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Abstract

Electricity systems are undergoing a fundamental transformation from cen-
tralised generation to a distributed paradigm in which electricity is produced
at a smaller scale by numerous distributed energy resources (DER). The re-
placement of centralised facilities by DER brings economic and environmen-
tal benefits. However, it also makes it challenging for the market operator to
secure the system with sufficient frequency response in the absence of cen-
tralised facilities – dominant providers of such services – in the electricity
markets.

Fortunately, the aggregate response of DER can fulfil systems’ need for
frequency reserve services. However, DER are operated within distribution
networks whose technical limits are not accounted for within the wholesale
market. This raises the question of how DER can participate in the energy
and reserve markets while respecting the distribution network’s constraints.
To ensure network constraints, consumer and grid constraints / preferences
should be modelled simultaneously within a large-scale optimisation prob-
lem. Yet, the need for scale, involvement of multiple stakeholders (grid opera-
tor and consumers) who possibly have conflicting interests, privacy concerns,
and the uncertainty around consumer data and market prices make this extra
challenging.

This thesis contributes to addressing these challenges by developing
network-secure consumer bids that account for the distributed nature of the
problem, consumer data and market price uncertainties. Note that when bid-
ding in the market, consumers, and thus, the network operating point is not
clear, as it depends on the dispatch in the energy market and whether a con-
tingency occurs. Therefore, we ensure grid feasibility for operating envelopes
that include any possible operating points of consumers.

We first use the alternating direction method of multipliers (ADMM) to en-
able network-secure consumer biding. Using ADMM, consumers optimise for
their energy and reserve bids and communicate with the grid their required
operating envelopes. The network then solves OPFs to see whether any con-
straint is violated and updates the ADMM parameters. Such communica-
tions continue until converging on a consensus solution. We learnt that our
ADMM-based solution approach is able to maintain grid’s constraints as long
as consumers commit to their envelopes – a requirement that might not hold

iii



iv

due to uncertainty. Thus, we further improve our bidding approach by mod-
elling uncertainties around solar PV and demand, using a piecewise affinely
adjustable robust constrained optimisation (PWA-ARCO). We observed that
not only is PWA-ARCO able to compensate for live uncertainty variabilities,
but also it can improve the reliability of consumer bids, especially in reserve
markets. We also extend our initial envelopes by enabling consumers to pro-
vide reactive power support for the grid.

We next enable consumers to bid (possibly) their entire flexibility by de-
veloping price-sensitive offers. Such offers include a bid curve chunked into
several capacity bands, each being submitted at a different price. We iden-
tified that when the prices cannot be forecast accurately, the price-sensitive
bidding approach can improve consumer benefit. To ensure network feasibil-
ity, instead of an iterative ADMM approach, we propose a more scalable one-
shot policy in which the network curtails the part of the consumer bid that
violates the network. Compared to ADMM, the one-shot policy significantly
reduced the computation complexity at the cost of a slightly less optimum
outcome.

Overall, this thesis investigates different techniques to provide network-
secure energy and reserve market services out of residential DER. It expands
the knowledge in the area of consumer bidding solutions, adjustable robust
optimisation, and distributed optimisation. It also discovers a range of inter-
esting future research topics, including distribution network modelling and
uncertainty characterisation.



Nomenclature

Abbreviation

ADMM Alternating direction method of multipliers

AEMO Australian Energy Market Operator

ARCO Adjustable robust constraint optimisation

C&CG Column and constraint generation

CAISO California independent system operator

CB Capacitor bank

COP Current operating plan

CPP Connection point power

DER Distributed energy resources

DLMP Distribution locational marginal price

DRUC Day-ahead reliability unit commitment

DSO Distribution system operators

EMS Energy management system

ERCOT Electricity Reliability Council of Texas

EV Electric vehicle

FCAS Frequency Control Ancillary Service

IFM Integrated forward market

ISO Independent system operator

LMP Locational marginal price

LP Linear programming

v
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MCP Market clearing price

MILP Mixed integer linear programming

MPC Model predictive control

MPM Market power mitigation

NAC Network-aware coordination

NEM Australian National Electricity Market

NEMDE Australian National Electricity Market Dispatch Engine

OI Operating interval

PDF Probability distribution function

PWA Piecewise affine

PWA-ARCO Piecewsie affinely adjustable robust constraint optimisation

RMR Reliability must-run requirement

RUC Residual unit commitment

SCED Security-constrained economic dispatch

TD Trading day

ToU Time-of-use

TSO Transmission system operators

UFLS Under frequency load shedding

VPP Virtual power plant

VSC Voltage source converters
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Chapter 1

Introduction

Economic opportunities and environmental benefits have led to a significant
uptake of distributed energy resources (DER) in distribution networks. In
Australia, as of 31 January 2022, more than 3 million rooftop solar PV systems
have been installed (nearly 30% of all homes in Australia)1. Battery storage
integration has followed a similar increasing pattern. Currently, there are
140,000 home battery systems installed in Australia, totalling 2,657MWh 2.
DER embrace is a global phenomenon; almost all countries are undergoing
the same transition. Figure 1.1 shows the installed PV capacity per capita for
the top 12 solar-installer countries in 20193.
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Figure 1.1: Installed PV capacity per capita

While the integration of DER is generally good news, it fundamentally
changes the structure of our power systems. Large-scale transmission-level

1https://www.energy.gov.au/households/solar-pv-and-batteries
2https://electricalconnection.com.au/record-breaking-year-for-battery-energy-

storage-in-australia/
3https://en.wikipedia.org/wiki/Solar_power_by_country#cite_note-iea-pvps-snapshot-

2020-20

1

https://www.energy.gov.au/households/solar-pv-and-batteries
https://electricalconnection.com.au/record-breaking-year-for-battery-energy-storage-in-australia/
https://electricalconnection.com.au/record-breaking-year-for-battery-energy-storage-in-australia/
https://en.wikipedia.org/wiki/Solar_power_by_country#cite_note-iea-pvps-snapshot-2020-20
https://en.wikipedia.org/wiki/Solar_power_by_country#cite_note-iea-pvps-snapshot-2020-20
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generation is being replaced by numerous small-scale distributed generations
in the hands of consumers Iweh et al. [2021]; Haghifam et al. [2021]. Such
a decentralisation makes it harder to meet power system reliability require-
ments, in particular, maintaining the frequency of our power system. The
reason is that to maintain the frequency, system operators need to balance
out supply and demand continuously – a task that becomes difficult to ac-
complish as the power generated / utilised by consumers is highly volatile
and unpredictable. If the generation is more / less than demand, power sys-
tem frequency rises / drops to be outside its acceptable range (50Hz ± 0.15
in Australia, China, Europe and 60Hz ± 0.3 in Canada, the USA Neidhöfer
[2011]). When the frequency goes too far outside the range, generators and
large motors will start disconnecting to protect themselves against damage.
These disconnections can create more imbalance between demand and sup-
ply in the system, further affecting frequency, resulting in a full or partial
blackout Yan et al. [2018].

To compensate for the mismatches between supply and demand, system
operators secure the power system with enough reserves, which are activated
in live operation to keep the frequency within the acceptable range. Prior to
DER uptake, large-scale power stations were the main providers of frequency
response services. However, DER embrace is making these power stations
redundant Molina-Garcia et al. [2010]. Studies by Energy Networks Australia
and the Australian Energy Market Operator (AEMO) AEMO and ENA [2018]
suggest that rooftop PV will be sufficient to cover all load on low-demand
days in some regions of Australia by early 2025. This happened for the first
time much earlier than anticipated. On Sunday, October 11, 2020, solar power
alone met 100% of demand for just over an hour in South Australia4. There-
fore, if the system operators only count on grid-scale equipment for reserve
services, they must either curtail a significant proportion of PV power to force
enough conventional generators into these operating intervals – a sub-optimal
solution which adds to the operation cost of our power system; or install new
grid-scale equipment for the job – a sub-optimal solution which adds to the
planning cost of power systems.

Fortunately, consumer-owned DER are quick-responding technologies, and
their aggregate response can fulfil a large portion of the required frequency
response. Unsurprisingly, the capability to provide reserve services will ex-
plode with the rise of electric vehicles. For example, 100% of cars to be sold
in Norway are forecast to be electric by 2025 5. Even if connected with 3kW
slow chargers, this still represents ≈ 6 GW capacity (almost one-fourth of
peak load). Therefore, we believe consumer flexibility should be harnessed by

4https://reneweconomy.com.au/solar-meets-100-per-cent-of-south-australia-demand-

for-first-time-78279/
5https://www.reuters.com/business/autos-transportation/electric-cars-take-two-

thirds-norway-car-market-led-by-tesla-2022-01-03/

https://reneweconomy.com.au/solar-meets-100-per-cent-of-south-australia-demand-for-first-time-78279/
https://reneweconomy.com.au/solar-meets-100-per-cent-of-south-australia-demand-for-first-time-78279/
https://www.reuters.com/business/autos-transportation/electric-cars-take-two-thirds-norway-car-market-led-by-tesla-2022-01-03/
https://www.reuters.com/business/autos-transportation/electric-cars-take-two-thirds-norway-car-market-led-by-tesla-2022-01-03/
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enabling consumer-owned DER to be bid into the wholesale markets. Given
DER capability in providing reserves services alongside the emerging need of
power systems for alternative frequency response providers, the focus of this
thesis is to answer the following key question:

How can residential DER, installed and operated in distribution networks, par-
ticipate in the wholesale energy and reserve markets?

In this thesis, we answer the above question from a steady-state perspec-
tive – the dynamic response of DER to frequency disturbance has been widely
studied, e.g., in Amin et al. [2019], and is not the focus of this thesis. Without
loss of generality, we also assume that a third party, e.g., an aggregator, con-
trols consumer-owned DER to bid at scale or deliver market services based
on market clearing outcome. Given these, we identified the following five
challenges (C1 to C5) that we must address to provide a feasible answer to
our key question:

C1 Computational Complexity: providing market services from thousands
of DER rather than large-scale power stations is a challenging task. From
the modelling perspective, each DER will translate into some variables
and constraints. Thus, we end up with a large-scale optimisation prob-
lem that includes millions of variables and constraints Iria et al. [2020].
Solving such an optimisation problem to its (local-) optimum within the
operation time frame is difficult.

C2 Distribution Network: our solution should be within network techni-
cal boundaries Mousavi and Wu [2021a]; Bahramara et al. [2017]. This
is challenging from two angles: firstly, DER are mainly connected to /
operated within distribution networks that are not included in the mar-
ket clearing process. Secondly, aggregators do not have any information
about network technical constraints Scott et al. [2019]. This can endan-
ger power system security as the market operator will count on bids that
cannot be delivered due to network shortcomings.

In addition, the bids to contingency reserves markets are capacities.
Thus, the activation of these bids depends on whether or not a contin-
gency occurs. If a contingency does occur, the DER response can still dif-
fer depending on the significance of the contingency. Thus, the operating
point of the system is not only unknown but also highly unpredictable.
This changes the conventional operation of distribution networks where
all the setpoints are obtained, for a pre-defined operating point, based
on an optimisation problem that determines DER operation.

C3 Multiple Stakeholders: DER are owned and operated by consumers with
different constraints and preferences who might also have privacy con-
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cerns Ross and Mathieu [2020]. Similarly, the network data is private
to the distribution system operators (DSOs) Milford and Krause [2021].
Plus, DSOs work towards some operating targets which might conflict
with those of consumers / aggregators. Obtaining bids that satisfy con-
sumers and network technical limits whilst preserving the privacy of all
parties when there is conflicting interest, adds to the complexity of this
already challenging problem.

C4 Household Uncertainty: data uncertainty such as those associated with
PV power output and residential demand can negatively affect con-
sumers and the network Mousavi and Wu [2021b]. Consumer uncer-
tainty can push the network out of its safe operating limits. The reason
is that DER response to market prices creates synchronisations that drive
the distribution network towards its limits. Thus, even a small change
in the system (which can happen due to uncertainty) can violate the net-
work limits, while modelling the uncertainty of numerous consumers
is remarkably challenging. On the other hand, aggregators might not
be able to deliver their energy and/or reserve bids due to uncertain re-
alisations that are different from their forecasts. The market penalises
aggregators for not delivering on their bids and even might expel them
from the reserve markets where most of the benefit lies AEMO [2020].

C5 Market Price Uncertainty: aggregators decisions in electricity markets
are directly influenced by market prices and not tariffs. Unlike tariffs,
electricity prices are not known in advance of the operating interval,
and aggregators need to use a price forecast to calculate their offers.
Forecast errors can significantly affect aggregator benefit or even might
lead to economic losses Gao et al. [2017a]; Sharma et al. [2017]; Ruibal
and Mazumdar [2008].

In this thesis, we provide a complete answer to our key question while
addressing the identified challenges. In the following, we explain our contri-
butions.

1.1 Contribution

Sections 1.1.1, 1.1.2 and 1.1.3 summarise our contributions, which are detailed
in Chapters 3, 4 and 5, respectively. Our first contribution 1.1.1 focuses on the
first three challenges (C1 – C3). Contribution 1.1.2 builds on our first contribu-
tion 1.1.1 by additionally addressing the fourth challenge (C4), i.e., household
uncertainty. Our third contribution 1.1.3 focuses on the last challenge (C5),
i.e., market price uncertainty.
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1.1.1 Obtaining Operating Envelopes Using Distributed Optimisation

Here, we focus on obtaining optimum bidding decisions for multiple mar-
kets coordinated with the grid. This ensures that DER dispatch in the energy
market, together with any raise or lower reserve activation, is within the dis-
tribution network borders. Note that the grid capacity at each time depends
on the combination of actions of all consumers Scott et al. [2016]. Therefore,
such coordination is achieved by solving a large-scale optimisation problem
that includes all consumers and network constraints. Privacy concerns and
potentially conflicting interests of consumers and the grid make this problem
extra difficult Wu et al. [2016].

To meet the above challenges, we propose a distributed approach based
on the alternating direction method of multipliers (ADMM) Boyd et al. [2011]
that decomposes the large-scale optimisation problem into pieces, each being
solved separately while negotiating for network access. Not only does this
make the coordination problem computationally accessible (i.e., addressing
C1), but also it can preserve privacy, as each party solves their problem lo-
cally using their private data (i.e., addressing C3). Note that our approach
also takes the interdependencies between multiple markets into account and
ensures that any final operating point is within network boundaries Black-
hall [2020]. Since such a final operating point is not known prior to real-time
operation, when we solve the optimisation problem, we propose to solve the
problem for an operating envelope rather than a single operating point. In
this context, an operating envelope is an interval that includes any possible
consumer operating point in response to the dispatch in the energy market
plus any raise or lower reserve activation. In other words, we aim to en-
sure the grid feasibility for any possible outcome for consumers rather than
a single point (i.e., addressing C2).

We also loosely address C4 (consumers’ data uncertainty) by frequently
running our approach, close to real-time, within a model predictive control
(MPC) framework. This enables us to feed our optimisation problem with
the latest uncertainty information and obtain more accurate results. We rig-
orously focus on C4 in our next contribution.

It is worth mentioning that our approach here is closely related to the
literature stream in which distribution locational marginal prices (DLMPs)
are used to obtain DER operation, in particular, network-aware coordination
(NAC) Scott et al. [2016]. We provide a review of these approaches in Chapter
2. In summary, they often have a well-defined operating point to optimise
over, e.g., defined by time-of-use (ToU) tariffs as in NAC. However, when it
comes to bidding into the market, we do not know ahead of time what offers
the market will accept or, in live operation, how frequency will fluctuate,
requiring a response. Therefore, we work with operating envelopes rather
than negotiating for one operating point, e.g., as in NAC.
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The contribution of this section can be summarised as follows:

1. A distributed bidding approach that obtains the optimum share of DER
in energy and reserve markets while being coordinated with the dis-
tribution network. Our approach ensures network’s feasibility for an
operating envelope that includes any possible DER outcome in response
to energy dispatch and reserve activation.

1.1.2 Modelling Consumer Uncertainty and Enabling Network Support

In the previous section, we neglected data uncertainty, yet in practice, both
solar PV and residential demand can change significantly in live operation.
This could have two main drawbacks as follows:

• Consumers might not be able to commit to their operating envelopes
due to uncertainty realisations different from the forecast used to obtain
the envelopes. Deviations from the negotiated operating envelopes can
violate the distribution network constraints Attarha et al. [2018a,c].

• The bids accepted in the electricity market can be different from what
is delivered to the market. In most electricity markets, including the
Australian National Electricity Market (NEM), participants can be sig-
nificantly penalised for not delivering on their bids AEMO [2020].

Thus, here we go above an MPC implementation and rigorously model
uncertainty. To do so, we extend our optimisation problem with controllers
that enable consumers to honour their market commitments while sticking
to their operating envelopes for any uncertain realisation within a polyhedral
uncertainty set. We design our controllers in the context of adjustable robust
constraint optimisation (ARCO) Ben-Tal et al. [2004]. Unlike the conventional
ARCO in which the controller responses are limited to an affine function,
we enable a more flexible response by using piecewise affine (PWA) func-
tions. Unlike affinely ARCO, our PWA-ARCO enables a better response for
uncertainty realisations away from the worst cases within the uncertainty set.
During the distributed (ADMM-based) optimisation procedure, we optimise
to obtain network-secure bids (similarly to Section 1.1.1) as well as parameters
of our piecewise controllers. In live operation, when the uncertain parameters
are revealed, these piecewise affine functions are enacted to keep the connec-
tion point power within the operating envelopes and honour the bids to the
electricity market (i.e., addressing C4).

In our experiments of Section 1.1.1, we noticed that voltages are the most
limiting factors in the network sub-problem Jabr [2019]; RA et al. [2022];
Abadi et al. [2020]. In other words, the network could allow greater through-
put if the voltages are improved. Reactive power has the ability to improve the
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voltage profile. In fact, for the same reason, capacitor banks (CBs) and voltage
source converters (VSCs) Kasari and Bhattacharjee [2020] are commonly used
in power systems. Similarly to CBs and VSCs, DER inverters can provide
reactive power support for the network Zhu and Li [2016]; Mahmoodi et al.
[2022]. Plus, unlike capacitor banks, DER can rapidly change their reactive
power, making them suitable for real-time control De Carvalho et al. [2022].
This motivated us to design a piecewise affine P-Q controller for consumers
to enable reactive power network support. The reactive power support could
open up network capacity as it improves voltage profiles. Interestingly, we
noticed that the reactive power support could also improve the convergence
of our ADMM approach. This is because the reactive power support reduces
the network disagreements with the consumers, so, we could converge on a
consensus solution within fewer iterations.

In summary, the contributions of this section are:

1. Proposing a piecewise affinely ARCO consumer bidding approach
which is less conservative than conventional affinely ARCO, leads to
a higher value use of DER, and increases the reliability of DER bids.

2. Proposing a Q-P controller to enable consumers to negotiate their reac-
tive power support with the grid. This increases the network throughput
and, as we show empirically, can improve ADMM convergence.

1.1.3 Price-Sensitive Bidding Approach

This contribution is to take market price uncertainty, i.e., C5, into account.
Note that so far, we assumed that the wholesale market price is constant,
and thus, we decided on what dispatch aggregators wanted in advance and
submitted bids that were accepted irrespective of the market-clearing price.
This is achieved by submitting the generation and demand bids at the market
floor and cap prices, respectively. Therefore, unless the market reaches its
floor or cap price, these bids are fully dispatched regardless of the market-
clearing price (MCP) Zhao et al. [2015]. Hence, we call them price-insensitive
bid. However, the market price is volatile and can vary significantly from the
forecast leading to economic loss for price-insensitive bidders.

To overcome the above issue, inspired by conventional generating units,
we propose a price-sensitive bidding approach. Here consumers obtain flex-
ible bids, consisting of several capacity bands across their feasible region at
different prices. Similarly to a conventional generating unit, the final dis-
patch of such bids depends on the market clearing price, bringing the name
“price-sensitive” to our approach. Price-sensitive bids allow consumers to
fully exploit their DER capabilities and hedge the price uncertainty effect (i.e.,
addressing C5). Moreover, they provide more flexibility for the market opera-
tor that can be used to dispatch the whole power system more efficiently. The
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reason is that, unlike price-insensitive bidding, the market is not constrained
to dispatch DER at a predetermined operating point.

Although more efficient, bidding the available operating range of DER
through different bid bands, rather than just a single price-insensitive bid
band, generates new challenges. The main challenge is to obtain a feasible bid
region that reflects the interdependencies between energy and reserve bids,
as well as obtaining representative prices for different bid bands, while DER
mainly have zero marginal cost. In addition, similarly to price-insensitive
bids, we need to ensure network security for any bid band combination that
can reach the market. Note that ensuring network limits via a distributed
approach, e.g., ADMM as in sections 1.1.1 and 1.1.2, requires solving a more
complicated problem at every iteration as consumers need to obtain multiple
bid bands and prices. Therefore, here we opt for a simpler framework that,
in terms of communication and computation, is equivalent to one iteration of
the ADMM approach. In this approach, rather than an iterative procedure,
the DSO curtails the part of the bids that violate the network constraints in
one go. This reduces the computational efforts significantly while marginally
increasing the operation cost. In our experiments, we were able to reduce
the computation cost 166 times at the cost of a 2.5% reduction in consumer
benefit.

To focus on different aspects of our price-sensitive bidding approach, we
do not model consumer uncertainty, i.e., C4, in this section and only count on
an MPC implementation similarly to 1.1.1 to loosely take such uncertainties
into account. However, our piecewise affine controller in Section 1.1.2 is gen-
erally developed and could be incorporated into the consumer subproblem of
the price-sensitive approach. We leave the investigation of such an extension
to future work.

The contribution of this section can be summarised as follows:

1. A novel price-sensitive bidding approach for energy and reserve mar-
kets, which more accurately captures the flexibility and value of DER
and enables DER dispatch to adjust to the uncertain realisation of mar-
ket prices.

2. A new network optimisation layer that jointly conforms flexible energy
and reserve bids within distribution network limits while encouraging
competition between aggregators. This is done prior to bids reaching
the market to avoid disruption to existing market structures, enabling
the approach to be more readily taken up.
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1.2 Summary

To summarise, the core research question in this thesis is how consumers can
participate in the energy and reserve markets to harness their DER’s potential
while respecting the grid’s technical limits. In reply to this question, we
contribute to the knowledge in the following ways:

1. We develop two different energy management systems (EMSs), both of
which co-optimise consumers in energy, raise and lower reserve mar-
kets and properly model the interdependencies between participation in
each market. However, they differ in the type of bids they generate. One
of them generates a single bid band according to the energy and reserve
market price forecasts. The obtained bids are then submitted to the mar-
ket at either market cap or floor prices. The other approach generates
multiple capacity bands and prices to be submitted to the each market.

2. We study the effect of providing reactive power network support in both
our bidding approaches. These reactive power supports, generated /
consumed via smart inverters, can increase consumers’ network access.

3. We propose a piecewise affinely adjustable robust constraint optimi-
sation (PWA-ARCO) approach to model uncertainty around solar PV
power and residential demand. Our PWA-ARCO approach is general
and thus is neither limited to a bidding problem nor restricted by the
bidding policy. However, to avoid complicating our price-sensitive bid-
ding problem, we only illustrate its effectiveness in our price-insensitive
bidding approach.

4. We investigate two different methods to ensure network feasibility. The
first obtains network feasibility iteratively by negotiating between aggre-
gators and the DSO using the distributed approach ADMM. While in the
second one, the DSO curtails aggregator bids in one go without further
negotiation or communication. We apply our ADMM-based approach
to our price-insensitive approach while using the one-shot curtailment
policy in our price-sensitive approach to reduce complexity.

1.3 Thesis Outline

This thesis is structured as follows:
Chapter 2 reviews the related works and provides the required back-

ground knowledge for this thesis in 6 different sections. Section 2.1 provides
an overview of different electricity markets around the world. Section 2.2
reviews the related literature on the integration of DER into our power sys-
tem. It more specifically focuses on market participation of DER, challenges
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and the state-of-the-art solutions paving the way for market participation of
consumer-owned DER. Section 2.3 provides an overview of the optimisation
techniques used throughout this thesis. Section 2.4 explains the assumed
communication setting between aggregators, consumers and the grid. Sec-
tion 2.5 mathematically models an EMS and an OPF problem which are used
in chapters 3, 4, and 5. Finally, Section 2.6 provides more details on NAC on
which we build our approach in Chapter 3.

Chapter 3 introduces our price-insensitive bidding approach within dy-
namic operating envelopes. We develop aggregator and the DSO’s subprob-
lems separately that are linked through the ADMM approach to obtain network-
secure bids.

Chapter 4 presents our PWA-ARCO solution approach to model solar PV
and residential demand uncertainty. It also investigates the effect of providing
reactive power network support in our bidding problem.

Chapter 5 presents our price-sensitive bidding approach. This chapter ex-
plains how we obtain the operating bid region for each consumer, how we
chunk the obtained feasible region into bid bands and calculate the prices
associated with each bid band. It also presents our one-shot bid curtailment
approach, where we investigate two different network policies for curtailing
consumers’ bids. We also investigate the effect of providing reactive power
support on the flexible bidding approach. Moreover, Chapter 5 provides
comparisons to highlight the effectiveness of the price-insensitive bidding
approach compared to the bidding approach in chapters 3 and 4; and in-
vestigates the effectiveness of our one-shot curtailment policy compared to
iterative ADMM-based approaches introduced in chapters 3 and 4.

Chapter 6 concludes the findings of this thesis and discusses future devel-
opments.



Chapter 2

Background

This chapter consists of six sections which together provide the needed back-
ground material for this thesis. Section 2.1 gives an overview of electricity
markets around the world and how they function. Section 2.2 provides a
comprehensive review of the state-of-the-art research in the context of market
participation of DER. Section 2.3 gives a summary of the optimisation tech-
niques used throughout this thesis. Section 2.4 explains the communication
setting between aggregators, consumers and the grid. Section 2.5 is allocated
to DER and network modelling which will be used in chapters 3, 4 and 5.
Section 2.6 provides more details on NAC on which we build our approach
in Chapter 3.

2.1 Electricity Markets

An electricity market is a system that enables electricity to be sold, bought
and traded. Buyers and sellers submit their bids and offer into a pool mar-
ket which is being cleared by an independent entity known as the market
operator.

Energy and power are two commodities traded within electricity markets.
Energy is the electricity generated / consumed for a given period, measured
in megawatt-hours (MWh). Power is the rate of energy transfer at any given
time, measured in megawatts (MW). Power is mainly purchased to secure the
power system with enough reserves. Reserves are activated to keep supply
and demand equal and thus maintain the power system’s nominal frequency.
Reserves are part of an extended family named ancillary services. Ancillary
services include any necessary assistance, such as voltage and frequency sup-
port, that enables our power system to operate within the required reliability
targets.

Operators need different types of reserves to ensure security, this includes
regulation, spinning and non-spinning reserves. Regulation reserves are contin-
ually used to compensate for minor changes in the demand / supply balance

11
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(e.g., due to forecast error). Spinning reserve is the extra available capacity to
increase / decrease the power output of generators (or loads) that are already
connected to the power system. The non-spinning reserve is the extra generat-
ing capacity that is not currently connected to the system but can be brought
online after a short delay Ela et al. [2011]. While spinning and non-spinning
reserves are always ready to act, they are only used on the occasion of a
contingency. Different markets might use different terminologies for these
reserves. Figure 2.1 shows some different terminologies for reserve markets
in Australia, North American Electric Reliability Corporation (NERC) and the
Union for Coordination of Transmission of Electricity (UCTE).

Regulation

Spinning

Non-spinning

NERC Markets

Primary

Secondary

Tertiary

UCTE Markets 

Regulation

Contingency

Australian Market 

Figure 2.1: Different terminologies for reserves González et al. [2014]; Iria et al. [2019]

Participants can submit their bids at market cap / floor prices or a bid
curve with different price bands. Market participants, who wish to sub-
mit their bids at either market cap or floor prices, decide in advance what
dispatch they want and then submit the obtained offers to the market at ei-
ther market cap (for demand offers) or floor price (for generation offers).
This means that irrespective of the market-clearing price (MCP), as long as
MCP does not reach its floor or cap, such offers will be accepted Arteaga and
Zareipour [2019]. Hence, hereafter, we refer to these bids as price-insensitive
bids. On the contrary, when a participant submits a bid stack at different
prices, their accepted offers depend on the MCP. Thus, we call them price-
sensitive throughout this thesis. Notice that participants can also submit their
practical constraints (such as ramping or minimum-up / -downtime of the
unit) alongside their bids to avoid unpractical dispatch outcomes Herrero
et al. [2020]; AEMO [2020].

In this thesis, we assume that consumers are coordinated by a third party,
e.g., an aggregator, to participate in the energy and reserve markets within the
Australian national electricity market (NEM). However, with minor changes,
our approach can be used for other electricity markets. In the following, we
first provide an overview of our target market, the NEM. We then provide a
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general overview of some of the electricity markets around the world and dis-
cuss the similarities and differences with the NEM to provide some intuition
on how our approaches will look in different markets.

2.1.1 Australian National Electricity Market (NEM)

The NEM is a five-minute real-time market which is operated by the Aus-
tralian energy market operator (AEMO). Note that there is no day-ahead
market in the NEM Riesz et al. [2015]. However, to run the real-time market
smoothly, AEMO asks participants to submit their pre-dispatch bids (capacity
and price) the day before the trading day (TD). As shown in Figure 2.2, the
bid prices stay fixed for the next day, but the bid capacity can be adjusted by
the participants in each 5-minute operating interval (OI).

Under the NEM frequency standards, AEMO must ensure that follow-
ing a credible contingency event, the frequency deviation remains within the
contingency band (e.g., 49.5 to 50.5 Hz) and returns to the normal operat-
ing threshold (e.g., 49.85 to 50.15 Hz) within 5 minutes1. To do so, AEMO
uses raise and lower reserve markets to trade the required reserves in every 5-
minute dispatch interval. Since these reserves are used to maintain frequency,
they are called frequency control ancillary service (FCAS) in the NEM.
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Figure 2.2: Market process in the NEM

Currently, the NEM includes 8 different FCAS markets: 2 regulation and 6
contingency FCAS markets. While the regulation FCAS includes a raise and
a lower market, the contingency FCAS market is categorised into three main

1According to the event and / or location, contingency frequency band and the recovery time might
differ AEMC [2017].
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groups according to their response time: raise and lower 6-second, 60-second,
and 5-minute FCAS markets Riesz et al. [2015]. In the NEM, energy and all
FCAS markets are fully co-optimised on a single real-time platform known
as NEMDE (national electricity market dispatch engine) 2. NEMDE clears the
Australian market every 5 minutes to obtain the energy and FCAS prices as
well as the dispatch of the participants.

To bid in the NEM, participants must submit their energy-FCAS trapezium
as well as up to 10 price bands for energy and each FCAS market. An ex-
ample of an energy-and-FCAS trapezium submitted for a generator is shown
in Figure 2.3. In this example, the raise FCAS capacity is first limited by the
ramp rate of the unit (the flat top section); moving towards the maximum out-
put of the unit on the energy axis (i.e., Pmax), the capacity of the generating
unit becomes more constraining than the ramp rate (i.e., P + F ≤ Pmax)3.
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Figure 2.3: Energy-FCAS trapezium for a generating unit.

The NEM enables participants to break down their available capacity and
submit them at up to 10 different prices (known as price bands). To participate
in the market, a non-zero capacity should be allocated to at least one of these
price bands. Given the capacities and price bands, NEMDE can dispatch the
participants at any point of their trapezium (highlighted in yellow in Figure
2.3) to obtain the least-cost operating point. Co-optimising over participants’
feasible regions helps AEMO to find the lowest overall operating costs.

Having NEM cleared, FCAS providers get paid their accepted bids re-
gardless of whether or not a contingency actually occurs. In the case that
a contingency does occur, they must respond up to their market-accepted
capacity to correct the frequency deviation.

2https://aemo.com.au/en/energy-systems/market-it-systems/electricity-system-

guides/nemde-queue-service
3https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-

reliability/-/media/2C771C82C8054929B16E4545216ACE03.ashx

https://aemo.com.au/en/energy-systems/market-it-systems/electricity-system-guides/nemde-queue-service
https://aemo.com.au/en/energy-systems/market-it-systems/electricity-system-guides/nemde-queue-service
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/-/media/2C771C82C8054929B16E4545216ACE03.ashx
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/-/media/2C771C82C8054929B16E4545216ACE03.ashx
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2.1.2 California Independent System Operator (ISO)

The California ISO (CAISO) is responsible for the reliable operation of the
high voltage grid in California. CAISO includes a day-ahead and a real-time
market. Figure 2.4 shows how the CAISO works. The day-ahead market
opens 7 days prior and closes at 10 am the day before the trading day (TD). It
includes 3 sequential processes. First, a market power mitigation (MPM) test
is performed. The bids that fail the test are revised to predetermined limits.
Next, integrated forward market (IFM) co-optimises the energy and reserve
market bids using a full network model. This obtains 100% of the required
ancillary service based on the forecast conditions. And last, the residual unit
commitment (RUC) process designates additional power plants that will be
needed for the next day and must be ready to generate electricity. The results
will be published at 1 pm on the day before the TD4.

TD−7 TD−3TD−4TD−5TD−6 TD−2 TD−1 Trading Day (TD)

IFM (TD)
Time Horizon

Bid submission for TD

10 am

Results 
posted for TD

1:00 pm

24 hours

MPM IFM RUC

Figure 2.4: Day-ahead and real-time market process in the CAISO

The real-time market opens at 1 pm on the day before the TD and closes
75 minutes before the start of the trading hour. It provides the opportunity
to meet the last few increments of demand not covered in the day-ahead
schedules. If additional reserves are needed after the day-ahead market, they
will be purchased through the real-time market. Energy and reserves bids
are again co-optimised in the IFM in real-time every 5 minutes to obtain the
optimum set of energy and reserve dispatches5.

4https://www.caiso.com/market/Pages/MarketProcesses.aspx
5https://bpmcm.caiso.com/Lists/PRR%20Details/Attachments/532/Market%20Operations%

20BPM%20MPM%20Enh%20PRR.pdf

https://www.caiso.com/market/Pages/MarketProcesses.aspx
https://bpmcm.caiso.com/Lists/PRR%20Details/Attachments/532/Market%20Operations%20BPM%20MPM%20Enh%20PRR.pdf
https://bpmcm.caiso.com/Lists/PRR%20Details/Attachments/532/Market%20Operations%20BPM%20MPM%20Enh%20PRR.pdf
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2.1.3 Electricity Reliability Council of Texas (ERCOT)

The Electricity Reliability Council of Texas (ERCOT) was established in its
current form as a power market operator in 2001 within the state of Texas.
The ERCOT includes 4 ancillary services, namely regulation-up, regulation-
down, responsive reserve, and non-spinning reserves Tsai [2021]. Responsive
reserves are similar to spinning reserves in the CAISO, and their job is to
restore the frequency of the ERCOT within the first few minutes of an event
that causes a significant deviation from the standard frequency. Figure 2.5
shows how ERCOT works.

At 6 am, while ERCOT publishes the system condition forecast and reserve
obligations, the participants submit their black start resources and reliability
must-run (RMR) requirements. All the energy and reserve bids are submitted
by 10 am a day before TD. The bids can include a start-up offer, minimum
energy offer and energy curve offer with up to 10 price bands. Then the
day-ahead market co-optimises all reserve markets together with the energy
market to find the output. The results will be published at 1:30 pm. The par-
ticipants can then update their current operating plan (COP) until 2:30. This
provides accurate information about resources from a planning perspective
and provides input for day-ahead reliability unit commitment (DRUC).

TD−1 Trading Day (TD)

6 
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Day-ahead 
market 

Execution
Results

Black start resources 
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and submit 

COP
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DRUC

1 hour before Operating hour 

RUC SCED

Figure 2.5: Day-ahead and real-time market process in ERCOT

The ERCOT implemented a real-time operating reserve demand curve
methodology in 2014. Through this process, the value of available reserves
in the real-time market is calculated and added to the real-time locational
marginal price. This process is known as price adders in the ERCOT. The
added prices are based on the determined value of lost load in the system
and the probability that load would have to be shed, given the realised re-
serve levels. Price adders are calculated for both online (synchronised) and
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offline (unsynchronised) reserves and are intended to approximate the co-
optimisation of energy and reserves in real time.

An hour before the operating period, a reliability unit commitment is
solved, and in real-time operations, security-constrained economic dispatch
(SCED) is conducted every five minutes, and two price adders are calculated
on the basis of the reserve levels that are realised during each settlement pe-
riod—currently every 15-minute interval. One adder is calculated based on
the realised level of online reserves and the other is calculated based on the
sum of the realised levels of online and offline reserves. These adders are then
added to the LMP-based energy price that is paid to generating entities and
charged to load-serving entities in each settlement period. If the responsive
reserve level falls below a 2000 MW minimum contingency in any period,
ERCOT will set the price adder to the administratively determined value of
lost load in the system, which is currently $9000/MWh.

2.1.4 European Market

En
er

gy
 B

id
s

En
er

gy
 M

ar
ke

t

C
on

ge
st

io
n 

M
an

ag
em

en
t 

0 12 13 14 16 19 19:45 20 0

R
es

er
ve

 B
id

s

R
es

er
ve

 M
ar

ke
t 

Day-ahead

B
al

an
ci

ng
 

M
ar

ke
t 

In
tra

 d
ay

 M
ar

ke
t 

3h 15m 5m

Intraday Balancing

Figure 2.6: Market process in EUROPE

The European market also includes a day-ahead and a real-time market.
Different types of bids are possible: a price-insensitive bid at either market
cap or floor price; a price-sensitive bid where a stepwise curve is submitted
(i.e., different quantities for different prices). The main European markets are
Nord pool, EPEX, and MIBEL Iria et al. [2019]. Figure 2.6 shows the structure
of a typical European market which includes a day-ahead, an intraday and
a balancing market for defining prices and schedules in real-time. The en-
ergy bids for the day-ahead market are submitted at noon the day before TD.
Once the energy market is cleared, the transmission system operator (TSO)
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adds the physical bilateral contracts to the clearing offers and performs con-
gestion management to generate viable daily schedules. Unlike the NEM,
CAISO, and ERCOT, the energy and reserve markets are not co-optimised in
the European markets, and as shown in Figure 2.6 they are cleared sequen-
tially. The intraday and balancing markets allow bid adjustments before the
real-time operation.

2.1.5 Comparisons Between the Markets

The CAISO, ERCOT, and European markets include both a day ahead and a
real-time market. On the contrary, there is no day-ahead market in the NEM
and energy and reserve transactions are done in a real-time market. While
the CAISO, ERCOT and the NEM co-optimise energy and reserve markets,
the European market follows a sequential policy in which the reserve market
is cleared after the energy market. However, regardless of how the market
clears, the participants might still want to co-optimise their bids to obtain the
best share of bids to submit into energy and reserve markets. All markets
accept either price-insensitive (bidding at the market cap or floor prices) or
price-sensitive offers (bid curves with different prices). In the NEM, partici-
pants’ technical limits form a trapezium6. In this thesis, we generate our bids
to be submitted to the NEM. In every chapter, we provide some intuition on
what our method will look like for different markets.

6https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-

reliability/-/media/2C771C82C8054929B16E4545216ACE03.ashx

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/-/media/2C771C82C8054929B16E4545216ACE03.ashx
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/-/media/2C771C82C8054929B16E4545216ACE03.ashx
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2.2 Literature Review

We start this section with a general history describing how using demand-side
flexibility evolved over time. This part covers a broad spectrum of research,
including simple load shedding algorithms designed for grid-scale loads, as
well as approaches suitable for current and future power systems in which
the consumer-owned DER can provide valuable flexibility services. We then
focus on the importance of the distribution network – as a means to connect
consumers to the market; and review approaches that ensure the safe oper-
ation of the distribution network in the presence of consumer-owned DER.
Finally, we touch on uncertainty around consumer data and review the state-
of-the-art approaches to handling such uncertainties in power systems.

2.2.1 Demand Side Market Participation

Managing load (such as shifting peak power to off-peak to avoid unneces-
sary installation of generators) has been in place for a long time Morgan and
Talukdar [1979]. However, it was not until 1980 when load participation in
the frequency market attracted attention. In 1980 Schweppe et al. suggested
using loads “to assist or even replace conventional turbine-governed systems
and spinning reserve” Schweppe et al. [1980]. However, due to a lack of flex-
ibility on the demand side, this support was limited to load shedding, which
was used to resolve under-frequency issues, e.g., Berger and Schweppe [1989].

System operators use under-frequency load shedding (UFLS) as an effec-
tive way to maintain power system frequency. Different methods are sug-
gested in the literature to provide under frequency reserve services using
UFLS, such as Harrison [1980], Nirenberg et al. [1992] and Delfino et al. [2001].
These works keep reducing load as frequency continues to drop. UFLS plays
a critical role in the way that our power systems work. When other responses
fail to address frequency drop, UFLS, as a last resort, makes the difference
between a complete system-wide blackout and more limited blackouts for
lower priority loads.

Distributed energy resources have made demand response services go be-
yond UFLS as demand can respond more actively to generation / load vari-
ation Rahimi and Ipakchi [2010]. While grid-scale DER (such as wind farms
Feltes et al. [2014], utility-scale batteries Dozein and Mancarella [2019]) have
been participating in the wholesale market since the beginning, residential
DER market participation has only become attractive in the last decade or so.
This is triggered by a) improvements in controlling distributed resources in
power systems and b) the emergence of aggregators. In the following, we
briefly discuss each factor.

a) Regarding load control, Callaway and Hiskens [2010] proposes a direct
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load control to enable distribution utilities / aggregators to deliver the
desired response to electricity markets. The authors in Callaway [2011]
show that the smaller loads (e.g. less than 10kW) with EMS can engage
in active demand management to provide energy and frequency services
within the wholesale market. Ma et al. [2011] proposes a decentralised
control scheme based on non-cooperative games to coordinate charging
plug-in electric vehicles. Meyn and Busic [2020] proposes a framework
for residential / commercial loads enabling them to provide ancillary
services to power systems.

b) Regarding load aggregation, an aggregator is a service provider that
directly or indirectly manages groups of consumers / resources to trade
pools of loads / generation as single products in the electricity markets.
Iria et al. [2019]; Burger et al. [2016]. This makes the market participation
of DER much simpler since consumers do not need to get involved with
the complications around bidding and the markets. Plus, it will not
change the current market clearing process as the market operators do
not need to include thousands of individual consumers in the market
clearing process.

In this thesis, we focus on the market participation of residential con-
sumers through aggregators. We assume that there exists proper control and
communication infrastructure so that aggregators can deliver on the market
dispatch signal.

2.2.2 DER Bidding into electricity market

The literature on DER market participation can be categorised into two main
groups, depending on the strategy consumers take to interact with the mar-
ket: A) price-insensitive bidding and B) price-sensitive bidding. We next
review state of the art in each category.

2.2.2.1 Price-Insensitive Bidding

A price-insensitive bidding approach is referred to a market engagement pol-
icy in which participants’ offers are independent of the market price. Price-
insensitive bidders decide on their market bids in advance and then submit
their generation bids at the market floor price and their demand bids at the
market cap price. This ensures that consumer generation / demand bids are
accepted in the market. Such a bidding approach simplifies the problem to a
scheduling one for which participants need an accurate price forecast. Price-
insensitive bids can achieve reliable outcomes when prices are relatively sta-
ble and predictable. Yet, volatile market prices can negatively affect the price-
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insensitive bidders. We categorise the price-insensitive bidding approaches
into indirect and direct market participation, as explained in the following.

Indirect Market Participation (Retail Participation)

Under this category, consumers are not directly participating in the market.
Here, a third party, i.e., a retailer, participates in the electricity market and
sets tariffs (e.g., a time-of-use (ToU) and a feed-in tariff), according to which
the end-users schedule their DER Scott et al. [2019]. Although the ToU tariff
might somewhat reflect the overarching market, customers are not directly or
immediately impacted by any influence they might have on the market prices.

When using tariffs, the benefit will be defined by off-peak, peak and feed-
in prices. Therefore, consumers cannot benefit from the time-varying market
prices. Instead, consumers may seek additional income by providing other
services, such as voltage support, e.g., Jabr [2019], peak shaving / valley
filling, e.g., Wang and Wang [2013].

The focus of this thesis is to explore a more direct DER market participa-
tion. Thus, we are neither interested in tariffs nor providing services other
than those traded within the energy and reserve markets. This being said, in
chapters 4 and 5, we use reactive power to provide voltage support. The reac-
tive power support can open up network capacity, and as a result, consumers
can participate in the market with fewer network limitations.

Direct Market Participation

A plethora of research works has focused on price-insensitive market partic-
ipation of DER directly into energy (and frequency) markets, e.g., Attarha
et al. [2018b,c]; Vayá and Andersson [2014]; Attarha et al. [2019]; Wang et al.
[2018]; Yao et al. [2018]; Ottesen et al. [2018]; Iria et al. [2018, 2019]; Lee et al.
[2016]; Zhu and Zhang [2019]; Ulbig et al. [2022]. Our approaches presented
in chapters 3 and 4 also belong to this group of bidding approaches.

Price-insensitive market participation of DER has been studied in Attarha
et al. [2018b], where a battery-PV pair is optimised to participate in the energy
market. A two-stage optimisation is proposed in Attarha et al. [2018c] to
obtain price-insensitive bids for a storage system paired with a wind farm
that jointly participates in the energy market. Market participation of electric
vehicles in the day-ahead energy market and residential DER in the real-time
energy market are studied in Vayá and Andersson [2014] and Attarha et al.
[2019] respectively.

As shown in Oudalov et al. [2006], the highest value of a battery is ob-
tained when providing primary reserves. Although the analysis, done in
Oudalov et al. [2006], is based on fixed contracts rather than direct market
participation, it provides insights into the value of DER in providing reserves.
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In addition, since DER are fast responding, they can efficiently provide differ-
ent reserve services. However, Attarha et al. [2018b,c]; Vayá and Andersson
[2014]; Attarha et al. [2019] are focusing solely on the energy market participa-
tion and thus ignoring a significant source of revenue. Plus, the experiments
on Świerczyński et al. [2013] show that investing in battery storage for reserve
is already financially viable. This will only become more profitable with the
battery cost reduction making Attarha et al. [2018b,c]; Vayá and Andersson
[2014]; Attarha et al. [2019] less attractive.

To make the most out of DER flexibility Yao et al. [2018]; Ottesen et al.
[2018]; Iria et al. [2018, 2019]; Lee et al. [2016]; Zhu and Zhang [2019] co-
participate in energy and reserve markets. As with price-insensitive bidding,
these works co-optimise their DER according to price forecasts of multiple
markets and obtain price-insensitive bids to submit into the market at either
market cap or floor prices. The differences between these works lie in either
the type of the DER or the reserve markets they bid into. For example, Yao
et al. [2018] studies the aggregate response of electric vehicles (EVs) for fre-
quency regulation services in the day-ahead market while Iria et al. [2018] and
Iria et al. [2019] study the residential DER market participation respectively
in tertiary and secondary reserve markets. Similar price-insensitive strate-
gies that, in a broad sense, co-optimise DER in energy and reserve markets
are proposed in Neyestani et al. [2016]; Vatandoust et al. [2018]; Good and
Mancarella [2017].

Note that the distribution network, including its DER, can be viewed as a
virtual power plant (VPP). A VPP is a cloud-based distributed power plant
that aggregates the capacities of heterogeneous DER to enhance power gen-
eration and enable the trade of power in the electricity market. If the VPP
includes the distribution network, it is closely comparable to our approach.
In fact, such a VPP is equivalent to our setting, provided that one aggregator
centrally manages all consumers and the distribution network at the same
time. However, unlike VPP, our approach allows multiple aggregators to
manage consumers in the same network, which is being operated by a DSO.
We next review some works in the VPP paradigm that shares similarity with
the core content of this thesis.

Yang et al. [2021] studies the ability of a VPP that includes different en-
ergy resources in providing demand response; Zhang et al. [2021b] proposes
an optimal bidding model based on the time-of-use power prices; Zhang et al.
[2021b] takes the wind and solar power uncertainty into account when mak-
ing bidding decisions. Neglecting the network Chen et al. [2020] studies an
optimal bidding strategy for VPP. The authors use information gap decision
theory (IGDT) to deal with the uncertainties posed by load and day-ahead
(DA) market clearing prices. Authors in Zhang et al. [2021a] investigate
inverters’ transient response of a VPP that aggregates DER. Mashhour and
Moghaddas-Tafreshi [2010] studies the joint bidding of a VPP in the energy
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and spinning reserve market under different market price scenarios. The
authors take into account the distribution network constraints and centrally
coordinate DER with the grid; Nezamabadi and Nazar [2016] includes the
local grid to provide network-feasible bids for a VPP participating in energy,
spinning reserve and reactive power markets.

Price-insensitive market participation of DER is not limited to residen-
tial DER and VPPs. Utility-scale DER (mainly a battery) have used this
strategy to jointly bid in energy and reserve markets, such as Kazemi et al.
[2017]; Oudalov et al. [2007]; Aghamohammadi and Abdolahinia [2014]; Xu
et al. [2014, 2018]; Borsche et al. [2013]; Thorbergsson et al. [2013]; Mercier
et al. [2009]. The participation of a battery storage system in reserve markets
mainly leads to a MILP problem7. Solving the resulting MILP optimisation
problem generates the charging / discharging schedules, together with the
bids for each market. In summary, Kazemi et al. [2017] jointly optimises a
battery storage system in day-ahead energy, spinning, and regulation reserve
markets while modelling price and ancillary service deployment uncertainty
using robust optimisation. We provide a brief review on robust optimisation
in Section 2.3. Oudalov et al. [2007] calculates the minimum possible battery
capacity that fulfils the technical requirements of the grid code for frequency
reserve services based on the European market prices. Similarly, Aghamo-
hammadi and Abdolahinia [2014] determines the optimal size of a battery
storage system for primary frequency control in a Microgrid. A control strat-
egy is proposed in Xu et al. [2014] to maintain batteries SoC within an optimal
range and to slow down its ageing while providing frequency responses. An
optimal bidding policy is given in Xu et al. [2018] to model the battery age-
ing when participating in the frequency regulation market. Borsche et al.
[2013] investigates the power and energy capacity requirements for a storage
system to provide frequency reserve services. Three different control strate-
gies are given in Thorbergsson et al. [2013], and their benefits are compared
when bidding into the Danish market. Finally, Mercier et al. [2009] obtains
the optimum sizing and operation of a battery energy storage system used
for spinning reserve in a small isolated power system.

Note that the schedules obtained using price-insensitive approaches are
optimum as long as the MCP is similar to the forecast prices. This assumption
will hold if the market power of DER is not significant. When there are nu-
merous DER, their zero marginal cost can make the market prices too volatile
to forecast accurately. Besides, a price-insensitive bidding approach can neg-
atively affect both the market and aggregators. From the market perspective,
price-insensitive bids always need to be settled. Therefore, the market is
constrained to dispatch these DER bids at a predetermined operating point,
despite the underlying flexibility of DER. From an aggregator’s perspective,

7We provide a brief review on MILP optimisation approaches in Section 2.3.
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the insensitivity of offers to the prices can negatively affect their profits. For
instance, if a battery has been charged at $100, the discharge should occur for
a price higher than $100. However, the aggregator might mistakenly forecast
a high price and submit a discharge bid when the price realises to be less than
$100.

To lessen the effect of the issue mentioned above, some utility-scale DER,
Shafiee et al. [2017, 2016]; Arteaga and Zareipour [2019] first determine the
effect of DER on the market prices and then use the obtained modified prices
to schedule their DER. Similarly to the price-insensitive approaches, Shafiee
et al. [2017, 2016]; Arteaga and Zareipour [2019] bid one capacity band to the
electricity market (generation at zero and load at the market cap price). Not
only are Shafiee et al. [2017, 2016]; Arteaga and Zareipour [2019] incapable
of bidding a range of flexibility, but also they only consider the effect of their
own DER on the electricity market prices. However, the price might change
according to the behaviour of other participants (e.g., a generation company
might trip, leading to a sudden price increase) – frequent real-world scenarios
that Shafiee et al. [2017, 2016]; Arteaga and Zareipour [2019] do not take into
account.

2.2.2.2 Price-Sensitive Bidding

Unlike price-insensitive bidders, price-sensitive bidders submit different ca-
pacities for different prices. If the MCP realises to be greater than or equal
to price-sensitive offers, then their capacity will be accepted. This enables the
price-sensitive bidders to hedge the market price uncertainty as their bids are
sensitive to the price, and their final dispatch will be a function of MCP.

To the best of our knowledge, there is no bidding approach for residential
DER that provides multiple capacity bands at different prices in the literature
other than what we propose in Chapter 5. However, there are works that go
above a price-insensitive bidding approach; for example, Nezamabadi and
Nazar [2016] in which the authors calculate their bid price using quadratic
cost function (fuel cost), and the time coupled work by Caramanis and Foster
in Caramanis and Foster [2011] where they propose a new market clearing
mechanism that takes DER time dependencies into account.

It is worth mentioning that for generators or grid-scale DER, bidding mul-
tiple capacity bands at different prices is a common practice. For instance,
Weidlich et al. [2018] proposes a price-sensitive bidding approach to max-
imise generators’ benefits. The authors in Weidlich et al. [2018] use the price
forecast and the marginal cost to obtain the minimum market price at which
they can increase their output by their ramp rate. If the price is lower than
the calculated cost, they bid to reduce their output based on the ramp rate
or until they reach their minimum operating point. For storage systems, like
batteries and pump hydro units, they offer to choose a charging and discharg-
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ing price in advance and bid for full charge or discharge if the price reaches
these predetermined values.

Whether price-insensitive or -sensitive, the bids are finally cleared at the
market price by the market operators. However, as mentioned before, resi-
dential DER are connected to / operated within distribution networks. Un-
like transmission networks, to which big generators or utility-scale DER are
connected, distribution network constraints are not included in the market
clearing process. Therefore, consumer bids might violate the distribution net-
work in the current market structure. This is shown in Ulbig et al. [2016] in
which the authors investigate the effect of consumer-owned DER on the grid
and show that consumer behaviour significantly violates the network without
coordination. However, including thousands of consumers and distribution
networks in the market clearing process over-complicates the problems. Al-
ternatively, distribution network constraints can be ensured outside the mar-
ket before consumer bids reach the market Ross and Mathieu [2020]. We next
review approaches proposed to ensure distribution network security.

2.2.3 Network Inclusion

DER integration can affect distribution networks positively or negatively de-
pending on their operation targets. If DER provide network support services,
they can increase network capabilities and postpone network augmentation.
However, when bidding into the market (the operation target we are inter-
ested in), the story is different. Responses of many DER to price spikes create
synchronisations that might push the distribution network outside its limits
Attarha et al. [2019]. A network violation can disconnect consumers from the
market and create serious problems for the market. We explain this with an
example in the following:

Imagine a scenario in which the distribution network is injecting into the
transmission network and can increase the injection (provide raise frequency
reserve service) through its DER. Now assume an event creates a frequency
drop, and the distribution network is asked to add to the generation. In such
a case, if a cable or a transformer is overloaded (a highly likely scenario when
the network is neglected), the switches will disconnect the distribution net-
work. Thus, not only can the raise reserve service not be delivered, but the
initial injection is also disconnected. As a result, the frequency drops even fur-
ther. Therefore, the inclusion of network constraints into a bidding approach
is critical. Extensive research has been done around the secure operation
of DER-penetrated distribution networks. The available solution approaches
fall into one of the following categories: fixed export limits, operating en-
velopes, central OPF, and distributed OPF. We next provide a review of these
approaches.



§2.2 Literature Review 26

Fixed Export Limits

Fixed export limits have been incorporated in many real-world examples to
avoid overvoltage that can occur due to rooftop PV grid injection. In Arizona,
the USA, solar systems capacity cannot be greater than 125% of consumers’
total connected load. In most Australian states, a fixed export limit of 5 kW
is currently in place. Therefore, the excess PV power must either be con-
sumed, e.g., to charge a battery, or be curtailed. In Germany, small-scale PV
systems are not allowed to export more than 70% of their installed capacity
Ricciardi et al. [2018]. Although simple, such fixed limits are overly con-
servative as they are obtained for a scenario with max generation and min
demand throughout a year. In Chapter 3, we compare the effectiveness of our
approach with such fixed export limits.

Notice that fixed export limits only consider the injection scenario. How-
ever, as battery storage systems and EVs are becoming more popular, limits
for withdrawing power are also becoming important.

Operating Envelopes

Operating envelopes are convex sets that define the allowed real and reactive
power transfers with the network at a given customer connection point or for
an aggregate of customers in a region. Envelopes are calculated so that any
joint combination of consumption or generation within the envelopes will
not violate any network constraints Blackhall [2020]; Nazir and Almassalkhi
[2019, 2021]. Since operating envelopes can guarantee network security lo-
cally, the market operator does not need to model thousands of DER (millions
of variables and constraints) or network limits (non-linear and non-convex
constraints) into their optimisation problems. While effective, obtaining rep-
resentative operating envelopes is difficult.

References Blackhall [2020]; Petrou et al. [2020] suggest that distribution
system operators (DSO) should calculate operating envelopes and allocate
them to each consumer without considering their preferences, uncertainty or
market participation. However, since some consumers might need less flex-
ibility (e.g., due to self-consumption), such proposals can result in unrepre-
sentative envelopes conservatively limiting market-participating consumers.
Petrou et al. [2021] suggests obtaining envelopes that include consumers’
preferences. The consumers in Petrou et al. [2021] firstly send their pre-
ferred connection point power to the DSO. The DSO then tries to minimise
the squared distance between what a consumer needs and what the network
can accept. Despite what operating envelopes intend, Petrou et al. [2021] is
only valid as long as consumers operate at the requested operating points.
The network constraints might be violated if consumers operate differently
from what they initially requested. Plus, Petrou et al. [2021] requires full ob-
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servability over consumer DER which in practice might not be available to
the DSOs. In chapters 3 and 4 we obtain operating envelopes that do not
face the above challenges and compare their effectiveness with the proposals
mentioned above.

Authors in Markovic et al. [2016] proposed a combination of suitable grid
tariffs and DSO adjustments to consumer injections. The authors first calcu-
late suitable grid tariffs using which consumers optimise their DER. If the
obtained injection values lead to a network violation, the network solves an
optimisation problem to put limits on consumer injections. Consumers fi-
nally reschedule their DER given the DSO limits. The DSO optimisation and
injection limits can be viewed as an operating envelope. However, when con-
sumers participate in the market, their DER should be dispatched according
to market prices, and thus, a well-defined tariff and operation point does not
exist.

Operating envelopes have been proposed in Nazir and Almassalkhi [2019],
and Nazir and Almassalkhi [2021] to obtain the hosting capacity and nodal
DER injections in distribution networks, respectively. Nazir and Almassalkhi
[2019] and Nazir and Almassalkhi [2021] obtain inner convex approximation
of AC-power flow equations to provide AC admissible solution across the
envelopes. The authors show that for excessive nodal power exchange, the
network losses increase significantly and thus, the voltage decrease result-
ing from network losses outweighs the voltage increase resulting from DER
injections. This can create holes in the feasible region leading to operating
envelopes that are not AC admissible. While our network subproblem in
this thesis can incorporate a similar convex inner approximation presented in
Nazir and Almassalkhi [2019, 2021] or Lee et al. [2019], we directly work with
non-convex equations, which we solve using the IPOPT solver. The reason
is that the network operators do not tend to operate the network in points
where the network losses are unreasonably high (the conditions needed for
the holes mentioned in Nazir and Almassalkhi [2019] and Nazir and Almas-
salkhi [2021] to occur). We have provided a 2-bus system in Chapter 3 ex-
plaining the phenomenon Nazir and Almassalkhi mentioned in Nazir and
Almassalkhi [2019, 2021]. We show that for distribution networks, where
R >> X, the OPF becomes infeasible before any holes can be formed. We
further discuss this in Section 3.3

Operating envelopes have also been calculated at the interconnection of
TSO-DSO to provide the DSO with the available network-secure flexibility
at the distribution network, e.g., in Nazir [2020]; Capitanescu [2018]. In the
optimisation approaches presented in Nazir [2020]; Capitanescu [2018], the
authors first calculate maximum and minimum real power that can be ex-
changed with the upstream network and then solve OPF for real-power in-
side the maximum and minimum power to calculate the associated reactive
power. While similar approaches can be used in our network sup-problem to
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calculate TSO-DSO operating region, our main focus is to obtain envelopes
down at the level of consumers.

Centralised OPF

This is a different approach in which the DSO schedules all DER by solv-
ing a central OPF. For instance, Vatandoust et al. [2018] includes linear load
flow equations and aggregates a large-scale battery and an EV fleet to bid
into the day-ahead frequency regulation market. Similarly, Dall’Anese et al.
[2017], Saint-Pierre and Mancarella [2016] and Souza et al. [2016] use optimal
power flow to centrally dispatch DER to provide regulation service, do active
distribution network management and participate in the energy market, re-
spectively. In Nazir and Almassalkhi [2020], the authors use a convex inner
approximation of the OPF problem and coordinate DER to minimise voltage
deviations from the nominal values. However, running a central OPF when
there are numerous consumers would lead to a large-scale, time-coupled, lin-
ear or non-linear8 optimisation problem, which is computationally expensive
for an online real-time setting. Also, Vatandoust et al. [2018]; Dall’Anese et al.
[2017]; Saint-Pierre and Mancarella [2016]; Souza et al. [2016] require central
access to all of the information of all the consumers, which is not practical and
compromises consumers’ privacy. In Chapter 3, we compare our solution ap-
proach, both in terms of solution quality and computational performance,
with approaches that use a centralised OPF.

Distributed Solutions

To meet the challenges mentioned for a central OPF, distributed approaches
have been suggested. The authors in Ross and Mathieu [2020] propose an
l1 and l2 network safety index to obtain network-safe decisions without the
need to have access to detailed information from behind-the-meter technolo-
gies. In Ross and Mathieu [2021]; Ross et al. [2019], the authors propose
different control strategies for coordinating aggregators to provide network-
aware services. These control strategies are either based on a blocking scheme
in which the DSO blocks an aggregator’s commands if they cause network is-
sues as in Ross et al. [2019], or based on a mode-count control scheme Ross
and Mathieu [2021] in which the on/off statues of TCLs are determined to
avoid network violation.

Distributed optimisation, e.g., ADMM Boyd et al. [2011], has also been
used to ensure network feasibility. ADMM has been used in various power
system application including OPF Scott and Thiébaux [2015]; Tsai et al. [2017];
Yuan et al. [2016], congestion management Bai et al. [2017]; Huang et al.
[2014], DER coordination Scott et al. [2019]; Attarha et al. [2019] and network

8Depending on the type of power flow equations, the resulting problem can be linear or non-linear
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support Olivella-Rosell et al. [2018]; Shaloudegi et al. [2012]. ADMM method
is explained later in Section 2.3.3. Our solution approach in chapters 3, 4 and
5 belongs to the category of distributed solutions. More specifically, we follow
a similar ADMM-based approach in chapters 3 and 4, where we present our
price-insensitive bidding approaches. However, in Chapter 5, where we intro-
duce our price-sensitive bidding approach, we propose a new network-secure
solution that is distributed in the sense that consumers and the network solve
their problems independently. However, unlike iterative ADMM-based ap-
proaches in which consumers and the DSO negotiate until converging on the
network-secure bids, in Chapter 5, we opt for a more scaleable one-shot pol-
icy which is equivalent to the computation complexity of a single ADMM
iteration. In our one-shot policy, the consumers first obtain their preferred
bids, neglecting any network limits, and send their bids to the DSO. Next, the
DSO runs OPFs to shape consumer bids to be within network constraints in
one shot. Since there is no iterative negotiation between consumers and the
grid, we call this approach one-shot bid shaping.

In a deterministic setting, where all data is known and constant, the above
approaches can ensure network feasibility. However, in reality, consumers’
data, such as PV power and demand, are uncertain. Therefore, there is no
guarantee that consumers can stick to their envelopes in approaches based
on fixed export limits / operating envelopes; or commit to their negotiated
connection point power in approaches based on central / distributed OPF.
To avoid network infeasibilities, it is important to model uncertainty in these
approaches. We next review common approaches to model data uncertainty
in power system operation.

2.2.4 Uncertainty Characterisation

Uncertainty can not only lead to connection point powers (CPPs) being out-
side the envelope, or different from the negotiated CPPs but also can lead to
bid deliveries being different from the ones submitted to the market. Deliv-
ering CPP different from what has been negotiated or outside the operating
envelope defeats the purpose of network coordination. In other words, the
network constraints might still be violated for uncertainty realisations differ-
ent from the forecast. On the other hand, bid deliveries different from what
has been offered to the market might significantly penalise consumers. So,
uncertainty can negatively affect both feasibility and optimality, and thus, it
is important to model uncertainty in our optimisation problems. The most
common approaches in the literature to deal with uncertainty are reviewed
in the following.
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Model Predictive Control

The approaches based on online optimisation Scott et al. [2019]; Scott and
Thiébaux [2015] coordinate DER using a model predictive control (MPC)
framework. These approaches re-optimise frequently, close to real-time, us-
ing the latest and most accurate forecast information. In other words, they
assume that the forecast is pretty accurate, close to operation and constant
between two successive optimisations. This assumption holds, provided that
the time step between two successive optimisations is small enough. Fortu-
nately, in the NEM, participants are able to adjust their bids every 5 minutes.
Therefore, we use an MPC implementation and re-optimise every 5 minutes
to account for the latest uncertainty changes in our models in chapters 3, 4
and 5. Moreover, we introduce a piecewise affinely adjustable robust con-
strained optimisation (PWA-ARCO) approach in Chapter 4, which can be in-
corporated if the uncertainty realisation within a 5-minute operating interval
(before the next optimisation) varies notably.

Stochastic Optimisation

Stochastic programming (SP) is used to account for a wide range of uncer-
tainties, for example, wind power uncertainty in Wang et al. [2008, 2011];
Shiina and Birge [2004] and demand in Shiina and Birge [2004] within a unit
commitment problem, the uncertainties in OPF Phan and Ghosh [2014] and
demand response Wang et al. [2018]. In SP-based approaches, several sce-
narios are employed along with their associated probabilities to predict the
possible future realisation of uncertainty. However, the scenarios used in SP
can bias the solution away from the “true” PDF (probability distribution func-
tion). Thus, if the distribution of scenarios differs from the actual realisation,
the resulting out-of-sample performance is often disappointing. Moreover,
considering a large set of scenarios to enhance our prediction of uncertainty
realisation renders the problem computationally intractable.

Robust Optimisation

Robust optimisation avoids having to consider large numbers of scenarios by
finding and optimising according to a worst-case scenario. Three common
approaches in robust optimisations are reviewed in the following.

1. Adaptive Robust Optimisation: This group of approaches mainly solves a
two-stage optimisation problem. The second stage in such approaches
is to find a worst-case scenario. The first stage then uses this worst-case
scenario to optimise for robust planning variables, e.g., Attarha et al.
[2018a]; Liu and Hsu [2018]; Giraldo et al. [2018]. Adaptive robust op-
timisation has been used in distributed approaches, including He et al.
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[2017] where the decomposition is between a coupled electricity and gas
network, and Gao et al. [2017b], and Mohiti et al. [2019] where the de-
composition is between 3 interconnected microgrids.

These approaches often lead to a MILP problem that is mainly solved
iteratively using column and constraint generation (C&CG) techniques.
Since the decisions are made according to the worst-case scenario, which
is very unlikely to occur in practice, these approaches often lead to over-
conservative solutions.

2. Affinely Adjustable Robust Optimisation: Unlike the previous category, this
group of approaches Jabr [2019]; Abadi et al. [2020]; Attarha et al. [2018b]
make a part of the decision according to the forecast information (com-
monly known as non-adjustable), while another part of the decision
waits for the realisation of uncertainty to take recourse actions (com-
monly known as adjustable).

The ability to take recourse enables these approaches to be less con-
servative than adaptive robust optimisation approaches. In the DER
context, this approach is more reasonable than a two-stage adaptive ro-
bust approach. The reason is that a two-stage robust approach ignores
DER’s fast-responding feature. Thus, it optimises them ahead of uncer-
tainty realisations based on the worst possible outcome for the uncer-
tain parameters. However, DER can easily adjust to the live operation
changes. Therefore, adjustable robust approaches enable the response to
tune itself based on the uncertainty realisation rather than being entirely
made based on the worst case. Inspired by this, we propose a piecewise
affinely adjustable solution approach called PWA-ARCO in Chapter 4
to model the uncertainty around PV power and demand within every
5-minute operating interval.

3. Distributionally Robust Optimisation: Distributionally robust optimisation
(DRO) methods have been proposed in Babaei et al. [2019]; Zare et al.
[2018]; Mieth and Dvorkin [2018] to improve the performance of RO,
based on the distribution of the uncertain parameters. Unlike SP, the
DRO methods do not require exact probability distributions of uncer-
tainties. Instead, they construct an “ambiguity set,” which is essentially
a set of possible distributions that are consistent with the available sam-
ples de Klerk et al. [2020]; Li et al. [2019]. However, the authors in Poolla
et al. [2020] have shown that using available techniques, such as Esfa-
hani and Kuhn [2018], the number of constraints of the DRO problem
increases with the number of samples, leading to high dimensionality.
Hence, given the real-time market time frame (5 minutes in the NEM),
these approaches are unlikely to scale. On the other hand, Babaei et al.
[2019] uses the available data to tune the uncertainty set based on the
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probability distribution function (PDF) of data . As stated in Babaei
et al. [2019], if the PDF information cannot be extracted from the data,
Babaei et al. [2019] works similarly to a conventional robust approach.
In addition, Babaei et al. [2019]; Zare et al. [2018]; Mieth and Dvorkin
[2018] either assume a linear recourse, as in Babaei et al. [2019] or ignore
recourse capability, as in Zare et al. [2018]; Mieth and Dvorkin [2018].
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2.3 Optimisation

Here, we provide background information on optimisation techniques used
throughout this thesis. This will include linear programming (LP) Sierksma
and Zwols [2015], mixed integer linear programming (MILP) Papadimitriou
and Steiglitz [1998]; Chachuat [2019], distributed optimisation ADMM Boyd
et al. [2011], and finally adjustable robust optimisation Ben-Tal et al. [2004].

2.3.1 Linear Programming

A linear program can be written in its most general form as follows Sierksma
and Zwols [2015]:

min
x∈Rn

+

c⊺x (2.1)

s.t. Ax ≤ b : µ ≥ 0 (2.2)
x ≥ 0 (2.3)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Also, µ ∈ Rm
+ is the vector of dual vari-

ables associated with constraints of our optimisation problem. The feasible
region of (2.1)–(2.2) is a convex polyhedron – a set defined as the intersection
of finitely many half spaces, each of which is defined by a linear inequality
given by (2.2). The optimum solution to this problem will be located on one
of the edges / vertices of the polyhedral feasible region. Notice that charac-
teristics of many DER can be modelled using linear constraints. Therefore,
LP will become useful when developing energy management systems.

Every LP has a dual problem. While equivalent, in some cases, the dual
problem is easier to solve than the original primal problem Bertsimas and
Tsitsiklis [1997]. Using the dual variable µ, the dual of (2.1)–(2.2) can be
written as follows:

max
µ∈Rm

+

b⊺µ (2.4)

s.t. A⊺µ ≤ c : x ≥ 0 (2.5)
µ ≥ 0 (2.6)

where the primal variable x is now the dual variable associated with the
constraint (2.5) in the dual problem. We explain an example in which solving
the dual problem is more useful than solving the primal problem in Section
2.3.4. We use LP and duality in Chapter 4 to provide a tractable formulation
to immunise our decisions against consumer uncertainty.
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2.3.2 Mixed Integer Linear Programming

Mixed integer linear programming (MILP) is a type of optimisation problem
in which all or some of the decision variables are integers Papadimitriou and
Steiglitz [1998]. We can write a MILP problem in its most general form as
follows:

min
x∈Rn,y∈Zn

c⊺x + d⊺y (2.7)

s.t. Ax + By ≤ b (2.8)

where A, B ∈ Rm×n, b ∈ Rm, and c, d ∈ Rn. Notice that if we relax the integer
variables, i.e., y ∈ Zn → y ∈ Rn, then the problem will change into an LP.
However, this generally produces a lower bound to the objective function,
and the solution might be infeasible Papadimitriou and Steiglitz [1998]. In
case the solution of the resulting LP program is integer feasible, then we have
found the optimum solution to the MILP problem.

There are effective approaches to solve MILP problems, such as branch and
bound and cutting plane methods. In summary:

• Branch and bound (B&B) methods partition the feasible region into dif-
ferent branches. The best solution in a partition is optimal overall Pa-
padimitriou and Steiglitz [1998].

• Cutting plane approach works with the binary relaxed MILP problem,
i.e., the LP program. If the solution of the LP is not integer feasible,
a new cut (which basically is a linear constraint) is added. The same
process is repeated until the optimum solution of the resulting LP is
integer feasible, and thus the optimum solution of the MILP problem is
found Karlof [2005].

In this thesis, we count on solvers such as CPLEX Cplex [2009], and Gurobi
Gurobi Optimization, LLC [2022] to solve the MILP problems. In this thesis,
we mainly need to work with MILP when working with batteries to ensure
that our model does not allow for simultaneous charge and discharge deci-
sions (in chapters 3, 4, 5). Plus, in Chapter 4, when modelling our piecewise
controllers, we use some theories from MILP to justify our approach.

2.3.3 Distributed Optimisation ADMM

The alternating direction method of multipliers (ADMM) breaks the central
optimisation problem into several subproblems and solves it in a distributed
fashion Boyd et al. [2011]. ADMM builds on the distributed optimisation
dual ascent by improving its convergence properties based on the method of
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multipliers. Consider the following problem:

min
x∈Rn,z∈Rm

f (x) + f ′(z) (2.9)

s.t. h(x) ≤ 0 (2.10)
h′(z) ≤ 0 (2.11)
Ax + Bz = d : λ (2.12)

where A ∈ Rc×n, B ∈ Rc×m, d ∈ Rc and λ is the dual variable associated with
constraint (2.12). If the equality constraint (2.12) is relaxed, the optimisation
problems minx∈Rn f (x); s.t. h(x) ≤ 0 and minz∈Rm f ′(z); s.t. h(z) ≤ 0 could
be solved separately to obtain x and z. Assuming that the objective f and f ′

and constraint functions h and h′ are convex, ADMM uses the dual variable
λ to relax the coupling constraint (2.12). As with the method of multipliers,
the augmented Lagrangian L is obtained as:

L = f (x) + f ′(z) + λ⊺(Ax + Bz − d) + (ρ/2)||Ax + Bz − d||22 (2.13)

where ρ > 0 is a penalty parameter. The ADMM approach consists of three
steps at each iteration. An x minimisation subproblem in (2.14); a z minimi-
sation subproblem in (2.15); and a dual variable update in (2.16).

xk+1 := argmin
x

L(x, zk, λk)

s.t. h(x) ≤ 0 (2.14)

zk+1 := argmin
z

L(xk+1, z, λk)

s.t. h′(z) ≤ 0 (2.15)

λk+1 := λk + ρ(Axk+1 + Bzk+1 − d) (2.16)

The iterative approach (2.14)–(2.16) is terminated when the stopping cri-
teria is met. In this thesis, in line with Boyd et al. [2011], we terminate the
algorithm when primal and dual residuals are smaller than a threshold as
follows:

max{R(k)
p } ≤ ϵ where R(k)

p := x(k) − z(k) (2.17)

max{R(k)
d } ≤ ϵ where R(k)

d := ρ(z(k) − z(k−1)) (2.18)

The primal residuals (2.17) represent the constraint violation at the current
solution, and the dual residuals (2.18) the violation of the KKT stationarity
constraint Boyd et al. [2011].

Remark. The theoretical convergence of the ADMM algorithm to the
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global optimum often needs the problem to be convex. However, as shown
by several research, e.g., Mhanna et al. [2019]; Scott et al. [2019]; Attarha et al.
[2020]; Hong et al. [2016]; Wang et al. [2019]; Srikantha and Mallick [2020];
Zeng et al. [2022], ADMM often performs well for non-convex problems in
practice. There is ongoing research to prove ADMM convergence for non-
convex problems as in Hong et al. [2016]; Wang et al. [2019]; Sun and Sun
[2021]. More recently, the authors in Srikantha and Mallick [2020] proved
that the ADMM algorithm converges for the non-convex OPF problem in a
radial distribution network. Similarly to Mhanna et al. [2019]; Scott et al.
[2019]; Attarha et al. [2020]; Hong et al. [2016]; Srikantha and Mallick [2020],
in this thesis, we also apply ADMM to the non-convex OPF problem (solv-
ing by the IPOPT solver) and have not faced any convergence issues. The
IPOPT solver was found efficient in solving non-convex OPF problems, e.g.,
in Capitanescu [2018]. In addition, since the main source of non-convexity
appears in the network subproblem, without loss of generality, one can even
use a convex relaxation of the OPF within our model, such as the relaxation
proposed in Farivar and Low [2013].

Notice that the ADMM approach enables us to solve a large-scale opti-
misation problem in a distributed fashion. In the context of power systems,
as more distributed energy resources are being introduced to our electricity
system, such distributed techniques become extremely useful to solve the re-
sulting large-scale optimisation problems that need to be solved to obtain the
optimum operating point of our decentralised power systems. We particu-
larly used this technique in Chapter 3 and 4 in this thesis.

Remark. The ADMM approach modelled through (2.14)–(2.16) is a syn-
chronous implementation. Meaning that each step needs to receive all the
information from all subproblems before it solves its optimisation problem.
In the context of power systems, the network subproblem needs to wait to
receive the information from all aggregators before solving the network sub-
program. In other words, if different aggregators have different delays (e.g.,
due to differences in processing speeds), we should wait for the slowest ag-
gregator to complete their update before proceeding to the next iteration. The
shortcoming of this approach is that the system moves forward only at the
pace of the slowest aggregator. Asynchronous versions of ADMM are pro-
posed to solve this issue, e.g., in Zhang and Kwok [2014]; Agarwal and Duchi
[2011]. While in this thesis, we work with synchronous ADMM Boyd et al.
[2011], without loss of generality, an asynchronous algorithm can also be im-
plemented. However, we leave the detailed study of such an implementation
to future work.
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2.3.4 Affinely Adjustable Robust Optimisation

The parameters of a real-world optimisation problem are often not known ex-
actly. However, in most power system applications, a forecast of parameters,
as well as a bound within which the uncertainty realisation might vary are
available. This information can make an uncertainty set. Let ϵ ∈ Rl be the
uncertain parameters modelled in the following polyhedral uncertainty set:

E ≜
{

ϵ ∈ Rl|Wϵ ≤ v
}

(2.19)

where W ∈ Rk×l and v ∈ Rl are parameters of the polyhedral uncertainty set.
Let us start with the constraints of an LP optimisation problem as follows:

Bx + Cϵ + d ≤ 0 (2.20)

where B ∈ Rm×n, C ∈ Rm×l, and d ∈ Rm. A deterministic approach ensures
that (2.20) is satisfied for ϵ̄ where ϵ̄ is the forecast scenario. On the contrary
the robust optimisation of (2.20) will be as follows:

Bx + Cϵ + d ≤ 0 ∀ϵ ∈ E (2.21)

The for-all quantifier in (2.21) means that the constraint must be satisfied for
any uncertainty realisation within the uncertainty set E. To allow real-time
recourse, an AARCO approach allows the decision variables to be an affine
function of uncertainty as:

x → x(ϵ) ≜ Aϵ + b (2.22)

where A ∈ Rn×l and b ∈ Rn. Prior to real-time, we optimise to obtain
A and b. In live operation, when the true value of ϵ is revealed, x(ϵ) will
become fully known. This is in the spirit of a linear feedback controller,
where the value of x can be constantly updated in response to the realisation
of uncertainty.

We next substitute (2.22) into (2.21) and rewrite (2.21) in its equivalent
robust form using a max protection function on a per-constraint basis Ben-Tal
et al. [2004]. This results in:

Bb + max
ϵ∈E

(BAϵ + Cϵ) ≤ d (2.23)

Wϵ ≤ v : µ (2.24)

This generates a maximisation problem inside the constraint. Notice that the
maximisation problem is an LP for any given B, A and C; ϵ is its decision
variable with linear constraints Wϵ ≤ v where µ represents its dual variable.
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Using duality theory Ben-Tal et al. [2004], this maximisation can be trans-
formed into a minimisation problem as follows:

Bb + min
µ

(v⊺µ) ≤ d (2.25a)

W⊺µ ≥ BA + C (2.25b)

Notice that if constraint (2.25a) is satisfied for a value of v⊺µ, then it will be
satisfied for its minimum as well. Therefore we can drop the min operator.
The resulting problem represents the constraint-wise robust counterpart of
problem (2.23)–(2.24). As mentioned in Section 2.3.1, solving the dual prob-
lem here is more useful than solving the primal problem. Robust counterpart
ensures that constraint (2.21) can be satisfied for any realisation of uncertainty
within the uncertainty set E (i.e., the affine function x(ϵ) can be adjusted to
compensate for all uncertainty realisations within E). Notice that here we
only focus on the constraints. The epigraph form of the objective function
can be written, and thus the robust objective can also be modelled as in (2.21).
Alternatively, the objective may weigh up the outcome under a selection of
scenarios or be optimised based on the expectation. We have used AARO
optimisation in Chapter 4 to model the uncertainties associated with solar
power and demand on the consumer side of the problem.
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2.4 Aggregator, Consumers and Grid Interactions

Currently, small-scale resources cannot directly participate in the wholesale
electricity market. Thus, in this thesis, we assume that aggregators are re-
sponsible for participating in the electricity market on behalf of consumers.
An aggregator is a service provider that manages directly or indirectly groups
of customers, e.g., consumers, in order to sell pools of loads and generators
as single products in the electricity markets Iria et al. [2019]. In this thesis, we
assume that there exists a contract between aggregators and consumers that
allows aggregators to control consumer-owned DER for market services. In
such a setting, aggregators equip their customers with a home energy man-
agement system (EMS) through which they can control DER. Consumers can
get remunerated for their services depending on their agreement with aggre-
gators. For instance, consumers might get a portion of the benefit made in
the market or a discount on their electricity bills. In this thesis, we have not
focused on the arrangements between aggregators and consumers.

Aggregators are also in charge of a) communicating with the DSO to en-
sure network feasibility and b) submitting the bids to the market. We have
shown the required setting in Figure 2.7.

There are four main parties involved in our bidding problem: consumers,
aggregators, the network, and the electricity market. DER information of
each consumer is only available to the consumer or their aggregators; the
network information is available to the DSO, and the market operator has any
market-related data. However, since the network and consumer/aggregator
problems are dependent, in each case, they communicate a limited amount of
information. This could be as simple as the connection point power as in the
approach of chapters 3, 4. Or the bid bands as in Chapter 5.
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Figure 2.7: Aggregator interactions with consumers, DSO and the market

2.5 DER and Network Modelling

Here we provide a basic energy management system (EMS) and OPF models,
which we use in chapters 3, 4 and 5 as a building block to construct our
price-insensitive and price-sensitive bidding approaches.

2.5.1 Home Energy Management System

Throughout this thesis, we assume that consumers own a rooftop PV and
a battery on top of their background load. In the following, we model the
operational constraints of each DER in detail.

Solar PV

Using t ∈ T for time, solar PV has a single variable pPV
t , which can be cur-

tailed down to zero from the forecast available solar pF
t . This can be modelled

as:

0 ≤ pPV
t ≤ pF

t (2.26)

Battery Storage

A battery has variables for charge and discharge powers pCh
t , pDis

t ∈ [0, R],
and for the state of charge Et ∈ [Emin, Emax]. These are linked with the state
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of charge (SoC) at the previous time step through the equation:

Et = Et−1 + δt(ηpCh
t − pDis

t /η) (2.27)

where R is the battery charging / discharging rate, Emin and Emax respectively
indicate the minimum and maximum battery state of charge, δt is the duration
of each time step in hours, and η is the battery efficiency where η2 gives the
round-trip efficiency. Simultaneous charge / discharge decisions are avoided
by including a binary variable ut and the following constraints:

pCh
t ≤ Rut (2.28)

pDis
t ≤ R(1 − ut) (2.29)

Combined Power

The combined household power pt is then:

pt = pDis
t − pCh

t + pPV
t − pU

t (2.30)

where we have included a parameter for the forecast household uncontrol-
lable load pU

t ∈ R.

Objective function

In this thesis, we have assumed that consumers do not have any specific ob-
jective function other than minimising their cost (maximising the benefit in
the market), which happens by the aggregator and is explained in each chap-
ter. However, if there is an additional objective in a consumer sub-problem, it
can be included in our model. We further explain this in sections 3.5, 4.5, and
5.3.1.

2.5.2 Network Model

Here, we model the distribution network constraints using the distflow equa-
tions Farivar and Low [2013]. Figure 2.8 summarises the notations. We use
i, j, k ∈ N for nodes in a tree network; pn and qn represent the real and reac-
tive power of consumer n ∈ C. FP

i , FQ
i and Ii are the active power, reactive

power and the squared current flowing into node i from the parent node k,
where the line has resistance ri, reactance xi and impedance zi. Di represents
the children nodes of node i; and Ci is the set of consumers at node i. Finally,
Vi represents the squared voltage at node i. The network constraints can be
written as:
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Figure 2.8: Distribution network notation

FP
i − ri Ii + ∑

n∈Ci

pn = ∑
j∈Di

FP
j ∀i ∈ N (2.31)

FQ
i − xi Ii + ∑

n∈Ci

qn = ∑
j∈Di

FQ
j ∀i ∈ N (2.32)

Vi = Vk − 2
(

riFP
i + xiF

Q
i

)
+ z2

i Ii ∀i ∈ N (2.33)

v2
min ≤ Vi ≤ v2

max ∀i ∈ N (2.34)

FP
i

2
+ FQ

i
2
= Vi Ii ∀i ∈ N (2.35)

0 ≤ Ii ≤ imax
i

2 ∀i ∈ N (2.36)

Active and reactive power flow equations are given through (2.31)–(2.32); The
voltage of each node is calculated through (2.33) and is enforced to be within
its safe limits (v2

min and v2
max) through (2.34). The complex power, flowing in

each line, is given in (2.35) and finally, (2.36) limits the current of each line to
the maximum line capacity imax

i
2.

Remark. As suggested in Farivar and Low [2013], the Conic relaxed con-
vexification of the network subproblem (2.31)–(2.36) can be obtained by re-
placing “=” with “≤” in (2.35). However, the OPF result of such a relaxed
problem is exact only if there is no upper bound limit on the voltages. In
other words, when the voltage upper-bound limit is binding, the obtained
results of such a relaxation do not lie within the feasible region. To avoid
such an infeasible solution, in this thesis, we use the exact non-convex model
(2.31)–(2.36) for our network sub-problem. As we show in chapters 3, 4 and
5, such a network model can be efficiently solved by the IPOPT solver.
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2.6 Network Aware Coordination (NAC)

Since the approach presented in Chapter 3 builds on network-aware coordi-
nation (NAC) Scott et al. [2019], here we provide a more thorough review
which we refer to in later chapters. NAC was used in a real-world trial to
coordinate 31 residential batteries on a constraint feeder. The batteries are
coordinated to reduce the need for the expensive diesel generator during pe-
riods of high feeder demand. The batteries in NAC were not used to provide
frequency reserve services; they were scheduled using ToU tariffs within the
ADMM approach (2.14)–(2.16) to reduce total operation cost. In the following,
we provide a more detailed description of NAC.

In the first phase of the ADMM approach (2.14), every consumer sched-
ules their resources accordingly to the ToU tariffs and DLMPs coming from
the network subproblem. In the second phase (2.15), the network operator
solves an optimal power flow problem to obtain network-feasible results. If
no network is violated (e.g., operation at off-peak periods) at the convergence
of the ADMM approach, the dual variables (DLMPs) obtained by (2.16) will
be zero. However, during peak periods when the network is overloaded, the
dual values in (2.16) get non-zero values. As a result, depending on the com-
bination of tariff price and λ (please see equation (2.13)), consumers change
their charge and discharge decision which avoids network violation. At the
convergence of ADMM, the DLMPs represent the values for which network
constraints are not violated.



Chapter 3

Network-Secure Energy and
Reserve Bidding

3.1 Introduction

In this chapter, we study a price-insensitive bidding approach that enables
aggregators to calculate consumer bids for energy, raise, and lower reserve
markets while addressing the challenges we identified in Chapter 1. The
particular challenge we address in this chapter is to ensure that DER bids are
network-secure, meaning that aggregators do not overload the distribution
network.

Alongside research, regulations are changing in favour of DER to enable
them to provide reserve services. For example, Energy Networks Australia
and AEMO agreed to commit to the Open Energy Networks Project (OpEN)
in 2018 – a project which provides greater market access to energy and re-
serve services for distribution-level DER. Such market interactions should
not create any network issues. For this to be accomplished, aggregators need
to account for network constraints when making bidding decisions – a task
which is not straightforward as the network and DER are owned and oper-
ated by different stakeholders (the DSO, consumers and aggregators). Other
than the privacy concerns of each stakeholder, they might have conflicting
operating targets making this coordination more difficult.

As explained in Section 2.2.3, the literature mainly counts on either operat-
ing envelopes or solving centralised / distributed OPFs to guarantee network
constraints. Notice that these approaches are for a wide range of applications
and not necessarily a bidding problem. In summary:

• Envelopes provide a pure local solution to the problem as they guar-
antee that no network constraint will be violated if consumers stick to
their envelopes locally. However, current proposals recommend that
distribution system operators (DSOs) should repeatedly calculate op-

44
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erating envelopes and allocate them to each DER without considering
consumer preferences, uncertainty or market participation (see Section
2.2.3). Since some consumers might need less flexibility (e.g., due to
self-consumption), such proposals can result in envelopes conservatively
limiting market-participating consumers.

• Centralised approaches provide a (near) global-optimum solution by
solving a system-wide OPF problem. Centralised methods ignore the
distributed nature of the problem and assume that a DSO can control
and schedule all DER centrally. However, even if the DSO had full ob-
servability on all consumers, modelling numerous consumers within the
grid leads to a large-scale, non-linear and non-convex optimisation prob-
lem. Due to DER state variables, such an optimisation problem is po-
tentially time coupled. Thus, it is unlikely that these approaches scale
to real-world problems, especially within a time frame required for real-
time market operation, e.g., 5 minutes in the NEM.

• A distributed approach breaks the large-scale central problem into
smaller pieces, each being solved independently while communicating
some information about their common variables. Similarly to a cen-
tralised technique, a distributed method is able to obtain (near) global-
optimum results, yet, it preserves some level of privacy for the con-
sumers. Plus, a distributed approach shares the computational burden
amongst multiple agents and, if implemented in parallel, can signifi-
cantly reduce the run time.

Based on the above comparisons between the available approaches, a dis-
tributed setting seems to be the most effective strategy for our bidding prob-
lem. It allows us to break the problem down at the level of every consumer,
resulting in a DSO subproblem and many consumer subproblems, each of
which can be solved independently using their private information. As ex-
plained in Section 2.4, we assume that aggregators are in charge of solving
consumer optimisation problems. To avoid working with any particular num-
ber of aggregators, here, without loss of generality, we assume that every con-
sumer is an aggregator. Thus, we interchangeably use the terms aggregator
and consumer to refer to the consumer sub-problem throughout this chapter.
Notice that even if there is one single aggregator managing all consumers, the
problem of every consumer can still be solved independently, either locally at
consumer EMS or on the cloud, as there are no coupling constraints between
consumer problems. This setting is introduced in NAC Scott et al. [2019] in
which consumers optimise their DER based on a retail ToU tariff while co-
ordinating with the grid using the distributed approach ADMM. For more
information on NAC, please refer to Section 2.6. Note that the problem we
deal with in this thesis is significantly more challenging than the coordination
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problem NAC was solving. Unlike the coordination in NAC, here, we do not
have a well-defined operating point for solving a distributed OPF. The reason
is that here the final operating point of consumers depends on the dispatch
in the energy market and the activation of the raise or lower reserve market,
which is random and hard to predict.

To overcome this issue, we extend NAC to enable the DSO and aggrega-
tors to negotiate operating envelopes for every consumer rather than negoti-
ating consumer CPPs. Moreover, our solution approach builds on the litera-
ture of operating envelopes in two main ways. 1) It brings consumer prefer-
ences into envelopes as aggregators can now negotiate operating envelopes
that reflect their customers’ preferences rather than having the envelopes dic-
tated to them by the DSO. 2) It brings a system-wide perspective to the local
envelopes. Thus, similarly to a distributed approach, we can obtain (near)
global-optimum results.

To ensure that our envelopes and bids account for uncertainty variabilities,
such as those around solar PV power and demand, we implement our ap-
proach on a model predictive control (MPC) framework that moves forward
in lock with the real-time market, i.e., 5 minutes in the NEM. This also allows
aggregators to include consumers’ latest battery state of charge (SoC) in ev-
ery optimisation. Notice that battery SoC can change depending on whether
or not a contingency occurs. If a contingency does occur, the significance of
the desired response can also impact the battery SoC. In summary, every 5
minutes, aggregators use their customer’s latest (the most accurate) uncer-
tainty information and battery SoC to negotiate with the grid their operating
envelopes and obtain the network-secure energy and reserve bids.

We organise this chapter as follows: we first provide an upfront descrip-
tion of our method in Section 3.2. We then present our decomposition and
ADMM approach in Section 3.4. We next provide a simple two-node test sys-
tem and discuss the conditions on which our solution approach might fail
to provide a feasible answer in Section 3.3. We present our consumer bid-
ding optimisation to obtain inflexible energy and reserve bids in Section 3.5.
We continue this chapter by presenting the detailed network subproblem in
Section 3.6. The model predictive control implementation of our approach is
described in Section 3.7. In Section 3.8, we illustrate the effectiveness of our
solution approach by comparing it with a network-free as well as three com-
parative approaches based on operating envelopes. Finally, we summarise
our approach and findings in Section 3.9.

3.2 The General High Level Problem

Figure 3.1 shows a general scheme of our distributed bidding approach that
is repeated at every MPC iteration. As can be seen in Figure 3.1, we decom-
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pose the problem so that the DSO and every aggregator (here consumer) have
their own subproblems. In a consumer subproblem 1 , each consumer uses
the wholesale market as well as the distribution locational marginal prices
(DLMPs) to optimise their energy and reserve bids. DLMPs are the La-
grangian multipliers (dual variables) for the energy conservation constraint
at each distribution node and are obtained within the ADMM approach. No-
tice that DLMPs are different from LMPs in the transmission network and
are meant to ensure distribution network security. If consumer behaviours do
not violate the network, DLMPs will be zero. However, in case of a network
violation, DLMPs increase to encourage consumers to change their behaviour
until no constraint is violated. Consumers then communicate to the grid their
required operating envelope1.

Next, the network subproblem 2 solves two OPFs, each associated with
one extreme of the envelope, to ensure the secure operation of the network.
The reason why we only use two OPFs is to ensure network feasibility for
the worst-case conditions in which consumers are simultaneously injecting
/ withdrawing power to / from the grid (we will elaborate more on this in
the upcoming section). The consumer and DSO negotiate until they converge
to (near-) optimum and network-secure bids, as well as operating envelopes
that satisfy network limits. Finally, the obtained network-secure bids 3 are
submitted to the wholesale market.

DSO:

(AC-OPF)

Aggregator:

Energy-reserve 

Co-optimisation 

Aggregator:

Energy-reserve 

Co-optimisation 

Consumer:

Energy & Reserve

Optimisation
ADMM Negotiation

Wholesale 

Electricity 

Market

Bids LMPs

Envelopes

1
2

3

Figure 3.1: Overall network-secure bidding approach

In the following, we separately explain each part of the proposed ap-
proach. We start with a 2-node system in Section 3.3 and discuss the con-
ditions under which our proposed approach provides a feasible solution. We
next present (at high-level) our distributed approach in Section 3.4 and then
thoroughly model the consumer and network subproblems of the proposed
approach in sections 3.5 and 3.6, respectively.

1In this chapter, operating envelopes only cover consumers’ connection points associated with their
real power. We add the reactive power into our calculations in chapters 4 and 5.
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3.3 Illustrative Example: A 2-Node Test System

In Section 3.2, we mentioned that we obtain the operating envelopes by solv-
ing two OPFs associated with the extreme cases where all consumers are
simultaneously injecting / withdrawing power to / from the grid. However,
since the OPF problem is non-convex, there might be cases where OPF gives
a feasible solution at the extremes yet infeasible for some values within the
envelope. Here, we use a simple 2-node test system, shown in Figure 3.2,
to explain conditions under which using two OPFs for the operating enve-
lope provides a feasible solution. To do so, we first provide an example of a
case where solving OPFs for the extremes fails to provide feasible operating
envelopes and explain how our assumptions avoid such cases. We then use
more realistic conditions and study the infeasibilities within the envelopes
(holes in the feasible region as explained in Nazir and Almassalkhi [2021]).
We observed that for realistic impedance values (even when our assumptions
are neglected), holes are not formed, and thus checking the extremes can
provide safe operating envelopes.

r + 𝑗𝑥 𝐼! 𝑉!𝑉" = 1

𝑃!

Figure 3.2: A 2-node test system

3.3.1 Extreme Case

Let us use impedance of r = 0.55 p.u. and x = 1.33 p.u. – values used
in Nazir and Almassalkhi [2021]. Notice that such a r

x ratio is not realistic
in distribution networks where r

x > 1. Assuming zero reactive power and
equations (2.31)–(2.35), we plot the voltage with respect to the real power
injection at bus 1 in Figure 3.3.

According to Figure 3.3, the voltage at bus one initially increases as real
power injection increases. This area is where the sensitivity of the voltage
to real power injection is positive. However, from a point onward, the volt-
age starts dropping as more real power is injected. This is the area where
the sensitivity of voltage to the real power injection is negative. From this
point onward, the current and thus the losses in the system increase to a
point where the voltage decrease associated with losses overcomes the volt-
age increase associated with real power injection. Notice that this figure is
produced assuming that lines’ thermal limits are not violated.
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Figure 3.3: Voltage of node 1 for different real-power injections

The green / red arrows Figure 3.3 show the voltage feasible / infeasible
points of the envelope. One can interpret the red region as an infeasible hole
within the envelope. In other words, if the extreme is given as the envelope
(0 to the third pink dotted line in Figure 3.3), there will be points within the
envelope where the network constraints are violated while the extreme points
themselves satisfy the voltage limits. This means checking the extreme points
alone (as we suggest) will not be enough to ensure a voltage-safe envelope.
However, notice that in such a case, the sensitivity of voltage to real power
injection will be negative, i.e., δv

δp ≤ 0, while we design our approach for

regions where δv
δp ≥ 0. In other words, our suggested envelope, in this case,

will be from 0 to the first pink dotted line. Notice that losses in the next
green region are significantly high, and power systems are not designed to
work at these inefficient operating points. We plot the current and injected
power at bus one, together with the power received at the top of the feeder
(what reaches the market) in Figure 3.4.
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Figure 3.4: Top of the feeder power and current for different real power injection

The dark green diagram shows the power reaching the market, and the
blue line is the power injected at bus 1 (the difference between the two shows
the losses). As can be seen in Figure 3.4, the losses and current are signifi-
cantly higher in the second green interval where the OPF solution (ignoring
the thermal limits in this case) is feasible, yet δv

δp ≤ 0. Notice that charts in
Figure 3.4 finish at the voltage collapse point – a point from which onwards
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the power flow equations do not have a solution.

3.3.2 Realistic Case

We have plotted a similar figure as in 3.3, but instead of arbitrary values for r
and x, we have summed the impedance of all lines in the 69-bus and 141-bus
distribution networks and used it to generate the equivalent two bus net-
work. The total impedance for 69 and 141-bust test systems are respectively
14.75+j6.69 p.u. and 4.92+j3.32 p.u2. These values are calculated using the
nominal voltage as the based voltage (Vbase) and apparent base power, i.e.,
Sbase = 100MVA. We show the voltage profile for the injection at bus 1 in
Figure 3.5.
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Figure 3.5: Voltage of bus 1 for different real-power injections

As plotted in Figure 3.5, using realistic impedance values, the system
reaches the voltage collapse point (where OPF becomes infeasible) before the
voltage can get back to the feasible region and create infeasible holes. Thus,
even if δv

δp ≥ 0 condition is neglected, in practice, only the first green arrow
in Figure 3.3 is acceptable. Also, it is worth mentioning that these figures are
plotted neglecting the thermal limits of the lines / transformers. However, if
thermal constraints are included, the feasible region will shrink further. For
example, as shown in Figure 3.5-a, the thermal limit of the transformer hits
before the voltage sensitivity to real-power injection becomes negative. In

2Notice that, unlike the previous case, in these networks we have: r
x > 1.
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this chapter, we have neglected reactive power; we further discuss the effect
of reactive power on the feasible region in Chapter 4.

Remark The above example is for a balanced network. If the network
is not balanced, using 2 OPFs for the extremes of the envelopes might not
provide enough guarantee for the network feasibility. This is because the
negative mutual impedance of lines may result in conditions in which the
OPF is satisfied for the extreme condition, yet if one consumer injects less
than the extreme, the network can be violated. In this thesis, we only focus
on balanced networks and leave further study in this regard to future work.

3.4 The ADMM Algorithm

We treat each consumer n ∈ C as a generating unit exchanging with the grid
the real power pe

n ∈ R|T| at each time step in horizon T. Consumers can
increase / decrease their output (with respect to pe

n) to provide raise / lower
reserve services pr

n / pl
n ∈ R|T| leading to their maximum pn / minimum p

n
power exchange with the grid (i.e., [p

n
pn] presents the operating envelope of

the consumer). We put pn and p
n

in a vector pn ∈ R2|T| to increase readability.
Consumers also have their own internal variables xn as well as the objective
and constraint functions fn and gn which take pn and xn as inputs. We drop
the subscript to represent all consumer exchange powers, p ∈ R2×|C|×|T|,
which together with the network internal variables y are inputs to the net-
work’s own constraint function h. The multi-period OPF can be written as:

min ∑
n∈C

fn(pn, xn) (3.1a)

s.t. ∀n ∈ C : gn(pn, xn) ≤ 0 (3.1b)
h(p′, y) ≤ 0 (3.1c)
p − p′ = 0 (3.1d)

In the above, we have duplicated the real power exchange variables, so the
consumers and the network have their copies (p and p′). The duplicated
variables are enforced to have the same values through (3.1d), which is the
equation we will now relax to decompose the consumers from the network.

The penalty term of the augmented Lagrangian applied to the equality
connection constraint (3.1d) is:

L∗(p, p′, λ) = λ⊺(p − p′) +
ρ

2
||(p − p′)||22 (3.2)

λ := [λr λl]
⊺ is the vector of dual variables for the relaxed constraints (3.1d)
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and ρ ≥ 0 is the penalty parameter of the augmented Lagrangian. We use the
ADMM algorithm, explained in Section 2.3.3 to iteratively solve (3.1a)−(3.1d)
to its optimum. The ADMM algorithm has three phases per iteration k:

p(k) := min
p,x ∑

n∈C

[
fn(pn, xn) + L∗

n(pn, p′(k−1)
n , λ

(k−1)
n )

]
s.t. ∀n ∈ C : gn(pn, xn) ≤ 0 (3.3a)

p′(k) := min
p′,y

L∗(p(k), p′, λ(k−1))

s.t. h(p′, y) ≤ 0 (3.3b)

λ(k) := λ(k−1) + ρ(k) · (p(k) − p′(k)) (3.3c)

Notice that both the objective and constraints of each consumer n ∈ N in
(3.3a) are independent; thus, every consumer can solve their problem sep-
arately and in parallel. In the first phase (3.3a), consumers optimise for p,
holding p′, and λ constant at their k − 1-th values. In the second phase (3.3b),
the network optimises for p′, holding p and λ constant at their k-th and k − 1-
th values, respectively. Finally, the dual variables λ are updated in (3.3c),
completing the k-th iteration.

Through (3.3a)–(3.3c), consumers schedule their appliances to obtain their
bids for each market. They then communicate with the network their pre-
ferred operating envelope that covers the potential maximum and minimum
CPPs that can realise as a result of their raise and lower reserve bid activa-
tion. The DSO then checks whether consumer envelopes satisfy the network
constraints and updates λ accordingly. When the algorithm converges, λ rep-
resents the price of having the network constraints satisfied at the extremes
of the envelope. Compared to a central approach which requires all of the
information of all of the consumers3, our approach only requires consumers’
preferred minimum and maximum connection point power, i.e., operating en-
velopes. Thus, not only does our approach provide a higher privacy level for
consumers, but also (from the data communication perspective) the necessary
data exchange is much simplified.

3This information includes consumers’ battery SoC, PV power, their uncontrollable load and any
other appliances a consumer might have.
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3.4.1 Stopping Criteria and Convergence

In line with Boyd et al. [2011], we define the stopping criteria using primal
and dual residuals as follows:

R(k)
p :=

(
(p(k)1 − p′(k)1 ), (p(k)2 − p′(k)2 ), ...

)⊺ (3.4a)

R(k)
d :=

(
ρ(p′(k)1 − p′(k−1)

1 ), ρ(p′(k)2 − p′(k−1)
2 )...

)⊺ (3.4b)

The primal residuals (3.4a) represent the constraint violation at the current
solution, and the dual residuals (3.4b) the violation of the KKT stationarity
constraint Boyd et al. [2011].

To feed the proposed approach with the latest uncertainty information
and obtain more accurate results, we implement (3.3a)–(3.3c) within a model
predictive control framework. More explanation on our model predictive
control implementation is given in Section 3.7.

3.5 Consumer Subproblem

We break the DER constraints into two groups: constraints for linking the
absolute raise and lower quantities to biddable values for the FCAS markets,
and those related to the physical and operating limits of the DER. Notice
that consumers solve their bidding problems independently. Thus, we work
with one consumer at a time, so here, we drop the subscript n to increase
readability.

3.5.1 Market Linking Constraints

Let pe ∈ R|T| be the vector, including consumer bids into the energy market at
different time steps. We also introduce a pair of variable vectors ∆pr

m, ∆pl
m ∈

R
|T|
≥0 for each frequency market m ∈ M, to represent the amount of raise and

lower capacity to bid into the market. Consumers increase / decrease their
injection by ∆pr

m / ∆pl
m, with respect to their energy bid pe, to provide raise or

lower reserve services. Therefore, the corresponding power exchanged with
the network in each case can be given by the related variables pr

m, pl
m ∈ R|T|,

where:

pr
m = pe + ∆pr

m (3.5a)

pl
m = pe − ∆pl

m (3.5b)

A reserve response is only required from one market at a time. So, when
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checking network feasibility, we only need to consider the most extreme raise
/ lower values. We write this as the max and min over the markets, which
we relax as follows:

p = max
m∈M

(pr
m)⇝ p ≥ pr

m ∀m ∈ M (3.5c)

p = min
m∈M

(pl
m)⇝ p ≤ pl

m ∀m ∈ M (3.5d)

We expect this to be an exact relaxation since larger p or smaller p will lead
to more active network constraints (relative to pe) rather than any benefit to
the network subproblem. Depending on the required frequency response, the
consumer injection can be anywhere between the minimum p and maximum
p, which makes the consumer’s operating envelope.

The cost associated with the market participation is given by the following
component to the objective function:

∑
t∈T

δt

(
πe

t pe
t + ∑

m∈M

(
πr

m,t∆pr
m,t + πl

m,t∆pl
m,t

))
(3.5e)

where δt is the time step duration in hours; πe
t is the wholesale energy market

price at t; and πr
m,t / πl

m,t are the prices of the raise / lower reserve market
m at t. These amounts are payable whether or not a contingency actually
occurs. However, a contingency can have a small impact on the SoC of the
battery. To approximate any lost or gained energy due to reserve deployment,
we model the probability of a contingency event occurring for each market
µl

m,t and µr
m,t

4, and assume that the value of the lost / gained energy is at the
energy market price πe

t :

∑
t∈T

∑
m∈M

πe
t · δ′m

(
µr

m,t · ∆pr
m,t − µl

m,t · ∆pl
m,t

)
(3.5f)

where δ′m is the worst-case number of seconds, we would need to be deployed
for each market m for a single contingency. The significance of these deploy-
ment costs shrinks to zero as contingencies become rarer.

In our example, (3.5e), (3.5f) and the Lagrangian penalty term (3.2) are the
only values in the objective; however, other forms of DER might have addi-
tional costs associated with the operation, and there may be other electricity
charges such as network tariffs.

4These values can be updated every five minutes as our MPC moves forward.
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3.5.2 DER Constraints

We need to ensure the DER constraints are satisfied under participation in
each market, including a case where no frequency support is required. We
presented the DER constraints in Section 2.5.1. We duplicate the same DER
variables and constraints for each scenario of interest, i.e., pe, pr

m, or pl
m. Re-

garding the battery SoC constraint (2.27), we use the previous SoC form the
energy market, i.e., Et−1 for raise and lower FCAS scenarios. The reason
is that raise, and lower bids are capacities, and thus, there is no guarantee
whether they are deployed. Every 5 minutes, when we rerun our optimisa-
tion, we take the latest SoC into account. Therefore, if reserves happen to be
deployed within a time step, our approach still takes it into account.

3.5.3 The Combined EMS Subproblem

We model the optimisation problem of consumers within a home energy man-
agement system (EMS). In summary, the EMS subproblem for a single cus-
tomer is to minimise the sum of (3.5e), (3.5f) and the associated Lagrangian
penalty term (3.2). The constraints consist of the market linking constraints
(3.5a–3.5d), and 7 copies of the DER variables and constraints (2.27–2.30), one
for each market: pe, pr

m and pl
m, where m ∈ {1, 2, 3}.

3.6 Network Subproblem

Since there are no time coupling constraints in the network subproblem (un-
like in the EMS subproblem due to the battery SoC constraint), the network
subproblem for each time step t can be solved separately. The objective value
for the network subproblem consists of just the corresponding Lagrangian
penalty term (3.2).

Our network model includes two OPFs, one for each extreme case in the
operating intervals p and p. Therefore, we repeat constraints (2.31)–(2.36)
twice for the duplicated envelope variables, i.e., p′, p′. It is worth mentioning
that the two sets of OPFs are solved within one ADMM approach. This is be-
cause the upper and lower bound of the operating envelopes are dependent
in the original central problem. Thus, we cannot use two separate ADMM
approaches (one for the upper and another for the lower bounds of the en-
velope). Fortunately, since ADMM breaks the central problem into smaller
subproblems, it can deal with large-scale problems that might not be solvable
centrally. We provide further discussion on the performance of ADMM on
larger networks in Chapter 5 using a realistic network.

Remark Notice that we only check the network constraints at the edge
cases. In other words, we assume that if the network is not violated at its edge
operating points, it also will not be violated for operating points less extreme
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than the edge cases. For this assumption to hold, we need the network to
be radial and operate in the voltage-stable band. As explained in our 2-
node example, since the distribution networks are either radial or operated
radially, we expect that such an assumption does not limit the real-world
application of our approach. For more information on this, please see our
proof in Appendix A.4.

3.7 Model Predictive Control

To use the latest uncertainty information, including the most accurate PV
power, residential demand, the energy and reserve market price forecasts, we
apply our proposed network-aware optimisation approach within a model
predictive control framework. In this method, we run our proposed approach
in lock with the electricity market time frame (i.e., every 5 minutes as in the
NEM). This also allows us to update the SoC value in every re-optimisation
(as the SoC might change when consumers respond to the frequency devi-
ations). Note that even though consumer decisions are enacted only for the
first five minutes of every optimisation, we solve a multi-period problem at
every horizon. This ensures that the decisions in the first five minutes are not
shortsighted.

In summary, at each MPC iteration, our ADMM approach negotiates be-
tween two blocks of subproblems (i.e., consumers and network). In the con-
sumer block, we have consumers solve a self-scheduling problem indepen-
dently, and since the problem is for one consumer, it is easily solvable. The
network block includes 576 OPFs5 that can be solved independently and in
parallel.

3.8 Results

To illustrate the effectiveness of the proposed approach, we use the 69-bus
distribution network Savier and Das [2007], given in Appendix A, modified
with 207 consumers. Each consumer is equipped with a 5kW PV system and
a 5kW / 10kWh battery with round-trip efficiencies of η2 = 90%. We use
anonymised solar and demand data for 27 consumers in Tasmania, Australia
Scott et al. [2019], and randomly assign this data to the consumers in our
networks. The 207 consumers on our study day consume a total of 3,613 kWh
(≈ 17.5 kWh per consumer per day). Minimum and maximum overall load at
different hours are 63.5 kWh and 281.1 kWh, respectively, with average hourly
consumption of 150.5 kWh. PV power generation of our 207 consumers for

5This includes 288 OPFs (24 hours discretised every 5 minutes) for the upper bound of the envelope
and 288 OPFs for the lower bound of the envelopes for the next 24 hours.
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the same day aggregates to a total of 4,166 kWh (≈ 20 kWh per day per
consumer). Total hourly PV generation (during our study day) varies between
0 kWh to 772.9 kWh, with the average hourly generation of 173.6 kWh. The
PV/load proportion during peak PV generation in our study day is 4.49.

We participate in 7 markets (1 energy, three raise and three lower contin-
gency FCAS markets). The 5-minute energy and reserve market prices are
taken from the NEM, which are also provided in Appendix A. Finally, we use
the Gurobi and IPOPT solvers in JuMP, Julia Dunning et al. [2017] to solve
our consumer and network subproblems.

Notice that the approach presented in this section is independent of the
markets and can work for any electricity market that allows aggregator bid-
ding. In fact, we only need to set m to the number of available reserve markets
and use the price forecasts from the desired market (either day-ahead or real-
time forecasts depending on the market) in the objective function (3.5e).

3.8.1 No Market Participation

In this section, we assume that consumers do not directly participate in the
electricity market. Consumers use one of the following strategies to schedule
their DER:

1. Self Consumption: in which consumers cannot inject any power into the
grid. Thus, they use their DER to meet their own demand and reduce
their electricity bill when there are time-of-use (ToU) retail tariffs.

2. ToU+FiT: in which consumers are paid according to a feed-in tariff (FiT)
for the power they inject into the grid. The consumer objective function
minimises the combined cost of purchasing electricity at a ToU tariff and
selling it at a FiT.

Table 3.1 reports the ToU and FiT prices used in our experiments.

Table 3.1: Time-of-use and feed-in tariffs

ToU
FiT

Peak
7-9am, 5-8pm

Shoulder
9am-5pm, 8-10pm

Off peak
All other time

21.868 ¢ 17.160 ¢ 12.793 ¢ 7.5 ¢

We report the total benefit obtained using self-consumption and ToU+FiT
approaches together with a case where consumers do not own any battery
(No Battery) in Table 3.2. Notice that when consumers do not own any bat-
tery, they are not able to shift their load from peak price to off-peak price
in the ToU tariff. Thus, as reported in Table 3.2, they have obtained the least
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benefit. On the contrary, with batteries, consumers manage to significantly re-
duce their bills by 208% (self-consumption) and 790% (ToU+FiT). Since these
approaches limit DER flexibility to either self-consumption or injection at FiT,
they did not push the distribution network towards its limits.

Table 3.2: Total benefits: no market participation

Approach No Battery Self Consumption ToU+FiT
Total Benefit ($) -1295.9 -420.3 -145.4

3.8.2 Active Market Participation

In this section, we study the case where consumers actively participate in
the wholesale market. To evaluate the benefit of our bidding approach, we
compare the performance of the following three methods:

1. Energy: in which consumers only participate in the energy market. We
use energy prices in the consumer objective subject to constraints (2.27)–
(2.30) to ensure DER operational limits only for the energy market. We
develop this approach to investigate the benefit that participating in the
energy market brings compared to the no-market-participation strategy
presented in the previous section. Plus, this approach provides insights
into the effectiveness of participating in the reserve market on top of the
energy market.

2. Sequential: in which consumers sequentially participate in the energy
and reserve markets. To do so, consumers first use a similar approach as
in Energy to obtain their bids for the energy market. They then calculate
their raise and lower reserve capacities for their obtained energy bids.

3. Co-optimised: in which consumers co-optimise their decisions in energy
and reserve markets, based on the approach we presented in this chap-
ter.

To compare different aspects of our bidding approach, we will introduce
other approaches (where needed) in the rest of this section. To study our ap-
proach in detail, we first report the one-day performance of our approach and
then present the three-month benefit of consumers using different approaches
at the end of this section.

3.8.2.1 Network-Free Economic Performance

Table 3.3 gives the total benefit broken down into each market when the net-
work is neglected for the market price data on 22 January 2020.
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Table 3.3: Total benefits ($) network-free

Market
Approach

Energy Sequential Co-optimised
Energy 679.5 679.5 252.2

Raise
6-sec – 982.8 1700.0
60-sec – 477.4 920.2
5-min – 73.4 87.9

Lower
6-sec – 13.8 113.4
60-sec – 19.0 22.7
5-min – 19.4 22.4

Total 679.5 2265.1 3118.7

Compared to Table 3.2, consumers obtain a significantly higher benefit
when actively participating in the wholesale market. The reason is that con-
sumer DER, such as batteries, obtain benefits by arbitraging energy (charg-
ing at low-priced periods and discharging at high-priced periods). How-
ever, using a ToU+FiT approach, consumers still use their batteries for self-
consumption as FiT price is lower than prices within the ToU tariff.

Moreover, as expected, participating in reserve markets improves the total
benefits significantly. Compared to the energy approach, sequential and co-
optimised approaches could respectively obtain ≈ 230% and ≈ 360% higher
benefits. The reason is that the co-optimised approach is able to make the best
decisions as it can allocate the available flexibility optimally to each market.
However, the sequential strategy focuses on the energy market. That is why
the benefit of the sequential in the energy market is equal to the Energy case
and higher than the energy benefit in the co-optimised approach.

Since the network constraints are neglected, the above approaches can vi-
olate the distribution network constraints. Table 3.4 reports the number of
voltage violations in each approach. Notice that to report under / overvolt-
ages for the FCAS market, we do not model a contingency. Instead, we have
checked whether the consumer response violates any network constraints
when, hypothetically, a contingency occurs. Notice that there are 69 nodes
in our network, and thus, a voltage violation of 69 is possible at every op-
erating interval. Given our 5-minute time discretisation, the total possible
violation in each market is 19,872 (69 × 288). Since the energy case does not
participate in any FCAS market, no network violation has been reported for
it in the FCAS market.

We next include network constraints and complete our network-secure
bidding approach. We find that the Co-optimised approach only takes a small
loss once it is network-secure. So, it still significantly outperforms the other
methods. For this reason, we focus on the co-optimised approach in the rest
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Table 3.4: Voltage violations in the network-free scenario

Approach
Number of Violations

Undervoltage Overvoltage Total
Energy FCAS Energy FCAS

Energy 166 – 151 – 317
Sequential 166 1591 151 584 2492

Co-optimised 238 3283 406 1164 5091

of our experiments.

3.8.2.2 Network-Secure Economic Performance

Figure 3.6 reports the network-secure benefits obtained by the proposed co-
optimised approach compared to the network-free case. As can be seen,
slightly lower benefits are obtained when the network is included ($ 3094.9
vs. $ 3118.7). This is because the DER integration level is higher than the net-
work’s capacity, and thus, DER need to be limited to avoid network violation.
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Figure 3.6: Total benefit: network-secure vs. network-free

Minimum and maximum voltages across all nodes and all markets for
our co-optimised approach are given in Figure 3.7. The Grey colour shows
the network-free voltages while the green colour shows the network-secure
results.

Figure 3.7: Min and max voltages: network-secure vs. network-free
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As plotted in figure 3.7 the voltages of our network-secure approach falls
into the safe voltage envelope (i.e., 0.95 ≤ v ≤ 1.05) for any energy or raise /
lower reserve activation scenario.

3.8.2.3 ADMM-based Envelopes vs. Literature

In this section, we investigate the effectiveness of our proposed envelopes
based on the ADMM approach with some available envelopes as follows:

1. Fixed Export Limits: here, inspired by real-world practice, we impose a
5kW export limit on every consumer.

2. Fixed Envelopes: here, the DSO uses the maximum PV and minimum
demand during a day to obtain envelopes of the same width for every
consumer. Notice that in practice, this is done over a year or a season.
Therefore, in reality, such envelopes are much more restrictive. Plus,
here, we also assume that the DSO has a perfect forecast of every house
demand and PV power generation for the entire day.

3. Dynamic Operating Envelope: here, the DSO runs an OPF every 5 min-
utes to obtain envelopes of different widths for every consumer. The
goal here is to maximise the network throughput given consumer back-
ground loads, PV generations and batteries. Including consumer infor-
mation allows the DSO to obtain representative envelopes, yet in reality,
such information is not available to the DSOs, and thus, the envelopes
could not be this representative.

Table 3.5 reports the total benefits obtained using the introduced operating
envelopes as well as network-free and our proposed NAC-based envelopes.
The reported run times are obtained using a laptop computer with a 2.50 GHz
Intel(R) Core(TM) i7 and 8 GB of memory.

Table 3.5: Total benefit: network-aware vs. operating envelopes

Approaches Benefit ($) Time (s) # Violations
Network-Free 3118.7 0.018 4524
Fixed Export 2796.8 0.031 1756
Fixed Envelope 2936.8 0.053 0
Dynamic Envelope 3015.9 0.053 0
Proposed 3094.9 27.21 0

As reported in Table 3.5 fixed export limits could not meet the constraints
of the network. The reason is that when batteries come into the picture, lim-
its for withdrawing power also become crucial. Moreover, as the 5kW limit is
not obtained through optimisation, this approach reduces the aggregator ben-
efit more than other approaches. Coming up next, both fixed and dynamic
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operating envelopes assume that perfect information is available. So, they
can obtain representative envelopes. However, our network-aware approach
could attain higher benefits (+5% and +3% compared to fixed and dynamic
envelopes, respectively), whilst the DSO in our approach does not require any
consumer information other than their CPPs. The time reported for fixed and
dynamic operating envelopes do not include network optimisation time. The
reason is that we assume the DSO could do this in advance of the operating
interval. However, the time reported for our network-aware approach does
include both consumers and network solve time. Given the 5-minute opera-
tion clock of the electricity market, all the reported times are reasonable and
not limiting in a real-time biding context.

3.8.3 Computation Performance

We decompose each consumer from the network. Thus, within a single
ADMM iteration, all our consumer subproblems can be solved separately
(either in parallel or sequentially). Also, notice that the energy coupling con-
straints are a part of the consumer subproblem (e.g., battery SoC constraint).
Meaning that from the grid perspective, there is no time-coupling constraint
in the network subproblem, and thus our network subproblem can be sep-
arated into an OPF for each time step and each power flow scenario under
consideration, i.e., extremes of the envelopes. Therefore, the multiperiod net-
work problem will translate into multiple single-period subproblems. This
allows parallel computation, which reduces the computational time signifi-
cantly.

We report the total computational time of our expected fully parallel time
in Table 3.6. In the reported time, we consider the slowest separate subprob-
lem at every iteration. In a practical setting, while the parallel computation
time presented for the consumer and network subproblems is representative,
we expect an additional overhead due to any communications latency. For
instance, if there is a 500 ms delay in the communication infrastructure, given
95 iterations, this adds 47.5 seconds over the reported time. Table 3.6 reports
the model size and solve time for the subproblems in a single horizon (the
longest horizon) and their contribution to the overall solve time in our par-
allel implementation. Notice that the constraints and variables reported in
Table 3.6 is for a single problem that can be solved in parallel. We report the
total number of the same problem that we need to solve in every iteration in
parentheses in Table 3.6.

As can be seen in Table 3.6, the total convergence time for a single horizon
of our approach, in parallel computation, is 27.21s for our 69-bus distribution
network. This computation time is reasonable, given the problem sizes as well
as our strict convergence tolerance (i.e. 10−5), which represents at most a 0.5
Watt error. Yet, in practice, we could run our approach with weaker tolerances
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to reduce the number of iterations, and thus, overall time. In addition to
this, when employed in an MPC context, warm-starting solutions can lead to
further significant iteration reductions.

Table 3.6: Problem size and solve time

Sub problem
Problem size

# Iter Time (s)Single Opt. (#total)
# Constraints # Variables

Consumer 9497 12384 (207)
95

15.73
Network 275 482 (576) 11.48
Total 2,203 k 2,980 k 27.21

3.8.4 Optimality and Convergence

Notice that our ADMM algorithm converges when the primal (3.4a) and dual
residuals (3.4b) are smaller than 0.5 watts. To check the optimally of our dis-
tributed approach at our 0.5 watts convergence tolerance, we solve the bid-
ding problem centrally and compare the results with the ones obtained via
our distributed approach in Table 3.7. Notice that the central approach leads
to a large-scale optimisation problem that includes all the variables / con-
straints of both consumers and the network subproblems. The total number
of variables / constraints is reported in the last column of Table 3.6.

Table 3.7: Central vs. distributed

Approch Benefit ($) Time (s)
Improvement %
(benefit , time )

Central 3095.5 1404.4 (-,-)
Distributed 3094.9 27.21 (-0.02, 3845)

Remark Whether central or distributed, this thesis deals with a non-convex
OPF problem. While in practice, the IPOPT solver can sufficiently solve the
OPF problem, in theory, we can only be sure that the benefits reported in
Table 3.7 are local optimum solutions.

3.8.5 Additional Improvement to Envelopes

In the real world, there might be some cases in which the DSO needs to obtain
a set point for its own facilities, such as on-load tap changers (OLTC), voltage
regulators and capacitor banks. In the context of envelopes, the DSO only
has access to the extreme CPPs that may not occur due to the rare nature of
contingency. So, it might be challenging for the DSO to find the optimum set-
points for these technologies. To account for this, we suggest communicating
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Figure 3.8: The primal and dual residual convergence

another point within the envelope reflecting consumers’ CPP in the normal
operating condition, i.e., pe in which no reserve service is activated. Here,
consumers communicate three points with the grid. These points are their
envelopes p, and p as well as their CPP in the energy market, i.e., pe. The
DSO also solves three OPFs, one for the energy case and two others for the
extremes of the envelope. Since the energy case represents the normal oper-
ating condition, the DSO can operate its technology using the OPF associated
with the energy case pe.

Table 3.8 compares the performance of negotiating only the operating en-
velopes (2 points) versus negotiating 3 points (2 points for the envelope and
1 for the energy dispatch). In our experiments, the DSO does not own any
particular technologies. Thus, as reported, both approaches obtain the same
total benefits for the consumers. Notice that although the additional operat-
ing point adds 288 OPFs to every ADMM iteration, the convergence time of
the parallel implementation only increased by 3 seconds.

Table 3.8: Total benefit, size and time: two vs. three points envelopes

Negotiation Benefit ($)
No. OPFs
per Iter.

Convergence
Time

p, p 3094.9 576 27s
p, pe, p 3094.9 864 30s
Increase 0% +33% +11%

3.8.6 Longer-Term Network-Secure Consumer Benefit

To show the longer-term consumer benefit, we report the average consumer
benefit over 3 months for different use of DER. Table 3.9 reports the total
benefit when consumers use ToU tariff + FiT prices and do not actively par-
ticipate in the electricity markets (tariff prices are given in Table 3.1). Plus,
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when they only participate in the energy market, and finally, when they par-
ticipate in both energy and FCAS markets. The market prices used in this
study are for the NSW region from 1 January until 31 March 2021.

Table 3.9: Three months electricity bills of a single consumer

Approach
Benefit ($)

Daily
3 Months

Min Max Ave.
ToU+FiT -2.98 1.55 -0.21 -18.72
Energy -0.59 6.14 0.58 51.97
Energy+FCAS 0.22 8.05 1.75 158.03

3.9 Summary

We developed an ADMM-based approach in distribution networks to enable
residential consumers to participate in both energy and reserve markets. In
our approach, the DSO and consumers negotiate frequently using the ADMM
algorithm and converge on a consensus solution that does not violate con-
sumers or the network constraints.

We illustrated the effectiveness of our approach using 207 consumers,
served through AEMO, within a 69-bus network. Our results show significant
improvements compared to cases in which the decisions in energy and FCAS
markets are not co-optimised. Also, through a voltage analysis, we compared
the voltages on the network when the co-optimisation neglects the network
constraints with the proposed approach. The results revealed that neglecting
the network can lead to infeasible solutions violating the safe voltage limits
at different times of the day. We also compared the results of our NAC-based
envelope with three operating envelope approaches. Although we used the
perfect information to obtain dynamic envelopes, our NAC-based envelope
could still obtain higher benefits whilst not requiring detailed consumer in-
formation.

In this chapter, we assumed that the forecast for the next five minutes
is accurate, meaning that consumers can stick to their envelopes during the
5-minute operating interval. However, consumers might deviate from their
envelope if the uncertainty realisations are different from the forecasts. Such
envelope violations can push the network outside its borders, especially if the
grid is operating at its edges. In the next chapter, we build an adjustable con-
troller within the consumer subproblem that enables consumers to commit to
their envelopes.

In addition, based on the results of Section 3.8.2.2, we identified that the
voltages in our test system are the main network issue restricting consumers.
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In the upcoming chapter, we enable consumers to provide reactive power
for voltage support purposes and investigate whether this can increase con-
sumers’ network access, i.e., wider operating envelopes.



Chapter 4

Operating Envelopes for Reliable
Consumer Bidding

4.1 Introduction

Similarly to Chapter 3, here, our approach to guaranteeing network technical
limits in a consumer bidding problem builds on the notions of operating en-
velopes and distributed optimisation. Yet, here, we additionally model data
uncertainty (using piecewise affine controllers); and extend the operating en-
velopes to include reactive power in addition to the real power. These im-
provements enable consumers to 1) deliver their market commitments while
sticking to their operating envelopes and 2) provide reactive power support
that can increase network throughput.

Over the life of this thesis, operating envelopes have also become increas-
ingly popular amongst system operators. In 2019, the Australian Energy
Market Operator (AEMO) and Energy Network Australia published a report
identifying operating envelopes as a required capability to ease DER market
participation AEMO and Energy Networks Australia [2019]. Placing limits
on the real power injection to the grid (e.g., on excess solar PV) is a common
practice worldwide, such as in Germany and Arizona, USA. When storage
comes into the picture, these limits must be two-sided, forming an operating
envelope.

In a bidding process, participants need to submit their bids in advance of
an operating interval (5 minutes in Australia). Thus, when obtaining operat-
ing envelopes for the upcoming interval, only forecast information is avail-
able. The discrepancy between the forecast and reality might lead to en-
velopes that cannot cover consumers’ uncertainty range, leading to network
violations. Note that this issue is not specific to operating envelopes and
other approaches, such as those using a centralised framework, face the same
challenge, as they also need to count on forecast information. In addition to
possible network violation, uncertainty realisations different from forecasts

67
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might lead to bid deliveries different from what initially was submitted to
the market. In most electricity markets, including the NEM, participants are
penalised for not honouring their market commitments.

To overcome the challenges mentioned above, this chapter enables con-
sumers to account for their local uncertainties within their envelopes. To
do so, we model consumers’ uncertain parameters within polyhedral un-
certainty sets and empower every consumer with a controller based on the
piecewise affinely adjustable robust constrained optimisation (PWA-ARCO).
During the optimisation, we obtain bids, operating envelopes, and parame-
ters of the PWA-ARCO controller such that consumers can compensate for
any realisation of the uncertain parameters within their uncertainty sets. In
live operation, our PWA-ARCO controllers take the uncertainty realisations
as inputs and tune the outputs so that consumers are within their operating
envelopes while honouring their market commitments.

Moreover, as we identified in the previous chapter (Section 3.8.2.2), the
voltages in our test system are the main network issues restricting consumers.
Therefore, if voltages are improved, the network can have greater through-
put. As shown in Jabr [2019], reactive power support of the consumer-owned
inverters (such as solar PV and battery inverters) can effectively improve volt-
ages across the distribution network. Thus, here, we enable consumers to ne-
gotiate their reactive power support with the grid alongside their real-power
envelopes.

Notice that since we only check the network limits at the extremes of the
envelope, at the convergence of the ADMM algorithm, we obtain the allowed
maximum and minimum real power exchange, as well as the required reactive
power at those real power extremes. In other words, this does not provide
any information on the required reactive power support at operating points
away from the extremes. If consumers do not exchange the right amount of
reactive power across the envelope, the network constraints might be violated,
despite sticking to the real power envelopes. To resolve this issue, we propose
an additional Q-P controller that enables consumers to exchange the required
reactive power for any real power exchange within the envelope.

In what follows, we first provide an up-front description of our approach
in Section 4.2. We then introduce our piecewise affine uncertainty character-
isation approach in Section 4.3, which is next illustrated within the bidding
context in high-level and details in sections 4.4 and 4.5, respectively. We in-
troduce our comparative approaches and provide our results and discussions
in Section 4.6. Finally, we summarise our approach and list our findings in
Section 4.7.
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4.2 Overall Approach

Our main goal for every 5-minute interval is to obtain bids for the energy, 3
raise, and 3 lower contingency reserve markets (7 markets in total) that are
both robust against uncertainty and respect the grid operating limits.

To reflect the distributed nature of the problem and the possible privacy
concerns of stakeholders, as in Chapter 3, we decompose the problem into
consumer and DSO subproblems and use the alternating direction method
of multipliers (ADMM) to obtain the operating envelopes. Figure 4.1 shows
a high-level scheme of our proposed approach, which is repeated at every
MPC iteration to generate and submit consumer bids to the wholesale mar-
ket every 5 minutes. At the heart of our MPC framework lies an ADMM
technique to enable consumers and the DSO to negotiate every five minutes
for an operating envelope that covers all market actions of the consumer.
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(AC-OPF)
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Aggregator:

Energy-reserve 

Co-optimisation 

Aggregator:

Energy-reserve 

Co-optimisation 
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PWA-ARCO
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Figure 4.1: High-level structure of PWA-ARCO.

To ensure that uncertainty realisation neither leads to network violation
(due to violating the envelope) nor penalises consumers (due to failing to
honour bids), we build a piecewise affinely adjustable robust constraint opti-
misation (PWA-ARCO) into our consumer subproblem. PWA-ARCO extends
the conventional affinely ARCO (AARCO) Ben-Tal et al. [2004] and increases
flexibility by breaking the uncertainty set into more pieces, enabling the re-
sponse to be better optimised when operating away from worst-case condi-
tions. Furthermore, we include market bid deviation penalties in the con-
sumer objective function to help consumers make informed decisions about
the parameters of their piecewise functions. We also equip consumers with a
Q-P controller that enables them to offer their reactive power support (gener-
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ated / consumed by their inverters) to the DSO to increase network through-
put.

As shown in box 1 Figure 4.1, each consumer solves a PWA-ARCO prob-
lem to obtain their preferred market participation (bids), their required en-
velopes as well as the parameters of their piecewise functions. Each envelope
includes the minimum and maximum real power at the connection point, to-
gether with the available reactive power support output of a Q-P controller at
the two real-power extremes. These envelopes are then communicated to the
network subproblem. Next, the DSO solves two OPFs (one for each extreme)
to check whether the envelopes are network secure and updates the locational
marginal prices (LMPs) accordingly. Although the DSO only checks the ex-
treme scenarios, our Q-P controllers ensure that the network constraints re-
main feasible for less extreme scenarios as they keep generating / consuming
reactive power proportionally to real-power changes at the connection point.
At the convergence of the ADMM approach 1 , the bids for each market,
network-secure envelopes and the parameters of our PWA-ARCO controllers
are obtained.

The network-secure bids are then submitted to the electricity markets 2
and get dispatched according to the market-clearing price 3 . In live op-
eration, the controllers take local recourse actions to keep consumers CPPs
within the operating envelope on which the network and consumers agreed
at the convergence of the ADMM algorithm and avoid market penalties 4 .

4.3 General Piecewise Affinely ARCO

As discussed in Section 2.3.4, an affinely adjustable robust constrained opti-
misation (AARCO) enables the decision variables to adjust themselves affinely
in response to uncertainty realisation. However, making (2.23) robust to un-
certainty variations via affine functions can lead to over conservative solu-
tions, as it provides a similar response (A in Aϵ+ b) for any realisation within
the uncertainty set. To improve the performance, adjustable optimisation can
be improved to optimise for piecewise affine functions Jabr [2020]. This can
enable consumers to tune their behaviour more efficiently for different un-
certainty realisations within the uncertainty set. We next formulate a general
model for PWA-ARCO, which we later use in Section 4.4 to model our bid-
ding problem.

The idea here is to partition the uncertainty set (2.19) into contiguous sub-
sets and then optimise x(·) as a piecewise affine function. We begin with
encoding a piecewise affine function (see Figure 4.2 for a visualisation of a
piecewise affine function with 4 breakpoints):
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Figure 4.2: Visualisation of a piecewise affine function

x(ζ) ≜
l

∑
τ=1

ψτζτ (4.1)

where ψτ ∈ Rn×ατ are the “y-axis” breakpoints for each variable, for the τ-
th random parameter (what we optimise), ατ is the number of breakpoints
and ζτ ∈ [0, 1]ατ are weights for the τ-th random parameter. These weights
encode the position in the uncertainty set through:

ϵτ = γ⊺τζτ

ατ

∑
a=1

ζτ,a = 1 (4.2)

where γτ ∈ Rατ are the “x-axis” breakpoints (each entry is unique) for the
τ-th random parameter. Notice that the weights for each random parameter
must sum to 1.

To further restrict the weights, so they encode a piecewise linear func-
tion, we introduce binary variables uτ ∈ {0, 1}ατ−1 and the following set of
constraints:

ατ−1

∑
a=1

uτ,a = 1 (4.3a)

ζτ,a ≤ uτ,a−1 + uτ,a ∀a ∈ {2, ..., ατ − 1} (4.3b)
ζτ,1 ≤ uτ,1 (4.3c)
ζτ,ατ ≤ uτ,ατ−1 (4.3d)

When ensuring that (2.20) holds for all values in the uncertainty set, on a per
constraint basis, similarly to (2.23)–(2.24), we get:

max
ϵ∈E

(Bx(ϵ) + Cϵ) + d ≤ 0 (4.4)
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When constraints (4.2) and (4.3a)–(4.3d) hold, there is a unique mapping from
ϵ to ζ, allowing us to replace x(ϵ) with x(ζ). Expanding out the maximisation,
we have:

z + d ≤ 0 (4.5a)

where

z =max
ζ,ϵ

(
B

l

∑
τ=1

ψτζτ + Cϵ

)
(4.5b)

Wϵ ≤ v (4.5c)
(4.2), (4.3a)–(4.3d) (4.5d)

Equations (4.5b)–(4.5d) represent a MILP problem and thus it is not possible
to directly use duality theory and reformulate it, so, a similar approach as in
(2.25a)–(2.25b) will not work here. Note that if we relax the binaries in (4.5b)–
(4.5d), the feasible region of the resulting LP problem will capture the convex
hull of the original problem, which is greater than or equal to the feasible
region of the original MILP problem. Thus, in a maximisation sense, the
result of the binary-relaxed LP problem on the left-hand side will be greater or
equal to the original MILP problem. This means that if we utilise the binary-
relaxed formulation in order to obtain a dual, our solution will still be robust
but potentially more than it needs to be. In other words, we immunise the
system against a value that is potentially higher than the maximum of the left-
hand side in (4.5a). In the result section, we compare our results with a perfect
case and discuss the conservativeness of different approaches. Relaxing the
binary variables uτ allows (ϵ, ψτζτ) to take on a position anywhere in the
convex hull of the breakpoints of the relaxed piecewise linear function (recall
ζτ,a ∈ [0, 1]). Writing the relaxation out explicitly and indicating how the
duals associate with the constraints (quantifiers over τ and a are implicit), we
have:

z = max
ϵ,ζ

(
B

l

∑
τ=1

ψτζτ + Cϵ

)
(4.6a)

Wϵ ≤ v (µ ≥ 0) (4.6b)
ϵτ − λ⊺τζτ = 0 (µ′

τ) (4.6c)
ατ

∑
a=1

ζτ,a = 1 (µ′′
τ) (4.6d)

ζτ,a ≤ 1 (µ′′′
τ,a ≥ 0) (4.6e)
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Taking the dual leads to:

z = min

(
v⊺µ +

l

∑
τ=1

µ′′
τ +

l

∑
τ=1

ατ

∑
a=1

µ′′′
τ,a

)
(4.7a)

W⊺µ + µ′ ≥ Ci (4.7b)
µ′′ − λτ,aµ′

τ,a + µ′′′
τ,a ≥ Biψτ,a (4.7c)

Recall that these dual variables and constraints will have a copy for each
constraint in the original problem (i.e. a further index of i that has been
treated implicitly in the above). Finally constraints (4.5a)–(4.5d) can be written
into the following linear form:(

v⊺µ +
l

∑
τ=1

µ′′
τ +

l

∑
τ=1

ατ

∑
a=1

µ′′′
τ,a

)
+ d ≤ 0 (4.7d)

s.t. (4.7b) − (4.7c) (4.7e)

Notice that we have removed the min operator from (4.7d), the reason is that
if (4.7d) holds for any value of

(
v⊺µ + ∑l

τ=1 µ′′
τ + ∑l

τ=1 ∑ατ
a=1 µ′′′

τ,a

)
, it will also

hold for its minimum value.

4.4 High Level Consumer and Network Negotiation

This section aims to provide a high-level presentation of the ADMM approach
and what is being negotiated between the consumer and the DSO subprob-
lems. Thus, we do not go into details of consumers and DSO subproblems. In
Section 4.4.1, we only model the uncertainty sets and our piecewise affine op-
erating envelopes based on the theory we just covered. We then present our
high-level network subproblem and the ADMM approach in Section 4.4.2.
The details of the consumer objective and constraints that interact with the
envelope, as well as DSO constraints, are left until Section 4.5.

4.4.1 Consumer Subproblem

In our bidding problem, the uncertain parameter ϵ includes FCAS activa-
tion ϵF ∈ [−1, 1], PV power ϵPV ∈ [PPV , PPV ] and residential demand ϵD ∈
[PD, PD]. Regarding the FCAS activation, notice that the raise and lower FCAS
services will not be activated at the same time, plus, the activation of 6-sec,
60-sec and 5-min reserves (raise or lower) are sequential, e.g., if 5MW is bid
into 6-sec, 60-sec and 5-min, then at most a 5MW response is required at any
one moment (rather than 15MW). In line with this, we assume that consumers
will participate equally in all raise markets and equally in all lower markets.
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Thus, for a contingency, in the worst case, we have to respond fully for the
entire 5 minutes. We therefore use a single uncertain parameter ϵF to account
for the most extreme reserve activation across all markets. Similarly to x(ζ),
we write the real power generated by a consumer p(ζ) ∈ R|T| as:

p(ζ) ≜
αF

∑
a=1

ψF
a ζF

a +
αPV

∑
a=1

ψPV
a ζPV

a +
αD

∑
a=1

ψD
a ζD

a (4.8a)

ϵF = γF⊺ζF
αF

∑
a=1

ζF
a = 1 (4.8b)

ϵPV = γPV⊺ζPV
αPV

∑
a=1

ζPV
a = 1 (4.8c)

ϵD = γD⊺ζD
αD

∑
a=1

ζD
a = 1 (4.8d)

(4.8a)–(4.8d) correspond to (4.1)–(4.2) yet with the uncertain parameters bro-
ken up into independent subsets. Notice that p(ζ) represents all possible
CPPs of the consumer for any realisation of uncertain parameters ϵ. To
increase readability, we interchangeably use p(ζ) and p(ϵ) throughout this
chapter (both meaning that p is a function of uncertain parameters). To have
an upper and lower bound on these CPPs, we define the vector variables
p, p ∈ Rt indicating the operating envelope where:

p(ϵ) ∈ [p, p] ∀ϵ ∈ E (4.8e)

The above equation indicates that the CPP resulting from participating in any
or all 7 energy and reserve markets for any realisation of uncertainty within
the polyhedron E will remain within the operating envelope [p, p]. When
network constraints are neglected, the operating envelope will not limit the
market actions, i.e., [−∞, ∞]. However, this envelope might significantly limit
consumers when the network constraints are taken into account. To increase
network throughput and to enable consumers to bid with less network re-
striction, we obtain the reactive power support associated with the operating
envelope with the following Q-P controller:

q(ζ) ≜
αF

∑
a=1

ψ
′F
a ζF

a +
αPV

∑
a=1

ψ
′PV
a ζPV

a +
αD

∑
a=1

ψ
′D
a ζD

a (4.8f)

We use the above decision rule to obtain the reactive power that can be ex-
changed with the grid at the uncertainty realisation ζ. Let qp be the reactive
power associated with p and qp denote the reactive power associated with p.
When reactive power is neglected both qp and qp are zero. More details about
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this is provided in Section 4.5. In the next section, we negotiate the pairs s ≜
(p, qp) and s ≜(p, qp) with the grid. We then solve two OPFs, one for each
pair, to ensure network feasibility. To ease the presentation, we put s and s in
a vector s, where s ≜ (s, s).

4.4.2 Network Subproblem and ADMM Algorithm

So far, at a high level, we explained the operating envelope s obtained at the
consumer subproblem. To ensure that consumer envelopes are network se-
cure, here, we negotiate them with the DSO using the ADMM approach. This
completes 1 in Figure 4.1. Using s′ for the same variable (i.e., duplication of
s) but from the network perspective, in the final solution, to within a required
tolerance, we have:

s − s′ = 0 (λ) (4.9a)

We write the augmented Lagrangian associated with (4.9a) as:

L∗(s, s′, λ) = λ⊺(s − s′) +
ρ

2
||s − s′||22 (4.9b)

where λ is a vector of dual variables of (4.9a) and ρ is the penalty parameter of
the augmented Lagrangian. We use the ADMM algorithm Boyd et al. [2011]
as a negotiation tool between consumers and the network to obtain network-
secure results. Given the consumer objective f ; the network internal variables
z and the objective and constraint functions G and H, our ADMM approach
solves the following per iteration k:

s(k) := min
x(ϵ)

[
f (.) + L∗(s, s′(k−1), λ(k−1))

]
s.t. (4.7a)–(4.7c), (4.8a)–(4.8f) (4.10a)

s′(k) := min
z

[
G(s′, z) + L∗(s(k), s′, λ(k−1))

]
H(s′, z) ≤ 0 (4.10b)

λ(k) := λ(k−1) + ρ(k)(s(k) − s′(k)) (4.10c)

In the first phase (4.10a), consumers are optimised for s, while holding s′ and
λ constant at their k − 1-th value. In the second phase (4.10b), the network is
optimised for s′, while holding s and λ constant at their k and k − 1-th values
respectively. Finally, the dual variables λ are updated in (4.10c), completing
the k-th iteration. we use the same convergence criteria as in Chapter 3.
In other words, our approach converges if the infinity norms of the primal
||R(k)

p ||∞ and dual residuals ||R(k)
d ||∞ are both smaller than a threshold.
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4.5 Detailed Consumer and Network Subproblem

Here, we first develop in detail a PWA-ARCO energy management system
(EMS) for a consumer participating in energy, and 6-sec, 60-sec, and 5-min
raise and lower reserve markets. We then model the detailed DSO subprob-
lem.

4.5.1 Detailed EMS Subproblem

DER Constraints

We need to ensure the DER constraints are satisfied for any CPP realisation
resulting from reserve market activation or PV and demand realisations. To
do so, we represent DER variables as piecewise affine functions of uncer-
tainty and then use these functions to write each constraint. The consumer
subproblem also includes real-power (4.8a), the uncertainty set (4.8b)–(4.8d),
the envelope (4.8e) and the reactive power (4.8f).

Solar PV: Solar PV forecast has been modelled in the uncertainty set. We
also use a piecewise affine function pcur

t (ζt) ∈ [0, ϵPV
t ] to model the curtail-

ment as a function of uncertainty. Using the max protection function, this can
be modelled as:

max
ζ

{pcur
t (ζt)− γPV⊺

t ζPV
t } ≤ 0 (4.11a)

Battery Storage: We define the piecewise affine functions for battery charge
pC

t (ζτ) ∈ [0,R] and discharge pD
t (ζτ) ∈ [0,R] variables. Given battery effi-

ciency η, the protection functions for battery’s bounding constraints can be
written as:

0 ≤ max
ζτ

{pC
t (ζτ)} ≤ R (4.11b)

0 ≤ max
ζτ

{pD
t (ζτ)} ≤ R (4.11c)

max
ζτ

{e0+
t

∑
δ=1

(ηpC
δ (ζτ)−pD

δ (ζτ)/η)} ≤ e (4.11d)

min
ζτ

{e0+
t

∑
δ=1

(ηpC
δ (ζτ)−pD

δ (ζτ)/η)} ≥ e (4.11e)

where R is the charging / discharging rate and e and e are the minimum and
maximum values for battery SoC.

To ensure that simultaneous charge and discharge does not occur, we use
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a binary variable ut and the following constraints:

0 ≤ pC
t (ζ) ≤ R · ut (4.11f)

0 ≤ pC
t (ζ) ≤ R · (1 − ut) (4.11g)

We only apply these binaries to the energy market, i.e., ζ = ζ. Because in
reserve markets, the battery can transit from charge to discharge (or visa
versa) to provide a greater response. For instance, imaging a half-full battery
neither charging nor discharging in the energy market. This battery is able
to bid its rated capacity to either raise (discharge) or lower (charge) reserve
markets. However, using a binary variable limits battery’s flexibility to only
one market (rise or lower). This is why we do not use an additional binary
variable in the reserve market.

Combined Power: The combined household power can be written as fol-
lows:

p(ζτ)= pD
t (ζτ)−pC

t (ζτ)−pcur
t (ζτ)+γPV⊺

t ζPV
t −γD⊺

t ζD
t (4.11h)

The equality constraint (4.11h) gives the relation between the combination of
the piecewise affine parameters on the left hand side with the piecewise affine
parameters of the CPP on the right hand side of (4.11h). Having obtained all
the protection functions, we use duality theory to convert each protection
function into some linear constraints as in (4.7d)–(4.7e).

Objective Function

The market payments to the customer consist of what energy they exchange
with the network and the reserve market commitments (whether deployed or
not). They are also penalised if the energy they exchange deviates from their
energy market amount unless this deviation is accounted for by reserve mar-
ket activation. What we propose to do is evaluate the revenue from the energy
market at the most likely realisation of uncertainty (i.e., forecast, shown by
ϵ̄ = {ϵF = 0, ϵPV = ϵ̄PV , ϵD = ϵ̄D}, given by p(ϵ̄). This will also be the
amount we bid into the energy market.

For the reserve markets, we assume that we have to meet and bid capacity
under all circumstances. Also, the reserve activation ϵF can vary between -1
(max lower activation) to 1 (max raise activation) where ϵF = 0 represents a
case where no reserve is required (energy case). Using r′ for raise and l′ for
lower, we can write:

r′ = p(ϵF = 1, ϵPV , ϵD)− p(ϵF = 0, ϵPV , ϵD) (4.12a)

l′ = p(ϵF = 0, ϵPV , ϵD)− p(ϵF = −1, ϵPV , ϵD) (4.12b)
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Notice that the contribution of ϵF in p(ϵ) is separable from the other sources
of uncertainty because it is an independent piecewise affine function and ϵF

can be considered not part of the E polyhedron. This means the rest (uncer-
tain PV and demand) cancel out, and we do not have to resort to doing a
forall ϵ. In other words, our reserve bids are robust to PV and demand un-
certainty and are deliverable for any realisations within the PV and demand
uncertainty sets. This is an important feature of our approach since it makes
consumers reliable participants for reserve purposes. In the NEM, if a partic-
ipant cannot honour its reserve bids (e.g., a frequent scenario for consumers
due to uncertainty), they will be excluded from future FCAS participation.
However, by obtaining FCAS bids, which are independent of uncertainty re-
alisation, our approach secures a spot for consumers in these highly-priced
yet rarely activated markets.

Since the contingency reserve market in the NEM is activated sequentially,
the NEM allows the same capacity to be submitted to any or all contingency
reserve markets. Let r6 / l6, r60 / l60, and r5 / l5 respectively denote raise /
lower reserve offers to 6-sec, 60-sec, and 5-min reserve markets, using (4.12a)
and (4.12b), we have:

r6 ≤ r′; r60 ≤ r′; r5 ≤ r′ (4.12c)

l6 ≤ l′; l60 ≤ l′; l5 ≤ l′ (4.12d)

Let πe denote the energy market price; πr = {πr6, πr60, πr5} and πl =
{πl6, πl60, πl5} be the raise and lower 6-sec, 60-sec and 5-min market prices,
r = {r6, r60, r5} and l = {l6, l60, l5} be the offers to the raise and lower reserve
market. The obtained benefit can be modelled as follows:

CBen = πe p(ϵ̄) + πrr + πl l (4.12e)

The above equation calculates the benefits obtained in the energy and
FCAS market. However, as we mentioned earlier, there is a penalty associated
with bid violations in the energy market. To model this penalty, we interpret
the causer pays policy in the NEM as to penalis energy-bid deviation at the
regulation market price1. This adds the penalty CPen to the objective function.
Given the penalty price π−, this can be written as:

CPen(ϵPV , ϵD) = π−|p(ϵ̄F, ϵ̄PV , ϵ̄D)− p(ϵ̄F, ϵPV , ϵD)| (4.12f)

We use auxiliary variables to model the absolute value function | · | in a linear
manner, which is then treated robustly to account for the worst-case market

1The reason for this is that the regulation market is activated to compensate for violations in the
energy market.



§4.5 Detailed Consumer and Network Subproblem 79

penalty.

Reactive Power Network Support

The reactive power generated / consumed by the inverters is limited by the
following quadratic constraint:

q2 ≤ s2 − pinv2
(4.13a)

The above equation is a circle in (q, pinv) coordinates, which can be linearised
using a set of linear constraints as follows:

q(cos(ϕ) + sin(ϕ)) ≤
√

2s − pinv(cos(ϕ)− sin(ϕ)) (4.13b)

where ϕ ∈ {0, π/b, 2π/b, ..., (2b − 1)π/b}, and b is an arbitrary integer num-
ber. Here, we use 24 lines2 (i.e., an icositetragon), which overestimates the
circle with at most 0.001% error. Note that pinv in our case can be battery
charge / discharge and PV power which are modelled via piecewise affine
functions x(ζ). As explained in (4.8f) q is also a function of the uncertain
parameter. Using the piecewise linear x(ζ) and q(ζ) (4.13b) can be written as:

q(ζ)(cos(ϕ)+sin(ϕ)) ≤
√

2s−x(ζ)(cos(ϕ)−sin(ϕ)) (4.13c)

Providing reactive power support aims to improve voltages so consumers
can have wider operating envelopes. However, the grid and consumers only
negotiate on the required reactive power at the extremes. Thus, this does not
provide any information about the required reactive power away from the
extremes. Notice that if we only calculate reactive power for the extremes,
there might be points within the envelopes for which the network is violated.
This is shown in Figure 4.3.

As shown in Figure 4.3, consumers can have operating envelope [0, Pup] if
they provide the right amount of reactive power. The red line shows a path
within the region that is infeasible, while the blue line is the feasible path.
Similarly to Nazir and Almassalkhi Nazir and Almassalkhi [2021], which find
a feasible path to avoid holes in the region, we find a path (using a piecewise
affine function) to ensure consumers are within the feasible region.

To obtain the required reactive power within the envelope, we take ad-
vantage of the results presented in Jabr [2019], where the authors provide a
closed-form solution to the problem of how much reactive power injection /
absorption is needed at a node to fully compensate voltage changes due to
real power deviations at that node. As discussed in Jabr [2019], a q(ζ) affine

2Due to the distributed nature of our approach, each consumer subproblem can be solved separately.
Thus, adding even more lines does not significantly add to the computational complexity.
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Figure 4.3: Hole in the region

function with a slope equal to the closed-form solution Rj ∈ R (where j is
a network node) would completely compensate the voltage deviation due to
the active power deviations. This, for τ-th uncertain parameter, can be written
as:

∂q(ζ)
∂ζτ

≤ Rj ∂p(ζ)
∂ζτ

(4.13d)

Finally, given the piecewise function (5) the partial differential equations can
be written as:

ψ′
τ,i+1−ψ′

τ,i ≤Rjψτ,i+1− Rjψτ,i ∀τ, i ∈ {1, ..., ατ} (4.13e)

where Rj is the closed form solution from Jabr [2019]:

Rj = −
∑n

j=2 K|v|q
jk K|v|p

jk

∑n
j=2 K|v|q

jk

2 (4.13f)

where, K|v|q
jk =

∂vj
∂qk

and K|v|p
jk =

∂vj
∂pk

. In summary, the constraints of our piece-
wise affinely ARCO EMS subproblem for a single customer consist of the
objective function (4.12a)–(4.12f), the affine functions (4.8a)–(4.8f), DER oper-
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ating constraints (4.11a)–(4.11h), and the Q-P controller (4.13c)–(4.13e).

4.5.2 Detailed Network Subproblem

The network subproblem needs to solve two multi-period OPFs associated
with the extremes of s′ at every MPC iteration. Notice that there are no time
coupling constraints in the network subproblem because all such constraints
are part of the consumer sub-problems, such as the SoC coupling constraint
(4.11d)–(4.11e). Therefore, these OPFs can be decomposed over time and
solved in parallel. To encode this, we repeat (2.31)–(2.36) for two sets of
scenarios one for s′ and another for s′.

4.5.3 Model Predictive Control Implementation

We presented our PWA-ARCO treatment for all t in Section IV-B. However,
when integrated within our MPC framework, we apply the robust treatment
for PV power and demand only to the first time-step. The reason is that
our MPC framework enables us to use the latest (most accurate) forecast
information every 5 minutes when a new optimisation problem is solved.
Since the uncertainty variation within the next 5 minutes is often insignifi-
cant, the uncertainty set can cover the deviations from the forecast. On the
contrary, constructing the uncertainty set for future time steps might lead to
over-conservative results, as the forecast values (around which we construct
the uncertainty set) can change significantly. In our simulations, this could
bring 3% higher benefits compared to the case where the entire horizon was
treated robustly.

4.6 Numerical Results

To illustrate the effectiveness of the proposed approach, we use the same 69-
bus distribution network Savier and Das [2007] as in Chapter 3. We also par-
ticipate in 7 markets (1 energy, three raise and three lower contingency FCAS
markets). The 5-minute energy and reserve market prices are taken from the
NEM, provided in Appendix A. We use the same load and PV power data ex-
plained in Chapter 3 as forecast values to run the experiments of this chapter.
In addition, we assume that both PV and load can vary within ±20% around
their forecast values. For each uncertain parameter, we pick three points from
its uncertainty sets to write our piecewise functions. These points are asso-
ciated with the lower bound, forecast and upper bound of each uncertainty
set. We use the regulation market price for the market deviation penalty π−.
The ADMM penalty parameter ρ for real and reactive power are 1 and 0.01,
respectively. Finally, we use the Gurobi and IPOPT solvers in JuMP, Julia
Dunning et al. [2017] to solve our consumer and network subproblems.
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As explained in the introduction Section 4.1, this chapter contributes to
the literature and our previous chapter in two main ways: accounting for
uncertainties and enabling reactive power support. In the following, we sep-
arately study the effectiveness of each contribution. We first investigate how
providing reactive power support can improve the bidding performance in
a deterministic setting in Section 4.6.1. Next, we take the uncertainty into
account and study the effectiveness of our approach in a non-deterministic
setting. In Section 4.6.2, we introduce some comparative approaches against
which we compare the effectiveness of PWA-ARCO. In Section 4.6.3, we anal-
yse our P-Q controller under uncertainty. Section 4.6.4 illustrates the effec-
tiveness of our PWA-ARCO bidding approach when using other dynamic
operating envelopes, reviewed in Chapter 2. Finally, Section 4.6.5 discusses
the convergence and the problem size.

4.6.1 Reactive Power Support

To study the effectiveness of providing reactive power network support, here,
we assume that consumers solve a deterministic optimisation problem. Table
4.1 reports the total benefit and computational performance of our approach
with and without providing reactive power support. As reported in Table
4.1, reactive power support has improved both the consumer benefit and
the convergence time of our ADMM algorithm. From the benefit perspec-
tive, reactive power support enables the network to provide consumers with
wider envelopes. So, consumers can participate in the market with fewer net-
work limitations, resulting in higher benefits. Regarding convergence, reac-
tive power support enables the network subproblem to agree with consumers’
preferred envelopes in more operating scenarios. Thus, the ADMM algorithm
can converge within a fewer number of iterations. As reported in Table 4.1,
this could reduce the number of iterations from 87 to 10 in our case.

Table 4.1: Performance comparison with regards to reactive power support

Reactive Power
Support

Total Benefits ($) No. of Iter.
Convergence

Time
No 3094.9 87 28s
Yes 3118.7 10 2s

In the results reported in Table 4.1, consumers will end up with an operat-
ing envelope for their real power as well as reactive power support required
at the extremes of their envelopes. Notice that depending on reserve activa-
tion, consumer CPPs can vary within these envelopes. Yet, consumers have
no information on how much reactive power support they need to inject /
absorb when operating away from the extremes. Our Q-P controller aims to
solve this problem as it outputs the required reactive power for any given real
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power exchange with the grid. We further discuss this in Section 4.6.3.

4.6.2 Effectiveness of PWA-ARCO

To assess the performance of our proposed PWA-ARCO approach, we study
the following four approaches:

• Deterministic: This is our previous work presented in Chapter 3. In this
approach consumers and the grid negotiate every five minutes through
the standard multi-period ADMM algorithm (4.10a)−(4.10c). The con-
sumer subproblem is only satisfied for the forecast scenario.

• Perfect: This approach intends to provide a perfect but unachievable
baseline in which (assuming that computation and communication time
are not limiting) two multi-period OPFs (associated with the operating
envelope) are solved every minute to ensure the grid feasibility for all
scenarios. Since all the future information is assumed to be available,
the FCAS bid offers of this case are all made to be deliverable. This is
the same case we considered in the previous section to study the effec-
tiveness of reactive power.

• AARCO: This is the conventional affinely ARCO where we use the affine
decision rule x(ϵ) ≜ Aϵ+ b and (2.25a)–(2.25b) to obtain our robust bids.

• PWA-ARCO: This is the proposed approach in which the grid envelopes
and the parameters of our piecewise affine controllers are obtained us-
ing a grid-wide ADMM coordination. In real-time, our controllers con-
tinually take recourse actions to keep the CPP within the negotiated
envelope.

We implement the above approaches within an MPC framework that
moves forward every 5 minutes. We use the 5-minute data to run each method
prior to the realisation of uncertainty. We then use 1-minute data as realisa-
tions to evaluate the effectiveness and actual cost of each approach. Having
the whole horizon covered minutely, we track the SoC of batteries and move
to the next horizon, in which the same process is repeated until we cover the
entire horizon, i.e., 288 time-step with 1440 realisation scenarios.

Total Benefit in Energy and Reserve Markets

Table 4.2 reports the total benefits obtained by the introduced approaches,
network violations, as well as the number of times that the available FCAS
capacity was less than the bid submitted to the market. As reported, PWA-
ARCO obtains 2.6% less benefit compared to the perfect yet unachievable
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case. However, our approach requires 5 times less computation and com-
munication than Perfect. Plus, unlike Perfect, we do not have all the future
information. Also, remember that we relaxed binary variables (4.3a)–(4.3b),
which can potentially make PWA-ARCO more conservative. However, notice
that the perfect case does not count on PWA-ARCO local control and solve op-
timisation every minute to find the optimum solution. Therefore, it serves as
the best upper bound to the benefit we could obtain. In our case, our PWA-
ARCO could get as close as 2.6% to this perfect yet unachievable solution.
Notice that Deterministic obtained 2.5% less benefit compared to the perfect
case, which is higher than PWA-ARCO. However, here, we have not applied
any penalty for reserve bid violations. As reported in Table 4.2, in 2001 sce-
narios out of our total 1440 × 6 reserve markets scenarios, Deterministic was
not able to honour the accepted FCAS bids3. If aggregators bid determin-
istically, they would likely be excluded from future FCAS participation. We
further discuss the economic aspect of this in Figure 4.4. Additionally, the
Deterministic approach violates the network-safe limits in 693 scenarios.

Table 4.2: Total Benefit, Network / Reserve Bid Violations

Approach Total Benefit ($)
Rel. to

Perfect (%)
Violations

Network FCAS bids
Deterministic 3,033.5 -2.5 693 2001
Perfect 3,111.0 - - -
AARCO 2,345.3 -24.6 - -
PWA-ARCO 3,030.5 -2.6 - -

While AARCO could keep the voltages within safe limits and honour its
FCAS bids, it adds a significant cost to the bidding problem. The reason is
that, compared to a piecewise function, compensating uncertainty with affine
functions will lead to over-conservative results.

Figure 4.4 breaks down the total benefit obtained by each approach to the
energy and reserve market components. As shown in Figure 4.4, majority of
the total benefit for all cases is made through the FCAS market. If consumers
were suspended from the FCAS market, due to not fulfilling their reserve
bids, a likely scenario for Deterministic, their total benefit would shrink sig-
nificantly. Also, AARCO has obtained the lowest benefit in the FCAS market,
highlighting the limitation of optimising for affine functions rather than piece-
wise affine ones. We further discuss the difference between PWA-ARCO and
AARCO in the next section.

3Notice that we are not replaying a particular event, but checking if a consumer would hypothetically
be able to meet the requirement in every moment.
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Figure 4.4: Energy and FCAS benefits breakdown

PWA-ARCO vs. AARCO

To compare the piecewise affine policy with just affine, we plot the obtained
CPP function by the AARCO and PWA-ARCO approaches for a random con-
sumer at 2:30 PM in Figure 4.5. Subfigures a, b, c are respectively associ-
ated with the first (reserve activation), second (PV) and third (demand) terms
in (4.8a). As can be seen, while the connection point power with respect
to demand uncertainty follows a similar pattern, it differs significantly with
respect to PV and FCAS activation uncertainty. In fact, the flexibility in-
troduced into the consumer subproblem by PWA-ARCO (at this time step)
could significantly increase the raise FCAS bid of the consumer (Figure 4.5,
a: p(ζF

3 )− p(ζF
2 )).
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Figure 4.5: An example of CPP function: PWA-ARCO vs. AARCO
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Analysing Network Voltages

We plot the maximum and minimum voltages in the network for our 1440 re-
alisation scenarios in Figure 4.6 and Figure 4.7, respectively. While the perfect
case solves a problem with a 1-minute resolution, the rest of the approaches
optimise every 5 minutes (288 rather than 1440 time steps) and act locally
during a 5-minute interval between two optimisations. We check power flow
(PF) every minute to find the voltages reported in Figures 4.6 and 4.7. As
can be seen in figures 4.6 and 4.7, Perfect, AARCO, and the proposed PWA-
ARCO approaches could keep the voltage within its safe limits. However,
Deterministic could not do so in several operating scenarios.
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4.6.3 Reactive Power Support in PWA-ARCO

In this section, we study the effectiveness of providing reactive power support
in our PWA-ARCO framework. To do so, we develop another case similar
to PWA-ARCO but without the reactive power support, i.e., removing con-
straints (4.8f) and (4.13c)–(4.13e). Figure 4.8 plots the difference between the
bids submitted to each market with and without reactive power support. As
reported in Figure 4.8, on average, greater bids will reach each market when
considering reactive power support (in total, 0.18 MW, 0.87MW, and 1.8MW
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greater bids reach the energy, raise and lower reserve markets, respectively).
In our experiments, this could also bring about a 0.8% higher benefit in total
($3,030.5 vs. $3,008.6). We also report the reactive power function output of a
random consumer in Figure 4.9. Sub figure a, b and c respectively show the
first, second and third terms in (4.8f).
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Figure 4.8: Bids differences: reactive support vs. no reactive support. Fig a) The
difference in bids submitted to the energy market. Figure b) The difference in bids
submitted to the raise reserve market. Figure c) The difference in bids submitted to
the lower reserve market (a positive / negative value shows an increase / decrease
in the amount of submitted bids)
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Figure 4.9: An example of a Q-P function

4.6.4 PWA-ARCO within Available Envelopes

To study the effectiveness of our proposed PWA-ARCO approach, imple-
mented within different envelopes, we develop 3 other case studies in which
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the DSO obtains dynamic envelopes and allocates them to each consumer.
Afterwards, consumers used these envelopes as hard constraints to optimise
their bids. We study the following envelopes:

1. Equal-Width Envelopes: In which the DSO allocates equal-width en-
velopes to all consumers owning DER.

2. Max Export Envelopes Petrou et al. [2020]: In which the DSO allocates
envelopes of different widths to consumers at different nodes such that
the absolute network throughput is maximised.

3. Fair Envelopes: We use the objective function (1) in Petrou et al. [2020] to
obtain fair operating envelopes for each consumer. In summary, fairness
is defined in Petrou et al. [2020] based on internet traffic control and is
implemented by maximising the sum of wb log xb, where xb corresponds
to the variable that is to be fairly maximised, and wb is a proportional
weighting factor associated with each party. As with Petrou et al. [2020],
we use the inverter capacity of each prosumer as the weighting factor
and the household active power exports p as the variable to be max-
imised.

Table 4.3 reports the benefit obtained via the equal-width, max export
and fair envelopes versus our proposed ADMM-based envelope. Since our
approach obtains the operating envelopes by negotiating between consumers
and the DSO, it attains the best results amongst the comparative approaches.
Notice that in line with Petrou et al. [2021], the equal-width, max-export and
fair envelopes are obtained, assuming that the DSO has full observability of
consumers’ DER. However, in reality, such observability often does not exist.
Therefore, such operating envelopes might not account for the true need of
consumers. This can significantly limit consumers, leading to solutions far
from the optimum.

Table 4.3: Dynamic Operating Envelopes vs. Proposed

Approach Total Benefit ($) Rel. to Proposed (%)
Fixed Envelope 2858.06 -5.7
Dynamic Envelope 2937.6 -3.2
Max Export 2969.3 -2.0
Fair Envelope 2979.9 -1.7
Proposed 3030.5 –

4.6.5 Convergence and Problem Size

As explained in Chapter 3, the ADMM decomposition enables us to use paral-
lel computing in both consumer and network subproblems. In our consumer
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subproblem, each consumer can solve their problem independently. Like-
wise, the OPF for each time step in our network subproblem can be solved
independently. These will help reduce the computation time, as the time for
every ADMM iteration would be equal to the longest time taken by a single
optimisation problem in consumer and network subproblems. For example,
in our simulation using PWA-ARCO, in the consumer and DSO subproblems,
the longest optimisation takes 0.16s and 0.058s (on a laptop computer with a
2.50 GHz Intel(R) Core(TM) i7 and 8 GB of memory), respectively. Hence, each
ADMM iteration takes at most 0.218s (0.16s + 0.058s) to compute the values.
We report the number of optimisation problems needed to be solved in each
subproblem, the number of variables4 of a single optimisation problem, as
well as the total number of ADMM iterations in Table 4.4. The parallel im-
plementation makes the total convergence time of a single horizon to be 8.1s,
36.4s, 9.4s and 2.18s for the Deterministic, Perfect, AARCO and PWA-ARCO
approaches, respectively.

Table 4.4: Problem Size and Convergence

Approach No. Iter
No. of Problems × Var. of a Problem
Consumer DSO

Deterministic 87 207 × 4.5k 564 × 482
Perfect 95 207 × 27.4k 2880 × 482
AARCO 33 207 × 5.2k 564 × 482
PWA-ARCO 10 207 × 12.9k 564 × 482

4.7 Conclusion and Summary

In this chapter, we enabled consumers to account for their local uncertain-
ties while improving the operating envelopes to include consumer reactive
power support. Consumers and the DSO negotiate for operating envelopes
that allow network-secure DER bidding. Unlike Chapter 3, the envelopes here
consist of both active and reactive power. This enables consumers to support
the grid with their reactive power and increase their network access. More-
over, the consumer subproblem here solves a PWA-ARCO problem. PWA-
ARCO is a more flexible extension to AARCO that enables consumers to
commit to their envelopes, account for bid violation penalties, and generate
reliable reserve bids. Both the envelopes and parameters of the piecewise
affine controllers are obtained during ADMM negotiation. This tunes our lo-
cal controllers based on global measurements and helps improve the results.
In live operation, PV power and demand are continually measured and fed
into PWA-ARCO controllers together with any FCAS activation signal. The

4The number of constraints in our optimisations is approximately equal to the number of variables.



§4.7 Conclusion and Summary 90

controllers then take the proper recourse actions. This is a valuable feature
of our approach as it can reduce the need for frequent negotiations making
PWA-ARCO more functional in practice. Our results demonstrate that our
PWA-ARCO approach serves its purpose whilst providing an excellent com-
promise between computational cost and solution quality.

It is worth mentioning that providing a concrete guarantee in robust op-
timisation can be very expensive if there is no clear bound on the uncertain
parameters. In this chapter, we repeatedly solve the problem on a model pre-
dictive control (MPC) framework, and thus we expect the uncertainty devia-
tions to be less extreme (the deviation bounds be more predicable) during a
5-minute MPC iteration. However, if the optimisation frequency decreases or
significant deviations are more probable, choosing a wide enough uncertainty
set can be challenging / over-conservative. In such cases, our approach can be
modified to a distributionally robust optimisation (DRO) method. DRO can
avoid expensive solutions by taking the probability of events into account.

In addition, it is worth mentioning that uncertainty at the level of con-
sumers is more severe than when aggregated. However, the network con-
straints are sensitive to nodal injection / absorption. In other words, even
if the aggregate forecast error is zero, still network constraints might be vi-
olated depending on how individual errors are distributed across the grid.
This is why, in this chapter, we treated the uncertainty locally. This being
said, the market penalty associated with misdelivery is applied to aggregate
bids (what reaches the market). However, applying such penalties to ag-
gregate bids connects consumer subproblems. Therefore, it will no longer
be straightforward to solve consumer subproblems independently. In this
chapter, to fully decompose the problem and solve consumer subproblems
separately, we applied the misdelivery penalty to the individual consumer.
Future work is needed to study the effect of uncertainty aggregation on mar-
ket penalties.

So far, we have assumed that consumers have an accurate forecast of mar-
ket prices. This simplifies consumer bidding to a self-scheduling problem in
which consumers use a price forecast to schedule their DER. The obtained
schedules are then submitted to the market at either market cap or floor
prices. However, such a strategy is optimum as long as the realised market
prices are close to the forecasts used in the optimisations. If the market prices
are notably different, such a bidding approach might even lead to economic
loss. In the next chapter, we propose a more flexible bidding approach that
enables consumers to hedge the price uncertainty by obtaining a bid stack
that includes multiple capacity bands and prices.



Chapter 5

Price-Sensitive DER Bidding

5.1 Introduction

This chapter provides a price-sensitive aggregator bidding solution for par-
ticipating in the energy and reserve markets. As with chapters 3 and 4, we
ensure that any energy, raise, and lower reserve capacity that reaches the
market is network-secure. However, here, we generate a bid stack that is
submitted to the market at different price bands. Not only does this hedge
the price uncertainty, but also it provides the market operator with a wider
range of consumer flexibility which can be used to dispatch the market more
efficiently.

In chapters 3 and 4, we optimised consumer resources according to a price
forecast and bid the obtained schedule at either market floor or cap prices.
Assuming that the market does not reach its floor or cap prices, these bids
get fully dispatched; hence, we called them price-insensitive bids. Such a bid-
ding policy simplifies the problem as it narrows the DER flexibility down to
a single band that obtains the highest benefits if the price forecast occurs in
reality. However, the price-insensitive bidding approaches, e.g., Vayá and An-
dersson [2014]; Wang et al. [2018]; Iria et al. [2018]; Lee et al. [2016]; Ottesen
et al. [2018]; Yao et al. [2018]; Zhu and Zhang [2019]; Neyestani et al. [2016];
Vatandoust et al. [2018]; Good and Mancarella [2017]; Attarha et al. [2020], can
negatively affect both the market and aggregators. From the market perspec-
tive, such bids always need to be settled. Therefore, the market is constrained
to dispatch these DER bids at a predetermined operating point, despite the
underlying flexibility of DER.

Moreover, for aggregators, restricting DER to operate at one operating
point according to forecasts as with price-insensitive approaches Iria et al.
[2018]; Lee et al. [2016]; Ottesen et al. [2018]; Wang et al. [2018]; Vayá and
Andersson [2014]; Yao et al. [2018]; Zhu and Zhang [2019]; Neyestani et al.
[2016]; Vatandoust et al. [2018]; Good and Mancarella [2017]; Attarha et al.
[2020], not only misses opportunities for providing higher value market ser-

91



§5.1 Introduction 92

vices but also can lead to economic loss in cases where cleared electricity
prices deviate from forecasts.

To get the best out of DER flexibility and avoid the abovementioned issues,
we argue the need for a more flexible DER bidding framework that enables
consumers to offer a wider range of their DER flexibility to the market. In
other words, rather than one bid band, consumers submit multiple bid bands,
each at a different price. Thus, the dispatches can vary, depending on the
price realisation, bringing the name price-sensitive to our bidding approach. In
the following, we provide a simple example that compares the performance
of price-insensitive and price-sensitive approaches.

Price Forecast 
100 $/MW

50 MW

$ 100 $ 150

0 MW

0 MW

50 MW
$100

50 MW
$200

~

~
MCP= 

200 $/MW
0 MW

50 MW

50 MW
$100

50 MW
$200

~

~
MCP= 

150 $/MW 0 MW

50 MW

Price-Insensitive

Price-Sensitive

Figure 5.1: An example illustrating price-insensitive and price-sensitive bidding ap-
proaches.

Figure 5.1 shows a 100MWh / 50MW battery storage system (you can
assume this is the aggregate of many residential DER) that participates in the
energy market using a) a price-insensitive approach and b) a price-sensitive
approach. In both bidding approaches, the battery owner forecasts that the
market clears at 100 $/MW. Using the first policy, the participant decides
to bid 0 MW into the energy market. However, using the price-sensitive
policy, the participant bids 0 MW at 100 $/MW and 50 MW at 150$/MW.
As shown in the figure, assume that an economic generating unit, offering
50 MW at $ 100, trips on the market side. Thus, the market operator needs
to replace the lost generation with other resources. In the price-insensitive
policy, the operator must include the next available generator (50 MW at $
200, the dotted blue lines show market dispatches); thus, the price will be
200 $/MW. However, in the price-sensitive policy, the market operator will
dispatch the battery in discharge mode, and thus, the price will be 150 $/MW.
In this example, the price-sensitive approach benefited both the aggregator
and the wholesale market.

Notice that large grid-scale batteries are already providing price-sensitive
bids in practice. The research community, however, often neglects this, partic-
ularly for residential DER. Notice that bidding the available operating range
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of DER, rather than just a single band, generates new challenges not encoun-
tered by the price-insensitive approaches. One of these new challenges is the
inter-dependency between the energy and the reserve markets, where partic-
ipation in one market can limit the bids in another. In fact, when bidding
a wider operating range of DER, consumers need to obtain a feasible region
accounting for any energy and reserve dispatch combinations. Another chal-
lenge is to calculate prices associated with different segments along the DER
feasible region. Yet, DER have mainly zero marginal cost, and thus, it is not
straightforward to find representative prices. In addition, as with chapters 3
and 4, we must ensure that the aggregation of bids do not violate the distri-
bution network technical limits.

The intrinsically distributed nature of the problem, the sensitivity of pri-
vate participant data and computational complexity all contribute to increas-
ing the difficulty of the problem. We address these by decomposing the prob-
lem into smaller subproblems, namely consumer and network subproblems,
that are solved separately. Instead of using the ADMM approach as a negoti-
ation tool between the consumer and network subproblems, here, we opt for
a simplified calculation which is equivalent to the communication and com-
putational effort of a single iteration of the ADMM-based approaches. The
downside is that our solutions might be sub-optimal compared to ADMM. As
we show in our result section, our approach was able to reduce the computa-
tional effort by the number of ADMM iterations (166 times in our approach)
at the cost of a 2.5% benefit reduction.

In our approach, consumers first send their offers and prices to the net-
work subproblem. The network then solves OPFs and comes up with bid
curtailments at each node to guarantee network constraints. We then apply
this curtailment to the bids from the most to the least expensive offer. This
reduces the total operation cost, which aligns with the objective of both the
market and the DSO.

Similarly to chapters 3 and 4, our setting allows sharing the computational
burden amongst all the parties, which can significantly decrease the runtime
through parallel computing. We also implement the approach in this chapter
on an MPC framework that moves forward in lock with the real-time market.
This enables consumers to use the latest (most accurate) forecast informa-
tion and their realised SoC in every optimisation. In this chapter, we ignore
consumer uncertainty between two optimisations (i.e., assume the forecast is
accurate for the next 5 minutes) and instead focus on the impact of market
price uncertainty. We also enable consumers to provide reactive power sup-
port for the grid. Similarly to Chapter 4, the DSO can use this reactive power
support to increase network throughput.

This chapter extends the previous chapters with two main contributions:

1. A novel price-sensitive consumer bidding approach for the energy and
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reserve markets, which more accurately captures the flexibility and
value of DER and enables DER dispatch to adjust to the uncertain re-
alisation of market prices.

2. A new network optimisation layer that shapes the energy and reserve
bids jointly to make them conform with distribution network bound-
aries while encouraging competition between aggregators. This is done
prior to bids reaching the market to avoid disruption to existing market
structures, enabling the approach to be more readily taken up.

Notice that in this chapter, without loss of generality, we assume that an
aggregator computes the price-sensitive consumer bids. Thus, hereinafter,
where relevant, we use the term aggregator for the third party who manages
consumers to obtain the bids and the prices.

In what follows, we first provide an upfront description of our approach
in Section 5.2. we next introduce the aggregator and network subproblems of
our approach respectively in sections 5.3 and 5.4. We introduce our compar-
ative approaches and numerically illustrate the effectiveness of our approach
in Section 5.5. Finally, we provide a summary of our approach and list our
findings in Section 5.6.

5.2 The Overall Approach

Figure 5.2 illustrates how our network-secure price-sensitive bidding ap-
proach interacts with the NEM wholesale market. Every 5 minutes, par-
ticipating aggregators receive (or calculate) a new wholesale market price
forecast over a forward horizon (shown by 1 in Figure 5.2). The aggregators
use this price forecast as a basis for calculating multi-band bids (represented
in the NEM as bid trapeziums) for the next 5-minute dispatch interval and
for each node of the distribution network where they have customers 2 . The
network takes these bids, merges them to obtain a polygon at each node 3 ,
and solves a set of OPFs and curtails the bids to obtain an overall bid re-
gion that will always remain within the network limits for any combination
of ways in which the wholesale market could dispatch energy and reserve 4 .
The curtailments are then applied to the original aggregator bids in the order
of the least to the most competitive (in terms of price) bids 5 , before being
sent to the wholesale market for consideration 6 .

In this overall approach, aggregators are free to calculate their multi-band
bids as they please, as long as it conforms to the bidding structure. Here,
we propose a particular method based on the fact that in a competitive and
efficiently operating market, the bids of participants will tend toward reflect-
ing their true underlying costs and constraints. The bidding requirements
of existing markets are not expressive enough to capture these underlying
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Figure 5.2: Schematic overview of our price-sensitive bidding approach.

requirements of participants to high accuracy, so we will have to allow for
some assumptions and approximations in this process.

For the network subproblem, when the DSO has to make a decision be-
tween two bids (i.e. if the combination of them would lead to a network
violation), all else being equal, it will opt for the bid with the more compet-
itive price offering. The idea is that the wholesale market would favour this
bid over the less competitive one in order to achieve an efficient dispatch, so
we should similarly be offering the most competitive subset of bids that will
remain within the network’s limits.

We implement our approach within a model predictive control framework
that moves forward every 5 minutes. This allows aggregators to account for
the gradual revelation of uncertainty and include the latest (most accurate)
uncertainty information in their optimisation problem. While we expect a
reasonably accurate PV forecast for the next 5-minute interval, we are not
prescribing that aggregators solve a deterministic optimisation problem to
obtain their bids. In fact, our overall approach does not stop aggregators from
considering a stochastic / robust optimisation for generating their feasible
regions (trapeziums), e.g., like what we did in Chapter 4. Such uncertainty
characterisation does not affect the network subproblem as the uncertainty of
load / PV / electricity prices is only reflected in the consumer subproblem.
This means the network subproblem will not face any extra computational
challenge when the uncertainties are taken into account. However, consumer
subproblems will differ (both optimally and computationally) as consumers
need to solve more sophisticated problems. We leave a detailed study of
such a case to future work. In the following, we present our aggregator and
network subproblems.
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5.3 Aggregator Sub-Problem

Here, we assume that consumers are equipped with EMSs that are controlled
via aggregators to make price-sensitive energy and reserve bids. These bids
are then submitted to the DSO to be shaped before aggregators submit their
bids to the market.

5.3.1 Consumer EMS Problem

Similarly to chapters 3 and 5, our consumers own a battery, PV and a back-
ground load. Notice that it is relatively straightforward, depending on the
convexity of the model, to include any load type into the consumer subprob-
lem.

Our consumer subproblem will include the market linking constraints
(3.5a) and (3.5b); solar PV (2.26) and battery constraints (2.27); the linearised
reactive power constraint (4.13b); and finally the combined power (2.30). Sim-
ilarly, to chapters 3 and 4, our consumer subproblem will include 3 copies of
consumer’s variables and constraints one for each output case: pe

t , pr
t and

pl
t. Notice that these constraints provide all the required bounds on our vari-

ables, including up and down reserve limits. To simplify, we use xn,t and
pn,t = (pe

t , pr
t , pl

t) respectively for the internal variables and the connection
point powers of consumer n ∈ C. We use gn(pn,t, xn,t) for the constraints
associated with consumer n.

Notice that there is no objective function in the EMS model as the con-
sumers are scheduled according to the aggregator’s objective. However, if a
consumer has a specific objective, our approach can easily include that. Here,
the objective of aggregators is to maximise the benefit of co-participating in
energy and reserve markets. Therefore, aggregators receive consumers’ con-
straints (gn) and co-optimise them for the energy and reserve market, as ex-
plained in the following section.

Next, we formulate the basic aggregator problem in Section 5.3.2, which
is used to build our price-sensitive bids in Section 5.3.3.

5.3.2 Aggregator Energy-Reserve Co-optimisation Problem

We start with modelling the optimisation problem of a price-insensitive bid-
ding approach. Let us use the variables Pa,e

i,t , Pa,r
i,t , and Pa,l

i,t , respectively for the
energy, raise, and lower bids of aggregator a at network node i. For the sake
of presentation, we use the vector Pa

i,t to show the combined aggregator bids,

where Pa
i,t = (Pa,e

i,t , Pa,r
i,t , Pa,l

i,t ). Given the energy, FCAS raise and lower price
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forecasts, π̄t = (π̄e
t , π̄r

t , π̄l
t), aggregator a solves the following problem:

max
P

∑
i∈N

∑
t∈T

δ · π̄t · Pa
i,t + ∑

n∈Ca
i

∑
t∈T

Dn,t (5.1a)

Pa
i,t = ∑

n∈Ca
i

pn,t ∀i ∈ N, t ∈ T (5.1b)

gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca (5.1c)

The first term in the objective function maximises the benefit of aggregators
in energy and FCAS markets. The second term adds the reserve deployment
cost Dn,t obtained via:

Dn,t = π̄e
t · δ′

(
µr

t · pr
n,t − µl

t · pl
n,t

)
(5.1d)

where δ′ is the worst number of seconds, we would need to respond for a
single contingency. Assuming that the value of the lost/gained energy is
at the energy market price π̄e

t , (5.1d) calculates the reserve deployment cost
given the probability of a contingency event occurring for lower and raise
reserves µl

t and µr
t . The significance of these deployment costs shrinks to zero

as contingencies become rarer.
In the following, we use the above co-optimisation problem to obtain the

three important parts of our aggregator subproblem, i.e., the feasible energy-
reserve region (Section 5.3.3 ), up to 10 price bands (in the NEM) across the
feasible region (Section 5.3.4) and finally the reactive power aggregators can
exchange with the grid for network support purposes (Section 5.3.5).

5.3.3 Aggregator Feasible Region

Aggregators need to obtain their feasible region together with their price
bands for each market. Prior to submitting to the market, aggregators com-
municate to the grid their available operating region at each node, together
with their prices. The DSO then shapes the bids to ensure network feasibil-
ity and sends the shaped regions back to the aggregators. Since aggregators
mainly own inverter-based DER technologies, their overall energy-FCAS re-
gion has a triangle shape. This is because, unlike a general trapezium (e.g.,
Figure 2.3), their feasible region will not be limited by ramp rates Operator
[2015]. An example of a feasible region with three price bands for the en-
ergy market is given in Figure 5.3. Notice that irrespective of ramp rates,
aggregators might want to bid a trapezium as some consumers might either
not participate or only partially participate in the FCAS market. Such partial
market participation brings consumer preferences into our model. Therefore,
aggregators can bid a trapezium shown by (A, B, C, D) for lower and (A, E, F,
D) for raise FCAS market. In the following, we use (5.1a)–(5.1c) to obtain the
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coordinates of points A–F, making the aggregator’s feasible region at node i.
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Figure 5.3: Feasible region of an aggregator with 3 price-bands.

Point A

To get the coordinates of point A, we maximise the energy market participa-
tion at the first time step as follows:

Pa,e
i,1

(max) := max ∑
i∈N

Pa,e
i,1 (5.2a)

s.t. gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.2b)

Thus, (Pa,e
i,1

(max), 0) is the coordinates associated with point A in Figure 5.3.

Point B

To get point B, we maximise the lower FCAS market participation at the first
time step as follows:

Pa,l
i,1

(max)
:= max ∑

i∈N
Pa,l

i,1 (5.3a)

s.t. Pa,e
i,1 = Pa,e

i,1
(max) (5.3b)

gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.3c)
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The above optimisation generates the coordinates of point B= (Pa,e
i,1

(max),

Pa,l
i,1

(max)
).

Point C

To get point C, we minimise the energy market participation at the first time
step when the lower FCAS bid is fixed at the obtained value for point B. This
can be written as follows:

Pa,e
i,1

C := min ∑
i∈N

Pa,e
i,1 (5.4a)

s.t. Pa,l
i,1 = Pa,l

i,1
(max)

(5.4b)

gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.4c)

Thus, C= (Pa,e
i,1

(C), Pa,l
i,1

(max)
). Notice that if an aggregator decides to bid a

triangle, then according to (5.3a)–(5.3c) and (5.4a)–(5.4c), the coordinates of
points C and B will be identical.

Point D

To get point D, we minimise the market participation in the energy market at
the first time step as follows:

Pa,e
i,1

(min) := min ∑
i∈N

Pa,e
i,1 (5.5a)

s.t. gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.5b)

Thus, (Pa,e
i,1

(min), 0) is the coordinates associated with point D in Figure 5.3.

Point E

To get point E, we maximise the raise FCAS market participation at the first
time step as follows:

Pa,r
i,1

(max) := max ∑
i∈N

Pa,r
i,1 (5.6a)

s.t. Pa,e
i,1 = Pa,e

i,1
(min) (5.6b)

gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.6c)

Thus, E= (Pa,e
i,1

(min), Pa,r
i,1

(max)).
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Point F

Finally, to get point F, we maximise the energy market participation at the
first time step when the raise FCAS bid is fixed at the obtained value for
point F. This can be written as follows:

Pa,e
i,1

E := max ∑
i∈N

Pa,e
i,1 (5.7a)

s.t. Pa,r
i,1 = Pa,r

i,1
(max) (5.7b)

gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.7c)

Thus, F= (Pa,e
i,1

(E), Pa,r
i,1

(max)). Similarly to point C, if the aggregator decides to
bid a triangle, then according to (5.6a)–(5.6c) and (5.7a)–(5.7c), the coordinates
of points E and F will be identical.

5.3.4 Price Bands

Consumer-owned technologies, such as batteries, make a profit by arbitraging
energy (i.e., charge when the price is low and discharge when the price is
high). Thus, finding representative price bands for aggregators relies on the
price and dispatch over time. This means that to make sound decisions in
the first operating interval, we need to account for the market prices in the
future. To do so, we select b capacity bands (up to 10 in the NEM) across the
energy-reserve region in the first time-step (t = 1). In fact, these bid bands
are possible dispatch scenarios, each of which can lead to a different future
schedule. We then obtain the schedule and the future benefit associated with
getting dispatched at each bid band based on the forecasts of the future prices.
Comparing the benefit obtained at each bid band with a base case (in which
aggregators only have their consumers’ background load), we calculate the
minimum price for delivering that capacity.

Let Pb
i,t=1 denote the dispatch at price-band b, i.e., energy, maximum raise

and maximum lower at the b-th segment of the energy-reserve region. The
expected future benefit Bb

exp associated with Pb
i,t=1 is obtained as follows:

Bb
exp := max ∑

t∈{2,...,T}
(∑

i∈N
δ · πt · Pa

i,t + ∑
c∈Ca

i

(Dc,t − Ωc,t)) (5.8a)

Pa
i,t=1 = Pb

i,t=1 (5.8b)

gn(pn,t, xn,t) ≤ 0 ∀n ∈ Ca
i (5.8c)

Having obtained the expected future benefit associated with every band b,
we need to transfer them into prices. To do so, we compare the total ben-
efits (first time step + future benefit) of getting dispatched at each capacity
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band with a base case (b = 1) where consumers are just withdrawing their
background load from the grid at the first time step. The price of getting dis-
patched at each capacity band should be such that aggregators obtain higher
benefits than in the base case (since otherwise, they would prefer the base
case outcome). Let πb = (πe

b, πr
b, πl

b) denote the energy, raise and lower price
for capacity band b. Given Pb

i,t=1, Pb=1
i,t=1 and their future benefits Bb

exp, Bb=1
exp ,

this can be written as:

δ · πb(Pb
i,t=1 − Pb=1

i,t=1) + Bb
exp ≥ Bb=1

exp . (5.9)

Note that (5.9), in the marginal case, can be simplified to: aπe
b + bπr

b +

cπl
b = d where a, b, c, and d are constants. Such an equation can be satisfied

for an infinite combination of energy and FCAS prices. To limit this and
obtain a unique solution, without loss of generality, we fix the FCAS prices to
zero and obtain the energy price for which the aggregator can operate at band
b in the energy market and provide the associated FCAS capacities. Note that
even though the bids for each market are separate, in practice, the market
cost function will be inseparable in NEMDE. Therefore, while it produces a
unique solution for (5.9), it will not change the way NEMDE dispatches.

5.3.5 Aggregator Reactive Power Support

Here we obtain the reactive power the aggregator can exchange with the grid
to provide greater network throughput. Based on Figure 5.3, we calculate the
maximum reactive power that we can deliver at the extremes of aggregator
triangles, i.e., points A and D. To ensure that the reactive power is being pro-
vided constantly for any other points within the aggregator flexibility region,
we connect a line between the reactive power that we will be asked to pro-
vide at points A and D. For any operation point between A and B, we inject /
absorb reactive power according to the obtained line. This is shown in Figure
5.4.

Here, we assume that the aggregators are not paid for their reactive power
support, and their only benefit in providing such support is to open up net-
work capacity to allow greater network access to consumers. This is also
in line with the Australia / New Zealand standard, where the inverters are
required to be able to provide reactive power support for the distribution net-
work. However, such services can be contracted and paid for. This does not
change our approach and will only increase aggregator benefits.

Having obtained the feasible regions, prices and reactive power support,
aggregators communicate them with the DSO to have their bids shaped. Note
that aggregators participating in other co-optimised markets that do not re-
quire a trapezium can use a similar process to generate multiple bands and
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Figure 5.4: Reactive power support

submit them to the DSO / market in the spirit of multiple simple bids.

5.4 Network Sub-Problem

The goal of our network subproblem is to open up as much network capacity
as possible for aggregators while ensuring grid security. To achieve this, we
first merge aggregators’ feasible regions to have a polygon at each network
node i.e., Pi = ∑a∈Ai

Pa
i /Sbase and Qi = ∑a∈Ai

qa
i /Sbase. For the two extremes

(max and min power)1 of the overall polygon (i.e., PEx
i and QEx

i ), our network
subproblem takes the total desired capacity, solves an OPF and then returns
a curtailment Λi for each node. To reduce the total operation cost, we apply
this curtailment to the bids from the least to the most competitive (in terms of
price) and curtail in this order until we have curtailed the total of Λi at each
node.

Similar to chapters 3 and 4, here we use the branch flow equations (2.31)–
(2.36) to model the distribution network constraints. Let us use P′

i for the
accepted bids and Q′

i for the required reactive power support at node i; we
write our network subproblem as follows:

1The obtained polygon includes several bid scenarios. However, we only need to explore the worst
scenarios, which are located at the extremes of the network polygon. This way, while keeping our
network subproblem tractable, we ensure that the network constraints are satisfied even for the worst
combination of scenarios.
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min ∑
i∈N

||Λi||22 (5.10a)

FP
i − ri Ii + P′

i = ∑
j∈ϕi

FP
j ∀i ∈ N (5.10b)

FQ
i − xi Ii + Q′

i = ∑
j∈ϕi

FQ
j ∀i ∈ N (5.10c)

P′
i + Λi = PEx

i ∀i ∈ N (5.10d)

Q′
i ≤ QEx

i ∀i ∈ N (5.10e)
(2.33), (2.34), (2.35), (2.36) (5.10f)

The objective (5.10a) minimises the square l2-norm of the bid curtailments.
Since we apply the bid curtailment from the least to the most competitive
price order, the more curtailment occurs at any particular node, the more
likely we will start to curtail competitive bids. When the curtailment is spread
across many nodes more evenly, as with the l2-norm, we will tend to just cur-
tail the least-competitive bids at each node. In other words, our l2 norm cur-
tailment approach splits the curtailment more evenly across more consumers
rather than only limiting those with a problematic connection. One can in-
terpret this feature of our approach as treating consumers fairly. An l1-norm
curtailment policy has been used in the literature to limit PV systems, e.g.,
Liu et al. [2020]. However, such an l1-norm policy curtails the bids at weaker
nodes (mainly end nodes) until the network problem is fixed. Thus, both the
least and the most competitive bids will be curtailed at these nodes. In the
results section, we will illustrate the difference between the two norms and
show that the l2-norm is more appropriate.

Active and reactive power flow equations are given by (2.31)–(2.32), where,
ϕi is the child nodes and at node i. The overall bid accepted by the network
plus the bid curtailment is enforced to be equal to the overall aggregator
bid in (5.10d). Finally, the reactive power used by the network is limited to
aggregators’ reactive power offers through (5.10e).

Note that (5.10a)–(5.10f) need to be solved for the extreme points of the
overall polygon. As shown in Figure 5.2, the feasible regions accepted by the
network might be smaller than the one aggregators have provided. Finally,
the shaped bids are submitted to the market. When the market is cleared,
each aggregator finds out where in their bid trapezium they will be dis-
patched for the upcoming interval. From here on, our approach is repeated
with updated inputs.
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5.5 Numerical Results

To illustrate the effectiveness of the proposed approach, we use the same 69-
bus distribution network Savier and Das [2007] as in chapters 3 and 4. To
evaluate the performance of our price-sensitive bidding approach and our
network modelling in the presence of more DER, we study two different DER
levels in this chapter: once where, similarly to chapters 3 and 4, there are 3
consumers per node (207 consumers in total), and another where there are 5
consumers per node (345 consumers in total). Similarly to previous chapters,
we participate in 7 markets (1 energy, three raise and three lower contingency
FCAS markets), but differently from them, we participate as a price-sensitive
participant. The 5-minute energy and reserve price forecast, taken from the
NEM pre-dispatch, are used to run our optimisation problems. We then use
the real MCPs as the realisation to evaluate the effectiveness of our approach.
Both the pre-dispatch and MCPs are provided in Appendix A. Finally, we use
Gurobi and IPOPT solvers in JuMP, Julia Dunning et al. [2017] to solve our
consumer and network subproblems.

In the following, we first introduce our comparative approaches in Section
5.5.1. We then discuss how we obtain the final benefit for each comparative
approach in Section 5.5.2. We illustrate the effectiveness of our price elastic
bidding approach in Section 5.5.3. In Section 5.5.4 we study the effective-
ness of our network modellings when the objective function (5.10a) uses the
l1- and l2 norm policies to minimise the bid curtailment and provide some
comparisons with the network modelling in our previous chapters as well
as some operating envelopes. Section 5.5.5 compares the performance of the
one-shot network policy of Chapter 5 against the ADMM approach, used in
chapters 3 and 4. Section 5.5.6 studies the effectiveness of providing reac-
tive power support in the price-sensitive approach. Section 5.5.7 compares
the voltages across the grid. Section 5.5.8 provides more discussions on the
accepted price-sensitive vs. price-insensitive bids in the market. Section 5.5.9
compares the problem size and run time of different approaches. Finally, Sec-
tion 5.5.10 provides results on the scalability of our proposed approaches to
a real-world power system.

5.5.1 Comparative Approaches

To illustrate the performance of our more flexible bidding approach, we com-
pare the results of three different approaches:

Price-Insensitive: in which aggregators optimise their portfolio using the
optimisation model (5.1a)–(5.1c). The optimisation uses price forecasts pro-
vided by the AEMO’s pre-dispatch. Both the pre-dispatch and market clear-
ing prices are provided in Appendix A. The mean absolute error of the fore-
casts and the realised prices for energy, raise and lower FCAS market is $9.6,
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$7.4 and $3.0, respectively, for 22 Feb 2020. Demand bids are submitted at the
cap price, and supply and FCAS bids are submitted at the floor price for the
respective market.

Perfect: in which aggregators optimise their portfolio using the optimisa-
tion model (5.1a)–(5.1c). The optimisation uses market clearing prices instead
of forecasts for the whole horizon (288 future time steps). Similarly to Price-
insensitive, the demand bids are submitted at the cap price, and supply and
FCAS bids are submitted at floor prices. This case is similar to what we had
in Chapter 3.

Price-Sensitive: in which aggregators run the proposed approach to gener-
ate their energy-FCAS regions (both raise and lower FCAS markets) as well as
their price bands. Note that we use the same forecasts as in price-insensitive
to obtain the prices. Here, we only obtain three price bands, each reflect-
ing the price of a highly likely transition that aggregators can experience: 1)
moving from the base case in which the batteries are neither charging nor dis-
charging to charge mode; 2) moving from the base case to discharge mode; 3)
moving from the base case in which all PV is curtailed to a no-PV-curtailed
point. The reason is that aggregators’ problem is linear, and these transitions,
especially over a 5-minute settlement, are representative.

Note all the above approaches are implemented within a model predictive
framework that moves forward one time-step (5 minutes) at a time.

5.5.2 Market Clearing Process

More than 500 agents participate in the NEM energy and FCAS markets every
day. NEMDE co-optimises all these participants every five minutes to obtain
the market prices and the dispatch of every participant. Here, we implement
a simplified version of NEMDE to dispatch our aggregators. To simplify,
we assume that all the participants in the same market region (Australian
states) are located at one transmission node. This leads to a transmission
network with 5 nodes, each representing one of the Australian eastern states
/ territories. We assume our 69-bus distribution network is connected to the
bus representing New South Wales (NSW). For each region, we extract the
energy and FCAS bids of all participants as well as their demand and FCAS
requirements from AEMO’s website2. Similarly to NEMDE, we use a linear
OPF to obtain the dispatch of all our participants (including aggregators) and
the price of each market.

5.5.3 Price-Sensitive vs. Price-Insensitive

To highlight the effectiveness of bidding a wider range of DER operating
points, we first report the total benefits of the above approaches when the

2http://nemweb.com.au/
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network constraints are neglected. Let us use Medium and High to indicate
different DER-integration levels associated with our 207 and 345 consumers,
respectively. Table 5.1 reports the total benefit for Medium and High DER
integration scenarios when neglecting the distribution network.

Table 5.1: Overall Benefit of Aggregators Neglecting Network

Approach
Benefit ($) Average Rel.

to PerfectMedium High
Price-Insensitive 2742.3 4575.2 -12.1
Price-Sensitive 2842.2 4741.6 -8.9
Perfect 3118.7 5202.5 –

As reported in Table 5.1, the proposed price-sensitive approach could ob-
tain 3.2 % higher benefits compared to the price-insensitive approach3. The
reason is that the price-insensitive bidding approaches submit their bids at
either floor or market cap prices; therefore, no matter how much the realised
price deviates from the forecasts, their bids are accepted by the market. On
the contrary, the price-sensitive approach generates different capacities for
different prices. Therefore, if the market price realises differently from the
forecast, the participants will get dispatched in a band that maximises their
benefit rather than a single predetermined capacity band according to the
forecast. Moreover, as can be seen in Table 5.1, the perfect approach brings
the highest benefit since it uses the market clearing prices (i.e., perfect infor-
mation). Notice that since the network constraints are neglected, the results
in Table 5.1 might be infeasible. We next include network constraints to avoid
infeasible results.

5.5.4 Network Inclusion

Here, we illustrate the effect of including the network constraints on our bid-
ding problem. To provide a fair comparison, we incorporate the network
subproblems for both price-insensitive and perfect approaches. To do so, we
use a similar approach as in Section 5.4, yet instead of multiple bid bands as
in the price-sensitive approach, consumers obtain a single bid band (either
according to the price forecast or MCP) and report their maximum and min-
imum CPP to the network subproblem. The DSO then solves two OPFs (one
for each extreme) to obtain the curtailments.

Table 5.2 reports the total one-day benefits of our aggregator for the l1-
and l2-norm network curtailment policies.

The relative benefit improvement of the two network cases (l1- and l2-
norms) with respect to no network case (i.e., Table 5.1) is also reported in

3Depending on how market prices change, the extra benefit can be different.
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Table 5.2: Network-Secure Consumer Benefit

Approach
DER
Level

Total Benefit ($) Rel to No Net. (%)
l1-Norm l2-Norm l1-Norm l2-Norm

Price-Insensitive
M 2719.7 2732.5 -0.4 -0.8
H 4117.0 4120.5 -10.0 -9.9

Price-Sensitive
M 2839.2 2837.6 0.11 0.16
H 4281.5 4258.3 -9.7 -10.2

Perfect
M 3090.3 3083.7 -0.9 -1.1
H 4677.0 4635.8 -10.1 -10.9

Table 5.2. Notice that since the network constraints are included, both cases
obtain network-feasible results; however, a higher benefit is obtained for the
l1-norm curtailment policy. The reason is that here, we have not included any
internal objective for consumers, and thus the benefit is only defined by mar-
ket transfers. Since the l1-norm curtailment policy maximises the throughput,
it obtains the highest benefit. Compared to l1-norm, l2-norm spreads the cur-
tailment on multiple nodes (rather than prioritising the end feeders as in
l1-norm). In other words, when using l2-norm, the curtailment at each node
is less than l1-norm, yet the curtailment happens at more nodes. In our price-
insensitive approach, we apply the curtailment from the most expensive to
the least expensive offer. Thus, the more we curtail at any single node, the
more likely we curtail the competitive bids. Thus, the maximum export might
curtail efficient bids and let the more expensive bids reach the market. How-
ever, as our l2-norm policy tends to curtail more expensive bids, to ensure
network security, we need to curtail more capacity in total, but those bids
reaching the market are the most efficient ones.

To show the impact of different curtailment policies when computing our
network secure bids, we compare the bid curtailment under the l1- and l2-
norms in the objective function (5.10a). Figure 5.5 compares the amount of
curtailed bids for the three highest prices4 at time step 164, where the highest
voltage violation occurs. As shown in the figure, unlike the l1-norm, the
l2-norm mainly limits the most expensive bid.

 

Figure 5.5: Bid curtailment at different prices.

4There was no curtailment for prices lower than $77.
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5.5.5 ADMM-based vs. One-Shot Network Models

As mentioned before, Perfect is the same case we used in Chapter 3. There-
fore, here we can directly compare the benefit of our network modelling,
i.e., sequential implementation, as in this chapter and when we use ADMM
to negotiate and converge on a consensus solution. Table 5.3 reports the
results of our ADMM-based and one-shot policy approaches for both our
medium (M) and high (H) DER penetration scenarios. As reported for the
medium DER penetration scenario, our one-shot curtailment policy obtains
results 0.1% lower than those of the ADMM approach. This difference for
our high DER-penetrated scenario is -2%. However, please note that while
the network and consumer subproblem size is the same in both cases, our
one-shot approach only needs to solve the problem once. On the contrary,
our ADMM approach converged respectively within 95 and 166 iterations for
our medium and high DER scenarios. This means that our one-shot approach
requires 95 and 166 times less computation than ADMM-based approaches.

Table 5.3: Sequential vs. consensus

Approach Scenario
Benefit ($) Rel. to

ADMMEnergy FCAS Total
ADMM-Based M 250.1 2844.8 3094.9 –
ADMM-Based H 394.4 4401.6 4796.0 –
One-Shot M 249.3 2841.0 3090.3 -0.1
One-Shot H 304.1 4372.9 4677.0 -2.5

5.5.6 Reactive power support

In this section, we report the trapezium of a consumer with and without
reactive power support and how the grid shapes the trapezium in each case.

Figure 5.6 shows the energy-raise feasible region at bus 27 for our medium
DER integrated case and how it is shaped by the network with and without
reactive power support. The reported trapezium is for 1:30 pm when there is
high PV power available, and thus there is an over-voltage issue at the con-
sumer network connection node. The trapezium on the left is when there is
no reactive power support, while on the right, there is reactive power support
available. Starting with the trapezium on the left, to resolve the over-voltage
issue, the DSO curtails the injection energy from 6.8 kW to 4.2 kW. There-
fore the network-secure trapezium is reduced to the green area. On the other
hand, on the right, the DSO can use the reactive power support of consumers
to reduce (or avoid) active power curtailment. As shown in Figure 5.6, con-
sumers can bid their original trapezium if they consume 3.1 kVAR reactive
power. Notice that to ensure the grid feasibility, if the consumers get dis-
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Figure 5.6: Reactive power support

patched less than 6.8 kW in the energy market (or combination of energy and
reserves), they need to follow the dotted line and consume reactive power
accordingly.

The reactive power support improved the consumer benefit both in
medium and high DER scenarios. While the reactive power could mitigate
all network violations in the Medium case, in the high DER scenarios, we
could improve 5% on consumer benefit.

5.5.7 Distribution Network Voltage Analysis

After the market-clearing process, when the real dispatch of each aggregator
is revealed, we solve three PFs (one where no FCAS action is required (energy
alone), one for max raise FCAS activation, and another where max lower
FCAS is activated) to obtain the actual voltages at each node. We plot the
minimum and maximum voltages occurring in the system with and without
network inclusion in Figure 5.7.
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Figure 5.7: Maximum and minimum voltage across the grid: network-free vs.
network-secure

As can be seen in Fig 5.7, the voltage of the system is always within the safe
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limits for the proposed network-secure approach. Also, while the proposed
approach could keep the voltage of all 69 nodes within the safe limits, 19 out
of 69 nodes experienced at least one voltage violation in the Network Free
case.

5.5.8 Accepted Bids: Price Insensitive vs. Sensitive

Figure 5.8 compares the accepted bids in the energy, raise and lower reserve
markets generated by our price-insensitive and insensitive approaches.
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Figure 5.8: Market-accepted energy, raise, and lower reserve bids: Price-Insensitive
vs. Sensitive

5.5.9 Computational Performance

Table 5.4 reports the total problem size and the computational time of price-
insensitive, perfect and price-sensitive approaches for our sequential imple-
mentation together with the expected parallel time (using the time of the
slowest subproblems at each iteration). Note that in the aggregator subprob-
lem, the number of variables is linear in the number of consumers. The reason
is that no two aggregators nor any two consumers of the same aggregators
have common variables and constraints. Thus, the aggregator subproblem
can be decomposed at the connection point of every consumer within a sin-
gle model predictive iteration, and each of the consumer subproblems can be
solved in parallel. A consumer subproblem (for the price-sensitive approach)
includes 21k variables and 16k constraints. Similarly, our network subprob-
lem can be separated into one OPF for each time step5 and each power flow
case under consideration: energy, FCAS raise, FCAS lower. This reduces the
number of variables and constraints relevant to the parallel implementation
of the network subproblem to 2k and 1.7k, respectively.

5Since there are no time coupling constraints in the network subproblem.
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Table 5.4: Problem Size and Computation Time

Approach Problem-part
Problem Size Time(s)

#Var. #Cons. Seq(Parallel)
Price-Insensitive Aggregator 18,680k 14,772k 272 (0.43)

/ Network 2,701k 2,243k 281 (0.41)
Perfect Total 23,347k 17,015k 553 (0.84)

Price-Sensitive
Aggregator 30,919k 22,774k 378 (0.91)
Network 3,247k 2,514k 387 (0.39)
Total 34,166k 25,288k 765 (1.30)

As can be seen in Table 5.4, the estimated parallel time to solve the price-
insensitive and the proposed price-sensitive approaches, for a single horizon,
are respectively 0.84s and 1.30s. Note that these are potential solve times for
a fully parallel implementation. However, if the computational resources are
not available to perform a fully parallel solve, and the solve time becomes a
limiting factor, it is possible to approximate the problem by using a variable
time discretisation of the horizon to reduce the number of time steps Scott
et al. [2019]. By using 30-minute steps after the first time step in the horizon,
experiments show that we are able to reduce the sequential solve time 16 fold,
at the cost of a 6% decrease in overall benefits.

5.5.10 Experiments on a real-world MV-LV network

Here we compare the performance of the ADMM and the one-shot policies
on an MV-LV distribution network provided by an Australian DSO. The dis-
tribution network includes 1 MV feeder of 11 kV and 5 LV feeders of 0.43 kV.
In more detail, the MV feeder has 14 buses, 13 lines, 5 MV/LV transformers,
and 1 MV load. The LV feeders have a total of 724 buses, 719 lines, and 522 LV
customers. We study 3 different PV and battery penetration levels: PV20B10,
PV40B20, and PV60B30. For instance, PV20B10 represents a scenario where
20% of customers own a solar PV system and 10% of them own battery stor-
age. Similarly PV40B20 / PV60B30 are scenarios with 40% / 60% PV and 20%
/ 30% battery storage. Consumers can own 5 kW/13.5 kWh battery storage
with a round trip efficiency of 0.9 and PV, ranging from 3 to 6 kW. The in-
flexible load and PV generation were modelled using 5-minute data of real
houses Iria et al. [2022].

Table 5.5 shows the benefit obtained by ADMM approach used in chapters
3 and 4 and the one-shot curtailment approach in Chapter 5. In line with our
results on a 69-bus network, as DER penetration increases and the network
becomes more binding, the ADMM approach is able to obtain better results.
However, unlike ADMM, the one-shot policy provides network feasibility in
one iteration, which reduces the computation cost significantly. Table 5.6
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reports the computational time of both approaches.

Table 5.5: Benefit obtained for different DER penetration level: ADMM vs. one-shot

DER
penetration

Benefit $
ADMM One-shot Improvement %

PV20B10 -902 -902 0
PV40B20 792 792 0
PV60B30 1974 1862 6

Table 5.6: computation time for different DER penetration level: ADMM vs. one-shot

DER
penetration

ADMM Oneshot
Improvement (times)

Iteration time time
PV20B10 4 0.46s 0.12s 3.8
PV40B20 32 3.01s 0.12s 25.1
PV60B30 44 4.52s 0.12s 37.7

5.6 Conclusion

In this chapter, we answered the important question of how aggregators, who
share the same distribution network, can efficiently participate in the energy
and reserve markets while respecting the grid constraints. Unlike the com-
mon price-insensitive approaches, our approach generates bids and the prices
for aggregators’ available flexibility. By obtaining the grid operating region,
we also ensure that aggregator bids will not go beyond the network capabili-
ties.

We illustrated the effectiveness of our approach using 207 / 345 consumers
in a 69-bus network. Our results show a 3.2% benefit improvement compared
to a price-insensitive method. We also show the importance of network in-
clusion by using two curtailment policies in the network subproblem: 1) the
inclusion of the network using an l1-norm curtailment policy, 2) the inclu-
sion of the network using an l2-norm curtailment policy. We also compared
the effectiveness of the one-shot curtailment policy presented in this chapter
with the ADMM-based iterative approach presented in chapters 3 and 5. We
showed that while both approaches can obtain feasible results, the ADMM-
based method obtains better results at the expense of more communication
and computation. We also show that if aggregators provide the network with
their reactive power support, they can obtain higher benefits. The reason is
that consumers’ reactive power support can expand the network’s feasible
region.

In this chapter, we primarily focus on the security of the network while
opening up network capacity. In other words, we introduce a new role for
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the DSO and thus have not included losses into our calculations to avoid
extra complications. However, our network subproblem can be extended to
additionally consider reducing losses. Including different DER types and
uncertainty (other than what our MPC implementation can capture) are two
other possible extensions that we leave to future work.

In addition, this chapter ignored consumer uncertainty and solely focused
on market price uncertainty. However, our approach can be extended to in-
clude consumer uncertainty, similarly to Chapter 4. Since our approach de-
composes consumers and network subproblems, similarly to Chapter 4, the
consumer uncertainty can be dealt with in the aggregator subproblem, adding
negligible complexity to the DSO subproblem.

Notice that in this thesis, there are no incentives to encourage truthful DSO
behaviour, and we have assumed that the DSO truthfully tries to get the best
out of the existing networks. Additional considerations can be introduced
to promote truthfulness in the DSO subproblem. For example, tariffs can be
allocated to every kW within operating envelopes allowing the DSO to earn
more if they provide greater network access for consumers. We leave this
additional consideration to future work.



Chapter 6

Conclusion

The objective of this thesis was to enable consumers to provide energy and
reserve services within the electricity market while respecting the technical
limits of the distribution network. We studied different aspects of the prob-
lem, identified the challenges, and provided solutions to the key challenges
in chapters 3, 4, and 5.

We suggested two bidding approaches that generate either a single bid
band, called price-insensitive, or multiple bid bands at different prices, called
the price-sensitive solution to the problem. We showed that if an accurate
price forecast is available, it is best to put DER flexibility in one (price-
insensitive) band. Yet, when there is uncertainty around prices, chunking
DER flexibility and offering it at multiple (price-sensitive) bid bands can
improve consumer benefit. Since consumer bids reach the market via the
distribution network, our price-insensitive / sensitive offers accounted for
the grid’s technical limits before submitting bids to the market. This can be
viewed as a pre-assessing phase that ensures the feasibility of bids prior to the
market-clearing procedure without changing how current electricity markets
work.

As discussed throughout this thesis, irrespective of the bidding type, there
are challenges stemming from the size of the optimisation problem, consumer
/ grid privacy, and data uncertainty that a solution needs to overcome. We
deal with these challenges by:

• breaking the large-scale optimisation problem down at the level of every
consumer and solving the problem in a distributed fashion. This could
be done as part of ADMM, as with our price-insensitive solution, or a
simpler one-shot approach, as with our price-sensitive solution. While
both methods can provide some level of privacy for consumers and the
grid, the ADMM approach is able to obtain better (near) optimum results
at the expense of more computation.

• implementing our approaches on a model predictive control framework

114
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to solve the optimisation problem every 5 minutes. This enables con-
sumers to include the latest uncertainty information into their optimi-
sation problems and obtain more accurate results. In addition, we pro-
pose a piecewise affinely adjustable robust optimisation approach that
empowers consumers with controllers to compensate for uncertainties
during the 5-minute operating interval between the two successive MPC
optimisations. We studied the effectiveness of our uncertainty mod-
elling only within our price-insensitive bidding solution. However, our
price-sensitive approach can also use a similar method to account for
uncertainty more accurately.

6.1 Key Learnings

The solutions presented through chapters 3-5 each had their own key learn-
ings that we summarise in the following:

In Chapter 3, we developed a network-secure bidding approach using the
distributed optimisation ADMM. Our solution enables consumers and the
network to negotiate for operating envelopes that indicate the network-secure
operating domain for consumers. Comparing to the available literature, we
found that our ADMM-based solution approach can obtain (near) optimum
results, can scale to realistically sized networks, can provide some level of
privacy for consumers and the DSO, and finally can converge within a rea-
sonable time, when relying on consumer computational resources.

Chapter 4 builds on operating envelopes of Chapter 3 by modelling con-
sumer uncertainties using a piecewise affinely adjustable robust approach
and enabling reactive power exchange to increase network throughput. We
found that our uncertainty characterisation improves the bidding solution in
two main ways. It firstly provides the means for consumers to stick to their
envelopes which in turn ensures network security. In addition, it enables con-
sumers to account for market penalties that might apply to them in case they
fail to deliver the offered capacity. Regarding the reactive power, we showed
that such reactive power support opens up network capacity, and thus, con-
sumers can participate in the market with fewer network limitations.

Chapter 5 builds on the bidding approach of chapters 3 and 4 by account-
ing for market price uncertainty while exploring a technique to improve scal-
ing. Here, rather than a single price-insensitive bid band, we obtain multi-
ple price-sensitive bid bands. We show that our price-sensitive solution can
hedge the price uncertainty effect and improve consumer benefit when the
prices cannot be forecast accurately. In addition, rather than ADMM, we
explored the effectiveness of a simpler one-shot policy within our bidding
approach. The computation / communication required by our one-shot pol-
icy is equivalent to one iteration of ADMM, which increases its application in
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a real-world setting. However, this comes at a price of less optimum results
(in our experiments, the one-shot policy reduced the benefit at a maximum
of 2.5% while requiring 166 times less computation).

6.2 Future Research

In this thesis, we only assumed that consumers participate in energy and con-
tingency reserve markets. Future work is needed to investigate the benefit of
participating in the regulation market alongside the energy and contingency
reserve markets. Since contingency is a rarely activated service, we simplified
the probability of reserve activation with a constant value. However, regula-
tion is continually activated. Thus, a more sophisticated probabilistic model
is needed to take the regulation activation into account.

In chapters 3 and 4, we used the ADMM approach to coordinate con-
sumers with the grid. Further research to improve ADMM convergence or
the effectiveness of different distributed approaches, such as ALADIN Engel-
mann et al. [2017], needs to be investigated in future work.

Other uncertainty characterisation techniques, such as stochastic program-
ming or distributionally robust approaches that can use the available uncer-
tainly information, might achieve a better outcome than our piecewise affine
approach in Chapter 4, especially if bounds on uncertainty deviations are not
easily predictable. Exploring these approaches in the context of operating
envelopes is worth investigating in future work. In addition, we applied the
market penalty associated with not honouring the energy bids to individual
consumers. This enabled us to fully decompose the problem at the level of
every consumer. However, in reality, such penalties are applied to the ag-
gregate of offers reaching the market. Notice that, on aggregate, some part
of consumers’ uncertainty might cancel out. Therefore, modelling this can
increase consumer benefit at the expense of another constraint that couples
consumers. The pros and cons of such modelling can be investigated in future
work.

The bid shaping approach in Chapter 5 does not directly include aggre-
gator prices when coming up with the required curtailment at each node. In
other words, we first calculated the curtailment at each node and then ap-
plied the curtailment to the least competitive bids outside the optimisation.
However, aggregator prices as well as network losses can be directly included
within the network optimisation problem. Future work can study the pros
and cons of such a modification. In addition, currently, our price-sensitive
approach in Chapter 5 solely counts on an MPC implementation for uncer-
tainties. However, a stochastic or robust approach (for example, a similar
approach as in Chapter 4) can be incorporated to capture the uncertainty
effects more accurately.
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6.3 Summary

To summarise, this thesis addressed the important question of how residential
DER can participate in the energy and reserve markets while respecting the
constraints of the distribution network that is sitting between DER and the
market. It has expanded the knowledge in the area of consumer bidding
solutions, adjustable robust optimisation, and distributed optimisation. It has
also discovered a range of interesting future research topics.

Moving away from fossil fuels and towards renewable makes it challeng-
ing to meet the reliability requirements of power systems, but one that is
becoming ever more achievable due to advances such as those presented in
this thesis. These challenges, along with the rapid pace of technological de-
velopments, make it an exciting time to work in power systems.
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Envelopes Enabling Reliable DER Bidding in Energy and Reserve Mar-
kets,” IEEE Transactions on Smart Grid. Jan. 2022.

2. A. Attarha, P. Scott, J. Iria, S. Thiébaux, “Network-Secure and Price-
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Appendix A

Test Systems and Data

This Appendix presents the test systems and the data used in this thesis for
our experiments. This includes our network test systems in Section A.1; our
consumer data in Section A.2; our market prices, both forecasts and reali-
sations, in Section A.3; and finally our proof, showing the effectiveness of
envelopes for balance radial networks in Section A.4.
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A.1 Network Test Systems

We use a 69 bus distribution network test system Savier and Das [2007] to
evaluate the performance of our approaches throughout this thesis. Figure
A.1 shows the configuration of the 69-bus distribution network test system
Savier and Das [2007]. We modify the 69-bus distribution network with three
consumers at each node, i.e., a total of 207 consumers for chapters 3–5, and
with five consumers at each node, i.e., a total of 345 consumers for compar-
isons in Chapter 5.

Figure A.1: 69-bus distribution system

A.2 Consumer Data

We utilise 5 kW rooftop PV, and 5 kW / 10 kWh batteries with round-trip
efficiencies of η2 = 90%, at a subset of the consumers. We use anonymised
solar and demand data for 27 consumers, each consuming 20 kWh per day
on average, in Tasmania, Australia, provided by Reposit Power CONSORT
[2019], and randomly assign this data to the consumers in our networks.

A.3 Market Prices

We take the 5-minute wholesale energy, and FCAS market prices from AEMO
AEMO [2020]. These data are for the NSW region on 22 Feb 2020. Forecast
and market clearing prices (MCP) for energy and FCAS markets are shown
in figures A.2, and A.3, respectively.
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Figure A.3: FCAS market prices, forecast vs. market clearing: y axis in figure a)
shows 6 second raise FCAS; in b) shows 6 second lower FCAS; in c) shows 60 second
raise FCAS; in d) shows 60 second lower FCAS; in e) shows 5 minute raise FCAS; in
f) shows 5 minute lower FCAS

A.4 Proofs

The goal of this proof is to show that in a radial balanced network that is oper-
ated in the voltage-stable region, solving two OPFs (for extremes) is sufficient
to obtain feasible envelopes.

We first begin by linearising the power flow equations about an operating
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point, which in our case can be considered the forecast values. Let Ṽi de-
note the voltage magnitude at node i at an initial operating point, and let ∆pi
denote the deviation of real power injection at node i from its value at that
operating point. Also, let matrices Kp

ij denote the voltage magnitude sensitiv-
ity of node i to real power injection at node j. Assuming zero reactive power
changes1, we write the following relation:

Vi = Ṽi +
n

∑
j=1

Kp
ij∆pj, (A.1)

where Vi denotes the voltage magnitude at node i, and n is the number of
nodes in the network. We wish to obtain the conditions under which the
voltage magnitude at all the nodes stays within a desired bound for all reali-
sations of the nodal real power deviations within a box uncertainty set. More
formally:

Vi ≤ Ṽi +
n

∑
j=1

Kp
ij∆pj ≤ Vi ∀∆pj ∈ Uj, ∀i ∈ {1, ..., n}. (A.2)

where Uj = [∆pj , ∆pj], and Vi and Vi denote the acceptable lower and upper
voltage limits at note i, respectively. Using max and min protect functions, we
rewrite (A.2) as the followings:

Ṽi + max
∆pj∈Uj

{
n

∑
j=1

Kp
ij∆pj} ≤ Vi (A.3a)

Ṽi + min
∆pj∈Uj

{
n

∑
j=1

Kp
ij∆pj} ≥ Vi (A.3b)

We now assume that Kp
ij is a non-negative matrix, i.e., we assume that all its

elements are equal to or greater than zero (we will get back to the require-
ments for this assumption to hold). Thus, we rewrite (A.3) as the following:

Ṽi +
n

∑
j=1

Kp
ij∆pj ≤ Vi (A.4a)

Ṽi +
n

∑
j=1

Kp
ij∆pj ≥ Vi. (A.4b)

Hence under the assumption that Kp
ij is a non-negative matrix, to make sure

1Notice that the same proof holds when the reactive power is included. The reason is that the
reactive power is controllable in our work and only is meant to improve the voltage profile.
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that all the combinations of real power deviations will not lead to voltage
violations, we only need to check for the two scenarios where all the injections
are simultaneously on either the maximum or minimum side of uncertainty
set Uj.

We now check the requirements for our assumption. Based on voltage sta-
bility definition Kundur et al. [1994], if the sensitivity of voltage magnitude to
real power injection becomes negative, the system is voltage unstable. Hence
our first requirement is that we work in a voltage-stable operating region,
which is a fair assumption in a power system operation setting.

Notice that in the stability argument, we are only looking at the diagonal
elements in the sensitivity matrix. For the rest of the elements in the sensitiv-
ity matrix, we look at the physical structure of nodal connections. For a radial
network, neglecting the higher order real and reactive power loss terms, we
can write the power flow equations as in (13). As shown in Farivar et al.
[2013], this approximation introduces a small relative error of at most 0.25%
if there is a 5% deviation in voltage magnitude.

Vi = V0 + ∑
j

Rij pj, (A.5)

where V0 denotes the voltage magnitude at the slack node, and Rij denotes
the resistance of the direct path between nodes i and j. Comparing (A.5) and
(A.1), we can see that Rij is an approximation of Kp

ij, and indeed, is equal to
it when we are linearising the power flow equation at the no-load condition
Jabr [2019]. Notice that since the elements in R are the summation of positive
resistance of the lines on the path between the nodes, they all have positive
values. Hence, in radial systems, the assumption of non-negative sensitivity
is valid.

In the (weakly-) mesh networks, however, while the diagonal elements are
positive in a voltage stable operating point Kundur et al. [1994], we could
not find a general approximation of the non-diagonal elements in the sensi-
tivity matrix. In all of our experiments in the mesh networks, we got non-
negative sensitivity matrices when we were operating in voltage-stable condi-
tions. Nevertheless, we leave this analysis to future work and here only argue
that our approach will work in the radial systems.
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Attarha, A.; Scott, P.; and Thiébaux, S., 2019. Affinely adjustable robust
ADMM for residential der coordination in distribution networks. IEEE
Transactions on Smart Grid, (2019).
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