions, causing linewidth broadening. In bulk diamond, this can be an issue
even at low temperatures (4 K). We can model this broadening with Fermi’s golden
rule:

Γep = α ∑
n

∫
| 〈n|ψk(~r) |1〉 |2ω3

k nB(ωk)δ(ωn −ωk)d3k

α =
Θ2

2(2π)2h̄ρc4
l

,
(3.21)
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V = 10 +0.001mV
En = 221.612GHz 

V = 10 +0mV
En = 221.597GHz 

V = 10 -0.001mV
En = 221.582GHz 

50 5149

Figure 3.4: Plots of the electric potential as a function of the distance from the surface
of the diamond where it meets the electrode. The 50 nm mark is where the NV is
placed. The three curves designate the solution for the 10 mV potential as well as its
offsets of ±0.001 mV. Additionally, the plot legends show the first conduction band
eigenenergy levels for each potential solution. Overall the change generated from the

potential noise is very small.
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Figure 3.5: Plots of the first conduction band eigenenergy levels as a function of
electrode potential. The change is roughly linear so a line can be drawn to connect the
three data points and a slope can be calculated to be ≈ 15 GHz/mV which is labelled

on the plot.

where Θ is the acoustic deformation potential, ρ is the density of diamond and
cl is the longitudinal speed of sound in diamond. The equation is a sum of all the
interactions of the phonon modes ψk(~r) with the discretised energy levels of the
conduction band minimum from 1 to n, integrated over the phonon k-space. The
phonons have a wavelength ωk and a temperature dependent distribution given
by a Bose-Einstein distribution nB [83]. The phonon modes can be calculated by
understanding that e-p scattering only occurs with dilational modes as they are the
only modes with a non-zero divergence. Deriving an expression for the dilational
modes as:

~u(r) = ~∇ψ(r), (3.22)

the scalar potential is satisfied by the wave equation:

−∇2ψ(r) = c−2
l ω2ψ(r), (3.23)

which has the following solution:

ψ(r) = Akei~k·~r. (3.24)

In equation 3.24 the normalisation constant Ak can be found by integrating all the
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dilational modes over the volume of the diamond:

V =
∫

V
|~u|2d3r

=
∫

V
|~∇ψ|2d3r

=
∫

V
A2

kk2d3r

Ak = k−1 = cl/ω.

(3.25)

To help solve equation 3.21 its easier to assume that confining potential is rectan-
gular in shape rather than the Gaussian-like shapes they actually are as it allows for
integrals to be solved in Cartesian coordinates whose solutions are similar to solutions
to a finite square well:

Gn(k) = | 〈n|ψk(~r) |1〉 |2 =
∣∣∣ ∫ Lx

0

∫ Ly

0

∫ Lz

0
Fn

cl

ωk
ei~k̇~rF1

∣∣∣2, (3.26)

where L is the length of the confining potential in a Cartesian direction and Fn

is the envelope wavefunction for an electron in a Cartesian box. This assumption
shouldn’t change the broadening by much as long the volumes of the approximate
and actual confining potentials are roughly the same. A change in the potential shape
will change the subsequent confining wavefunctions and eigenenergies, however, if
the volume and potential well lengths are roughly the same, then the eigenenergies
should also be roughly the same, so using the previously calculated eigenenergies
should be valid. Substituting equation 3.26 into equation 3.21 and writing out the
integral over k gives:

Γep = α ∑
n

∫ ∞

0

∫ π

0

∫ 2π

0
k2 sin (θk)

Gn(k)ω3
k ηB(ωk)δ(ωn −ωk)dkdθkdφk,

(3.27)

substituting k = ω/cl and simplifying gives:

Γep =
α

c3
l
∑
n

∫ ∞

0
ω5ηB(ω)δ(ωn −ω)Gn

(ω2

c2
l

)
∫ π

0

∫ 2π

0
sin (θk)dω2dθkdφk,

(3.28)
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which when solving the integral over the Dirac delta function gives:

Γep =
α

c3
l
∑
n

ω5
nηB(ω)Gn

(ω2

c2
l

)
∫ π

0

∫ 2π

0
sin (θk)dω2dθkdφk.

(3.29)

The solution to equation 3.26 in Cartesian coordinates is effectively the solution to
a three dimensional finite square well which can be analytically calculated to be:

Gn(k) =
8

LxLyLz

cl

ω∫ Lx

0
sin
(nxπ

Lx
x
)

eikxx sin
( π

Lx

)
dx∫ Ly

0
sin
(nyπ

Ly
y
)

eikyy sin
( π

Ly

)
dy∫ Lz

0
sin
(nzπ

Lz
z
)

eikzz sin
( π

Lz

)
dz,

(3.30)

where each integral in a Cartesian direction can be calculated to be:

∫ Lm

0
sin
(nmπ

Lm
m
)
eikmm sin

( π

Lm

)
dm =

2i(1 + (−1)nm eikm Lm)kmL2
mnmπ2

k4
mL4

m − 2k2
mL2

m(1 + n2
m)π

2 + (−1 + n2
m)

2π4 .
(3.31)

Using the solutions from equations 3.30 and 3.31 they can be substituted into
equation 3.29 and solved for a given confining volume across the number of energy
levels solved in the system (18). It is important to test the solution across a range
of energy levels to observe when the sum of broadening values converges, 18 levels
are sufficient for convergence in this case. This process was then performed multiple
times over many confining potential sizes in order to understand how the broadening
changes with volume.

In Figure 3.6 the broadening is calculated for a variety of confining potential
volumes. The x and y coordinates are changed together for the length of the confining
potential and the z coordinate is changed separately for the depth of the potential well.
For the purposes of this work, the broadening for a potential well that is 250 nm in
length and 100 nm in depth is required. Reading off of figure 3.6 a confining potential
of roughly this size creates linewidth broadening which does not exceed 0.5 GHz.

Imperfections in the diamond structure as well as its surface termination allow for
surface charge traps that can hold electrons [104]. Surface charge traps can be occupied
briefly by electrons both from the NV as well as from defects in the bulk diamond.
Charges from these surface traps can then ionize back into the bulk diamond or can
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Figure 3.6: Plot of the e-p broadening in Hz as a function of confining potential
volume. The length of the potential well is for both the x and y coordinate whereas

the depth is from the z-coordinate only.

hop from trap to adjacent trap. The result is a continuous fluctuation of a local electric
field from the constant change in the position of the charges relative to NV. This arises
as noise which can affect both the NV and conduction band energy. Calculating this
noise is more difficult compared to the other sources of broadening as the density of
the charge traps on the diamond surface and the rate of their motion from trap to
trap isn’t well known. This concept is actually considered in more detail in chapter 7.
To calculate the broadening we assume that the surface charge traps are uniformly
distributed on the diamond and that the electrons occupying the traps can only move
from trap to adjacent trap. In this picture, the charge motion acts like a two level
fluctuator which can be modelled using Redfield theory [107] where the linewidth is
given by:

Γsc =
2π

h̄2 |δE|2S(0), (3.32)

where S(ω) is the noise spectrum which in a two level system is assumed to be
Lorentzian and |δE|2 is the variance of the change in energy which is given by:

|δE|2 = ηe2
∫

Ω
| 〈F0|V(~r,~q) |F0〉 −V(~rNV ,~q)|2d2q, (3.33)

where η is the surface density of acceptors (diamond surface trap density) and
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V(~r,~q) is the potential generated by an electron at position ~q on the surface of the
diamond away from the NV which is at position~r. Equation 3.33 describes the energy
variance as the change in the conduction band energy (first term in the integral) minus
the change in the NV energy (second term in the integral). If the fluctuations are
assumed to have a zero mean, then the rate of charge motion will follow Boltzmann
statistics:

γ = γ0e−Et/kbT, (3.34)

where Et is the electron energy and the noise spectrum can be described as:

S(ω) =
∫ ∞

−∞
e−γ|τ|e−iωt =

γ/π

ω2 + γ2 , (3.35)

note how equation 3.35 describes the spectral noise with a Lorentzian line shape
with a width given by the charge hopping rate γ.

To get an understanding of the process and to solve equation 3.33 for the linewidth
three separate regimes are considered. The first regime is when the Fermi level is
equal to the trap energy level and the trap occupation is ≈ 50%, in this regime the
electrons in the trap can hop to adjacent traps and we can model the system like
a series of 2D dipoles where the dipoles can orient their direction as the electrons
hop into adjacent traps in any direction. The second is when the Fermi level is
below the trap energy and the trap occupation is less than 50%, in this regime the
charges act like monopoles and can hop anywhere in the surface via other traps or
through the diamond conduction band. In this regime the charges effectively appear
and disappear in the traps as they have a larger freedom of movement compared
to the dipole regime. The third regime is when the Fermi energy is above the trap
energy level causing the traps to be mostly occupied. Charge hopping occurs in a
similar mode to the monopole regime, but the effective trap density is considerably
lower. This mechanism doesn’t happen automatically, but it is something that can
be engineered by reducing the trap density, or, adding an electron donor level in the
diamond which preferentially donates electrons to the unoccupied traps.

The first regime is the dipole regime, in this approach, the potential term in
equation 3.33 is modelled as a dipole charge:

V(r) =
e~p · (~r−~q)

4πεd|~r−~q|3 , (3.36)

where ~p is the displacement vector between neighboring traps. The idea is that
an electron can move from one trap to another, creating an electron/hole pair that
is effectively a dipole. The electron motion to a trap is then modelled as the dipole
moment flipping sign as the electron flips the direction of the dipole. The change in
conduction band energy due to a single dipole is solved individually. This solution is
then integrated over all possible charge traps (the diamond surface) to find out the
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overall energy change. Beginning with the solution due to a single dipole:

〈F0|V(~r,~q) |F0〉 =
e

4πεd

∫
F2

0 (~r)
~p · (~r−~q)

4πεd|~r−~q|3 d3r, (3.37)

in this instance, F0 is modelled as a Gaussian. Mathematically this approach is
actually equivalent to solving for the potential of an observer point far from a dipole
charge distribution, however, the roles are reversed, F0 acts like the charge distribution
and the observer point is ~q. In this formalism, the solution is obtained by using a
multipole expansion. The key assumption in the expansion is that the observer point
~q is sufficiently far from the charge distribution F0. This isn’t entirely true for this
system, so higher-order terms are added in the multipole expansion to make sure it is
valid. Considering the charge distribution in terms of the electric displacement:

~∇ · ~D = 0, (3.38)

in equation 3.38, the solution is zero as the the charge density of a group of dipoles
will be zero. Substituting in the displacement field with the electric field (~E) and
polarization (~P) and rearranging gives:

~∇ · εd~E = −~∇ · ~P, (3.39)

the polarization can be described in terms of the wavefunction size and the
displacement vector between neighboring traps (~p). The electric field can also be
described in terms of the electric potential, giving:

εd∇2V = −~∇ · eF2
0~p, (3.40)

electrons on the diamond surface can only form dipoles on the 2D surface plane:

∇2V =
−e
εd

(
px

∂

∂x
F2

0 + py
∂

∂y
F2

0

)
. (3.41)

Using Maxwell’s law, the electric potential can be re-written in terms of the effective
charge density: ∇2V = ρe f f /εd:

ρe f f = −e
(

px
∂

∂x
F2

0 + py
∂

∂y
F2

0

)
, (3.42)

with an effective charge, an equation 3.37 be rewritten for the change in conduction
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band energy due to a surface trap with a multipole expansion:

〈F0|V(~r,~q) |F0〉 =
e

4πεd

∫ ρe f f

|~r−~q|d
3r

≈ ep0

4πεd|~r−~q| + ∑
i

ep1i(r0i − qi)

4πεd|~r0 −~q|3+

1
2 ∑

i,j

ep2ij(r0i − qi)(r0j − qj)

4πεd|~r0 −~q|5 ,

(3.43)

where:

p0 =
∫

ρe f f d3r

p1i = −
∫

ρe f f (r0i − ri)d3r

p2ij =
∫

ρe f f

(
3(r0i − ri)(r0j − rj)− δij(r0i − ri)

2
)

d3r,

(3.44)

in the above equation, r0 is the position of the electron in the conduction band
(which is set at the origin), and the sum over i and j are for the different dimensions
of the problem (x,y,z). The first term then denotes an asymmetric solution which
is the monopole term, the second is the dipole and the third is the octupole term.
The expansion increases with higher orders of ~q, thus higher-order terms should
contribute less and less to the overall solution. Equation 3.43 will be the solution
for the conduction band electron, and the solution to the NV electron can be written
from equation 3.37 where r = r0 as the origin is set at the centre of the confined
wavefunction where the NV is. The solutions to a single dipole charge are then
integrated over the diamond surface to account for the effects of all surface charges.
Additionally, the equations are also integrated over all the possible orientations of
the dipole, pφ, where px = p cos (pφ) and py = p sin (pφ). The last thing to consider
is the trap pair distance which will be estimated to be 1nm. This estimation comes
from the density of traps, p =

√
1/η where η is the density of traps on the diamond

surface. From this derivation, equation 3.33 becomes:

|δE|2 =
η/2e2

2π

∫ 2π

0

∫
Ω

pdip · (~r− ~p)
4πεd|~r0 −~q|3−

ep · (~r− ~p)
4πεd|~r0 −~q|3 +

phex · (~r− ~p)
4πεd|~r0 −~q|7 d2qdpφ,

(3.45)

where η has been halved as the dipoles effectively halve the number of contributing
traps. Due to the fact that the charge density is Gaussian, an even function, equation
3.44 shows that the first order term in the expansion will be an odd function and will
integrate to zero. In fact, all odd terms in the expansion will be odd functions, so
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only the dipole (pdip) and hexapole (phex) terms remain in the above equation which
are derived from equation 3.45. When adding the dipole orientations in the integral,
equation 3.45 becomes:

|δE|2 =
η/2e2

4π

∫ 2π

0

∫
Ω

e
(

p cos (pφ) + p sin (pφ)
)
· (~r− ~p)

4πεd|~r0 −~q|3

−
e
(

p cos (pφ) + p sin (pφ)
)
· (~r− ~p)

4πεd|~r0 −~q|3 +
phex · (~r− ~p)
4πεd|~r0 −~q|3 d2qdpφ,

(3.46)

note how with the expansion of the dipole terms it becomes clear that the first two
terms of the integral will cancel each other out, leaving just the hexapole term which
has an analytic solution that will be referred to as |δE|2d:

|δE|2d =
15p2e4η

(
α + β

)
8192πq6

zε2
d

α = 3σ4
x + 2σ2

x σ2
y

β = 3σ4
y − 8(σ2

x + σ2
y )σ

2
z+8σ4

z ,

(3.47)

where σn is the standard deviation in a Cartesian direction for the Gaussian
approximation to the wavefunction and qz is the distance from the diamond surface to
the NV. Using the Lorentzian spectral noise density from equation 3.35 the linewidth
broadening due to a dipole surface of charges will then become:

Γdipole =
2π

h̄2 |δE|2d
γ/π

γ2 , (3.48)

the σ values are chosen for a wavefunction confined to a volume that is 250 nm in
length/width and 100 nm in depth, the NV is 50 nm in depth (qz) and the density
of traps is 1018 m−2. Whilst the charge hopping rate (γ) is unknown, a range of
values from kHz to GHz can be tested to see its effect on the overall linewidth. Even
when considering extremely fast charge motion on the surface (THz in order) the
broadening can be as high as 1015 Hz for a typical trap density (1018 m−2), as much as
6 orders of magnitude broader than the limiting requirement.

Calculating the broadening in the monopole regime is largely the same as the
dipole regime but the potential and the subsequent expansion will be for a monopole
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charge source. Following the logic from equation 3.43:

〈F0|V(~r,~q) |F0〉 =
e

4πεd

∫ F2
0

|~r−~q|d
3r

≈ ep0

4πεd|~r−~q| + ∑
i

ep1i(r0i − qi)

4πεd|~r0 −~q|3+

1
2 ∑

i,j

ep2ij(r0i − qi)(r0j − qj)

4πεd|~r0 −~q|5 ,

(3.49)

where:

p0 =
∫

F2
0 d3r

p1i = −
∫

F2
0 (r0i − ri)d3r

p2ij =
∫

F2
0

(
3(r0i − ri)(r0j − rj)− δij(r0i − ri)

2
)

d3r,

(3.50)

and the octupole term can be rewritten as:

p2ij =
1
2 ∑

i

(2σ2
i −∑j 6=i σ2

j )(r0i − q2
i )

|~r0 −~q|5 . (3.51)

Equations 3.49 and 3.50 are almost exactly the same as equations 3.43 and 3.44
with the exception of the substitution of F2

0 for ρe f f to account for the dipole nature of
the charge distribution in the dipole regime. This will change the non-zero terms in
the expansion as F2

0 is an even function whereas ρe f f is an odd function. This means
that whilst in the dipole regime the odd terms in the expansion integrated to zero, in
the monopole regime the even terms in the expansion will integrate to zero. Placing
equations 3.49 and 3.51 into equation 3.33 gives:

|δE|2 = ηe2( e
4πεd

) ∫ ∣∣∣ 1
|~r0 −~q| −

1
| ~rNV −~q|+

1
2 ∑

i

(2σ2
i −∑j 6=i σ2

j )(r0i − q2
i )

|~r0 −~q|5
∣∣∣2d2q,

(3.52)
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equation 3.52 has an analytic solution which will now be referred to as |δE|2m:

|δE|2m =
( ηe4

4πεd

)2 3π
(
α + β

)
128q4

z

α = 3σ4
x + 2σ2

x σ2
y

β = 3σ4
y − 8(σ2

x + σ2
y )σ

2
z+8σ4

z ,

(3.53)

substituting equation 3.53 into equation 3.32 with the Lorentzian noise spectrum
gives the linewidth broadening in the monopole regime:

Γmonopole =
2π

h̄2 |δE|2m
γ/π

γ2 , (3.54)

where the parameters are chosen for the same simulation as the dipole regime.
Even when considering extremely fast charge motion on the surface (THz in order)
the broadening can be as high as 1017 Hz which is 2 orders higher than the dipole
regime. This is likely due to the fact that the effective charge density is higher in the
monopole case and that charges have a much higher freedom of movement across
the diamond surface compared to the adjacent hopping in the dipole case. In both
regimes, the broadening is too high for resolving conduction band states individually.
So a new approach is needed to reduce the effective trap density. One option is to
reduce the physical number of surface traps, which is difficult to achieve, and the
other is to fill the traps with a donor layer in the diamond.

When adding a donor layer of nitrogen below the NV, the surface charges and the
donor layer act like the plates of a capacitor. The donor layer nitrogen atoms will pass
their electrons to the surface traps due to the fact that the donor nitrogen energy level
is higher than that of the traps [82]. This encourages a passing of electrons from the
nitrogen to the traps, resulting in a complete filling of the traps [82] (see figure 3.7).
The filling of the traps will mitigate any opportunity for electrons to hop within the
traps, thereby reducing the AC electric field they might produce. The electric field
can also cause band bending within the diamond bulk which can further screen the
electric field [15]. This occurs as a result of impurities in the diamond, however, this
effect is mitigated by using high purity diamonds [13].

How much trap filling that occurs will depend on the donor layer as well as the
trap density. This can be described by using an effective charge density with the
following capacitor equation:

ρs = CV = eη
1

e
ET−EN+V(η,N)

kbT +1
. (3.55)

Where C is the capacitance generated by the trap layer and the donor layer, ET is
the trap energy, EN is the donor layer energy and V(η, N) is the potential generated
in eV. The exponential function is the Fermi-Dirac distribution which modulates the
normal trap density η based on the energy of the system. As long as the density of
donors is high enough, the Fermi energy will be pinned to the donor layer energy
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Figure 3.7: Example image of the nitrogen donor in diamond. In this case, the green
layer is the surface of the diamond with a trap density of σT. Below the surface, at a
depth, D is the NV along with a NS δ dope layer of nitrogen atoms with a circular hole
to prevent NV interactions with the donor layer and allow green laser illumination.
This schematic is from Oberg et al. [82] and is designed to help sense elementary
charges above the diamond with the NV. However, the design can also be used in our

case to prevent surface charge trap broadening.

and can be removed from equation 3.55. Fermi pinning is a process where the surface
charge density gets high enough that the energy of the surface pins the Fermi energy
at the same point. In other words, higher dopant concentrations cause charges to go
to the surface but the surface charges in equilibrium force the charges to move back
into the bulk, pinning the energy at a point where there is only 50% occupation at
a minimum no matter how dense the dopant concentration is compared to the trap
density. Fermi pinning is in part what motivates a reduction of the trap density instead
of just increasing the dopant concentration as pinning won’t occur if the surface trap
density is low. The only unknown in equation 3.55 is the potential, V(η, N); to solve
for it equation 3.55 is rearranged for the trap density and the capacitance is replaced by
an equation with a capacitance per unit area for a parallel plate capacitor: C = εd/N
where N is the distance from the diamond surface to the nitrogen donor layer:

η =
eN

εdV(η, N)

1

e
ET−EN+V(η,N)

kbT +1
, (3.56)

equation 3.56 can then be solved to obtain the capacitor potential V(η, N). The
potential can be substituted into the following equation which mediates the effective
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trap density by the occupation of traps created by the nitrogen donor layer:

ηe f f = η(1−Oc(η, N))

Oc(η, N) = 0.5

(
1 +

1

1 + e
ET−EN+V(η,N)

kbT

)
,

(3.57)

where Oc(η, N) is the occupation of the surface traps which is a function of the
initial charge density as well as the distance the donor layer is from the diamond
surface. Equation 3.57 can be used in place of η in the dipole regime linewidth
equation 3.48.
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Figure 3.8: Plot of the trap occupation for a donor layer 100 nm below the surface
of the diamond. At very low surface trap densities (η <≈ 4.5× 1015 m−2) the trap
occupation is 100% however when the density is higher, then the occupation rapidly

drops to 50%

Figure 3.8 shows shows the occupation as a function of the surface trap density
for a donor layer that is 100 nm away from the diamond surface. From equation 3.57
it becomes clear that as the occupation increases, the effective density drops. If the
traps are fully occupied, then the effective density is zero and the charge hopping will
also go to zero, which occurs when the trap density is around 1015 m−2. This means
that the associated AC electric field from trap charge motion will be zero and the
broadening from the surface charges will also be zero. If however, the charge density
is too high, then the occupation will quickly drive towards 50% and the linewidth
broadening will become similar in value to the dipole regime.

To ensure that there is full trap occupation there are three options: the first is to
increase the capacitance by reducing the depth of the donor layer (N). This increases
the ease of nitrogen donation. For example, when the donor layer is 50 nm instead
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of 100 nm then the full occupation occurs at 5.5× 1015 m−2. There is a problem
with this approach, nitrogen atoms too close to the NV center decreases coherence
times and the higher capacitance will cause the NV to donate electrons to the surface
traps, causing unwanted ionization. The second option would be to increase the
Fermi level with an external potential such as the electrode positive potential, this
will increase the Fermi level thereby increasing trap occupation for the traps located
around the electrode. This can be modelled by adding the electrode potential to the
Fermi Dirac distribution in equations 3.55, 3.56 and 3.57. Whilst this method will
already be in effect, the potential from the electrode is relatively small (10 mV), which
has a negligible effect on the occupation. If the electrode potential were to increase
beyond 10 mV, then the potential well would get smaller to the point where it would
be difficult to place an NV in the well volume. The third method would be to reduce
the surface trap density which whilst being technically challenging, is possible and
has the greatest overall effect on the occupation without affecting the NV performance.
This theoretical approach motivates the final result that broadening from surface traps
can be completely mitigated as long as there is a nitrogen donor layer approximately
100 nm below the surface of the diamond (with the NV at 50 nm below the surface of
the diamond) and the surface trap density is reduced to ≈ 1015 m−2.

With the major sources of broadening considered, it is clear that with some extra
engineering, creating discrete diamond conduction band energy levels which can be
individually addressed is entirely possible. In the next section, the SCC protocol is
outlined, and the linewidths studied in this section are considered along with the
discrete energy levels to work out what the optical spin contrast and readout fidelity
could be in this project.

3.4 SCC protocol and fidelity

With the electrode and diamond design characteristics outlined, the spin-to-charge
protocol is relatively simple. When the NV electron is in the ground triplet, an ionizing
laser excites the electron from the ground state to the upper energy states which
represent the ionized NV0 2E state with an electron in one of the first two conduction
band levels c0 and ci respectively (figure 3.9). The NV0 charge state can then be read
out either optically or through measuring the photoelectric current [58, 109]. The
ionization will present as a drop in fluorescence from the NV− or by an increase in
current as the NV is ionized into the neutral charge state. This process can occur
when ionizing from ms = 0 to the conduction band or ms = ±1 to the conduction
band. The fine structure of the first two conduction band states is negligible due to
the fact that there are no spin-orbit effects in the conduction band minimum [83].

In order to understand the improved performance of this SCC protocol, the
optical spin contrast and readout fidelity is calculated to compare with other methods.
Readout fidelity can be understood as the probability of getting the right answer in
a process. Conversely, infidelity can be thought of as the probability of getting the
wrong answer. The probability of getting the wrong spin state can be expressed as the
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Figure 3.9: a) Diagram of the spin to charge readout protocol. With the electrode in
place, the low lying conduction band states are discretized. This allows for resonant
ionization into the upper energy states which represent the ionized NV0 2E state with
an electron in one of the first two conduction band levels c0 and ci respectively. Thus
a laser (light blue) can be applied to ionize out of the ground state ms = 0 and a
microwave/laser (yellow/dark blue respectively) combination can be used to ionize
out of the ms = ±1. b) As long as the linewidth Γ is small and the energy difference
between the two transitions is large then the two transitions can be distinguished.
In the error equation, p1,0 is the probability of ionizing from the wrong spin state
when intending ionization from the other, p0,0 is the probability of ionizing correctly
from the correct spin state and pa is the probability of absorbing instead of ionizing.
Thus, the error is the ratio of erroneous photoionization compared to the total amount

probability of other processes.

sum of the probabilities for wrong processes divided by the sum of the probabilities
for all processes:

error =
p1 + p0

p0 + p1 + pa
, (3.58)
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In the above equation, you are trying to get a particular spin readout p0, but
there is a chance you could get the wrong spin state, p1, during photoionization
or there is a chance you could get no photoionization at all, this is because for the
expected photoionization energy (2.6 eV [7]), there is a non-zero chance of absorption
which is given by pa where the electron goes to the excited state in the NV instead of
ionizing. The probability of the correct readout (p0) is given by the cross section of
photoionization at 2.6 eV in bulk diamond (σi,b), multiplied by a further factor, f = 2.4,
which describes the increase in photoionization rate due to the discrete energy levels
(see figure 3.3 of section 3.1). The rate of the wrong spin readout (p1) can be expressed
as the rate of photoionization, σi,b, multiplied by the same f factor as well as an error
rate given as a Lorentzian function. The Lorentzian function describes how the energy
levels and linewidth broadening affects the probability of getting the correct spin state
in an ionization readout process. It is a function of the difference in energy separation
between the ground state NV triplet and the conduction band energy levels as well as
the total linewidth broadening:

L(∆E) =
φ/π

∆E2 + φ2 , (3.59)

where φ is the total linewidth broadening calculated by adding all the sources of
broadening listed in this section 3.3 (0.757 GHz). The splitting of the NV ground state
triplet (ms = 0 and ms = ±1 respectively) is known to be: ∆D ≈ 2.87 GHz [25, 69] and
the splitting of the first two conduction band levels under the electrode is calculated
to be: ∆C ≈ 9.945 GHz using equation 3.1. The ∆E term in the Lorentzian function is
then the difference in energy separation between the conduction band energy levels
and the ground state NV triplet energy levels (∆E = ∆C− ∆D = 7.075 GHz). The
final term in equation 3.58 is the absorption probability pa which can be expressed
as the photoionization cross-section multiplied by the ratio of photoionization to
absorption, g = 0.4, at the energy of photoionization (2.6 eV). This ratio can be found
from the photoionization/absorption cross section data by Razinkovas et al. [95].
Substituting all the relevant terms into equation 3.58:

error =
f σi,bL(∆E) + gσi,b

f σi,b + f σi,bL(∆E) + gσi,b

=
L(∆E) + g/ f

1 + L(∆E) + g/ f
,

(3.60)

note that equation 3.60 gives the error rate or the infidelity (15%). To find the
fidelity, the difference must be used (1-0.15), which gives the readout fidelity of
85%. To calculate the optical spin contrast, the same methodology is applied, but
the contrast is given by the difference in probabilities for readout divided by the
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probability for all processes:

C =
p0 − p1

p0 + p1 + pa

=
1−L(∆E)

1 + L(∆E) + g/ f
,

(3.61)

solving equation 3.61 gives an optical spin contrast of 85%. Recall that the best
reported optical spin contrast to date is 36% from Jaskula et al. [58]. This presents
a significant improvement that benefits sensitivity and computation (via readout
fidelity). The calculation of fidelity and contrast both dictate the requirements of
the SCC protocol. The three main factors that improve fidelity and contrast include:
smaller linewidth broadening, increasing photoionization probability and increasing
the energy splitting in the low lying conduction band states.

Readout fidelity is one of the main limiting factors in NV performance for a variety
of quantum technologies. Typically in the NV, spin readout occurs when the electron
is pumped into the singlet levels from the triplet manifold via an ISC. The branching
ratio in the ISC reduces the probability of electrons transitioning to the singlet from
the ms = ±1, reducing overall contrast [37]. This SCC protocol avoids this issue by
performing a single transition photoionization that avoids the ISC altogether. It is
only achievable with the electrode as the two spectral lines need to be distinguishable
and this is only achieved with discrete, wide-gap conduction band energy levels.
Achieving this high readout fidelity SCC using an external electrode is possible as
long as the electrode remains stable, the diamond is at cryogenic temperatures and
is engineered with a nitrogen donor layer with a surface trap density of 1015 m−2.
Future work would involve engineering the electrode, measuring confinement and
then fully realising the design parameters for the SCC readout protocol. All these
requirements are achievable, offering great potential for the future of NV technology.
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Chapter 4

Photoionization spectroscopy of
NV singlet levels

Whilst photoionization is the key mechanism in the SCC protocol, photoionization has
additional uses for understanding the NV itself. Decades of research in various forms
has been accumulated to understand the NV energy structure which in turn allows
for the various spin readout protocols that are used routinely in quantum experiments
and applications [25]. There are, however, still aspects of the NV energy structure that
remain unknown, in particular, the precise nature of the NV inter-system crossing
(ISC). From Goldman et al. the upper ISC rate from a purely spin-orbit interaction
can be described using Fermi’s golden rule [37]:

ΓISC = 4πh̄λ2
⊥∑

n

∣∣ 〈χ0|χν〉
∣∣2δ(ν− ∆), (4.1)

where λ⊥ is the transverse spin-orbit coupling rate, 〈χ0| is the wavefunction of
the vibrational state above the electronic triplet state and |χν〉 is the wavefunction of
the vibrational state that is ν in energy above the upper singlet state. In the spin-orbit
interaction, the electron passes from the excited triplet state into an excited vibrational
state of the upper singlet where it then decays into the upper 1A1 state. The process
in the lower ISC is largely the same and other ISC processes can occur where an
electron-phonon interaction causes mixing of states in the triplet before undergoing
the spin-orbit interaction. However, the spin-orbit interaction is the key to all ISC
processes and one of the main values required to understand and properly quantify
this process is the energy splitting, ∆, of the electronic states in the ISC. Whilst the
splitting in the singlet states is well known at 1042 nm (1.2 eV) [25, 37] the position of
the singlet energy levels relative to the triplet states is not very well known. Theoretical
modelling places the energy gap from the triplet to the singlets from 344 to 430 meV
[37]. Understanding this energy gap precisely helps complete the understanding of
the NV and allows for improved NV experiments. One experiment that could see
improvement is measuring and calculating the ISC rates from the triplet to the singlet
states more accurately to improve spin contrast [37]. Another is understanding the
energy gap for improved photoionization out of the NV singlet states into the diamond
conduction band. This information can be used to create a room temperature SCC

107
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technique which is considered in chapter 5. Finally, understanding the ISC process
allows for a better understanding of other defects in other materials. Whilst the NV is
a prominent and very useful defect in diamond, it is not necessarily the ideal defect for
performing quantum operations. There are a number of defects in diamond and other
materials which are largely unknown in their structure and properties. Understanding
this non-radiative process allows for theoretical and experimental investigations to be
performed to discover a variety of atomic defects which could create sensors or qubits
that are comparable or higher quality compared to the NV.

In this chapter, a photoionization readout protocol is developed with the goal
of understanding and quantifying the energy gap from the lower singlet 1E to the
ground state 3A2. The basic principle is to discover the minimum energy required
to ionise out of these states individually. The first step of the experiment would be
to initialise the NV into the ground state and use a laser with a very high spectral
resolution to sweep frequencies until the minimum energy to ionise out the ground
state is achieved (figure 4.1a)/b)). The second step is to initialise the NV into the
singlet 1E state and perform the same ionisation sweep to find the minimum energy
to ionise out of the singlet state (figure 4.1c)/d)). The difference in energy of the
two ionisations is equal to the energy gap between the two states due to Koopman’s
theorem [114]. This experiment is initially performed at room temperature to get a
rough idea of the energy levels and then repeated at cryogenic temperatures to reduce
electron-phonon broadening and obtain a more accurate measurement.

In section 4.1, the experimental design is described. This includes an explana-
tion for some of the technical equipment required as well as a basic description of
Koopman’s theorem and how it is applied to the experiment. In section 4.2 the high-
temperature diamond vibronic band is studied to predict the effect of electron-phonon
broadening on the ionisation measurements. Finally, in section 4.2 the preliminary
setup and results are analysed and the future of the experiment is outlined. This
includes the steps that remain to be undertaken as well as experimental additions that
can improve the measurement.
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Figure 4.1: Image of the ionisation experiment. The first step is to find the ionisation
energy of the 3A2 ground state to the ionised 2E+e state by applying a laser that
sweeps from 460-495 nm which is the range predicted which will ionise the NV from
the ground state. The energy diagram a) shows the ionisation process and the pulse
sequence, b), outlines the light blue laser used for ionisation along with the green
532 nm laser for charge state initialisation and the orange 595 nm laser for charge
state readout. The second ionisation process is shown with the energy diagram c) and
associated pulse sequence d). In this experiment, the NV electron is initialised into
the 1E singlet state with a dark blue microwave pulse, a green laser pulse and the
black ISC process. Once initialised the yellow pulse ionises the laser. Similar to the
first experiment, the charge state is initialised with a green laser and readout with
the 595 nm orange laser. The difference in ionisation energies of the two processes is

equal to the energy gap between the 1E state and the 3A2 state.

4.1 Experimental design and aims

Figure 4.1 shows the ionisation experiment which is broken up into two separate pulse
sequences. Figure 4.1a) shows the energy diagram for the first ionisation sequence and
figure 4.1b) shows its associated pulse sequence. The goal of the first experiment is to
find the ionisation energy from the ground state 3A2 level to the diamond conduction
band which would ionise the NV into the neutral 2E state with an electron in the
conduction band. To achieve this, a number of laser pulses are required. The first
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pulse is a green laser that initialises the NV into the negatively charged state with
≈75% probability [7], continuous cycling of the green laser will also initialise the NV
into the ground state ms = 0 (chapter 1, section 1.2). The second pulse in the sequence
is the light blue ionisation pulse after which a 595 nm laser is used to measure the
charge state of the NV which in turn, will measure if the ionisation has occurred. The
595 nm wavelength is chosen as it is maximally absorbed in the NV− state compared
to the NV0 state, thus creating the highest level of optical contrast in the charge state
readout [7]. This sequence is then repeated many times, where in each successive run,
the wavelength of the ionisation process is altered by 1 nm from 460 nm to 495 nm.
The range is chosen as the predicted range for the ionisation energy based on previous
experiments [7].

Figure 4.1c) shows the energy diagram for the second ionisation sequence with
the associated pulse sequence in figure 4.1d). In this part of the experiment, the goal
is to initialise the electron into the lower singlet state and ionise from that state. To
achieve this, the NV is initialised into the ground state ms = 0 using the same green
laser pulse and a combination of a microwave (dark blue) and green laser is used to
pump the electron into the excited ms = ±1 state. From there, the electron moves
into the singlet states via the ISC process and is then an ionisation laser (yellow)
is used to excite the electron into the conduction band and the NV charge state is
measured with the same 595 nm charge state readout laser. Similar to the previous
experiment, the ionisation laser is swept from 570 to 620 nm in increments of 1 nm
to find the precise energy for the ionisation process. Once the ionisation energy is
known for both experiments, the difference in energy can be taken to find the energy
difference between the associated 2E and 3A2 states in the NV. With this knowledge,
the difference from the upper 3E and 1A1 can also be calculated by simply taking the
difference from the triplet ZPL (1.9 eV) from the combined ZPL of the singlet state
and the energy difference of the lower ISC gap calculated in the experiment. The
connection from the ionisation energy to the energy difference in the NV electronic
states can be attributed to Koopman’s theorem.

Koopman’s theorem is a theory of ionisation that builds from the Hartree-Fock
theory for describing the wavefunctions of multi-body systems. Koopman’s theorem
states that the first ionisation energy of a molecular system is equal to the negative
of the orbital energy of the highest occupied molecular orbital (HOMO) [114]. In the
context of the NV, it means that the energy of ionisation from an occupied orbital
in the NV is equal to the negative of the energy of the orbital which is removed
during the ionisation process. Thus, the energy difference of two separate ionisation
events is equal to the energy difference of the two removed orbital states or the energy
gap between them. Koopman’s theory derives from Hartree-Fock theory and shares
the same assumptions. In Hartree-Fock theory, multi-body wavefunctions can be
calculated using the Schrodinger equation where each particle is described by its
kinetic energy, potential energy and a single matrix of particle interactions called
a Slater determinant where each correlation between particles can be described as
an average of all the particle interactions together. In this formalism, the orbitals of
the ionised state are identical (or close to) the orbitals of the neutral state. During
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ionisation, the change in the energy structure can be described accurately using a new
Hartree-Fock equation and the effects of individual electron correlations altering the
energy structure (and by extension the ionisation energies) can be ignored. Hartree-
Fock theory (and by extension, Koopman’s theory) works in situations where the
electron interactions can be described by a single Slater determinant in which all the
electron interactions are described by a single averaged value. The theory breaks
down in situations where the electron interactions are highly correlated and can’t be
averaged such as those found in Mott-insulators or superconductors, neither of which
apply to the diamond in ambient conditions. The theory also breaks down when
multiple Slater determinants are required to model a system such as excited systems
where the excitation can come from many different lower-lying electron states. The
ionisation in this experiment comes from the ground state as well as an excited singlet
state that can only be populated from a single excitation pathway, so a single Slater
determinant would still apply and Koopman’s theory is applicable.

The ionisation laser used in the experiment is a C-Wave Vis OPO laser from
Hübner photonics. The laser operates using the principles of an optical parametric
oscillator (OPO). OPO lasers take an input laser (in this case a 532 nm green laser) and
convert it into two output frequencies called a "signal" and "idler" whose frequencies
sum to the input laser. The conversion occurs via a cavity with a non-linear optical
crystal which converts the input laser via a second-order nonlinear optical interaction.
By changing the temperature or the orientations of the crystal, the mixing of the input,
signal or idle frequencies change. By out-coupling the signal laser and using the
altering properties of the crystal the laser achieves the means of frequency sweeping
for the experiment [120]. The C-Wave Vis OPO output has a wavelength range from
450 nm up to 3.5µm with a 1 nm resolution and a < 500 kHz linewidth.

All the excitation lasers are focused into the diamond sample via a single multi-
mode fiber and an achromatic objective lens. This equipment helps to focus the
laser power into roughly the same place regardless of the laser wavelength. The
ionisation process is power dependent so it is important to be able to focus the laser
energy into the same NV spot whilst changing the ionisation laser wavelength. If
the changing wavelength alters the focal spot too much, then the reduction in laser
power may not ionise the NV and cause a false readout. The microwave delivery
system is achieved using copper wire over the diamond sample and the cryogenic
cooling is performed using a flow cryostat. With the sweeping laser frequencies
and extra equipment required to achieve good NV excitation, it is clear that this
experiment is time-consuming and complex. The addition of the cryostat complicates
the experiment further as all optical excitations and emissions are reduced when
passing optical signals through the cryostat itself. It is for this reason that an extensive
study at room temperature is undertaken. Whilst electron-phonon broadening will
reduce the accuracy of the ionisation energies, the wide range of laser wavelengths
required in the ionisation process means that the laser sweeping is time-consuming
and prone to experimental error. This is especially true when using a cryostat where
the optical quality is substantially reduced, due to the difficulty of getting optical
pulses in and out of the cryostat itself. The idea is to obtain a rough idea of the
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ionisation energies at room temperature then repeat the experiment at cryogenic
temperatures with a reduced range of ionisation energies to obtain a more accurate
readout. Future experiments which involve the electrode at cryogenic temperatures
for even greater accuracy are considered in section 4.3.

In both experiments the charge state readout is performed in two parts, the initial
sequence is the control experiment where the pulse sequence is performed without
the ionisation pulses and the second sequence is performed with the ionisation pulse.
Over a number of repetitions in the experiment, the repetitions will build statistics on
the probability of the NV charge state, the two separate charge state readouts allow
for a comparison that can be used to identify the charge state with high fidelity.

4.2 Diamond vibronic structure

Recall from section 3.2 the density of states for a bulk diamond at room temperature
can be calculated to be:

ρb(E) =
V

2(2π)2

(2m
h̄2

)3/2√
E, (4.2)

where V is the volume of the diamond, m is the electron effective mass, and E is
the energy of ionisation from an NV state relative to the conduction band minimum.
The key aspect of this equation is that the density of states is zero until the energy
reaches the minimum ionisation energy and increases with

√
E. Recall also from the

same section that the transition rate or probability of exciting into a particular state in
the bulk diamond conduction band can be expressed in terms of the density of states:

Λb =
2π

h̄
ρb(E)

∣∣∣µbC(E)

√
Vc

V
Fb(r)E(E)

∣∣∣2, (4.3)

where µb is the transition dipole moment, E(E) is the electric field from the laser,
Vc is the volume of the diamond unit cell, Fb(r) is the conduction band envelope func-
tion (which in bulk diamond is one) and C(E) is the dimensionless Franck-Condon
factor which describes the overlap of vibrational states under a Born-Oppenheimer ap-
proximation. As shown in section 3.2, at room temperature, the transition probability
for ionisation from the NV to the bulk diamond conduction band will increase with√

E (see figure 4.2). In an ideal case, if we are ionising from any state in the NV using
a laser with a sweeping energy, then we would expect no ionization until we reach the
minimum ionization energy to excite into the diamond conduction band. After that,
there is a continuum of states to ionize into so we expect a rapidly rising ionization
probability with energy that increases as

√
E, following the density of states.

In section 3.3 we considered how discretised conduction band ionisations are
broadened by electron-phonon (e-p) scattering. In this section, we consider e-p
scattering for bulk diamond and how it will broaden the ionisation threshold at
high temperatures, creating a larger slope in figure 4.2 at the onset of ionisation and
lowering the accuracy of the first ionisation energy. To achieve this, a detailed study
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Figure 4.2: Plot of the transition rate as a function of energy taken from equation 4.3.
Note the transition rate follows a

√
E function from the density of states equation 4.2.

Also note that the transition rate only begins at the minimum energy for ionisation
out of the NV ground state, 2.6 eV [7].

of the NV-diamond absorption band is undertaken.
Figure 4.3 illustrates the concept of vibronic transitions in the NV. The two curves

are the electronic levels of the NV ground and excited state labelled EHR
3 A2

(Q) and
EHR

3E (Q) respectively. These labels indicate electronic energy (E) level in the Huang-
Rhys model and are a function of the effective nuclear displacement coordinates of
the NV and diamond lattice, Q. Within each electronic level are a number of extra
vibrational levels indicated by the horizontal lines where the Stokes and anti-Stokes
shifted energies of the vertical transitions (solid lines) are indicated with the ∆S and
∆AS terms respectively. The key to e-p scattering is the transitions between the two
electronic states. In a pure electronic transition, the excitation would occur from the
0th vibronic ground state to the 0th vibronic excited state (diagonal line). If there is an
excitation from the first vibrational ground state to the first vibrational excited state
then the energy gap would be the same. However, if the excitation occurs to different
vibrationally excited states such as the ones shown by the vertical solid lines then the
energy gap between them will be higher or lower than the pure electronic transition
which has the effect of broadening the excitation energy linewidth. Excitations that
create phonons, such as the long vertical line are Stoked shifted transitions and are
known as cold-band absorptions. Excitations that remove phonons, such as the short
vertical line are anti-Stoked shifted transitions are known as hot-band absorptions.
These vibronic transitions create the broad absorption band of figure 1.1 in section
1.2. These transitions can occur in vibrational states of the ground and excited states
within the NV such as those shown in the figure or they can occur in other states
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Figure 4.3: Diagram of the vibrational structure of the 3A2 and 3E levels in the NV
as a function of the energy E and nuclear displacement coordinate Q. The electronic
levels are represented by the curved line and within each curved line are a number of
vibrational excited states. This energy structure allows for a number of transitions
that correspond to the Stokes (∆S) and anti-Stokes (∆AS) shifted transitions where an
electronic transition is accompanied by a process that either produced or annihilates
a phonon. A transition that features no phonon interaction is represented by the
diagonal arrow between electronic states. The long and short vertical arrows between
electronic states represent the cold band (phonon producing) and hot band (phonon

destroying) transitions.

such as an NV electronic state and a conduction band state in the diamond during
ionisation.

Figure 4.4 is a reproduced plot of various cross-sections in the NV taken from
Razinkovas et al. at 0 K [95]. The plot shows the absorption cross-section (green) which
is similar to the room temperature values from figure 1.1 of section 1.2, however, at 0 K
the ZPL at ≈1.9 eV is effectively infinite and broadens with temperature. The plot also
shows the cross-sections for the stimulated emissions (orange) and photoionization
(blue).

Calculating the e-p scattering in bulk diamond at high temperatures is impractical
as there are an infinite number of vibronic wavefunctions from a continuum of
conduction band states to consider. However, the scattering can be understood
qualitatively by studying the diamond absorption band at different temperatures. To
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Figure 4.4: Image of the cross-sections for photoionization (blue), stimulated emission
(orange) and absorption (green) at 0 K. At this temperature, the absorption at the
ZPL (≈1.9 eV) is near unity, however, the photoionization is a smooth function at
almost all until it approaches the band gap from the NV to the lowest level conduction
band state (≈1.2 eV). The ratio of the photoionization cross-section to the absorption
cross-section at a given excitation energy taken from this data can be used as the σ

value in contrast calculations. Data reproduced from Razinkovas et al. [95].

calculate the absorption band we apply a similar approach from Davies et al. [20, 25]
which uses the Frank-Condon theory of electronic and vibrational interactions during
an electronic transition along with the Huang-Rhys model of transitions in a defect.
Recall that we are calculating the broad spectrum of transitions that occur when an
electronic transition interacts with phonon modes in a lattice. The theory states with
a temperature-dependent electron-phonon coupling, the function that describes the
vibrational overlap is given by:

F(ω, T) = e−S
∞

∑
i=1

Si

i!
Fi(ω, T), (4.4)

where S is the average Huang-Rhys factor. The Huang-Rhys factor is a measure of
the interaction of defect electrons with phonons in a crystal lattice [55] and can be
expressed with the following:

S =
∫ Ω

0

(
2n(ω, T) + 1

)
f (ω)dω, (4.5)
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where n(ω, T) = 1/(eE/kbT − 1) is the temperature-dependent Bose-Einstein distri-
bution of phonons and f (ω) is the low temperature one-phonon sideband function.
This function describes the single electronic transition that can either create or anni-
hilate a single phonon. It can be approximated by deconvolving the 0 K absorption
sideband given in figure 4.4 [95]. The temperature-dependent function describing the
vibrational overlap of an electronic transition with one phonon can then be expressed
as:

F1(ω, T) =

{(
n(ω, T) + 1

)
f (ω) ω > 0

n(−ω, T) f (−ω) ω < 0
, (4.6)

where the negative frequency −ω allows for the annihilation of phonons and sets
ω as the transition frequency relative to the zero phonon transition frequency.

To obtain the function for a two phonon interaction equation 5.14 is then convolved
with itself:

F2[ω, T] = F1(ω, T) ∗ F1(ω, T) =
∫ ∞

∞
F1(ω− x, T)F1(ω, T)dx, (4.7)

then to obtain any arbitrary number of phonon interactions, equation 4.6 is simply
convolved with itself the number of times required to obtain Fi(ω, T). By using the
experimentally obtained Huang-Rhys factor of 3.49 [63], setting the temperature to
0 K and convolving the solution eight times the absorption spectrum shown in figure
4.4 can be reproduced. This equation predicts the absorption spectra for the electronic
transition in the NV. However, we are more interested in the ionization spectra, in
particular, the ionization onset to observe the effect of e-p broadening. To achieve this,
we simply follow the same pattern we did before, but instead of overlapping electronic
states of the NV, we are overlapping the NV electronic state and the ionization state
of the conduction band minimum:

In[ω, T] = Fn(ω, T) ∗ ρ(E)|E=Et =
∫ ∞

∞
Fn(ω− x, T)ρ(E)|E=Et dx, (4.8)

where Et indicates the threshold energy to ionise from an NV state to the conduc-
tion band minimum. The main assumption in this calculation is that the vibronic
energy levels are the same as for the NV electronic states as we don’t explicitly know
the CBM vibronic levels. This assumption works for different NV energy levels (e.g.
the 1E and the 3E vibronic states are mostly the same), but it is an assumption when
comparing the vibronic levels of the NV to the CBM.

Figure 4.5 shows the results of the convolution equation 4.8 calculated over a
variety of different temperatures. The energy has been shifted such that 0 meV
corresponds to the onset of ionisation and the inset shows the region we are most
interested in, which is the ionisation cross-section at a small range of energies around
the ionisation threshold. At 0 to 100 K the onset of ionisation is sharp, with a zero
cross-section value in the energies lower than the threshold and a sharp increase in
ionisation rate for energies larger than the threshold. At higher temperatures (200 to
300 K) we can observe the onset of ionisation at energies below the threshold and
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Figure 4.5: Ionization rate as a function of the energy of the ionization laser calculated
for different temperatures. The left image is the full ionization spectrum and the right
image is a closer look at the energies around the ionization threshold. The energy
is shifted so that 0 meV corresponds to the minimum energy required to perform
ionization from the NV to the diamond conduction band. At 0 K, there is no ionization
until the 0 meV then a sharp increase in the ionization rate. At higher temperatures,
the ionization curve becomes smoother with more ionization occurring below the
threshold, this can obscure measurement of the ionization onset and is due to e-p

broadening.

a broader ionisation curve for energies higher than the threshold. This corresponds
to hot-band absorption and cold-band absorption respectively. Whilst this effect is
measurable, it is important to note that the change in absorption cross-section is less
than 1 µeV which is much smaller than the 1 nm changes to the laser output being
performed in the experiment, so the effect of e-p scattering at high temperature will
not be significant.

4.3 Discussion and future direction

From a purely theoretical perspective, this photoionization experiment requires
lengthy consideration and calculations before even attempting an experiment. The
process requires an understanding of NV energy structure and the ISC process, it
requires an understanding of the ionisation process and its effect on the energy struc-
ture via Koopman’s theorem and it requires a calculation of the diamond vibronic
structure to make predictions of the effects of e-p scattering. From an experimental
perspective, there are many additional considerations including the use of specialised
optical equipment such as the high spectral resolution laser and cooling devices such
as the cryostat. The work performed in this chapter lays the groundwork for the
photoionization experiment and makes predictions on the future results which can be
analysed.

Future work requires the completion of the experiment itself, this includes the
initial experiments at room temperature followed by the higher accuracy experiments
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performed at low temperature in the cryostat. Care will need to be maintained
to ensure that the laser power for all the lasers remains constant throughout the
experiment even when sweeping frequency in order to eliminate changing laser power
as a variable for ionisation. The data analysis after the experiment will also require
careful consideration; mainly in regards to defining the optical thresholding for each
charge state. This will define the overall probability that an ionisation occurred for a
given laser energy which will, in turn, define the overall energy gap in NV structure.

Future work can also include different means of improving the ionisation and
readout process. In chapter 3 the photoionization rate was improved by performing
resonant ionisation on a discretised conduction band. This concept can be applied
to the experiment as increased ionisation rates will improve the charge state readout
and subsequent readout of the energy splitting. The photoionization experiment will
already be undertaken at cryogenic temperatures, the other additions required for
resonant ionisation is the application of the electrode to the diamond surface and
the treatment of the diamond to reduce surface charge noise which was discussed in
section 3.3.

Optical spectroscopy is a key foundation in understanding atomic structure which
drives all quantum operations. This is especially prevalent in defect spectroscopy
as atomic defects can be difficult to understand, which affects their applicability.
Photoionization spectroscopy provides a convenient way of understanding defect
energy transitions that don’t necessarily have radiative components such as the inter-
system crossing. Photoionization of the NV allows for a better understanding of the
defects themselves, allowing for a range of improved quantum applications in sensing
and computing. The techniques used in this research can be verified and applied
to a range of other atomic defects for better understanding. Whilst this chapter
is still focused on NV physics, the results and techniques generated in this study
can be generalised to many other spectroscopic experiments, making this chapter a
foundational approach to optical spectroscopy.

Draft Copy – 15 September 2022



Chapter 5

Electrode based ambient SCC

One of the major benefits of chapter 4 is an accurate value of the ionisation energy
from the lower state singlet in the NV to the diamond conduction band. With this
knowledge, an SCC protocol can be developed for ambient conditions in the NV.
Recall that in chapter 3 a high contrast/fidelity SCC protocol was developed, but it
was only possible at cryogenic temperatures, making the technique unusable in a
variety of conditions (e.g. biological sensing). As spin readout fidelity is still an issue
with the NV at ambient conditions, a means of improving this increases the sensitivity
of the NV and increases its applicability in different conditions.

In this chapter, we develop an SCC protocol using the electrode at ambient
conditions. In chapter 3 the role of the electrode potential was to discretise the
diamond conduction band for resonant photoionization. In this work, we apply
a larger electrode potential to shift the NV energy levels relative to the diamond
conduction band in order to alter the photoionization probabilities and maximise
charge state control. To understand this process we need to only refer to the effective
mass equation derived in section 3.1:

(
T(~r) + V(~r)

)
Fn(~r) = EnFn(~r), (5.1)

where T(~r) is the kinetic energy of a free electron, Fn(~r) is the envelope function
of the diamond, V(~r) is the external potential from an electrode which will in turn,
alter the total energy, En. This equation states that the position of the energy level
relative to the NV energy levels can change in the presence of an external potential
from the electrode.

It’s important to note that discretisation of the diamond conduction band won’t
occur as at ambient conditions the electron-phonon broadening will be so large that
individual states will not be distinguishable. So the goal is to non-resonantly ionise
into the conduction band. The key to this method is to pump the NV electron into the
singlet state via the spin selective inter-system crossing (ISC) and from there, ionise the
electron into the diamond conduction band (figure 5.1c)). Thus this work follows from
chapter 4 as the spin state initialisation process is the same and the ionization energy
from the singlet state to the first conduction band states is required. The electrode
creates shifts in the NV energy levels which prevent cross-talk where the ionization
pulse excites a different transition in the NV (detailed in section 5.1). The electrode
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120 Electrode based ambient SCC

can also be used to prevent unwanted two-photon ionization where ionization occurs
in the NV triplet manifold instead of the singlet manifold, introducing noise in the
charge state readout. The resultant spin optical contrast is lower than the reported
values in chapter 3 ( 42% contrast vs 85% using the cryogenic method), however, the
improvement is still significant compared to other techniques and the protocol can be
used in ambient conditions, making them more widely applicable.

The SCC protocol is developed using extensive theoretical modelling. In section
5.1 the protocol is outlined and the concept of rate equation modelling is described
which is the main methodology for calculating optical spin contrast. In section 5.2,
the rate equation modelling is applied to calculate the spin contrast of the protocol
where the electrode only affects the rate of cross-talk in the system. This calculation is
performed in a way that optimises over a variety of conditions including laser power,
pulse times, and wavelength. In section 5.3, the SCC protocol is critically compared to
an experimentally proven alternative performed by Jaskula et al. [58] by applying an
alternate rate equation. In both sections, the ratio of photoionization to absorption is
calculated by studying the absorption phonon side-band in the NV. The final result
made is that our SCC protocol can outperform the other method with a theoretical
spin contrast of 42% compared to 37% (the experimentally realised value being
36%[58]), however, our method does require more equipment with the use of the
electrode. This translates to a 1.6 fold improvement in DC magnetic field sensitivity
compared to a 1.2 fold increase shown by Jaskula et al. Finally, in section 5.4, further
considerations for improving spin contrast by altering the lasers used and/or the
electrode potential during the SCC protocol are considered. In addition to this, a
concept for using the electrode to increase NV charge state control is examined, which
has been considered to improve NV optical collection efficiency and coherence time.
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Figure 5.1: a) Image of the electrode over the diamond substrate where the main
cylindrical electrode is over a near-surface NV and the electrode wire connects to a
power supply which provides the electrode potential. b) Diagram of the NV energy
level structure where a positive potential raises the NV levels to a new value (dashed
lines). Note that the triplet splitting does not change (≈2.0 eV) as the ground and
excited triplet levels rise by the same amount. The energy difference from the lower
state 1E raises from 2.1 eV to 2.1-X eV, where X is the energy provided by the electrode.
This has the effect of separating the transition energy of the singlet ionization and the
triplet excitation. c) Energy diagram depicting the SCC protocol. The NV is initialised
into the 1E singlet state with a green laser and microwaves (blue) where it is then
ionised with a high power laser (yellow) into the NV0 2E state with an electron in the
diamond conduction band. The charge state of the NV is then readout with a 595 nm
orange laser pulse. The Pulse sequence for the same SCC protocol in c) is shown in d).

5.1 SCC protocol and Rate equation theory

The SCC protocol presented in this work is largely inspired by Hopper et al. [53],
in their work, near-infrared (1064 nm) lasers were used with conventional optics for
two purposes. The first was to increase the rate of recombination to increase the
probability of NV− in a charge state readout. This was successful, increasing the
steady state NV− population from 77% (using conventional green optical cycling) to
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91% [53]. The second purpose was to initialise an electron in the NV into the singlet
state using conventional means and ionize the defect using the near infrared-laser
with two-photon excitation, thus allowing for an SCC protocol very similar to the
one considered in this thesis. This work was also somewhat successful with an
experimentally realised optical spin contrast of 25%, equivalent to that of conventional
optical spin cycling techniques [10, 58].

The major drawback to this method is the probability of ionisation with the near-
infrared laser. From the paper, the probability of ionizing out of the singlet with a
single ionization pulse is 6%, which raises to 32% with a pulse train (considered in
section 5.2). This low ionization probability increases the probability of a false readout
as the subsequent charge state readout registers NV− when the desired outcome was
ionisation, obtaining NV0 (i.e. mapping the wrong spin state to the wrong charge
state). One of the major issues with ionization from the singlet state and the reason
for the near-infrared laser is the NV triplet absorption band. Recall from section 1.2,
figure 1.1, the NV has a ZPL of 637 nm ( 2.0 eV) and can be excited by broadband
of energies both higher and lower than the ZPL. The predicted energy gap from
the singlet state to the first diamond conduction band states is ≈570 nm ( 2.1 eV)
which from figure 1.1, has a higher absorption cross-section than the ZPL itself. This
means that when ionizing from the singlet with an energy that has a high ionization
cross-section, the probability of exciting the NV triplet energy is also very high. The
solution in Hopper et al. was to choose an ionization laser that has effectively no
absorption cross-section at the cost of a low ionization cross-section.

The solution in our work is to shift the photoionization energy level with the use of
an electrode (figure 5.1a). At high electrode potentials, the energy levels in the NV will
shift relative to the diamond conduction band (figure 5.1b). Positive potentials will
shift the energy closer to the conduction band, increasing photoionization probability
whereas negative potentials will have the opposite effect. This allows us to selectively
change the ratio of photoionization to absorption cross-section in order to maximise
or minimise ionization. By adding a potential that shifts the NV energies towards the
diamond conduction band, the singlet ionization energy gap will go below 2.0 eV. If
the energy gap is low enough, then the absorption cross-section will be effectively zero,
allowing for a higher probability ionization, with low levels of cross-talk, resulting in
a high optical spin contrast which we can calculate.

A successful SCC protocol is one in which the probability of an electron being in a
particular state at the time of readout is at the highest possible value. In chapter 3,
optical spin contrast is relatively straightforward to calculate as there was only one
transition to optimise which was the resonant transition from the NV triplet ground
state directly into the diamond conduction band for both spin states. The process for
calculating optical spin contrast in this SCC method is a little different as the idea is
to pump the NV electron into a particular state, then ionise. As a result, there are a
number of steps to optimise both when considering the ms = 0 pathway as well as the
ms = ±1 pathway. The overall optical spin contrast is calculated with the following:

C = p1 − p0, (5.2)
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where p1 is the probability of the NV being in the neutral charge state when it
is initialised into the ms = ±1 state and p0 is the probability of the NV being in the
neutral charge state when it is initialised into the ms = 0 state.

To calculate this contrast we will apply Einstein coefficients in the weak field
limit to create a rate equation that describes the probability of the electron existing
in a particular energy state in time [29]. To get an understanding of rate equation
modelling, consider a two-level system with a probability for existing in the ground
state given by P1 and a probability for existing in the excited state given by P2. When
the electron is in the excited state, we can express the rate of its spontaneous emission
with the following expression:

dP2

dt
= A21P2 (5.3)

where A21 is the Einstein coefficient for the decay rate from the excited (2) to the
ground (1) state. This equation can be solved to give an exponential decay rate with
a decay constant τ = 1/A21 where τ is the radiative lifetime of the state. From the
ground state, a similar equation can be made for the probability of absorbing a photon
and exciting the electron out of the ground state:

dP1

dt
= −B12P1µ(ω), (5.4)

where B12 is the Einstein coefficient for absorption and µ(ω) is the spectral density
of excitation source (e.g. a laser) with a mean frequency of ω. The B12 term is
effectively the capture cross-section (i.e. the probability of absorbing a photon) and
the µ(ω) term is the rate of photons incident on the atom (i.e. the laser power). If
one were to illuminate the two-level system such that the absorption and illumination
reached a steady state then the system could be expressed in the following way:

d~P
dt

=

(
−B12µ(ω) A21

B12µ(ω) −A21

)
~P, (5.5)

where ~P is a vector of P1 and P2. In this rate equation, spontaneous emission is
ignored and the rate of absorption and emission creates an equilibrium. This can be
solved to obtain the probabilities of the electron being in either of the two states.

This methodology can be applied to the NV, however, it is more complicated as
there are multiple sources of excitation (green laser pumping, microwave sources
and ionizing lasers) as well as multiple energy states with various forms of decay
(e.g. radiative and non-radiative decay pathways). Thus, similar to the two-level
system. The goal is to make a vector of all the NV energy levels we want to study,
as well as their various decay pathways and the various pulses we want to apply to
them. Once this is achieved, the probability vector is solved numerically using matrix
exponentials.

Figure 5.2 shows the energy level diagram for the rate equation model being used
in this simulation. The energy levels are mostly the same as shown in other parts of
this thesis, with the degenerate ±1 spin levels and the 2E+e energy level representing
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Figure 5.2: Image of the NV states considered in the rate equation model with the
various transitions labelled including the ionised NV0 2E state with an electron (e)
in the conduction band. Note in the rate equation the excited singlet 1A1 level is
removed for computational simplicity. The solid arrows indicate radiative transitions
for both excitations and emissions whereas the dotted lines indicate non-radiative

ISCs.

the ionised NV0 state with an electron in the diamond conduction band. This system
features labels that represent the various excitations and relaxation pathways expected
in the SCC protocol. The green X terms represent the spin selective excitation from
a green laser which excites the triplet manifold but also excites from the 3A2 to
the 2E state via two-photon ionization. The ratio of absorption in the triplet to the
two-photon ionization is given by σ:

σ = σI/σA, (5.6)

where σA is the absorption cross-section and σI is the photoionization cross-section.
Note that the microwave pulse that performs the spin manipulation is implicit in
this model and is assumed to excite with 100% probability [124]. Also, note that
the excitations are a single constant representing both the photon capture Einstein
coefficient as well as the energy spectral density. The red R terms represent the
radiative emission pathway and the U/L terms represent the spin-orbit non-radiative
inter-system crossing (ISC). Note that in this model the excited 1A1 level is removed
for computational simplicity, as the decay rate is so fast from the 1A1 to the 1E state
compared to all levels that the pathway to the 1E state is effectively instantaneous
[119]. Finally, the yellow I terms represents the ionization pulse, which although is
≈570 nm without the electrode, should change in the presence of the electrode.

Each energy level has different sources/sinks that either populate or depopulate
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an electron from the level. These levels can be placed into a 6 level vector for all the
energy states and a 6x6 matrix that governs all the transitions between the states,
creating a rate equation similar to equation 5.5:

d~P
dt

=



−X 0 R 0 L0 0
0 −X 0 R L± 0
X 0 −(R + U0 + σX) 0 0 0
0 X 0 −(R + U± + σX) 0 0
0 0 U0 U± −(L0 + L± + I) 0
0 0 σX σX I 0


~P,

(5.7)
if we call the matrix in equation 5.7 M and over some time period, M becomes

constant (steady state approximation) then ~P can be solved using the following matrix
exponential:

~P(t) = eMt · ~P(0), (5.8)

which can be achieved numerically. The initial condition ~P(0) is the vector state
representing where the electron population is at the beginning of the protocol. In
this work, we assume that the electron in the NV can be initialised into a particular
spin state with 100% fidelity. Whilst this isn’t precisely true, it can be achieved with
near-unity fidelity with careful manipulations [54]. As a result, The initial states in
this system are the following:

~P(0)|ms=0 =



1
0
0
0
0
0


, ~P(0)|ms=±1 =



0
1
0
0
0
0


, (5.9)

where ~P(0)|ms=0 is the initial state with all the electron population in the first
ms = 0 state and ~P(0)|ms=±1 is the initial state with all the electron population in
the second ms = ±1 state. The solution to equation 5.8 will give a vector of state
probabilities based on the values in the matrix as well as the initial conditions. In
this vector, the last entry corresponds to the probability of the electron existing in
the ionised state at the end of the SCC process. Thus, the spin optical contrast is
calculated to be:

C = P6|ms=±1 − P6|ms=0, (5.10)

where P6 is the sixth entry in the vector which is calculated after the process has
been solved for the spin zero case and the spin ±1 case.

The relaxation (R, U and L) rates are intrinsic properties of the NV that can be
found experimentally. The radiative relaxation rate used in this study is R = 65.3 MHz
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[117], the upper ISC rates are: U0 = 6.7 MHz and U± = 53 MHz, and the lower ISCs
are: L0 = 2.38 MHz and L± = 0.35 MHz [60]. For the excitations rates, X and I can be
expressed using the following:

X = γXµX , I = γIµI , (5.11)

where γX,I is the absorption cross-section for each laser and µX,I is the spectral
density for each laser, equivalent to the Einstein coefficient and spectral density in
equation 5.4. The cross-section is a constant factor dependent on the wavelength of
the laser and the spectral density is a variable dependent on the laser power as well
as the duration of the laser pulse, thus, these three factors are the main parameters
that are altered to optimise the SCC protocol. The choice of these values can have
dramatic effects on the overall optical spin contrast and so must be chosen carefully.
For example, powerful green (X) excitation lasers will improve initialisation into the
singlet state for ionization, however, it will also increase the two-photon ionization
rate σX. Alternatively, longer ionization pulses (I) can increase the ionization rate but
it is important to limit the pulse time to less than the lower singlet state lifetime of
≈200 ns [2] as further pulsing will have no ionization effect on an electron that has
decayed back into the ground state triplet. In section 5.2 the rate equation 5.7 is solved
in a variety of conditions and the ideal pulse rates and times are optimised to give the
highest possible optical spin contrast.

5.2 Rate equation modelling of electrode protocol

In order to solve equation 5.7 we need the ratio of the absorption to photoionization
cross-section (σ). This value tells us the probability of the electron being raised to
the excited triplet state or ionised into the diamond conduction band during green
excitation (X). Ideally, we want this value to be as low as possible as this will ionise
electrons in the ms = 0, lowering spin contrast. This value is typically set by the
intrinsic properties of the NV but can be theoretically altered by the electrode. In this
section, we solve for the optical spin contrast in the case where the electrode shifts the
NV levels to prevent cross-talk but doesn’t affect the two-photon ionization process.
This would be achieved with a two-step electrode potential, where the electrode is off
during the pumping phase but has a positive potential during the ionization phase.
In section 5.4 we consider the alternative where the electrode has a negative potential
during the pump phase, decreasing two-photon ionization and a positive potential
during the ionization phase, reducing cross-talk. The main purpose of this study is to
observe the SCC protocol in a regime where the effect of the electrode is relatively
well known. Shifting the energy levels to the point where two-photon ionization is
zero requires a very large electrode potential and may have unexpected consequences
on the energy levels, thus it is only considered conceptually in section 5.4.

To work out σ, the ratio of the absorption cross-section and the photoionization
cross-section is taken for a given excitation energy. To achieve this we need to calculate
the absorption sideband of the NV in a similar way that was performed in section
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4.2. Note that the ratio is the key data, not the cross-section itself, this means that the
units are not important as long as they are the same across the two data sets. The idea
is to re-create the NV absorption data from figure 4.4 for ambient conditions and take
the ratio at the energy of the green laser excitation (≈2.3 eV). As phonons broaden the
transition energies, the expectation is that at 300 K, the absorption cross-section will
look also to broaden, however, the photoionization cross-section is already smooth
and therefore isn’t expected to change with temperature. Recall from section 4.2 we
studied the absorption cross at room temperature by applying a similar calculation
from Davies et al. [20, 25] which uses the Frank-Condon theory of electronic and
vibrational interactions during an electronic transition along with the Huang-Rhys
model of transitions in a defect. The theory states with a temperature-dependent
electron-phonon coupling, the function that describes the vibrational overlap is given
by:

F(ω, T) = e−S
∞

∑
i=1

Si

i!
Fi(ω, T), (5.12)

where S is the average Huang-Rhys factor. The Huang-Rhys factor is a measure of
the interaction of defect electrons with phonons in a crystal lattice [55] and can be
expressed with the following:

S =
∫ Ω

0

(
2n(ω, T) + 1

)
f (ω)dω, (5.13)

where n(ω, T) = 1/(eE/kbT − 1) is the temperature-dependent Bose-Einstein distri-
bution of phonons and f (ω) is the low temperature one-phonon sideband function.
This function describes the single electronic transition that can either create or anni-
hilate a single phonon. It can be approximated by deconvolving the 0 K absorption
sideband given in figure 4.4 [95]. The temperature-dependent function describing the
vibrational overlap of an electronic transition with one phonon can then be expressed
as:

F1(ω, T) =

{(
n(ω, T) + 1

)
f (ω) ω > 0

n(−ω, T) f (−ω) ω < 0
, (5.14)

where the negative frequency −ω allows for the annihilation of phonons and sets
ω as the transition frequency relative to the zero phonon transition frequency.

To obtain the function for a two phonon interaction equation 5.14 is then convolved
with itself:

F2[ω, T] = F1(ω, T) ∗ F1(ω, T) =
∫ ∞

∞
F1(ω− x, T)F1(ω, T)dx, (5.15)

then to obtain any arbitrary number of phonon interactions, equation 5.14 is simply
convolved with itself the number of times required to obtain Fi(ω, T). By using the
experimentally obtained Huang-Rhys factor of 3.49 [63], setting the temperature to
0 K and convolving the solution eight times the absorption spectrum shown in figure
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4.4 can be reproduced. By keeping the same parameters but setting the temperature to
300 K we can obtain a new absorption side-band for the electron-phonon interactions
at high temperature.
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Figure 5.3: Plot of the absorption cross-section calculated using Huang-Rhys theory.
The yellow curve is the solution at 0 K and is a match for the absorption cross-section
data shown in figure 4.4. The blue curve is the same calculation performed at 300 K.
At higher temperatures, the data broadens, and lowers slightly in amplitude which is

expected.

Figure 5.3 shows the absorption spectrum for the NV across a range of electron
energies. The yellow curve shows the calculated absorption spectrum at 0 K which
is the same as the data taken from figure 4.4 without the ZPL. The blue curve
shows the same absorption spectrum calculated at 300 K. As expected, the data is
largely the same, but the higher temperature electron-phonon interactions broaden
the absorption spectrum. Whilst the ZPL is missing from both data sets, even at 300 K,
it is only about 1 THz in width [32]. Such a thin peak won’t contribute significantly
to the convolutions so the ZPLs are removed for computational simplicity. From
this data, the cross-section for absorption can be compared to the cross-section for
photoionization from figure 4.4 at 2.3 eV to obtain a ratio of ≈0.26. This ratio is then
used as the σ value in the rate equation modelling.

The rate equations were initially solved under different laser excitations and pump
times whilst keeping the other variables constant. The results of these studies help
validate the model and also inform future simulations of the ideal bounds for the
laser power and pulse times for optimisation studies. Figure 5.4 shows the transient
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Figure 5.4: Plots of the electron state probability for different green (X) excitation
powers are plotted over different pulse durations. The excitation powers used are a)
10 MHz, b) 57 MHz and c) 100 MHz and are plotted for the ms = ±1 initialisation (left)
and ms = 0 initialisation (right). The figures validate the model as the populations
follow an expected path, in addition, they also highlight how powerful green lasers
increase excited state population as well as ionised state population. This motivates a
choice of laser power and pulse time which maximises pumping into the singlet state

without causing ionisation.

evolution of the ground state (orange), excited-state (blue), singlet state (yellow) and
ionised state (purple) with changing green laser parameters. In this study, there is
no ionisation pulse (I=0 in the rate equation 5.7), the pulse times are varied from
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0 to 600 ns and the results are ordered in increasing intensity: 10 MHz (fig 5.4a)),
57 MHz (fig 5.4b)) and 100 MHz (fig 5.4c)). This study was done for the ms = ±1
initialisation (left images) and the ms = 0 initialisation (right images). The results
show that over time, the green excitation will shift the populations in an expected
way. The electron population begins in the ground state, in all simulations and decays
in time with the fastest decay occurring at the highest intensity, where the population
in the ground state becomes effectively zero. During this time, the excited state
population will rise but decays as the population moves from the excited state to
either the singlet state, the ionised state or back to the ground state. The singlet state
also increases during this time but decays as the lower ISC process move electrons out
of the singlet. Whilst the neutral state will decay eventually under optical illumination
due to recombination, its lifetime under these conditions is long compared to any
other state lifetime (on the order of milliseconds [7]). As a result, recombination is
ignored in this study so the probability of occupying the ionised state will increase
steadily during the whole process. The results also show the spin selectivity in the
upper ISC, as the population in the singlet state is higher for the ms = ±1 initialisation
compared to the ms = 0 initialisation which is expected. The results also show that
this selectivity is altered with green laser power. At low power there is less population
in the excited triplet state, thus reducing the amount of ISC, lowering the singlet
state population. At very high power there is the population in the excited state is
higher, but two-photon ionisation limits the excited state population and by extension,
the singlet state population. This means that a middle ground must be applied to
effectively pump electrons into the singlet state in a way that minimises two-photon
ionisation. Additionally, the time when the ionisation should occur is also important
as the maximum singlet state population only occurs at a particular point in time
before decaying back into the triplet manifold, providing a rough idea of how long
the excitation pulse should be as well as its power. Overall the results are expected
and help apply upper and lower bounds in the optimisation process for both pulse
power and pulse time.

To obtain an understanding of the effects of the ionisation laser a second study was
performed. In this study, the green excitation was performed with constant values and
an ionisation pulse was performed afterwards. To achieve a multiple pulse system,
we to create two separate rate equation matrices and apply them together with a dot
product:

~P(t) = eMiontion · eMpumptpump · ~P(0), (5.16)

where Mpump is the rate equation matrix from equation 5.7 with I=0, Mion is the
rate equation matrix where X=0 and each matrix is run for a specific amount of time,
tpump and tion (pulse duration). Figure 5.5 shows the solution of equation 5.16 under
different conditions for the ground state (orange), excited-state (blue) and ionised
state (yellow). In the plots, the excitation has already occurred and t=0 refers to
the time when the ionisation pulse starts. Thus, the initial populations are different
depending on the excitation conditions. Figure 5.5a) shows the ionisation dynamics

Draft Copy – 15 September 2022



§5.2 Rate equation modelling of electrode protocol 131

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.2

0.4

0.6

0.8

a)

b)

m  = 0s  X = 10 MHz     150 ns Pulse X = 10 MHz     150 ns Pulsem  = s ±1

m  = s ±1 m  = 0s  X = 10 MHz      70 ns Pulse X = 10 MHz     70 ns Pulse

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

Pulse time (μs) Pulse time (μs)

Pulse time (μs) Pulse time (μs)

Ground triplet

Excited triplet

NV0

0.0 0.05 0.10 0.15 0.20

0.0 0.05 0.10 0.15 0.20 0.0 0.05 0.10 0.15 0.20

0.0 0.05 0.10 0.15 0.20

Figure 5.5: Plots of the NV probabilities with the addition of an ionisation pulse. In
all the plots the ionisation is 100 MHz and pulses for up to 200 ns (x-axis). The top
images a), show the probabilities for a low, 10 MHz laser power with a 150 ns green
laser excitation. The bottom b) plots show the probabilities for the higher power,
57 MHz, with a 70 ns pulse. Both a) and b) are plotted for the ms = ±1 (left) and

ms = 0 (right) initialisation.

after a 10 MHz green laser pulse for 150 ns, figure 5.5b) shows the same dynamics after
a 57 MHz green laser excitation for 70 ns. Both simulations have an ionisation pulse
that is 100 MHz in power and pulses for up to 200 ns (the singlet state lifetime). In the
plots, relatively high ionisation laser ionises out of the singlet state, raising the ionised
population quickly which then saturates. This is expected, unlike the green laser
which can cause two separate transitions, with the electrode, the ionisation pulse only
creates one transition so there is less need to optimise as the ideal ionisation rate is the
maximum pulse power. At high power, the ionisation pulse ionises the singlet electron
and the saturation occurs due to the probability of the electron being in the singlet
state in the first place. In other words, if there is a 40% chance of the electron being
pumped into the singlet state, then the high power ionisation will excite the electron
into the conduction band with near 100% probability and the probability overall of
being the ionised state depends solely on the probability of pumping the electron into
the singlet state (40%). This is shown in the difference in ionised population from
figures 5.5a) and 5.5b) despite the same ionisation laser parameters. The only other
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path out of the singlet is the lower ISC, but if the ionisation pulse duration is much
lower than the singlet state lifetime, then this process can be ignored. This assumption
is valid as the speed at which the ionised state saturates happens within 50 ns in all
the figures. The other limitation to this process is the singlet state population that
occurs when the state is initialised into the ms = 0. Whilst there is higher ionised
population in the ms = ±1 initialisation, it is clear that there is still ionised population
in the ms = 0 initialisation. From the rates used in this study, it is known that the
branching ratio from ms = 0 excited state to the singlet isn’t 0%, thus there is always
a source of erroneous ionisation. As this process comes from an intrinsic part of the
NVs ISC, this factor will always affect the overall contrast and cannot be removed.

The results of these studies suggest that the key mechanism to achieving high
contrast lies in the ability to pump the electron into the singlet state. With the electrode
reducing cross-talk and allowing us to use a wavelength that is suitable for ionisation,
the ionisation rate is near 100% with a powerful laser. Thus the green laser will be
the key part of the optimisation process. Figure 5.6 shows the results of optimisation
processes performed over a range of green laser excitations (figure 5.6a)) and pulse
times (figure 5.6b)). In this simulation, the optimal spin contrast was calculated
numerically by solving the two-step rate equation 5.16 and calculating the optical spin
contrast using equation 5.10. This solution was then optimised over the following
values in two separate simulations:

Opt(a) =
1 < I < 300

0.005 < tion < 0.2
0.005 < tpump < 0.2

Opt(b) =
1 < X < 300
1 < I < 300

0.005 < tion < 0.2
, (5.17)

where Opt(a) is the optimisation parameters with varying pulse power and
Opt(b) are the optimisation parameters with varying pulse duration. The plots show
a steady increase which maximises at an optimum pulse power and pulse duration.
These results make physical sense, as the optimum value follows the logic of the
previous simulations with modest pulse power and short pulse duration. The overall
optimal contrast occurs with the following parameters: X = 29 MHz, I = 300 MHz,
tpump = 100 ns, and tion = 30 ns, which give a contrast of 33%. These values make
sense; the ionisation pulse improves contrast when it is maximal in its power but
figure 5.5 shows that maximal pulse duration is unnecessary as the ionisation rate
saturates quickly. The green laser required a modest power and low pulse duration to
optimise the singlet state probability whilst minimising two-photon ionisation.

Whilst the results of this initial simulation makes intuitive sense, the overall
contrast is lower than the contrast shown in Jaskula et al. with 36% [58]. This is
likely due to the two-photon ionisation process. In Jaskula et al., the two-photon
ionisation process is a feature of the protocol which is mediated by using two separate
lasers to alter the ionisation-absorption ratios (considered in more detail in section
5.3). One way to limit two-photon ionisation in our SCC protocol would be to alter
the ratio using the electrode which is considered in section 5.4. However, there is
another method that can be applied immediately to improve the optical spin contrast.
The technique which is applied in the next simulation was inspired by Hopper et al.
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Figure 5.6: Plot of the optical spin contrast optimisation as a function of a) green
laser excitation and b) green laser pulse duration. In both plots, the contrast steadily

increases until reaching an optimum value of 33% before dropping in value.

[53]. In their work, they improve contrast by running the pulse sequence more than
once and optimising the pulses for each run (figure 5.7). The idea is that during the
pumping phase, when initialised in the ms = ±1 state, the electron can be pumped by
the green laser into the excited triplet state and decay via the non-radiative ISC or
the radiative path back into the ground state. By running the SCC protocol multiple
times for the same electron there is an extra chance at pumping the electron into the
singlet which decayed to the ground state. In each pumping phase, the laser can have
different values to optimise over to improve the process. Thus if the electron isn’t in
the singlet state in the first run, it might be in the second or third:

~Pp(t) = eMion1tion1 · eMpump1tpump1 · eMion2tion2 · eMpump2tpump2 · ~P(0), (5.18)

where the number in the subscript indicates a new rate matrix with a different
laser power or a new pulse duration time. Equation 5.18 shows only two runs of
the SCC protocol but in principle, any number of sequences can be made at the
cost of the overall time of the protocol. The only limiting factor in the time would
be the spin coherence time which is typically much longer than the nanosecond
duration of the entire SCC protocol. In practice, as more sequences are added, the
likelihood of pumping into the singlet increases which means that each subsequent
run increases the contrast by smaller and smaller amounts as the probability of
the electron remaining in the triplet state gets smaller. The simulation showed a
reasonable increase when adding up to three runs of the SCC protocol and found that
the increase in contrast for four or more runs is negligible. Another consideration
in this process is optimising power; experimentally, changing the pulse duration is
simple as it is applying a different voltage pulse to an acoustic-optic modulator (AOM)
to change the laser pulse gates which can happen almost instantaneously. Changing
the power of a laser takes a lot more time or requires coupling in two separate lasers
into the system. For experimental simplicity, the pulsing simulations optimise over a
single laser power for both the pumping and ionising lasers whilst optimising over a
new pulse duration for each run of the protocol.
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Figure 5.7: Image of the pulsing mechanism: a) is the standard pulse sequence used in
figure 5.1 but the sequence is repeated N times before undergoing the orange charge
state readout. This sequence is reflected in b) which is also the pulse sequence in
figure 5.1 but with the red relaxation rate in the diagram. The idea is that when the
NV electron is excited in the triplet, it might decay back into the ground state instead
of the blue ISC. In that case, the repeat pulse sequence will be applied a second or

third time to try and pump the electron into the singlet state for ionisation.

Using the pulsing system, a new protocol was developed where the SCC protocol
was run three times for the one electron in an NV. Each new run of the simulation
carried a new pulse duration to optimise over which gave an optical spin contrast
of 42% with the following parameters: X = 15 MHz, I = 294 MHz, tpump1 = 65 ns,
tpump2 = 79 ns, tpump3 = 100 ns, tion1 = 50 ns, tion2 = 50 ns and tion3 = 23 ns. As
mentioned in the introduction to this chapter, this contrast is about 6% higher than the
experimentally realised spin contrast achieved in Jaskula et al. [58] however requires
more experimental apparatus to achieve (the electrode). It is, however, important to
note that the contrast reported in Jaskula et al. is experimental so the comparison
is not an accurate one. In order to obtain an accurate comparison, the rate equation
method used in these simulations should also be applied to the Jaskula protocol so
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that two theoretical values which were derived from the same methodology can be
critically compared.

5.3 Comparison to Jaskula et. al.

The SCC protocol applied in Jaskula et al. is in a lot of ways, the inverse of the
protocol we present in this chapter. In our protocol, the idea is to ionise when the
electron is in the singlet state, thus mapping the ms = ±1 state into the NV neutral
charge state. In the Jaskula protocol, a 594 nm laser shelves the ms = ±1 into the
singlet state and the ms = 0 state is ionised with a powerful red 637 nm laser in a
two-photon process. As a result of this, the ms = ±1 is mapped to the negative NV−

state and the ms = 0 state is mapped to the neutral NV0 state, the opposite mapping
of our protocol. At 595 nm, the ratio of ionisation to absorption is lower compared
to the green 532 nm (0.16 compared to 0.26 respectively) which can be read off the
same plot performed in the previous section (the ratio of absorption in figure 5.3 vs
photoionization in figure 4.4). This means that the rate of two-photon ionisation when
shelving into the singlet is lower compared to our method. The 637 nm is the resonant
ZPL of the NV and the absorption rate is very high compared to ionisation in this
limit, even at room temperature. However, 637 nm is lower in energy compared to the
predicted 570 nm energy required to ionise out of the singlet state, so this choice of
laser will reduce erroneous ionisation out of the singlet state. The ionisation out of
the triplet occurs by using a very high power laser to re-excite if the electron decays
back into the ground state and knowing that the chances of non-radiative ISC in the
ms = 0 state are low.

To obtain the optical spin contrast of the Jaskula method, rate equation modelling
is used in a similar way as the previous section featuring the two-step pulse system
from equation 5.16 with some adjustments:

~Pj(t) = eMionJ tionJ · eMpumpJ tpumpJ · ~P(0), (5.19)

where MionJ and MpumpJ are the same matrices from equation 5.7 but with I=0
and with different σ values to reflect the change in the absorption to ionisation ratio
for the different lasers. For MpumpJ , σ=0.16 which reflects the two-photon ionisation
for the 594 nm laser designed to pump electrons into the singlet state. For MionJ , the
ratio needs to be found for the 637 nm laser used in ionisation which is the ZPL of the
NV. Figure 5.8 shows the same room temperature absorption spectrum from figure 5.3
but with a ZPL added in as a Lorentzian whose linewidth at 300 K is 1 THz which is
experimentally obtained from Fu et al. [32]. From this figure and the photoionization
cross-section in figure 4.4, the ratio was calculated to be 0.1.

With the ratios for the different lasers found, equation 5.19 can be solved using the
same parameters and optimising over the 594 nm pump laser as well as the 637 nm
ionisation laser. Using this method we calculate an optical spin contrast of 37%
with the following parameters: Xpump = 185 MHz, Xion = 300 MHz, tpump = 26 ns,
tion = 97 ns. This value is 1% higher than the experimental value reported in Jaskula
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Figure 5.8: Plot of the same room temperature absorption cross-section used in figure
5.3, with the ZPL added in. The ZPL is added as a Lorentzian peak with a linewidth

given by Fu et al. [32].

et al. [58] which is likely a reflection of imperfect experimental parameters.
It has been mentioned that the Jaskula method is simpler compared to the method

presented in this thesis. The main reason for this is that the Jaskula method does not
require the extra technical considerations of the electrode over the diamond. This also
makes the method more suitable in instances where the electrode can be physically
cumbersome. For example, in a sensing operation, the closer the source is to the
NV probe, the larger the signal and the easier it is to sense. The presence of the
electrode will improve optical contrast and by extension, sensitivity, but if it pushes
the source further away from the NV then it might not be worthwhile. Additionally,
the Jaskula method would be more suitable for sensing in conditions where fabricating
an electrode might be difficult, for example, on top of diamond nano-pillars. The
method introduced in this thesis does have its advantages.

The major advantage is that ionisation from the singlet allows for the extra
pumping methods utilised in the last section which raises the contrast from 33%
to 42%, a significant increase that allows the overall contrast to surpass the Jaskula
method by up to 5%. We can relate the change in spin optical contrast to sensitivity
by using the DC magnetic sensitivity from Rhondin et al. as an example [99]:

ηdc ∼
1

gµB

1
C
√

nT∗2
, (5.20)
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where g is the g-factor for the magnetic moment, µB is the Bohr magneton,
n = tl ∗ P is the optical collection efficiency defined by the total counts obtained from
the NV P0 and the time of the readout tl . T∗2 is the NV electronic spin dephasing
time and C is the optical contrast. In principle, all the factors are constant except for
the change in contrast, so the improvement in sensitivity is proportional to 1/C. By
subtracting the difference in the inverse contrast of one method to the other, we can
predict that the Jaskula method offers an improvement in DC magnetic sensitivity
of ≈1.2, compared to conventional optical cycling. The method in this thesis offers
an improvement in sensitivity of ≈1.6. The main reason for the improvement is that
the Jaskula protocol does not allow for re-pumping. The reason for this is that each
ionisation phase of the SCC protocol occurs in the triplet manifold and thus would
ionise the ms = ±1 electron state erroneously. Overall, the technique in this thesis is
much more suitable in situations where contrast is important and geometry is not.
For example, in macro sensing where the variations in the field are much larger than
the sensor or in the design of a quantum chip for quantum computation where there
is no source to sense.

Whilst the method with the electrode does modestly improve optical spin contrast,
the real advantage lies in its potential capabilities. In the section 5.4, various ways
of improving the contrast using the electrode are considered. This includes simple
additions such as using the same lasers applied in Jaskula et. al. to reduce the
two-photon ionisation rate. It also includes the alternative of reducing the two-photon
ionisation by shifting the NV energies relative to the diamond conduction band in a
two-step electrode potential mentioned at the beginning of this section. Finally, the
section ends with another potential use of the electrode which is altering the rate of
two-photon ionisation and recombination, creating charge state control, which has the
potential of improving the NV coherence time and optical collection efficiency.

5.4 Discussion and future direction

The two key concepts that were discussed in the previous section that can improve the
optical spin contrast are changing the lasers used in the SCC protocol and changing
the electrode potential. Recall that the effect of these two methods is the same,
the goal is to change the ratio of absorption to ionisation in the triplet manifold
to maximise the probability of pumping the NV electron into the singlet state for
ionisation. When changing the laser power the idea is to take the ratio at a new
energy for both absorption and ionisation, one where the ratio is much smaller for
ionisation. When applying the electrode, the energy gap in the NV levels do not
change and by extension neither will the absorption cross-section. However, the
shift in the energy gap from the triplet to the conduction band will increase. This
has the effect of moving the photoionisation cross-section in figure 4.4 to the right,
increasing the minimum energy required to perform the two-photon ionisation. If the
gap increases to the point where the minimum energy gap is larger than the excitation
laser, then the two-photon ionisation rate will be zero. However, any shift in the

Draft Copy – 15 September 2022



138 Electrode based ambient SCC

photoionization cross-section will cause a reduction in the cross-section as the curve
is steadily increasing with energy.

In the previous work, the electrode was only activated during the ionisation phase
of the protocol to change the energy gap of the singlet to the ionised state. To alter the
two-photon ionisation process, the SCC protocol would involve a two-step electrode
potential as opposed to the single potential used in the previous section. This concept
is shown in figure 5.9, which shows the electrode potential, V and its effects on the
excited state triplet 3E and the singlet 1E compared to the ionised state 2E + e. Figure
5.9a) shows the effects of the single-step potential considered in the previous section
and figure 5.9b) shows the two-step potential. In the two-step potential, the electrode
would initially have a negative potential (blue) for the pumping phase, shifting the
NV energy levels away from the conduction band and reducing the probability of
two-photon ionisation. This is shown in figure 5.9 by the green laser arrow which can
make the gap from the 3E state to the ionised 2E + e state in figure 5.9a) but cannot
in figure 5.9b) as the negative potential shifts the energy level downward, increasing
the energy gap. In the second step of the process, the ionisation phase, the electron is
in the singlet state and the electrode would have its polarity reversed. This creates
a positive potential (red), shifting the NV levels towards the conduction band and
improving the rate of photoionisation from the singlet whilst reducing cross-talk. This
is shown with the yellow ionisation laser which can more easily make the energy
gap from the singlet to the diamond conduction band without exciting the NV triplet
levels.

In order to quantify these techniques we apply the same rate equation modelling
as in the previous section but change the σ value to reflect the change in the ratio
achieved by one of the techniques. For example, when applying the 595 nm laser to
excite the NV triplet instead of the 532 nm laser the σ value changes from 0.26 to
0.15. We can solve equation 5.18 with this new σ value whilst applying the electrode,
applying the same three pulse system, calculating the contrast using equation 5.10
and optimising over the same parameter space as used in 5.17. With this change,
the optical spin contrast rises to 45% with the following parameters: X = 25 MHz,
Iion = 292 MHz, tpump1 = 40 ns, tpump2 = 47 ns tpump3 = 68 ns, tion1 = 32 ns
tion2 = 19 ns and tion3 = 46 ns. This improvement would result in a 1.7 fold increase
in sensitivity compared to the 1.6 improvement shown in the previous section. Whilst
this is a small increase, it is far from insignificant. It is also worth noting that in this
setup the voltage required to shift the NV energies to remove cross-talk in the system
is less than when using the higher energy 532 nm laser, potentially increasing the
experimental robustness of the system.

Quantifying the effects of the electrode is a little more difficult. Figure 5.10 shows
the optical spin contrast as a function of σ where for each value of σ, the optimisation
process is performed with the same parameters used in equation 5.17. The contrast is
maximised when σ is zero, i.e. when there is no two-photon ionisation process out
of the triplet states. When σ=0, the green laser pumping is maximised at 300 MHz
along with the ionisation laser and its pulse duration is short. In figure 5.10a), there
is no pulsing system and the contrast maximises at 58%, in figure 5.10b) there is a
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Figure 5.9: A simple diagram of the electrode pulsing effect. The diagram features the
2E + e ionised state which does not alter appreciably with the electrode potential. It
also features the 3E excited triplet state and the 1E singlet state which both shifts in
the presence of the electrode potential by the same amount and are hence represented
by the same line. In the single-step potential protocol a), there is only one potential
applied, the positive potential (red) which shifts the NV energies towards the conduc-
tion band, allowing for easier photoionisation with a yellow laser (yellow arrow) in
a way that does not cause cross-talk in the NV. In the two-step potential protocol b),
there is an initial negative potential (blue), which shifts the NV levels downwards.
This increases the energy gap to the conduction band so that the green laser (green
arrow) does not have the energy required to drive the two-photon ionisation transition.
After the green excitation, the same positive (red) potential is applied which alters the

ionisation rate in the same way as in the previous protocol.

three pulse system and the contrast raises to 61%. Without two-photon ionisation,
the main limitation of the optical spin contrast is the branching ratio at the ISC. This
technique can be used in conjunction with a 595 nm laser, however, as long as the
electrode potential is large enough to remove two-photon ionisation on its own, the
process can be achieved with a more conventional 532 nm laser.

By using the same methodology as the previous section with the sensitivity
equation 5.20, an optical spin contrast of 61% translates to a 2.36 fold improvement
to the NV sensitivity compared to conventional ODMR optical cycling techniques.
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Figure 5.10: Plots of the optimisation processes as a function of changing absorption
to photoionisation ratio σ. The left image a) is the optimisation process with no
pulsing of the laser protocol, the right image b) is the same optimisation but with the
pulsing sequence repeated and optimised three times. In both cases, the contrast is
maximised when σ=0, i.e. no two-photon ionisation, with a steady decline in contrast
with increasing σ. The pulsing system does, however, produce somewhat higher

contrast rates.

However, using the electrode to alter the rate of two-photon ionisation has an added
benefit. In a publication by Doi et al. [26], they postulate that improving the ratio
of NV− to NV0 during optical illumination would improve the amount of photons
the NV emits during a quantum operation. From equation 5.20, an improvement
in photon counts will improve the NV sensitivity proportionally to 1/

√
n, where

n is the optical collection efficiency of the readout. To achieve this improvement,
Doi et al. increase the amount of electron donors in the diamond with phosphorous
doping during the chemical vapour deposition (CVD) process that grows the diamond
samples. The higher density of donors would donate electrons to the NV more readily
when it is ionised, thus increasing the average time the NV spends in the negatively
charged state. Adding extra donors is detrimental during a SCC protocol as there
would be less measurements of NV0 in the charge state readout, reducing contrast.
However, by using the electrode to selectively reduce two-photon ionisation, the NV
charge state is preserved in cases where ionisation is unwanted. From Doi et al., with
phosphorous doping and a 1 µW laser at 593 nm, the NV− state increases to over
99% compared to the neutral state which translates to an almost five-fold increase
in NV luminescence [26]. If we assume that the electrode can reduce two-photon
ionisation to effectively zero, then the rate of NV− and by extension, the increase in
illumination would be the same. By adding a 1/

√
5 increase to the optical collection

efficiency to the sensitivity calculation (equation 5.20) along with the improvement to
the optical spin contrast, then we can achieve a sensitivity that is 3.27 times better than
traditional optical cycling techniques. This mix of techniques would by among the
highest improvement to NV performance as it combines the improvement of optical
collection with contrast all using the same technological addition of the electrode over
the NV in the diamond at room temperature.
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The major issue with using the electrode in this way is the unpredictable nature
in which the NV energy levels react to such a large electrode potential. Whilst not
explicitly calculated, it is assumed that the potential required to shift NV energy
levels for removing cross-talk is small. From figure 4.4, the energy gap at which no
ionisation occurs is at 1.2 eV, implying that the smallest energy gap from the excited
state to the conduction band is 1.2 eV in the absence of an electrode potential shifting
the levels. With the electrode, the idea is to shift the gap such that the minimum
energy gap is larger than the energy being used to excite the NV during the pumping
phase. With a green 532 nm laser, the energy of excitation is about 2.3 eV, this implies
that the electrode would have to shift the NV energy levels about 1.1 eV away from
the conduction band. Given that the diamond bandgap is 5.48eV [7], it is unclear
what such a large potential would do to the NV energy levels or whether they would
shift linearly with electric potential at such large values. This could be solved using
density functional theory (DFT) calculations [80].

Finally, the last thing to consider when using the electrode for charge state control
is the effect it might have on the coherence time of the NV. In most modern theories
of the NV, decoherence occurs as the spin state in the NV interacts with nearby
paramagnetic defects in the diamond which cause a spin-flip in the NV spin state
[25, 50]. Thus, most efforts to improve NV coherence time involve engineering
diamond samples that remove these paramagnetic defects. However, if the NV ionises
due to an unwanted two-photon ionisation process, then the spin information of
the NV is lost along with its charge state. Physically this could occur through an
extended ionisation mechanism (figure 5.11). In a typical quantum operation in the
NV, the spin state, as well as its charge state, is initialised and readout with optical
pulses. During this time, the NV can undergo multiple photoionisations whereby the
NV photoionises into the neutral state then returns to the negatively charged state
through a recombination process (figure 5.11a)). The recombination process produces
positively charged holes as an electron leaves a donor within the diamond lattice (or
from a defect) to populate the NV. As a result, over some period of laser excitation, a
number of ionisations, recombinations occur which produce a number of holes that
exist within the local vicinity of the NV and diffuse with time (figure 5.11b)). This
means that even during a period where there are no optical interactions, the NV can
still combine with a hole to ionise into the neutral state once more. This process
can affect the NV charge state and subsequent coherence time during a non-optical
coherence readout process such as the spin echo period of a Hahn echo sequence
[25]. An electrode could create charge control and increase coherence time by either
reducing photoionisation using the shifting of the energy levels or simply applying
a positive electrode potential which would repel positively charged holes that are
nearby to the NV.

Theoretical modelling of this effect could be achieved by calculating the flux of
holes produced by a typical optical process, their thermal velocity (or diffusion rate)
as well as their capture cross-section both with and without an external electrode
potential. The flux could in principle be solved using rate equations and the capture
cross-section and thermal velocity has been experimentally verified in other work [68].
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Figure 5.11: Diagram of the NV ionisation scheme a), the green laser pulse interacts
with the red NV− which causes ionisations into the diamond lattice. Over time,
electrons will form recombinations, donating electrons from the lattice back into the
NV, creating the negatively charged state and a positively charged carbon atom (hole).
Over time the negative charges in the lattice are repelled from the NV and the positive
holes will orbit the NV before diffusing themselves or interacting with the NV to
ionise once more. This means that even if the laser is off, ionisation can still occur
via holes interacting with the NV. This is shown in the diagram predicting the hole
density ρ(t) as a function of time b). After the green laser pulse, the hole density
increases, but is predicted to orbit the NV for a time after the laser is turned off before

fully diffusing away from the NV.

If the capture rate is roughly equivalent to the NV coherence time, then we could
claim that ionisation is a significant limitation to NV coherence time. This would
be complicated as in principle this calculation would need to be performed for both
the NV and any number of donors and acceptors in the local diamond environment
in a coupled manner. Experimentally this could be verified by measuring the NV
coherence time and charge state relaxation time for NVs in diamonds with varying
defect concentrations to observe if there is a correlation between charge state and
coherence time.

The modelling performed in this thesis shows a relatively straightforward way to
improve NV optical spin contrast in ambient conditions through careful manipulation
of optical pulses in an SCC protocol. With the pulsing mechanism in place, the 42%
contrast calculated promises a 1.6 fold increase in the NV DC magnetic field sensitivity
which is a significant improvement on other mechanisms and has applications in quan-
tum sensing, quantum computation and experiments to understand NV energy levels
in a variety of conditions. The electrode itself has many other potential advantages
such as improving optical collection efficiency and coherence time. As a result, there
is a lot of future work to be done with the electrode. This includes the experimental
realisation of the initial one step potential SCC work and experimental investigations
of the possible two-step potential SCC protocol. Further theoretical modelling of
the effects of high potentials on the NV energy levels is required as well as further
experimental and theoretical investigations of the effects of the electrode on the NV
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charge state stability and its effect on the NV fluorescence and coherence. The results
shown so far show concrete theoretical evidence of NV performance enhancement
that is applicable in a variety of quantum technologies and the future work has great
promise for a variety of alternative means of NV performance enhancement.
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Chapter 6

Micro-optical structures for
enhanced collection efficiency

Recall from chapter 5 when calculating the DC magnetic field sensitivity of the NV
we applied an equation from Rhondin et al. [99]:

ηdc ∼
1

gµB

1
C
√

nT∗2
, (6.1)

where g is the g-factor for the magnetic moment, µB is the Bohr magneton,
n = tl ∗ P is the optical collection efficiency defined by the total counts obtained from
the NV, P0, and the time of the readout tl . T∗2 is the NV electronic spin dephasing
time and C is the optical contrast. In chapter 5 the key variable being changed was
the optical spin contrast C, however, from equation 6.1 it is clear that there are other
variables that can be altered to increase sensitivity and by extension, the overall
readout fidelity for a range of quantum operations. One variable, in particular, is
the optical collection efficiency, n. Almost all NV readout operations are optical
and as a result, the fluorescence from the NV is a key factor in reading out a spin
state with high probability. In terms of contrast, this is measured as the difference
in optical fluorescence when measuring different spin states. In terms of optical
collection efficiency, it is measured as the overall optical fluorescence that is collected
by the detection system. So, similar to the efforts of chapters 3, 4 and 5, the goal of
this chapter is to improve NV performance, however the mechanism for this lies in
diamond optical structures for improved optical collection as opposed to improved
readout mechanisms for improved optical contrast.

The main problem with NV optical collection efficiency is the high refractive index
of the diamond. Diamond has a refractive index of 2.42 which translates to a critical
angle of 24o [57] at a diamond/air interface (figure 6.1a)) which can be calculated
using Snell’s law [79]. For an NV emitting from inside a flat diamond block, the light
that emits at an angle larger than the critical angle is reflected at the diamond/air
interface and will not be collected by the detection system. One simple solution to
this problem is altering the refractive index outside the diamond, the most common
method is to use immersion oil with a refractive index of 1.6. This increases the
critical angle to 42o at the diamond/oil interface, however, this is still a relatively
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small segment of the total NV fluorescence that could be detected.
The main method considered in this chapter for increasing NV optical collection

efficiency is to shape the diamond itself to improve the optical emission profile. Com-
mon approaches in the literature include nanopillars [74] and the hemispherical solid
immersion lens (SIL) [42, 57, 108], although there are a number of other ideas such as
meta-lenses [56] and the parabolic mirror [125]. The two approaches considered in
this chapter are singular micro-structures that can be fabricated in a focused ion beam
(FIB), these are the SIL and the parabolic mirror. The SIL shapes the diamond into a
hemisphere with the NV at its spherical centre (figure 6.1b)), with the NV at the centre
of the hemisphere, all-optical emissions at the curved surface would be at normal
incidence to diamond/air interface and would have maximal transmission through
the diamond, increasing the optical emission to the detector. Parabolic mirrors make
use of the high refractive index to purposefully reflect the light. The parabolic shape
is designed with the NV at the parabola focal point such that all optical emissions are
reflected downwards through the diamond to an inverted detection system (figure
6.1c)).

Parabolas have been demonstrated to have significantly higher photon collection
efficiency compared to both unstructured diamonds and SILs. Parabolas have been
experimentally confirmed to collect approximately 5×106 counts per second (cps)
for a 48% or 20-fold improvement to the optical collection efficiency compared to
unstructured diamond [125]. This could result in an almost 4.5-fold improvement to
NV sensitivity. In addition to this, the parabolic mirror collimates the light as it is
reflected below the diamond sample. This means that the light can be collected with a
low numerical aperture (NA) objective lens or potentially without an objective lens at
all, reducing experimental costs and complexity. Conversely, SILs have been demon-
strated to collect up to 493×103 cps which can result in a 5 to 6 fold improvement in
optical collection efficiency [42, 108]. Which would result in an approximately 2.3-fold
improvement to sensitivity. The main reason for the improvement in parabolas is
likely due to the fact that the parabola collects light emitting above the NV, via the
parabolic reflection as well as below the NV as it emits directly downward to the
inverted detection system. SILs on the other hand will only collect light that is being
emitted above the NV, directly towards the detection system, and all light emitting in
the opposite direction is not collected (see figure 6.1).

SILs however do have advantages compared to parabolic mirrors, mostly in
experimental simplicity. When constructing the SILs or parabolas, the initial step is to
locate the NV with high accuracy, then position the nanofabrication so that the NV
resides in the structure focal point or spherical centre. The parabolic mirrors designed
in Wan et al. [125] are near the surface of the parabola (approximately 100 nm from
the surface) whereas the SIL NVs are typically microns deep [42, 57, 108]. If the
alignment of the NV to the structure is off by a few hundred nanometres, the SIL will
still perform well. The 5-fold improvement in the optical collection is an averaged
value, but can be 3 to 10 times depending on the fabrication accuracy [42, 108]. For
near surface parabolas, a 200 nm error in NV positioning can result in considerable
optical losses or even the removal of the NV altogether in the etching process. It is
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also important to note that the SILs created in previous work was achieved using FIB
and the method for creating the parabolic mirrors was achieved using reactive ion
etching (RIE). RIE is useful for the large scale creation of structures with the same
parameters but is a lengthy process when creating single structures were each new
structure is altered. This makes understanding and troubleshooting errors in the
fabrication process much more time-consuming.

In this chapter, the parabolic mirror is designed and fabricated using a FIB process
similar to a SIL fabrication where the focal point (and subsequent position of the NV)
is much deeper at 500 nm compared to other work [125]. The deep NV will be more
robust to fabrication errors and the FIB fabrication process can more easily be altered
for troubleshooting purposes. In section 6.1 some basic concepts of optical reflection
and transmission are considered and how they apply to the structures being designed.
In section 6.2 the FIB process is detailed with the various means of improving the
quality of the fabrication. In section 6.3 the quality of the structures is tested using
fit models and simulations. This includes tests of the structure shape, its surface
roughness and a simulation of its predicted optical collection efficiency. It is also in
this section that the process of aligning NVs with a parabola is described and the
effects of NV misalignment on the simulated optical collection efficiency is studied.
Finally, in section 6.4 these preliminary results are discussed and the future direction
is considered.
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Critical angle 24o

Normal incidence

Light directed to an
inverted detection system

a)

b)

c)

Figure 6.1: Images of various diamond structures and their effect on the NV (purple)
optical emission (red lines). The first is the flat, unstructured diamond a), where
the large refractive index between diamond and air create a critical angle of 24o.
All-optical emissions outside this angle are reflected and severely reduce the amount
of light reaching a detection system. The second image is the SIL b), where the
diamond is shaped into a hemisphere with the NV at its spherical centre. In this
structure, all-optical emissions from the NV are at normal incidence to the diamond
surface and have maximal transmission through the diamond, increasing the optical
emission. The final structure is the parabolic mirror c), where the diamond parabolic
curvature is designed such that optical emissions from the focal point are reflected
and collimated downwards through the diamond to an inverted detection system.
Note that the lines represent maximal reflections and transmission, but the reflections

and transmissions shown is not 100%.
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6.1 Optical reflection

When calculating how light passes through one medium into another, one simple
formula for its refraction and reflection is Snell’s law [79]:

n1

n2
=

sin(θ2)

sin(θ1)
. (6.2)

Snell’s law simply relates the angle of the incident light, θ1, through one medium
with a refractive index, n1, to the refracted light, θ1, through a second medium with a
refractive index, n2. In this case, the refractive index of the first medium is diamond
(n1=2.4) and the refractive index of the second medium is air (n2=1). For a light
emission within the diamond, there is a critical angle where the angle of refraction is
travelling parallel with the surface of the diamond and all emissions larger than this
angle will result in total internal reflection (TIR). By setting θ2 to ninety degrees and
solving for θ1, the result is the 24o critical angle mentioned in the previous section. By
solving the same equation where n1=1.6, the refractive index of immersion oil, the
solution is 420, also mentioned in the previous section. This critical angle calculation
is what creates a clear understanding of the light losses to the detection system as
light passes from diamond into the air towards a detector, as such, it motivates the
diamond structures considered in this chapter. Whilst Snell’s law is useful to predict
the angle of light passing through mediums, it does not account for the power loss
that can occur during reflection and transmission. Even when the emitted light is
incident with the surface boundary, there can still be some reflection, resulting in
losses to the detector. The ideal way to analyse this phenomenon is with the Fresnel
equations of light transmission.

By considering the light propagation as an electromagnetic wave, the fraction
of incident light power that is reflected at the boundary between two non-magnetic
materials can be expressed as [79]:

Rs =
∣∣∣n1cos(θ1)− n2cos(θ2)

n1cos(θ1) + n2cos(θ2)

∣∣∣2
Rp =

∣∣∣n1cos(θ2)− n2cos(θ1)

n1cos(θ2) + n2cos(θ1)

∣∣∣2,
(6.3)

where Rs and Rp denote the s and p polarised reflected light respectively. Note
that equation 6.3 considers the power loss at the boundary and does not consider
losses from attenuation in the mediums. Whilst this is an important consideration
for the overall measure of optical collection efficiency, it is not explicitly studied in
this chapter. Equation 6.3 shows that there is some reflected light even within the
critical angle of light emission. In an idealised SIL, the light emission is incident to
the diamond/air boundary such that θ1 and θ2 are both zero, in this case, equation
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6.3 simplifies to:

R =
∣∣∣n1 − n2

n1 + n2

∣∣∣2, (6.4)

where R is the reflected power regardless of polarisation. Equation 6.4 can be
solved to give an reflected power of 17%, such that even in a perfect SIL, there are
still some losses due to reflection at the diamond/air boundary. Parabolic mirrors
exploit TIR at the curved boundary to air, meaning that losses through the parabola
are minimal as the only source of loss would be from the near-field transmission
[79], if the NV is placed far from the surface of the parabola (500 nm), the near-field
transmission will be reduced, however the larger source of loss would likely occur
from the reflection at the bottom of the diamond which is unstructured. This source
of loss is only considered conceptually in section 6.4.

6.2 FIB nanofabrication

The design for the FIB nanofabrication of the parabolic mirror is based on a similar FIB
nanofabrication for a SIL performed by Jamali et al. [57] FIB nanofabrication works
by using a focused beam of gallium ions to etch away small pieces off of the diamond
surface. Structures are made by generating a list of x-y coordinates, each with a
milling time, that is read by the FIB software which then etches away the diamond in
a point-wise fashion. The code is generated using Python and is parameterised in a
way to allow for simple changes in the structure size and quality.

The points which generate the micro-structure (SIL or parabola) are designed to
form an Archimedes spiral which starts at the centre of the structure and spirals
outwards. The important property of the Archimedes spiral is that the distance
between neighbouring lines in the spiral is constant. Whilst the overall structure size
is parameterised by its radius, Rs, and the list points generated by the code are in
Cartesian coordinates; the Archimedes spiral in the code is parameterised by a polar
angle, θ and the distance between neighboring points in the spiral, dS, where the full
arc length is given by S (figure 6.2).

The reason for the use of the Archimedes spiral is to mitigate charge buildup.
Diamond is an insulating material, so charged particles such as those in a gallium
beam get stuck in the diamond for long periods of time. If this charge builds up, then
the electric field it produces can deflect the ion beam, causing errors in the structure.
Prior to fabrication, the diamond is coated in 30 nm of gold and placed onto a metallic
sample holder with silver paste to provide a conductive surface that removes the
gallium charge. However, milling in the same region for a long period of time will
still cause a buildup of charge before the conducting material can remove it. The
Archimedes spiral allows for a milling procedure in which the beam does not stay in
the same region for a long period of time. The beam will spiral out of the Archimedes
spiral, then back in towards the centre of the structure and repeat this process many
times.
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Figure 6.2: Effects of the current and step size in the milling process. a) When the
distance between points is larger than the beam spot size (large dS compared to the
current I), then there will be areas of the structure that aren’t milled, creating a ripple
artefact. When the points are too close then the structure might be over-milled. b)

Careful optimisation is necessary for good structures.

The file that is read by the FIB system reads Cartesian x/y coordinates and a mill
time. The coordinates follow the Archimedes spiral which is parameterised by the
radius of the structure and the distance between adjacent points, dS. The depth is
governed by the mill time and the current of the beam. The beam current in the FIB is
created by an aperture system. Higher currents are generated by having the Gallium
beam pass through larger apertures at the end of the accelerator. As a result, higher
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currents increase the spot size of the beam and can be more difficult to focus into a
small point (figure 6.2). Higher beam currents decrease then milling time substantially
at the cost of structure resolution. It is important to select a beam current where the
beam spot size is roughly the same as dS. This ensures that the beam is not milling
empty regions between adjacent points, nor is it over milling the same region from
overlapping points. Beam currents at 2.8 nA with a dS of about 50 nm create high
quality structures that mill in a reasonable amount of time.

In addition to the beam current is the mill time, or the time the beam spends on
each point. The method adopted for optimising the mill time is also from Jamali et al.
[57]. In their work, the full depth of a structure is broken up into layers of depth dz.
Breaking up the milling into layers helps mitigate the issues that arise from sputtering.
During the milling process, the beam will etch away a small region of the diamond.
The piece that is removed can go anywhere within the FIB chamber, including back
onto the diamond in a sputtering process. Milling deep within the diamond increases
the chance of sputtering as the etched material can more easily attach to the walls of
a deep milled hole (figure 6.3). By milling relatively shallow layers (approximately
50 nm thick) then the etched material is more likely to be properly removed from the
diamond sample.
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a) b)

Sputtering

Figure 6.3: Illustration of the sputtering process in the FIB. In a), the mill time is long,
creating a deep hole where etched material can land back onto the bulk diamond in
the milling process. The images below show how the sputtering forms ripple layers
in the structure that does not have the intended sharp wedge shape. In b) the milling
is split into layers where each layer only mills to a shallow depth, allowing etched
material to scatter away from the bulk diamond. The result is a smooth structure with
much sharper edges at the corner of the wedge. Source for the bottom image: Jamali

et al. [57].
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All the structures were originally parameterised by the radius of the structure
(SIL or parabola, Rs), the radius of the cone around the structure (Rc), dS, dz, and the
beam current (I). The radius, Rs, along with the depth of the NV (or the parabola
focal point depth, dNV) together parameterise the structure with a particular height, h
and parabola curvature, a. Subsequent iterations of the milling procedure included a
flat region where the cone meets the structure (d f ) and a flat region over the top of
the structure (dt). The region where the cone meets the structure is a small corner
where sputtering can occur as etched material connects to the side wall of the SIL or
parabola. This creates a smooth buildup of material instead of a sharp corner which
can affect the optical reflections, the flat region helps reduce this sputtering process.
The flat region over the top of the structure helps ensure that the top of the structure
isn’t milled too deeply. The keeps the focal point of the structure where the NV is
located as the milling process might make the structure shorter than intended and
shift the focal point. Both the SILs and parabolic mirrors had a radius between 2-3 µm
and a cone that was x2.5 larger than the radius of the structures (5-7.5 µm). The dS
and dZ are both 50 nm and the current was optimised to 2.8 nA. Finally, the d f term
was set to 250 nm in diameter and the dt term was set to 250 nm in width.

NV

dNV

dt

df Rs

a

h

Rc

Figure 6.4: Simple diagram of a parabola with the FIB code parameters labelled upon
it. These parameters define the size and shape of the structure. The parameters shown
are for a parabola, but most of these parameters are used for the SIL as well with the

exception of the SIL height (h) and curvature (a).
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5 μm

Figure 6.5: Example images of milled parabolas from a 52o angle and 0o top down an-
gle milled with the parameters mentioned in this section. The parabolas qualitatively
look good and the procedure is consistent, however some subtle asymmetries can be
observed. Note that the flat top is not visible, indicating that the beam spot size is

slightly larger than the dS factor, over-milling the structure by a small amount.

Figure 6.5 shows the overall results of an optimised parabola. Qualitatively the
structures look accurate to what is needed, however, there are small asymmetries in
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some of the structures and there are slight inconsistencies between the structures. One
other thing to note is that the flat top in these particular images is not present, which
is indicative of a beam spot size being larger than the dS length, causing some small
over-milling.

There are characterisation tests that need to be made to confirm the structure
quality before testing the optical collection efficiency. This includes quantitatively
testing the accuracy of the milling procedure, finding the milling smoothness for
optical characterisation and simulating the overall optical collection efficiency. The
next section addresses all these concepts and includes an outline of the NV alignment
procedures and how that affects optical collection efficiency.

6.3 Structure quality and Optical collection

Qualitatively, the structures made in the FIB process look parabolic in shape, however
small errors in the structure that are hard to observe in SEM can have significant effects
on the optical emissions. This can be broken down into three distinct areas: subtle
changes in the parabola shape, surface roughness of the diamond and misalignment
of the NV relative to the parabola focal point. The first two are structural issues; non-
parabolic curves or rough surfaces can reflect the light in unexpected ways, affecting
collection. NV misalignment is more difficult to understand, it cannot be observed
at all using the SEM images shown in the previous section as the NV cannot be
visualised. It is important to note that in this context, alignment refers to the position
of the NV relative to the parabola focal point and does not consider the orientation
of the NV in the diamond. As the NV is a dipole emitter, its radiative pattern is not
necessarily symmetric with respect to its orientation. For a diamond with a [100]
surface and an NV in the focal point of a parabola, all the four possible NV axes in the
diamond lattice align to the optical axis such that all radiative patterns are symmetric
to the parabola shape. This is not the case with a [110] surface in the diamond. For
simplicity and the fact that most diamonds used in optical spectroscopy are made
with a [100] surface, this work will only consider diamonds with a [100] surface and
not consider the effects of NV orientation. In this section, the structure quality and
resultant optical collection efficiency is measured using simulations. The structure
quality and surface roughness is tested by fitting the data of a scanned parabola to a
model structure and the alignment is tested by taking parabola data and modelling
the optical collection efficiency with a simulated NV emitter source.

The first step in any of the characterisations is to obtain data from the parabolas
for modelling. This is done using atomic force microscopy (AFM). With AFM, a
nanoscopic tip is run along the surface of the diamond and the deflections in the tip
due to nanoscopic changes in the diamond topography are measured. The deflections
are used to re-create the diamond surface as a dense series of points. These points
can then be uploaded into software for fitting or simulating optical emissions.

Data from the AFM can be fitted to a model parabola where the geometric
parameters (radius, height, and curvature) are constant and set to the same parameters

Draft Copy – 15 September 2022



§6.3 Structure quality and Optical collection 157

of the parabolas designed in the code. The equation for the model is given by:

z− z0 =

h−
(

Rs − R2
s−r2

a

)
r ≤

√
−ad f t + ah− aRs + R2

s

dt r >
√
−adt + ah− aRs + R2

s .
(6.5)

In the Cartesian coordinates, the radius is converted: r =
√
(x− x0)2 + (y− y0)2

and the only fitting parameters are for the position of the model parabola to the FIB
parabola: x0, y0 and z0. This approach ensures that the parabolas milled are being
compared to the exact same parabolas being designed in the code. After the fit, a
Chi-squared analysis can be obtained to find the average deviation of points on the
milled parabola compared to the model parabolic curve:

χ2 =
k

∑
i=1

(xi −mi)
2

mi
, (6.6)

where xi is the point measured from the AFM parabola, mi is the fit point from
the model parabola and i indicates a sum over all the points in the structure up to k.
The results of equation 6.6 encodes both the geometric alignment of the parabola to
a model fit and predict the RMS difference between points, which is effectively the
surface roughness of the structure.

Figure 6.6 shows an example of a parabolic mirror that has been milled in FIB,
scanned in AFM and had the AFM data fitted to a model parabola which has the same
parameters as the parabola curve intended in the milling code. The blue dots are
the AFM parabola data and the smooth orange curve is the model fit. Qualitatively,
the two data sets match each other reasonably well, however it is clear that there is a
small asymmetry in the milled parabola, causing slight deviations compared to the
model. By applying equation 6.6 we calculate that the average deviation of points to
the model is 39 nm. To understand this value, we apply a formula for optical quality
based on convention:

Q =
λ

4n
, (6.7)

where λ is the wavelength of the optical emission and n is the diamond refractive
index (2.4). Equation 6.7 gives a guideline of the minimum surface roughness required
for perfect reflections, solving the equation with a value of the more common wave-
length NV emission (700 nm) gives a surface roughness requirement of 73 nm. The
solution to equation 6.6 shows the convolved geometric fit and the surface roughness,
thus, the surface roughness cannot be more than 39 nm, much lower than the 73 nm
minimum requirement for optical quality. These results imply that the FIB structures
are smooth enough and close enough to our intended parabola to give the reflections
required for the maximal optical collection, however, there is room for improvement
by further optimising the parameters of the FIB process.

Even if the parabolic structure is perfect in shape and smoothness, the optical
reflections can still be poor if the NV isn’t in the focal point of the parabola. To
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Figure 6.6: Image of the model fitting. The blue data are the points of a parabola
made in FIB which has been measured and discretised into a series of data points
using an AFM. The orange data is the model fit. Qualitatively the two data sets match
quite well with some discrepancies. The results of a Chi-squared analysis shows

quantitatively that the average deviation of points to the model fit is 39 nm.

understand this problem, we first need to understand how the NV is positioned
within the parabola. The first step is to implant nitrogen ions into the diamond and
anneal to create the NV centers, this can be achieved with high spatial certainty, ion
straggle for 500 nm implantations can be as low as 50 nm [89]. After this, a marker
system can be set up using the FIB, where a series of points are milled into the
diamond. The etched markers can be viewed in a confocal system alongside the NVs
so the position of the NVs can be made relative to the markers (figure 6.7). With the
coordinates of the NVs relative to the markers obtained, the sample can be placed in
the FIB and the parabolas can be milled around the expected position of the NV.

Whilst this system has been proven to assist with locating NVs for SIL fabrication
[108], there are still issues with the method, especially when considering parabolas,
where misalignment causes more serious effects on the optical collection efficiency. To
understand this concept a simulation can be performed where a parabolic diamond
mirror can be modelled around an NV emitter and the optical collection efficiency can
be calculated for different NV positions within the parabola. The diamond parabola
is simulated with a height of 5 µm, a base diameter of 6.32 µm, a smooth parabolic
tip (no flat region) and a focal point depth at 0.5 µm. The NV emitter is modelled as
a pair of dipole emitters that have a time-constant power (Ps) emission that emits at
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a) b)

NV

c)

Figure 6.7: Images of the alignment protocol. In a), an SEM shows the etched markers
with some structures milled into points on the grid where NVs would reside. These
markers can be visualised along with some structures in confocal b), when zooming
in on one of the small marker gridlines, the markers and the NVs can be visualised
together in c). The markers are used as guiding points to create coordinates for where

the NVs are which can be followed in an SEM for FIB milling.

wavelengths of 600-800 nm. The collected power (Pc) is calculated by integrating the
solid angle of a cone expanding towards the detection system where the size of the
solid angle is defined by the maximum angle that can be collected by an air objective
lens with a NA of 0.95. The power itself is calculated in terms of the real part of the
Poynting vector in the far-field:

Pc = 1/2
√

ε0

µ0

∫
θ

∫
φ

~E2sin(θ)dθdφ, (6.8)

where the optical collection efficiency then becomes Pc/Ps × 100%.
Figure 6.8 are simulation results of the optical collection efficiency where the NV

emitter is displaced further and further away from the parabola focal point in both a
lateral (figure 6.8a)) and vertical direction (figure 6.8a)). For zero displacement, the
optical collection is very high (75%) and falls with distance. For lateral displacements,
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Figure 6.8: Plots of the optical collection efficiency as a function of NV displacement
in the a) lateral direction and b) vertical direction where zero displacement indicates
an NV exactly in the focal point of the parabola. With the NV in the focal point, the
optical collection efficiency is simulated to be as high as 75% of the total emission. The
plots indicate that the collection efficiency drops by a significant amount across the
few hundred-nanometre distances with a more distinct drop for vertical displacements

compared to lateral displacements.

the optical collection is more robust to displacements, only dropping by approxi-
mately 5% for 100 nm displacements, and 10% for 200 nm displacements. Vertical
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displacements have a more significant effect on optical collection efficiency. Vertical
changes of 100 nm drop the collection by as much as 10% and changes of 200 nm
can drop the collection by up to 30% depending on the direction of the displacement.
These values follow a similar trend when compared to simulations by Wan et al. [125],
whilst their simulations are more robust to changes in the NV displacement within
the parabola, a displacement of several hundred nanometres towards the parabola
edge can result in the complete removal of the NV, as the NVs in their simulations are
considerably closer to the parabola edge (100 nm), this makes the fabrication much
more prone to full removal of the NVs.

When setting up the alignment of the NVs with the parabolas, the key step in
the process is the confocal positioning of the NVs relative to the markers. Confocal
positioning accuracy can be very high in confocal microscopy, much higher than the
diffraction limit as the NVs and the markers can be accurately fitted to simple Gaussian
functions. This can give positional errors which can be approximately 100 nm [79].
Whilst the spatial resolution is often worse in the z-direction, the consistency of the
implantation [89] would mean that z-misalignment would be minimal, although still
important as small errors produce much larger changes in optical collection efficiency.
Laterally, displacements of 100 to 200 nm are possible simply due to the resolution
of positioning in the confocal as well as smaller errors in the FIB system. Vertically,
displacements due to positioning are likely to be smaller, which means that accurate
milling of the parabola curvature and its focal point position would become the largest
factor.

The other concept to consider is that whilst idealised optical collection efficiency
is the ultimate goal, modest improvements can still have significant effects. If the
parabola is misshapen or the NV is somewhat misaligned, it can still result in signifi-
cant improvements compared to a completely unstructured diamond. For example,
if there is a drop of optical collection efficiency from the ideal 70% made possible
in simulations to 50% due to some errors, that would still produce results similar
to Wan et al. for a 20-fold improvement to optical collection efficiency compared
to unstructured diamond [125]. To the best of our knowledge, this is the largest
improvement available in NV optical collection efficiency. In the next section, an
overall discussion of the parabola milling process is undertaken and various means of
improving the process are considered.

6.4 Discussion and future direction

The FIB process creates parabolic mirrors in diamond that are proven to be structurally
very close to an ideal parabola. These ideal parabolas have low surface roughness,
allowing for ideal optical reflections and also have high optical collection efficiencies
proven with optical simulations. Additionally, the optical collection simulations
suggest that the NV positioning in the parabola is essential, but misalignment of
100-200 nm can still produce optical collection efficiency that is equivalent to the best
results currently in literature [125]. It is important to note that whilst the parabolas
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are close to ideal, they are not perfect. There is still room to improve the quality of
the parabolas, the two main areas of optimisation are the beam spot size compared
to the step size ds and the depth optimisation, dz. These factors can still be further
altered to create more optically perfect parabolic mirrors.

Another consideration is the optical collection efficiency simulations for these
parabolas. The assumption in the previous section was that the Chi-squared analysis
suggested that the parabolas made in FIB were close enough to perfect that the
optical collection efficiency simulations of a perfectly designed parabola would be
sufficient. Ideally, the data for the milled parabolas generated by AFM should be
used in further optical collection efficiency simulations to confirm this assumption,
this will be one of the simulations performed in future work. These simulations can
also help understand purposefully made errors in the structure and their effect on
optical collection efficiency. For example, the flat region, dt, designed on the top of the
parabola is expected to reduce optical collection efficiency as it creates an imperfect
parabolic structure for reflections, but it is considered necessary for maintaining the
focal point alignment to the NV. Future simulations of milled parabolas with different
sized flat regions should be performed to understand how the milling alters the
position of the focal point and its effect on the optical collection efficiency. The results
might suggest that over-milling is less of an issue than previously thought when the
milling parameters are optimised and the flat region can be removed altogether.

Ultimately, the true measure of this experiment would be the optical collection
efficiency of an NV inside a milled parabola. In principle, this would be an easy
thing to measure. The optical collection efficiency of an implanted NV in an un-
structured diamond would be compared to an equivalent (or the same) NV milled
inside a parabola and the difference in light collected would give the optical collection
efficiency improvement. Further experiments can also be performed to understand
how the increased optical collection improves NV sensitivity and spin readout fidelity.
However, this approach limits the ability to perform an analysis if the optical collection
efficiency is not as high as expected. Unusually low fluorescence might be due to a
poorly milled structure, NV misalignment or perhaps an issue with reflection on the
bottom of the diamond and the resultant detection pathway. Measuring the collection
efficiency alone would not help understand where the error might be in the process.
Matching the optical collection efficiency measured in experiment with the data from
simulation would help remove some of this uncertainty, however an ideal approach
would be to directly measure the fluorescence pattern of the NV far-field emission
from the parabola. This would be achieved by replacing the single-photon counting
photo-diode detector with a charge-coupled device (CCD) camera. The CCD camera
would create an image of the NV emission rather than just count individual photon
events. The image generated would depend on the interference of the emission light.
In an ideal case, the light would be a single collimated mode which would generate a
single spot of fluorescence on the CCD image. Various aberrations in the diamond
would cause alternate reflections which would interfere with each other in the far-field,
creating diffraction patterns in the CCD camera. These patterns can be matched with
the results of various simulations to help diagnose problems in the parabolic mirror
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design, allowing for further optimisations.
Finally, the last consideration that has been largely neglected in this chapter is

the effect of the unstructured diamond at the bottom of the sample. Even if the
parabolic mirror is perfect in design, there will still be reflections at the bottom of
the diamond due to the processes outlined in section 6.2. Physically structuring the
bottom of the diamond would be unfeasible as there are two light sources to optimise
transmission: the collimated light from the parabolic reflection and the diverging light
emanating directly from the NV (figure 6.1c)). So the best solution would be to reduce
the refractive index mismatch of diamond to air by coating the diamond with other
surfaces. Immersion oil is one such material that can be used or an anti-reflection
coating that would create a much more smooth transition of light through different
mediums. This is a major subject for future investigations.

Micro-optical structures for enhanced optical collection efficiency seems like a
simple concept for improving NV performance. However, this chapter reveals that the
process for improving optical fluorescence can be very complicated, with many vari-
ables to control and many approaches required to optimise and test the performance
improvement. The improvement made by such structures is significant. The 20-fold
improvement to optical collection efficiency created by a parabolic mirror is predicted
to create a 4.5-fold improvement to DC sensitivity. Recall that the improvement to
sensitivity predicted by the spin-to-charge conversion technique presented in chapter
5 was only 1.6. However, it is important to note that the two techniques aren’t neces-
sarily exclusive. One future pathway would be to create a parabolic mirror over the
diamond and coat it in an electrode in order to perform the spin-to-charge conversion
technique, allowing both improvements to operate together. This further motivates
the development of both of these techniques as they can be used together to create a
highly optimised NV device for a range of quantum applications.
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Chapter 7

Quantum computing for
neuroscience

In chapter 2, a method for sensing neurons in a network was developed using NV
centers embedded in an array of diamond nanopillars. Whilst the potential for great
improvements to neurosensing are shown in that chapter, further improvements to
NV sensitivity were sought through the various works in chapters 3, 4, 5 and 6. All
these chapters have great potential for a wide range of NV quantum applications,
however, their specific application to the nanopillar-based neurosensing is limited. Yet,
the improvements considered in this thesis are all applicable to improving NV spin-
state readout for quantum computation. Whilst quantum computing and quantum
sensing are different applications of the same NV device, it is possible that a quantum
computer can be used to simulate neuron networks. Thus, the work of this chapter
focuses on an alternative use of the NV in neurosensing, which is as a qubit for
a quantum simulation of a large scale neuron network. In this way, the efforts to
improve NV performance can be applied to neuroscience research for sensing and
computation.

Quantum computers were theorised in the early 1980s as a means of solving
problems intractable on a classical computer [24]. Since then, the research into
quantum computing has increased dramatically with small scale quantum computing
devices being manufactured using a number of different architectures including the
NV [71, 77, 127]. However, along with the requirement for completely new hardware
architectures to create the quantum computer, there is also a need for completely
new software algorithms to solve problems utilising quantum technology. Many
algorithms exist, such as factoring large numbers for cryptography, searching in large
data sets and more direct simulations of quantum systems [75]. However, there are
still many open questions on what sort of problems a quantum computer can solve
and whether or not the quantum computer will perform better than a classical one
for various tasks.

One potential application for quantum computing that has received surprisingly
little attention is neuroscience. Extremely large scale projects have been undertaken
over many years with the goal of simulating the human brain or parts of it using
the worlds most powerful supercomputing infrastructure [4]. The main problem
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to be overcome in this project is the extreme complexity of the human brain and
the insufficient computational resources available to simulate it [36, 59]. On a basic
level, neurons in the brain act remarkably similar to a computer network. Bits in a
classical computer transmit information in a binary code, ones and zeroes, where
large numbers of bits form a code that represents an action to be undertaken by the
computer. A neuron will receive and transmit a signal in the same way. An AP pulse
can be considered a binary system where 1 would represent an AP and zero would
represent the lack of an AP. A string of pulses would act like a binary string which
translates to actions undertaken by the brain and larger organism. Hypothetically,
neurons could outpace classical computers in terms of speed and energy cost in
computation due to two reasons. The first is that the connectivity of the neuron
network would be larger, with many more connections, neuron networks allow for
parallel computation in a way that is difficult if not impossible for a classical computer
to match even with modern parallel core architectures like graphical processing units
(GPU’s). The second is the adaptability of the neuron network, neurons can grow and
change connections to suit a changing environment, this affects the probability that a
neuron will receive and transmit a signal and is called neuroplasticity [123]. One open
question is whether these concepts can be modelled in a quantum computer. The high
connectivity could be modelled with quantum entanglement and the neuroplasticity
can be modelled by a conditional operation that would change the probability of other
qubit flips during a readout based on a control qubits state [40].

Whilst the approach of modelling a single neuron with binary encoding by a
single qubit is possible, it isn’t at all practical when attempting to model large neuron
networks. Single slices of cortical brains can have thousands of neurons and the
entire human brain has as many as a hundred billion neurons with around 1015

neuron connections or synapses [61]. Modelling this effect would therefore require
thousands to billions of entangling qubits which is very difficult, if not impossible to
manufacture. Most attempts at modelling the human brain use mean-field approaches
where many neurons in a population act on average in the same way.

In this chapter, a means of modelling this mean-field approach is conceptualised
for a quantum computer. In section 7.1 a prominent theory of large scale neuron
modelling is introduced which models large scale networks with a Fokker-Planck type
equation. In section 7.2, the computational complexity of the Fokker-Planck model
is briefly addressed which explains why classical computers struggle to solve such
equations and motivates the use of quantum computers. A basic approach to quantum
simulation of the neuron model is described, some simple means of encoding and
computing the problem are addressed and the computational speedup is analysed.

The work presented in this chapter is not intended as a definite solution to
neuroscience modelling using quantum computers. Such research would likely end
up becoming a project of many years of dedicated research. The purpose of this work
is to provide some of the first steps in this research as there does not appear to be any
literature known that addresses this concept. The potential problems involved with
such an undertaking are addressed which will motivate future study in this field. This
research also ties in all the work of the previous chapters. The neurosensing work
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required a detailed understanding of neuron biology and how they are modelled
which is applied in this chapter. The other work in improving the NV as a viable qubit
for quantum computing will directly allow any quantum neuron simulation to become
realised with high-performance hardware. Thus, all the work in this thesis culminates
into diamond quantum devices and their varied application to neuroscience.

7.1 Modelling large-scale neuron networks

The following is a derivation of a model for simulating mass neuron dynamics by
Gerstner et al. [36], although many versions exist [1, 33, 81]. When modelling large
scale neuron networks the same assumptions are often made. Consider a large network
of interacting neurons, as signals travel from neuron to neuron, neurotransmitters are
released at the synapse which can be excitatory or inhibitory, increasing or decreasing
the chance that a neuron will transmit a signal when it receives one. The connections
between neurons can also vary, one neuron can connect to one neuron in a line or
it might connect to multiple neurons with multiple axons and dendrites such that
it might receive a signal from multiple locations or transmit a signal to multiple
locations. Mathematically this alters the parameters or weights that describe the
probability of a neuron firing [3, 51, 61, 93]. In large scale neuron modelling, this
concept is often simplified into neuron populations. Groups of neurons will often act
synchronously, receiving an input, sending that input throughout the population and
transmitting an amplified signal to a neighbouring population. Thus, the assumptions
made in large scale neuron modelling are all based on the same concept of a mean-
field theory. Across a single population of neurons, all the parameters that define
individual neurons are the same or at least have the same mean value. This includes
parameters such as the threshold for creating an AP (θ), the electrical resistance (R)
in the neuron and the time constant of biological spiking (τm) among others. It is
important to note that whilst parameters are the same in a single population, they can
change across different populations. The second assumption is that the neuron signals,
the AP’s, are on average identical across the population. Whilst neuron signals have
been known to change shape and size to some degree [19], on average, the signals
in the network are the same. The final assumption is that the connectivity between
neurons in a population is statistically homogeneous, this means that the weights
made in synaptic connections that define the probability of passing a signal from one
neuron to another are the same and stay the same through time. It also means that
adding effects such as neuroplasticity with changing connection weights only occurs
when dealing with changes from one population to another if at all [36].

Recall in chapter 2 the potential of a single neuron was studied as a function of
time using the Hodgkin-Huxley equation:

Cm
∂Vm(t, z)

∂t
+ Iξ(r, z, t) + Ir(R, t) = 0, (7.1)

where Cm is the membrane capacitance and Vm(t, z) is the transmembrane potential.
The Iξ(r, z, t), is an initial current that drives the system (e.g. from a clamp or a PSP).
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The third term, Ir(R, t), is the ionic current at the membrane radial boundary (r = R).
This is the major source of the AP and it is caused by the opening and closing of ion
channels along the membrane. The HH models the radial current in terms of the three
most prominent ion channel types in a given neuron and their respective currents:

Ir(R, t) = INa(R, t) + IK(R, t) + ICl(R, t), (7.2)

where the subscripts indicate the three major ions crossing the membrane during
an AP (sodium, potassium and chlorine respectively) and can be expressed with the
following:

INa(R, t) =gNam(t)3h(t)(Vm(t)−VNa) + gNaL(Vm(t)−VNa)

IK(R, t) =gKn(t)4(Vm(t)−VK) + gKL(Vm(t)−VK)

ICl(R, t) = gClL(Vm(t)−VCl).

(7.3)

In mass neuron modelling, the dynamics of the population is described as the
evolution of membrane potential densities in the same way that you would describe
the evolution of a single neuron by its singular potential. Included in the model is the
population firing rate, A(t), (often called a population activity):

A(t) = lim∆t→0
1

∆t
nact(t→ t + ∆t)

N
=

1
N

N

∑
j=1

∑
f

δ(t− t f
j ), (7.4)

the population activity essentially describes all the AP’s a neuron population will
produce in a period of time. In a population of N neurons, the population activity is
defined by counting the number of AP events, nact(t→ t + ∆t) in a given interval, ∆t,
and dividing that number by N and ∆t. It can also be described as the sum of all the
firing times of a single neuron f , and the sum over all the neurons in the population
up to N. In a large population of neurons with a time-dependent input and randomly
fluctuating neuron signals, it is common to exchange the population activity with its
expectation value, < A(t) >. In the limit of a population with infinite neurons, the
fluctuations go to zero and the expectation value becomes the population activity.

To create a model of a large number of connected neurons, the common approach
is to consider the dynamics of a single neuron and expand from there. To achieve this,
the best place to start is the leaky integrate and fire for a single neuron:

τm
d
dt

Vi = f (Vi) + RIi(t), f orVi < θ. (7.5)

The leaky integrate and fire (LIF) model is a basic model of neuronal dynamics
that almost all neuron models are derived from, including the Hodgkin-Huxley
(HH) model. Like the HH model, the LIF is derived by considering the resistive
and capacitive currents across a neuron membrane and using a circuit model with
Kirchoff’s laws to create the equations. The left-hand side of equation 7.5 is the
capacitive current where τm is the time constant for membrane ion channels opening
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and closing, the Ii(t) is the input current that drives the system with the membrane
resistance, R, and the f (Vi) term is the resistive current which can be any number of
different functions which model different effects in the neuron. The most common
expression for the resistive current is a membrane potential difference term: f (Vi) =
V(t)−Vr where Vr is the resting potential of the neuron. However, there are many
other expressions, such as more complicated ion channel currents like those found in
the HH model, or adaptive coupled equations such as those found in neuroplastic
models like the adaptive exponential model (AdExP) or the FitzHugh-Nagumo model
[36]. The model can then be generalised to larger numbers of neurons by defining a
potential density which is the number of neurons in the population at a given time
with a given membrane potential:

limN→∞ =
[neurons with V0 < Vi(t) ≤ V0 + ∆V

N

]
=
∫ V0+∆V

V0

ρ(V, t)dV, (7.6)

This can be normalised by saying that the number of neurons with a potential that
lies in the full range of possible potentials must integrate to one:

∫ θ

−∞
ρ(V, t)dV = 1, (7.7)

where neurons can take low values but the potential is reset to the resting potential
after a neuron reaches the threshold potential for an AP (θ). In the LIF model, AP’s
are considered as spikes that occur in a neuron but are not explicitly modelled like
the HH model.

The aim now is to model the time evolution of the potential density and the
associated population activity. Consider a population of neurons with potentials
between V0 and V1. The fraction of neurons with a potential in this region can increase
if individual neurons increase their potential from below the boundary V0 or decrease
from the upper boundary V1. The crossing of these boundaries can be described as a
flux, J(V, t), where a positive flux increases the number of neurons in the boundary
region (increasing the potential density) and a negative flux decreases that number.
In a time ∆t, the quantity NJ(V, t)∆t describes the number of ’trajectories’ crossing
the arbitrary boundary V0 from below minus the trajectories leaving the boundary
from above V1 (see figure 7.1).

These trajectories must be conserved in the same way the potential or ion concen-
trations are conserved:

∂

∂t

∫ V1

V0

ρ(V ′, t)dV ′ = J(V0, t)− J(V1, t), (7.8)

taking a derivative with respect to the upper boundary removes the lower flux
term and the integral on the left-hand side and creates the continuity equation. For
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t

V

θ

V1

V0

J(V1,t)

J(V0,t)

Potential 
trajectory of 
a single neuron

AP spike

AP reset

Figure 7.1: Image of the potential for arbitrary neurons evolving in time. The θ term
is the threshold for neuron spiking where after a neuron reached this threshold, it
undergoes an AP and is set to the reset potential or the resting potential. The region
between V0 and V1 is the region that defines the potential density to be solved for.
The specific placement of these regions is also arbitrary (e.g. it is common to set the
upper threshold at the AP threshold θ). Electric potentials rising into the potential
density region can be considered a positive flux of potential trajectories. Potentials
rising high enough that they exit the density region can be considered a negative
flux of potential trajectories. This flux model of neuron potentials allows for a useful
approach to modelling the potential density and subsequently, a large population of

interacting neurons. Image re-created from Gerstner et al. [36]

simplicity, V1 is set to V:

∂

∂t
ρ(V, t) = − ∂

∂V
J(V, t) f orV 6= θ, Vr. (7.9)

This conserves the flux across the boundary V, however it is not complete as the
threshold point and the reset point (resting potential) above and below V have the
effect of completely removing or generating trajectories respectively. This is accounted
for these by adding source and sink terms which are dependant on the population
activity A(t):

∂

∂t
ρ(V, t) = − ∂

∂V
J(V, t) + A(t)δ(V −Vr)− A(t)δ(V − θ), (7.10)

thus, the density vanishes for all V > θ. From continuity, the population activity
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can be directly related to the flux through the threshold:

A(t) = J(θ, t), (7.11)

in other words, all the trajectories must come from the population activity in the
first place. The next step in the derivation is a more explicit expression for the flux.

Consider the flux in a homogeneous population of integrate and fire neurons.
They all have the same driving current, I, with AP changes in the potential, wk,
causing different effects. For example, an AP can cause a jump in the membrane
potential, which can create excitatory or inhibitory effects in a neighbouring neuron
with differing strengths. There is also an AP arrival rate for each type with mean
spike arrival rates, νk, being identical for all neurons. Finally, there is the assumption
that the actual AP spike trains at different neurons/synapses are independent of one
another. From this there are two sources of flux, the AP spike arrivals causing a jump
in the flux, or the driving current causing a slow drift:

J(V, t) = Jdri f t(V, t) + Jjump(V, t), (7.12)

these terms need to be evaluated individually. For the Jjump term, consider an
excitatory input wk > 0. All neurons that have a potential Vi where V0−wk < Vi ≤ V0

will experience a spike upon the arrival of the AP spike where V0 is a reference
potential. The time arrival of a specific AP event is not known, however from the
assumption that the arrival rate of spikes, νk, is constant and the same across the
neuron population, the total flux of spikes, Jjump(V0, t) can then be calculated as:

Jjump(V0, t) = ∑
k

νk

∫ V0

V0−wk

ρ(V, t)dV, (7.13)

where if the number of neurons in the population is large, the actual flux becomes
very close to the expected flux. The drift term Jdri f t(V, t) is defined as the potential
density at a given reference potential and the reference potential multiplied by the
rate of change of the potential with time, i.e. the density multiplied by the rate of
change of the potential in that density:

Jdri f t(V0, t) =
d
dt

V|V=V0 ρ(V0, t) =
1

τm
( f (V0) + RIi(t))ρ(V0, t), (7.14)

where the right hand side of the equation comes from the LIF model equation 7.5.
Note that current spikes are considered in Jjump(V, t) and not in the drift equation.
Current pulses that are not spike-like do need to be considered in Ii(t).

The positive flux through the threshold, θ gives the population activity (equation
7.11). Since the APs can be generated by input spikes and the drift in the overall
potential, the total flux (and therefore the population activity) can be defined as:

A(t) = J(θ, t) = ∑
k

νk

∫ θ

θ−wk

ρ(V, t)dV +
1

τm
( f (θ) + RIi(t))ρ(θ, t), (7.15)
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also, given that the potential vanishes at the threshold after a spike V > θ, the
sum over synapse types k can be restricted to excitatory synapses only. Substituting
the flux terms into the continuity equation 7.10 gives:

∂

∂t
ρ(V, t) = − 1

τm

∂

∂V

(
( f (V) + RIi(t))ρ(V, t)

)
+ ∑

k
νk(t)ρ(V − wk, t)− ρ(V, t)

+A(t)δ(V −Vr)− A(t)δ(V − θ),
(7.16)

where the first term on the right-hand side accounts for the drift in potential
density, the second account for the jumps by stochastic spike arrival and the final
terms utilise the population activity to create new spikes and resets in the system. It
is from the firing condition, that the potential density vanishes above the threshold:
ρ(V, t) = 0 for V > θ. Equations 7.15 and 7.16 can be coupled together to predict the
population activity, A(t) and the potential density, ρ(t) in a population of integrate-
and-fire neurons stimulated by an arbitrary common input, Ii(t) [36].

In the limit of small jump amplitudes wk, the potential density equation can be
approximated by a diffusion equation. To achieve this, the far right hand side of
equation 7.16 is expanded into a Taylor series up to second order in wk. The result is
a Fokker-Planck equation:

τm
∂

∂t
ρ(V, t) = − ∂

∂V

((
f (V) + RIi(t) + τm ∑

k
νk(t)wk

)
ρ(V, t)

)
+

1
2

(
τm ∑

k
νk(t)w2

k

) ∂2

∂V2 ρ(V, t)

+τm
(

A(t)δ(V −Vr)− A(t)δ(V − θ)
)
+ O(w3

k),

(7.17)

It is convenient to split this equation into a ’drive’ and ’diffusion’ term, where the
drive is:

µ(t) = RIi(t) + τm ∑
k

νk(t)wk, (7.18)

and the diffusion term is:

σ2(t) = τm ∑
k

νk(t)w2
k , (7.19)

thus creating the Fokker-Planck, drift-diffusion model of neuron dynamics, where
the higher order terms are considered negligible due to the assumption of small jump
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amplitudes:

τm
∂

∂t
ρ(V, t) = − ∂

∂V

((
f (V) + µ(t)

)
ρ(V, t)

)
+

1
2

σ2(t)
∂2

∂V2 ρ(V, t)

+τm
(

A(t)δ(V −Vr)− A(t)δ(V − θ)
)
,

(7.20)

Equation 7.20 and the population activity equation 7.15 are strictly all that is
needed to solve any neuron population problem. Small changes allow for calculations
of more specific versions of mass neuron problems. For example, coupling multiple
populations where there isn’t full connectivity might involve changing the spike arrival
rate νk → Cn,k Ak(t), where A(t) remains the population activity, k is the index for one
population, n is the index for another population and Cn,k is a dimensionless constant
that described the ratio of connectivity between the two populations. The same
methodology can be applied to altering the spike weight, wk, where the couplings can
be deterministic or stochastic and as mentioned earlier in this section, f (u) can be
changed to include any sort of non-linear expression for the firing rate. One common
strategy is to Taylor expand the population activity in wk about V = θ to obtain the
flux through the threshold specifically, this gives the same potential density equation
7.20 with a new population activity:

A(t) =
−σ2(t)

2τm

∂ρ(V, t)
∂V

|V=θ , (7.21)

which can be directly substituted into equation 7.20 for a single equation of neuron
dynamics.

From this point, the idea is to alter the Fokker-Planck equation into a Schrodinger
equation such that the evolution of the neuron dynamics modelled by the Fokker-
Planck equation is simulated by the evolution of a quantum system. Section 7.2 is an
attempt to achieve this using Hamiltonian based simulation.

7.2 Quantum computing for neuroscience

From the previous section, the two equations being solved in their most general forms
are:

τm
∂

∂t
ρ(V, t) = − ∂

∂V

((
f (V) + µ(t)

)
ρ(V, t)

)
+

1
2

σ2(t)
∂2

∂V2 ρ(V, t)

+τm
(

A(t)δ(V −Vr)− A(t)δ(V − θ)
)
,

(7.22)
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and:

A(t) = ∑
k

νk

∫ θ

θ−wk

ρ(V, t)dV +
1

τm
( f (θ) + RIi(t))ρ(θ, t). (7.23)

Whilst being a coupled set of partial integrodifferential equations, the model
also scales in computational complexity with extra neuron populations as each new
population represents another set of weights (wk) and firing rates (νk) to couple into
the system. This process becomes worse with added complexity; if the neuron firing
function f (V) has a non-linear variable for adaptation and/or the driving current
I(t) is complicated with a variable for time-dependent input noise then the multi-
dimensional nature of the equations substantially increases computational complexity.
Thus, these equations are not simple to solve in a classical system and researchers
often solve these systems with approximations that only model very simple neuron
systems [36, 100, 121].

To solve this equation on a quantum computer, the principal way is to apply a
quantum simulation. In this process, an equation is cast into a form that is functionally
similar to a Schrodinger equation, and the quantum system evolves to produce a
solution that can then be mapped back into the original equation. Part of equation
7.22 can be re-cast in a Schrodinger form, beginning with the Schrodinger equation:

ih̄
d
dt
|Ψ〉 = Ĥ |Ψ〉 , (7.24)

the potential density function ρ(V, t) is mapped to the state of the quantum
simulator |Ψ〉, the membrane time constant τm is mapped to h̄, and by making the
transformation it→ τ, the Schrodinger equation is solved as a function of imaginary
time. This means that the functions µ(t), σ2(t) and A(t) will also have to be converted
into a function of imaginary time as well as f (V) if a time-dependent neuron firing
function is considered. Whilst this is possible, it can be difficult depending on the
type of neuron modelling being simulated. This also will mean that the Hamiltonian
will have Hermitian and non-Hermitian terms. The following is a solution for the
Hermitian terms and the non-Hermitian terms are left for future work, but in principle,
they could be modelled as a diffusive noise component of a master equation. The
Hamiltonian is expressed as:

Ĥ = − ∂

∂V

(
f (V) + µ(τ)

)
+

1
2

σ2(τ)
∂2

∂V2 + τm
(

A(τ)δ(V −Vr)− A(τ)δ(V − θ)
)
,

(7.25)
what is missing in equation 7.25 is the associated population activity equation

7.23 which needs to be coupled into the system. Although if solving for the potential
density around the spiking threshold θ, A(τ) can be added directly into the Hamilto-
nian with equation 7.21. Once the Fokker-Planck equation is converted into a suitable
Hamiltonian, there are three main problems to address, the first is encoding the state
|Ψ〉 so that it accurately represents the potential density. The second is encoding the
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Hamiltonian so that it can be implemented on a quantum computer, and the last
step is encoding the time evolution so that the state evolves in a way that accurately
represents the neuron dynamics.

The first major problem is the encoding of the state. The quantum state |Ψ〉 is
a binary system and the potential density is a continuous spectrum of values. One
solution to this problem would be similar to the solution used in a classical computer
where a value is represented by a string of bits. The potential would be discretized
into a series of segments where each segment is represented by a unique state from a
string of qubits, then the solution for a single neuron population and its associated
potential density would be represented by a series of n qubits:

ρ(V, t) ≈∑
j

cj(τ)
∣∣Vj
〉

, (7.26)

where cj(τ) is a time-dependent coefficient of the quantum state and
∣∣Vj
〉

is one
n qubit state which represents a discrete value of the potential. Then the readout of
the probability |cj(Vj, τ)|2 can be directly related to ρ2(V, t). For example, in a three-
qubit system, the string of qubits in the state |000〉 can represent resting potential, Vr.
The state |111〉 can represent the threshold potential θ and each of the other qubit
combinations can represent discrete values between Vr and θ. To achieve the level of
values seen in a classical computer, the quantum system would need a similar number
of qubits as bits used by classical computers to represent values, 16 to 64 qubits per
neuron population, although most classical systems encode in 64-bit floating-point
numbers for high accuracy. The more qubits used, the greater the accuracy at the cost
of the hardware required to perform the computation.

The next major problem is converting the Hamiltonian into a form that can be
implemented on the quantum computer. For example, the Hamiltonian must be
altered so that the derivatives can be enacted on a discretized potential. There are
many ways to achieve this; one example is the finite difference approach. In a classical
simulation, the finite difference approach would be expressed as:

∂

∂V
ρ(V, t) ≈ ρ(V + ∆, t)− ρ(V, t)

∆
, (7.27)

where ∆ is a small, discrete change in V. The finite difference method is simply a
means of approximating a derivative into a series of differences, each separated by a
small increment. For a quantum state, the finite difference method can be equivalently
written as:

∂

∂V
∣∣Vj
〉
≈
∣∣Vj+1

〉 〈
Vj+1

∣∣− ∣∣Vj
〉 〈

Vj
∣∣

∆
, (7.28)

where ∆ = l/2n, l is the full spectrum which is broken up into 2n number of
segments based on the number of qubits used to encode V. Note that from the
Hamiltonian equation 7.25, the potential derivative acts on the potential density as
well as function which are constant in V which need to be separated out and enacted
separately. This is achievable but complicated if we choose a non-linear function f (V).
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Once the state is encoded and the Hamiltonian derived, the system can then be
put into an initial state that represents a beginning state for the neuron population.
The unitary gates then evolve the system in time which can be readout at different
times, creating a dynamic solution that can be converted back into the solution for
the neuron model. It is important to note that every time the solution is readout
the wavefunction is collapsed so in order to obtain a full solution of the dynamics,
the system must be initialised, evolved for a small period of time, readout, then re-
initialised and evolved for a slightly longer period of time before readout. This process
would then be repeated many times for increasingly longer evolution times until a
full solution is obtained. The means of this evolution can vary depending on the
quantum computing architecture. Most quantum computing approaches, including
NV-based quantum computing, is performed digitally, where the changes to the
quantum state are achieved using unitary gates. These gates in their simplest form are
often represented as rotations on the Bloch sphere, where a number of these rotations
performed one after another form a complicated operation that can approximate the
Hamiltonian evolution being considered [76]. One common solution is to discretize
time into a series of discrete, simple operations using the Trotter decomposition [76].
In a Schrodinger picture of quantum state evolution:

|Ψ(τ)〉 = e−iĤτ |Ψ(τ = 0)〉 , (7.29)

the action of a time-varying Hamiltonian can be approximated by breaking down
the evolution into short steps over which the Hamiltonian is approximately constant:

e−iĤτ ≈ e−i ∑m Ĥmτm = Πme−iĤmτm . (7.30)

where the small operations, e−iHmτm , are the unitary gates mentioned before which
evolve the system in small discrete steps of τm. This approximation is the Trotter
decomposition and is common in quantum computing [76]. The more gates, the
more accurately the decomposition represents the actual dynamics at the cost of the
computation time. However, the time of computation is limited by the coherence time
of the qubits which are typically a fundamental property of the quantum computing
architecture. The number of gates requires to fully capture the dynamics of a large
scale neuron simulation is unclear, however, similar simulation on classical systems
can give an idea of how rapidly the potential density changes over a set period of
time which helps give an idea of how long we want to run a simulation for and how
dense the time discretization must be to capture the change in the solution [36].

In summary, the goal is to cast the neuron problem into a Schrodinger equation
where the evolution of the quantum states can be mapped to the evolution of the
potential density in the neuron problem. This requires encoding the qubits so they
accurately represent the potential density, approximating the Hamiltonian in a way
that can be encoded as a set of simple gate operations and discretizing the time steps
to apply the time evolution that matches the gate-based Hamiltonian.

As the computation time is set by the decoherence time, the final major question
that needs to be addressed is: what is the benefit of the quantum computer? It
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is well understood that current neuron models are too complicated for classical
computers and simplifying approximations have limited usefulness [36, 59]. So the
goal of the quantum computer algorithm is to either produce solutions to problems
intractable on a classical computer or more accurate than those produced on a classical
computer. This means that the effectiveness of the algorithm is heavily dependent on
the hardware capabilities of the quantum computer running the algorithm. Quantum
computers often describe performance as a function of circuit width and circuit depth.
Circuit width describes the number of qubits and circuit depth describes the number
of gates [6]. The computational resources required for this algorithm is large, each
population will require at least 16 qubits and many gate operations acting on these
qubits to perform the algorithm. Currently, the world record for the number of qubits
in a quantum computer is 127 with a superconducting architecture from IBM [11],
although the level of entanglement in these qubits is unclear. If the qubits could be
fully entangled with high fidelity, then this could result in a simulation of almost
8 populations, which is on the smaller side of what is already being simulated on
classical systems [36]. Similar superconducting computers have demonstrated circuit
depths of over 20 gate operations [6, 128], which is likely not enough to simulate the
dynamics accurately, although the number required is unclear.

The methods shown in this section are preliminary ideas that will need to be
developed, however, other approaches could also be considered. One potential
approach is to encode the potential density in the phase of the qubit rather than its
state. A single qubit spin state can be represented as:

|Ψ〉 = 1√
2

(
|0〉+ eiφ(V,τ) |1〉

)
(7.31)

where φ(V, τ) is an associated phase. It is possible to map the potential density
to φ(V, τ) and perform interactions and readout of the phase using quantum phase
estimation [76]. This would reduce the number of qubits required to represent values,
but require greater control of the phase readout of the qubits themselves. Another
possibility is encoding the Hamiltonian directly using an analogue simulation such
as a quantum annealer, but this would only be applicable on analogue quantum
simulators which are less common than digital ones.

The work presented in this chapter is merely an introduction to the possibility of
quantum computing for neuroscience problems. The goal is to begin the research in
this field, introducing the basic concepts and making a hypothesis that quantum com-
puting can provide a unique set of solutions that can dramatically help computational
neuroscience research. Whilst there is still a lot of work to be done and the possibility
that the algorithm may not work at all, the potential benefits and possibilities help
motivate future work.
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Chapter 8

Conclusion

This thesis is an analysis of the nitrogen-vacancy (NV) center and its application to
neuroscience. The key aspect of the work comprised of engineering the diamond
containing NVs into a nano-pillar array for improved NV performance and neuron
growth metrics. Whilst the results of this work showed the potential capabilities of
the NV for neuron sensing, it prompted further work into the NV itself: how it can
be engineered in various ways to improve its overall performance in both quantum
sensing and quantum computation. These efforts included cryogenic spin to charge
conversion (SCC) with an electrode, a study of NV singlet state spectroscopy, ambient
SCC with an electrode, and the fabrication of micro-optical structures for enhanced
optical collection. The largest improvement for these studies is in spin readout for
quantum computation. The results of these studies lead to the consideration for
NV quantum computing for neuroscience and the conceptualization of a quantum
computing algorithm for simulating large scale neuron networks. As a result, the
overall theme of the work is the engineering of diamond quantum devices and their
application to neuroscience.

The neurosensing project in chapter 2 is the main work of this thesis. In this section
the basic neuron anatomy and physiology is presented, the current imaging landscape
is analysed along with the current methods of modelling neuron systems. The NV
is then introduced as a sensor and a novel means of applying it to neurosensing is
analysed in the form of a diamond nanopillar array. Unique theoretical modelling
shows that the NV is not sensitive enough to measure neuron magnetic fields in
the nano-pillar array, however it can measure the electric fields with high sensitivity
as long as there is good contact between the neurons and the diamond nanopillars.
In addition to the theoretical modelling, preliminary growth studies of neurons on
nanopillar arrays suggests that neurons exhibit coordinated growth, connecting with
the pillars as long as the distance between the pillars is optimal for neuron growth.
These results motivate future work in both neuron modelling and neuron growth
studies with the ultimate goal of actual neuron sensing. It also motivates future work
in the various ways the NV can improve its capacity for neurosensing as well as other
quantum applications.

One key method of improving NV performance lies in the optical contrast that
is used to perform a spin readout. One established method of improving the optical
contrast is with the SCC technique where the optical contrast is improved using
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photoionization. This technique is improved upon in chapter 3 using theoretical
modelling and the application of an electrode at cryogenic temperatures. Whilst this
technique is restricted to cryogenic applications, the preliminary results suggest that
the improvement to optical contrast and subsequent sensitivity is very substantial.
Future work in this area would involve the actualisation of this experiment with an
electrode over a near-surface NV and the SCC protocol tested.

From studies of SCC and photoionization in the NV comes a more general study
of NV singlet state spectroscopy in chapter 4. Despite the extensive study of the NV
from a variety of researchers, there are still mysteries in its electronic structure, in
particular, the energy splitting of the singlet states relative to the triplet states and how
that splitting affects the inter-system crossing (ISC). An experiment is designed which
uses photoionization to understand this splitting and theoretical modelling is applied
to understand the effects of electron-phonon broadening on the experiment. Whilst
the experiment itself needs to be performed, the preliminary work helps ensure the
quality and validity of the future results.

One main discovery that the singlet state spectroscopy experiment promises is an
accurate measurement of the energy splitting of the lower singlet to the conduction
band minimum. This energy splitting allows for an electrode-based SCC protocol at
ambient temperatures studied in chapter 5. Theoretical modelling shows that this
technique can significantly improve the optical contrast and sensitivity in the NV and
whilst the improvement is not as large as that seen in the cryogenic SCC protocol, this
method is has a wider application as it can be performed at ambient temperatures.
Future work in this requires experimental realisation, however, this work also has
many other interesting concepts to investigate, such as the effect of the electrode on
NV charge state control and its effects on the optical collection and spin coherence.

The final area of investigation in NV performance lies in optical collection efficiency
which is studied in chapter 6. Improving the amount of light collected from the NV
arguably has the largest effect in improving the spin readout and overall performance
in all quantum applications. The main method investigated in this thesis for improving
optical collection efficiency is with the use of creating micro-optical structures in
the diamond around the NV, particularly a parabolic mirror which reflects light to
improve the amount of light reaching the detector. Parabolic mirrors were made using
a focused ion beam (FIB) and their structural quality and optical capabilities were
assessed using simulations. Preliminary results suggest that the parabolic mirrors
perform as well as those made using other techniques but promise to be more resilient
to fabrication errors. Future work will involve experimental measurements of NV
optical collection efficiency in parabolic mirrors as well as assessing the improved
optical collection efficiency for quantum applications.

Whilst all this work benefits NV readout and sensitivity in some way, their specific
application to nanopillar-based neurosensing is limited. In chapter 3 the SCC protocol
is only applicable at cryogenic temperatures, which is unsuitable for neurosensing. The
photoionization experiment in chapter 4 is useful for a more general understanding
of the NV but has no direct application to neurosensing. The ambient SCC protocol
developed in chapter 5 is usable in a neurosensing experiment, however, applying
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an electrode to a nanopillar array is a difficult task. The SCC protocol developed by
Jaskula et al. [58] is a more viable candidate as it does not require electrodes that
would be difficult to combine with the nanopillars. Finally, the parabolic diamond
structure considered in chapter 6 is also applicable to neurosensing, however, the
large structures with deep NV implantations are not suitable for neuron network
growth or sensing where the NV should be as close as possible to the neuron signal
source. The parabolic structures made in RIE by Wan et al. would be more suitable for
nanopillars [125] as an array of thin, nanopillar-like parabolas could be developed in
RIE, each with a near-surface NV. This analysis concludes that whilst these methods
improve NV sensitivity they are not appropriate for the specific task of nanopillar-
based sensing. However, all this work universally improves NV spin-state readout for
quantum computation. Prompting research in an alternate means applying the NV to
neuroscience.

This thesis ends with an analysis of quantum computation for neuroscience
applications in chapter 7 and how the NV can be utilised in this field. Neuron
networks are naturally suited for simulation in quantum computers as their networks
operate as a binary encoding with information transfer that is probabilistic. An
algorithm for simulating neuron networks using digital quantum simulation methods
is conceptualised and its functionality is analysed. Future work would involve a more
detailed analysis of this technique, how feasible it is and how it might perform against
a purely classical network or even alternative quantum algorithms.

Understanding the human brain and its various neuron networks from a single
neuron to its largest network in the brain is the key to understanding how we function
as humans and how to understand and treat the myriad of neurological conditions
that affect such a large portion of the human population. The nitrogen-vacancy
(NV) center in diamond promises to unlock many of these mysteries, from both a
sensing capacity in single neurons and large networks to the large scale simulation
and understanding of neuron networks. Whilst a lot of this work is theoretical, it lays
the groundwork for a large amount of future research in a variety of areas. Future
experimental realisations of these projects can easily be utilised in a commercial
setting, creating products and discoveries that could improve our understanding of
concepts and conditions across many regions of neuroscience research.
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