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Abstract

Learning a non-linear function to embed the raw data (i.e., image, video, or lan-
guage) to a discriminative feature embedding space is considered a fundamental
problem in the learning community. In such embedding spaces, the data with simi-
lar semantic meaning are clustered, while the data with dissimilar semantic meaning
are separated. A number of practical applications can benefit from a good feature
embedding, e.g., machine translation, classification/recognition, retrieval, any-shot
learning, etc. In this Thesis, we aim to improve the visual embeddings using atten-
tion and geometry constraints.

In the first part of the Thesis, we develop two neural attention modules, which
can automatically localise the informative regions within the feature map, thereby
generating a discriminative feature representation for the image. An Attention in At-
tention (AiA) mechanism is first proposed to align the feature map along with the
deep network, by modelling the interaction of inner attention and outer attention
modules. Intuitively, the AiA mechanism can be understood as having an attention
inside another, with the inner one determining where to focus for the outer attention
module. Further, we employ explicit non-linear mappings in Reproducing Kernel
Hilbert Spaces (RHKSs) to generate attention values, leading the channel descriptor
of the feature map to own the representation power of second-order polynomial ker-
nel and Gaussian kernel. In addition, the Channel Recurrent Attention (CRA) module
is proposed to build a global receptive field to the feature map. The existing attention
mechanisms focus on either the channel pattern or the spatial pattern of the feature
map, which cannot make full use of the information in the feature map. The CRA
module can jointly learn the channel and spatial patterns of the feature map and
produce attention value per every element of the input feature map. This is achieved
by feeding the spatial vectors to a recurrent neural network (RNN) sequentially, such
that the RNN can create a global view of the feature map.

In the second part, we investigate the superiority of geometry constraint for em-
bedding learning. We first study the geometry concern of the set as an embedding
for a video clip. Usually, the video embedding is optimised using triplet loss, in
which the distance is calculated between clip features, such that the frame feature
cannot be optimised directly. To this end, we model the video clip as a set, and em-
ploy the distance between sets in the triplet loss. Tailored for the set-aware triplet loss,
a new set distance metric is also proposed to measure the hard frames in a triplet.
Optimising over set-aware triplet loss leads to a compact clip feature embedding,
improving the discriminative of the video representation. Beyond the flat Euclidean
embedding space, we further study a curved space, i.e., hyperbolic spaces, as image
embedding spaces. In contrast to Euclidean embedding, hyperbolic embedding can
encode the hierarchical structure of data, as the volume of hyperbolic space increases
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exponentially. However, performing basic operations for comparison in hyperbolic
spaces is complex and time-consuming. For example, the similarity measure is not
well-defined in hyperbolic spaces. To mitigate this issue, we introduce the positive
definite (pd) kernels for hyperbolic embeddings. Specifically, we propose four pd kernels
in hyperbolic spaces in conjunction with a theoretical analysis. The proposed kernels
include hyperbolic tangent kernel, hyperbolic RBF kernel, hyperbolic Laplace kernel,
and hyperbolic binomial kernel.

We demonstrate the effectiveness of the proposed methods via a image or video
person re-identification task. We also evaluate the generalisation of hyperbolic ker-
nels by few-shot learning, zero-shot learning and knowledge distillation tasks.
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Chapter 1

Introduction

1.1 Introduction

In the computer vision (CV) community, one fundamental problem is to enable ma-
chines the capacity to encode visual data, e.g., image or video, to a latent embedding
space. In such an embedding space, the intra (inter)-class distance of objects is min-
imised (maximised) as shown in Fig. 1.1. For example, in the raw image space, the
images are distributed randomly. The image embedding techniques (i.e., SIFT [Lowe,
2004], neural networks [LeCun et al., 2015]) are supported to encode the images, such
that the images of the same classes are clustered, while images of different classes are
separated. Many practical applications rely on image embedding techniques, such
as image classification/recognition, metric learning, image retrieval, object detection,
semantic segmentation, to name a few. In the last decades, many efforts have been
made to develop the embedding techniques, however, it remains a dominant prob-
lem to create a discriminative embedding space. This Thesis studies the embedding
method so as to improve the embedding quality of the visual data.

Figure 1.1: The pipeline of image embeddings. In the embedding space, the images of
the same classes are clustered, while the images of the different classes are separated.

In the modern CV community, a discriminative and robust feature embedding for
the image is extracted by convolutional neural networks (CNNs), with the earliest
works proposed by LeCun et al. [LeCun et al., 1998]. A CNN contains multiple
convolutional layers between the input (e.g., raw data) and output (e.g., classifier

1



2 Introduction

Figure 1.2: The visual attention mechanism mimics the human’s perception process.
The attention mechanism can localise the informative regions within the image. It
thereby helps the deep network to encode a discriminative feature embedding for the
input image. In the heat map, the response increases from blue to red. Best viewed

in colour.

or feature embedding), with each layer having many convolutional kernels and an
activation function. The hierarchical architecture of CNNs is inspired by an animal’s
visual perception [Hubei and Wiesel, 1962]. Generally speaking, the artificial neurons
and convolutional kernels mimic biological neurons and receptors from an animal’s
visual perception. The function that visual perception can transmit the neural electric
signal exceeding a threshold to the next layer of neurons is achieved by the activation
function after the convolutional layer. In the past few years, many effective and
efficient CNN architectures have been proposed to improve the recognition accuracy
[Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al., 2016; Huang et al.,
2017; Sandler et al., 2018; Ma et al., 2018; Chen et al., 2020b], and became the standard
tool to encode images in a discriminative embedding space.

Along with the CNN architectures, many other strategies are further studied
to improve the CNN’s embedding capacity, including data pre-processing Zhong
et al. [2017b], optimiser Kingma and Ba [2014], loss function Schroff et al. [2015],
learning trick He et al. [2019], etc. In this Thesis, we aim to improve the quality of
the visual embedding from two perspectives, namely, visual attention and geometry
constraints. Those two advanced solutions study the embedding method in two lines,
one for the feature extractor and another for the embedding space.

The attention mechanism, inspired by the human’s perception process to recog-
nise objects, is studied extensively in the visual community. The main goal of the
attention mechanism is to help the deep network to attend the informative regions
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in the image. As shown in Fig. 1.2, when a human sees a “heron”, one needs to
attend to/focus on the most important area to recognise the “heron” correctly. To
incorporate this attentive ability in the deep network, many attention mechanisms
have been developed. The attention module is designed to automatically select the
meaningful parts of images, and is trained in a weakly supervised manner (i.e., no ex-
plicit label information is given to identify the areas to attend to). Broadly speaking,
the attention mechanism, as an additional block in the deep network, can generate
data-dependent weights, to weigh the importance of features. In other words, it is a
method to distinguish the importance of the data, which helps the network to encode
discriminative feature embeddings.

The hard attention, whose attention map contains a binary value, is first pro-
posed in the early works [Mnih et al., 2014; Xu et al., 2015; Jaderberg et al., 2015].
The seminal work in [Mnih et al., 2014] divides the image into portions, which are
then sequentially fed to the glimpse network. In this modelling, the network can
glimpse the image multiple times and adaptively select the useful areas. However,
training such an attention block requires reinforcement learning, which is complex,
slow and resource-intensive. Xu et al. model the attention to aligning the visual and
language concepts via recurrently comparing the feature maps and language em-
beddings, generating the image captions [Xu et al., 2015]. In [Jaderberg et al., 2015],
another kind of hard attention, termed spatial transformer network (STN), aligns the
image via localising and cropping the object in the feature map.

However, the hard attention can only select some regions within the image,
without weighing the importance of local features1. Thus another category of at-
tention mechanism, soft attention, is introduced to learn data-dependent attention
weights, thereby emphasising/attenuating the significant/insignificant local features
in the feature map. To achieve so, many studies have been made to learn attention
weights [Bahdanau et al., 2015; Hu et al., 2018; Woo et al., 2018; Wang et al., 2018b].
This type of attention mechanism is first studied in the machine translation Bah-
danau et al. [2015]. The following years also witness its success in the computer
vision field. Hu et al. use the global feature2 to re-weigh each slice of the feature
map. Instead of weighing the importance channel-wise, the convolutional block at-
tention module (CBAM) also learns the regional interaction spatially [Woo et al.,
2018]. To capture long-distance dependencies, Wang et al. propose to aggregate the
local feature via non-local operations [Wang et al., 2018b]. Many attention mecha-
nisms that followed have been developed to use the channel or spatial information
in the feature map [Wang et al., 2018a; Li et al., 2018c; Jetley et al., 2018; Chen et al.,
2019b], which motivates us to develop attention mechanisms, aiming to use more
information efficiently from the feature map.

In this Thesis, we propose two attention mechanisms, namely the Attention in
Attention (AiA) mechanism and the Channel Recurrent Attention mechanism. The

1In this Thesis, the local feature refers to the patch descriptor at each spatial position in the feature
map.

2In this Thesis, the global feature refers to the channel descriptor, which is aggregated from the
feature map via global average pooling, global max pooling, etc.
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AiA mechanism contains two components, i.e., inner attention and outer attention.
The inner attention builds the interaction among the local and global features, while
the outer attention preserves the spatial structural information of the feature map.
The second attention mechanism aims to create a global receptive field to the feature
map. This is achieved by learning the channel and spatial patterns jointly by a recur-
rent neural network (RNN). Our developments are the first attempt that both channel
attention and spatial attention are jointly optimised to select useful features. Exten-
sive experiments on image/video person re-identification demonstrate the superior
performance of proposed attention mechanisms.

In the second part of this Thesis, we study the advance of other geometry con-
straints for image embeddings. The Euclidean space has been considered a default
space to encode images since it is a natural generalisation of the 3-D space we live in
and provides straight operators and measurements. However, the Euclidean space
has difficulty encoding the complex structural relationships between data. For ex-
ample, the Euclidean space will cause distortions when encoding graph data [Liu
et al., 2019a], as the Euclidean distance cannot reveal the graph distance between
two the connected nodes. Having such an issue in mind, the geometry constraint is
introduced to encode the data, thereby better revealing the structures between data.
The embedding in the subspace, also known as a Grassmannian manifold, is ro-
bust against outliers and other variations including pose, illumination [Zhang et al.,
2020a; Simon et al., 2020; Basri and Jacobs, 2003]. Modelling the points as a set can
be tolerant to the order of data [Yu et al., 2018; Zaheer et al., 2017; Ribera et al., 2019].
Beyond the Euclidean space, the curved spaces, e.g., hyperbolic or hyperbolic spaces,
can encode complex structural information among the data, increasing the discrimi-
native power of embedding spaces [Zhang et al., 2020b; Liu et al., 2017b; Ganea et al.,
2018; Khrulkov et al., 2020]. For example, the volume of hyperbolic spaces increases
exponentially, thereby being able to encode hierarchical information in the data (see
the difference between image embeddings in Euclidean spaces and hyperbolic spaces
in Fig. 1.33.).

In this Thesis, we study the advance of exploring sets and hyperbolic geometry
as embedding spaces. We first study video data embedding. Existing studies directly
optimise clip features, aggregated from a set of frame features, to learn a video em-
bedding. Such training protocol ignores the distribution of video frames and leads
to sub-optimal learning of video embedding spaces. That said, the existing pipeline
for the video data embedding learning ignores optimising the difficult frame fea-
tures. To bridge this gap, we propose to model the video clip as a set and employ
the distance between sets to optimise the triplet loss. We also define a hybrid set
distance metric, which reveals the distance between hard positive frames and hard
negative frames separately in a video triplet, such that the hard frame features can
be optimised explicitly. Hyperbolic geometry can be characterised as a Riemannian
manifold with a negative sectional curvature. Several recent studies suggest that
embedding words, graphs, or images using hyperbolic geometry can be beneficial

3This simple illustration is inspired by the work in [Gulcehre et al., 2019]
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(a) Euclidean embedding in 2D space (b) Hyperbolic embedding in 2D space

Figure 1.3: Illustration of how images might be embedded in a Euclidean space and a
hyperbolic space in the 2D case. The location of the embedding indicates the distance
between each image and that of a pug (in the centre). In the case that the number of
objects within a given semantic distance from the central object grows exponentially,
the Euclidean space is not likely to encode such structures (e.g., tree-like or graph
structure). In hyperbolic space, the volume grows exponentially, thereby giving suf-
ficient areas to embed the images. For visualisation, we have shrunk the images in

the Euclidean diagram.

compared to the common practice of using Euclidean geometry or hypersphere [Tif-
rea et al., 2019; Gulcehre et al., 2019; Khrulkov et al., 2020; Cho et al., 2019]. However,
working in hyperbolic spaces is not without difficulties as a result of its curved geom-
etry and some operations (i.e., addition, similarity measurement) are complex. For
example, computing the mean of a set of points in hyperbolic spaces requires an iter-
ative algorithm [Lou et al., 2020]. We take a step further to kernelize the embedding
in hyperbolic spaces, such that the embedding can enjoy the rich structure of Hilbert
spaces as well as simplify some operations involving hyperbolic data. We propose
four kernel functions for hyperbolic spaces including the hyperbolic tangent kernel,
hyperbolic RBF kernel, hyperbolic Laplace kernel, and hyperbolic binomial kernel,
and evaluate the power of the proposed kernels on several tasks.

To this end, this thesis studies a challenging research problem - the embedding
method for the visual data, e.g., images. Aiming to create discriminative embeddings
for the visual data, we investigate two possible solutions, i.e., attention mechanism
and geometry constraints. Those two advanced solutions solve the research question
in two lines, one developing novel neural architectures to extract features, and an-
other investigating the embedding spaces to understand the underlying distribution
of data.
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Figure 1.4: The outline of this Thesis.

1.2 Thesis Outline

The remaining chapters of the Thesis (see Fig. 1.4) are organised as follows:
Chapter 2 - Preliminary and Background: This chapter first defines the standard

notation used across the Thesis, following the preliminary and background knowl-
edge for this Thesis, i.e., CNNs, RNNs, visual attention, geometry etc.

Chapter 3 - Attention in Attention Networks: In this chapter, we first propose
the Attention in Attention (AiA) mechanism, which models the explicit interaction
between global and local features to mitigate the misalignment issue of the feature
map. We also generalise the AiA mechanism by making use of higher-order statistics,
explicitly encoded by non-linear kernel mappings within the AiA framework, to
generate an attention map. To showcase the effectiveness of the proposed attention
mechanism, we perform extensive experiments on a person re-identification task.
This chapter presents the contribution of the published works [Fang et al., 2021c,
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2019].

Chapter 4 - Channel Recurrent Attention Networks: In this chapter, we present
a full attention block to build a global receptive field to the feature map. The main
attention unit, termed channel recurrent attention, identifies the attention map by
jointly leveraging spatial and channel patterns via a recurrent neural network, such
that the attention module can learn the spatial and channel information jointly. We
show that the proposed attention can bring significant performance gain over both
video/image person re-identification tasks. This chapter presents the contribution of
the published work [Fang et al., 2020].

Chapter 5 - Set Augmented Triplet Loss: This chapter proposes to model the
video clip as a set and instead studies the distance between sets in the triplet loss.
In contrast to the distance between clip representations, the distance between sets
considers every pair-wise distance in two sets, thereby making better use of frame
features in sets. We further propose a hybrid distance metric between sets, tailored
for the set-aware triplet loss. Thorough experiments on video person re-identification
verify the advantage of the proposed method. This chapter presents the contribution
of the published work [Fang et al., 2021b].

Chapter 6 - Kernel Methods in Hyperbolic Spaces: This chapter studies the ker-
nelization for the hyperbolic representations. We first develop a family of pd kernels
in the curved hyperbolic spaces, in conjunction with their theoretical analysis. The
proposed kernels include the powerful universal ones, such as the hyperbolic RBF
kernel. Then we comprehensively evaluate the representation power of the proposed
kernels on various tasks including few-shot learning, zero-shot learning, person re-
identification and knowledge distillation. This chapter presents the contribution of
the work [Fang et al., 2021a].

Chapter 7 - Conclusion: In the final chapter of this dissertation, we summarise
the overall contributions and discuss some future works, i.e., open problems and
directions.
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Chapter 2

Preliminary and Background

This chapter introduces the preliminary and background materials that have been
used in this Thesis. We first define the notation.

2.1 Notation

The notation used in this Thesis are fairly standard. Formally, we use Rn, Rh×w,
Rc×h×w and Rt×c×h×w to denote the n-dimensional Euclidean space, the real matrix
space (of size h × w), and the image and video spaces, respectively. We also use Hn

and H to denote the n-dimensional hyperbolic space and the Hilbert space. Through-
out the Thesis, the matrices/tensors and vectors are denoted by bold capital letters
(e.g., X) and bold lower-case letters (e.g., x), respectively. The transpose of a matrix
(e.g., X) or a vector (e.g., x) is denoted by the superscript ⊤, e.g., X⊤ or x⊤. We use
e(·) and exp(·) interchangeably as exponential function in this Thesis.

The symbol ⊗ and ⊕, represent the Hadamard product (i.e. element-wise mul-
tiplication) and element-wise summation. Sigmoid(·) : R → [0, 1], Sigmoid(x) :=

1
1+exp(−x) is the sigmoid function. The softmax normalisation is defined as Softmax(·) :

R → [0, 1], Softmax(xi) := exp(xi)

∑n
j=1 exp(xj)

. BN(·) : Rn → Rn, BN(x) := γ x−E[x]√
Var[x]

+ β and

ReLU(·) : R → R≥0, ReLU(x) := max(0, x) refer to batch normalisation and rectified
linear unit. tanh(·) : R → R, tanh(x) := exp(2x)−1

exp(2x)+1 refers to the hyperbolic tangent
function.

Please note that in later chapters, we may use additional notation that will be
solely used in that particular chapter. This will be made clear in the corresponding
chapter.

2.2 Convolutional Neural Networks

In recent years, convolutional neural networks (CNNs) have become the “workhorse”
to encode the image/video data because of their rich capacity to extract features.
CNNs are first proposed by LeCun in 1998 and able to achieve high precision to
classify handwritten digits in binary images [LeCun et al., 1998]. Beyond the classifi-
cation task, other fundamental CV tasks i.e., semantic segmentation, object detection,

9
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are also benefiting from CNNs [He et al., 2016, 2017; Fu et al., 2019a; Long et al.,
2015]. A typical deep CNN (see Fig. 2.1) is stacked by different types of components,
including a convolutional block, a pooling layer, a fully-connected (FC) layer, etc. By
stacking many of these layers, deep CNNs can extract features of the raw images
and subsequent feature maps by convolutional filters, whose parameters are learned
by back-propagation [LeCun et al., 2015]. In the remainder of this section, we will
briefly introduce the building blocks of CNNs.

Figure 2.1: Illustration of a deep convolutional neural network.

The basic unit of the convolutional block is known as the 2D convolution opera-
tion. Formally, given an image I and a convolution kernel c, the output O at position
(i, j) can be calculated as:

O(i, j) =
M

∑
m=−M

N

∑
n=−N

I(i − n, j − m)c(n, m). (2.1)

Fig. 2.2 provides a toy example of a standard 2D convolution operation and out-
put O(1, 1) is obtained as 1 × 5 − 2 × 1 − 3 × 1 − 2 × 1 − 3 × 1 = −5.

Figure 2.2: A standard 2D convolution operation. The symbol ∗ indicates convolu-
tion.

Having the convolution operator at hand, different architectures of convolutional
blocks are proposed to learn a better image embedding. The vanilla convolutional
block simply stacks several convolutional layers, illustrated in Fig. 2.3(a). Suppose
the input of a two layer convolutional block is denoted by X, then the output, Y , can
be calculated by:

Y = Conv
(
ReLU(Conv(X))

)
= f (X). (2.2)

Here we use f to indicate a two layer convolutional block as shown in Fig. 2.3(a).
In the convolutional block, the ReLU function provides a non-linearity to the CNN.
Thus deep CNNs can theoretically regress complex non-linear functions. The deep
network composed of such an architecture will suffer from the issue of vanishing
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gradients during training. To mitigate this issue, other variants, namely, residual
connection blocks (see Fig. 2.3(b)) and dense connection blocks (see Fig. 2.3(c)), are
developed. The residual connection block and dense connection block are formulated
as:

Y = f (X) + X (2.3)

and
Y = Concat

(
f (X), X̃, X

)
, (2.4)

where X̃ = ReLU(Conv(X)) indicates the feature map in the intermediate layer of
the convolutional block.

These convolutional blocks avoid the issue of vanishing gradients by reusing pre-
ceding feature maps (X in Fig. 2.3). Also, the inception block (see Fig. 2.3(d)) in-
creases the learning capacity of CNNs by means of using the various receptive fields
of convolutional kernels in parallel, given by:

Y = Concat
(

f1(X), . . . , f4(X)
)
. (2.5)

(a) Vanilla
convolutional
block [Krizhevsky
et al., 2012]

(b) Residual connection
block[He et al., 2016]

(c) Dense connection
block [Huang et al.,
2017]

(d) Inception block [Szegedy et al., 2015]

Figure 2.3: Illustration of different convolutional blocks.
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2.3 Recurrent Neural Networks

In Chapter 4, we use a recurrent neural network (RNN) as a building block in the
attention module. In this section, we first introduce the formulation of the RNN
briefly, then describe an advanced variant of RNNs used in this Thesis, i.e., long-
short term memory.

In contrast to feed-forward neural networks, whose output is determined by the
current input, the output of RNNs is decided by both the current input and the
previous input. This is achieved by the recurrent operation in RNNs as illustrated
in Fig. 2.4, and the hidden state in RNNs can memorize the information from the
previous input. To be specific, the current hidden state is obtained by:

ht = tanh
(
W⊤

h ht−1 + W⊤
x xt

)
. (2.6)

Here W h and W x are learnable parameters in RNNs. Note that we omit the bias for
simplicity of formulation. Then the output at state ht is:

yt = W⊤
y ht, (2.7)

where Wy is the parameter for the output state.

Figure 2.4: Illustration of a recurrent neural network.

Although superior performance in many sequence learning applications have
been shown, RNNs have the issue of vanishing/exploding gradients when process-
ing the long sequences of data. These issues are addressed by the long-short term
memory (LSTM). In the LSTM, the memory allows the model to remember informa-
tion for a long period of time, thereby building long-range interactions in the long
data sequences. A standard LSTM unit are composed of three gates, namely an in-
put gate, forget gate and output gate. Fig. 2.5 illustrates the architecture of an LSTM.
The input gate can learn from the input data and discover what information can be
stored in the memory. The forget gate can decide to discard the useless information
by comparing the previous state (i.e., ht−1) and current input (i.e., xt). The output of
the LSTM is produced by the output gate, which also considers both the previous
feature and current feature. The formulation of the gates and states are given by:

• Forget gate: f t = Sigmoid
(
W⊤

f hht−1 + W⊤
f xxt

)
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• Input gate: it = Sigmoid
(
W⊤

ihht−1 + W⊤
ixxt

)
• Memory state: c̃t = tanh

(
W⊤

chht−1 + W⊤
cxxt

)
• Cell state: ct = ( f t ⊗ ct−1)⊕ (it ⊗ c̃t)

• Output gate: ot = Sigmoid
(
W⊤

ohht−1 + W⊤
oxxt

)
• Output state: ht = ot ⊗ tanh(ct)

Figure 2.5: The architecture of a long-short term memory.

The output of the LSTM depends on the tasks at hand. For example, the work
in [Liu et al., 2016] uses ht as the final output. In contrast, our work in Chapter 4
utilizes all states (i.e., [h1, . . . , ht]) as the output of the LSTM.

2.4 Attention Mechanism

Attention mechanisms, inspired by the human sensing process, have been studied
extensively in Natural Language Processing [Vaswani et al., 2017] and Computer
Vision [Hu et al., 2018]. Self-attention is first proposed in [Vaswani et al., 2017] and
achieves a breakthrough in machine translation, showing its superior performance
over the RNN. Thereafter, several visual applications have incorporated this attention
module in their formulation, e.g., image classification [Wang et al., 2018b], scene
segmentation [Fu et al., 2019a], image captioning [Huang et al., 2019] as well as video
person re-ID [Li et al., 2019a]. In this thesis, we are particularly in soft attention since
the attention network can adjust the weight to the target. Here we introduce some
background knowledge of soft attention modules.

Generally speaking, the soft attention mechanism can be grouped into three cat-
egories, i.e., channel attention (see Fig. 2.6(a)), spatial attention (see Fig. 2.6(b)) and
full attention (see Fig. 2.6(c)), according to the size of the generated attention maps.
The channel attention learns the non-linear transformation of the channel descriptor
as attention weights and re-weights each slice of the feature map. In contrast, spatial
attention can build the interaction spatially and weigh each patch descriptor of the
feature map. Full attention, which produces attention weights per every element of
the feature map, not only learns the channel pattern, but also preserves the structural
information of the feature map. We then introduce some seminal instantiations of
the above three categories.
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(a) Channel attention (b) Spatial attention (c) Full attention

Figure 2.6: Categories of attention mechanisms.

In the squeeze and excitation (SE) block, the channel descriptor is obtained by
the global average pooling. Then two fully connected layers are used to fully capture
channel dependencies [Hu et al., 2018]. As illustrated in Fig. 2.7, the SE block can be
formulated as:

Xz = Sigmoid
(

σ
(
ξ
(
GAP(M)

)))
⊗ X. (2.8)

Here, GAP indicates the global average pooling. σ and ξ are gating functions Hu
et al. [2018].

Figure 2.7: Squeeze and excitation block.

In [Wang et al., 2017], the spatial attention block (see Fig. 2.8) first aggregates all
elements per patch feature in the feature map, then builds spatial interactions via
convolution kernels in the attention map. Its formulation is given by:

Xz = Sigmoid
(

δ
(
Agg(X)

))
⊗ X, (2.9)

where Agg and δ indicate the aggregation function and convolution function, respec-
tively.

Figure 2.8: Spatial attention block.

In the full attention mechanism, the attention block can generate an attention
map with the same size as its input feature map, thereby weighing every element of
the input feature map. In [Wang et al., 2018a], the fully attentional block (FAB), as
shown in Fig. 2.9, is the first proposed full attention, given by:

Xz = Sigmoid
(

σ
(
ξ(X)

))
. (2.10)
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Figure 2.9: Fully attentional block.

As compared to the SE block (see Eq. (2.8)), the FAB (see Eq. (2.10)) only learns
the pattern of patch descriptors, instead of the channel descriptor. However, such a
pipeline helps the attention block preserve the spatial structure information.

Beyond the categories of attention mechanisms introduced above, self-attention
or intra-attention can generate a feature at a position by relating features of different
positions in a sequence. As a basic operation in self-attention, the non-local mean
(see Fig. 2.10(a)) is defined by:

yi =
1
N

N

∑
j=1

s(xi, xj)g(xj). (2.11)

Here xi and yi are the input feature and output feature at position i. s(xi, xj) com-
putes the similarity of xi and xj. g(xj) encodes the feature of xj. N is the number
of features in the sequence. This operation can build long-range dependencies in the
sequence.

Then the non-local (NL) block [Wang et al., 2018b] is further developed and for-
mulated as follows:

Xz = δ
(

Softmax
(
ξ(X)⊤σ(X)

)
ϕ(X)

)
⊕ X, (2.12)

where δ, ξ, σ and ϕ are non-linear transformations. ⊕ X indicates a residual connec-
tion.

(a) Non-local mean (b) Non-local block

Figure 2.10: Self-attention mechanism.

The existing attention mechanism has its limitations. This thesis develops two
neural attentions to efficiently utilise the information hidden in the feature maps,
thereby creating rich embeddings for the visual data.
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2.5 Set Theory and Metrics

A function f (·), which maps its domain X to its range Y , is considered a function
of sets if it is permutation invariant to the order of elements in the input. In other
words, given a set (i.e., X) as input, the function f (·) holds that f (X) = f (PX) for
any permutation matrix P. In this case, the domain of f (·) is the power set of X, i.e.,
X = ℘(X).

Let (X, d) be a metric space. The distance between two nonempty sets A and B
in ℘(X) (i.e., D : ℘(X) \ ∅ × ℘(X) \ ∅ → R) measures the similarity of two sets. The
ordinary distance between sets (see Fig. 2.11(a)) is defined as:

Do(A, B) = inf
a∈A,b∈B

d(a, b), (2.13)

where inf denotes the infimum function. The ordinary distance metric could be
interpreted as the minimum pair-wise distance between two sets.

Another well-known set distance metric is the Hausdorff distance, which is de-
fined as:

Dh(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

= max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

,
(2.14)

where sup represents the supremum function. As shown in Fig. 2.11(b), the geomet-
rical interpretation of the Hausdorff distance can be understood as the greatest of all
the distances from an element in one set to the closest element in the other set.

(a) Ordinary distance metric. (b) Hausdorff distance metric.

Figure 2.11: Geometry interpretation of the set distance. (a) and (b) represent the
ordinary distance metric and Hausdorff distance metric, respectively.

In Chapter 5 of this thesis, the video clip can be modelled as set since the video
embedding is compact and invariant to the frame orders. On top of the well-defined
metrics of sets, we also proposed a new metrics to optimise the hard frames in the
video clip.
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2.6 Hyperbolic Geometry

An n-dimensional hyperbolic space Hn is a Riemannian manifold with a constant
negative curvature [Absil et al., 2007]. The Poincaré ball is a model of n-dimensional
hyperbolic geometry in which all points are embedded within an n-dimensional
sphere (or inside a circle in the 2D case which is called the Poincaré disk model).
Formally, the Poincaré ball model, with curvature −c, (c > 0), is defined as a mani-
fold Dn

c = {z ∈ Rn : c∥z∥ < 1}, with the Riemannian metric gD
c (z) = λ2

c(z) · gE, in
which λc(z) is the conformal factor, defined as 2

1−c∥z∥2 , and gE = In is the Euclidean
metric tensor. Furthermore and to facilitate vector operations, the Möbius gyrovector
space may come in handy. The Möbius addition for zi, zj ∈ Dn

c is defined as:

zi ⊕c zj =
(1 + 2c⟨zi, zj⟩+ c∥zj∥2)zi + (1 − c∥zi∥2)zj

1 + 2c⟨zi, zj⟩+ c2∥zi∥2∥zj∥2 . (2.15)

The geodesic distance on Dn
c is:

dc(zi, zj) =
2√
c

tanh−1(
√

c∥ − zi ⊕c zj∥). (2.16)

For a point z ∈ Dn
c , the tangent space at z, denoted by TzDn

c , is an inner prod-
uct space, which contains the tangent vector with all possible directions at z. The
Riemannian metric gD

c at point z is a positive definite symmetric bilinear function
on TzDn

c as gD
c (z) : (TzDn

c × TzDn
c ) → R. The exponential map provides a way to

project a point p ∈ TzDn
c to the Poincaré ball Dn

c , as follows:

Γz(p) = z ⊕c
(

tanh(
√

c
λc(z) · ∥p∥

2
)

p√
c∥p∥

)
. (2.17)

The inverse process is termed logarithm map, which projects a point q ∈ Dn
c , to

the tangent plane of z, given as:

Υz(q) =
2√

cλc(z)
tanh−1(

√
c∥ − z ⊕c q∥) −z ⊕c q

∥ − z ⊕c q∥ . (2.18)

Note that Υz
(
Γz(p)

)
= p ∈ TzDn

c . Both the exponential and the logarithm maps are
injective functions. In the Chapter 6, we leverage the Euclidean space in the identity
tangent plane to define the kernels for hyperbolic spaces.

2.7 Person Re-Identification

Person retrieval, also known as person re-identification (re-ID) 1 , has attracted an
increasing amount of interest in the Computer Vision (CV) community due to its

1In this paper, we will use the terms “person retrieval”, “person re-identification” and “person
re-ID” interchangeably.
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challenging nature and industrial prospects. The task of a person retrieval machine
can be characterised as follows: given an image of a specific person, the machine
should retrieve all images with the same identity, from a gallery.

Early works in the field of person re-ID relied mostly on designing hand-crafted
feature representations [Gheissari et al., 2006] or learning latent spaces [Yi et al.,
2014]. We refer interested readers to [Gong et al., 2014] for more details regard-
ing traditional methods. Convolutional Neural Networks (CNN) are currently the
method of choice for representation learning, delivering state-of-the-art results in
person re-ID. In [Yi et al., 2014], Yi et al. proposed a unified framework for feature
and similarity learning using Siamese networks [Roy et al., 2019]. Multi-level similar-
ities are employed in [Wang et al., 2018c] to make more reliable decisions. Xiao et al.
trained a model across multiple datasets [Xiao et al., 2016] and used domain guided
dropouts to mute domain-irrelevant neurons to learn robust features. Structural con-
straints (e.g., orthogonality, geometry) on the embedding layer [Sun et al., 2017; Bai
et al., 2017] have also been shown to learn robust person features and achieve supe-
rior results on the person re-ID task.

In deep metric learning, some works also concentrate on developing the ranking
loss in formulation [Chen et al., 2017a] or mining strategies [Wang et al., 2018a]. Con-
sidering the camera distribution, the spatial and temporal signal is further adopted
to eliminate the irrelevant, thereby improving the ranking results [Wang et al., 2019].
Besides the single image presentation, video data also introduces temporal cues to
encode a compact and robust video presentation of a pedestrian [Yan et al., 2016;
McLaughlin et al., 2016]. In the early work of [McLaughlin et al., 2016], the clip-
level feature is fused by using a simple yet effective temporal pooling technique. A
Recurrent Neural Network (RNN) is further employed to leverage the temporal in-
formation, and fuse the frame-level features [Yan et al., 2016]. Temporal attention
mechanisms predict the importance of each frame feature and uses weighted sum to
fuse them [Li et al., 2019a]

In person re-ID, the person misalignment [Suh et al., 2018] and background biases
[Tian et al., 2018] obstruct learning of a robust feature representation. Visual attention
mechanisms aim at emphasising informative regions for identification, while depreci-
ating harmful ones (e.g., background and occluded regions). The spatial transformer
network (STN) [Jaderberg et al., 2015], a binary hard attention, was used in [Li et al.,
2017] to localise the latent body parts of a human. Liu et al. [Liu et al., 2016] proposed
a Comparative Attention Network (CAN), which repeatedly localises discriminative
parts and compares different local regions of person pairs. In Harmonious Attention
Convolutional Neural Network (HA-CNN) [Li et al., 2018c], hard region-level atten-
tion and soft pixel-level attention are learned in a unified attention block. Wang et
al. [Wang et al., 2018a] considered both the channel-wise and spatial-wise attention
in a Fully Attentional Block (FAB), where the channel information is re-calibrated
while the spatial structural information is also preserved. Besides aligning the fea-
ture maps, Dual ATtention Matching network (DuATM) [Si et al., 2018] also calibrates
the features by matching the intra-feature sequence. In [Tay et al., 2019], the atten-
tion learning is driven by person attribute prediction. In the video person re-ID task,
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attention mechanisms have also been employed in temporal modelling. For exam-
ple, the attention weights for each frame is generated by temporal convolution [Gao
and Nevatia, 2018]. The recent works continue to mine more spatial and temporal
information via spatial-temporal attention [Fu et al., 2019b].

2.8 Summary

In summary, this chapter provides the notation, preliminary and background ma-
terials used in this Thesis. In the next chapters, we present how we improve the
quality of the image embedding under the concern of visual attention and geometry
constraint.
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Chapter 3

Attention in Attention Networks

In this chapter, we first propose a novel Attention in Attention (AiA) mechanism.
The AiA mechanism models the capacity of building inter-dependencies among the
local and global features by the interaction of inner and outer attention modules.
Besides a vanilla AiA module, termed linear attention with AiA, two non-linear
counterparts, namely, second-order polynomial attention and Gaussian attention,
are also proposed to utilise the non-linear properties of the input features explic-
itly, via the second-order polynomial kernel and Gaussian kernel approximation.
The deep convolutional neural network, equipped with the proposed AiA blocks,
is referred to as Attention in Attention Network (AiA-Net). The AiA-Net learns to
extract a discriminative pedestrian representation, which combines complementary
person appearance and corresponding part features. Extensive ablation studies ver-
ify the effectiveness of the AiA mechanism and the use of non-linear features hidden
in the feature map for attention design. Furthermore, our approach outperforms
current state-of-the-art by a considerable margin across a number of benchmarks. In
addition, state-of-the-art performance is also achieved in the video person retrieval
task with the assistance of the proposed AiA blocks. This chapter is based on our
published works [Fang et al., 2019, 2021c].

3.1 Introduction

In this chapter, we study the Attention in Attention Networks for encoding rich pedes-
trian representation on the person re-ID task.

In the real practice, there are quite a few factors that can lead to an unreliable per-
son retrieval system, making the re-ID task daunting and challenging. For example,
misalignment caused by spatial nuances in the person bounding box (e.g., movements
of body parts) can negatively affect a re-ID system [Su et al., 2017]. That is, the lo-
cation of the person’s body, and its parts, with respect to a reference frame, can be
easily displaced due to the change in body orientation, pose, clothing, etc. This, in
turn, causes mismatching of features during training and testing, leading to inaccu-
rate re-identification. Much effort has been made into studying and addressing these
difficulties [Suh et al., 2018; Sun et al., 2018; Chen et al., 2017b; Li et al., 2019b]. How-
ever, it still remains an open problem and calls for further study to learn a robust

23
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and discriminative representation of the person(s).
In general, solutions to address the misalignment within a person bounding box

can be broadly categorised into human pose-based, human attributes-based as well as
visual attention-based methods. In recent years, several attempts that rely on human
pose estimation have been undertaken to address this in [Su et al., 2017; Saquib Sar-
fraz et al., 2018; Li et al., 2019b]. These algorithms employ additional estimator
networks that provide the baseline-network with complementary cues to learn a su-
perior embedding space, thereby outperforming the baseline-network. Other solu-
tions benefit from person attributes [Su et al., 2016; Tay et al., 2019; Zhao et al., 2019],
that are invariant to variations in human pose, light illumination, background clutter,
spatial misalignment, etc. Such solutions aim at learning a robust person representa-
tion as described by the human attributes. Recently, visual attention-based solutions
have received an overwhelming interest in the re-ID task, since it outperforms the
pose-based/attribute-based models without the need of any additional pose detector
or attribute estimator network.

The attention-based models, inspired by the human visual and attentive sensing
processes, aim to localise the discriminative regions within a person bounding box [Li
et al., 2018c; Wang et al., 2018a; Qian et al., 2019]. The inherent attention module
(e.g., hard attention [Jaderberg et al., 2015; Li et al., 2018c] or soft attention [Hu
et al., 2018; Wang et al., 2018a]) is designed to automatically select the informative
parts of an image, and is trained in a weakly-supervised manner (i.e., no explicit
labelling information is given to identify the areas to attend). In our preliminary
study [Fang et al., 2019], we proposed the Attention in Attention (AiA) mechanism
to model the explicit interaction between global and local features of the feature
map, and used a bilinear mapping [Lin et al., 2015] that benefits from the second-
order statistics to generate the attention values. In this chapter, we aim to generalise
the AiA mechanism by making use of higher-order statistics, explicitly encoded by
non-linear kernel mappings within the AiA framework, to generate the attention
map.

Designing non-linear embeddings (e.g., feature space of kernel machines) by mak-
ing use of the geometry of Reproducing Kernel Hilbert Spaces (RKHS) dates back
to the celebrated work of Vapnik [Vapnik, 2000]. The machinery of RKHS is rich
enough to even handle infinite-dimensional representations (through the use of the
well-known kernel trick). Also, recent studies show that kernel methods along deep
neural networks (DNNs) would help to attain rich models [Xu et al., 2020; Peng et al.,
2019; Jayasumana et al., 2020; Cui et al., 2017]. This inspires us to benefit from the
theory of RKHS and its approximations [Vedaldi and Zisserman, 2012; Rahimi and
Recht, 2008] to design attention modules for DNNs. To the best of our knowledge,
this is the first attempt where an attention mechanism is implemented from an RKHS
perspective.

This chapter generalises the AiA framework by employing explicit non-linear
mappings in RKHS to generate attention value(s). The AiA framework consists of
an outer attention block that encompasses an inner attention block such that the inner
block is tasked to determine the discriminative regions of the feature map where the
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outer attention block should focus (See Fig. 3.1 and Fig. 3.2 for a conceptual diagram
for AiA structure). Therefore, the AiA block models channel-wise inter-dependencies
between the global and local features, while preserving the spatial structural informa-
tion of the input feature map, in a unified block. Besides a vanilla AiA block, which
only exploits linear features of its input feature map, we further propose and de-
velop two non-linear versions of AiA, with each respectively using the second-order
polynomial and Gaussian kernels of the feature map along the channels. The intu-
ition behind adopting the features in RKHSs is that such features can benefit from
the highly discriminative capacity of high- or infinite-dimensional spaces, thereby
helping the attention block to focus on more discriminative areas within the feature
maps. Even though functions in RKHS can approximate any function, the opera-
tional capacity is limited due to computationally expensive kernel operations on the
whole training data [Rahimi and Recht, 2008; Vedaldi and Zisserman, 2012]. In this
chapter, we further propose to alleviate these constraints by relying on advanced
kernel estimation techniques. More specifically, the second-order polynomial kernel
is modelled by a bilinear mapping [Lin et al., 2015], while the Gaussian kernel is
estimated by random Fourier features [Rahimi and Recht, 2008]. By such transfor-
mations, learnable parameters are avoided in the non-linear transformation, leading
to being optimised easily. We further propose a computationally efficient version of
the attention block without the use of the inner attention block. Table 3.1 summarises
the proposed attention modules.

The contribution of this chapter can be summarised as follows:

• We formulate a generalised Attention in Attention (AiA) mechanism, where the
attention map is generated by the interaction between the inner and outer at-
tention modules. This indeed results in modelling inter-dependencies between
global and local features of its input feature map, while maintaining the spatial
structural information.

• We further develop kernelized versions of the AiA block, namely, second-order
polynomial attention (SoP-attention) and Gaussian attention (Gau-attention), by
estimating the second-order polynomial and Gaussian features of the input
feature map respectively. Furthermore, we employ advanced kernel estimation
techniques to reduce the computational cost of the kernel matrix.

• We propose a novel deep architecture using the AiA block, creating our At-
tention in Attention Network (AiA-Net), for the task of person retrieval. This
AiA-Net extracts complementary person appearance and part features for dis-
criminative person representation learning.

• Extensive experiments performed on large scale standard benchmark datasets
including CUHK03 [Li et al., 2014], Market-1501 [Zheng et al., 2015], DukeMTMC-
reID [Ristani et al., 2016] and MSMT17 [Wei et al., 2018], as well as a small scale
benchmark dataset (e.g., CHUK01 [Li et al., 2012]), show that our approach
outperforms the current state-of-the-art methods by a considerable margin in
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terms of mAP and R-1 metrics. Meanwhile, we also conduct extensive ablation
studies that verify the superiority of the AiA mechanism and the utility of the
non-linear features.

• In the video person retrieval setting, our deep network (e.g., AiA-Net-V) also
achieves state-of-the-art results on the popular video benchmark dataset, i.e.,
MARS [Zheng et al., 2016].

Additionally, we find an interesting observation that the Gau-attention mecha-
nism is empirically superior to the SoP-attention, in terms of accuracy, computational
cost as well as number of parameters. For instance, on the CUHK03 dataset, the
mAP/R-1 of AiA-Net with Gau-attention is 77.6%/80.6% as compared to 77.0%/79.4%
for SoP-attention, while the computational complexity/number of parameters of
Gau-attention are three times smaller than that of SoP-attention (e.g., 0.044× 109/0.58×
106 vs. 0.117 × 109/1.79 × 106).

3.2 Related Work

In this part, we review the kernel estimation techniques used in this Chapter, namely,
the bilinear mapping and kernel approximation.

Bilinear Mapping. Bilinear mappings and models have been widely considered
as a generalisation of their linear counterparts. Some prime examples are bilinear
classifiers [Pirsiavash et al., 2009], bilinear pooling [Gao et al., 2016] and bilinear
CNNs [Lin et al., 2015] with applications in visual question answering, fine-grained
image recognition, texture classification to name a few. Related to our work, the bi-
linear pooling [Gao et al., 2016], is first introduced to model local pairwise feature
interactions for fine-grained recognition applications and its representation power is
also enhanced by normalising the higher order statistics [Lin and Maji, 2017]. There-
after, Liu et al. [Liu et al., 2017a] proposed a compact form of the bilinear operation
to pool a high-dimensional feature representation for the task of person re-ID. In
[Ustinova et al., 2015], Ustinova et al. proposed a patch-based multi-regional bilin-
ear pooling to account for the geometric misalignment problem between the person
bounding boxes. Recently, Suh et al. [Suh et al., 2018] used a part-aligned representa-
tion to mitigate the misalignment problem by fusing the appearance and part feature
maps in a bilinear pooling layer. To avoid a quadratic computational cost, the bilinear
features are estimated by a compact representation, e.g., the tensor sketch [Gao et al.,
2016], or the Hadamard product of low-rank bilinear pooling [Kim et al., 2017].

Kernel Approximation. Feature embedding in RKHS has been commonly used
in many machine learning methods, such as, non-linear SVM, kernel PCA and unsu-
pervised learning [Hofmann et al., 2008]. Nonetheless, training such kernel machines
is N times slower than the vanilla linear machine, where N is the size of the training
data [Vedaldi and Zisserman, 2012]. This results in poor scalability of the non-linear
kernel based algorithms as the feature learning operates on the kernel matrix, leading
to the birth of accelerated kernel machines [Vedaldi and Zisserman, 2012; Rahimi and
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Recht, 2008]. One possible attempt is to approximate the high dimensional features
by explicit mapping in RKHS, which is linearly scalable to the size of training sam-
ples [Joachims, 2006]. Maji et al. [Maji and Berg, 2009] approximated the intersection
kernel by sparse projection. Shift-invariant kernels, e.g., Gaussian kernels, Cauchy
kernels etc., are estimated by randomly mapping the feature in the Fourier domain
of the associated kernel [Rahimi and Recht, 2008]. Approximation to a group of addi-
tive homogeneous by spectral analysis is studied by Vedaldi and Zisserman [Vedaldi
and Zisserman, 2012], yielding closed-form solutions.

3.3 Attention in Attention Block

In this section, we will first describe the Attention in Attention (AiA) framework,
which only uses the linear features of the input feature map in the attention block.
This vanilla module is termed as Linear attention with AiA. Subsequently, its non-
linear counterparts will be developed by making use of second-order polynomial
and Gaussian kernels in the attention module. Each AiA module will be followed
by a discussion of its simplified version (i.e., the attention w/o AiA). All proposed
attention blocks are summarised in Table 3.1.

3.3.1 Linear Attention

Linear attention (Lin-attention) with AiA refers to the vanilla attention module under
the AiA framework as it explicitly uses the linear features over the input feature
map. This AiA mechanism models the inter-dependencies between the local and
global features, whilst preserving the spatial structure of its input feature map. The
architecture of Lin-attention with AiA is shown in Fig. 3.1.

Figure 3.1: The structure of Linear attention with AiA. φ(·), ϕ(·) and ϖ(·) are em-
bedding functions. GAP indicates global average pooling. ⊗ indicates element-wise

multiplication.

Let X ∈ Rc×h×w be the input feature map, where c, h and w stand for the number
of channels, height and width respectively. We denote the local feature at spatial
location (i, j) as xij ∈ Rc, i ∈ {1, 2, . . . , h}, j ∈ {1, 2, . . . , w}. The embedding function,
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φ(·), first compresses x1 from the original channel dimension c to c̄ as follows:

x̄ = φ(x), (3.1)

where x̄ ∈ Rc̄ with c̄ = c/r. The hyper-parameter r is the dimensionality reduction
factor and its effect is discussed in § 3.5.4.

We note that even though x̄ encodes the channel features (i.e., x), it doesn’t change
the spatial location of body parts in the feature map. As a result the misalignment
issue within the feature map still persists, which hinders the performance gain by
the attention module. To address this shortcoming, we introduce the concept of
“Attention in Attention”, which aims to adaptively re-weight the channel feature
responses by modelling the inter-dependency between the global and local features
2 (see Fig. 3.1). We first model the global feature of the feature map using a Global
Average Pooling (GAP) layer, as follows:

m =
1

hw

hw

∑
i=1

x̄i, (3.2)

where m ∈ Rc̄. The inter-dependency between the embedded global feature m and
each embedded local features x̄ is calculated as follows:

x̂ = ϖ(m)⊗ ϕ(x̄), (3.3)

where ⊗ denotes the element-wise multiplication, and ϖ(m), ϕ(x̄) ∈ Rc. The embed-
ding functions, ϖ(m) and ϕ(x̄), not only process the channel feature responses, but
also recover the dimension of the channel from c̄ to c (i.e., the channel size of the in-
put x). Refer to Fig. 3.2 for a detailed pictorial representation of the aforementioned
steps. Intuitively, ϖ(m) acts as an inner attention and emphasises the local feature
ϕ(x̄) which are more correlated to the global feature ϖ(m) via Eq. (3.3). In § 3.5.1,
we give the details of embedding functions (i.e., φ(·), ϖ(·) and ϕ(·)).

Figure 3.2: Details of the attention in attention (AiA) mechanism.

The final attention mask of input x is obtained by bounding x̂. In this chapter,
we use Sigmoid(·) for this purpose (i.e., z = Sigmoid(x̂)). This resulting vector will

1The subscripts have been omitted to avoid cluttering of notations.
2In this chapter, the physical meaning of the “global feature” and “local feature” indicates the “per-

son’s appearance feature” and “part feature”.
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act as an outer attention map, and emphasise/attenuate the significant/insignificant
elements of its input feature vector x at the same spatial position as shown below:

xz = z ⊗ x. (3.4)

Remark 1 The operations described by Eq. (3.2) and (3.3) resemble the Squeeze-and-Excitation
(SE) Networks [Hu et al., 2018]. However, there is an essential difference. The SE Network
first squeezes the information in each channel to a scalar which is then used to scale all the
elements of a channel uniformly. In contrast, we use the channel attention as an inner atten-
tion module to perform significance weighting of the attention-dependent feature map (e.g.,
ϕ(x̄)) in AiA and produce the output feature map (e.g., X̂). Subsequently, our AiA module
will further process X̂ to generate the final attention map (e.g., Z). In Fig. 3.1 and Fig. 3.3,
we further illustrate the difference between the SE block and the proposed AiA block. Math-
ematically, for a given feature maps X ∈ Rc×h×w as input, the output of SE block is given
by

Xz = Sigmoid
(

σ
(
ξ(GAP(X))

))
⊗ X, (3.5)

where GAP indicates Global Average Pooling and ξ(·), σ(·) are the gating functions, as that
in [Hu et al., 2018]. In contrast, the output of our proposed AiA block is formulated as:

Xz = Sigmoid
(

ϕ
(

φ(X)
)
⊗ ϖ

(
GAP(φ(X))

))
⊗ X. (3.6)

By comparing Eq. (3.5) and Eq. (3.6), one can observe that if φ(·) is the identity mapping,
ϕ(X) = I, and ϖ(·) = σ

(
ξ(·)

)
, then our AiA block realises the SE block. In other words,

SE block is a special case in our AiA framework. It is noted I ∈ Rc×h×w represents identity
tensor here. Since our AiA block also encodes local features (e.g., ϕ(X̄)), we believe our
attention maintains the spatial structural information of the input feature map (e.g., X),
which essentially improves the performance of the attention block (refer the study in § 3.5.4).

Figure 3.3: The structure of Squeeze and Excitation block.

3.3.1.1 Linear Attention without AiA

In case the number of parameters in the AiA module becomes a concern, one can re-
sort to a simplified version which we denote as Lin-attention without AiA (see Fig. 3.4).
This simplification reduces the number of parameters in the Lin-attention block while
still obtaining competitive performance with respect to the current algorithms for
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person re-ID tasks. (refer to § 3.5.4.2 for a comparison against various benchmarks).
Formally, we have

xz = Sigmoid
(

ϕ
(

φ(x)
))

⊗ x. (3.7)

Figure 3.4: The structure of Linear attention without AiA.

In the Lin-attention module, the attention map is generated based on the linear
property of the input feature map. To boost its discriminative capacity, we estimate
second-order polynomial and Gaussian kernels to extract non-linear features from
the input feature map so as to generate the attention map (or values). The two
attention modules are called second-order polynomial attention and Gaussian attention,
respectively (refer to Fig. 3.5 for a more detailed description).

3.3.2 Second-order Polynomial Attention

In the second-order polynomial attention (SoP-attention), we make use of the concept
of polynomial kernels within AiA. The architecture of SoP-attention is shown in
Fig. 3.5(a). In SoP-attention, we first obtain

Y = φ(x)φ(x)⊤ = x̄x̄⊤

=

 x̄1
...

x̄c̄

 [x̄1 . . . x̄c̄]

=

 x̄2
1 . . . x̄1 x̄c̄
...

. . .
...

x̄c̄ x̄1 . . . x̄2
c̄

 .

(3.8)

Since Y is a symmetric matrix, we only consider its upper triangular elements
in the subsequent processing. This simple step reduces the feature dimensionality
from c̄2 to c̄ · (c̄ + 1)/2, thereby resulting in faster and efficient processing in the
subsequent modules (refer to Fig. 3.6). Specifically, we perform

x̃ = Vec
(
UTri(Y)

)
, (3.9)

where Vec(·) and UTri(·) indicate vectorization and the operator that extracts the up-
per triangular elements of a matrix respectively. We summarise the bilinear pooling
and feature rearrangement with: SoP(x̄) = Vec

(
UTri(x̄x̄⊤)

)
.
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(a) Second-order polynomial attention with AiA (b) Gaussian attention with AiA

(c) Second-order polynomial attention without
AiA

(d) Gaussian attention without AiA

Figure 3.5: The structure of AiA modules employing non-linear features in the fea-
ture map. (a): Second-order polynomial attention with AiA, (b): Gaussian attention
with AiA, (c): Second-order polynomial attention without AiA, (d): Gaussian at-
tention without AiA. SoP(·) indicates the bilinear pooling and second order feature
rearrangement function. Gau(·) indicates the random Fourier feature mapping func-

tion.

Figure 3.6: Processing of bilinear pooling and second order feature rearrangement,
denoted by SoP(·). In this operation, we sample the elements in the upper triangle

of Y and vectorize those elements to a new feature vector x̃

Given the second order features (e.g., x̃) and following the similar aforementioned
steps from Eq. (3.2) to Eq. (3.4), we propose

Sigmoid
(

ϖ(m)⊗ ϕ(x̃)
)

, (3.10)

as the attention map for x, where m = 1
hw (∑

hw
i=1 x̃i). It is worth mentioning that

m contains the second order statistical information (i.e., the vectorized version of the
empirical auto-correlation matrix of X̄) of the input to AiA.

Remark 2 The inner product between two vectors is widely used as a means of similar-
ity matching. As an insight on the properties of SoP-attention, consider the inner product
between x̃i and x̃j, (i.e., the output of SoP(·) function):

x̃⊤i x̃j = SoP(x̄i)
⊤SoP(x̄j)

= Vec
(
UTri(x̄i x̄⊤i )

)⊤Vec
(
UTri(x̄j x̄⊤j )

)
= ∑

u
(x̄iu · x̄ju)

2 + ∑
u

∑
s ̸=u

(x̄iu x̄is · x̄ju x̄js).
(3.11)

Here, x̄iu is the u-th element in vector x̄i. This shows that with second order pooling, one can
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introduce higher order statistics (e.g., second term in Eq. (3.11)) into making decisions. This,
as we will see empirically, boosts the accuracy of the model substantially.

SoP-attention also has its simplified counterpart, shown in Fig. 3.5(c). This for-
mulation approximately halves the number of parameters of the SoP-attention block,
while still benefiting from second order information (using bilinear mapping). Here,
the attended feature map is calculated as

xz = Sigmoid
(

ϕ
(
SoP(φ(x))

))
⊗ x. (3.12)

3.3.3 Gaussian Attention

The SoP-attention module requires a large set of parameters if its input feature map
is high-dimensional. To address this difficulty, we propose the Gaussian attention
or Gau-attention for short (refer to Fig. 3.5(b) for a conceptual diagram). The Gau-
attention makes use of the theory of random Fourier features to approximate the in-
finite dimensional feature space of a Gaussian kernel. This, as will be shown shortly,
drastically reduces the number of parameters of the model and required FLOPs (see
Table 3.12 in § 3.5).

Given the embedded feature x̄ = φ(x) ∈ Rc̄×h×w, the function Gau(x̄) estimates
the Gaussian kernel along each channel, such that:

K(x̄i, x̄j) = e−
∥x̄i−x̄j∥

2

2σ2 ≈ κ(x̄i)
⊤κ(x̄j), (3.13)

where κ(·) is a randomised embedding. The form of κ(·) for a Gaussian kernel [Rahimi
and Recht, 2008] is shown below as

κ(x̄) =

√
1
c′



cos(ω⊤
1 x̄)

...
cos(ω⊤

c′ x̄)
sin(ω⊤

1 x̄)
...

sin(ω⊤
c′ x̄)


∈ R2c′ , (3.14)

where the weights (i.e., ωi, i = 1, . . . , c′) are drawn from the scaled Fourier transfor-
mation of a Gaussian kernel. That is, we sample from

p(ω) = (2π)−c̄/2 exp(−∥ω∥2

2
) =

1
2π

∫
e−jω⊤δe−

∥δ∥2

2σ2 dδ. (3.15)

The above processing is summarised as the Gau(·) function, with x̃ = Gau(x̄).
Given the estimated random features (i.e., x̃ or κ(x̄)), Gau-attention generates the
attention map and attends to the input feature map, following Eq. (3.10) and (3.4)
respectively.
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Remark 3 Here, we provide a brief analysis how the Gau(·) function equips the input feature
x̄ with the discriminative power of a Gaussian kernel. Given any two random feature vectors,
x̃i and x̃j, their similarity matching is calculated as follows:

E
[
x̃⊤i x̃j

]
= E

[
κ(x̄i)

⊤κ(x̄j)
]

=
1
c′

E
[
∑

k

(
cos(ω⊤

k x̄i)cos(ω⊤
k x̄j) + sin(ω⊤

k x̄i)sin(ω⊤
k x̄j)

)]
= E

[
cos(ω⊤(x̄i − x̄j))

]
=

∫
Rc̄

p(ω)ejω⊤(x̄i−x̄j)dω

= K(x̄i, x̄j) ,

(3.16)

where the last equality follows from the Bochner theorem [Rahimi and Recht, 2008]. In § 3.5,
we also empirically verify the superior performance of Gaussian attention, which not only
saves parameter numbers and computational overhead significantly, but also outperforms the
other two in the majority of the experiments.

The simplified version of Gau-attention is shown in Fig. 3.5(d) and is denoted as
Gaussian attention without AiA, and its formulation is shown as follows:

xz = Sigmoid
(

ϕ
(
Gau(φ(x))

))
⊗ x. (3.17)

Remark 4 Similar to the Fully Attentional Block (FAB) [Wang et al., 2018a], both SoP-
attention and Gau-attention without AiA modules maintain the spatial structural informa-
tion of the input feature map. However, unlike FAB that considers only the first order channel
information, the aforementioned attention blocks additionally exploit the non-linear channel
information in the second-order polynomial and Gaussian kernel spaces, so as to learn a su-
perior discriminative embedding space for the re-ID task.

It is worth mentioning that the proposed attention modules can be seamlessly
placed in any existing convolutional neural network to enhance the representation
learning similar to what most existing attention blocks do. In § 3.5, we will show the
effectiveness of the proposed attention modules in the person re-ID application.

3.4 Attention in Attention Networks for Person Retrieval

In this section, we will first provide an overview of the problem formulation. Sub-
sequently, it will be followed by a detailed description of the architecture of the pro-
posed deep convolutional network, the Attention in Attention Network (AiA-Net).

3.4.1 Problem Formulation

Let Pi ∈ RC×H×W denote an input image, where C, H, and W represent the number
of channels and its height and width, respectively. Each image pi is labelled by its
identity, denoted as yi ∈ {1, . . . , k}, where k represents the total number of distinct
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Figure 3.7: The deep architecture of the proposed feature extractor. AiA-Net has
two feature extractors, e.g., the person appearance feature extractor (i.e., Fa) and the
part feature extractor (i.e., Fp). f a and f p are concatenated to give the final person

representation as f = [ f⊤a , f⊤a ]
⊤

identities of the training data. Thus, the training set with Ntrain images, can be
represented as {Pi, yi}Ntrain

i=1 . The person retrieval system, F (P, θ), parameterised by
θ, aims at encoding an image P to an embedding space, such that the intra-person
variations are minimised while the inter-person variations are maximised. In our
work, the final embedding space is obtained by concatenating the person-appearance
embedding space, i.e., f a = Fa(P, θa), and the person-part embedding space, i.e.,
f p = Fp(P, θp), such that F (P, θ) = [ f⊤a , f⊤p ]

⊤.

3.4.2 Overview

The AiA-Net has two feature extractors, namely, (1) a person-appearance feature
extractor (denoted by Fa) and (2) a person part-feature extractor (denoted by Fp).
The overall architecture of the AiA-Net is shown in Fig. 3.7. The person holistic
appearance is encoded by the appearance feature extractor; while the part feature
extractor aims at encoding the different parts of the person.

The appearance feature extractor consists of 4 convolutional blocks. After each
convolutional block, an AiA block is added to align the feature map and highlight its
discriminative regions. The attended feature map encourages the network to learn a
holistic representation (i.e., f a in Fig. 3.7) of the person.

Recent studies of the person re-identification task suggest that an independent
modelling of the part regions can enhance the precision of the overall system [Suh
et al., 2018; Sun et al., 2018; Li et al., 2018c]. We also equip the AiA-Net with a
parts-based learning ability. More specifically, we use a simple sub-network as a
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part feature extractor, which aims at learning distinct and discriminative parts in the
input image. In the part feature extractor, the aligned feature map X ∈ Rc×h×w is
divided into T non-overlapping regions X t s.t. X t ∈ Rc× h

T ×w, t = 1, . . . , T. Each of
the non-overlapped regions is resized to c× h×w by bilinear interpolation and fed to
the t-th stream of the part feature extractor network; which generates the part-feature
embedding. Then, T part features are concatenated to represent the final person part
representation (i.e., f p in Fig. 3.7).

Remark 5 Our part feature extractor network is different from the current part-based so-
lutions [Suh et al., 2018; Li et al., 2018c; Sun et al., 2018, 2019b; Zhao et al., 2017c]. For
example, in [Suh et al., 2018], the part feature is extracted via a pose estimation network called
OpenPose [Cao et al., 2017]. Zhao et al. uses an implicitly defined part detector to align the
part features [Zhao et al., 2017c]. In [Li et al., 2018c], the parts are sampled through a hard
attention network. In [Sun et al., 2018, 2019b], the parts are split evenly in the final feature
map. In addition to the structural differences, each part model within the AiA-Net works
independently from the others as no weights are shared between them. This, in turn, leads to
an increased diversity of the learned parts, thereby learning a more generalised discriminative
embedding space for retrieval purposes.

3.4.3 Multi-Task Training

Multi-Task Training (MTT) has shown to be effective in modern person re-ID so-
lutions. As the name suggests, MTT formulates the overall learning procedure as
a combination of several sub-tasks; each having its own importance in the overall
learning mechanism. Yu et al. uses cross-entropy loss for the classification task and
triplet loss for the ranking task [Yu et al., 2018]. Mancs combines the triplet loss,
focal loss and cross-entropy loss and learns a superior embedding space for per-
son re-iD against the baseline algorithms [Wang et al., 2018a]. Recent works in [Ni
et al., 2020; Zhu et al., 2019] also show person re-ID can benefit from various regu-
larisation,e.g., L2 regularisation, angular regularisation etc.. Following the protocol
prescribed in [Yu et al., 2018], we train our network for the tasks of ranking and
classification jointly, e.g., L = Ltri + Lce. Each loss component is explained in the
following.

Ranking Task. We use the well studied triplet loss for the ranking task. In a
mini-batch, {Pi}Nbatch

i=1 , a possible triplet can be denoted as {Pi, P+
i , P−

i } such that the
anchor Pi shares the same identity with the positive sample P+

i and the negative
sample P−

i belongs to a different identity. In the embedding space F (·), the triplet
loss is formulated as follows:

Ltri =
1

Ntri

Ntri

∑
i=1

[
d+i − d−i + η

]
+

, (3.18)

where [·]+ = max(·, 0), Ntri indicates the number of triplets within one batch, η is a
margin. d+i = ∥F (Pi)−F (P+

i )∥, and d−i = ∥F (Pi)−F (P−
i )∥. In the triplet mining,

for each anchor, we mine one hard positive and 5 hard negatives, thus obtaining
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5 triplets per anchor sample. This mining strategy is to avoid collapsing to local
minima in the early stages of optimisation [Schroff et al., 2015].

Classification Task. The triplet loss only encodes the inter-person and intra-
person information within a particular triplet, but does not fully take into account the
identity specific information. To encode the class specific information, we augment
the triplet loss with the cross-entropy based classification loss Jcls, shown below

Lce =
1

Nbatch

Nbatch

∑
i=1

−log
(

p(yi|F (Pi))
)
, (3.19)

where p(yi|F (Pi)) is the predicted probability that Pi belongs to identity yi, and
Nbatch is the number of samples in one mini-batch.

3.5 Experiments on Image Person Retrieval

3.5.1 Implementation Details

Network Architecture. We implemented our AiA-Net model in the PyTorch [Paszke
et al., 2017] deep learning framework. The backbone network is the GoogLeNet-
V1 [Szegedy et al., 2015], pre-trained on ImageNet [Russakovsky et al., 2015] with
Batch Normalisation [Ioffe and Szegedy, 2015]. The spatial size of the input image
is fixed to 256 × 128. In the appearance feature extractor, the size of the feature af-
ter global average pooling (GAP) is 1024, which is followed by the 512-dimensional
person appearance embedding layer f a. Another fully connected (FC) layer is con-
nected to predict the person identity using the person appearance embedding. In
the part feature extractor, we follow the work in [Li et al., 2018c], and fix T = 4
across all experiments. The output features of each of the T streams are concate-
nated, and is passed through a 512-dimensional part embedding fp. A FC layer is
further connected to predict the person identity using the person part embedding.
During testing, f a and f p are concatenated to give the final person representation f ,

where f = [ f⊤a , f⊤a ]
⊤ ∈ R1024.

In the AiA block, the embedding functions φ(·), ϕ(·) and ϖ(·) are 1 × 1 convo-
lutional layers, followed by a batch normalisation layer and a nonlinear layer. Here,
the nonlinear layer uses the ReLU(·) function. In φ(·), the dimensionality reduction
factor, r, is set to 8 for the CUHK03 [Li et al., 2014] and CUHK01 [Li et al., 2012]
datasets, and to 4 for the other datasets. The dimension of the random feature (i.e.,
c′) in Eq. 3.14 is set to 960 for DukeMTMC-reID dataset and to 480 for the other
datasets. The details of the datasets will be presented in § 3.5.2.

Network Training. We use the Adam [Kingma and Ba, 2014] optimiser with the
default momentum values of (0.9, 0.999) for (β1 and β2). The weight decay is set
to 0.0001. The learning rate is initialised to 1 × 10−3 for CUHK03 [Li et al., 2014]
and CUHK01 [Li et al., 2012], and 5 × 10−4 for Market-1501 [Zheng et al., 2015],
DukeMTMC-reID [Ristani et al., 2016] and MSMT17 [Wei et al., 2018]. The size of the
mini-batch (i.e., Nbatch in Eq. (3.19)) is set to 64 for all experiments. The learning rate
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is decayed by a factor of 0.1 at 150, 200, 250 epochs respectively for all the datasets.
In the multi-task training, we pose the ranking task and classification task in both the
appearance and part feature extractors separately; this is inspired by [Sun et al., 2018]
where supervision on each respective feature extractor is vital for learning discrim-
inative features. In the triplet loss, we set the margin (i.e., τ in Eq. (3.18)) to 1.5 for
the CUHK03 and CUHK01 datasets and 1 for the other datasets. We randomly apply
horizontal flip to the input images. Similar to [Huang et al., 2018], we also apply
random erasing [Zhong et al., 2017b] after 50 epochs of training in order to avoid any
local optima within the embedding space. No such augmentations are used during
the testing phase. We report the performance of the network after training it for 250
epochs. Moreover, it is worth noting that we do not apply any re-ranking algorithms
to boost the ranking result in the testing phase.

3.5.2 Datasets and Evaluation Protocol

In this section, we evaluate our proposed algorithm across four large scale datasets,
i.e., CUHK03 [Li et al., 2014], Market-1501 [Zheng et al., 2015], DukeMTMC-reID [Ris-
tani et al., 2016] and MSMT17 [Wei et al., 2018], as well as one small scale dataset,
i.e., CUHK01 [Li et al., 2012].

The CUHK03 dataset consists of 13, 164 person images of 1, 467 identities, cap-
tured by six non-overlapping cameras. Each person is observed by two disjoint cam-
era views. CUHK03 offers both hand-labelled and deformable part model (DPM)-
detected [Felzenszwalb et al., 2010] bounding boxes, and we evaluate our model on
both sets. In the CUHK03 dataset, there are two training/testing protocols. In the
vanilla training protocol, the training set contains 1, 367 identities, while the remain-
ing 100 identities constitute the test set. However in the new protocol [Zhong et al.,
2017a], the training set contains 767 identities and the testing set contains the re-
maining 700 identities. In this chapter, we adopt both the protocols to verify the
effectiveness of the proposed attention blocks.

Market-1501 is one of the most popular re-ID dataset which consists of 32, 668
person images of 1, 501 identities observed under a maximum of 6 different cameras.
The dataset is split into 12, 936 training images of 751 identities and 19, 732 testing
images of the remaining 750 identities. Both the training and testing images are
detected using a DPM [Felzenszwalb et al., 2010]. In this dataset, we use both the
single query and the multi query setting to evaluate our algorithm.

DukeMTMC-reID dataset is collected using 8 different cameras and was origi-
nally proposed for video-based person tracking and re-identification. It has 1, 404
identities and includes 16, 522 training images of 702 identities, 2, 228 query images
of 702 identities and 17, 661 gallery images. In this dataset, the person bounding
boxes are manually labelled.

MSMT17 dataset is the largest person re-ID dataset, consisting of 126, 441 per-
son images from 4, 101 different identities, which are detected using Faster R-CNN
[Girshick, 2015]. This dataset is collected with using 15 different cameras. The train-
ing set consists of 32, 621 images belonging to 1, 041 identities, whereas the test set
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contains 93, 820 images of the remaining 3, 060 identities. The test set is further ran-
domly split into 11, 659 query images and the remaining 82, 161 are used as gallery
images.

CHUK01 dataset, a small scale person re-ID dataset, contains 3, 884 images of 971
identities. The person images are captured by two cameras with each person having
two images in each camera view. The person bounding boxes are labelled manually.
We adopt the 485/486 data split as the training protocol to evaluate our network.

We use both the mean Average Precision (mAP) and Cumulative Matching Char-
acteristic (CMC) to evaluate the model performance. The CMC curve measures the
correct matching rate for a given query image against the gallery images at various
ranks, whereas the mAP measures the probability of all correct matches in the gallery
images for a given query image, thereby measuring the overall ranking performance.

3.5.3 Comparison to the State-of-the-Art Methods

To show the superiority of the proposed deep architecture, we compare the perfor-
mance of AiA-Nets with the current state-of-the-art methods across five datasets.

CUHK03. In the CUHK03 dataset, we evaluate our network under all data set-
tings, that is, both labelled and detected data for the two training set protocols. Ta-
ble 3.2 and Table 3.3 show the results for both training protocols. We observe that our
methods outperform the current state-of-the-art results in vanilla setting and achieve
competitive results in the new setting. In the vanilla training set protocol (Refer to
Table 3.2), our AiA-Net with Gau-attention improves over the state-of-the-art result
by 0.9%/7.6% on mAP for labelled and detected sets, respectively. With respect to
the R-1 value, our network beats the current state-of-the-art result by 1.0%/0.4%
across the labelled and detected sets. In the new training set protocol (Refer to Ta-
ble 3.3), our AiA-Net improves the present state-of-the-art mAP value by 0.2%/0.3%
and achieves competitive results on R-1 value. This validates the utility of our design
choices in AiA-Net along with the importance of the various attention modules to
obtain a superior discriminative embedding for person-retrieval.

Table 3.2: Comparison with the SOTA methods on the CUHK03-vanilla dataset in
both labelled and detected bounding box. The 1st best in bold font.

Model
@ Labelled @ Detected
mAP R-1 mAP R-1

DKPM [Shen et al., 2018b] 89.2 91.1 - -
IANet [Hou et al., 2019a] - 92.4 - 90.1

MVP Loss [Sun et al., 2019a] - 93.7 - 91.8
SGGNN [Shen et al., 2018a] 94.3 95.3 - -
MuDeep [Qian et al., 2019] - 95.8 - 93.7
AiA-Net w/ Lin-attention 94.8 96.1 91.5 93.6
AiA-Net w/ SoP-attention 95.2 96.8 92.1 94.0
AiA-Net w/ Gau-attention 94.9 96.6 92.4 94.1
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Table 3.3: Comparison with the SOTA methods on the CUHK03-new dataset in both
labelled and detected bounding box. The 1st best in bold font.

Model
@ Labelled @ Detected
mAP R-1 mAP R-1

HPM [Fu et al., 2019c] - - 57.5 63.9
Mancs [Wang et al., 2018a] 63.9 69.0 60.5 65.5
OSNet [Zhou et al., 2019b] - - 67.8 72.3

Auto-ReID [Quan et al., 2019] 73.0 77.9 69.3 73.3
RGA [Zhang et al., 2020c] 77.4 81.1 74.5 79.6
AiA-Net w/ Lin-attention 76.4 79.1 72.8 75.8
AiA-Net w/ SoP-attention 77.0 79.4 74.2 76.9
AiA-Net w/ Gau-attention 77.6 80.6 74.8 77.8

Market-1501. We further evaluate our proposed AiA-Net against the recent state-
of-the-art methods on the Market-1501 in both the single query and multi query
settings. The results are shown in Table 3.4. In the single query setting, our method
(i.e., AiA-Net w/ Gau-attention) achieves very competitive results over the RGA
and ABD-Net. Moreover, our AiA-Nets with Lin-attention, SoP-attention and Gau-
attention outperform the present state-of-the-art Mancs by 3.7%, 4.0% and 4.3% on
mAP, and by 0.4%, 0.7% and 1.2% on R-1, respectively in the multi query setting.

DukeMTMC-reID. The evaluation of our proposed algorithm on DukeMTMC-
reID is shown in Table 3.4. It is obvious that our AiA-Nets obtain a competitive per-
formance with respect to mAP and R-1 value. The AiA-Net with Gau-attention im-
proves over DG-Net by 3.1% on mAP and 1.6% on Rank-1 accuracy. As for ABD-Net,
AiA-Net with Gau-attention has competitive performance on the R-1 value (88.8% vs.
89.0%), while achieving the same performance on mAP value. It is worth mentioning
that ABD-Net uses larger image sizes, which demands more computation resources.

MSMT17. Table 3.4 shows the result of our proposed network on the challenging
MSMT17 dataset. As observed, our proposed networks outperform RGA by 1.3% on
mAP value and. However, the present state-of-the-art method (i.e., ABD-Net) beats
our network considerably.

CUHK01. Besides learning a discriminative feature representation on large scale
datasets, we also compare the performance of the AiA-Nets against the state-of-the
art algorithms in the CUHK01 benchmark dataset, thereby demonstrating the gener-
alisation ability of our proposed networks in learning discriminative representations
on a small scale dataset. Table 3.5 compares our AiA-Net with current state-of-the-art
methods. We observe that each of the AiA-Nets outperform the existing state-of-the-
art approach (i.e., PBR) by a large margin. In particular, our three AiA-Nets with
Lin-/Sop-/Gau-attention improve the state-of-the-art accuracy by 2.1%, 2.8% and
3.2% on R-1. It is also noted that PBR is pre-trained on the CHUK03 dataset and
further fine-tuned on the CUHK01 dataset to avoid over-fitting, while our network is
solely trained on the CUHK01 dataset. This indeed shows that our network is able
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to generalise well while trained on a small dataset from scratch without the need of
any such pre-training step.

Table 3.5: Comparison with the SOTA methods on the CUHK01 dataset. The 1st best
in bold font.

Model R-1 R-5 R-10 R-20
DGD [Xiao et al., 2016] 66.6 - - -

Zhao et al. [Zhao et al., 2017c] 75.0 93.5 95.7 97.7
Spindle Net [Zhao et al., 2017b] 79.9 94.4 97.1 98.6

PBR [Suh et al., 2018] 80.7 94.4 97.3 98.6
Baseline (Fa +Fp) 82.0 94.4 97.7 99.0

AiA-Net w/ Lin-attention 82.8 94.7 97.7 99.0
AiA-Net w/ SoP-attention 83.5 95.6 97.9 99.3
AiA-Net w/ Gau-attention 83.9 95.5 98.0 99.3

3.5.4 Ablation Study

We first perform experiments to verify the effectiveness of our proposed AiA mech-
anism and its variants on CUHK03, Market-1501, DukeMTMC-reID and MSMT17
under the single query setting (i.e., SQ). For the CUHK03 dataset, we use the most
difficult setting, i.e., the new protocol with detected bounding boxes (i.e., ND).

3.5.4.1 Effect of the Proposed Feature Extractor

In the field of person retrieval, ResNet-50 [He et al., 2016] and GoogLeNet [Szegedy
et al., 2015] are the most commonly used backbones [Wang et al., 2018a; Zheng
et al., 2019; Suh et al., 2018]. Since we also want the network to own the capacity of
learning part features, the part feature extractor is further developed. We compare
the performance of the ResNet-50 and GoogLeNet, with each equipped with the part
feature extractor. As suggested in Table 3.6, we could observe that: (1) the retrieval
accuracy increases when the GoogLeNet is equipped with the part feature extractor,
thereby showing that our design is indeed effective in exploiting the complemen-
tary information between the two feature extractors. (2) GoogLeNet + part feature
extractor is superior to the ResNet-50 counterpart in both the performance and the
network size. Hence, Hence, we use the ImageNet pre-trained GoogLeNet against
the ResNet-50 in our experiments. In the rest of this chapter, the GoogLeNet and
part feature extractor are represented by Fa and Fp, respectively.

3.5.4.2 Effect of the Attention in Attention Mechanism

We then evaluate the effectiveness of the proposed AiA mechanism and use the Lin-
ear attention for this study on the CUHK03 and Market-1501 datasets. In this study,
we compare the Lin-attention without AiA and with AiA employed in the two fea-
ture extractors, i.e., Fa and Fa + Fp. The attention block is added after the second



§3.5 Experiments on Image Person Retrieval 43

Table 3.6: Result of various backbone networks on the CUHK03 and Market-1501
datasets. PNs: parameter numbers. The 1st best in bold font.

Model
CUHK03 @ ND Market @ SQ PNs
mAP R-1 mAP R-1 (×106)

GoogLeNet 64.5 67.1 80.7 91.6 9.45
+ Part feature extractor 67.8 71.1 85.1 93.8 30.16

ResNet-50 64.0 67.6 85.0 94.5 25.61
+ Part feature extractor 65.3 68.2 84.1 94.2 46.84

convolutional block (i.e., Blk 2 in Fig. 3.7).In the attention block, we use the iden-
tical dimensionality reduction factor, i.e., r = 4. The results are listed in Table 3.7.
The table shows that: Addition of Lin-attention with and without AiA leads to an
increase in the retrieval accuracy across either of the feature extractors, with the for-
mer outperforming the latter in terms of mAP and R-1 values respectively. This
indeed verifies the design intuition of the AiA mechanism. Further, we replace the
Lin-attention block by other popular attention blocks, i.e., the Squeeze-and-Excitation
(SE) block [Hu et al., 2018] and the Non-local (NL) block [Wang et al., 2018b], in the
same position of the feature extractor (i.e., Fa and Fa + Fp). We set the dimension-
ality reduction factor as 4 in both SE and NL blocks. In this study, we also compare
the parameter numbers and inference time of attention networks. As suggested in
Table 3.7, our attention outperforms the other two significantly without bringing
any additional heavy computational cost3, thereby verifying the effectiveness of our
proposed AiA mechanism.

Table 3.7: Effect of the Attention in Attention mechanism on the CUHK03 and
Market-1501 datasets. PNs: parameter numbers; Inf-time: inference time. The 1st

best in bold font.

Model
CUHK03 @ ND Market-1501 @ SQ PNs Inf-time
mAP R-1 mAP R-1 (×106) (ms)

Fa 64.5 67.1 80.7 91.6 9.45 3.2
Lin-attention w/o AiA 64.8 67.9 80.9 92.4 0.12 3.2
Lin-attention w/ AiA 66.8 70.4 82.5 92.7 0.18 3.4

SE block [Hu et al., 2018] 65.2 68.3 81.2 92.4 0.12 3.4
NL block [Wang et al., 2018b] 65.6 68.9 81.4 92.0 0.23 3.8

Fa +Fp 67.8 71.1 85.1 93.8 30.16 8.4
Lin-attention w/o AiA 68.5 71.4 85.3 94.0 0.12 8.4
Lin-attention w/ AiA 72.2 75.1 87.1 94.7 0.18 8.9

SE block [Hu et al., 2018] 70.7 73.0 86.3 94.4 0.12 8.6
NL block [Wang et al., 2018b] 70.9 72.9 86.8 94.5 0.23 9.2

3In the inference time, we calculate the averaging inference time per image on NVIDIA GeForce RTX
TITAN V
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To further verify the superiority of the AiA block, we compare the learned atten-
tion between Lin-attention and its alternatives (i.e., SE block and NL block) in Fig. 3.8.
We sample the person images in CUHK03 and Market-1501 datasets. Fig. 3.8 shows
that our AiA block either highlights the informative foreground (denoted by red rect-
angles) or filters the non-informative background areas (denoted by black rectangles),
thereby clearly demonstrating the benefits of the AiA mechanism.

(a) CUHK03 (b) Market-1501

Figure 3.8: Comparison of the learned attention on CUHK03 (a) and Market-1501 (b)
datasets. In each dataset, we compare the the feature map from Lin-attention and
its alternatives (i.e., SE block and NL block). In the heat map, the response increases

from blue to red. Best viewed in colour.

3.5.4.3 Effect of Employing Non-linear Features in Attention

Then, we study the effect of using non-linear features for attention design on the
baseline network Fa + Fp. In this study, we first evaluate that the AiA framework
benefits from the manual non-linear features in RKHSs (i.e., SoP-attention w/ AiA
and Gau-attention w/ AiA). We also verify that the manual non-linear features are
superior to the learned non-linear features. We has two settings of learned non-linear
feature: one is naive nonlinear activation and another one is a stack of nonlinear
activation. They are denoted by non-linear attention V1 and non-linear attention V2,
respectively. Note that both the two versions of the attention block are incorporated
into the AiA framework.

The results on CUHK03 and Market-1501 datasets are shown in Table 3.8. It is
observed that the non-linear features, modelled by bilinear mapping and random
Fourier features, has superior performance compared to their linear counterpart,
thereby highlighting the importance of using non-linear features to locate the highly
discriminative regions in the input feature map. In addition, we also observe that
AiA-Net with Gau-attention has superior performance over the other two attention
variants across both the datasets, which reveals that Gau-attention can learn more
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complicated non-linear functions than the other two attention blocks. Table 3.8 also
reveals that both the versions of learned non-linearity in AiA achieve similar perfor-
mance to the Lin-attention with AiA, while the manual non-linear features improves
the performance over its linear counterpart, showing the advantage of manually de-
signed non-linearity. It might be that the manual ones enjoy high discrimination
power in RKHSs, and are easier to optimise, as compared to the learned non-linear
features.

Table 3.8: Effect of the learned non-linearity in attention mechanism on the CUHK03
and Market-1501 datasets. PNs: parameter numbers.

Model
CUHK03 @ ND Market-1501 @ SQ PNs
mAP R-1 mAP R-1 (×106)

Fa +Fp 67.8 71.1 85.1 93.8 30.16
Lin-attention w/ AiA 72.2 75.1 87.1 94.7 0.18
SoP-attention w/ AiA 73.2 76.2 87.4 95.1 1.79
Gau-attention w/ AiA 74.0 76.8 87.5 95.2 0.58

Non-linear attention V1 72.7 75.0 87.0 94.6 0.69
Non-linear attention V2 72.4 74.9 86.9 95.0 0.60

3.5.4.4 Effect of the Dimensionality Reduction Factor

In the section, we study the effect of the reduction factor r in the embedding function
φ(·) on CUHK03 and Market-1501 datasets. All the experiments for this study are
conducted using the SoP-attention with AiA, as r is an important hyperparameter
that directly affects the information pooled by the bilinear operation. The results and
their comparisons, as shown in Table. 3.9, reveal that: (1) even though r is an impor-
tant parameter, which influences the size of the attention model (i.e., the learnable
parameters within ϖ(·), ϕ(·)), our network has a weak dependency on r as changes
in r lead to minuscule changes in the performance of our network across all datasets.
(2) We further observe that while r = 4 obtains the best results in the large datasets
(i.e., Market-1501, DukeMTMC-reID and MSMT17), the best value of r is observed
to be 8 when the network is trained on CUHK03. One plausible explanation is that
the network trained on the large datasets is less prone to over-fitting due to its larger
training set in comparison to CUHK03.

3.5.4.5 Effect of the Dimensionality in Random Features

In Gau(·), we approximate the channel features in the Gaussian kernel space via a
random Fourier mapping. Therefore, we study the result of varying the dimension-
ality of the random feature (i.e., c′) in this section. Here, we have set r to 4 in the
embedding function φ(·). The results are shown in Table 3.10. One can observe that:
along any dimension value (i.e., c′), the random Fourier feature helps to improve
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Table 3.9: Effect of the dimensionality reduction factor r in the embedding function
φ(·) on the CUHK03 and Market-1501 datasets. The 1st best in bold font.

Model
CUHK03 @ ND Market-1501 @ SQ
mAP R-1 mAP R-1

Fa +Fp 67.8 71.1 85.1 93.8
r = 2 72.3 75.4 87.1 94.9
r = 4 72.6 74.9 87.4 95.1
r = 8 73.2 76.2 87.2 94.5
r = 16 72.5 75.6 86.9 94.4
r = 32 72.1 74.8 86.9 94.1

retrieval performance of the network. In addition, the network attains the best per-
formance when c′=480 for both datasets. Further, there is a negligible change in the
performance of our proposed network with changes in c′, thus clearly demonstrating
the weak dependency of AiA-Net on c′.

Table 3.10: Effect of the dimensionality c′ in random features on the CUHK03 and
Market-1501 datasets. The 1st best in bold font.

Model
CUHK03 @ ND Market-1501 @ SQ
mAP R-1 mAP R-1

Fa +Fp 67.8 71.1 85.1 93.8
c′ = 120 72.7 75.3 86.7 94.7
c′ = 240 73.1 75.9 87.1 94.8
c′ = 480 74.0 76.8 87.5 95.2
c′ = 960 72.9 75.6 87.3 95.0

3.5.4.6 Effect of the Position of the Attention Block

Table 3.11 shows the effect of adding the Lin-attention with the AiA block to different
positions along the baseline network on the CUHK03 and Market-1501 datasets. p1,
p2, p3 and p4 indicate the position of the output of Blk 1, Blk 2, Blk 3 and Blk 4 along
the appearance feature extractor respectively (Refer to Fig. 3.7). Table 3.11 shows
that: (1) using Lin-attention in the early stages, i.e., p1, p2, is superior to using it in
the later stages i.e., p3, p4. A similar observation is also made in [Wang et al., 2018b],
where the non-local block enhances the performance of ResNet [He et al., 2016] in its
early stages. (2) Moreover, the performance of adding Lin-attention in p2 surpasses
the performance compared to when it is added in p1. One reasonable explanation
is that the feature maps at p2 consist of richer channel, as well as spatial, structural
information in comparison to the feature maps at p1, thereby enabling the network



§3.5 Experiments on Image Person Retrieval 47

to emphasise more on the discriminative areas of the images. (3) In the CUHK03
dataset, which has a smaller training set, the performance of person retrieval de-
grades when Lin-attention is inserted at p4. This is observed as the embedding layer
of the Lin-attention module overfits on the training set due to the high dimension-
ality of the feature map at p4. (4) It is also observed that the network with multiple
attention blocks can further bring performance gain. In the rest of this chapter, AiA-
Nets indicate plugging multiple attention blocks along with the baseline network
(i.e., Fa +Fp).

Table 3.11: Effect of the position of the AiA block on the CUHK03 and Market-1501
datasets. Here, we use Lin-attention in AiA-Net. The 1st best in bold font.

Model
CUHK03 @ ND Market-1501 @ SQ
mAP R-1 mAP R-1

Fa +Fp 67.8 71.1 85.1 93.8
p1 71.2 73.1 86.5 94.1
p2 72.2 75.1 87.1 94.7
p3 69.1 72.4 85.6 93.9
p4 68.6 70.9 85.1 93.8

p1 - p4 72.8 75.8 87.2 95.0

3.5.4.7 Computational Complexity and Model Size

In § 3.5.4.3, we have studied the effect of non-linearity within the AiA module. In this
part, we study the block properties (i.e., computational complexity and module size)
of each of the AiA blocks and the baseline network (i.e., Fa +Fp). The computational
complexity and model size are measured by the number of floating-point operations
(FLOPs) and parameter numbers (PNs) respectively. This study is performed on the
CUHK03 dataset and the results are shown in Table 3.12, along with the parameter
settings of each attention block. The size of the input feature map to the attention
block and input image to baseline network are set to 480 × 16 × 8 and 3 × 256 × 128
respectively. Table 3.12 depicts that: (1) compared against the baseline network, the
computational complexity and model size of the attention blocks are insignificant,
indicating that the performance gain significantly relies on the attention mechanism,
rather than increasing the number of parameters. (2) Lin-attention and Gau-attention
are light weight attention blocks, which can be used in other resource-constrained
applications. (3) Taking into account the results obtained in Table 3.8, it is clearly
observed that Gau-attention is superior to the SoP-attention as it results in a large
performance gain (See Table 3.8), while using significantly fewer number parameters
than the SoP-attention (i.e., only 1/3 of the number of parameters of SoP-attention).
This clearly indicates the hidden potential of the use of non-linear features in the
Gaussian kernel space in attention design.
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Table 3.12: Computational complexity and module size of proposed attention mod-
ules. FLOPs: the number of floating-point operations; PNs: number of parameters.

Lin-attention SoP-attention Gau-attention Fa +Fp

Hyper Parameter r = 4 r = 8 r = 4, c′ = 480 -
FLOPs (×109) 0.015 0.117 0.044 2.82

PNs (×106) 0.18 1.79 0.58 30.16

3.5.5 Visualisation of the Attention in Attention Module

We visualise the heat maps of the input (i.e., X) and output (i.e., Xz) of the Gau-
attention block for person images in both the CUHK03 detected-set in Fig. 3.9(a) and
Market-1501 dataset in Fig. 3.9(b). In each dataset, from left to right, (1): the input
person image, (2): the input feature map to attention block, and (3): the masked
feature map from attention block. In (2), we use black rectangles to bound the non-
informative background clutters in images, which will be filtered by attention block.
In (3), we use red rectangles to bound the discriminative parts of the person body
parts, which are further emphasised by attention blocks. This visualisation indeed
reveals the proposed AiA can focus on the discriminative areas of person images,
thereby aligning the feature maps.

(a) CUHK03 (b) Market-1501

Figure 3.9: Visualisation of the attention mechanism in person images, sampled from
the CUHK03 dataset (a) and the Market dataset (b). In each dataset, from left to
right, (1) the input person image, (2) the input feature map to attention and (3) the
masked feature map. The heat maps are generated in AiA-Net with Gau-attention.

In the heat map, the response increases from blue to red. Best viewed in colour.

3.5.6 Discussion

Statistical significance of the proposed method. In § 3.5.3 and § 3.5.4, a thorough
study has been studied to verify the superiority of proposed attention blocks. We
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further study their statistical significance using t-test. We adopt the AiA-Net w/
Gau-attention and CUHK03 (See Table 3.2) in this study, and we obtain the p-value
of 0.0026 / 0.0033, meaning that our results are significant (p < 0.05 is significant).
Thus we believe that our AiA-Net is superior to the MuDeep [Qian et al., 2019].
We also plug the Gau-attention with AiA to the ResNet-50 backbone, The results of
our AiA read 96.1 / 93.9 as compared to 95.8 / 93.7 of MuDeep, again showing the
superiority of the AiA block. In this study, the p-values are 0.0003 / 0.0041, still
showing that the results are significant.
Analysis of the “Attention in Attention” mechanism and “single attention” mecha-
nism. In Table 3.7, we compared AiA against a simplified version, which still benefits
from the use of an attention block without the use of any inner attention module (Fig.
3.4 vs. Fig. 3.1 in § 3.3). Empirically, we observe that by incorporating the inner at-
tention module, improved results can be obtained in both baseline architectures(i.e.,
Fa and Fa +Fp). To further verify this, we replace our AiA with the current state-of-
the-art attention modules, namely the Squeeze-and-Excitation block [Hu et al., 2018]
and the Non-local block [Wang et al., 2018b], and evaluate the resulting structure on
the CUHK03 and Market-1501 datasets. The results on Table 3.7 and Fig. 3.8 clearly
show the superiority of AiA over both the Squeeze-and-Excitation and Non-local
blocks, even though only the linear kernel is used in this study.
Analysis of Failure Cases. In this section, we show some ranking lists of the failure
cases (i.e., the identity mismatch of R-1 retrieved images for certain query images)
obtained by AiA-Net with Gau-attention across the person re-ID datasets. Fig. 3.10
shows that the AiA-Net may be affected by persons with similar distractors, such
as similar clothing and stature (i.e., the first and second ranking lists). Further, for
the DukeMTMC-reID dataset, our network is also affected (i.e., the third and forth
ranking lists) by occlusions (i.e., bike, car). Nonetheless, taking a closer look at those
failure cases highlighted with red rectangles, they are in fact perceptually very simi-
lar to its respective query image (i.e., colour of clothes, body orientation etc.). Having
said that, these observations motivate us to further develop more robust person re-ID
algorithms so as to differentiate such subtle changes successfully.
Generalisation of Attention Blocks. To verify the generalisation of proposed at-
tention blocks, we employ other backbones to evaluate the effectiveness of AiA
blocks, including ResNet-50 [He et al., 2016], GoogLeNet-V1 [Szegedy et al., 2015],
DenseNet [Huang et al., 2017], MobileNet [Sandler et al., 2018] as well as Shuf-
fleNet [Ma et al., 2018]. This study is conducted on CUHK03 dataset. Fig. 3.11
reveals that our AiA blocks can consistently bring performance gain across various
backbones, clearly showing the generalisation and superiority of the AiA block.

3.6 Experiments on Video Person Retrieval

In this section, we further evaluate our AiA modules on the video person retrieval
setting on the MARS [Zheng et al., 2016] benchmark dataset. This dataset contains
20, 715 video sequences of 1, 261 person identities. The identities for training and
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Figure 3.10: Some failure cases on person re-ID datasets. In each ranking list, to the
left is the query person and to the right is the corresponding ranked list in the gallery
set. The correct and false matches are enclosed in green and red boxes. Best viewed

in colour.

Figure 3.11: Evaluation for attention blocks on different backbone networks on the
CUHK03 dataset.

testing are split into 631 and 630 respectively. The number of frames in each sequence
varies from 2 to 920 and the average length of a video sequence is 59.5 frames.
Each sequence is generated by the GMMCP tracker [Dehghan et al., 2015], and the
bounding box for each frame is detected automatically by the DPM [Felzenszwalb
et al., 2010].

Table 3.13 compares the result of our approach against the current state-of-the-art
algorithms. It clearly shows that our AiA-Net-V improves the state-of-the-art mAP
value by 1.0% and the R-1 value by 0.2%. It should be noted that AiA-Net-V only
considers the spatial information in each frame to calculate the attention values and
unlike [Gao and Nevatia, 2018; Fu et al., 2019b; Li et al., 2019a], it doesn’t take into
account the modelling of the temporal attention to fuse the frame features. This
improvement clearly shows that our AiA-Net-V makes better use of spatial structure
information and attends to the informative areas in each frame.
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Table 3.13: Comparison with the SOTA methods on the MARS dataset in video per-
son retrieval setting. The 1st best in bold font.

Model mAP R-1 R-5 R-10
PBR [Suh et al., 2018] 72.2 83.0 92.8 95.0

Zhao et al. [Zhao et al., 2019] 78.2 87.0 95.4 -
GLTR [Li et al., 2019a] 78.4 87.0 95.7 -

COSAM [Subramaniam et al., 2019] 79.9 84.9 95.5 -
STA [Fu et al., 2019b] 80.8 86.3 95.7 -

Baseline (Fa +Fp) 77.3 83.1 94.2 96.0
AiA-Net-V w/ Lin-attention 81.3 86.4 94.7 96.7
AiA-Net-V w/ SoP-attention 81.8 86.7 95.4 97.0
AiA-Net-V w/ Gau-attention 81.7 87.2 95.6 97.2

3.7 Summary

In this chapter, we generalise the Attention in Attention (AiA) mechanism for the
person retrieval task. This AiA mechanism uses an inner attention, which encodes
the global features of the input feature map, to re-weight the feature map. Thereafter,
this feature map is further processed by an outer attention, to generate a well focused
attention map. Besides the linear version of AiA, we propose and develop non-linear
versions of AiA, where the features are approximated using the second-order poly-
nomial and Gaussian kernel spaces respectively. We further propose simplified ver-
sions of the aforementioned attention blocks which exclude the inner attention (i.e.,
without AiA). With regards to the person retrieval task, we also propose an effi-
cient feature extractor, which encodes both person appearance and part features. We
incorporate the aforementioned AiA blocks in our network, termed AiA-Net, and
empirically show that state-of-the-art performances can be achieved by incorporat-
ing the AiA modules in representation learning. This includes extensive evaluations
on five standard person re-ID benchmarks along with the required ablation studies
to understand the effect of various AiA blocks. Furthermore, our AiA-Net-V also
achieves state-of-the-art result on the video person retrieval task, showing the gener-
alisation to video data.
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Chapter 4

Channel Recurrent Attention
Networks

Following the previous chapter, we continue focusing on the attention mechanism
for visual embedding. Full attention, which generates an attention value per element
of the input feature maps, has been successfully demonstrated to be beneficial in
visual tasks. In this chapter, we propose a fully attentional network, termed chan-
nel recurrent attention network, for the task of video pedestrian retrieval. The main
attention unit, channel recurrent attention, identifies attention maps at the frame
level by jointly leveraging spatial and channel patterns via a recurrent neural net-
work. This channel recurrent attention is designed to build a global receptive field
by recurrently receiving and learning the spatial vectors. Then, a set aggregation
cell is employed to generate a compact video representation. Empirical experimen-
tal results demonstrate the superior performance of the proposed deep network,
outperforming current state-of-the-art results across standard video person retrieval
benchmarks, and a thorough ablation study shows the effectiveness of the proposed
units. This chapter is based on our published work [Fang et al., 2020].

4.1 Introduction

This chapter proposes Channel Recurrent Attention Networks for the purpose of pedes-
trian retrieval, in challenging video data.

There are many challenges to the person re-ID task, with a majority stemming
from a poor quality or large variation of the captured images. This often leads to diffi-
culties in building a discriminative representation, which in turn results in a retrieval
system to mismatch its queries. Video-, as opposed to single image-, person re-ID
offers the possibility of a richer and more robust representation as temporal cues can
be utilised to obtain a compact, discriminative and robust video representation for
the re-ID task. In many practical situations, the retrieval performance suffers from
spatial misalignment [Suh et al., 2018; Li et al., 2018c; Zhou et al., 2020], caused by the
movement of body parts, which affects the retrieval machine negatively. Focusing on
this issue, many efforts have been made to develop visual attention mechanisms [Li
et al., 2018c; Wang et al., 2018a; Fang et al., 2019; Chen et al., 2019a; Subramaniam
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et al., 2019], which makes the network attend to the discriminative areas within per-
son bounding boxes, relaxing the constraints stemming from spatial nuances.

Attention mechanisms have been demonstrated to be successful in various visual
tasks, such as image classification [Hu et al., 2018; Woo et al., 2018], object detec-
tion [Wang et al., 2018b], scene segmentation [Fu et al., 2019a; Li et al., 2018b] to
name just a few. Generally speaking, attention mechanisms can be grouped into
channel attention [Hu et al., 2018], spatial attention [Wang et al., 2017], and full at-
tention [Wang et al., 2018a], according to the dimensions of the generated attention
maps. The channel attention usually summarises the global spatial representation of
the input feature maps, and learns a channel pattern that re-weights each slice of the
feature maps. In contrast, the spatial attention learns the spatial relationships within
the input feature maps and re-weights each spatial location of the feature maps.
Lastly, full attention not only learns the channel patterns, but also preserves spa-
tial information in the feature maps, which significantly improves the representation
learning [Hjelm et al., 2019].

Various types of full attention mechanisms have been studied extensively for the
task of pedestrian retrieval [Wang et al., 2018a; Fang et al., 2019; Chen et al., 2019a].
In [Wang et al., 2018a], the fully attentional block re-calibrates the channel patterns by
a non-linear transformation. Thereafter, higher order channel patterns are exploited
to attend to the channel features [Fang et al., 2019; Chen et al., 2019a]. However,
the aforementioned attention fails to build long-range spatial relationships due to the
use of a 1 × 1 convolution. The work in [Li et al., 2018c] learns spatial interactions
via a convolutional layer with a larger kernel size (3 × 3), but the attention module
therein still only has a small spatial receptive field. In visual attention, we want the
network to have the capacity to view the feature maps globally and decide what to
focus on for further processing [Wang et al., 2018b]. A global view can be achieved
by applying fully connected (FC) layers, which, unfortunately, introduces a huge
number of learnable parameters if implemented naively.

In this work, we propose a full attention mechanism, termed channel recurrent at-
tention, to boost the video pedestrian retrieval performance. The channel recurrent
attention module aims at creating a global view of the input feature maps. Here,
the channel recurrent attention module benefits from the recurrent operation and
the FC layer in the recurrent neural network. We feed the vectorized spatial map
to the Long Short Term Memory (LSTM) sequentially, such that the recurrent op-
eration of the LSTM captures channel patterns while the FC layer in the LSTM has
a global receptive field of each spatial slice. To handle video data, we continue to
develop a set aggregation cell, which aggregates the frame features into a discrimina-
tive clip representation. In the set aggregation cell, we re-weight each element of the
corresponding frame features, in order to selectively emphasise useful features and
suppress less informative features, with the aid of the associated clip features.

The contributions of this chapter include:

• The proposal of a novel channel recurrent attention module to jointly learn
spatial and channel patterns of each frame feature map, capturing the global
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view of the feature maps. To the best of the authors’ knowledge, this is the first
attempt to consider the global spatial and channel information of feature maps
in a full attention design for video person re-ID.

• The development of a simple yet effective set aggregation cell, which aggregates
a set of frame features into a discriminative clip representation.

• State-of-the-art performance across standard video re-ID benchmarks by the
proposed network. The generalisation of the attention module is also verified
by the competitive performance on the single image re-ID task.

4.2 Related Work

This section summarises the related work of relevant attention mechanisms.
Recent work has shown that person re-ID benefits significantly from attention

mechanisms highlighting the discriminative areas inside the person bounding boxes
when learning an embedding space [Liu et al., 2016, 2017c; Li et al., 2018c; Wang
et al., 2018a; Fang et al., 2019; Chen et al., 2019a]. In [Liu et al., 2016, 2017c], the spa-
tial attention mask is designed to attend one target feature map or various feature
maps along the deep network. In [Wang et al., 2018a], a fully attentional block is
developed to re-calibrate the channel features. Second or higher order statistical in-
formation is also employed in full attention frameworks [Fang et al., 2019; Chen et al.,
2019a]. The full attention shape map is also generated in the harmonious attention
module [Li et al., 2018c], by integrating channel attention and spatial attention. The
aforementioned attention mechanism either fails to build spatial-wise relationships,
or receives a limited spatial receptive field. Unlike the above methodology of full
attention, we intend to develop an attention mechanism which preserves the advan-
tage of the common full attention, while also perceiving a global spatial receptive
field of the feature maps.

In contrast to the existing works, we aim to develop a full attention mechanism
that can capture the global receptive field of the feature maps, improving the under-
standing of networks to images.

4.3 Channel Recurrent Attention Networks for Pedestrian Re-
trieval

This section details the proposed deep network in a top-down fashion: starting with
the problem formulation of the application, followed by the network architecture and
the main attention module in the network, namely, the channel recurrent attention
module. Thereafter, we also introduce a set aggregation cell, to encode a compact
clip representation.
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4.3.1 Problem Formulation

Let a fourth-order tensor, Ti = [T1
i , T2

i , . . . , T N
i ] ∈ RN×C×H×W , denote the i-th video

sequence of a pedestrian, where N, C, H, and W are the number of frames, channels,
height and width, respectively. Each video sequence Ti is labelled by its identity,
denoted by yi ∈ {1, . . . , k}. The training set with M video sequences is described by
T = {Ti, yi}M

i=1. The video person re-ID model, F (·, θ) : T → Rn, describes a non-
linear embedding from the video space, T , to an embedding space, Rn, in which the
intra-class/person distance is minimised and the inter-class/person distance is max-
imised. The target of training a deep neural network is to learn a set of parameters,
θ⋆, with minimum loss value (e.g., L), satisfying: θ⋆ = arg minθ ∑M

i=1 L(F (Ti, θ), yi).
In the training stage, we randomly sample batches of video clips, where each video
clip has only t frames (randomly chosen). Such frames are order-less and hence, we
are interested in set-matching for video re-ID.

4.3.2 Overview

We begin by providing a sketch of our design first. In video person re-ID, one would
ideally like to make use of a deep network to extract the features of the frames and
fuse them into a compact and discriminative clip-level representation. In the lower
layers of our design, we have five convolutional blocks along with channel recurrent
attention modules at positions P1, P2 and P3 (see Fig. 4.1). Once the deep network
extracts a set of frame features (i.e., [ f 1, . . . , f t] in Fig. 4.1), a set aggregation cell is
utilised to fuse frame features into a compact clip-level feature representation (i.e., g).
The final clip representation is f = ReLU

(
BN(W⊤

1 g)
)
, followed by another FC layer

to perform identity prediction (i.e., p = W⊤
2 f ), where W1, W2 are the learnable pa-

rameters in the FC layers. We note that the output of the middle convolutional layers
captures rich spatial and channel information [Wang et al., 2018b; Fang et al., 2019],
such that the attention modules can make better use of this available information.

The network training benefits from multi-task learning, which formulates the
network training as several sub-tasks. Our work follows [Gao and Nevatia, 2018],
and trains the network using a triplet loss and a cross-entropy loss.

Triplet Loss. To take into account the between-class variance, we use the triplet
loss Schroff et al. [2015], denoted Ltri, to encode the relative similarity information in
a triplet. In a mini-batch, a triplet is formed as { f i, f+i , f−i }, such that the anchor clip
Ti and the positive clip T +

i have the same identity, while the negative clip T −
i has

a different identity. With the clip feature embedding, the triplet loss is formulated

as: Ltri =
1

PK ∑PK
i=1

[
∥ f i − f+i ∥ − ∥ f i − f−i ∥ + η

]
+

, where η is a margin and [·]+ =

max(·, 0). A mini-batch is constructed by randomly sampling P identities and K
video clips for each identity. We employ a hard mining strategy Hermans et al.
[2017] for triplet mining.

Cross-entropy Loss. The cross-entropy loss realises the classification task in train-
ing a deep network. It is expressed as: Lce = 1

PK ∑PK
i=1 −log

(
p(yi| f i)

)
, where p is the

predicted probability that f i belongs to identity yi. The classification loss encodes
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the class specific information, which minimises the within-class variance. The total
loss function is formulated as: Ltot = Lce + Ltri.

Figure 4.1: The architecture of the proposed deep neural network with channel re-
current attention modules and a set aggregation cell.

4.3.3 Channel Recurrent Attention

We propose the channel recurrent attention module (see Fig. 4.2), which learns the
spatial and channel patterns globally in a collaborative manner with the assistance
of an LSTM, over the feature maps of each frame. To be specific, we model the input
feature maps as a sequence of spatial feature vectors, and feed it to an LSTM to
capture global channel patterns by its recurrent operation. In our design, the hidden
layer (e.g., FC) of the LSTM unit, can be understood as having a global receptive
field, acting on each spatial vector while sharing weights with other spatial vectors,
addressing the limitation of a small receptive field in CNNs. In § 4.4, our claim is
empirically evaluated in an ablation study.

Figure 4.2: The structure of the proposed channel recurrent attention module.

Let X ∈ Rc×h×w be the input of the channel recurrent attention module. In our
implementation, we project X to ϕ(X), reducing the channel dimension by a ratio of
1/d, and reshape the embedded tensor ϕ(X) to a matrix X̂ = [x̂1, . . . , x̂ c

d
]⊤ ∈ R

c
d×hw,

where a row of X̂ (e.g., x̂i ∈ Rhw, i = 1, . . . , c
d ) denotes the spatial vector of a slice.

The effect of the ratio 1/d is studied in § 4.4.4. A sequence of spatial vectors is then
fed to an LSTM unit and the LSTM generates a sequence of hidden states, in matrix
form:

Ĥ = LSTM(X̂) = [ĥ1, . . . , ĥ c
d
]⊤, (4.1)

where ĥi ∈ Rhw, i = 1, . . . , c/d is a sequence of hidden states and LSTM(·) represents
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the recurrent operation in an LSTM. The insight is illustrated by the unrolled LSTM,
shown in Fig. 4.5(a). Ĥ is further reshaped to the same size as the input tensor
ϕ(X) (i.e., H = Reshape(Ĥ), H ∈ R

c
d×h×w). The final attention value is obtained by

normalising the embedded H, written as:

Zcr = Sigmoid(φ(H)). (4.2)

Here, φ(H), Zcr ∈ Rc×h×w. This normalised tensor acts as a full attention map
and re-weighs the elements of the associated frame feature map (see Fig. 4.2), by
element-wise multiplication:

XZ = Zcr ⊗ X. (4.3)

Remark 6 There are several studies that use LSTMs to aggregate features [Bai et al., 2020;
Yan et al., 2016] (see Fig. 4.3(a) and 4.3(b)), or generate attention masks [Liu et al., 2016;
Zhao et al., 2017a] (see Fig. 4.3(c)). Our channel recurrent attention module (see Fig. 4.3(d))
is significantly different from existing works as shown in Fig. 4.3. The designs in [Bai et al.,
2020] and [Yan et al., 2016] employ an LSTM to aggregate features either from input feature
maps [Bai et al., 2020], or a sequence of frame features in a video [Yan et al., 2016]. In [Liu
et al., 2016; Zhao et al., 2017a], an attention value for each spatial position of the feature
maps (i.e., spatial attention) is constructed recursively, while ignoring the relation in the
channel dimension. In contrast, our channel recurrent attention generates an attention value
per element of the feature maps (i.e., full attention), thereby enabling the ability to learn richer
spatial and channel features.

(a) Feature aggregation [Bai
et al., 2020]

(b) Feature aggregation [Yan
et al., 2016]

(c) Attention mask generation [Liu
et al., 2016; Zhao et al., 2017a]

(d) Attention maps generation (Ours)

Figure 4.3: Schematic comparison of our attention mechanism and existing LSTM-
based works. In (c), the notation ∗ denotes a weighted sum operation.
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4.3.4 Set Aggregation

To encode a compact clip representation, we further develop a set aggregation cell
to fuse the per frame features (see Fig. 4.4 for a block diagram). The set aggregation
cell highlights the frame feature, with the aid of the clip feature, firstly, and then
aggregates them by average pooling.

Figure 4.4: The structure of the proposed set aggregation cell.

Let [ f 1, . . . , f t], f j ∈ Rc be a set of frame feature vectors, encoded by a deep
network (see Fig. 4.1). The set aggregation cell first re-weights the frame features.
In our implementation, we combine average pooling and max pooling to aggregate
frame features. This is due to the fact that both pooling schemes encode differ-
ent statistical information and their combination is expected to increase the repre-
sentation capacity. More specifically, each element in f avg and f max are defined as
f avg

i = avg( f 1
i , . . . , f t

i) = 1
t ∑t

j=1( f j
i) and f max

i = max( f 1
i , . . . , f t

i), respectively. Each
aggregation is followed by self-gating layers (i.e., ϖ(·) and ψ(·) in Fig. 4.4) to generate
per-element modulation weights, and fused by element-wise summation as:

f̂ = ϖ( f avg)⊕ ψ( f max). (4.4)

This is then followed by normalising the fused weights to produce the final mask
(e.g., zs = Sigmoid( f̂ )) which is applied as follows:

g j = zs ⊗ f j, j = 1, . . . , t. (4.5)

Finally, we use average pooling to obtain the clip feature, g = 1/t ∑t
j=1 g j. We note

that in our network the parameters in the two self-gating layers are not shared. This
is to increase the diversity of features which is beneficial, and we evaluate it in § 4.4.

Remark 7 The set aggregation cell is inspired by the Squeeze-and-Excitation (SE) block [Hu
et al., 2018], in the sense that frame features will be emphasised under the context of the global
clip-level features, but with a number of simple yet important differences: (i) The SE receives a
feature map as input, while the input of our set aggregation is a set of frame features. (ii) The
SE only uses global average pooling to encode the global feature of the feature maps, while
the set aggregation employs both average and max pooling to encode hybrid clip features,
exploiting more diverse information present in the frame features.
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4.4 Experiments on Video Person Retrieval

4.4.1 Implementation Details

Network Architecture. We implemented our approach in the PyTorch [Paszke et al.,
2017] deep learning framework. We chose ResNet-50 [He et al., 2016] as the backbone
network, pre-trained on ImageNet [Russakovsky et al., 2015]. In a video clip with
t frames, each frame-level feature map, produced by the last convolutional layer,
is squeezed to a feature vector f j ∈ R2048, j = 1, . . . , t by global average pooling
(GAP). Subsequently, the set aggregation cell fuses the frame features to a compact
clip feature vector g. Following g, the final clip-level person representation F is
embedded by a fully connected (FC) layer with the dimension 1024. Thereafter,
another FC layer is added for the purpose of final classification during training. In
the channel recurrent attention module, the ratio d is set to 16 for the PRID-2011
and iLIDS-VID datasets, and 8 for the MARS and DukeMTMC-VideoReID datasets,
and the LSTM unit has one hidden layer. In the set aggregation cell, the self-gating
layer is a bottleneck network to reduce the number of parameters, the dimension of
the hidden vector is 2048/r, and we choose r = 16 as in [Hu et al., 2018], across all
datasets. The ReLU and batch normalisation are applied to each embedding layer
and self-gating layer. The details of the datasets is described in § 4.4.2.

Network Training. We use the Adam [Kingma and Ba, 2014] optimiser with
default momentum. The initial learning rate is set to 3 × 10−4 for PRID-2011 and
iLIDS0-VID, and 4 × 10−4 for MARS and DukeMTMC-VideoReID. The mini-batch
size is set to 16 for the PRID-2011 and iLIDS-VID datasets and 32 for the MARS
and DukeMTMC-VideoReID datasets, respectively. In a mini-batch, both P and K
are set to 4 for the PRID-2011 and iLIDS-VID, whereas P = 8, K = 4 for the MARS
and DukeMTMC-VideoReID. The margin in the triplet loss, i.e., ξ, is set to 0.3 for all
datasets. The spatial size of the input frame is fixed to 256 × 128. Following [Gao
and Nevatia, 2018], t is chosen as 4 in all experiments and 4 frames are randomly
sampled in each video clip [Zhao et al., 2019; Gao and Nevatia, 2018]. Our training
images are randomly flipped in the horizontal direction, followed by random erasing
(RE) [Zhong et al., 2017b]. We train the network for 800 epochs. The learning rate
decay is set to 0.1, applied at the 200-th, 400-th epoch for the PRID-2011 and iLIDS-
VID , and the 100-th, 200-th, 500-th epoch for the MARS and DukeMTMC-VideoReID,
respectively. Moreover, it is worth noting that we do not apply re-ranking to boost
the ranking result in the testing phase.

4.4.2 Datasets and Evaluation Protocol

In this section, we perform experiments on four standard video benchmark datasets,
i.e., PRID-2011 [Hirzer et al., 2011], iLIDS-VID [Wang et al., 2016], MARS [Zheng
et al., 2016] and DukeMTMC-VideoReID [Wu et al., 2018a] to verify the effective-
ness of the proposed attentional network. The PRID-2011 has 400 video sequences,
showing 200 different people where each person has 2 video sequences, captured by
two separate cameras. The person bounding box is manually labelled. iLIDS-VID
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contains 600 image sequences of 300 pedestrians, captured by two non-overlapping
cameras in an airport. Each of the training and test sets has 150 person identities.
In this dataset, the target person is heavily occluded by other pedestrians or objects
(e.g., baggage). MARS is one of the largest video person re-ID datasets which con-
tains 1, 261 different identities and 20, 715 video sequences captured by 6 separate
cameras. The video sequences are generated by the GMMCP tracker [Dehghan et al.,
2015], and for each frame, the bounding box is detected by DPM [Felzenszwalb et al.,
2010]. The dataset is split into training and testing sets that contain 631 and 630 per-
son identities, respectively. DukeMTMC-VideoReID is another large video person
re-ID dataset. This dataset contains 702 pedestrians for training, 702 pedestrians for
testing as well as 408 pedestrians as distractors. The training set and testing set has
2, 196 video sequences and 2, 636 video sequences, respectively. The person bounding
boxes are annotated manually.

Following existing works, we use both the cumulative matching characteristic
(CMC) curve and mean average precision (mAP) to evaluate the performance of the
trained re-ID system.

4.4.3 Comparison to the State-of-the-Art Methods

To evaluate the superiority of our deep attentional network, we continue to com-
pare our results with the current state-of-the-art approaches, shown in Table 4.1 and
Table 4.2.

PRID-2011. On the PRID-2011 dataset, our network improves the state-of-the-art
accuracy by 1.1% in R-1, compared to GLTR [Li et al., 2019a]. As for the mAP, our
approach outperforms [Chen et al., 2018a] by 2.4%. When compared to SCAN [Zhang
et al., 2018], which uses optical flow, our approach outperforms it by 1.3% in R-1.

iLIDS-VID. On the iLIDS-VID dataset, our approach improves the state-of-the-
art mAP value by 5.2%, compared to [Chen et al., 2018a]. As for the R-1 accuracy,
our approach also achieves a new state-of-the-art, outperforming [Zhao et al., 2019]
by a comfortable 2.4%. In addition, our approach continues to outperform SCAN +
optical flow [Zhang et al., 2018] by 0.7% in R-1.

MARS. On the MARS dataset, our approach achieves state-of-the-art perfor-
mances on mAP and competitive performance on the CMC curve. In particular, our
approach outperforms VRSTC [Hou et al., 2019b] on mAP, R-5 and R-10. It is worth
mentioning that VRSTC uses a generator for data augmentation. Furthermore, when
compared to other methods, we observe that our approach outperforms GLTR [Li
et al., 2019a] by 1.3%/4.6% in R-1/mAP.

DukeMTMC-VideoReID. As for this new dataset, our network continues to
show its superior performance (see Table 4.2). Our approach is superior to GLTR
by 1.8% on mAP, and outperform the state-of-the-art mAP value of STA by 0.6%, and
our network also achieves competitive performance on the CMC metric, outperform-
ing the state-of the-art on R-5, R-10 and R-20.
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Table 4.2: Comparison with the SOTA methods on DukeMTMC-VideoReID dataset.
The 1st best in bold font.

Method
DukeMTMC-VideoReID

R-1 R-5 R-10 R-20 mAP
ETAP-Net [Wu et al., 2018a] 83.6 94.6 - 97.6 78.3

STAR+Optical flow [Wu et al., 2019] 94.0 99.0 99.3 99.7 93.4
VRSTC [Hou et al., 2019b] 95.0 99.1 99.4 - 93.5

STA [Fu et al., 2019b] 96.2 99.3 - 99.7 94.9
GLTR [Li et al., 2019a] 96.3 99.3 - 99.7 93.7

Baseline 87.5 96.5 97.2 98.3 86.2
Ours 96.3 99.4 99.7 99.9 95.5

4.4.4 Ablation Study

This section demonstrates the effectiveness of the proposed blocks and the selection
of appropriate hyper parameters via a thorough battery of experiments.

4.4.4.1 Effect of Channel Recurrent Attention

Here, we evaluate the effectiveness of the proposed channel recurrent attention, and
verify our claim that our channel recurrent attention is able to capture more structure
information as we sequentially feed the spatial vector to the LSTM. To show the de-
sign is reasonable, we compare our channel recurrent attention with two variations,
namely, the spatial recurrent attention and the conv attention.

In the spatial recurrent attention, the LSTM receives a sequence of channel fea-
tures from feature maps as input, with the recurrent operator along the spatial do-
main. In more detail, in channel recurrent attention (see Fig. 4.2), the input is a
sequence of spatial vectors, (e.g., X̂ = [x̂1, . . . , x̂ c

d
]⊤ ∈ R

c
d×hw). In the spatial recur-

rent attention, the input is a sequence of channel vectors, (e.g., X̂ = [x̂1, . . . , x̂hw]
⊤ ∈

Rhw× c
d ). Though the recurrent operation along the spatial domain is also able to

learn the pattern spatially, the spatial recurrent attention lacks explicit modelling in
the spatial domain. Fig. 4.5 shows the schematic difference between channel recur-
rent attention (see Fig. 4.5(a)) and spatial recurrent attention (see Fig. 4.5(b)).

In addition, to verify the necessity of a global receptive field in our channel recur-
rent attention, we further replace the LSTM with a convolutional layer with a similar
parameter size, which is called a conv attention. The architecture of the conv atten-
tion is shown in Fig. 4.6. In the Conv block, the kernel size is 3 × 3 and the sliding
step is 1, and it produces a tensor with the shape of c

d × h × w. The generated atten-

tion mask can be formulated as Zconv = Sigmoid
(

φ
(
Conv(ϕ(X))

))
, where Conv(·)

indicates the convolutional operation.
Table 4.3 compares the effectiveness of three attention variations. It is shown that

our channel recurrent attention has a superior performance over the other two varia-
tions. As can be observed, the channel recurrent attention cell improves the accuracy
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(a) Channel recurrent attention.

(b) Spatial recurrent attention.

Figure 4.5: Schematic comparison between channel recurrent attention and spatial
recurrent attention.

Figure 4.6: The architecture of the proposed conv attention module.

Table 4.3: Comparison of three attention variations across four datasets. CRA: Chan-
nel Recurrent Attention; SRA: Spatial Recurrent Attention; CA: Conv Attention. The

1st best in bold font.

Model
PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

R-1 mAP R-1 mAP R-1 mAP R-1 mAP
(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2
(ii) + CRA 92.1 94.6 87.0 90.6 86.8 81.6 94.7 94.1
(iii) + SRA 87.9 92.1 83.3 87.4 84.6 78.4 89.4 87.8
(iv) + CA 89.6 92.8 84.2 88.2 85.2 79.7 91.2 90.1

significantly across all four datasets. This observation supports our assumption that
the attention receives a performance gain from explicit modelling of the global re-
ceptive field in each slice of the feature maps.

4.4.4.2 Effect of the Position of Channel Recurrent Attention

The position of the channel recurrent attention block affects the information in the
spatial or the channel dimensions. We want to explore the rich spatial and channel
information; thus, we only consider the feature maps from the middle of the deep
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network as input to channel recurrent attention (i.e., P1, P2, and P3 in Fig. 4.1). The
comparison is illustrated in Table 4.4. It shows that the system receives a better gain
when adding the channel recurrent attention module at position P2, which aligns
with our motivation that more spatial information is utilised in the feature maps.
The works [Wang et al., 2018b; Fang et al., 2019] also present a similar observation.
When applying the attention in P1, P2 and P3, the network performs at its best.

Table 4.4: Effect of the position of channel recurrent attention across four datasets.
CRA: Channel Recurrent Attention. The 1st best in bold font.

Model
PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

R-1 mAP R-1 mAP R-1 mAP R-1 mAP
(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2
(ii) + CRA in P1 89.6 92.2 85.3 88.2 85.0 80.6 92.7 92.2
(iii) + CRA in P2 91.0 94.4 86.7 90.2 86.4 81.2 94.2 93.4
(iv) + CRA in P3 90.3 92.6 86.0 88.4 86.1 80.8 93.5 92.7
(v) + CRA in P1&P2&P3 92.1 94.6 87.0 90.6 86.8 81.6 94.7 94.1

4.4.4.3 Effect of Reduction Ratio in Channel Recurrent Attention

The ratio 1/d in the embedding function ϕ(·) (see Fig. 4.2) is to reduce the channel
dimensionality of the input feature maps, consequently, reducing the sequence length
input to the LSTM; thus, it is an important hyper-parameter in the channel recurrent
attention. Table 4.5 reveals that the best performance is obtained when d = 16 for
small-scale datasets and d = 8 for large-scale datasets. This could be due to the
fact that training a network with a large amount of training samples is less prone to
overfitting. Furthermore, this table also shows the fact that the LSTM has difficulties
in modelling very long sequences (e.g., smaller d in Table 4.5). However, when the
sequences are too short (e.g., d = 32), the channel features are compressed, such that
some pattern information is lost.

Table 4.5: Effect of reduction ratio 1/d in channel recurrent attention across four
datasets. The 1st best in bold font.

Reduction Ratio
PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

R-1 mAP R-1 mAP R-1 mAP R-1 mAP
(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2
(ii) d = 2 88.7 92.1 84.0 88.7 84.8 80.2 93.4 92.8
(iii) d = 4 89.8 92.6 85.6 89.1 85.2 80.3 93.9 93.4
(iv) d = 8 91.0 93.2 86.3 89.4 86.8 81.6 94.7 94.1
(v) d = 16 92.1 94.6 87.0 90.6 85.5 80.7 94.3 94.3
(vi) d = 32 91.0 93.8 82.7 88.9 84.3 79.8 93.2 93.4
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4.4.4.4 Why using LSTM in the Channel Recurrent Attention?

In our channel recurrent attention, we use the LSTM to perform the recurrent oper-
ation for the spatial vector. We observed that once the order of the spatial vectors is
fixed, the recurrent operation in the LSTM is able to learn useful information along
the channel dimension. We further investigated using Bi-LSTM to replace the LSTM
in the attention and evaluate its performance. Compared with LSTM, the Bi-LSTM
only brings a marginal/no performance gain across different datasets, whereas it al-
most doubles the number of parameters and FLOPs in the attention model. Please
refer to §1 of the supplementary material for details of those experiments. These
empirical experimental results support the use of a regular LSTM in our attention
module.

4.4.4.5 Effect of Set Aggregation

Table 4.6 shows the effectiveness of set aggregation and the effectiveness of differ-
ent pooling schemes in the set aggregation block. It is clear that the individual set
aggregation improves the network performance and the combination of attention
modules continues to increase the performance gain; showing that two attention
modules mine complementary information in the network. Furthermore, all pooling
schemes improve the results of the network, showing that the network receives gains
from set aggregation. The combination of the average pooling and the max pooling
scheme with non-sharing weights further shows its superiority over the individual
average or max pooling schemes. This observation can be interpreted as the average
and max pooled features have complementary information when encoding clip-level
representations.

4.4.4.6 Visualisation of Channel Recurrent Attention

We visualise the feature maps from the baseline network and our channel recurrent
attention network, trained on the MARS dataset. The feature maps are obtained in
P2 (see Fig. 4.1). In Fig. 4.7, we observed that compared to the baseline network,
our attention network highlights more areas of human bodies, which verifies the
effectiveness of our network qualitatively. Please refer to the supplementary material
for further visualisations.

4.4.5 Further Analysis

In this part, extensive experiments are performed to choose a proper setting for the
baseline network, including the number frames to use from a video clip, dimension-
ality of the video feature embedding and the training strategies (e.g., pre-training
and random erasing [Zhong et al., 2017b]). This ablation studies are performed on
the iLIDS-VID and the MARS datasets.
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Figure 4.7: Visualisation of our channel recurrent attention in video clips, sampled
from MARS dataset. We sample three video clips from different pedestrians and
visualise the feature maps. In the heat map, the response increases from blue to red.

Best Viewed in colour.

4.4.5.1 Number of Frames in Video Clip

First, we perform experiments with a different number of frames (i.e., t) in a video
clip. When t = 1, it is reduced to the single image-based model. From Table 4.7, we
observe that t = 4 achieves the highest accuracy in both R-1 and mAP values. Thus
we use t = 4 in our work.

Table 4.7: Effect of the number of frames in a video clip on the iLIDS-VID and the
MARS datasets. The 1st best in bold font.

Num of Frames
iLIDS-VID MARS

R-1 mAP R-1 mAP
(i) t = 1 76.3 84.2 79.2 74.3
(ii) t = 2 79.3 86.1 81.5 75.6
(iii) t = 4 80.0 87.1 82.3 76.2
(iv) t = 8 79.6 86.4 82.1 76.0

4.4.5.2 Dimensionality of Video Feature Embedding

The dimension, i.e., Dv, of the video feature embedding is evaluated and illustrated
in Table 4.8 on both the iLIDS-VID and the MARSdatasets. On iLIDS-VID, it is clear
that the video feature embedding with Dv = 1024 performs better for both R-1 and
mAP accuracy. Therefore, we choose Dv = 1024 as the dimension of the feature
embedding across all datasets. On the MARS dataset, we observe that R-1 has the
peak value when Dv = 512, while mAP achieves the peak value when Dv = 1024.
However, the mAP value in Dv = 512 is much lower than that in Dv = 1024. Thus
we also choose Dv = 1024 for MARS.
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Table 4.8: Effect of the dimensionality of video feature embedding on the iLIDS-VID
and the MARS datasets. The 1st best in bold font.

Dim of Embedding
iLIDS-VID MARS

R-1 mAP R-1 mAP
(i) Dv = 128 72.0 81.0 82.0 75.1
(ii) Dv = 256 73.3 82.5 82.4 76.3
(iii) Dv = 512 76.6 85.5 82.6 75.2
(iv) Dv = 1024 80.0 87.1 82.3 76.2
(v) Dv = 2048 79.6 86.5 82.0 75.6

4.4.5.3 Training Strategies

We further analyse the effect of different training strategies of the deep network (e.g.,
random erasing, pre-training model) in Table 4.9 on both the iLIDS-VID and the
MARS datasets. Here, F denotes the backbone network (see Fig. 4.1). PRE and RE
denote pre-training on imageNet Russakovsky et al. [2015] and random erasing data
augmentation, respectively. This table reveals that both training components of pre-
training (i.e., Num (ii)) and random erasing (i.e., Num (iii)) improve the R-1 and mAP
values, compared to the baseline (i.e., Num (i)). In addition, the network continues to
improve its performance when both training strategies are employed, showing that
those two training strategies work in a complementary fashion. Thus we choose the
network with the pre-trained model and random erasing as our baseline network.

Table 4.9: Effect of the different training strategies on the iLIDS-VID and the MARS
datasets. F , PRE and RE denote backbone network, pre-training and random eras-

ing, respectively. The 1st best in bold font.

Model
iLIDS-VID MARS

R-1 mAP R-1 mAP
(i) F 60.8 67.6 76.4 71.8
(ii) F + PRE 70.8 81.6 81.1 75.4
(iii) F + RE 65.3 74.6 78.8 74.5
(iv) F + PRE + RE 80.0 87.1 82.3 76.2

4.5 Experiments on Image Person Retrieval

To show the generalisation of the proposed channel recurrent attention, we employ
it in a single image pedestrian retrieval task. We select a strong baseline network
from [Fang et al., 2019], and insert the channel recurrent attention after each con-
volutional block. The deep network is fine-tuned from ImageNet pre-training [Rus-
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sakovsky et al., 2015] and trained with the same hyper-parameter setting as in [Fang
et al., 2019]. We use CUHK01 [Li et al., 2012] and DukeMTMC-reID [Ristani et al.,
2016] to evaluate the performance of the network. CHUK01 contains 3, 884 images
of 971 identities. The person images are collected by two cameras with each person
having two images per camera view (i.e., , four images per person in total). The
person bounding boxes are labelled manually. We adopt the 485/486 training/test
data split protocol to evaluate our network. The DukeMTMC-reID is the image ver-
sion of DukeMTMC-VideoReID dataset for the re-ID purpose. It has 1, 404 identities
and includes 16, 522 training images of 702 identities, 2, 228 query and 17, 661 gallery
images of 702 identities. The pedestrian bounding boxes are labelled manually. We
use mAP and the CMC curve to evaluate the performance. Table 4.10 and Table 4.11
illustrate that our approach achieves competitive results to existing state-of-the-art
approaches, showing the effectiveness and generalisation of our channel recurrent
attention module.

Table 4.10: Comparison with the SOTA
on CUHK01 dataset. The 1st best in bold

font.

Method
CUHK01

R-1 R-5 R-10 R-20
Zhao et al. [Zhao et al., 2017c] 75.0 93.5 95.7 97.7

Spindle Net [Zhao et al., 2017b] 79.9 94.4 97.1 98.6
PBR [Suh et al., 2018] 80.7 94.4 97.3 98.6

Baseline 79.3 92.7 95.8 98.2
Ours 83.3 96.3 98.4 98.9

Table 4.11: Comparison with the SOTA
on DukeMTMC-reID dataset. The 1st

best in bold font.

Method
DukeMTMC-reID

R-1 R-5 R-10 mAP
OS-Net [Zhou et al., 2019a] 88.6 - - 73.5
BAT-net [Fang et al., 2019] 87.7 94.7 96.3 77.3

ABD-Net [Chen et al., 2019b] 89.0 - - 78.6
Baseline 85.4 93.8 95.5 75.0

Ours 89.2 95.6 96.9 78.3

4.6 Summary

This chapter proposes a novel deep attentional network for task of video pedestrian
retrieval. This network benefits from the developed channel recurrent attention and
set aggregation modules. The channel recurrent attention module is employed for a
global view to feature maps, to learn the channel and spatial pattern jointly, given
a frame feature maps as input. Then the set aggregation cell continues to re-weight
each frame feature and fuses them to get a compact clip representation. Thorough
evaluation shows that the proposed deep network achieves state-of-the-art results
across four standard video-based person re-ID datasets, and the effectiveness of each
attention is further evaluated by extensive ablation studies.

In this part, we develop some attention mechanisms for embedding learning and
show that a properly designed attention module can significantly improve the em-
bedding quality. However, this is not the only way to improve visual embeddings. In
the next part, we will investigate how the embedding space benefits from geometry
constraints.
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Chapter 5

Set Augmented Triplet Loss

The previous part of this Thesis illustrates the effectiveness of the attention mech-
anism for embedding learning on visual data. Starting from this chapter, we will
study how to improve visual embeddings using geometry constraints.

Modern video person re-identification (re-ID) machines are often trained using a
metric learning approach, supervised by a triplet loss. The triplet loss used in video
re-ID is usually based on so-called clip features, each aggregated from a few frame
features. In this chapter, we propose to model the video clip as a set and instead
study the distance between sets in the corresponding triplet loss. In contrast to the
distance between clip representations, the distance between clip sets considers the
pair-wise similarity of each element (i.e., frame representation) between two sets.
This allows the network to directly optimise the feature representation at a frame
level. Apart from the commonly-used set distance metrics (e.g., ordinary distance
and Hausdorff distance), we further propose a hybrid distance metric, tailored for
the set-aware triplet loss. Also, we propose a hard positive set construction strategy
using the learned class prototypes in a batch. Our proposed method achieves state-
of-the-art results across several standard benchmarks, demonstrating the advantages
of the proposed method. This chapter is based on our published work [Fang et al.,
2021b].

5.1 Introduction

In this chapter, we aim to create compact yet discriminative features from videos for
accurate video re-ID. This is realised by learning the embedding of the video clip,
modelled by a set, which is optimised by the proposed set augmented triple loss.

The pipeline of training a typical video re-ID machine consists of first extracting
the frame-level features with the help of a deep network backbone and then aggre-
gating them to a clip-level feature. In video re-ID, the ranking task (i.e., triplet loss)
is a popular choice to supervise the network to learn an embedding space, w.r.t. the
clip-level features. This, however, could lead to sub-optimal learning of the video
embedding space, as the aggregation operation to frame features will result in loss
of information of the original frame features. Specifically, in the video-based appli-
cations, the triplet loss considers the distance between the clip representations (i.e.,

73
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(a) (b)

Figure 5.1: (a): Geometry interpretation of the distance metrics for clip representation
and frame representation. The colour represents the class of samples. dap and dan

denote the distance from positive pair and negative pair in a clip level. However,
those two distances cannot reveal the original distribution of frame features, thereby
ignoring the distance between hard frames (i.e., ↔ for hard negative pair and ↔
for hard positive pair). (b): The comparison of R-1 accuracy from the networks
trained without set-aware triplet loss and with set-aware triplet loss, across four
datasets. The backbone network is ResNet-50, pre-trained on ImageNet. In the set-
aware triplet loss, we use the proposed hybrid set distance metric to calculate the

distance of anchor-positive pair and anchor-negative pair.

dan and dap in Fig. 5.1(a)), which only indirectly penalises the hard frames between
the clips (i.e., hard positive frames and hard negative frames in Fig. 5.1(a)). This ob-
servation motivates us to directly leverage the frame features, to decrease the hard
positive distance (i.e., ↔ in Fig. 5.1(a)) and increase the hard negative distance (i.e.,
↔ in Fig. 5.1(a)) for frame features.

In video re-ID, we often aggregate the frame features (i.e., { f 1
i , . . . , f t

i}, f j
i ∈

Rc, j = 1, . . . , t) to a clip-level representation (i.e., f̂ i ∈ Rc) using an aggregation
function (i.e., Agg(·)). This processing can be summarised as: F

f̂ i = Agg({ f 1
i , . . . , f t

i}) = ϕ
( t

∑
j=1

(ω j f j
i)
)
, (5.1)

where ϕ(·) and {ω1, . . . , ωt} ∈ Rt denote non-linear mapping and aggregation
weights, respectively. Due to the summation operator in Eq. (5.1), the clip feature
(i.e., f̂ i) is invariant to the order of frame features, indicating that the aggregation
function is temporally invariant. In other words, the aggregation function acts on
sets, in the sense that the response of the aggregation function is “insensitive” to the
ordering of elements in the input [Zaheer et al., 2017]. With this intuition, we aim to
use the theory of sets to make better use of the frame features within each video clip.

In this chapter, we propose to model the frame features within a clip as a set and
propose to use the distance between sets in the triplet loss. Different from the L2 dis-
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tance between the aggregated clip features (see Fig. 5.2(a)), the distance between sets
considers every pair-wise distance in two sets and explores more information of the
frame features. In set theory, the distance between sets is usually measured by ordi-
nary distance (see Fig. 5.2(b)) or Hausdorff distance (see Fig. 5.2(c)). However, these
set distance measures cannot fully utilise hard frames (i.e., hard positive and hard
negative) in a triplet. To construct an effective set triplet loss, we further propose a
hybrid distance metric (see Fig. 5.2(d)), where the hard frames for anchor-positive
and anchor-negative sets are considered explicitly. In essence, our hybrid distance
metric aims at penalising the hard frames between sets (i.e., ↔ and ↔ in Fig. 5.1(a)).
Fig. 5.1(b) shows the comparison of retrieval accuracies from video re-ID models,
trained without our set-aware triplet loss, and with our set-aware triplet loss, across
four video re-ID datasets. We further apply the class prototypes to frame-level fea-
tures to construct hard sets by comparing the similarity between the class prototype
and frame feature with the same instance. Then the constructed set acts as a hard
positive set.

The contributions of this chapter are summarised as follows:

• We model the video clip as a set1, and employ the distance metric between sets
to construct the triplet loss. Furthermore, we propose a new hybrid set distance
metric, which is tailored for the set triplet loss.

• We further model the weights in the last classification layer as class prototypes,
to construct a hard positive set, w.r.t. each anchor set with the same identity.

• Our algorithm achieves state-of-the-art performance across four standard video
person re-ID datasets (i.e., PRID-2011 [Hirzer et al., 2011], iLIDS-VID [Wang
et al., 2016], MARS [Zheng et al., 2016] as well as DukeMTMC-VideoReID [Wu
et al., 2018a]), showing the effectiveness of the proposed set augmented triplet
loss.

5.2 Related Work

In this section, we review the related work on set learning and metric learning.
Sets. The concept of modelling the training data as a set has appeared in many

applications, e.g., point cloud classification [Zaheer et al., 2017], image tagging [Za-
heer et al., 2017], object localisation [Ribera et al., 2019] et al.. In general, the response
of set functions is insensitive to the order of the elements in the set and the work
in [Zaheer et al., 2017] studies the structure of such functions. The most popular
function is the pooling operation (i.e., max pooling, average pooling) across the ele-
ments of its input. For example, deep Convolutional Neural Networks (CNNs) use
pooling layers to summarise the features in a patch [He et al., 2016]. In the point
cloud classification task [Qi et al., 2016], a non-linear function extracts the latent rep-
resentation of point coordination and the pooling function further summarises the

1In the remainder of this chapter, we will use “clip” and “set” interchangeably
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features of objects. Attention using non-local connections also acts as a set function
as the attention weights are produced by pairwise similarities of pixel features [Wang
et al., 2018b]. In [Ribera et al., 2019], the locations of objects are estimated by training
a detector which minimises the set distance between the prediction and ground truth
of objects.

Metric Learning. Deep metric learning aims to project images to a low dimen-
sional embedding space, in which the images with similar semantics are clustered
together [Suh et al., 2019; Roy et al., 2019; Fang et al., 2019]. The most popular
paradigm is to employ the triplet loss to penalise the positive pair or negative pair
or both of them within a triplet [Schroff et al., 2015]. However, the possible num-
ber of triplets is exponential to the number of samples in a mini-batch, leading to
a prohibitive computational cost. Much effort has gone into mining the triplets ef-
ficiently [Hermans et al., 2017; Fang et al., 2019; Suh et al., 2019]. For example, the
hard mining strategy only selects the hard positive and hard negative for an anchor
sample [Hermans et al., 2017]. However, a hard mining strategy often leads to getting
caught in local minima during optimisation [Hermans et al., 2017]; thus the semi-
hard mining method is further proposed to make use of more negative pairs [Fang
et al., 2019]. Beyond mining the triplets in a mini-batch, the work in [Suh et al., 2019]
employs the class signatures to mine hard negative classes for an anchor class in the
whole dataset.

5.3 Set Augmented Triplet Loss

5.3.1 Triplet Loss

When training a deep video feature extractor, we first sample a mini-batch, which
contains P different classes and K video clips for each class, with each video clip
having T frames. The network first extracts the frame features, denoted by Ai =
{a1

i , . . . , aT
i }, i = 1, . . . , PK. Then the network aggregates the frame features to a clip

feature as âi = Agg(Ai). Given an anchor clip representation âi, one possible triplet
is formed as {âi, â+

i , â−
i }, where the positive pair (i.e., {âi, â+

i }) shares the same label,
while the negative pair (i.e., {âi, â−

i }) does not. The triplet loss aims to penalise the
triplet in which the distance between the positive pair is not sufficiently smaller than
that between the negative pair. The triplet loss with hard triplet mining is given by

Lhm
ctri =

1
PK

PK

∑
i=1

[
di(âi, â+

i )− di(âi, â−
i ) + η

]
+

, (5.2)

where [·]+ = max(·, 0), η is a task-specific margin, and di indicates the distance.
Existing video re-ID machines [Fu et al., 2019b; Gao and Nevatia, 2018] only optimise
the clip representation (see Fig. 5.2(a)) and it has never been considered to optimise
the frame features within each video clip.
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(a) Clip distance metric (b) Ordinary distance metric

(c) Hausdorff distance metric (d) Hybrid distance metric

Figure 5.2: Geometry interpretation of different distance metrics in a triplet. (a), (b),
(c), and (d) denote L2 distance metric between clip representation, ordinary distance
metric, Hausdorff distance metric, and hybrid distance metric between sets. The

color represents the class of samples.

5.3.2 Set-aware Triplet Loss

The nature of the triplet loss is to penalise the positive pairs with a large distance and
negative pairs with a small distance. It works well in image re-ID where the triplets
are constructed from the image features. However, in video re-ID, the distance mea-
sure is hampered by the aggregation operation, as shown in Fig. 5.1(a). To overcome
this issue, we directly enforce the constraint of the triplet loss on the frame features.
We first model the frame features within a video clip as a set and employ set theory
to calculate the distance between sets. Eq. (2.13) and Eq. (2.14) formulate the com-
monly used set distance metrics. However, the geometry interpretation of Eq. (2.13)
and Eq. (2.14) (see Fig. 5.2(b) and Fig. 5.2(c)) indicates that those two distance metrics
cannot distinguish the distances from the hard positive frames (↔ in Fig. 5.1(a)) and
hard negative frames (↔ in Fig. 5.1(a)) simultaneously. Thus, we further propose a
hybrid distance metric tailored to the nature of the triplet loss.

Given a triplet, i.e., {A, A+, A−}, the hybrid distance metric is defined using the
anchor-positive distance and anchor-negative distance individually, as follows:

Dhd+(A, A+) = sup
a∈A,a+∈A+

d(a, a+), (5.3)
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and

Dhd−(A, A−) = inf
a∈A,a−∈A−

d(a, a−), (5.4)

where Dhd+ and Dhd− denote the positive pair distance and negative pair distance,
respectively. Fig. 5.2(d) shows the geometrical interpretation of the hybrid distance
metric. This formulation allows the loss to penalize the hard frames in each set with
the set-aware triplet loss:

Lhm
stri =

1
PK

PK

∑
i=1

[
0, Dhd+

i − Dhd−
i + η

]
+

. (5.5)

5.3.3 Hard Positive Set Construction

The network is also supervised by a cross-entropy loss to minimise the within-
class variance. Once the network aggregates the frame features to a clip feature
as âi = Agg(Ai). A following fully connected (FC) layer, parameterised by W , is
used to predict the identity of the video, normalised by the softmax function, as
p = softmax(W⊤âi). A cross-entropy loss is employed to maximise the log likeli-
hood of âi with respect to its label c as follows:

Lce =
1

PK

PK

∑
i=1

−log
(

p(yi = c|âi)
)
. (5.6)

In Eq. (5.6), it holds that p(yi = c|âi) ∝ w⊤
c âi. The optimisation will maximise

p(yi = c|âi), thereby maximising the similarity between wc and âi. Thus wc can
be understood as a prototype feature for the class c. Given K sets containing the
same class c in one mini-batch, we can further approximate the probability of each
frame feature belonging to its label as: p(yj = c|aj), j = 1, . . . , KT. For each class, we
continue to mine T frame features Â = {ar : r ∈ i′}, where i′ satisfies

i′ = {r : arg min
r=1,··· ,KT

pr; s.t.|i′| = T}, (5.7)

and this set is summarised to a set representation (i.e., â = Agg(Â)), acting as a
hard positive with respect to the original set features {â1, . . . âK} in the batch, where
âi = Agg(Ai). Finally, we could form hard positive pairs as {âi, â}, i = 1, . . . , K. The
hard positive pairs are also minimised by the triplet loss. Besides the hard positive
set, we mine a hard negative clip representation to form a valid triple loss, denoted
by Lhpsc

ctri . Algorithm 1 summarises the process of constructing hard positives.

5.3.4 Network and Optimisation

Fig. 5.3 shows the architecture of the deep network. The network receives a batch of
video clips as input and produces frame representations. The original frame features
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Algorithm 1 Hard Positive Set Construction

Require: K: Number of sets; T: Number of frame features in each set with same
class; Ai = {ai1, . . . , aiT}: A set of frame features; âi: Set feature; W =
{w1, . . . , wn}: Class prototypes; c: Class of sets

Ensure: {âi, â}, i = 1, . . . , K: Hard positive pairs
1: Merging all sets with the same class: A = {A1, . . . , AT} = {a1, . . . , aTK}
2: Calculate the probability of predicting class c for each frame:

p(yj = c|aj) =
exp(w⊤

c aj)

∑n
m=1 exp(w⊤

maj)
, j = 1 . . . TK

3: Pick T frame features with the lowest probability, satisfying

i′ = {r : arg min
r=1,··· ,KT

pr; s.t.|i′| = T}

4: Construct a hard positive set: Â = {ar : r ∈ i′}
5: Summarize to hard positive set feature: â = Agg(Â)
6: Form hard positive pairs: {âi, â}, i = 1, . . . , K

are used to model the set and supervised by the set-aware triplet loss. We further use
our proposed hard positive set construction to form hard positive pairs. Then average
pooling is used to summarise the clip features. A vanilla triplet loss with hard mining
and a triplet loss with hard positive set construction are utilised to supervise the clip
features. An additional classifier is further used to train the network. The network
is trained to update the parameters by jointly minimising the multiple triplet losses
and cross-entropy loss. The total loss function is formally formulated as:

L = λ1Lce + λ2Lhm
ctri + λ3Lhpsc

ctri + λ4Lhm
stri, (5.8)

where Lce, Lhm
ctri, L

hpsc
ctri and Lhm

stri denote cross entropy loss, clip-feature triplet loss
with hard mining, clip-feature triplet loss with hard positive set construction, and
set-aware triplet loss with hard mining. The loss terms are weighted by the factors
[λ1, λ2, λ3, λ4].

5.4 Experiments on Video Person Retrieval

5.4.1 Implementation Details

Network and Data Organisation. We implement all experiments using the Py-
Torch [Paszke et al., 2017] machine learning package. We use ResNet-50 [He et al.,
2016], SE-ResNet-50 [Hu et al., 2018] and GLTR [Li et al., 2019a] as baseline networks
to evaluate our approach. Noted that the GLTR is self implemented version. All base-
lines are pre-trained on ImageNet [Russakovsky et al., 2015]. The baseline network
extracts each frame feature to the dimension of 2048 and we further project them to
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Figure 5.3: The architecture of the network, supervised by the proposed loss func-
tions. The network receives frame images as input and produces the frame features.

Then the network is trained by four losses, i.e., Lce, Lhm
ctri, Lhm

stri and Lhpsc
ctri

a lower dimensional space of dimension 1024. Thereafter, a set of frame features are
fused to a clip-level video representation and a linear-transformation layer is further
utilised to predict the class of the video representation. In each video clip, T is chosen
as 4 in all experiments and 4 frames are randomly sampled from a video sequence.
The frames are first resized to 288 × 144, and then randomly cropped to 256 × 128.
The data augmentations used in our experiments include randomly flipping in the
horizontal direction and random erasing (RE) [Zhong et al., 2017b] during training.
In the test phase, no data augmentation and re-ranking are used.

Optimisation Details. We train the network using the Adam [Kingma and Ba,
2014] optimiser with default momentum (i.e., [β1, β2] = [0.9, 0.999]). The learning rate
is initialized to 3e-4 for PRID-2011 and iLIDS-VID datasets, and 4e-4 for MARS and
DukeMTMC-VideoReID datasets. During training, the learning rate is decayed by a
fixed factor of 1e-1 at the 200th and 400th epoch for the PRID-2011 and iLIDS-VID
, and the 100th, 200th and 500th epoch for the MARS and DukeMTMC-VideoReID,
respectively. The batch size is set to 16 for the PRID-2011 and iLIDS-VID datasets and
32 for the MARS and DukeMTMC-VideoReID datasets, respectively. In a mini-batch,
both P and K are set to 4 for the PRID-2011 and iLIDS-VID, whereas P = 8, K = 4
for the MARS and DukeMTMC-VideoReID. The margin in Eq. (5.2) and Eq. (5.5), i.e.,
η, is set to 0.3 for all datasets. [λ1, λ2, λ3, λ4] = [1, 0.5, 0.5, 0.5]. In § 5.4.4, we will
verify each loss component in the total loss function. We report the results of the
network at its 800th epoch without any post processing tricks to boost the accuracy,
i.e., re-ranking.
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5.4.2 Datasets and Evaluation Protocol

We evaluate our method on four popular video person re-identification benchmarks,
including PRID-2011 [Hirzer et al., 2011], iLIDS-VID [Wang et al., 2016], MARS [Zheng
et al., 2016] and DukeMTMC-VideoReID [Wu et al., 2018a]. The PRID-2011 consists
of 200 identities, each with 2 video sequences, amounting to 400 video sequences in
total. Both the train and test sets contain 100 person identities. The person trajecto-
ries are captured by two disjoint, static cameras. In each frame/image, the person
bounding box is manually annotated. Similar to PRID-2011, iLIDS-VID is also a
small scale dataset, which contains 600 video sequences of 300 identities, recorded
by two cameras in an airport. Each of the train and test sets has 150 person identities.
The main challenge of this dataset is the occlusion of the target person. MARS is one
of the large-scale video datasets. It has 1, 261 identities and 20, 715 video sequences
captured by 6 separate cameras. In this dataset, each video sequence is generated by
the GMMCP tracker [Dehghan et al., 2015], and the bounding box of each frame is
automatically detected by DPM [Felzenszwalb et al., 2010]. In this dataset, the train
and test sets contain 631 and 630 person identities, respectively. The DukeMTMC-
VideoReID is another large video re-ID dataset. This manually labelled dataset
contains 702 pedestrians for training, 702 pedestrians for testing. Additionally, this
dataset further employs 408 extra pedestrians as distractors. Those 1812 identities
have 4832 video sequences.

Mean average precision (mAP) and cumulative matching characteristic (CMC)
metrics are used to evaluate the proposed method. We report R-1, R-5, R-10 and R-20
values in the CMC metric.

5.4.3 Comparison to the State-of-the-Art Methods

We first compare our method to existing state-of-the art algorithms, as shown in
Table 5.1 and Table 5.2.

PRID-2011. PRID-2011 is an old video re-ID dataset; thus only a few methods
report the mAP value. To show the superiority of our method, we report both metrics
for comparison in Table 5.1. Our method outperforms MG-RAFA [Zhang et al., 2020c]
by 0.7% on the R-1 value. Our approach also outperforms the state-of-the-art mAP
value in [Chen et al., 2018a] by 2.7%.

iLIDS-VID. Same as for the PRID-2011 dataset, we report the CMC accuracy
and mAP value in Table 5.1. On the iLIDS-VID dataset, our method also achieves
state-of-the-art performance. In particular, our network has the same R-1 value with
MG-RAFA [Zhang et al., 2020c] and outperforms the state-of-the art mAP values by
5.1% in [Chen et al., 2018a].

MARS. Compared with MG-RAFA [Zhang et al., 2020c], the state-of-the-art algo-
rithm on the MARS dataset (see Table 5.1), our method improves the R-5 and R-20
by 0.2% and 0.4% and achieves competitive performance on the R-1 and mAP value.

DukeMTMC-VideoReID. We further evaluate our method on the DukeMTMC-
VideoReID dataset. Table 5.2 compares the performance between our network and
existing state-of-the-art algorithms and demonstrates that our method outperforms
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the STGCN [Yang et al., 2020] by 0.2% in mAP. Our methods also outperform STA [Fu
et al., 2019b] by 0.2%/0.8% and GLTR by 0.1%/2.0% in R-1/mAP respectively.

Table 5.2: Comparison with the SOTA methods on the DukeMTMC dataset. † indi-
cates the self-implemented network. The 1st best in bold font.

Method
DukeMTMC-VideoReID

R-1 R-5 R-10 R-20 mAP
ETAP-Net [Wu et al., 2018a] 83.6 94.6 - 97.6 78.3

STAR+Optical flow [Wu et al., 2019] 94.0 99.0 99.3 99.7 93.4
VRSTC [Hou et al., 2019b] 95.0 99.1 99.4 - 93.5

STA [Fu et al., 2019b] 96.2 99.3 - 99.7 94.9
GLTR [Li et al., 2019a] 96.3 99.3 - 99.7 93.7

STGCN [Yang et al., 2020] 97.3 99.3 - 99.7 95.7
ResNet-50 87.5 96.5 97.2 98.3 86.2

+ Set Triplet Loss (Ours) 93.4 98.4 99.8 99.2 91.9
SE-ResNet-50 90.2 97.3 98.0 98.9 89.7

+ Set Triplet Loss (Ours) 96.8 99.4 99.9 99.9 95.9
GLTR† 96.0 99.2 99.3 99.5 93.5

+ Set Triplet Loss (Ours) 97.1 99.4 99.8 99.9 95.4

5.4.4 Ablation Study

In this section, we will conduct extensive experiments to evaluate the effectiveness of
each component in this work.

5.4.4.1 Effect of Set-aware Triplet Loss

We first evaluate the effectiveness of set-aware triplet loss with different set distance
metrics. In this study, we use the SE-ResNet-50 as the backbone network and em-
ploy all three distance metrics for the set-aware triplet loss. As shown in Table 5.3,
the set-aware triplet loss indeed helps the network to learn a discriminative person
description. Compared with the commonly-used set distance metrics (i.e., ordinary
distance, Hausdorff distance), the proposed hybrid distance metric brings the largest
performance gain, showing that the optimisation to hard frames of anchor-positive
pairs and anchor-negative leads the network to create a discriminative video repre-
sentation.

5.4.4.2 Effect of Hard Positive Set Construction

We continue to verify the effectiveness of our hard positive set construction method.
We still use the SE-ResNet-50 as the backbone network. Table 5.4 shows that our
network benefits from the hard positive set construction method across two datasets.
A reasonable explanation for this improvement is that the hard positive sample helps
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Table 5.3: Effect of the set-aware triplet loss across the iLIDS-VID and DukeMTMC-
VideoReID datasets. SATL: set-aware triplet loss, Do: ordinary distance, Dh: Haus-

dorff distance, Dhd: Hybrid distance. The 1st best in bold font.

Model
iLIDS-VID DukeMTMC-VideoReID

R-1 mAP R-1 mAP
SE-ResNet-50 84.0 89.5 90.2 89.7
SATL w/ Do 86.8 90.6 92.8 91.7
SATL w/ Dh 87.6 91.1 94.1 92.9
SATL w/ Dhd 88.3 91.9 94.9 93.7

the network minimise the intra-class variance, thereby improving the performance of
the network.

Table 5.4: Effect of the hard positive set construction across the iLIDS-VID and the
DukeMTMC-VideoReID datasets. HPSC: hard positive set construction. The 1st best

in bold font.

Model
iLIDS-VID DukeMTMC-VideoReID

R-1 mAP R-1 mAP
SE-ResNet-50 84.0 89.5 90.2 89.7

HPSC 86.2 91.4 92.4 91.9

5.4.4.3 Effect of Each Loss Component

In the study above, we have shown that our network achieves a performance gain
from the set-aware triplet loss and the hard positive set construction method. In this
study, we will verify each component in the total loss function. SE-ResNet-50 is also
used here as the backbone network. The total loss function has four components (i.e.,
Lce, Lhm

ctri, L
hpsc
ctri and Lhm

stri). Table 5.4 shows the effectiveness of each loss term. In
this study, the baseline model is trained by cross-entropy loss (i.e., (i)). The rows in
(ii), (iii), and (iv) show that each of the triple losses provides complementary cues
to optimise the network. In addition, the terms Lhpsc

ctri and Lhm
stri will further improve

the performance of the network. In summary, this study reveals that our method
helps the network to learn complementary information when encoding the person
representation.

5.4.4.4 Visualisation of Hard Positive Set Construction

We further visualise the hard positive set construction by Algorithm 1 on the iLIDS-
VID dataset. The original and constructed video clips/sets are framed by black and



§5.4 Experiments on Video Person Retrieval 85

Table 5.5: Effect of each loss component across the iLIDS-VID and the DukeMTMC-
VideoReID datasets. [λ1, λ2, λ3, λ4] denote the weights assigned to each loss term in

Eq. (5.8). The 1st best in bold font.

[λ1, λ2, λ3, λ4]
iLIDS-VID DukeMTMC-VideoReID

R-1 mAP R-1 mAP
(i) [1, 0, 0, 0] 74.7 82.5 80.2 79.6
(ii) [1, 0.5, 0, 0] 84.0 89.5 90.2 89.7
(iii) [1, 0, 0.5, 0] 82.0 87.6 87.3 85.2
(iv) [1, 0, 0, 0.5] 84.7 88.9 89.2 88.3
(v) [1, 0.5, 0.5, 0] 85.2 90.4 91.4 90.9
(vi) [1, 0.5, 0.5, 0.5] 89.3 92.9 96.8 95.9

red lines, respectively. As shown in Fig. 5.4, we can observe that the frames with
occlusions or distractors will be easily selected as hard samples by our algorithm.
This observation is also in line with our intuition that the hard set is constructed
from the hard frames in a batch.

Figure 5.4: Example of hard positive set construction via Algorithm 1 on the iLIDS-
VID dataset. The original and constructed video clips/sets are framed by black and
red lines, respectively. The constructed clip indicates that the frames with occlusions
or distractors will be easily selected as hard samples by our algorithm. Images are

sampled from two video sequences from different pedestrians.

5.4.4.5 Training Convergence and Feature Embedding

In this part, we continue to demonstrate the superior performance of set-aware
triplets by studying the training convergence and feature embedding of networks.
In this study, we also use SE-ResNet-50 as the baseline network. Fig. 5.5(a) and
Fig. 5.5(b) show the training curves of the network with our set-aware triplet loss
and without our set-aware triplet loss w.r.t. the R-1 value and mAP value respec-
tively. Fig. 5.6(a) and Fig. 5.6(b) visualise the features extracted by the network,
trained without set-aware triplet loss, and with set-aware triplet loss. Both figures
clearly show that the set-aware triplet loss indeed helps the network to learn a dis-
criminative embedding space, in which the within-class variance is minimised and
the between-class variance is maximised jointly.
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(a) (b)

Figure 5.5: The training process of the network without set-aware triplet loss and
with set-aware triplet loss on the iLIDS-VID dataset. (a): The R-1 value along the

training process. (b): The mAP value along the training process.

5.5 Summary

In this chapter, we construct a triplet loss to optimise the frame features of the video
person re-ID task, by modelling the video clip as a set. We employ the commonly-
used distance metric to measure the distance between sets, i.e., ordinary distance and
Hausdorff distance. Considering the hard pairs in the triplets, we further propose
a new hybrid distance metric, which is defined for the anchor-positive pair and the
anchor-negative pair separately. In addition, we also propose a hard positive set
construction algorithm to decrease the within-class variance. Extensive experiments
are conducted to verify the superior performance of the proposed method across the
standard video person re-ID datasets.
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(a) (b)

Figure 5.6: T-SNE visualisation [Laurens van der Maaten and Hinton, 2008] of
learned features by the network (a) w/o set-aware triplet loss and (b) w/ set-aware
triplet loss on the iLIDS-VID dataset. We select 20 people from the query set and
visualise the frame features. Points with the same colour denote the features of the

same person. Best viewed in colour.
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Chapter 6

Kernel Methods in Hyperbolic
Spaces

Following the previous chapter, we continue investigating the geometry constraint
(i.e., the curved space) as the embedding space for visual data. Embedding data in
hyperbolic spaces has proven beneficial for many advanced machine learning ap-
plications such as image classification and word embeddings. However, working
in hyperbolic spaces is not without difficulties as a result of its curved geometry
(e.g., computing the Fréchet mean of a set of points requires an iterative algorithm).
Furthermore, in Euclidean spaces, one can resort to kernel machines that not only
enjoy rich theoretical properties but that can also lead to superior representational
power (e.g., infinite-width neural networks). In this chapter, we introduce positive
definite kernel functions for hyperbolic spaces. This brings in two major advantages,
1. kernelization will pave the way to seamlessly benefit from kernel machines in con-
junction with hyperbolic embeddings, and 2. the rich structure of the Hilbert spaces
associated with kernel machines enables us to simplify various operations involving
hyperbolic data. That said, identifying valid kernel functions on curved spaces is
not straightforward and is indeed considered an open problem in the learning com-
munity. Our work addresses this gap and develops several valid positive definite
kernels in hyperbolic spaces, including the universal ones (e.g., RBF). We compre-
hensively study the proposed kernels on a variety of challenging tasks including
few-shot learning, zero-shot learning, person re-identification and knowledge distil-
lation, showing the superiority of the kernelization for hyperbolic representations.
This chapter is based on our work [Fang et al., 2021a].

6.1 Introduction

This chapter proposes a family of positive definite (pd) kernels to map the representations
in hyperbolic spaces into Reproducing Kernel Hilbert Spaces (RKHSs), which enables us to
seamlessly benefit from kernel machines to analyse hyperbolic spaces.

In the machine learning community, the Euclidean space has been the “workhorse”
for feature embeddings. This is mainly because the high-dimensional vector space is
a natural generalisation from the familiar three-dimensional space we live in and per-

89
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forming basic operations for comparison (e.g., calculating distances and similarities)
is straightforward. However, embedding in Euclidean spaces can harm and distort
the encoding of structured data, thereby losing the complex geometric information
inherently present in the data. For example, the Euclidean space fails to encode the
hierarchical information in graph-structured data [Liu et al., 2019a].

Several recent studies in computer vision suggest that embedding images and
video using hyperbolic geometry can be beneficial compared to the common practice
of using Euclidean geometry. This includes tasks such as textual entailment [Ganea
et al., 2018], image classification and retrieval [Khrulkov et al., 2020], and graph
classification [Liu et al., 2019a] to name a few.

The hyperbolic space is characterised by a constant negative sectional curvature
(in contrast to the flat structure of the Euclidean space), and does not satisfy Eu-
clid’s parallel postulate. One intriguing property of hyperbolic spaces is their ca-
pacity of encoding hierarchical data, as the volume of hyperbolic space expands
exponentially [Hamann, 2011], thereby increasing their representation power. Al-
though several studies have successfully employed the hyperbolic geometry for in-
ference [Ganea et al., 2018; Khrulkov et al., 2020; Cho et al., 2019], the difficulties
of working with such non-linear spaces still overwhelm their wider use. For ex-
ample, while averaging in Euclidean geometry is straightforward, its counterpart in
hyperbolic space is approximated by the Fréchet mean. Computing the Fréchet mean
requires an iterative algorithm and could easily become costly [Karcher, 1977; Lou
et al., 2020]. This motivates us to develop kernels to make it possible to seamlessly
benefit and employ kernel machines towards analysing hyperbolic data.

To be able to make use of kernel machines, one needs to have a pd kernel function
at its disposal. Loosely speaking, a kernel function is a measure of similarity. Many
familiar kernels in the Euclidean space are defined as functions of the Euclidean
distance (which is indeed the geodesic distance of the space). Take the RBF kernel
k(x, y) = exp(−ξd2(x, y)) as an example. This might imply that valid pd kernels in
curved spaces, the hyperbolic space being one, can be constructed once the geodesic
distance is known. Unfortunately, this is not the case as shown in [Jayasumana et al.,
2015; Feragen et al., 2015] (c.f ., theorem 6.2 in [Jayasumana et al., 2015]), because such
curved spaces are not isometric to flat Euclidean spaces. Interestingly, the difficulty of
defining pd kernels on curved spaces is now considered an open problem in machine
learning [Feragen and Hauberg, 2016].

In this chapter, we address the design challenge of pd kernels for hyperbolic rep-
resentations using the Poincaré model. Here, we propose several valid pd hyperbolic
kernels, including the powerful universal ones. To this end, we first make use of a
lemma to construct a valid linear-like kernel. Leveraging this lemma, we further de-
fine valid RBF and Laplace kernels for the hyperbolic geometry. Finally, we propose
the binomial kernel. Table 6.1 summarises the proposed kernels.

The contributions of this work include:

• We propose four pd kernels for the hyperbolic spaces, namely, the hyperbolic
tangent kernel, the hyperbolic RBF kernel, the hyperbolic Laplace and the hy-
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perbolic binomial kernel, in conjunction with their theoretical analysis. To the
best of our knowledge, this is the first work to develop pd kernels in hyperbolic
spaces.

• To evaluate the power of the proposed kernels, we conduct thorough experi-
ments on various vision tasks including few-shot learning, zero-shot learning,
person re-identification, and knowledge distillation, and employ the kernels
along deep neural networks (DNNs) to attain rich models for inference. Empir-
ically, we observed the superiority of the kernelization for the representation
learning in hyperbolic spaces.

6.2 Related Work

In this section, we review the related work on geometric constraint learning and
kernel methods on curved spaces.

Geometric Constraint Learning. Geometric constraints have been studied exten-
sively in deep learning, which pushes the network to encode complex structures of
the data. The representation power of a set is improved by fitting a subspace [Simon
et al., 2020]. In SVDNet, the orthogonality constraint enforces the fully connected
layer lying on the Grassmannian manifold, which de-correlates the features among
entries [Sun et al., 2017]. The works in [Liu et al., 2017b; Meng et al., 2019] also show
that embedding in a spherical space is particularly effective for similarity learning
(e.g., face verification, clustering) compared to using Euclidean spaces.

In recent years, hyperbolic geometry has gained substantial interest thanks to
its tree-like nature, and the ability to encode hierarchical relationships in the data.
Generalising the basic operations in Euclidean geometry, the work [Ganea et al., 2018]
develops hyperbolic layers in neural networks. The following works further show the
success of hyperbolic embeddings for graph-structured data, language data, visual
data as well as 3D data [Liu et al., 2019a; Gulcehre et al., 2019; Khrulkov et al., 2020;
Chen et al., 2020a]. More complex structures of data are also studied in [Gu et al.,
2019; Skopek et al., 2020], which represents the data in a mixed-curvature geometry.

Kernel Methods. Kernel methods have been studied extensively and proven
its success in a broad range of machine learning approaches, e.g., SVM, PCA and
clustering [Hofmann et al., 2008]. The main idea of kernel methods is to project
the input samples, to a high-dimensional (or even infinite-dimensional) Reproducing
Kernel Hilbert Space (RKHS), where the projected data can be analysed with linear
models. To avoid explicit lifting to RKHS, the kernel trick provides a simple way to
generate the similarity measure of pairs in RKHS.

As of late, attempts to boost the representational power of structured-data by
generalising the kernel methods to non-linear geometries have gained increasing at-
tention. The common strategy to define a valid pd kernel on non-Euclidean geome-
tries is to adopt a proper distance metric. In [Jayasumana et al., 2013], the authors
propose the main theoretical framework to design the Gaussian kernel on symmet-
ric positive definite matrices. The proposed theory is further verified to develop the
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Gaussian kernel on the Grassmannian manifold [Jayasumana et al., 2015]. Kernels for
the Grassmannian manifold are studied in [Harandi et al., 2014]. The kernels using
the Fisher information metric are developed for the persistence diagrams in [Le and
Yamada, 2018]. The closest study to our work is the work of Cho et al. [Cho et al.,
2019], which formulates the support vector machine (SVM) in hyperbolic spaces. To
facilitate the nonlinear decision boundaries, the kernel SVM for the hyperbolic space
is also introduced in [Cho et al., 2019]. However, the proposed indefinite kernel is not
universal and hence violates the universal approximation property [Micchelli et al.,
2006].

In contrast to existing works, this work develops the theoretical framework for
positive definite kernels on the hyperbolic geometry. As a complementary concept
to the indefinite kernel, our work kernelizes the hyperbolic space, and thus to em-
bed hyperbolic data into a high, possibly infinite, dimensional Hilbert space. In the
remainder of this chapter, we will present the developed theory and evaluate the
algorithms across different challenging applications.

6.3 Kernel Methods in Hyperbolic Spaces

In this section, we propose positive definite (pd) kernels in hyperbolic spaces. Essen-
tially, we are interested in identifying a bivariate function k(·, ·) : (Dn

c × Dn
c ) → R,

which represents an inner product in a Reproducing Kernel Hilbert Space (RKHS).
Obviously, not all bivariate functions constitute valid kernels, meaning that they do
not necessarily realise an RKHS. Also, popular kernels in Euclidean spaces cannot
lead to meaningful solutions as they are not faithful to the geometry of the hyper-
bolic spaces. Embedding hyperbolic points into an RKHS is not only theoretically
appealing but can also result in practical benefits due to the intriguing properties of
RKHSs. This includes representational power of RKHS [Hofmann et al., 2008], ker-
nel two-sample test [Gretton et al., 2012], neural tangent kernels [Jacot et al., 2018] to
name a few.

In this chapter, we make use of the tangent space of the hyperbolic geometry to
define a set of valid pd kernels. We start by formally defining a pd kernel.

Definition 1 (Positive Definite Kernels [Berg et al., 1984]) Let Z be a non-empty set. A
symmetric function k(·, ·) : (Z × Z) → R is a positive definite kernel on Z if and only if
∑m

i,j=1 cicjk(zi, zj) ≥ 0 for any m ∈ N, zi ∈ Z and ci ∈ R.

Essential to our work is the following lemma;

Lemma 1 Let Z be a non-empty set. Consider a function f (·) : Z → Rn, that maps each
element of Z uniquely to Rn. Then,

k(zi, zj) =
〈

f (zi), f (zj)
〉

is a pd kernel on Z .
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Proof 1 The proof of this lemma follows immediately from Definition 1. To see this, define

Fn×m :=
[

f (z1), f (z2), · · · , f (zm)
]

.

Now, notice that

m

∑
i,j=1

cicjk(zi, zj) = c⊤Kc = c⊤F⊤Fc = ∥Fc∥2 ≥ 0 .

The
[
Km×m

]
i,j = k(zi, zj) is called the gram matrix.

Based on Lemma 1, we propose to make use of fD(·) : Dn
c → Rn defined as,

fD(z) := tanh−1(
√

c∥z∥) z√
c∥z∥

, (6.1)

to develop valid pd kernels on Dn
c . The function fD(·) enjoys various unique prop-

erties. First note that the function is bijective and fD(z) = Υ0(z). The next theorem
establishes an important property and justifies our choice here better.

Theorem 1 (Curve Length Equivalence) A curve in Dn
c is a continuous function γ(·) :

[0, 1] → Dn
c ; joining the starting point γ(0) to the end point γ(1). Define the distance

induced by fD as

de
(
zi, zj

)
:=

∥∥ fD(zi)− fD(zj)
∥∥. (6.2)

The length of any given curve γ is the same under de and the geodesic distance dc up to a
scale of 1/λ̃c, where λ̃c = 2 is the conformal factor at the origin.

Before the proof of Theorem 1, we first formally define the curve length and intrinsic
metric.

Definition 2 (Curve Length) The length of a curve γ is the supremum of L(γ; {ti}n
i=0)

over all possible partitions {ti}n
i=0, where 0 = t0 < t1 < . . . < tn−1 < tn = 1 and

L(γ; {ti}n
i=0) = ∑n

i=1 d(γ(ti−1), γ(ti)).

Definition 3 (Intrinsic Metric) The intrinsic metric δ̂(x, y) on M is defined as the infi-
mum of the lengths of all paths from x to y.

Theorem 2 ([Hartley et al., 2012]) If the intrinsic metrics induced by two metrics d1 and
d2 are identical to a scale ζ, then the length of any given curve is the same under both metrics
up to ζ.

Theorem 3 ([Hartley et al., 2012]) if d1(x, y) and d2(x, y) are two metrics defined on a
space M such that

lim
d1(x,y)→0

d2(x, y)
d1(x, y)

= 1, (6.3)

uniformly (with respect to x and y), then the length of any given curve is the same under
both metrics. Consequently, the intrinsic metrics induced by d1 and d2 are identical.
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Therefore, we need to study the the behaviour of

lim
dc(zi ,zj)→0

λ̃c de(zi, zj)

dc(zi, zj)
, (6.4)

to prove our theorem. This is also equivalent to study

lim
γ→0

λ̃c de(zi, zj)

dc(zi, zj)
, (6.5)

where zj = zi ⊕c γ.

Proof 2 We first prove fD(zi ⊕c γ) = fD(zi) + fD(γ) for γ → 0.

zi ⊕c γ =
(1 + 2c⟨zi, γ⟩+ c∥γ∥2)zi + (1 − c∥zi∥2)γ

1 + 2c⟨zi, γ⟩+ c2∥zi∥2∥γ∥2

≈ (1 + 2c⟨zi, γ⟩)zi + (1 − c∥zi∥2)γ

1 + 2c⟨zi, γ⟩

≈ zi +
1 − c∥zi∥2

1 + 2c⟨zi, γ⟩γ

= zi + κγ.

(6.6)

Then the first order approximation of fD(zi + κγ) can be obtained:

fD(zi + κγ) = tanh−1(
√

c∥zi + κγ∥) zi + κγ√
c∥zi + κγ∥

≈ zi + κγ +
c∥zi + κγ∥2

3
(zi + κγ)

≈ zi + κγ +
c∥zi + κγ∥2

3
zi

+
c∥zi + κγ∥2

3
κγ

≈ zi + κγ +
c∥zi∥2

3
zi

+
2c⟨zi, κγ⟩

3
zi +

c∥zi + κγ∥2

3
κγ

(6.7)

The first order approximation of fD(zi) and fD(γ) can also been obtained:

fD(zi) ≈ zi +
c∥zi∥2

3
zi (6.8)

and

fD(γ) ≈ γ +
c∥γ∥2

3
γ. (6.9)
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Then we can see:

lim
γ→0

(
fD(zi + κγ)− fD(zi)− fD(γ)

)
= 0. (6.10)

Since it holds that fD(zi ⊕c γ) = fD(zi) + fD(γ) for γ → 0, then we have

lim
γ→0

λ̃cde(zi, zj)

dc(zi, zj)
= lim

γ→0

λ̃c∥ fD(zi)− fD(zj)∥
2√
c tanh−1(

√
c∥ − zi ⊕c zj∥)

= lim
γ→0

λ̃c∥ fD(zi)− fD(zi ⊕c γ)∥
2√
c tanh−1(√c∥(−zi)⊕c (zi ⊕c γ)∥

)
= lim

γ→0

λ̃c∥ fD(zi)− ( fD(zi) + fD(γ))∥
2√
c tanh−1(

√
c∥γ∥)

= lim
γ→0

λ̃c∥ fD(γ)∥
2√
c tanh−1(

√
c∥γ∥)

= lim
γ→0

λ̃c∥tanh−1(
√

c∥γ∥) γ√
c∥γ∥∥

2√
c tanh−1(

√
c∥γ∥)

= lim
γ→0

λ̃c√
c tanh−1(

√
c∥γ∥)∥ γ

∥γ∥∥
2√
c tanh−1(

√
c∥γ∥)

= 1.

(6.11)

This ends the proof.

Having fD at our disposal, we are now ready to define the kernels in hyperbolic
spaces.

6.3.1 Hyperbolic Tangent Kernel

The simplest pd kernel resembles the linear kernel in Euclidean spaces and is defined
as ktan(zi, zj) = ⟨ fD(zi), fD(zj)⟩. We call this kernel hyperbolic tangent kernel as it
can be understood as the linear kernel in the identity tangent space of the Poincaré
ball. This kernel is attractive as it is parameter-less, making it ideal for fast proto-
typing. The proof of positive-definiteness of the hyperbolic tangent kernel follows
directly from Lemma 1.

6.3.2 Hyperbolic RBF Kernel

The Gaussian RBF kernel is a popular universal kernel in Euclidean spaces. In Rn, the
RBF kernel can be written as k(xi, xj) = exp(−ξ∥xi − xj∥2), ξ > 0, where the metric is
the squared Euclidean distance in Rn. Taking into account the properties of the RBF
kernel [Christmann and Steinwart, 2008], it is very desirable to extend this kernel
to hyperbolic spaces. One may assume that replacing the Euclidean distance by the
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geodesic distance (i.e., Eq. (2.16)) can lead to a valid pd kernel. This, unfortunately,
is not the case as shown by the toy example below.

Example 1 Consider D3
0.1 and the following points:

z1=

0.1885
0.2330
0.9526

, z2=

0.6586
0.2053
0.0894

, z3=

0.3017
0.4155
0.5357

, z4=

0.2388
0.8290
0.3790

.

The gram matrix (i.e., exp(−ξd2
c(zi, zj)) for ξ = 0.01) for these points has a negative

eigenvalue of −3.0605 × 10−5.

Further to the counterexample above, the RBF kernel derived from the geodesic
distance is shown to be pd iff the space is isometric to the Euclidean space per the
following theorem.

Theorem 4 (Theorem 6.2 in [Jayasumana et al., 2015]) Let M be a complete Rieman-
nian manifold and dM be the induced geodesic distance on the manifold. The Gaussian RBF
kernel k(·, ·) : (M×M) → R : k(mi, mj) := exp(−ξd2

M(mi, mj)) is positive definite for
all ξ > 0 if and only if the Riemannian manifold M is isometric to some Euclidean space Rn.

According to Theorem 4, it is theoretically impossible to obtain a valid RBF kernel
using geodesic distance on hyperbolic spaces 1. Given the above, we propose to make
use of de(·, ·) and define the hyperbolic RBF kernel as

krbf(zi, zj) = exp
(
− ξ∥ fD(zi)− fD(zj)∥2) . (6.12)

To show that the form in Eq. (6.12) is a valid pd kernel, we first define negative
definite (nd) kernels.

Definition 4 (Negative Definite Kernels [Berg et al., 1984]) Let Z be a non-empty set.
A symmetric function k(·, ·) : (Z ×Z) → R is a negative definite kernel on Z if and only
if ∑m

i,j=1 cicjk(zi, zj) ≤ 0 for any m ∈ N, zi ∈ Z and ci ∈ R with ∑m
i=0 ci = 0.

Note the difference between pd and nd kernels. For nd kernels, an additional
condition (i.e., ∑m

i=0 ci = 0) is required. The following lemma shows that d2
e (·, ·) =

∥ fD(zi)− fD(zj)∥2 is indeed nd.

Lemma 2 Let Z be a non-empty set. An injective function f (·) : Z → Rn, maps each
vector in Z onto an inner product space Rn. Then k(zi, zj) := ∥ f (zi)− f (zj)∥2 is negative
definite.

1If a manifold M is isometric to some Euclidean spaces Rn, then the geodesic distance on M is the
Euclidean distance in Rn. However, it is impossible to find an isometry between Dn

c and Rn because of
the difference in the curvature of two geometries.
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Proof 3 Suppose ∑m
i=1 ci = 0, then we have:

m

∑
i,j=1

cicj∥ f (zi)− f (zj)∥2

=
m

∑
i,j=1

cicj
{
∥ f (zi)∥2 + ∥ f (zj)∥2 − ⟨ f (zi), f (zj)⟩ − ⟨ f (zj), f (zi)⟩

}
=

m

∑
i=1

ci∥ f (zi)∥2
m

∑
j=1

cj +
m

∑
j=1

cj∥ f (zj)∥2
m

∑
i=1

ci − ⟨
n

∑
i=1

ci f (zi),
n

∑
j=1

cj f (zj)⟩

− ⟨
n

∑
j=1

cj f (zj),
n

∑
i=1

ci f (zi)⟩

= −2∥
n

∑
i=1

ci f (zi)∥2 ≤ 0.

(6.13)

Thus k(zi, zj) = ∥ f (zi)− f (zj)∥2 is negative definite. This ends the proof.

The following important theorem establishes the connection between positive def-
inite kernels and negative definite kernels.

Theorem 5 ([Berg et al., 1984]) Let Z be a non-empty set and k : (Z × Z) → R be a
kernel. The kernel k(zi, zj) = exp(−ξΦ(zi, zj)) is positive definite for all ξ > 0 if and only
if Φ(·, ·) is negative definite.

Stating the fact that d2
e (·, ·) is nd along with Theorem 5 concludes our claim that

the hyperbolic RBF kernel defined in Eq. (6.12) is pd.

6.3.3 Hyperbolic Laplace Kernel

The Laplace kernel is another widely used universal kernel in Euclidean spaces,
formulated as k(xi, xj) = exp(−ξ∥xi − xj∥), ξ > 0. When extending the Laplace
kernel to hyperbolic spaces, we use the following theorem to build a nd kernel for
hyperbolic spaces.

Theorem 6 ([Berg et al., 1984]) If k : (Z × Z) → R is negative definite and satisfies
k(zi, zj) ≥ 0, then kα is also negative definite for 0 < α < 1.

Combining Theorem 5 and Theorem 6, and choosing α = 1
2 , we could ob-

tain the hyperbolic Laplace kernel as klap(zi, zj) = exp
(
− ξde( fD(zi), fD(zj))

)
=

exp
(
− ξ∥ fD(zi) − fD(zj)∥

)
. A more general form of the Laplace kernel (i.e., gen-

eralised hyperbolic Laplace kernel) can be further derived as: kglap(zi, zj) = exp
(
−

ξ∥ fD(zi)− fD(zj)∥2α
)
, where 0 < α < 1.
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6.3.4 Hyperbolic Binomial Kernel

In addition to the exponential type kernels, we further construct a hyperbolic bino-
mial kernel. To obtain the hyperbolic binomial kernel, we make use of the following
lemma.

Lemma 3 Let Z be a non-empty set. An injective function f : Z → Rn, maps each vector
in Z onto an inner product space Rn. Then k(zi, zj) :=

(
1 − ⟨ f (zi), f (zj)⟩

)−α defines a
binomial kernel on Z when α > 0 and ∥ f (z)∥ < 1.

Proof 4 According to Lemma 4.8 of [Christmann and Steinwart, 2008], if the function k(·, ·)
can be decomposed by a full Taylor series with each term being non-negative, then we can
claim k(·, ·) is a valid pd kernel. Let t = ⟨ f (zi), f (zj)⟩, the binomial series k(zi, zj) =
(1 − t)−α = ∑∞

n=0
( −α

n
)
(−1)ntn holds for all |t| < 1, where the binomial coefficient

(
β
n

)
:=

∏n
i=1(β− i+ 1)/i. It can be seen

( −α
n
)
(−1)n > 0 when α > 0, which indicates the binomial

kernel has a non-negative and full Taylor series.

According to the Lemma 3, we could obtain the hyperbolic binomial kernel as

kbin(zi, zj) =
(
1 − ⟨ fD(zi), fD(zj)⟩

)−α, α > 0. (6.14)

Also, given the non-negativeness and full Taylor series in the above proof, we can
further claim that the hyperbolic binomial kernel satisfies the necessary and sufficient
condition of being universal, shown in Corollary 4.57 of [Christmann and Steinwart,
2008].

Remark 8 As alluded to earlier, we have made use of the identity tangent space of the
Poincaré ball (i.e., Dn

c ) to define pd kernels for the hyperbolic spaces. This implies that
the kernels are defined using the Lie algebra of Dn

c . Such a construction has been used with
success in other manifolds (e.g., SPD as in [Jayasumana et al., 2015]).

In this chapter, we employ the kernels along with convolutional neural networks
(CNNs) to attain rich models for computer vision tasks. The CNNs encode the input
data to vectors, distributed in hyperbolic spaces. Then the proposed kernels are
further used to train the network.

6.4 Experiments

We first explain the inference with cross entropy-like loss function using kernels.
Specifically, for a training sample f i with label l, the cross entropy loss is given by:

L = − log(
exp(s( f i, wi))

∑N
j=1 exp(s( f i, wj))

), (6.15)
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where wi indicates the weights or prototype for f i and N is the number of classes in
the dataset. Then we apply our kernels in Eq. (6.15) as:

LK = − log(
g(k( f i, wi))

∑N
j=1 g(k( f i, wj))

). (6.16)

Here, g(·) is exp mapping if k(·, ·) is non-exponential type kernels. Otherwise, g(·)
is the identity mapping.

In the remainder of this chapter, we comprehensively evaluate the effectiveness
of the proposed algorithms for a variety of challenging tasks, i.e., few-shot learning,
zero-shot learning, person re-identification and knowledge distillation.

(a) The pipeline of the deep network for
few-shot recognition. XS and XQ denote
the input images in the support set and
query set.

(b) The pipeline of the deep network for
zero-shot learning. X and a denotes input
images and attribute descriptors.

(c) The pipeline of the deep network for
person re-identification. X denotes the in-
put pedestrian images.

(d) The pipeline of teacher-student net-
work for knowledge distillation. X denotes
the input images.

Figure 6.1: The pipeline of three applications we consider: (a) few-shot learning, (b)
zero-shot learning , (c) person re-identification and (d) knowledge distillation.

6.4.1 Few-shot Learning

Few-shot learning (FSL) is required to learn an embedding space, which should be
adapted to recognise unseen classes at test time, given only a few samples of each
new class. In our experiments, we follow the general practice (i.e., 5-way 1-shot and
5-way 5-shot and 15 query images) to evaluate the model. We employ the pipeline
in the prototypical network (ProtoNet) [Snell et al., 2017] along with the proposed
kernels to train the feature extractor (see Fig. 6.1(a)).



§6.4 Experiments 101

Four popular benchmarks, i.e., miniImageNet [Deng et al., 2009], CUB [Wah et al.,
2011], tiered-ImageNet [Ren et al., 2018] and Few-shot-CIFAR100 (FC100) [Oreshkin
et al., 2018] are adopted to assess our algorithms. The miniImageNet is a subset of
the ImageNet dataset, and contains 60,000 images in total. It has 100 classes and each
class has 600 images. We also follow the standard evaluation protocol, which splits
the 100 classes into 64 for training, 16 for validation and 20 for testing. The CUB
dataset is a fine-grained image recognition dataset and we also use it to evaluate
our few-shot learning algorithms. The CUB dataset consists of 200 different species
of birds and 11,788 images in total. We also follow the standard setting to split the
dataset into 100 base classes, 50 validation classes and 50 test classes. Similar to
miniImageNet, tiered-ImageNet is also a subset of ImageNet with broader classes
(i.e.„ 608 classes in total). The tiered-ImageNet contains 351 classes for training, 97
classes for validation and 160 classes for testing. FC100, which is based on the CIFAR-
100, is proposed for the FSL task. It also contains three data splits, i.e., training split,
validation split and test split, with each having 60, 20, 20 classes.

In terms of the feature extractor, we use both Conv-4 [Snell et al., 2017] and
ResNet-18 [He et al., 2016] CNN backbones in our experiments. We use the Conv-4
and ResNet-18 backbones to evaluate the miniImageNet and CUB datasets and the
Conv-4 backbone to evaluate the tiered-ImageNet and FC100 datasets.

Tables 6.2, 6.3, 6.4 illustrate the results on four datasets. We observe that our
algorithms improve the few-shot recognition performance as compared to their hy-
perbolic counterpart and other advanced methods. In addition, the results from the
hyperbolic RBF kernel in general exceed the results from other kernels. For exam-
ple, in 5-way 5-shot setting, the hyperbolic RBF kernel outperforms the Hyperbolic
ProtoNet [Khrulkov et al., 2020] by 3.42, 2.68, 4.52 and 2.64 for miniImageNet, CUB,
tiered-ImageNet and FC100, respectively, clearly showing the potential and superior-
ity of universal kernels.

6.4.2 Zero-shot Learning

Zero-shot learning (ZSL) aims to identify objects that are unseen during the training
phase [Akata et al., 2015]. We first build a baseline network for the scenario of
zero-shot recognition. In the training phase, we randomly sample Nb seen visual
features as V = {v1, . . . , vNb}. All the semantic features are projected to the visual
space, denoted by E = {e(a1), . . . , e(a|Ls|)}, where |Ls| denotes the number of seen
classes in the training set. In our implementation, the embedding function (i.e., e(·))
is a simple two layer MLP, with each layer stacking the linear transformation, ReLU
activation and batch normalisation. Then the network is trained by the following
cross-entropy type loss:

Lzsl = − 1
Nb

Nb

∑
i=1

log
( exp

(
− ∥(e(a∗)− vi∥

)
∑|Ls|

j=1 exp
(
− ∥e(aj)− vi∥

)),
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Table 6.2: Few-shot classification results on the miniImageNet dataset with 95% con-
fidence interval. The 1st best in bold font.

Model Backbone 1-shot 5-shot
MatchingNet [Vinyals et al., 2016] Conv-4 43.56 ± 0.84 55.31 ± 0.73

ProtoNet [Snell et al., 2017] Conv-4 44.53 ± 0.76 65.77 ± 0.66
MAML [Finn et al., 2017] Conv-4 48.70 ± 1.84 63.11 ± 0.92

RelationNet [Sung et al., 2018] Conv-4 50.44 ± 0.82 65.32 ± 0.70
DN4 [Li et al., 2019d] Conv-4 51.24 ± 0.74 71.02 ± 0.64

DSN [Simon et al., 2020] Conv-4 51.78 ± 0.96 68.99 ± 0.69
Hyper ProtoNet [Khrulkov et al., 2020] Conv-4 54.43 ± 0.20 72.67 ± 0.15

Hyperbolic tangent kernel Conv-4 55.61 ± 0.21 74.81 ± 0.16
Hyperbolic RBF kernel Conv-4 56.48 ± 0.20 76.09 ± 0.16

Hyperbolic Laplace kernel Conv-4 56.26 ± 0.20 75.35 ± 0.15
Hyperbolic binomial kernel Conv-4 56.82 ± 0.20 75.27 ± 0.15
Baseline [Chen et al., 2019c] ResNet-18 51.75 ± 0.80 74.27 ± 0.63

Baseline++ [Chen et al., 2019c] ResNet-18 51.87 ± 0.77 75.68 ± 0.63
MatchingNet [Vinyals et al., 2016] ResNet-18 52.91 ± 0.88 68.88 ± 0.69

ProtoNet [Snell et al., 2017] ResNet-18 54.16 ± 0.82 73.68 ± 0.65
SNCA [Wu et al., 2018b] ResNet-18 57.80 ± 0.80 72.80 ± 0.70

Hyper ProtoNet [Khrulkov et al., 2020] ResNet-18 59.47 ± 0.20 76.84 ± 0.14
Hyperbolic tangent kernel ResNet-18 59.91 ± 0.21 76.65 ± 0.16

Hyperbolic RBF kernel ResNet-18 60.91 ± 0.21 77.12 ± 0.15
Hyperbolic Laplace kernel ResNet-18 60.52 ± 0.21 77.33 ± 0.15

Hyperbolic binomial kernel ResNet-18 61.04 ± 0.21 77.01 ± 0.15

where a∗ shares the same label with vi. The baseline network is conducted on Eu-
clidean spaces and the pipeline of the network for ZSL is illustrated in Fig. 6.1(b).

Four datasets, i.e., SUN [Patterson and Hays, 2012], CUB [Wah et al., 2011],
AWA1 [Lampert et al., 2013] and AWA2 [Akata et al., 2015] are adopted to evalu-
ate our algorithms in the generalised ZSL (GZSL) setting. The visual features of all
datasets are extracted from the ImageNet pre-trained ResNet-101 and the dimension
are 2048. The dimensions of semantic features are 102, 312, 85, and 85 for SUN,
CUB, AWA1 and AWA2, respectively. SUN is a fine-grained dataset and contains
717 classes with 14,340 images in total. Those 717 classes are annotated with 102
attributes. CUB, another fine-grained dataset, contains 11,788 images of 200 different
species of birds, annotated with 312 attributes. The AWA1 is a coarse-grained dataset
with animal images. It has 30,475 images with 50 classes, which are annotated by 85
attributes. Similar to AWA1, AWA2 consists of 37,322 images with the same animal
classes and attributes as AWA1.

We report the top-1 mean class accuracy (MCA) for both the unseen classes (U)
and the seen classes (S) and also calculate the harmonic mean (HM) score, i.e., HM =
2 × U × S/(U + S).

We first evaluate the effectiveness of our methods by comparing them against the
baseline. As shown in Table 6.5, each hyperbolic kernel brings a significant improve-
ment to the baseline network. For example, the simplest hyperbolic tangent kernel
improves the HM value over the baseline by 6.1, 21.6, 21.9 and 14.1 for SUN, CUB,
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Table 6.3: Few-shot classification results on the CUB dataset with 95% confidence
interval. † indicates the network was self-implemented. The 1st best in bold font.

Model Backbone 1-shot 5-shot
MatchingNet [Vinyals et al., 2016] Conv-4 61.16 ± 0.89 72.86 ± 0.70

ProtoNet [Snell et al., 2017] Conv-4 51.31 ± 0.91 70.77 ± 0.69
MAML [Finn et al., 2017] Conv-4 55.92 ± 0.95 72.09 ± 0.76

RelationNet [Sung et al., 2018] Conv-4 62.45 ± 0.98 76.11 ± 0.69
DN4 [Li et al., 2019d] Conv-4 53.15 ± 0.84 81.90 ± 0.60

Hyper ProtoNet [Khrulkov et al., 2020] Conv-4 64.02 ± 0.20 82.53 ± 0.14
Hyperbolic tangent kernel Conv-4 66.14 ± 0.23 82.11 ± 0.15

Hyperbolic RBF kernel Conv-4 70.98 ± 0.22 85.21 ± 0.13
Hyperbolic Laplace kernel Conv-4 68.27 ± 0.23 84.64 ± 0.13

Hyperbolic binomial kernel Conv-4 69.05 ± 0.23 83.00 ± 0.14
Baseline [Chen et al., 2019c] ResNet-18 65.51 ± 0.87 82.85 ± 0.55

Baseline++ [Chen et al., 2019c] ResNet-18 67.02 ± 0.77 83.58 ± 0.54
RelationNet [Sung et al., 2018] ResNet-18 67.59 ± 0.58 82.75 ± 0.58

MAML [Finn et al., 2017] ResNet-18 69.96 ± 1.01 82.70 ± 0.65
ProtoNet [Snell et al., 2017] ResNet-18 71.88 ± 0.91 86.64 ± 0.51

MatchingNet [Vinyals et al., 2016] ResNet-18 72.36 ± 0.90 83.64 ± 0.60
Hyper ProtoNet† [Khrulkov et al., 2020] ResNet-18 72.86 ± 0.22 85.69 ± 0.13

Hyperbolic tangent kernel ResNet-18 73.52 ± 0.22 88.75 ± 0.11
Hyperbolic RBF kernel ResNet-18 75.79 ± 0.21 89.98 ± 0.11

Hyperbolic Laplace kernel ResNet-18 74.37 ± 0.21 89.08 ± 0.12
Hyperbolic binomial kernel ResNet-18 74.46 ± 0.22 89.28 ± 0.11

AWA1 and AWA2, respectively. In addition, the powerful hyperbolic RBF kernel or
hyperbolic Laplace kernel continues to improve the representation capacity, again
showing the superiority of the kernel design for embedding learning.

To further verify the effectiveness of our approach, we continue to compare our
methods to a couple of popular ZSL algorithms, including the state-of-the-art non-
generative methods [Zhang and Shi, 2019; Li et al., 2019c]. We observe that our
hyperbolic RBF kernel and hyperbolic Laplace kernel achieve competitive results to
the state-of-the-art methods across four datasets. ZSL is a very challenging task,
and while none of the methods in Table 6.5 achieved the best performance across all
four datasets, it is very competitive. Thus, to establish this objectively, we employ
the Friedman test2 [Demšar, 2006] to compare the algorithms. As shown in the
last column of Table 6.5, the ranking list clearly shows that our methods with the
hyperbolic Laplace kernel and the hyperbolic RBF kernel are the best two options in
general for the ZSL task.

6.4.3 Person Re-Identification

Person retrieval or person re-identification (re-ID) is an important application in the
video/multi-camera surveillance task [Su et al., 2017]. Following the work [Khrulkov
et al., 2020], ResNet-50, pre-trained on ImageNet, is employed as a backbone network

2The Friedman test is a non-parametric measure for multiple datasets. It ranks the algorithms for
each dataset separately and calculates the average ranks for each dataset as a ranking score.
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Table 6.4: Few-shot classification results on the tiered-ImageNet and the FC100
datasets with 95% confidence interval. † indicates the network was self-implemented.

The 1st best in bold font.

Model
tiered-ImageNet FC100

1-shot 5-shot 1-shot 5-shot
Hyper ProtoNet† [Khrulkov et al., 2020] 54.44 ± 0.23 71.96 ± 0.20 37.59 ± 0.19 51.76 ± 0.19

Hyperbolic tangent kernel 54.73 ± 0.22 74.37 ± 0.18 37.66 ± 0.17 52.29 ± 0.18
Hyperbolic RBF kernel 57.78 ± 0.23 76.11 ± 0.18 38.93 ± 0.18 54.40 ± 0.18

Hyperbolic Laplace kernel 57.33 ± 0.22 76.48 ± 0.18 37.99 ± 0.17 53.54 ± 0.18
Hyperbolic binomial kernel 56.72 ± 0.22 75.87 ± 0.18 38.32 ± 0.18 53.50 ± 0.18

and we also perform experiments across three dimensions, i.e., 32, 64, 128, for the
feature representation. The pipeline of the deep network for person re-ID is shown
in Fig. 6.1(c). Both Market-1501 [Zheng et al., 2015] and DukeMTMC-reID [Ristani
et al., 2016] pedestrian datasets are used to evaluate our approaches. The Market-
1501 dataset consists of 32,668 pedestrian images, captured by 6 disjoint cameras.
The person bounding boxes are detected automatically by DPM Felzenszwalb et al.
[2010]. This dataset is split into 12,936 images of 751 identities for training and 19,732
of 750 identities for testing. DukeMTMC-reID is collected by 8 non-overlapped
cameras and the person bounding boxes are manually annotated. Following the
standard training protocol, this dataset is divided into 16,522 and 19,889 images for
training and testing, respectively.

We use both mean average precision (mAP) and rank-1 accuracy of cumulative
matching characteristic (CMC) to evaluate our algorithms. Different from FSL and
ZSL, we use the generalised hyperbolic Laplace kernel in the re-ID experiment, as
we observe that the generalised hyperbolic Laplace kernel achieves fairly good per-
formance compared to the hyperbolic Laplace one.

We compare the proposed algorithms to the methods in [Khrulkov et al., 2020].
As shown in Table 6.6, we observe that our algorithms bring positive effects to the
retrieval performance on both datasets, especially for the mAP value. In the market-
1501 dataset, most of our methods achieve competitive performance compared to
[Khrulkov et al., 2020]. However, we also observe that the binomial kernel cannot
perform well in different embedding sizes. In the DukeMTMC-reID dataset, our
method could outperform its hyperbolic counterpart on both R-1 and mAP values
and the RBF kernel is the most powerful one, which is superior to the other kernels in
every dimension. For example, the hyperbolic RBF kernel improves the R-1 / mAP
values over the work [Khrulkov et al., 2020] by 5.1 / 6.6, 3.0 / 7.2 and 1.9 / 6.8 for
the dimension of 32, 64 and 128, respectively.

6.4.4 Knowledge Distillation

Knowledge distillation (KD) is an efficient method to train a small student network,
under the supervision of a pre-trained larger teacher network [Hinton et al., 2014]. In
the teacher-student network (see Fig. 6.1(d)), the output of the teacher network acts
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Table 6.6: Person re-ID results on the Market-1501 and the DukeMTMC-reID datasets.
The value in · denotes the result below the performance in [Khrulkov et al., 2020]. g-
Hyperbolic Laplace kernel indicates the generalised hyperbolic Laplace kernel. The

1st best in bold font.

Model Dim
Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

Euclidean [Khrulkov et al., 2020] #32 68.0 43.4 57.2 35.7
Hyperbolic [Khrulkov et al., 2020] #32 75.9 51.9 62.2 39.1

Hyperbolic tangent kernel #32 75.4 53.3 63.9 42.5
Hyperbolic RBF kernel #32 76.0 54.3 67.3 46.3

g-Hyperbolic Laplace kernel #32 78.7 56.3 64.1 40.7
Hyperbolic binomial kernel #32 75.2 55.0 63.7 44.7

Euclidean [Khrulkov et al., 2020] #64 80.5 57.8 68.3 45.5
Hyperbolic [Khrulkov et al., 2020] #64 84.4 62.7 70.8 48.6

Hyperbolic tangent kernel #64 85.8 68.0 73.9 54.2
Hyperbolic RBF kernel #64 85.2 65.7 73.8 55.8

g-Hyperbolic Laplace kernel #64 85.4 68.4 73.3 50.6
Hyperbolic binomial kernel #64 83.0 64.6 71.5 54.0

Euclidean [Khrulkov et al., 2020] #128 86.0 67.3 74.1 53.3
Hyperbolic [Khrulkov et al., 2020] #128 87.8 68.4 76.5 55.4

Hyperbolic tangent kernel #128 89.4 74.1 78.6 60.9
Hyperbolic RBF kernel #128 88.9 73.5 78.4 62.2

g-Hyperbolic Laplace kernel #128 87.6 72.4 77.3 59.6
Hyperbolic binomial kernel #128 87.6 72.0 75.4 59.2

as ground truth to train a student network. For a training image (e.g., X), the teacher
network and student network generate the prediction scores g = [g1, g2, . . . , gN ] and
p = [p1, p2, . . . , pN ], respectively. Noted that g and p are normalised by the softmax
function. Then the KD loss is given by:

Lkd = −
N

∑
i=1

gilog(pi). (6.17)

We use the ResNet-20 as a teacher network and a simple 4-layer CNN as a student
network. We report the results on CIFAR-10 and CIFAR-100 benchmarks [Krizhevsky,
2009]. Both CIFAR-10 and CIFAR-100 have 50,000 images for training and 10,000
images for evaluation. CIFAR-10 contains 10 classes, with each containing 5,000
samples, while CIFAR-100 contains 100 classes, and each class has 500 samples. The
input size of CIFAR-10 and CIFAR-100 are fixed to 32× 32. We use the top-1 mean ac-
curacy to evaluate the networks. Please refer to the supplementary material for more
details about the network training and corresponding hyper-parameters. As shown
in Table 6.7, we can again find that our hyperbolic kernels improve the accuracy over
the baseline, and the hyperbolic RBF kernel brings the maximum performance gain,
3.1 / 4.5 for CIFAR-10 / CIFAR-100, respectively.
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Table 6.7: Knowledge distillation results on the CIFAR-10 / 100 datasets. g-
Hyperbolic Laplace kernel indicates the generalised hyperbolic Laplace kernel. The

1st best in bold font.

Model CIFAR-10 CIFAR-100
Baseline 80.5 49.9

Hyperbolic tangent kernel 82.1 50.5
Hyperbolic RBF kernel 83.6 54.4

g-Hyperbolic Laplace kernel 83.2 53.9
Hyperbolic binomial kernel 81.6 51.8

6.4.5 Further Studies

To the best of our knowledge, our work is the first to develop pd kernels in hyper-
bolic spaces. That said, indefinite hyperbolic kernels are developed in [Cho et al.,
2019]. We compare and contrast the two school of thoughts. In doing so, we consider
the problem of few-shot learning and follow the setup of [Khrulkov et al., 2020].
As for the indefinite kernel, we use the Minkowski inner product kernel, presented
in [Cho et al., 2019] (see supplementary material for details). We have evaluated the
performance of our pd kernels and the indefinite kernel for the task of 5-way 5-shot
learning across the miniImageNet, CUB, tired-ImageNet and FC100 datasets. Fig. 6.2
shows that the performance attained by the indefinite kernel does not match that of
pd kernels, clearly showing the potential of pd kernels for hyperbolic representa-
tions.

One may wonder how useful the hyperbolic spaces are and their kernels in com-
parison to simple Euclidean kernels. In the end, the Poincaré ball is embedded
in n-dimensional Euclidean spaces and hence conventional kernels can be applied
seamlessly. In Fig. 6.3, we compare the proposed kernels against their Euclidean
counterparts again on the task of few-shot learning using the miniImageNet dataset.
We observe: (1) the kernel machines in both Euclidean spaces and hyperbolic spaces
bring performance gain to the deep neural network. (2) The proposed hyperbolic
kernels can outperform the vanilla Euclidean kernels significantly, again showing
the reasonable design of the proposed kernels.

Remark 9 (Good Practice of Employing Hyperbolic Geometry) Few works have stud-
ied the problem of learning an embedding in hyperbolic spaces [Chen et al., 2020a; Khrulkov
et al., 2020]. However, the existing works generate the vectors in the tangent space at the
origin and project to the hyperbolic spaces using Γ0(·) mapping. A drawback of this frame-
work is that the hyperbolic geometry is not fully utilised as every representation is flattened
at the identity. In other words, only the vectors very close to the origin represent hyperbolic
distances. In contrast, and in our experiments, we generate hyperbolic representations di-
rectly in the Poincaré ball. Empirically, we observe that various applications can benefit from
a high curvature (i.e., c). For example, in the person re-identification task, the curvature of
the Poincaré ball is 10−2 in our algorithms, while the work in [Khrulkov et al., 2020] sets it
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Figure 6.2: The performance comparison between the indefinite kernel and pd ker-
nels for hyperbolic representations.
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to 10−5, which makes the Poincaré ball very flat.
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6.5 Summary

This chapter proposes a family of positive definite kernels to embed hyperbolic rep-
resentations in Hilbert spaces. In such kernels, we leverage the identity tangent
space of the Poincaré ball and further define valid positive definite kernels in iden-
tity tangent spaces. The proposed kernels include powerful universal kernels (i.e.,
the hyperbolic RBF kernel, the hyperbolic Laplace kernel and the hyperbolic bino-
mial kernel). We evaluate the effectiveness of the kernels in a variety of challenging
applications, such as few-shot learning, zero-shot learning, person re-identification
and knowledge distillation, and the empirical results have shown positive results for
embedding learning via the kernels in hyperbolic spaces. Future works include ex-
ploiting the proposed kernels to other applications (i.e., natural language processing
and graph neural networks). In addition, we have found that the effectiveness of the
kernel is data-dependent and we want to develop a rule for choosing the right kernel
for a given data.
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Chapter 7

Conclusion

This Thesis focuses on learning embeddings for visual data, i.e., image/video. We
contribute by providing two separate perspectives, visual attention and geometry
constraint.

In the first part, we propose two attention modules, i.e., Attention in Attention
and Channel Recurrent Attention. The major contributions of this part are outlined
below:

• We propose a novel attention mechanism, termed Attention in Attention, or
AiA for short. In AiA, we explicitly model the interaction between the inner
attention and the outer attention. Such interaction only helps the network to
localise the information region of the feature map, but also preserves the spatial
structural information of the feature map. We generalise the AiA mechanism by
benefiting from the rich structure of Hilbert Spaces. To achieve this, we employ
advanced kernel approximation techniques to map the feature to Reproducing
Kernel Hilbert Spaces (RKHSs). The superiority of AiA and its generalisation
is verified by extensive experiments on the person re-identification task.

• We then develop another attention mechanism, Channel Recurrent Attention
(CRA), to make better use of information in the feature map. The existing at-
tention mechanism cannot learn both spatial and channel features. Our work
aims to build a global receptive field to its input feature map. The CRA first
flattens each slice of the feature map to a spatial vector. Then an inbuilt LSTM
unit receives the spatial vectors sequentially and produces a sequence of hid-
den states as an attention map. As a result, the fully-connected layers in the
CRA have a global receptive field to the spatial vector, while the recurrent op-
eration of the LSTM learns the channel pattern of the feature map. Extensive
experiments on image and video applications verify the effectiveness of our
approach.

In the second part, we investigate two geometry constraints for the embedding,
including the set and hyperbolic geometry. The major contributions of the second
part are outlined below:

• We develop a set-aware triplet loss to optimise the frame features of the video
person re-identification task, by modelling the video clip as a set. We first
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employ the well-known set distance metrics, including ordinary distance and
Hausdorff distance. Considering the nature of the triplet loss (minimising
the distance of positive pairs and maximising the distance of negative pairs
jointly), we separately define the set distance for the anchor-positive pair and
the anchor-negative pair as our hybrid distance metric. Extensive experiments
are conducted to verify the superior performance of the proposed method
across the standard video person re-identification datasets.

• We then study a powerful curved space, hyperbolic geometry as embedding
spaces for visual data. We propose a family of positive definite kernels to
embed hyperbolic representations in Hilbert spaces. In our work, we use the
Poincaré ball to model the hyperbolic space and define the positive kernels
by leveraging the identity tangent plane of the Poincaré ball. The proposed
positive kernels include powerful universal ones, i.e., the hyperbolic RBF kernel,
the hyperbolic Laplace kernel and the hyperbolic binomial kernel. Extensive
experiments on few-shot learning, zero-shot learning, person re-identification
and knowledge distillation verify the power of the proposed kernels.

7.1 Future Work

This Thesis focuses on the embedding learning for visual data. Below, we list some
potential future works based on insights from our research.

• Mixed-curvature embeddings. Existing visual embedding techniques use only
a single geometry as an embedding space. However, such embeddings cannot
fully encode the structured data, since the data is not distributed uniformly.
This issue can be addressed by learning embeddings in a product manifold.
This product manifold includes a mixture of Euclidean spaces, hyper-sphere
spaces and hyperbolic spaces, thereby being able to encode a wide variety of
structures of visual data.

• Embedding learning to graph and language data. In this Thesis, the proposed
approaches are developed for visual data, i.e., image or video. In contrast to vi-
sual data, graph and language data contain structure or sequential information,
which brings difficulty to learn embeddings. Complex attention mechanisms
(i.e., self-attention) or embedding spaces can be investigated and applied to
such problems.

• Other advanced settings of person re-identification. In this Thesis, most of
the approaches are verified on a fully supervised person re-identification (re-
ID) task. As our future research, we will investigate other settings, i.e., unsu-
pervised, semi-supervised, cross-domain, or cross-modality person re-ID tasks.
The performance of those tasks also highly depends on the quality of the em-
bedding space.
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