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Abstract
Metagenomics involves the study of various genetic material obtained directly from communities of
microorganisms living in natural environments. The field of metagenomics has provided valuable
insights into the structure, diversity and ecology within microbial communities. Recent developments
in high-throughput sequencing technologies have enabled metagenomics to analyse samples from
environments, without having to rely on culture-based methods. Once an environmental sample
is sequenced, a process called metagenomics binning is used to cluster the sequences into bins that
represent different taxonomic groups such as species, genera or higher levels. Various efforts have
been made throughout the past to bin metagenomic sequences. One approach followed is to bin raw
sequencing reads prior to assembly. However, reads are considered too short to produce accurate
and reliable binning results for downstream analysis. Hence, the standard approach followed during
metagenomics analysis is to assemble short reads into longer sequences called contigs and then bin
these resulting contigs. Existing metagenomic contig-binning methods rely on the composition and
abundance information of the contigs, and face challenges when binning short contigs and contigs
with similar composition and abundance.

Contigs are derived from the underlying assembly graph which contains valuable connectivity
information among contigs. However, existing metagenomic contig-binning methods do not consider
the assembly graph in the binning process. Firstly, this thesis describes a bin refinement tool named
GraphBin that improves existing metagenomic binning results using assembly graphs. GraphBin
makes use of the assembly graph and a label propagation method to refine binning results of existing
contig-binning tools by correcting mis-binned contigs and recovering short contigs that are discarded.
Secondly, this thesis explains how to enable the detection of shared sequences among multiple
species from assembly graphs and introduces a tool named GraphBin2 which can perform overlapped
binning. GraphBin2 makes use of the assembly graph and the coverage information of contigs
which enables the detection of contigs that may belong to multiple species. Thirdly, this thesis
introduces a stand-alone approach named MetaCoAG to bridge metagenomics binning and assembly
by incorporating composition, coverage and assembly graphs. MetaCoAG uses single-copy marker
genes to estimate the number of initial bins, assigns contigs into bins iteratively and adjusts the
number of bins dynamically throughout the binning process. In summary, this thesis discusses the
challenges in binning metagenomic contigs, the shortcomings of existing metagenomic contig-binning
tools and presents how the assembly graph can be incorporated to improve metagenomics binning.

Keywords: metagenomics, binning, bioinformatics algorithms, assembly graphs
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Chapter 1

Introduction

The human body is home to a vast number of microorganisms. Also known as microbes, these
microscopic organisms can be found on and in various parts of the human body such as skin, hair,
mouth, nose and gut. It is believed that the number of microorganisms residing in the human body
outnumbers the number of cells. Apart from the human body, microbes are naturally found as
communities in various environments including soil, air and lake water, and occur under various
conditions such as hot, cold, high pressure and even radioactive environments.

Microbes play an important role in biological activities of the human body such as digestion and
development of immunity. Microbes also facilitate various natural processes such as decomposition
and fermentation which have given rise to many industries including food production (e.g., bread,
cheese and alcoholic beverages), waste treatment, fertiliser and many industrial chemicals. Moreover,
microbes have become essential tools in biotechnology and pharmaceutical related applications.
However, microorganisms are causative agents of many infectious diseases that can cause harmful
effects to the human body (e.g., plague, tuberculosis and malaria). Given the benefits and drawbacks
of microorganisms, it has become crucial to understand their behaviour and functions within their
communities.

With the development of microscopes capable of viewing single-celled organisms by Antonj van
Leeuwenhoek in the 17th century, scientists were able to directly view microorganisms (Garza and
Dutilh, 2015). However, viewing and analysing microorganisms in their natural environments is a
very complex and difficult process. As a solution, enrichment culture techniques were developed in
the 19th century, and since then, isolation and cultivation became the most commonly used method to
study and characterise microorganisms (Garza and Dutilh, 2015).

Even though enrichment culture techniques allowed scientists to study microorganisms in isolation,
previous studies of environmental microbes have claimed that less than 2% of all the known microor-
ganisms can be successfully cultured in laboratory conditions (Hofer, 2018; Overmann et al., 2017;
Steen et al., 2019; Wade, 2002) and our understanding on the vast majority that has not been cultured is
very limited. As a result, culture-independent methods (CIMs) (Garza and Dutilh, 2015; Su, Lei et al.,
2012) have been developed, including metagenomics, to study microbial communities from various
environments.

1.1 Research Background

1.1.1 What is Metagenomics?

Metagenomics is defined as the study of genetic content directly obtained from microbial communities
found in various environments (Riesenfeld et al., 2004; Thomas et al., 2012) such as soil, sea water,
space and niches of the human body including the gastrointestinal tract. Metagenomic samples
directly obtained from natural environments are processed to separate the genetic material (referred as
the metagenomes) and are sequenced to obtain the nucleotide information. This nucleotide information
is analysed to characterise the different microorganisms present in the microbial community and
understand their behaviours and functions. Metagenomics can provide valuable insights into novel
molecules, enzymes and bio-catalysts as well as allows us to investigate microbial communities and
their interactions.
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The term metagenomics first appeared in publication in 1998 (Handelsman et al., 1998) with the applica-
tion of genome sequencing to analyse complex and diverse (“meta”) populations of microbes (Wooley
and Ye, 2010). In 2005, Kevin Chen and Lior Pachter defined metagenomics as “the application of mod-
ern genomics technique without the need for isolation and lab cultivation of individual species" (Chen
and Pachter, 2018). With the advent of high throughput sequencing approaches, metagenomics has
enabled us to access and study the genomes of entire microbial communities (Quince et al., 2017;
Thomas et al., 2012). The field of metagenomics has paved the way for significant advances in micro-
biology and evolution over the past few decades and has been applied exclusively to study complex
microbial communities.

In metagenomics analysis, three basic analytical strategies can be applied to quantify and characterise
the different species present in a microbial community. They are (1) marker gene analysis (2) assembly
and (3) binning (Sharpton, 2014). In marker gene analysis, taxonomically informative marker genes
in the sequences are analysed. During assembly, short sequences called reads obtained from genome
sequencing are combined together to form longer sequences called contigs. The binning process places
sequences into imaginary bins which represent groups that belong to different taxonomic groups.
This thesis will focus on metagenomic binning strategies for assembled contigs.

1.1.2 Why Metagenomics?

Traditional microbial studies have been based on pure culturing based techniques, where microorgan-
isms are allowed to reproduce in a special culture medium under controlled laboratory conditions.
However, most microorganisms cannot be grown in pure cultures under laboratory conditions. This
is illustrated from the “Great Plate Count Anomaly" (Staley and Konopka, 1985) that showed only
about 0.01–1% of the microorganisms from natural environments observed under the microscope
could be isolated and grown in a culture medium (Garza and Dutilh, 2015). Microorganisms can fail
to grow in culture media due to many reasons. Some are related to the culturing process such as
not supplying the correct nutrients, use of the wrong pH of the medium and inadequate incubation
periods (Davis et al., 2011; Köpke et al., 2005; Pulschen et al., 2017). Some reasons cannot be controlled
within the culturing process such as dependence on the activities of other microorganisms and the
need to develop as microcolonies (Davis et al., 2011; He et al., 2015; Pulschen et al., 2017). These
factors have limited the study of the microbial diversity existing in the world.

To overcome the issues of culture-based techniques, culture-independent methods (CIMs) have
been developed to study microbial communities without the need of culturing. Metagenomics is
one such CIM that provides a relatively unbiased view of the structure and functions of microbial
communities (Hugenholtz and Tyson, 2008). Metagenomics studies have facilitated the discovery of
novel species (Andreani et al., 2018), genes (Boulund et al., 2017) and enzymes (Berini et al., 2017)
which in turn has been applied to solve practical challenges in fields such as medicine, agriculture
and ecology.

1.1.3 What is Assembly?

Assembly is the process of connecting reads of DNA together to reconstruct the original genome from
which the DNA originated (Baker, 2012; Pop, 2009). Programs called assemblers have been designed
to perform this computationally challenging task. The main goal of assemblers is to construct long
contiguous pieces of DNA called contigs that together make the genome.

From a metagenomic perspective, assembly may fail to produce complete/near-complete genomes
due to different complexities. Different organisms may have different levels of abundances, can be
very closely related and there can be different repetitive structures within the genomes of organ-
isms (Ghurye et al., 2016). Moreover, the genomes of some organisms may be sequenced to high
depths of coverage than others resulting in a drastic variability (Ghurye et al., 2016). These factors
complicate single genome assembly and hence cannot be applied directly to metagenomic data. Hence,
specialised assemblers known as metagenomic assemblers are used to assemble metagenomic data.

1.1.4 What is Metagenomics Binning?

Sequences from different microbial genomes will be mixed together in a metagenomics sample and
metagenomic assemblers may still find it challenging to produce complete/near-complete genomes
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due to aforementioned complexities. To characterise the composition of a metagenomics sample,
metagenomic sequences are placed into imaginary bins which represent groups that belong to different
taxonomic groups such as species, genera or higher levels (Sedlar et al., 2017). This process is known
as metagenomics binning. Once the sequences are separated into such groups, the data can be used to
provide efficient taxonomic classification, construct metagenome-assembled genomes (MAGs) and
enable accurate genome reconstruction (Frank et al., 2016).

Various efforts have been made to bin reads directly prior to assembly (Cleary et al., 2015; Girotto
et al., 2016; Luo et al., 2018; Ounit et al., 2015; Schaeffer et al., 2017) and individually assemble reads
in those bins as shown in Figure 1.1 (a). However, reads are considered as too short to produce
accurate and reliable binning results for downstream analysis (Wang, Mawet et al., 2018). To overcome
this issue and due to the failure of metagenomic assemblers to produce complete/near-complete
genomes, the standard approach followed during metagenomics analysis is to assemble short reads
into longer contigs and then cluster these resulting contigs into bins (Figure 1.1 (b)) that represent
different taxonomic groups (Sedlar et al., 2017). Hence, this thesis will focus on methods to bin contigs.

BinningSequencing

Metagenome Bins with 
Short Reads

Assemble

and

construct

genomes

Partial/
Complete
Genomes

Short Reads

(a)

Sequencing

Short Reads

Assembly

Longer Contigs
Metagenome

Binning

Bins with 
Longer Contigs

Construct
genomes

Partial/
Complete
Genomes

(b)

Figure 1.1: Binning metagenomic (a) reads and (b) contigs to construct genomes.

Existing metagenomic contig-binning methods can be divided into two categories as (1) reference-based
binning (taxonomic) and (2) reference-free binning (taxonomy independent) (Sczyrba et al., 2017; Sedlar
et al., 2017). Reference-based binning approaches rely on a database consisting of reference genomes
and thus may not be applicable in many metagenomic samples when the reference genomes of novel
species are not available. On the contrary, reference-free binning tools use unsupervised approaches
to group contigs into unlabelled bins which correspond to different taxonomic groups, solely based on
the information obtained from the contigs (Sedlar et al., 2017). These reference-free binning methods
become very convenient when analysing environmental samples, especially when many species are
not found in currently available reference databases (Laczny, Kiefer et al., 2017). Hence, this thesis
will focus on reference-free binning methods.

Most of the available reference-free metagenomic contig-binning tools make use of the nucleotide
composition and abundance information to perform binning. These tools achieve improved perform-
ance by combining both the composition and the coverage information. However, it still remains
challenging for these binning tools to accurately reconstruct microbial genomes from complex datasets.
Hence, it is worth investigating how to make use of other types of biological information and explore
more features of contigs that can improve the binning result.

1.2 Contributions

This thesis explores how the assembly graph can be incorporated into metagenomics binning to
improve the binning results. The major contributions of this thesis are as follows.
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1. Refined Binning of Metagenomic Contigs using Assembly Graphs. Metagenomic contigs
derived from the assembly process are obtained from the underlying assembly graph which con-
tains valuable connectivity information between contigs that can be used for binning. However,
existing contig-binning tools discard this connectivity information and use only the composition
and coverage information of contigs for binning. Moreover, these tools discard many short
contigs which can contain important genomic signatures. To address this issue, we have de-
veloped GraphBin, a metagenomics bin-refinement tool that makes use of the assembly graph.
GraphBin can make use of assembly graphs (both the de Bruijn graph and the overlap-layout-
consensus approach) to correct mis-binned contigs and recover short contigs discarded by
existing binning tools. GraphBin is published in the Bioinformatics journal (Oxford University
Press) (Mallawaarachchi, Wickramarachchi et al., 2020a).

2. Overlapped Binning of Metagenomic Contigs using Assembly Graphs. As different species
in a metagenomic sample may share common sequences in their genomes, one assembled
contig may belong to multiple species. However, existing tools for binning contigs only support
non-overlapped binning, i.e., each contig is assigned to at most one bin (species). To address this
issue, we have developed GraphBin2, a metagenomics overlapped binning tool that can identify
contigs shared between multiple species. GraphBin2 uses the connectivity and coverage inform-
ation from assembly graphs to adjust existing binning results on contigs and to infer contigs
shared by multiple species. GraphBin2 was presented at the 20th International Workshop on
Algorithms in Bioinformatics (WABI 2020) (Mallawaarachchi, Wickramarachchi et al., 2020b) and
is extended to a publication at BMC Algorithms for Molecular Biology journal (Mallawaarachchi,
Wickramarachchi et al., 2021).

3. Binning Metagenomic Contigs using Composition, Coverage and Assembly Graphs. Our
previous work GraphBin and GraphBin2 were dependent on the initial binning result from
an existing metagenomic contig-binning tool. Errors made while identifying bins and during
binning can be propagated and may affect the final result of these tools. Hence, we developed
MetaCoAG, a stand-alone metagenomics contig-binning tool that makes use of composition,
coverage and assembly graph information. MetaCoAG uses single-copy marker genes to
estimate the number of initial bins, assigns contigs into bins iteratively and adjusts the number of
bins dynamically throughout the binning process. MetaCoAG was presented at the 26th Annual
International Conference on Research in Computational Molecular Biology (RECOMB 2022) and
is published in the Lecture Notes in Computer Science book series (Springer) (Mallawaarachchi
and Lin, 2022).

1.3 Thesis Outline

This thesis is organised as follows. Chapter 1 provides an introduction to this thesis, including the
research background and contributions of this thesis. Chapter 2 presents a comprehensive literature
review on the background of genome sequencing, genome assembly, metagenomics binning and the
challenges in metagenomics binning. In Chapter 3, I present GraphBin, a new binning method that
makes use of the assembly graph and applies a label propagation algorithm to refine the binning result
of existing tools. In Chapter 4, I present GraphBin2, a tool that refines the binning results obtained
from existing tools and, more importantly, is able to detect contigs shared between multiple species
and assign them to multiple bins. In Chapter 5, I present MetaCoAG, a stand-alone metagenomics
contig-binning tool that makes use of assembly graphs and single-copy marker genes apart from
the composition and coverage information of contigs. Finally, Chapter 6 concludes the thesis with a
summary of the work presented, conclusions and future work.
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Chapter 2

Literature Review

With the development of high-throughput sequencing technologies, the field of metagenomics has
paved us the path to gain deep insights into various microbial communities. Traditional culturing-
based analysis techniques can only obtain a very limited amount of genetic material from an environ-
ment under laboratory conditions. However, metagenomics analysis techniques allow us to obtain
genetic material directly from the environment, without culturing under laboratory conditions. This
chapter provides the background on genome sequencing, genome assembly, metagenomics binning,
currently available binning approaches and challenges in metagenomics binning.

2.1 Genome Sequencing

The genome of an organism is made up of deoxyribonucleic acid (DNA) which carries the genetic
instructions for all vital functions. DNA is made up of the nucleotides: adenine (A), thymine (T),
guanine (G) and cytosine (C). Genome sequencing is the process of determining the DNA sequence of
an organism. Special machines named sequencers have been developed to automate the sequencing
process where they determine the order of the four nucleotides. These machines output strings of A,
C, G, and T characters known as reads.

Many sequencing technologies have been developed during the past few decades to determine the
nucleotide sequences in the DNA. Fredric Sanger introduced the Sanger sequencing method (also
know as “chain-termination or dideoxy method") in year 1977 which produced the first full DNA
genome of the bacteriophage φX174 (Sanger et al., 1977). This method produced reads of length
400-900 bp and had an extremely low error rate of about 0.001%. However, this method was expensive
in terms of time and cost which resulted in a low throughput (Adams, 2008).

Second Generation or Next-Generation Sequencing (NGS) technologies such as Illumina (Canard
and Sarfati, 1994) and pyrosequencing (454 sequencing) (Hyman, 1988) were able to almost replace
Sanger sequencing due to their reduced cost and high throughput (hence the term high-throughput
sequencing (Reuter et al., 2015)). NGS technologies have allowed scientists to sequence metagenomes
at large scales and analyse multiple samples at once (e.g., Human Microbiome Project (HMP) (The
Human Microbiome Project Consortium, 2012)). However, NGS technologies produce much shorter
reads ranging from 100-300 bp with an error rate of 0.1%. The use of short NGS reads has led to many
problems in determining genes of multiple species in multiple samples (Kang, Froula et al., 2015) and
in resolving complex and repetitive regions during assembly (Pollard et al., 2018).

The more recent, Third Generation Sequencing (TGS) technologies (Schadt et al., 2010) such as Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) allow sequencing from a single DNA
molecule. They produce much larger reads ranging from 10 kbp to 2 Mbp with error percentages
varying between 5-15%. Scientists have shown rising interest towards using data generated from
TGS technologies as TGS data can overcome short-comings of short-read data (e.g., resolve repeat
regions and produce more contiguous and complete assemblies). This is because PacBio and ONT
reads have longer read-lengths (> 1,000 bp) allowing them to span across longer genomic regions and
thus contain more genomic information than short NGS reads.

Please refer to the recent surveys and reviews on sequencing technologies by Reuter et al. (2015),
Mardis (2017), Giani et al. (2020) and Hu et al. (2021).
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2.2 Genome Assembly

Genome assembly is the process of connecting reads of DNA together to reconstruct the original
genome from which the DNA originated (Baker, 2012; Pop, 2009). Programs called assemblers have
been designed to perform this computationally challenging task. The main goal of assemblers is to
construct long contiguous pieces of DNA called contigs that together make the genome.

Figure 2.1: Assembly process

Genome assembly becomes extremely challenging due to the presence of large numbers of identical
sequences, known as repeats. These repeats can range from a few hundreds to thousands of base pairs.
Since short reads may not be long enough to span over these repeat regions, it becomes very difficult
to resolve these regions during the assembly process.

Once reads are obtained by sequencing a genome with repeats (denoted by ‘R’ in Figure 2.1), the
assembly process starts by identifying overlaps between reads. The initial assembly graph is construc-
ted by connecting reads with overlaps (refer to initial assembly graph in Figure 2.1). Most existing
assemblers use graphs as the underlying data structure to capture the overlaps between reads. Then
the final assembly graph is constructed by collapsing non-branching paths (refer to final assembly
graph with contigs in Figure 2.1) as non-branching paths correspond to longer contigs. The final
assembly graph will contain the contigs and their overlaps.

Currently used genome assemblers fall under two broad categories. They are (1) overlap-layout-
consensus (OLC) and (2) de-bruijn-graph (DBG) (Flicek and Birney, 2009; Li, Chen et al., 2012; Miller
et al., 2010; Schatz et al., 2010). The OLC assemblers (Bonfield et al., 1995; Kececioglu and Myers, 1995;
Myers, 1995; Sutton et al., 1995) first identify overlaps among reads. Then they carry out a layout of
all the reads and build a graph with reads as vertices and overlaps as edges. Finally, the consensus
sequence is inferred from the graph. Identifying overlaps requires all-vs-all mapping of reads which
is very time consuming. Early OLC assemblers include XBAP (Gleeson and Staden, 1991), GCG (Dolz,
1994), FALCON (Gryan, 1994), GAP (Bonfield et al., 1995), TIGR (Sutton et al., 1995), PHRAP (Green,
1999) and CAP3 (Huang and Madan, 1999), ARACHNE (Batzoglou et al., 2002), CELERA (Myers
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et al., 2000) and Phusion (Mullikin and Ning, 2003). More recent assemblers that make use of the
OLC method include SGA (Simpson and Durbin, 2012), Omega (Haider et al., 2014) and the long-read
assembler Canu (Koren et al., 2017).

DBG assemblers first break reads into short k-mers, build a de Bruijn graph from all the k-mers and
infer the genome sequence. The DBG algorithm was originally introduced in 1995 by Idbury and
Waterman (Idury and Waterman, 1995) and the first assembler that used this approach, EULER was
published in 2001 by Pevzner, Tang and Waterman (Pevzner et al., 2001). Popular assemblers that
make use of the DBG method include Velvet (Zerbino and Birney, 2008), SPAdes (Bankevich et al.,
2012), MEGAHIT (Li, Liu et al., 2015) and Flye (Kolmogorov, Yuan et al., 2019). Currently DBG
assemblers are more popular as they are faster than OLC assemblers. Please refer to the recent surveys
and reviews on genome assembly and different assemblers by Sohn and Nam (2016), Breitwieser et al.
(2017) Giani et al. (2020) and Yang et al. (2021).

2.3 Metagenome assembly

Methods developed for single genome assembly cannot be directly applied on metagenomic data due
to many reasons (Ghurye et al., 2016). As stated previously, assembly of a single genome becomes
extremely challenging due to the presence of repeats. By assuming a uniform sequencing process for
a single organism, such repeats can be identified as anomalies in the depth of coverage. However, due
to the presence of many different organisms with different levels of abundances and genomes of some
organisms being sequenced to high depths of coverage than others, simple coverage statistics cannot
be used. Moreover, there can be multiple closely-related genomes (strain variants) that have very little
genetic difference and it is hard to distinguish such differences from sequencing errors. Hence, it is
challenging from a computational as well as biological perspective, to decide whether to consider or
ignore these differences when constructing genomes from metagenomic data.

More recently, assemblers have been developed specifically to assemble metagenomic datasets, known
as metagenomic assemblers (Kolmogorov, Bickhart et al., 2020; Nurk et al., 2017). These assemblers are
able to overcome inherent challenges of assembling metagenomic data up to some extent and produce
sequences belonging to different organisms found in different abundances within the metagenomic
sample. However, they do not always produce complete/near-complete genomes and hence, methods
to recover metagenome-assembled genomes (MAGs) that correspond to draft genomes are employed
after metagenomic assembly.

Popular metagenomic assemblers such as MEGAHIT (Li, Liu et al., 2015), metaSPAdes (Nurk et
al., 2017) for NGS data and metaFlye (Kolmogorov, Bickhart et al., 2020) for TGS data are widely
used in large-scale metagenomic studies. MEGAHIT, metaSPAdes (comes as a mode in SPAdes),
metaFlye (comes as a mode in Flye) were found to perform well in the recent second round of
Critical Assessment of Metagenome Interpretation (CAMI) challenge (Meyer, Fritz et al., 2022). These
assemblers are preferred to generate the contigs and assembly graphs which are required as input for
the binning tools presented in this thesis.

2.4 Metagenomics Binning

Existing metagenomics binning methods can be broadly divided into two categories as (1) reference-
based binning (taxonomic) and (2) reference-free binning (taxonomy independent) (Sczyrba et al., 2017; Sedlar
et al., 2017) as shown in Figure 2.2.

2.4.1 Reference-based Binning

Reference-based binning tools (Figure 2.3) make use of a reference database with known microbial
genomes, map the sequences to each reference genome, determine the genome having the highest
similarity and assign the corresponding taxonomic label to sequences (e.g., MetaABC (Su, Hsu et al.,
2011), MetaPhlAn (Segata et al., 2012), Kraken (Wood and Salzberg, 2014), Kraken2 (Wood, Lu et
al., 2019), etc.). These tools make use of attributes that indicate taxonomic origin such as sequence
similarity and compare them with sequences of known reference genomes (Dröge and McHardy,
2012). Methods such as sequence alignment, lowest common ancestor (LCA), use of specific marker
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Figure 2.2: Metagenomics binning approaches

genes and phylogenetic tree construction are used in recently introduced reference-based binning
tools. Moreover, several machine learning techniques are used to develop taxonomic classifiers that
can handle large amounts of high dimensional data.

Figure 2.3: Reference-based binning

Although reference-based binning tools achieve a high accuracy when classifying sequences from
known microbial genomes, they suffer from a serious limitation when classifying at lower levels (i.e.,
species or genus levels) for some microbial genomes that are unknown or not included in the currently
available reference databases.

2.4.2 Reference-free Binning

Reference-free binning tools do not make use of any reference database and they simply group
sequences into unlabelled bins based on the genomic information of the sequences (Figure 2.4).
Reference-free binning methods can be divided into three categories: (1) composition-based, (2) abundance-
based and (3) composition and abundance-based (Sangwan et al., 2016).

Figure 2.4: Reference-free binning

Composition-based Binning

Previous studies have shown that frequencies of oligonucleotides in genomic sequences (referred to
as k-mers, denoted in Figure 2.5) carry species-specific signals (Karilin and Burge, 1995; Karlin and
Ladunga, 1994). Following these observations, composition-based methods have been developed
based on the fact that each taxonomic group (such as species, genus, etc.) has a unique nucleotide
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composition and performs binning by comparing the nucleotide content (Sedlar et al., 2017), such
as the normalised frequencies of oligonucleotides (Dick et al., 2009) and the guanine-cytosine (GC)
content (Saeed et al., 2011). Most of the tools employ conventional machine learning based approaches
such as Markov chain Monte Carlo (MCMC) methods (used in LikelyBin (Kislyuk et al., 2009)) and
neural network-based approaches such as self-organizing maps (SOMs) (used in Databionic ESOM
Tools (Ultsch and Mörchen, 2005)).

Figure 2.5: Constructing the feature vectors for composition-based binning

Abundance-based Binning

The abundance information of contigs is generally represented by the coverage which is the average
number of reads that map to each base of the contig. Abundance-based binning methods are based
on the assumption that abundance profiles of metagenomic sequences either follow the Lander-
Waterman model (Lander and Waterman, 1988) in a single sample, or are highly correlated across
multiple metagenomic samples (Sedlar et al., 2017). For example, AbundanceBin (Wu and Ye, 2011)
models the sequenced reads as a mixture of Poisson distributions. Canopy (Nielsen et al., 2014)
computes and compares the abundance profiles to cluster sequences from multiple samples. These
methods have shown improved results for sequences of closely related strains (Sangwan et al., 2016),
but pairwise calculations involved can be computationally expensive.

Composition and abundance-based Binning

Composition and abundance-based methods make use of both the variation of oligonucleotide
frequencies and coverage information (e.g., Figure 2.6 illustrates an example workflow followed
for binning contigs based on composition and abundance-based methods). These methods have
often outperformed composition-based methods and abundance-based methods. Techniques such as
principal component analysis (PCA), probabilistic models, expectation maximisation (EM) algorithms
and more recently, machine learning models have been used to develop these binning tools.

Apart from the three main binning categories, researchers have proposed other techniques to perform
metagenomic binning and improve the binning result of existing tools. BMC3C (Wang, Jiang et al.,
2018) utilises codon usage in addition to the composition and coverage information. COCACOLA (Lu
et al., 2016) considers linkage information from paired-end reads to improve the binning process.
dS

2 Bin (Wang, Wang et al., 2017) makes use of the result of existing binning tools and adjusts the
contigs among bins by measuring their dissimilarity. Metabinners such as DAS tools (Sieber et al., 2018)
and MetaWRAP(Uritskiy et al., 2018) have been introduced to integrate and optimize the results of
multiple binning approaches.

Single-copy marker genes are special genes which are found in majority of the bacterial genomes and
they appear only once in each genome (Albertsen et al., 2013; Dupont et al., 2012; Wu, Tang et al.,
2014). Hence, single-copy marker genes have been utilised by some binning tools to estimate the
number of bins during binning and for refinement of the binning results. MaxBin (Wu, Tang et al.,
2014) and MaxBin 2.0 (Wu, Simmons et al., 2015) use single-copy marker genes to estimate the number
of bins for initialisation of the binning process. MyCC (Lin and Liao, 2016) makes use of single-copy
marker genes to refine the final clustering result.
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Figure 2.6: Composition and abundance-based binning of contigs

Table 2.1 summarises some of the popular metagenomic contig-binning tools. The inputs, whether the
composition, coverage and marker gene information are used, default/minimum contig cut-off length
and the main techniques/models/algorithms used for binning are compared for the listed tools. It
can be seen that all the tools use composition information and majority of the tools use coverage
information for binning. MaxBin 2.0, MyCC and SolidBin make use of single-copy marker genes.
Furthermore, most of the tools have a contig cut-off length of 1,000 bp. Please refer to the recent
surveys and reviews on binning metagenomic data by Breitwieser et al. (2017) and Yang et al. (2021)
and benchmark studies on metagenomic binning tools by Sczyrba et al. (2017), Yue et al. (2020) and
Meyer, Fritz et al. (2022).

2.5 Challenges in Metagenomics Binning

Existing metagenomic contig-binning tools mainly face problems when binning;

1. short sequences (generally shorter than 1,000 bp)

2. shared sequences that belong to multiple species

3. sequences of species belonging to the same genus

4. sequences of species with high intra-variance in composition

5. sequences of species with high intra-variance in genome coverage

Short sequences may not provide accurate genome-specific signals due to the low resolution in a
single sample. The composition profiles of such short sequences can be highly deviated from that



Chapter 2. Literature Review 12

of their constituent genomes. Binning such short contigs solely based on composition and coverage
information can be challenging (as shown in Figure 2.7). Hence, majority of the available metagenomic
contig-binning tools discard these short contigs during the binning process (as denoted by the contig
length cut-off values in Table 2.1). For example, CONCOCT (Alneberg et al., 2014), MaxBin2 (Wu,
Simmons et al., 2015) COCACOLA (Lu et al., 2016) and SolidBin (Wang, Wang et al., 2019) has a
minimum contig length cut-off of 1,000 bp and MetaBAT2 Kang, Li et al. (2019) has a minimum contig
length cut-off of 1,500 bp. It is worth exploring methods to recover these short contigs as they can
contain useful biological information (e.g., can contain genes).

(a) (b)

Figure 2.7: Coverage vs. composition plots of (a) long contigs and (b) both short and long contigs. Existing
metagenomic contig-binning tools show a reasonable separation only for fairly long contigs, generally
longer than 1,000 bp. However, if we try to bin all the contigs including both long and short contigs, we
won’t be able to see a clear separation between the species. This is because short contigs are too short to
capture the species-specific composition and coverage patterns.

Different bacterial genomes in a metagenomic sample may share similar genes and genomic re-
gions (Riesenfeld et al., 2004), which is a major challenge in assembling metagenomic reads into
contigs (Nurk et al., 2017). Therefore, some assembled contigs from metagenomic reads may be shared
by multiple species in the sample. However, most of the binning tools will assign these contigs to a
single bin (refer to Figure 2.8). Failure to recover shared contigs and replicate them in their correspond-
ing bins will affect the completeness of the MAGs constructed afterwards. Very few contig-binning
tools support overlapped binning (i.e., assigning shared contigs to multiple species). S-GSOM (Chan
et al., 2008) abstracts the flanking sequences of highly conserved 16S rRNA and incorporates them into
Growing Self-Organising Maps (GSOM) to bin contigs into overlapping bins. MetaPhase (Burton et al.,
2014) uses Hi-C reads to scaffold assembled contigs into assemblies of individual species and allows
certain contigs to belong to multiple species. However, the applications of S-GSOM and MetaPhase
are limited due to their required additional sequencing effort (e.g., 16S RNA or Hi-C sequencing).
As shared contigs correspond to shared vertices between different genomic paths on the assembly
graph (Nurk et al., 2017), it is worth exploring methods to infer such shared contigs from the assembly
graph without additional sequencing requirements.

As microbial communities can be composed of different taxonomic groups (or taxa) ranging from
species, genera, to higher orders, the sequencing data obtained from these samples can be very
complex and heterogenous. Even for the same genus, there can be several different species with very
similar genomic signatures and they may co-exist in similar abundance (e.g., refer to Figure 2.9 where
the nucleotide composition of three Streptococcus genomes are visualised). Sequences of such closely
related species may be binned into a single bin as they show high similarity in composition (Sczyrba et
al., 2017) or they may be mis-binned among the Streptococcus bins. Hence, it can be very challenging
to distinguish sequences of such species during metagenomics binning.

Previous studies have shown that for a given bacterial genome, the nucleotide content can vary
locally along the chromosome, especially in terms of the GC content (Bohlin, Eldholm et al., 2017;
Bohlin, Snipen et al., 2010). It has been observed that protein coding regions tend to have higher GC
content than non-coding regions (Bohlin, Skjerve et al., 2008). Moreover, the nucleotide composition of
microbial genomes has shown to vary with different factors such as genome size, oxygen requirement
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Figure 2.8: Binning shared contigs by existing contig-binning methods. The shared region R found in both
genome 1 and genome 2 is binned only in to one bin.
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Figure 2.9: Tetranucleotide composition profiles of three Streptococcus genomes: Streptococcus pneumoniae,
Streptococcus thermophilus and Streptococcus suis. The nucleotide composition of these three species is
very similar and existing binning tools can mis-bin sequences belonging to them.

and nitrogen abundance (Mcewan et al., 1998; Mitchell, 2007; Naya et al., 2002). Due to such reasons,
even among the sequences that belong to the same species, there can be a high variance in nucleotide
composition (as shown in Figure 2.10). This can confuse many existing metagenomic binning tools as
their nucleotide profiles can be affected and sequences can be mis-binned.

Many bacterial genomes contain repetitive DNA regions called repeats (Kuśmirek and Nowak, 2018).
The assembly process reconstructs these repeat regions using the information from reads. Contigs
corresponding to these repeat regions usually have elevated coverage values. Hence, even among the
contigs that belong to the same species, there can be a high variance in coverage values (as shown in
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Figure 2.10: Tetranucleotide composition profiles of contigs from a species with high variance in composition
(Pseudomonas putida). Even though the contigs belong to the same species, they have been split into three
bins (denoted by the three colours) during the binning process of MaxBin2 (Wu, Simmons et al., 2015).

Figure 2.11: Coverage distribution of contigs from a species with high variance in coverage (Aeromonas
veroni). Even though the contigs belong to the same species, they have been split into three bins during the
binning process of MaxBin2 (Wu, Simmons et al., 2015).

Figure 2.11). This can lead to mis-binning of contigs.

Metagenomics binning results can be significantly affected by the aforementioned challenges and
in turn affect downstream analyses as well. This thesis explores additional information of contigs
provided from the assembly process, biological information and improved techniques that can be
employed to tackle these challenges in metagenomics binning. The binning tools developed in this
thesis incorporate a novel feature, the assembly graph information, which has not been used in
previous binning tools. The first tool GraphBin (Mallawaarachchi, Wickramarachchi et al., 2020a) is a
bin-refinement tool that makes use of the connectivity information from the assembly graph to refine
binning results produced by existing contig-binning tools. The next tool GraphBin2 (Mallawaarachchi,
Wickramarachchi et al., 2020b, 2021) is the improved version of GraphBin that makes use of the
coverage information of contigs apart from the connectivity information from the assembly graph
to refine existing binning results and predict contigs shared between multiple species. The final tool
MetaCoAG (Mallawaarachchi and Lin, 2022) removes the need to have an initial binning result from
an existing contig-binning tool and bins the contigs from the beginning using composition, coverage
and assembly graph information.
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Chapter 3

Refined Binning of Metagenomic
Contigs using Assembly Graphs

This chapter was published as

V. Mallawaarachchi, A. Wickramarachchi et al. (March 2020a). ‘GraphBin: refined binning of
metagenomic contigs using assembly graphs’. Bioinformatics, 36(11), pp. 3307–3313. ISSN:
1367-4803. DOI: 10.1093/bioinformatics/btaa180

3.1 Motivation and Overview

Binning of contigs plays an important role in metagenomics and most available binning algorithms
bin contigs using genomic features such as oligonucleotide/k-mer composition and contig coverage.
As metagenomic contigs are derived from the assembly process, they are output from the underlying
assembly graph which contains valuable connectivity information between contigs that can be used
for binning. However, existing metagenomic binning tools discard this connectivity information found
in the assembly graph and treat contigs as independent sequences without any mutual connections
(as shown in Figure 3.1).

Figure 3.1: Typical pipeline for binning metagenomic contigs

In this chapter, we propose GraphBin, a new binning method that makes use of the assembly graph.
We exploit the potential of using the assembly graph to refine the binning results from existing tools.
We utilise contig connectivity information from the assembly graphs (produced from two types of
assemblers; based on the de Bruijn graph and the string graph), and correct the contigs which were
mis-binned by the existing tools. Moreover, a label propagation approach was used to predict the bins
of the contigs discarded by existing tools. To the best of our knowledge, this is the first time to use the
assembly graph along with a label propagation approach in metagenomics binning. Experimental
results show that GraphBin was able to gain a significant improvement on top of existing binning
results.

3.2 Methods

Figure 3.2 shows a flow diagram of GraphBin, to refine the binning results from existing metagenomic
contig-binning tools using assembly graphs. During the preprocessing step, we obtain the assembly
graph by assembling reads into contigs. Then we bin the contigs using an existing binning tool and

https://doi.org/10.1093/bioinformatics/btaa180
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label the assembly graph. Next, GraphBin refines the labels of the contigs in the assembly graph (Step
1 in Figure 3.2). Finally, GraphBin performs label propagation and refinement (Step 2 in Figure 3.2)
and outputs the refined binning result.
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Figure 3.2: The workflow of GraphBin. During the preprocessing step, we obtain the assembly graph
by assembling reads into contigs. Then we bin the contigs using an existing binning tool and label the
assembly graph. Next, GraphBin refines the labels of the assembly graph. At last, GraphBin performs label
propagation and refinement to obtain the final graph. GraphBin outputs the refined binning result.

3.2.1 Preprocessing

Assemble Reads into Contigs and Construct the Assembly Graph

In general, a metagenomic assembly tool first constructs the assembly graph using the connection
(overlapping) information between reads, and then traverses through these connections in such a
way, that each read is visited in the correct order, thereby linking them together to form a contiguous
sequence known as a contig (Nurk et al., 2017; Vollmers et al., 2017). The assembly graph represents
contigs as vertices and connection information between the contigs as edges. If there is a significant
overlap between two contigs, there will be an edge connecting two corresponding vertices in the
assembly graph. In this paper, we consider that all the edges have the same weight. Figure 3.2 contains
an example assembly graph.

As each genome typically corresponds to a long path in the assembly graph, contigs connected to each
other are more likely to belong to the same species. Connectivity information between contigs can
thus provide valuable insights to bin contigs and previous studies have shown improved binning
results through the manual refinement of contigs after visualising the assembly graph (Barnum
et al., 2018). In the following, we use metaSPAdes (Nurk et al., 2017), SGA (Simpson and Durbin,
2012) and MEGAHIT (Li, Liu et al., 2015) to build the assembly graph from reads. metaSPAdes
first constructs the de Bruijn graph from raw reads, transforms it into the assembly graph through
various simplification heuristics and reconstructs paths in the assembly graph that correspond to
contigs within metagenomes (Nurk et al., 2017). SGA employs the overlap-layout-consensus idea,
first corrects errors in raw reads and then constructs a string graph based on the overlaps between the
error-corrected reads (Simpson and Durbin, 2012). MEGAHIT is based on the succinct de Bruijn graph
which is a compressed representation of the de Bruijn graph (Li, Liu et al., 2015).

Bin Contigs using an Existing Binning Tool and Label the Assembly Graph

In this paper, we selected MetaWatt (Strous et al., 2012) and MaxBin2 (Wu, Simmons et al., 2015) to
obtain the initial binning result as these two tools have shown the best performance in the recent
CAMI challenge (Sczyrba et al., 2017). Moreover, we also selected three recent reference-free binning
tools MetaBAT2 (Kang, Li et al., 2019), SolidBin (Wang, Wang et al., 2019) and BusyBee Web (Laczny,
Kiefer et al., 2017).

MetaWatt makes use of the multivariate statistics of tetranucleotide frequencies, builds interpolated
Markov models of genomes and assigns contigs to bins based on maximum likelihood. MaxBin2
considers tetranucleotide frequencies and coverage of contigs to perform binning. It makes use of
probabilistic models and an EM algorithm to iteratively bin the contigs. However, MaxBin2 only
bins contigs which are longer than 1,000 bp. MetaBAT2 employs a graph clustering approach, where
the graph construction is done using tetra nucleotide frequency scores. However, MetaBAT2 only
bins contigs of length 1,500 bp or longer. SolidBin makes use of a spectral clustering approach with
additional biological information. However, SolidBin only bins contigs which are longer than 1,000
bp. BusyBee Web makes use of a bootstrapped supervised binning approach to bin contigs. By
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default, it bins contigs which are 500 bp or longer. As BusyBee Web is a web-based application, certain
restrictions have been enforced on the size of the input data due to limited computational resources.

In the assembly graph, contigs are represented as vertices and connections between the contigs are
denoted by edges. Once the contigs are binned, the corresponding vertices in the initial assembly
graph are labelled accordingly. As shown in Figure 3.2 (a), vertices are illustrated in different colours
(labels) to represent contigs belonging to different bins.

3.2.2 Refine Labels of Contigs based on the Assembly Graph

Considering the fact that the connected contigs are more likely to belong to the same species, we
refine the labels of the vertices in the assembly graph. It is highly probable that vertices connected
together or vertices located close-by belong to the same cluster as they are less distant (i.e., have more
similarity) to each other. Hence, such vertices should have the same label. The refinement process is
done based on the labels of such vertices.

Let d(i, j) be the distance between vertex i and vertex j in the assembly graph. The label status of vertex
i is represented by the label function L: if i is labelled, then L(i) = 1; if i is not labelled, then L(i) = 0.
Let dL(i) be the shortest distance between any labelled vertex and vertex i, i.e., dL(i) = min

∀j,L(j)=1
d(i, j).

If none of the labelled vertices is reachable from vertex i, dL(i) = ∞. Let CLV(i) be the set of closest
labelled vertices for a vertex i where CLV(i) consists of the closest labelled vertices of vertex i, i.e.,
CLV(i) = {j|d(i, j) = dL(i) and L(j) = 1}. Note that CLV(i) = ∅ when dL(i) = ∞. For example, in
Figure 3.2 (a), dL(4) = 1 and CLV(4) = {2, 6}, dL(13) = 2 and CLV(13) = {8, 9}. For a given vertex i,
the set of closest labelled vertices CLV(i) is found by performing a breadth-first search starting from
vertex i. The breadth-first search terminates at a certain depth level (i.e., dL(i)) when some labelled
vertices are found, or it has visited all the reachable vertices. Once at least one labelled vertex is
found, all the labelled vertices at that particular depth level (i.e., dL(i)) are considered as the set of
closest labelled vertices and the breadth-first search stops. If no labelled vertices are encountered
after visiting all the reachable vertices (i.e., dL(i) = ∞), then the breadth-first search stops and the set
of closest labelled vertices is empty (i.e., CLV(i) = ∅). Algorithm 1 denotes the pseudo-code of the
getCLV function. It takes in the assembly graph (G), vertex (i) and the label function (L) and outputs
the set of closest labelled vertices CLV(i). Please note that G.neighbours(i) in Algorithm 1 is the set of
neighbours of vertex i in the assembly graph G.

Algorithm 1: Compute CLV(i) in the assembly graph
Input: Assembly graph (G), vertex (i), Label (L)
Output: CLV(i), the closest labelled vertices of vertex i

1 function getCLV(G, i, L)
2 SETcurrent ← G.neighbours(i)
3 mark i as visited
4 CLVtemp ← ∅ and SETnext ← ∅
5 while SETcurrent 6= ∅ and CLVtemp = ∅ do
6 forall v ∈ SETcurrent do
7 mark v as visited
8 if L(v) = 1 then
9 CLVtemp ← CLVtemp ∪ {v}

10 else
11 forall r ∈ G.neighbours(v) do
12 if r is not visited then
13 SETnext ← SETnext ∪ {r}

14 SETcurrent ← SETnext

15 CLV(i)← CLVtemp
16 return CLV(i)

In the assembly graph, a vertex i is denoted as an ambiguous vertex if at least one of its closest labelled
vertices CLV(i) has a label that is different than the label of vertex i. For example, in Figure 3.2 (a),
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vertex 13 is ambiguous because one of its closest labelled vertices (vertex 8 or 9 in CLV(13)) has a red
label while vertex 13 itself has a green label. Similarly, vertex 6 and 7 are also ambiguous as one of
its closest labelled vertices has a different label. The labels of ambiguous vertices are removed as the
corresponding contigs may belong to multiple genomes or the binning tool may have predicted the
wrong bin, and these contigs might misguide the followup label propagation process. Please refer to
Step 3 in Figure 3.2 for an example. Labels of vertices 6, 7 and 13 are removed. Figure 3.2 (b) denotes
the graph after refining the labels.

3.2.3 Run Label Propagation and Refinement

Label propagation (LP) approaches have been applied to cluster metagenomic sequences (Kang, Li
et al., 2019; Li, Wang et al., 2019) without using the assembly graph. Label propagation is a semi-
supervised machine learning technique that can propagate labels to neighbouring unlabelled data with
the use of labelled data (Zhu and Ghahramani, 2002). The label propagation algorithm initialises by
assigning labels to the vertices of corresponding labelled data in a graph. The vertices then propagate
their labels to their neighbouring vertices in further iterations. Finally, the vertices with similar
labels are clustered. The label propagation algorithm proposed by Zhu and Ghahramani Zhu and
Ghahramani, 2002 was applied to the assembly graph in order to predict the labels of the unlabelled
vertices. We follow the same notations and definitions from Zhu and Ghahramani (2002) and the
details about the algorithm are as follows.

Label Propagation Algorithm

Consider a graph G to have vertices where some are labelled and others are not. Let XL = {x1...xl}
be the set of labelled vertices where YL = {y1...yl} are the corresponding vertex labels. The number
of classes C is known as we can obtain it from the initial binning result. Assume that all the classes
are present in the labelled data. Let XU = {xl+1...xl+u} be the unlabelled vertices where YU =
{yl+1...yl+u} are unknown. Let X = {x1...xl+u}. We have to estimate YU from X and YL.

We define weights of edges between vertices xi and xj as wij. Since we consider edge weights to be
uniform, all edge weights will have a weight of 1; i.e., if vertices xi and xj are connected by an edge,
then wij = 1, else wij = 0.

We define a (l + u)× (l + u) probabilistic transition matrix T where Tij is the probability of travelling
from vertex xj to vertex xi.

Tij = P(j→ i) =
wij

∑l+u
k=1 wkj

(3.1)

Next, we define a (l + u) × C label matrix Y where the ith row of Y denotes the label probability
distribution of vertex xi. Label probabilities of labelled vertices will be defined as 1 and those of
unknown vertices are defined as 0. Now we will present the label propagation process as denoted
in Algorithm 2. The function takes in the probabilistic transition matrix (T), the matrix with label
probability distributions of the vertices (Y), the threshold (eps) and the maximum number of iterations
(max_iter) as inputs and outputs the set of predicted labels of all the vertices in G.

According to Algorithm 2, all vertices will propagate their labels (line 8). Clamping labels is very
important as we want the label sources (labelled data) to be persistent (line 9). These two steps are
repeated until Y converges or the number of iterations exceeds the maximum number.

Convergence of Y is determined by summing up the differences in all the corresponding label
probabilities between Y(t) and Y(t+1) (lines 10 to 13). If the sum of differences in label probabilities is
less than eps, then Y is considered to be converged. Once Y has converged or the number of iterations
has exceeded, for each vertex vi, the label with the maximum probability is determined from Y(t) and
assigned to labels(i) (lines 18 to 19).

The parameters eps and max_iter are set by default to 0.1 and 100 respectively in the GraphBin source
code. Moreover, GraphBin provides the facility for the user to specify eps and max_iter parameters as
required when executing.
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Algorithm 2: Label Propagation
Input: Probabilistic transition matrix (T), matrix with label probability distributions of the vertices

(Y), threshold (eps), maximum number of iterations (max_iter)
Output: labels, set of predicted labels of all the vertices

1 function propagateLabels(T, Y, eps, max_iter)
2 labels← ∅
3 t← 0
4 n← Y.rows
5 m← Y.columns
6 Y(0) ← Y
7 while t < max_iter do
8 Y(t+1) ← T ×Y(t)

9 clamp label probabilities of labelled data in Y(t+1)

10 di f f ← 0
11 for i← 1 to n do
12 for j← 1 to m do
13 di f f ← di f f +

∣∣Y(t+1)[i][j]−Y(t)[i][j]
∣∣

14 if di f f < eps then
15 break
16 else
17 t← t + 1

18 for i← 1 to n do
19 labels(i)← argmax

j
Y(t)[i][j]

20 return labels

Please note that the labels of vertices in isolated components cannot be inferred through label propaga-
tion if none of the vertices in such components have predicted labels by an existing binning tool.

After the label propagation, we further refine the labelling by removing the labels of ambiguous
vertices. The resulting graph consists of labelled vertices as shown in Figure 3.2 (c). Please refer to Step
4 in Figure 3.2 as an example. Labels of vertices 6 and 7 will be removed after the label propagation
process as they are ambiguous (as illustrated in Figure 3.2 (c)).

3.3 Experimental Setup

3.3.1 Datasets

Simulated Datasets

We simulated several metagenomic datasets according to a preborn infant gut metagenome, commonly
known as the Sharon dataset (Sharon et al., 2013). We obtained the three most abundant species
from the run SRR492184 of the Sharon dataset (NCBI accession number SRA052203) and their
corresponding proportions. Those species and their corresponding proportions are as follows,

1. Enterococcus faecalis - 70.8%

2. Staphylococcus aureus - 18.9%

3. Cutibacterium avidum - 3.4%

We also downloaded their complete reference genomes from the NCBI nucleotide database. Two
datasets were simulated each containing 2 species (Enterococcus faecalis and Staphylococcus aureus,
referred as ES) and 3 species (Enterococcus faecalis, Staphylococcus aureus and Cutibacterium avidum,
referred as ESC) respectively. Paired-end reads were simulated using the tool InSilicoSeq (Gourlé

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR492184
https://www.ncbi.nlm.nih.gov/sra/?term=SRA052203
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et al., 2018) modelling a MiSeq instrument with 300 bp mean read length and the predefined MiSeq
error model. Further details about the simulated datasets can be found in Table 3.1.

Table 3.1: Information of the datasets simulated according to the Sharon dataset

Dataset Species present Number of reads
used for assembly Genome size Coverage

Number of contigs
classified as

ground truth

Total number of
contigs classified
as ground truth

ES+metaSPAdes Enterococcus faecalis
Staphylococcus aureus

1,578,595
421,405

2.6 Mb
2.9 Mb

181x
44x

67
89 156

ES+SGA Enterococcus faecalis
Staphylococcus aureus

1,578,595
421,405

2.6 Mb
2.9 Mb

181x
44x

1,007
475 1,482

ESC+metaSPAdes
Enterococcus faecalis
Staphylococcus aureus
Cutibacterium avidum

3,802,363
1,015,038
182,599

2.6 Mb
2.9 Mb
2.5 Mb

436x
105x
21x

60
98
23

181

ESC+SGA
Enterococcus faecalis
Staphylococcus aureus
Cutibacterium avidum

3,802,363
1,015,038
182,599

2.6 Mb
2.9 Mb
2.5 Mb

436x
105x
21x

4,216
193
25

4,434

Note: The number of reads from each species were simulated to correspond to their proportions in the run SRR492184 of the
Sharon dataset.

Sharon Dataset

The Sharon dataset (Sharon et al., 2013) (available on the NCBI Sequence Read Archive under
accession number SRA052203) is composed of a time-series of 11 fecal samples from a pre-born infant
and consists of reads from 18 Illumina (Illumina HiSeq 2000) runs. Reads from all the 18 runs were
combined to form the Sharon dataset.

CAMI Datasets

We selected 3 publicly available datasets from the first Critical Assessment of Metagenome Interpret-
ation (CAMI) challenge (Sczyrba et al., 2017) representing microbiomes of three complexities low,
medium and high;

• CAMI_l: Sample from low complexity

• CAMI_m: Sample 1 with 5 kbp insert size from medium complexity

• CAMI_h: Sample 1 from high complexity

Please refer to Appendix B for further details about the CAMI datasets.

3.3.2 Derive the Contigs, the Assembly Graph and Labels

The reads in each of the simulated datasets and the publicly available datasets were assembled into
contigs and the assembly graph was obtained by running metaSPAdes (Nurk et al., 2017) (from
SPAdes 3.13.0 (Bankevich et al., 2012)), SGA 0.10.15 (Simpson and Durbin, 2012) and MEGAHIT
1.2.9 (Li, Liu et al., 2015) as discussed in the preprocessing step. The commands used for assembly can
be found in Appendix D. The resulting datasets are referred as follows.

• ES+metaSPAdes - metaSPAdes assembly of the ES dataset

• ES+SGA - SGA assembly of the ES dataset

• ES+MEGAHIT - MEGAHIT assembly of the ES dataset

• ESC+metaSPAdes - metaSPAdes assembly of the ESC dataset

• ESC+SGA - SGA assembly of the ESC dataset

• ESC+MEGAHIT - MEGAHIT assembly of the ESC dataset

• Sharon+metaSPAdes - metaSPAdes assembly of the Sharon dataset

• Sharon+SGA - SGA assembly of the Sharon dataset
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• Sharon+MEGAHIT - MEGAHIT assembly of the Sharon dataset

• CAMI_l+metaSPAdes - metaSPAdes assembly of the CAMI_l dataset

• CAMI_l+SGA - SGA assembly of the CAMI_l dataset

• CAMI_l+MEGAHIT - MEGAHIT assembly of the CAMI_l dataset

• CAMI_m+metaSPAdes - metaSPAdes assembly of the CAMI_m dataset

• CAMI_m+SGA - SGA assembly of the CAMI_m dataset

• CAMI_m+MEGAHIT - MEGAHIT assembly of the CAMI_m dataset

• CAMI_h+metaSPAdes - metaSPAdes assembly of the CAMI_h dataset

• CAMI_h+SGA - SGA assembly of the CAMI_h dataset

• CAMI_h+MEGAHIT - MEGAHIT assembly of the CAMI_h dataset

Further details of the resulting datasets can be found in Appendix B.

MetaWatt 3.5.3 (Strous et al., 2012), MaxBin 2.2.5 (Wu, Simmons et al., 2015)), BusyBee Web (Laczny,
Kiefer et al., 2017) with their default parameters, SolidBin 1.3 (Wang, Wang et al., 2019) in SolidBin-SFS
mode, and MetaBAT2 (Kang, Li et al., 2019) with minimum contig length set to 1,500 bp were selected
to obtain the initial binning results as discussed in the preprocessing step. Please note that the recently
published tool Vamb (Nissen et al., 2021) was not used in the evaluations as it was not published at
the time GraphBin was published. The commands used for binning can be found in Appendix D.

3.3.3 Evaluation Criteria

In order to determine the ground-truth species of the contigs in all the datasets, we used TAXAassign
v0.4 (can be found at https://github.com/umerijaz/TAXAassign) to label the contigs. TAXAassign
v0.4 uses BLAST to search matches in the NCBI nucleotide database with a given percentage of identity.
Isolated contigs (corresponding vertices with zero degree) were not considered for the ground truth
set of the datasets.

To evaluate GraphBin, we applied the four common criteria (1) Precision, (2) Recall, (3) F1-score and
(4) Adjusted Rand Index (ARI) that have been used in previous binning studies Alneberg et al. (2014);
Herath et al. (2017); Wang, Wang et al. (2017) at the species level. The binning result is denoted as a
K× S matrix with K number of bins and S number of species. In this matrix, the element aks denotes
the number of contigs binned to the kth bin and belongs to the sth species. U denotes the number
of unclassified contigs. Following are the definitions and equations that were used to calculate the
precision, recall, F1-score and ARI values in our experiments.

Precision

For each of the bins, we obtain the species with the maximum number of contigs assigned. Then, we
sum the maximum numbers of each bin and divide it by the total number of binned contigs. The
resulting value is the precision and it is calculated as follows.

Precision =
∑k maxs{aks}

∑k ∑s aks
(3.2)

Recall

For each of the species, we obtain the bin with the maximum number of contigs assigned. Then, we
sum the maximum numbers of each species and divide it by the total number of binned contigs and
unclassified contigs. The resulting value is the recall and it is calculated as follows.

Recall = ∑s maxk{aks}
(∑k ∑s aks + U)

(3.3)

https://github.com/umerijaz/TAXAassign
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F1-score

The F1-score is the harmonic mean of precision and recall. It is calculated as follows.

F1 = 2× Precision× Recall
Precision + Recall

(3.4)

Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) is a measure of similarity between the binning result and its actual
grouping. It is calculated as follows.

ARI =
∑k,s (

aks
2 )− t3

1
2 (t1 + t2)− t3

(3.5)

where t1 = ∑
k

(
∑s aks

2

)
, t2 = ∑

s

(
∑k aks

2

)
, and t3 =

t1t2

(N
2 )

3.4 Results and Discussion

The performance of GraphBin was compared with the original performance of the five binning
tools; MetaWatt (Strous et al., 2012), MaxBin2 (Wu, Simmons et al., 2015), MetaBAT2 (Kang, Li et
al., 2019), SolidBin (Wang, Wang et al., 2019) and BusyBee Web (Laczny, Kiefer et al., 2017). Note
that three different assemblers metaSPAdes (Nurk et al., 2017), SGA (Simpson and Durbin, 2012)
and MEGAHIT (Li, Liu et al., 2015) were used to build the assembly graphs. Figure 3.3 denotes a
representative result of GraphBin on improving the binning result of MetaWatt for the SGA assemblies,
Figure 3.4 denotes a representative result of GraphBin on improving the binning result of MaxBin2
for the MEGAHIT assemblies, Figure 3.5 denotes a representative result of GraphBin on improving
the binning result of MetaBAT2 for the metaSPAdes assemblies, Figure 3.6 denotes a representative
result of GraphBin on improving the binning result of SolidBin for the metaSPAdes assemblies and
Figure 3.7 denotes a representative result of GraphBin on improving the binning result of BusyBee
Web for the MEGAHIT assemblies over all the datasets with respect to the four evaluation criteria
precision, recall, F1-score and ARI. The rest of the improved binning results can be found in Appendix A.
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Figure 3.3: Refined binning results of MetaWatt with GraphBin for the datasets ES+SGA, ESC+SGA,
Sharon+SGA, CAMI_l+SGA, CAMI_m+SGA and CAMI_h+SGA. Each graph denotes the precision, recall,
F1-score and ARI values at the species level of the original tool (MetaWatt) compared with the scores
obtained after applying GraphBin. The dark blue bars denote the original tool scores and the light orange
bars denote the final scores of GraphBin.
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Figure 3.4: Refined binning results of MaxBin2 with GraphBin for the datasets ES+MEGAHIT,
ESC+MEGAHIT, Sharon+MEGAHIT, CAMI_l+MEGAHIT, CAMI_m+MEGAHIT and CAMI_h+MEGAHIT.
Each graph denotes the precision, recall, F1-score and ARI values at the species level of the original tool
(MaxBin2) compared with the scores obtained after applying GraphBin. The dark blue bars denote the
original tool scores and the light orange bars denote the final scores of GraphBin.
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Figure 3.5: Refined binning results of MetaBAT2 with GraphBin for the datasets ES+metaSPAdes,
ESC+metaSPAdes, Sharon+metaSPAdes, CAMI_l+metaSPAdes, CAMI_m+metaSPAdes and
CAMI_h+metaSPAdes. Each graph denotes the precision, recall, F1-score and ARI values at the
species level of the original tool (MetaBAT2) compared with the scores obtained after applying GraphBin.
The dark blue bars denote the original tool scores and the light orange bars denote the final scores of
GraphBin.

Overall, GraphBin has been shown to improve the binning results of different combinations of the
above assemblers and binning tools including MetaWatt, MaxBin2, MetaBAT2, SolidBin and BusyBee
Web. One possible factor that has contributed to the improved performance of GraphBin is that the
assembly graph provides valuable information regarding connections among contigs which is not
used by other binning tools.

3.4.1 Results on Simulated Datasets

MetaWatt, MaxBin2, MetaBAT2 and SolidBin have shown very high precision values on the simulated
datasets. However, they have shown poor recall values below 50%. The reason for such poor recall
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Figure 3.6: Refined binning results of SolidBin with GraphBin for the datasets ES+metaSPAdes,
ESC+metaSPAdes, Sharon+metaSPAdes, CAMI_l+metaSPAdes and CAMI_m+metaSPAdes. Each graph
denotes the precision, recall, F1-score and ARI values at the species level of the original tool (SolidBin)
compared with the scores obtained after applying GraphBin. The dark blue bars denote the original tool
scores and the light orange bars denote the final scores of GraphBin. CAMI_h+metaSPAdes dataset could
not be binned using SolidBin due to insufficient memory (576GB).
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Figure 3.7: Refined binning results of BusyBee Web with GraphBin for the datasets ES+MEGAHIT,
ESC+MEGAHIT, Sharon+MEGAHIT, CAMI_l+MEGAHIT and CAMI_m+MEGAHIT. Each graph denotes
the precision, recall, F1-score and ARI values at the species level of the original tool (BusyBee Web) compared
with the scores obtained after applying GraphBin. The dark blue bars denote the original tool scores and the
light orange bars denote the final scores of GraphBin. CAMI_h+MEGAHIT dataset could not be binned
using BusyBee Web due to the restriction on input file size.

values is that these tools have discarded more than 50% of the contigs due to short lengths in each
dataset. MaxBin2 and SolidBin do not bin contigs which are shorter than 1,000 bp and BusyBee Web
does not bin contigs which are shorter than 500 bp due to insufficient k-mer frequency information.
MetaBAT2 has a fixed value for the minimum contig length which is set to 1,500 bp while MetaWatt
discards short contigs as the estimation of their relative coverage and tetranucleotide frequency may
not be accurate. For example, Figure 3.3 (a) demonstrates that GraphBin has significantly increased
the recall and F1-score from 26.65% and 41.98% to 98.04% and 98.40% respectively in the ES+SGA
dataset. Similarly, GraphBin has improved the recall and F1-score from 43.37% and 60.41% to 99.77%
and 99.54% respectively for the ESC+SGA dataset (refer to Figure 3.3 (b)). Further results can be
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found in Appendix A.

3.4.2 Results on Sharon Datasets

We also tested GraphBin using the Sharon dataset (Sharon et al., 2013). As shown in Figure 3.3 (c),
GraphBin has improved all the evaluation criteria in the Sharon+SGA dataset using the MetaWatt
result. Specifically, GraphBin has been able to improve the recall and F1-score from 20.81% and 33.47%
to 51.06% and 64.19% respectively, using the MetaWatt results of the Sharon+SGA dataset (refer to
Figure 3.3 (c)). Moreover, similar improvements on recall and F1-score can be seen from GraphBin with
other binning tools. Note that the increase of recall and F1-score of GraphBin on Sharon datasets is
not as significant as that on the simulated datasets. This is mainly due to the increased complexity in
the real dataset which results in imperfect and fragmented assembly graphs due to noisy or chimeric
reads, uneven coverage and shared genomic segments between species.

3.4.3 Results on CAMI Datasets

We further tested GraphBin using the CAMI datasets of different complexities (Sczyrba et al., 2017).
As shown in Figures 3.3 (d), (e) and (f), GraphBin has improved all the evaluation criteria for binning
results from MetaWatt for the SGA assemblies of three CAMI datasets. Similarly, GraphBin has

Table 3.2: Number of bins identified by TAXAassign (ground truth) and the initial binning tools for each
dataset

Dataset
Number of species

identified by
TAXAassign

MetaWatt MaxBin2 MetaBAT2 SolidBin BusyBee Web

ES+metaSPAdes 2 2 2 2 2 N/A*

ES+SGA 2 2 2 2 2 2

ES+MEGAHIT 2 2 2 2 2 2

ESC+metaSPAdes 3 3 3 3 3 N/A*

ESC+SGA 3 3 3 3 3 3

ESC+MEGAHIT 3 3 3 3 3 3

Sharon+metaSPAdes 26 39 11 34 9 5

Sharon+SGA 19 36 8 36 5 9

Sharon+MEGAHIT 24 38 10 65 9 8

CAMI_l+metaSPAdes 25 65 22 101 20 16

CAMI_l+SGA 27 74 15 77 15 15

CAMI_l+MEGAHIT 13 59 24 112 21 20

CAMI_m+metaSPAdes 25 48 32 152 26 37

CAMI_m+SGA 25 46 20 100 16 17

CAMI_m+MEGAHIT 128 69 23 68 19 18

CAMI_h+metaSPAdes 143 233 134 892 N/A† N/A†

CAMI_h+SGA 130 118 49 311 N/A‡ 58

CAMI_h+MEGAHIT 162 261 167 225 N/A† N/A†

* BusyBee Web was unable to bin the datasets ES+metaSPAdes and ESC+metaSPAdes as there were not enough sequences
that had the minimum contig length of 500 bp.
†CAMI_h+metaSPAdes and CAMI_h+MEGAHIT datasets could not be binned using BusyBee Web due to the restriction
on input file size and could not be binned using SolidBin due to insufficient memory (576GB).
‡SolidBin did not complete binning the CAMI_h+SGA dataset after 72 hours.
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improved most of the evaluation criteria for binning results obtained from MetaWatt, MaxBin2,
MetaBAT2, SolidBin and BusyBee based on different assembly graphs built by metaSPAdes, SGA and
MEGAHIT. Note that the improvement of binning results tends to diminish as the complexity of the
datasets increases. Assembly graphs built from high-complexity datasets are more likely to contain
misassembled contigs or shared contigs among species which can lead to errors in the initial binning
results and get further propagated by GraphBin. Such assembly graphs are also prone to contain
more false edges which can affect the label propagation process, causing the precision and ARI to drop.
Moreover, as shown in Table 3.2, the number of bins estimated by different binning tools becomes
inaccurate, especially for high-complexity datasets. Therefore, initial individual bins may contain
contigs from more than one species while contigs from the same species may split into multiple bins,
which may hinder the ability of GraphBin to improve the binning result through label propagation.

3.4.4 Visualisation of the Assembly Graph

Figure 3.8 denotes the labelling of the assembly graph of the ES+metaSPAdes dataset with the four
evaluation criteria precision, recall, F1-score and ARI for the results of MaxBin2 and GraphBin. It can be
seen that GraphBin has been able to improve the binning result significantly.

MaxBin2 GraphBin

Ground Truth Labelling

Precision - 98.18%

Recall - 34.62%

F1-score - 51.18%

ARI - 92.73%

Precision - 100.0%

Recall - 93.59%

F1-score - 96.69%

ARI - 100.0%

Assembly Graph

Initial Labelling of the Assembly Graph Final Labelling of the Assembly Graph

Ground Truth Labelling of the Assembly Graph

Figure 3.8: The labelling of the assembly graph of ES+metaSPAdes dataset based on the initial MaxBin2
result and GraphBin result. Contigs belonging to E. faecalis and S. aureus are coloured in green and yellow
respectively. Contigs which were not considered in the classification and discarded during the binning
process are coloured in grey. The vertices circled in red correspond to the mis-binned contigs. Finally, the
four evaluation criteria are denoted by comparing with the ground truth labelling of the assembly graph.

3.4.5 Propagation of Labels in the Assembly Graph

The refinement of labels in the assembly graph for two simulated datasets which were used for the
experiments are presented in this section. Figures 3.9 and 3.10 illustrate the refinement of labels in the
assembly graph of ES+metaSPAdes and ESC+metaSPAdes datasets respectively.

ES+metaSPAdes Dataset

Figure 3.9 (a) denotes the ground truth labelling of the contigs obtained from TAXAassign. It resulted
in a total of 156 labelled contigs where 67 belonged to E. faecalis (vertices coloured in green) and 89
belonged to S. aureus (vertices coloured in yellow). MaxBin2 had labelled 55 contigs. According
to Figure 3.9 (b), MaxBin2 has mis-binned one contig (vertex circled in red colour). As denoted in
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Figure 3.9 (d), it can be seen that the final graph after applying GraphBin has more correctly binned
contigs and less discarded contigs.

(a)
Ground truth labelling

(b)
After assigning labels predicted by MaxBin2

(c)
After label refinement

(d)
After label propagation and refinement

Figure 3.9: The assembly graph of the ES+metaSPAdes dataset as it undergoes the different steps in the
GraphBin algorithm. It contains contigs of E. faecalis (green) and S. aureus (yellow). Contigs which were not
considered in the classification and discarded during the binning process are denoted in grey. The vertices
circled in red correspond to the mis-binned contigs.

ESC+metaSPAdes Dataset

Figure 3.10 (a) denotes the ground truth labelling of the contigs obtained from TAXAassign. It resulted
in a total of 181 labelled contigs where 60 belonged to E. faecalis (vertices coloured in green), 98
belonged to S. aureus (vertices coloured in yellow) and 23 belonged to C. avidum (vertices coloured
in orange). MaxBin2 had labelled 74 contigs. According to Figure 3.10 (b), MaxBin2 has mis-binned
two contigs (vertices circled in red colour). As denoted in Figure 3.10 (d), it can be seen that the final
graph after applying GraphBin has more correctly binned contigs and less discarded contigs.
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(a)
Ground truth labelling

(b)
After assigning labels predicted by MaxBin2

(c)
After label refinement

(d)
After label propagation and refinement

Figure 3.10: The assembly graph of the ESC+metaSPAdes dataset as it undergoes the different steps in
the GraphBin algorithm. It contains contigs of E. faecalis (green), S. aureus (yellow) and C. avidum (orange).
Contigs which were not considered in the classification and discarded during the binning process are
denoted in grey. The vertices circled in red correspond to the mis-binned contigs.

3.4.6 Implementation and Runtime

The source code for the experiments was implemented using Python 3.6.5 and run on a Linux system
with Ubuntu 18.04.1 LTS, 16G memory and Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz with 4 CPU
cores.

The running times for assembly and binning using MaxBin2, MetaWatt, MetaBAT2, SolidBin and
GraphBin were recorded for each dataset. These values are denoted in Table 3.3. Assembly of the
datasets was carried out using the resources from the National Computational Infrastructure (NCI)
Australia. All the binning tools (except for SolidBin on the CAMI_m and CAMI_h datasets) and
GraphBin were run on a Linux system with Ubuntu 18.04.1 LTS, 16G memory and Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz with 4 CPU cores. For the CAMI_m and CAMI_h datasets, SolidBin was run
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on the NCI using 1 CPU (as SolidBin is single threaded) and 576GB (maximum memory per node in
NCI) of memory. The times elapsed for binning are denoted as wall time.

Figure 3.11 denotes the graphs showing the variation of running times with the number of contigs and
variation of running times with the dataset complexity (number of species present) for the metaSPAdes,
SGA and MEGAHIT assemblies for the Sharon, CAMI_l, CAMI_m and CAMI_h datasets, using
the three tools MetaWatt, MaxBin2 and MetaBAT2. GraphBin was run ten times with each dataset,
and the average running times were used to plot the graphs. Overall, it can be seen that the running
time of GraphBin increases with the increasing number of contigs and increasing number of species.
Moreover, it can be see that when MetaWatt is used, GraphBin has resulted in the highest times. This
is because, MetaWatt produced the most number of labelled contigs initially out of the three tools,
resulting in more number of contigs for the label refinement process of GraphBin. On the contrary,
when MetaBAT2 is used, GraphBin has resulted in the lowest running times as MetaBAT2 produced
the lowest number of labelled contigs initially.
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Figure 3.11: Variation of running times with the (a) - (c) number of contigs and (d) - (f) complexity of the
dataset (the actual number of species present) for each of the metaSPAdes, SGA and MEGAHIT assemblies
of the Sharon, CAMI_l, CAMI_m and CAMI_h datasets using the binning tools MetaWatt, MaxBin2 and
MetaBAT2.

Discussion

GraphBin uses the binary connectivity information (i.e., unweighted edges) between contigs, and
the label propagation algorithm suffers from the problem of inconsistency when predicting labels of
contigs on species boundaries. This can lead to mis-binned contigs and reduce the precision of the final
GraphBin result. Moreover, the final label refinement step of GraphBin can remove a large number
of labels of shared contigs along species boundaries in very complex datasets and in turn reduce
the recall of binning results. Hence, it is worth exploring methods to recover these shared contigs,
determine which species (or bins) they belong to and, improve the label propagation algorithm by
introducing more features such as graph distance and coverage information of contigs.

With the advancement of third-generation sequencing, assembly graphs built from long reads will
have more reliable connectivity information. Hence, it is worth exploring how to make use of assembly
graphs from long reads in improving metagenomics binning.
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Chapter 4

Overlapped Binning of Metagenomic
Contigs using Assembly Graphs

This chapter was published as

V. G. Mallawaarachchi, A. S. Wickramarachchi et al. (2020b). ‘GraphBin2: Refined and Overlapped
Binning of Metagenomic Contigs Using Assembly Graphs’. In: 20th International Workshop
on Algorithms in Bioinformatics (WABI 2020). Ed. by C. Kingsford and N. Pisanti. Vol. 172.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 8:1–8:21. ISBN: 978-3-95977-161-0. DOI: 10.4230/LIPIcs.WABI.
2020.8

V. G. Mallawaarachchi, A. S. Wickramarachchi et al. (May 2021). ‘Improving metagenomic binning
results with overlapped bins using assembly graphs’. Algorithms for Molecular Biology, 16(1), p. 3.
ISSN: 1748-7188. DOI: 10.1186/s13015-021-00185-6 has been extended.

4.1 Motivation and Overview

Different species may share common sequences in their genomes and an assembled contig containing
such a common region may belong to multiple species. However, existing tools for binning contigs
only support non-overlapped binning, i.e., each contig is assigned to at most one bin. If we observe
the assembly graph of two species as shown in Figure 4.1, we can see that the shared contig (contig ‘R’
in purple) is connected to contigs of both the species.

Figure 4.1: Shared contigs in the assembly graph.

In this chapter, we present GraphBin2, the new generation of GraphBin, to improve binning results
using the assembly graph. While GraphBin only uses the topology information of the assembly graph,
GraphBin2 improves the algorithms to adjust existing binning results and to support overlapped
binning based on both the connectivity and coverage information of assembly graphs. Experimental
results show that GraphBin2 not only improves existing binning results, but also infers contigs that

https://doi.org/10.4230/LIPIcs.WABI.2020.8
https://doi.org/10.4230/LIPIcs.WABI.2020.8
https://doi.org/10.1186/s13015-021-00185-6
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may belong to multiple species. Furthermore, we have experimentally shown that GraphBin2 could
be applied to long-read assemblies as well.

4.2 Methods

Figure 4.2 denotes the workflow of GraphBin2. The preprocessing steps of GraphBin2 assemble reads
into contigs using the assembly graph and then bin the contigs (i.e., assign coloured labels to contigs)
using existing contig-binning tools. GraphBin2 takes this labelled assembly graph as input, removes
unsupported labels, corrects the labels of inconsistent vertices, propagates labels to unlabelled vertices
and finally infers vertices with multiple labels (colours).

4.2.1 Preprocessing

In this step, we assemble the next generation reads (e.g., Illumina reads with length ranging from 75
bp to 300 bp) into contigs using the assembly graph. There are two dominant paradigms for genome
assembly: overlap-layout-consensus (or string graphs) (Myers, 2005) and de Bruijn graphs (Pevzner
et al., 2001). We select one representative assembler from each paradigm, SGA (Simpson and Durbin,
2012) and metaSPAdes (Nurk et al., 2017) respectively, to demonstrate the adaptability of GraphBin2.
In order to show that GraphBin2 could be in principle applied to long-read assemblies, we also
considered a simulated dataset which was assembled using metaFlye (Kolmogorov, Bickhart et al.,
2020), a popular metagenomics long-read assembler.

In the assembly graph, each vertex represents a contig with coverage denoting the average number
of reads that map to each base of the contig and each edge indicates a significant overlap between
a pair of contigs. In an ideal case, a genome corresponds to a path in the assembly graph and its
genomic sequence corresponds to the concatenation of contigs along this path. Hence, if two contigs
are connected by an edge in the assembly graph, they are more likely to belong to the same genome.
Previous studies (Barnum et al., 2018; Mallawaarachchi, Wickramarachchi et al., 2020a) have shown
that the connectivity information between contigs can be used to refine and improve binning results.
In the assembly graph of metagenomic datasets, different genomes usually correspond to different
paths in the assembly graph. If two genomes share a common contig (e.g., unresolved “interspecies
repeat” (Nurk et al., 2017)), the corresponding vertex would be shared by two genomic paths in the
assembly graph.

After assembling reads into contigs using assembly graphs, GraphBin2 uses an existing contig-binning
tool to derive an initial binning result. Note that most of the existing tools for binning contigs
require a minimum length for the contigs (e.g., 1,000 bp for MaxBin2 (Wu, Simmons et al., 2015) and
SolidBin (Wang, Wang et al., 2019), 500 bp for BusyBee Web (Laczny, Kiefer et al., 2017) and 1,500
bp for MetaBAT2 (Kang, Li et al., 2019)). Therefore, many short contigs in the assembly graph will
be discarded, resulting in low recall values as a common limitation of existing binning tools. For
example, 65% of the contigs in the metaSPAdes assembly of the Sharon-All dataset were discarded by
MaxBin2 due to their short length.

4.2.2 Step 1: Remove Labels of Unsupported Vertices

A linear (or circular) chromosome usually corresponds to a path (or a cycle) that traverses multiple
vertices in the assembly graph. If two contigs belong to the same chromosome, they are likely to be
connected by a path which consists of other contigs from the same chromosome. Therefore, a labelled
vertex is defined as supported if and only if one of the following conditions hold:

• It is an isolated vertex

• It directly connects to a vertex of the same label

• It connects to a vertex of the same label through a path that consists of only unlabelled vertices
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Figure 4.2: The workflow of GraphBin2.

Otherwise, a labelled vertex is defined as unsupported. Note that the definition of unsupported vertices
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in GraphBin2 is more strict than ambiguous vertices in GraphBin.1 For example, in the initial labelled
assembly graph of Figure 4.2, vertex 2 in red is supported by vertex 6 in red as they are directly
connected. Note that vertex 18 in green is also supported by vertex 15 in green as there exists a
path (i.e., 18 → 19 → 14 → 15) between them that traverses only unlabelled vertices (i.e., 19 and
14). However, vertex 1 in blue is unsupported as it cannot reach another blue vertex through a path
consisting of only unlabelled (white coloured) vertices.

To check whether a labelled vertex is supported or unsupported, a naive approach is to perform a
breadth-first-search from each labelled vertex. A refined algorithm first initialises all labelled vertices
as unsupported and scans the graph to identify all labelled vertices that are either isolated or directly
connected to a vertex of the same label and classifies them as supported vertices. This refined algorithm
then uses breadth-first-search to find all connected components that consist of only unlabelled vertices
and for each component Component stores a set of labelled vertices N(Component) that are connected
to vertices in Component. If multiple labelled vertices in N(Component) have the same label, these
vertices are supported because they connect to each other through a path that consists of only
unlabelled vertices in Component. GraphBin2 removes the labels for all unsupported vertices because
these labels may not be reliable. For example, the label of the unsupported vertex 1 is removed by
GraphBin2 in Step 1 of Figure 4.2.

4.2.3 Step 2: Correct Labels of Inconsistent Vertices

After Step 1, each non-isolated labelled vertex v is supported by at least one vertex with the same
label. The closer two vertices are in the assembly graph, the more likely they have the same label. For
each vertex v, we introduce a labelled score, S(v, x), for each label x by considering all vertices of label
x that are directly connected to v or connected to v through a path that consists of only unlabelled
vertices. A vertex t of label x contributes to S(v, x) by 2−D(v,t) where D(v, t) is the shortest distance
between v and t using only unlabelled vertices. This distance is measured by the number of edges in a
path and D(v, t) = 1 if v and t are directly connected. Therefore, the labelled score S(v, x) is the sum of
contributions from all vertices of label x that are directly connected to v or connected to v through
a path that consists of only unlabelled vertices. In Step 1 of Figure 4.2, vertex 17 contributes 1/2 to
S(18, blue) because D(17, 18) = 1 and vertex 8 contributes 1/8 to S(18, green) because D(8, 17) = 3.
The labelled score of S(18, blue) is 2 to which all four blue vertices 17, 20, 23 and 24 contribute 1/2
respectively while S(18, green) = 5/16 to which vertex 8 contributes 1/8, vertex 15 contributes 1/8
and vertex 26 contributes 1/16.

A labelled vertex v of label x is defined as inconsistent if and only if the labelled score of its current
label x times α is less than or equal to the labelled score of another label y where α is a parameter, i.e.,
α× S(v, x) 6 S(v, y). We have set α = 1.5 in the default settings of GraphBin2. In Step 1 of Figure 4.2,
vertex 18 in green is an inconsistent vertex because 1.5× S(18, green) = 1.5× 5/16 = 0.47 is less than
S(18, blue) = 2.

Again, GraphBin2 uses the breadth-first-search to check if a labelled vertex is inconsistent. GraphBin2
corrects the label of an inconsistent vertex v to another label that maximises the labelled score. For
example, GraphBin2 corrects the label of vertex 18 from green to blue and corrects the label of vertex
22 from red to green (refer from Step 1 to Step 2 in Figure 4.2).

4.2.4 Step 3: Propagate Labels to Unlabelled Vertices

As existing contig-binning tools discard contigs due to their short lengths in the initial binning, many
vertices are still unlabelled in the current assembly graph. In this step, we will propagate existing
labels to the remaining unlabelled vertices using the assembly graph. There are two intuitions behind
this label propagation process. Firstly, vertices that are closer to each other in the assembly graph are
more likely to have the same label. Secondly, vertices with similar coverages are more likely to have
the same label because contigs from the same genome usually have similar coverages (Herath et al.,

1In GraphBin, a vertex i is denoted as an ambiguous vertex if at least one of its closest labelled vertices has a label that is
different than the label of the vertex i.
An ambiguous vertex in GraphBin may be supported (in GraphBin2) by another vertex of the same label if they are directly
connected or connected through a path consisting of only unlabelled vertices. An unsupported vertex in GraphBin2 is always
ambiguous in GraphBin.
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2017; Wu, Tang et al., 2014). GraphBin2 uses both the connectivity and coverage information of the
assembly graph to propagate the labels.

For each unlabelled vertex v with coverage c(v) (i.e., coverage of the contig that corresponds to the
vertex), a candidate propagation action (D(v, t), |c(v)− c(t)|, t, v) is recorded as a tuple where t is
the nearest labelled vertex to v, c(t) is the coverage of t and D(v, t) is the shortest distance between v
and t (as defined in Step 2). Given two candidate propagation actions, (d1, c1, t1, v1) and (d2, c2, t2, v2),
GraphBin2 will execute (d1, c1, t1, v1) before (d2, c2, t2, v2), i.e., propagating the label of t1 to v1 before
propagating the label of t2 to v2, if (d1 < d2) or (c1 < c2 and d1 = d2). In other words, GraphBin2
puts more emphasis on the connectivity information than the coverage information because the edges
in the assembly graph are expected to be more reliable than the coverage information on vertices,
especially for vertices corresponding to short contigs (which are discarded by initial binning tools).

GraphBin2 first uses the breadth-first-search to compute all candidate propagation actions for un-
labelled vertices and sort them into a ranked list according to the order defined above. At each
iteration, GraphBin2 executes the first candidate propagation action and then updates the ranked
list of candidate propagation actions. Note that one unlabelled vertex receives its label at each it-
eration and updating the ranked list of candidate propagation actions can be done efficiently by
breadth-first-search from this unlabelled vertex.

Figure 4.3 shows how GraphBin2 propagates labels from Step 2 to Step 3 in Figure 4.2. Figure 4.3 (a)
denotes the assembly graph after correcting labels of inconsistent vertices (after Step 2). The following
candidate propagation actions will be executed in the given order as shown in Figure 4.3.

(1) The candidate propagation action (1, 0, 6, 1) is executed. Vertex 1 receives the red label from
vertex 6 as shown in Figure 4.3 (b).

(2) The candidate propagation action (1, 0, 13, 14) is executed. Vertex 14 receives the red label from
vertex 13 as shown in Figure 4.3 (c).

(3) The candidate propagation action (1, 1, 22, 21) is executed. Vertex 21 receives the green label
from vertex 22 as shown in Figure 4.3 (d).

(4) The candidate propagation action (1, 2, 14, 7) is executed. Vertex 7 receives the red label from
vertex 14 as shown in Figure 4.3 (e).

(5) The candidate propagation action (1, 3, 18, 19) is executed. Vertex 19 receives the blue label from
vertex 18 as shown in Figure 4.3 (f).

(6) The candidate propagation action (1, 16, 8, 3) is executed. Vertex 3 receives the green label from
vertex 8 as shown in Figure 4.3 (g).

(7) The candidate propagation action (1, 53, 21, 25) is executed. Vertex 25 receives the green label
from vertex 21 as shown in Figure 4.3 (h).

Note that this label propagation process in GraphBin2 improves on the label propagation algorithm in
GraphBin by incorporating both the connectivity and coverage information in the assembly graph.
So far, GraphBin2 does not generate multi-labelled vertices. In the next step, we will show how
GraphBin2 uses the labelling, connectivity and coverage information together on the assembly graph
to infer multi-labelled vertices.

4.2.5 Step 4: Infer Multi-Labelled Vertices

Contigs belonging to multiple genomes correspond to multi-labelled vertices in the assembly graph.
What are the characteristics of shared contigs between multiple species? Firstly, a contig shared by
multiple genomes may connect other contigs in these genomes. Secondly, the coverage of a contig
shared by multiple genomes should be equal to the sum of coverages of these genomes in the ideal
case. After label propagation, vertices of the same label are likely to form connected components in
the assembly graph and multi-labelled vertices are likely to be located along the borders between
multiple connected components where distinct labels meet and have a coverage similar to the sum of
the average coverages of multiple components that they belong to.

GraphBin2 checks labelled vertices that are connected to vertices of multiple different labels. The
average coverage of a connected component P is calculated by ∑ c(i)×L(i)

∑ L(i) for each vertex i in the



Chapter 4. Overlapped Binning of Metagenomic Contigs using Assembly Graphs 36

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

14

C: 19

8

C: 92

15

C: 89

21

C: 89

7

C: 21

13

C: 19

19

C: 51

20

C: 49

3

C: 108

25

C: 142

2

C:18

6

C: 20

1

C: 20

5

C: 25

12

C: 17
11

C: 17

18

C: 48

24

C: 52
23

C: 50

17

C: 47

9

C: 91

22

C: 88

10

C: 91

16

C: 91

4

C: 91

27

C: 88
26

C: 88

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Step-by-step illustration of how labels are propagated in Step 3 of the GraphBin2 Workflow on
the example assembly graph.

connected component P, where c(i) is the coverage of the vertex i and L(i) is the length of the contig
corresponding to vertex i. Assume v is a labelled vertex v from a component P, the coverage of
v is c(v) and the average coverage of P is c(P). When c(v) is larger than c(P) and v is connected
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to other components P1, P2, . . . , Pk with different labels, it is possible that v also belongs to one or
more components (in addition to P). For example, if v belongs to P, Pi and Pj in the ground-truth,
the coverage of v, c(v), is expected to be close to the sum of average coverages of the above three
components, c(P) + c(Pi) + c(Pj). In fact, finding which components in {P1, P2, . . . , Pk} that v also
belongs to (in addition to P) can be modelled as the following subset sum problem (Garey and Johnson,
1979). Given a set of positive numbers {c(P1), c(P2), . . . , c(Pk)}, find a subset whose sum is or is closest
to c(v)− c(P). Then v will be assigned to the corresponding components in this subset as well as to P.
Note that it is possible that the selected subset is empty and thus v only belongs to P.

In all of our experiments, the maximum number of different components that a vertex connects to in
the assembly graph is less than 5. We use a brute-force way to enumerate all possible combinations of
components and find out the combinations that best explain the observed coverages. For example,
after Step 3 in Figure 4.2, vertex 3 in green connects to another red component. The coverage of vertex
3 is 108 while the average coverage of the green component is 95 and the average coverage of the red
components is 19. Because the coverage of vertex 3 (108) is closer to the sum of average coverages of
green and red components (95+19=114) compared to the average coverage of the green component
(95), vertex 3 is assigned both green and red labels. Similarly, the coverage of vertex 25 (142) is closer
to the sum of average coverages of green and blue components (95+49=144) compared to the average
coverage of the green component (95). Hence, vertex 25 is assigned both green and blue labels. In
the same assembly graph after Step 3 in Figure 4.2, vertex 14 in red does not gain any other labels
because its own coverage is closest to the average coverage of the red component (19) compared to
other possible combinations (i.e., red+blue, red+green, green+blue and red+green+blue).

4.3 Experimental Setup

4.3.1 Datasets

Simulated Datasets

We simulated three metagenomic datasets according to the species found in the simMC+ dataset (Wu,
Simmons et al., 2015). These datasets were simulated each containing 5 species (referred as Sim-5G),
10 species (referred as Sim-10G) and 20 species (referred as Sim-20G) respectively. Paired-end reads
were simulated using the tool InSilicoSeq (Gourlé et al., 2018) modelling a MiSeq instrument with 300
bp mean read length.

To benchmark the performance of GraphBin2 on complex metagenomic datasets, we simulated a
dataset with the 50 most abundant species found in the simMC+ dataset (Wu, Simmons et al., 2015).
This dataset consisting of MiSeq reads is referred as 50G-SR. Moreover, we used the 100-genomes
long-read dataset (Wickramarachchi et al., 2020) which consisted of simulated PacBio reads of 100
species to evaluate the performance of GraphBin2 on long-read assemblies. This dataset has been
simulated by the long-read simulator SimLoRD (Stöcker et al., 2016) using default parameters for
PacBio reads. We refer to this dataset as 100G-LR. Further details about the simulated datasets can be
found in Appendix B.

Real Datasets

We used the preborn infant gut metagenome, commonly known as the Sharon dataset (Sharon et al.,
2013) (NCBI accession number SRA052203). There are 18 Illumina (Illumina HiSeq 2000) runs available
for this dataset. One run SRR492184 is included as a representative dataset (referred as Sharon-1) and
all the 18 Illumina runs are combined to form the Sharon-All dataset in our experiments.

We also used the Lake Biwa bacterioplankton metagenome dataset ((Mehrshad et al., 2018)) which
consists of bacterioplankton obtained from the Lake Biwa, Japan (NCBI BioProject number PRJDB6644,
run DRR125127, referred as Lake Water) and consists of Illumina MiSeq paired-end reads. Further
details on the Sharon and Lake Water datasets can be found in Appendix B.

4.3.2 Tools Used

To derive the assembly graph from short reads, there are two dominant assembly paradigms, de Bruijn
graphs (Pevzner et al., 2001) and overlap-overlap-layout-consensus (or string graphs) (Myers, 2005).
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We selected one representative tool from each paradigm to show the effectiveness of GraphBin2. To
represent the de Bruijn graph paradigm, we used metaSPAdes(Nurk et al., 2017) (from SPAdes version
3.13.0 (Bankevich et al., 2012)) with its default parameters to generate the assembly graph. As for the
overlap-layout-consensus paradigm, we selected SGA (version 0.10.15) (Simpson and Durbin, 2012)
to derive the assembly graph. We used the long-read metagenomic assembler metaFlye (Kolmogorov,
Bickhart et al., 2020) (available in Flye version 2.4.2 (Kolmogorov, Yuan et al., 2019)) with its default
parameters to assemble the 100G-LR dataset.

We used CONCOCT (version 1.1.0) (Alneberg et al., 2014) and MaxBin2 (version 2.2.5) (Wu, Sim-
mons et al., 2015) with default parameters, and SolidBin (version 1.3) (Wang, Wang et al., 2019) in
SolidBin-SFS mode to obtain the initial binning results for our experiments. CONCOCT, MaxBin2
and SolidBin are considered as hybrid contig-binning tools as they use both the composition and
coverage information. They make use of tetranucleotide frequencies and coverages of reads with
different machine learning approaches to bin contigs. Note that CONCOCT, MaxBin2 and SolidBin
only bin contigs which are longer than 1,000 bp by default. We also compared GraphBin2 with its
predecessor GraphBin (Mallawaarachchi, Wickramarachchi et al., 2020a). The commands used to run
all the assembly and binning tools can be found in Appendix D.

4.3.3 Evaluation Criteria

Since the reference genomes of the simulated datasets were known, we used BWA-MEM (Li, 2013)
to align the contigs to their reference genomes to determine the ground truth species to which the
contigs actually belonged to. For each contig, the alignment lengths for each species were recorded. A
contig is considered to belong to one species if the longest alignment to this species covers at least 50%
of the contig length. Furthermore, isolated contigs (corresponding vertices with zero degree in the
assembly graph) were not considered for the ground-truth set of the datasets.

For the Sharon dataset, we considered the annotated contigs from 12 species which are available at
https://ggkbase.berkeley.edu/carrol/organisms as references. For the Lake Water dataset, we
considered the assembled genomes provided by the authors as ground truth species. A process similar
to the simulated datasets was followed for the Sharon and Lake Water datasets to determine the origin
species of contigs and alignment lengths to species.

To evaluate the binning results of CONCOCT (Alneberg et al., 2014), MaxBin2 (Wu, Simmons et
al., 2015), SolidBin (Wang, Wang et al., 2019), GraphBin (Mallawaarachchi, Wickramarachchi et al.,
2020a) and GraphBin2, we used the metrics (1) precision, (2) recall and (3) F1-score as defined in the
evaluation metrics of GraphBin in Chapter 3.

To evaluate whether a vertex in the assembly graph corresponds to a contig that may belong to multiple
species, we align this contig to genomes of ground-truth species and record the best alignment against
each species, respectively. Then we introduce a parameter Ratio(2nd/1st) as the ratio between the
alignment lengths of the second longest alignment and the longest alignment. If a contig is aligned
to only one species (i.e., there is no alignment to another species), then Ratio(2nd/1st) = 0. If a contig
is aligned to multiple species, the higher the Ratio(2nd/1st) is, the more likely that this contig belongs
to multiple species. The violin plots of Ratio(2nd/1st) are computed for both inferred multi-labelled
and single-labelled contigs respectively in the next section to demonstrate how Ratio(2nd/1st) varies for
each type of contigs.

4.4 Results and Discussion

4.4.1 Binning Results

Figures 4.4, 4.5 and 4.6 demonstrate the results of CONCOCT (Alneberg et al., 2014), MaxBin2 (Wu,
Simmons et al., 2015) and SolidBin (Wang, Wang et al., 2019), respectively with GraphBin (Mallawaarach-
chi, Wickramarachchi et al., 2020a) and GraphBin2 on top of the initial binning results for the
metaSPAdes assemblies. Binning results of the SGA assemblies can be found in Figures 4.7 to
4.9. Figure 4.10 denotes the binning results of all the tools for the complex datasets 50G-SR, Lake
Water and 100G-LR. The number of bins identified by the binning tools for each dataset can be found
in Table 4.1.

https://ggkbase.berkeley.edu/carrol/organisms
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Table 4.1: The number of bins identified by the binning tools for each dataset.

Dataset Ground truth bins Assembly type Binning tool Number of bins identified

Sim-5G 5

metaSPAdes

CONCOCT 7

MaxBin2 5

SolidBin 5

SGA

CONCOCT 11

MaxBin2 5

SolidBin 5

Sim-10G 10

metaSPAdes

CONCOCT 12

MaxBin2 10

SolidBin 10

SGA

CONCOCT 14

MaxBin2 9

SolidBin 9

Sim-20G 20

metaSPAdes

CONCOCT 22

MaxBin2 21

SolidBin 20

SGA

CONCOCT 28

MaxBin2 20

SolidBin 19

Sharon-1 (Sharon et al., 2013) 12

metaSPAdes

CONCOCT 27

MaxBin2 5

SolidBin 5

SGA

CONCOCT 25

MaxBin2 5

SolidBin 4

Sharon-All (Sharon et al., 2013) 12

metaSPAdes

CONCOCT 48

MaxBin2 11

SolidBin 9

SGA

CONCOCT 27

MaxBin2 8

SolidBin 5

50G-SR 50 metaSPAdes

CONCOCT 44

MaxBin2 44

SolidBin 45

Lake Water (Mehrshad et al., 2018) 57 metaSPAdes

CONCOCT 149

MaxBin2 57

SolidBin N/A∗

100G-LR (Wickramarachchi et al., 2020) 100 metaFlye

CONCOCT 76

MaxBin2 76

SolidBin 86
∗ SolidBin could not be run on the Lake Water dataset due to insufficient memory.
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Figure 4.4: Comparison of binning results of CONCOCT (Alneberg et al., 2014), GraphBin (Mallawaarachchi,
Wickramarachchi et al., 2020a) and GraphBin2 (on top of CONCOCT results) using assembly graphs built
by metaSPAdes (Nurk et al., 2017).
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Figure 4.5: Comparison of binning results of MaxBin2 (Wu, Simmons et al., 2015), GraphBin (Mallawaarach-
chi, Wickramarachchi et al., 2020a) and GraphBin2 (on top of MaxBin2 results) using assembly graphs built
by metaSPAdes (Nurk et al., 2017).
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Figure 4.6: Comparison of binning results of SolidBin (Wang, Wang et al., 2019), GraphBin (Mallawaarachchi,
Wickramarachchi et al., 2020a) and GraphBin2 (on top of SolidBin results) using assembly graphs built by
metaSPAdes (Nurk et al., 2017).
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Figure 4.7: Comparison of binning results of CONCOCT (Alneberg et al., 2014), GraphBin (Mallawaarachchi,
Wickramarachchi et al., 2020a) and GraphBin2 (on top of CONCOCT results) using assembly graphs built
by SGA (Simpson and Durbin, 2012).
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Figure 4.8: Comparison of binning results of MaxBin2 (Wu, Simmons et al., 2015), GraphBin (Mallawaarach-
chi, Wickramarachchi et al., 2020a) and GraphBin2 (on top of MaxBin2 results) using assembly graphs built
by SGA (Simpson and Durbin, 2012).
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Figure 4.9: Comparison of binning results of SolidBin (Wang, Wang et al., 2019), GraphBin (Mallawaarachchi,
Wickramarachchi et al., 2020a) and GraphBin2 (on top of SolidBin results) using assembly graphs built by
SGA (Simpson and Durbin, 2012).
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Figure 4.10: Comparison of binning results of CONCOCT (Alneberg et al., 2014), MaxBin2 (Wu, Simmons
et al., 2015), SolidBin (Wang, Wang et al., 2019), GraphBin (Mallawaarachchi, Wickramarachchi et al., 2020a)
and GraphBin2 for the complex datasets 50G-SR, 100G-LR and Lake Water.

The binning results show that GraphBin2 achieves the best performance in most of the scenarios. The
improvement over GraphBin is because GraphBin2 makes use of coverage information additionally,
rather than relying only on the graph topology as GraphBin does. Both GraphBin and GraphBin2
have shown significant improvements on recall compared to CONCOCT, MaxBin2 and SolidBin.
While CONCOCT, MaxBin2 and SolidBin filter contigs with length shorter than 1,000 bp, GraphBin
and GraphBin2 are able to bin short contigs using assembly graphs. In a few scenarios, GraphBin2
improved on the recall with a bit of a compromise on the precision compared to GraphBin because
GraphBin removes ambiguous labels in the final step. Furthermore, the existence of weak edges (i.e.,
edges that are not well supported from the data) can form false connections between contigs and can
mislead the label propagation process.
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4.4.2 Multi-Labelled Inference Results

One key novelty of GraphBin2 is the introduction of the multi-labelled inference for contigs where
GraphBin2 detects possible contigs that may belong to multiple species. Table 4.2 denotes the
number of multi-labelled contigs identified by GraphBin2 for the metaSPAdes assemblies, SGA
assemblies and assemblies of the complex datasets using the initial binning result of the binning
tools CONCOCT (Alneberg et al., 2014), MaxBin2 (Wu, Simmons et al., 2015) and SolidBin (Wang,
Wang et al., 2019). Moreover, for each combination of dataset and initial binning tool, we calculated
the ratio Ratio(2nd/1st) (please refer to Section 3.3) of single and multi-labelled contigs produced by
GraphBin2. Then we plotted the violin plots of Ratio(2nd/1st) in Figures 4.11 and 4.12 to demonstrate
how Ratio(2nd/1st) varies for different datasets. Multi-labelled inference results of the SGA assemblies
can be found in Figure 4.13.

According to Figures 4.11 and 4.12, the multi-labelled contigs identified by GraphBin2 for most of
the datasets have a high mean value (much greater than zero) for Ratio(2nd/1st), suggesting that these
identified contigs have significant alignments to multiple species. Moreover, the mean value of
Ratio(2nd/1st) for the single-labelled contigs identified by GraphBin2 is close to zero, suggesting that
the majority of the contigs only belong to one species. The clear distinction between the Ratio(2nd/1st)

of inferred single and multi-labelled contigs in these datasets demonstrates the effective detection of
contigs that may belong to multiple species by GraphBin2. Note that the relatively low mean value of
Ratio(2nd/1st) for the Sharon-All dataset can be due to repeats and weak edges in complex assembly
graphs, i.e., contigs that represent repeats within one species tend to have higher coverage and may
be misinterpreted as multi-labelled contigs if there exist weak edges connecting them to contigs in
other species. The possible multi-labelled contigs in the 50G-SR and 100G-LR datasets which are not
identified by GraphBin2 may be due to the underestimation of the number of bins, misassemblies and
fragmentation of the assembly graphs, especially for datasets with a large number of species.

Table 4.2: The number of multi-labelled contigs identified by GraphBin2 for the metaSPAdes assemblies,
SGA assemblies and assemblies of the complex datasets using the initial binning result of each binning tool.

Dataset Assembler With CONCOCT result With MaxBin2 result With SolidBin result

Sim-5G
metaSPAdes 3 4 5

SGA 31 6 8

Sim-10G
metaSPAdes 6 7 7

SGA 81 9 2

Sim-20G
metaSPAdes 5 11 10

SGA 156 15 11

Sharon1
metaSPAdes 3 3 2

SGA 6 2 2

SharonAll
metaSPAdes 69 38 30

SGA 40 37 17

50G-SR metaSPAdes 89 74 74

Lake Water metaSPAdes 178 329 N/A∗

100G-LR metaSPAdes 17 10 10
∗ SolidBin could not be run on the Lake Water dataset due to insufficient memory.
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Figure 4.11: Violin plots for the ratio between the alignment lengths of the second longest alignment and
the longest alignment of the single and multi-labelled inference results using GraphBin2 on top of (a)
CONCOCT, (b) MaxBin2 and (c) SolidBin results for the metaSPAdes assemblies.
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Figure 4.12: Violin plots for the ratio between the alignment lengths of the second longest alignment and the
longest alignment of the single and multi-labelled inference results using GraphBin2 on top of CONCOCT,
MaxBin2 and SolidBin results for the complex datasets.
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Figure 4.13: Violin plots for the ratio between the alignment lengths of the second longest alignment and
the longest alignment of the single and multi-labelled inference results using GraphBin2 on top of (a)
CONCOCT, (b) MaxBin2 and (c) SolidBin results for the SGA assemblies.
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4.4.3 Visualisation of the Assembly Graph

Figures 4.14 and 4.15 denote the labelling of the contigs in the metaSPAdes assembly graphs of the
Sim-5G and Sim-10G datasets at different stages as it undergoes the processing of GraphBin2. White
coloured vertices denote un-binned contigs and the rest of the coloured vertices denote the labelled
contigs.

(a) (b)

(c) (d)

Figure 4.14: The labelling of the assembly graph of Sim-5G dataset based on (a) the initial MaxBin2 result
(un-binned contigs are denoted by white coloured vertices and mis-binned contigs are circled in red),
(b) after removing labels of unsupported vertices and correcting labels of inconsistent vertices, (c) after
propagating labels of unlabelled vertices (d) after determining multi-labelled vertices (black coloured
vertices) by GraphBin2.

In Figures 4.14 (a) and 4.15 (a), we can see that some mis-binned contigs are identified (circled in
red) as differently coloured contigs within components of a single colour. Figures 4.14 (b) and 4.15
(b) show the refined assembly graph where GraphBin2 has removed labels of unsupported vertices
and corrected labels of inconsistent vertices. After GraphBin2 propagates labels to the remaining
unlabelled vertices, the assembly graph will look as denoted in Figures 4.14 (c) and 4.15 (c). Finally,
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(a) (b)

(c) (d)

Figure 4.15: The labelling of the assembly graph of Sim-10G dataset based on (a) the initial MaxBin2
result (un-binned contigs are denoted by white coloured vertices and mis-binned contigs are circled in
red), (b) after removing labels of unsupported vertices and correcting labels of inconsistent vertices, (c)
after propagating labels of unlabelled vertices (d) after determining multi-labelled vertices (black coloured
vertices) by GraphBin2.

GraphBin2 will detect multi-labelled vertices that correspond to contigs that may belong to multiple
species as shown by the black coloured vertices in Figures 4.14 (d) and 4.15 (d).

4.4.4 Implementation, Running Time and Memory Usage

The source code for the experiments was implemented using Python 3.7.3 and run on a Darwin system
with macOS Mojave 10.14.6, 16 GB memory and Intel Core i7 CPU @ 2.8 GHz with 4 CPU cores. In
our experiments, we restrict the depth of the breadth-first-search in Steps 2-3 to be 5 to speed up
GraphBin2. Moreover, we have set the parameter α = 1.5 by default for GraphBin2. Furthermore, the
process of inferring multi-labelled vertices was performed in parallel using multithreading (set to 8
threads by default in GraphBin2).
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The running times (wall time) and the peak memory used by the initial binning tools (CONCOCT,
MaxBin2 and SolidBin) and GraphBin2 can be found in Tables 4.3.

Table 4.3: Running times (wall time) and peak memory usage for binning using each tool for all the datasets.
s denotes seconds, m denotes minutes and MB denotes megabytes.

Dataset Assembly Criteria CONCOCT
GraphBin2

with
CONCOCT

MaxBin2
GraphBin2

with
MaxBin2

SolidBin
GraphBin2

with
SolidBin

Sim-5G

metaSPAdes
Running time 29s 1s 12s 1s 3s 1s

Memory usage (MB) 172 35 2,389 36 155 36

SGA
Running time (MB) 20s 3m 58s 15s 3m 12s 3m 1s 3m 54s

Memory usage 169 127 394 124 794 124

Sim-10G

metaSPAdes
Running time 25s 2s 20s 2s 3s 2s

Memory usage (MB) 175 40 2,859 41 164 41

SGA
Running time (MB) 14s 4m 33s 28s 5m 8m 25s 5m 2s

Memory usage 204 101 285 101 1,423 101

Sim-20G

metaSPAdes
Running time 41s 3s 32s 3s 4s 5s

Memory usage (MB) 193 44 2,854 44 193 45

SGA
Running time (MB) 25s 28m 45s 49s 29m 40s 18m 47s 29m 54s

Memory usage 211 194 364 192 2,064 193

Sharon1

metaSPAdes
Running time (MB) 12s 4s 9s 5s 6s 5s

Memory usage 166 45 1,389 45 290 45

SGA
Running time (MB) 20s 3s 12s 3s 15s 3s

Memory usage 172 33 203 33 654 33

SharonAll

metaSPAdes
Running time (MB) 1m 8s 9m 54s 30s 10m 50s 2m 7s 11m 12s

Memory usage 189 137 1,378 163 1,416 163

SGA
Running time (MB) 1m 46s 1m 13s 28s 1m 21s 2m 51s 1m 15s

Memory usage 201 50 241 50 2,612 50

50G-SR metaSPAdes
Running time (MB) 1m 35s 19s 1m 33s 33s 13s 21s

Memory usage 237 75 3,978 77 500 75

Lake Water metaSPAdes
Running time (MB) 22m 2s 58m 42s 23m 27s 55m 17s N/A* N/A*

Memory usage 807 855 1,004 862 N/A* N/A*

100G-LR metaSPAdes
Running time (MB) 3m 7s 9s 4m 8s 4s 14m 59s 4s

Memory usage 399 54 3,976 57 4,840 57

∗ SolidBin could not be run on the Lake Water dataset due to insufficient memory.

Discussion

Although bin-refinement tools such as GraphBin (Mallawaarachchi, Wickramarachchi et al., 2020a) and
GraphBin2 (Mallawaarachchi, Wickramarachchi et al., 2020b) achieve improved binning performance,
they still require initial binning results obtained from other existing binning tools. The number of bins
in the existing result cannot be dynamically adjusted during the binning process and erroneous binning
results can be propagated during the label propagation process. Hence, it is worth exploring methods
to develop a stand-alone contig-binning tool that makes use of the assembly graph information.
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Chapter 5

Binning Metagenomic Contigs using
Composition, Coverage and Assembly
Graphs

This chapter is based on the work

V. Mallawaarachchi and Y. Lin (2022). ‘MetaCoAG: Binning Metagenomic Contigs via Composition,
Coverage and Assembly Graphs’. In: Research in Computational Molecular Biology (RECOMB 2022).
Ed. by I. Pe’er. Vol. 13278. Lecture Notes in Computer Science. Cham: Springer International
Publishing, pp. 70–85. ISBN: 978-3-031-04749-7. DOI: 10.1007/978-3-031-04749-7_5

5.1 Motivation and Overview

In this chapter, we introduce MetaCoAG, a reference-free stand-alone approach for binning metage-
nomic contigs. In addition to composition and abundance information, MetaCoAG also makes use
of the connectivity information from assembly graphs to bin contigs. More specifically, MetaCoAG
estimates the number of initial bins using single-copy marker genes, assigns contigs into bins iterat-
ively and adjusts the number of bins dynamically through graph-matching algorithms, and bins the
remaining contigs using a label propagation method based on the assembly graph. To the best of our
knowledge, MetaCoAG is the first stand-alone contig-binning tool to make direct use of the assembly
graph information. We benchmark MetaCoAG against state-of-the-art contig-binning tools using
simulated and real datasets. The experimental results show that MetaCoAG significantly outperforms
other contig-binning tools, e.g., improving the completeness of bins while maintaining high purity
levels and producing more high-quality bins.

5.2 Methods

Figure 5.1 shows the overall workflow of MetaCoAG. Note that metagenomic assemblers assemble
reads into contigs using assembly graphs which are considered as the input for MetaCoAG. MetaCoAG
first identifies a list of contigs that contain single-copy marker genes. Next, MetaCoAG counts the
number of contigs containing each single-copy marker gene and estimates the initial number of bins.
Then, MetaCoAG applies a graph-matching algorithm to assign contigs that contain single-copy
marker genes into bins iteratively and adjust the number of bins dynamically. Finally, MetaCoAG
bins the remaining contigs using label propagation algorithms based on the assembly graph, performs
a postprocessing step, and outputs the bins along with their corresponding contigs. Each step of
MetaCoAG is explained in detail in the following sections.

5.2.1 Step 0: Assemble Reads into Contigs and Construct the Assembly Graph

This preprocessing step is carried out to assemble the reads into contigs and obtain the assembly
graph. Metagenomic assemblers first use graph models to connect overlapping reads or k-mers and
to infer contigs as non-branching paths. After graph simplification, the vertices represent contigs

https://doi.org/10.1007/978-3-031-04749-7_5
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Figure 5.1: The workflow of MetaCoAG.

and edges represent connections between contigs in the assembly graph. Here we use the popular
metagenomic assembler metaSPAdes (Nurk et al., 2017) to derive input contigs and assembly graphs.
Note that the assembly graphs can also be obtained similarly using other metagenomic assemblers
such as MEGAHIT (Li, Liu et al., 2015) and metaFlye (Kolmogorov, Bickhart et al., 2020).

5.2.2 Step 1: Identify Contigs with Single-Copy Marker Genes

Single-copy marker genes appear only once in a bacterial genome and are conserved in the majority
of bacterial genomes (Albertsen et al., 2013; Dupont et al., 2012; Wu, Tang et al., 2014) (please refer to
Figure 5.2 for a visualisation of single-copy marker genes). These single-copy marker genes have been
used in previous work to determine the completeness and contamination of binning results (Parks
et al., 2015). Since these genes appear only once in a bacterial genome, we can use these to estimate the
number of species present in a sample. For example, if we consider the blue marker gene in Figure 5.2,
it appears only once in each of the genomes and there are three such genes in this mixed sample. So,
our mixed sample is most likely to contain three species.

For each single-copy marker gene, we use FragGeneScan (Rho et al., 2010) and HMMER (Eddy, 2011)
to identify the contigs which contain this marker gene (refer to Figure 5.3 (a)). A single-copy marker
gene is considered to be contained in a contig if more than 50% of the gene length is aligned to this
contig. Similar to approaches such as MaxBin (Wu, Tang et al., 2014) and MaxBin2 (Wu, Simmons
et al., 2015), MetaCoAG uses single-copy marker genes to distinguish contigs belonging to different
species (i.e., if these contigs contain the same single-copy marker gene).
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Figure 5.2: Single-copy marker genes in bacteria. Coloured rectangles show the different single-copy marker
genes found on three different bacterial genomes and they appear only once in each genome.

5.2.3 Step 2: Order Single-copy Marker Genes and Estimate the Number of Initial
Bins

For a given single-copy marker gene, the contigs containing this marker gene should come from
different species (e.g., if two contigs contain the same marker gene, then the two contigs should belong
to two different species). In the ideal case, if we have a near-perfect assembly, the number of contigs
that contain the same single-copy marker gene should be equal to the number of species present
in the sample. However, in reality, assemblies can be fragmented and erroneous, which may make
it challenging to recover all single-copy marker genes and hence, lowering the counts of contigs
containing each single-copy marker gene.

To get a better estimation of the number of species, we obtain the counts of contigs containing each
single-copy marker gene. We also record the single-copy marker genes found in each contig. For
a single-copy marker gene, the number of contigs that it can distinguish is the number of contigs
containing this gene. Therefore, we order all the single-copy marker genes according to the descending
order of the number of contigs containing them. We refer to this list of ordered marker genes as SMG
where a single-copy marker gene gi has a set of contigs C(gi) containing gi.

Figure 5.3: MetaCoAG identifies contigs containing each of the single-copy marker genes and counts the
contigs containing each marker gene. For example, the green marker gene is contained in three contigs, the
red marker gene is contained in two contigs and the pink marker gene is contained in one contig. Then we
plot a histogram of the contig counts. There are five marker genes where each is found in three contigs, two
marker genes where each is found in two contigs and one marker gene found in one contig. Since these
genes appear only once in a bacterial genome, we can estimate that this sample contains three species, as
most of the marker genes appear in three contigs. The number of initial bins is set to be the largest count of
contigs a marker gene is present which is three in this example.
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The number of initial bins is empirically set to be the number of contigs that contain the first gene in
SMG, in order to recover the maximum number of species possible from the marker gene information
(refer to Figure 5.3 for an example of estimating the number of bins in a sample).

5.2.4 Step 3: Bin Contigs with Single-copy Marker Genes

Step 3a: Initialise Bins

We initialise the bins using the contigs of the first single-copy marker gene g1 in SMG; i.e., we initialise
a new bin B for each contig in C(g1) (as shown in Step 3a of Figure 5.1). We define the initialised set
of bins as BINS. Please note that the number of bins |BINS|may change during the binning process.

Calculating Composition and Coverage similarities

Previous studies on metagenomics binning have used genomic signatures as they follow species-
specific patterns (Deschavanne et al., 1999; Wu, Tang et al., 2014). The most commonly used genomic
signatures to characterise composition information are tetranucleotide frequencies (136 canonical 4-
mers, also known as tetramers) (Alneberg et al., 2014; Kang, Li et al., 2019; Nissen et al., 2021;
Wang, Wang et al., 2019; Wu, Simmons et al., 2015; Wu, Tang et al., 2014). For each contig c, we
normalise the tetranucleotide frequencies using its total number of tetranucleotides to obtain the
normalised tetranucleotide frequency vector, tetra(c). We obtain the tetranucleotide composition
distance between contigs c and c′ as dtetra(c, c′) = distE

(
tetra(c), tetra(c′)

)
where distE is the Euclidean

distance function.

dtetra(c, c′) = distE
(
tetra(c), tetra(c′)

)
(5.1)

We use the same formula proposed by Wu et al. (Wu, Tang et al., 2014) to estimate how similar c
and c′ are (i.e., belonging to the same species) based on their composition, Scomp(c, c′) as shown in
equation 5.2.

Scomp(c, c′) =
Nintra

(
dtetra(c,c′)|µintra ,σ2

intra

)
Nintra

(
dtetra(c,c′)|µintra ,σ2

intra

)
+Ninter

(
dtetra(c,c′)|µinter ,σ2

inter

) (5.2)

Nintra and Ninter are Gaussian distributions with µintra, σintra, µinter and σinter set according to the
latest values of MaxBin 2.2.7 (Wu, Simmons et al., 2015) which have been calculated by analysing the
Euclidean distance between the tetranucleotide frequencies of pairs of sequences sampled from the
same genome (intra) and different genomes (inter). If the distance is lower between two sequences,
they are more similar, and are more likely to belong to the same genome.

We use the coverage information of the contigs as coverage carries important information about the
abundance of species and has been used in previous metagenomics binning studies (Albertsen et al.,
2013; Kang, Li et al., 2019; Nissen et al., 2021; Wang, Wang et al., 2019; Wu, Tang et al., 2014). Shotgun
sequencing has shown to follow the Lander-Waterman model (Lander and Waterman, 1988) and the
Poisson distribution has been used to obtain the sequencing coverage of nucleotides and applied in
metagenomics binning (Wu, Tang et al., 2014; Wu and Ye, 2011). Modifying the definition found in
Wu et al. (Wu, Tang et al., 2014), we estimate how similar c and c′ are in terms of their coverage values
in each sample, Scov(c, c′) as shown in equation 5.3.

Scov(c, c′) = min

(
∏M

n=1 Poisson
(
covn(c)|covn(c′)

)
, ∏M

n=1 Poisson
(
covn(c′)|covn(c)

))
(5.3)

Here covn(c) and covn(c′) refer to the coverage values of the contigs c and c′ respectively in the sample
n where M is the number of samples. Poisson is the Poisson probability mass function.
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Step 3b: Construct a Weighted Bipartite Graph and Find a Minimum-Weight Full Matching

In the previous steps, we have used single-copy marker genes to identify pairs of contigs that belong
to different species. Remind that contigs in different bins in BINS are expected to belong to different
species and contigs in C(gi) are also expected to belong to different species. However, there is no
measurement to measure how likely a contig c in C(gi) belongs to an existing bin B in BINS. Therefore,
we introduce a bipartite graph between C(gi) and BINS and propose a weight wc2B(c, B) between
a contig c in C(gi) and an existing bin B in BINS as shown in equation 5.4 (averaging over all the
contigs in bin B).

wc2B(c, B) = ∑c′∈B wc2c(c, c′)
|B| (5.4)

In equation 5.4, wc2c(c, c′) is the weight that measures how likely a pair of contigs c and c′ belong to
the same species and is computed using equation 5.5.

wc2c(c, c′) = −
(
log(Scomp(c, c′)) + log(Scov(c, c′))

)
(5.5)

In equation 5.5, Scomp(c, c′) and Scov(c, c′) are calculated according to equations 5.2 and 5.3 respectively.

Now we find a minimum-weight full matching (minimum-cost assignment) (Karp, 1980) for the above
bipartite graph between C(gi) and BINS where every contig c in C(gi) will get paired with exactly one
bin B in BINS. For this purpose, we use the minimum-weight full matching algorithm implemented
in the NetworkX python library which is based on the algorithm proposed by Karp (Karp, 1980) and
the time complexity is O(|C(gi)| × |BINS| × log(|BINS|)).

In the next step, we will see how we can assign the contigs to existing bins based on the minimum-
weight full matching we have obtained.

Step 3c: Assign Contigs to Existing Bins or Dynamically Adjust Bins

Previous studies have observed that contigs connected to each other in the assembly graph are more
likely to belong to the same taxonomic group (Barnum et al., 2018; Mallawaarachchi, Wickramarachchi
et al., 2020a). While wc2B(c, B) considers both composition and coverage information, the assembly
graph has not yet been incorporated into the binning process. Therefore, we introduce dgraph(c, B) to
measure how well contig c is connected to contigs in bin B within the assembly graph. Specifically,
dgraph(c, B) is defined as the average length of the shortest-path distances between contig c and all
the contigs in bin B in the assembly graph. Note that both wc2B(c, B) and dgraph(c, B) will be used to
assign contigs to existing bins or dynamically adjust the bins.

We define the thresholds wintra and winter as follows where M is the number of samples in the dataset.

wintra = −
(
log(pintra)

)
×M (5.6)

winter = −
(
log(pinter)

)
×M (5.7)

Each candidate pair (c, B) obtained from the minimum-weight full matching falls under one of the
following three cases as shown in Figure 5.4.

• Case 1: If the weight of the candidate pair wc2B(c, B) is less than or equal to wintra and the
average distance dgraph(c, B) is less than or equal to dlimit, then contig c will be assigned to bin B,
i.e., B← B ∪ {c} (e.g., contig 4 and Bin 1 in Figure 5.4).

• Case 2: If the weight of the candidate pair wc2B(c, B) is greater than winter and the average
distance dgraph(c, B) is greater than dlimit, then a new bin B′ is created and contig c is assigned to
that new bin, i.e., B′ = {c} and BINS← BINS ∪ {B′}. (e.g., contig 21 in Figure 5.4).

• Case 3: If wc2B(c, B) and dgraph(c, B) satisfy neither Case 1 nor Case 2, then contig c will not be
assigned to any bin (e.g., contig 14 in Figure 5.4).



Chapter 5. Binning Metagenomic Contigs using Composition, Coverage and Assembly Graphs 56

Figure 5.4: Cases 1, 2 and 3 in assigning contigs to existing bins or adjusting bins

The default values for parameters pintra, pinter, dlimit were chosen empirically and set to 0.1, 0.01 and 20
respectively. Now we iteratively perform Steps 3b and 3c to process all the contigs containing single-
copy marker genes. The remaining challenge is to bin the contigs which do not contain single-copy
marker genes which will be addressed in Step 4.

5.2.5 Step 4: Bin Remaining Contigs Using Label Propagation

After we bin the contigs with single-copy marker genes, each such contig receives a label corresponding
to its bin. Now we will propagate labels from these contigs to other unlabeled contigs within the same
connected component.

Step 4a: Propagate Labels Within Connected Components

MetaCoAG uses composition, coverage and distance information from the assembly graph to propag-
ate labels from labeled contigs to the unlabeled contigs located within the same connected components.
More specifically, for each unlabeled long contig c (at least 1,000 bp long because short contigs result
in unreliable composition and coverage information) directly connected or connected via short contigs
to a labeled contig c′, MetaCoAG computes a candidate propagation action (c′, c, d(c, c′), wc2B(c, B′))
where d(c, c′) is the shortest distance between c and c′ using only unlabeled vertices and wc2B(c, B′)
is computed according to equation 5.4 where B′ is the bin to which contig c′ is assigned. Given
two candidate propagation actions (a, b, d, w) and (a′, b′, d′, w′), (a, b, d, w) has a higher priority than
(a′, b′, d′, w′) if d < d′ or (w < w′ and d = d′). MetaCoAG iteratively selects the candidate propagation
action with the highest priority and executes the corresponding label propagation. If a contig to be
labeled contains single-copy marker genes, the relevant candidate propagation action is executed if
the single-copy marker genes of the contig are not present in the intended bin. We restrict the depth of
the search for labeled contigs in this step to 10 in order to speed up MetaCoAG.

Step 4b: Propagate Labels Across Different Components

Note that some components in the assembly graph may not have any labeled contigs and we need to
propagate labels from labeled bins to unlabeled contigs across components. Calculating pair-wise
weights wc2c(c, c′) for all the remaining contigs becomes time consuming. Hence, for each bin B we
create a representative contig c(B) which has a composition profile and a coverage profile calculated
by averaging the normalised tetranucleotide frequency vectors and coverage vectors of all the contigs
in bin B, respectively. These profiles will provide a better representation of the composition and
coverage of the bins. Then, for each unlabeled contig c, MetaCoAG identifies a bin B that minimises
wc2c(c, c(B)) which is calculated according to equation 5.5, and assigns contig c into that bin B. This
propagation is limited to long contigs (at least 1,000 bp long by default). If an unlabeled contig contains
single-copy marker genes, it is assigned to bin B that minimises wc2c(c, c(B)) if the single-copy marker
genes of the contig are not present in bin B. Then, Step 4a is performed again to further propagate
labels.

Step 4e: Postprocessing

In this step, we will make final adjustment on the current bins. Two bins B and B′ are mergeable if they
have no common marker genes and wc2c(c(B), c(B′)) (calculated by equation 5.5) is upper bounded
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by wintra (defined in Step 3c). Then, MetaCoAG creates a graph where vertices denote current bins
and edges between two vertices denote that the corresponding two bins are mergeable. Now we use
the implementation of python-igraph library to find maximal cliques (https://igraph.org/c/doc/
igraph-Cliques.html#igraph_maximal_cliques) in this graph and merge the bins found in each
maximal clique. After merging bins, we also remove the bins which contain less than one third (set
by default) of the single-copy marker genes. Finally, MetaCoAG outputs the bins along with their
corresponding contigs.

5.3 Experimental Setup

5.3.1 Datasets

Simulated Datasets

We evaluated the binning performance on the simulated simHC+ dataset (Wu, Tang et al., 2014) which
consists of 100 bacterial species. Paired-end MiSeq reads were simulated using InSilicoSeq (Gourlé
et al., 2018) with 300 bp mean read length and the predefined MiSeq error model.

CAMI2 Toy Human Microbiome Project Datasets

We used the simulated metagenome data from the toy Human Microbiome project of the second
CAMI challenge (Meyer, Fritz et al., 2022). Metagenomes were simulated from five different body
sites of the human host as follows.

1. Urogenital tract - referred as CAMI UG

2. Skin - referred as CAMI Skin

3. Oral cavity - referred as CAMI Oral

4. Gastrointestinal tract - referred as CAMI GI

5. Airways - referred as CAMI Airways

Real Datasets

We used the following real datasets to evaluate the binning performance on real-world metagenomic
data.

1. Pre-born infant gut metagenome, (Sharon et al., 2013) - referred as Sharon

2. Metagenomics of the Chronic Obstructive Pulmonary Disease (COPD) Lung Microbiome
(Cameron et al., 2016) - referred as COPD

3. Human metagenome sample from tongue dorsum of a participant from the Deep WGSHMP
clinical samples (Lloyd-Price et al., 2017) - referred as Deep HMP TD

Please refer to Appendix B for further details of all the datasets.

5.3.2 Tools Used

We used the popular metagenomic assembler metaSPAdes (Nurk et al., 2017) (from SPAdes ver-
sion 3.15.2 (Bankevich et al., 2012)) to assemble reads into contigs and obtain the assembly graphs.
The mean coverage of each contig in each sample was calculate using CoverM (available at ht-
tps://github.com/wwood/CoverM).

MetaCoAG was benchmarked against the binning tools MaxBin2 (version 2.2.7) (Wu, Simmons et al.,
2015) in its default settings, MetaBAT2 (version 2.12.1) (Kang, Li et al., 2019) with -m 1500 and Vamb
(version 3.0.1) (Nissen et al., 2021) in co-assembly mode (for a fair comparison with other tools) with
the parameter --minfasta 200000 as suggested by the authors. The commands used to run these
tools can be found in Appendix D.

The binning results were evaluated using the tools AMBER (Meyer, Hofmann et al., 2018) (version
2.0.2), CheckM (Parks et al., 2015) (version 1.1.3) and GTDB-Tk (Chaumeil et al., 2019) (version 1.5.0).

https://igraph.org/c/doc/igraph-Cliques.html#igraph_maximal_cliques
https://igraph.org/c/doc/igraph-Cliques.html#igraph_maximal_cliques
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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5.3.3 Evaluation Criteria

Since the ground truth species for the simHC+ dataset were available, we used Minimap2 (Li, 2018) to
map the contigs to the reference genomes and determine the ground truth. With this ground truth
annotation of contigs, we used AMBER (Meyer, Hofmann et al., 2018) to assess the binning results of
the simHC+ dataset. We set the recall as AMBER completeness and precision as AMBER purity and
calculated the F1-score as 2 ×(precision×recall)/(precision+recall) for each bin/species.

For all the datasets, we determined the completeness and contamination of the bins produced by
each tool using CheckM (Parks et al., 2015). We set the completeness as CheckM completeness
and purity as 1/(1 + CheckM contamination). To check the trade-off between completeness and
purity, we set the recall as completeness and precision as purity, and calculated the F1-score as 2
×(precision×recall)/(precision+recall) for each bin. Furthermore, we counted the number of high-
quality bins (bins which have >80% recall and >90% precision), medium-quality bins (bins which
have >50% recall and >80% precision) and low-quality bins (bins which are not considered as
high-quality or medium-quality).

To determine the species identified by the binning tools, we annotated all the high-quality bins of the
real metagenomic datasets produced from the three best-performing tools; MetaCoAG, MaxBin2 and
Vamb using GTDB-Tk (Chaumeil et al., 2019) up to the species level. The species were determined by
the classification string produced by GTDB-Tk.

5.4 Results and Discussion

5.4.1 Benchmarks using simHC+ Dataset

We first benchmarked MetaCoAG against two popular contig-binning tools, MaxBin2 (Wu, Simmons
et al., 2015) and MetaBAT2 (Kang, Li et al., 2019) on the simulated dataset simHC+ (Wu, Tang et al.,
2014) which consists of 100 bacterial genomes (please refer to Appendix C for further details of the
simHC+ dataset) 1. We evaluated the binning results of the simHC+ dataset produced by all the tools
using the two popular evaluation tools AMBER (Meyer, Hofmann et al., 2018) and CheckM (Parks
et al., 2015). AMBER assesses the quality of bins based on the ground truth annotations provided
and CheckM assesses the quality of bins based on sets of single-copy marker genes. We analysed the
purity, completeness and F1-score of the binning results calculated by AMBER (at the nucleotide level)
and CheckM. MetaCoAG has recovered bins with a better trade-off between purity and completeness
when compared to other binning tools (Figure 5.5 (a)) with an average purity of 91.07% and an average
completeness of 82.73% from AMBER and an average purity of 97.55% and an average completeness
of 87.17% from CheckM. This better trade-off is demonstrated from the best F1-score results produced
by MetaCoAG with a median F1-score of 95.69% from AMBER (Figure 5.5 (b)) and a median F1-score
of 98.48% from CheckM (Figure 5.5 (c)) when compared with other binning tools. Even though
MetaBAT2 has recorded the highest average purity (98.30% from AMBER and 100.0% from CheckM),
it has a very low average completeness (13.02% from AMBER and 29.59% from CheckM) because all
contigs shorter than 1,500bp (i.e., 60.49% of the contigs in the entire dataset) were discarded. Please
refer to Table 5.1 for the exact values of the AMBER and CheckM results of the simHC+ dataset. We
also used CheckM to count the number of high-, medium- and low-quality bins produced by all the
binning tools for the simHC+ dataset (Please refer to Table 5.3). MetaCoAG has recovered the highest
number of high-quality bins (69 bins) and the lowest number of low-quality bins (13 bins) for the
simHC+ dataset.

We further used AMBER to analyse the species recovered by each binning tool for the simHC+ dataset.
Out of the 100 species, MetaCoAG was able to recover more species than other tools (Appendix C),
thanks to its adaptable bin-breaking mechanism that allows to separate more species rather than
combining them together. We also analysed the F1-score of these recovered species, and observed that
MetaCoAG has recovered more species with high F1-score than the other binning tools (Please refer
to Appendix C for comparison of the F1-score of the species recovered by MaxBin2, MetaBAT2 and
MetaCoAG). Many existing binning tools assume that the oligonucleotide composition and coverage

1Please note that the recently published tool Vamb (Nissen et al., 2021) was not used to evaluate the simHC+ dataset as
the number of contigs was less than the number recommended by the authors (https://github.com/RasmussenLab/vamb#
recommended-workflow).

https://github.com/RasmussenLab/vamb#recommended-workflow
https://github.com/RasmussenLab/vamb#recommended-workflow
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Figure 5.5: AMBER and CheckM results of the bins of the simHC+ dataset. (a) Quality of bins in terms of
average completeness per bin vs. average purity per bin obtained from AMBER and CheckM. (b) F1-score
of the bins obtained from AMBER. (c) F1-score of the bins obtained from CheckM.

Table 5.1: AMBER and CheckM evaluation results for the simHC+ dataset

Evaluation criteria MaxBin
score (%)

MetaBAT2
score (%)

MetaCoAG
score (%)

Average purity per bin (AMBER) 90.36 98.30 91.07

Average purity per bin (CheckM) 97.25 100.0 97.55

Average completeness per bin (AMBER) 79.34 13.02 82.73

Average completeness per bin (CheckM) 77.51 29.59 87.17

F1-score per bin (AMBER) 84.50 23.00 86.70

F1-score per bin (CheckM) 80.64 37.25 89.44

Accuracy (AMBER) 77.07 14.38 84.46

Binned fraction (AMBER) 84.90 14.79 92.04

are conserved across the genome. Hence it is challenging for such tools to bin species with high
variance in oligonucleotide composition and/or coverage. Moreover, these tools face difficulties
when recovering species with low abundance due to the rare occurrence of species-specific signals. In
Figure 5.6, we visualise and compare the binning results of MaxBin2 and MetaCoAG 2 against the
ground truth for the following species, Pseudomonas putida and Arthrobacter arilaitensis. The species
Pseudomonas putida has a high variance in oligonucleotide composition (standard deviation > 0.015 for
the tetranucleotide composition of its contigs) and thus MaxBin2 has split this species into multiple
bins incorrectly (refer to Figure 5.6 (a)). The species Arthrobacter arilaitensis has a high variance in
genome coverage (standard deviation > 50× for the coverages of its contigs) and thus MaxBin2 has
mis-binned some high-coverage contigs into other species with high coverage (refer to Figure 5.6 (b)).
However, MetaCoAG has been able to recover these species with high F1-score values, e.g., improving
the F1 score for Pseudomonas putida from 59.78% to 99.56% and improving the F1-score for Arthrobacter
arilaitensis from 97.65% to 98.99%. Despite the high variance in oligonucleotide composition and
coverage, MetaCoAG has been able to recover these species accurately, thanks to the additional
connectivity information from the assembly graph.

Another challenge faced by the majority of the existing binning tools is the inability to accurately
separate contigs of species belonging to the same genus, where such species tend to have similar
oligonucleotide composition and appear in similar abundances. For example, the three species, S.
pneumoniae, S. thermophilus and S. suis from simHC+ belong to the Streptococcus genus, and they

2MetaBAT2 was not included in this comparison as it had not recovered the species Pseudomonas putida and Arthrobacter
arilaitensis.
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Figure 5.6: Visualization of the binning results from MaxBin2 and MetaCoAG for a species with (a) high
variance in oligonucleotide composition (standard deviation > 0.015) and (b) high variance in coverage
(standard deviation > 50×). Gray colour nodes denote contigs which were binned to bins other than the
ones specified in the figure.

have very similar oligonucleotide composition and coverage values (Refer to Figure 5.7 (a)) and
similar coverages (Streptococcus pneumoniae: 56×, Streptococcus thermophilus: 60× and Streptococcus
suis: 50×, please refer to Appendix C for further information). Not surprisingly, contigs from these
three species were incorrectly binned by MaxBin2 and even ignored by MataBAT2 because they share
similar composition and coverage profiles (Refer to Figure 5.7 (b)). On the contrary, MetaCoAG was
able to accurately bin most of the contigs from these three species because they naturally form three
subgraphs in the assembly graph (Refer to Figure 5.7 (b)), thus improving the F1-scores of Streptococcus
pneumoniae from 46.51% to 93.40%, Streptococcus thermophilus from 49.97% to 95.67% and Streptococcus
suis from 72.39% to 95.95%. Figure 5.7 (b) demonstrates that the use of assembly graph in MetaCoAG
can assist in the separation of species, despite the high similarity in oligonucleotide composition and
coverage of certain species.

5.4.2 Benchmarks using CAMI2 Toy Human Microbiome Project Datasets

We benchmarked MetaCoAG against MaxBin2 (Wu, Simmons et al., 2015), MetaBAT2 (Kang, Li et al.,
2019), and Vamb (Nissen et al., 2021) on five publicly available datasets from the toy Human Microbi-
ome Project dataset of the second Critical Assessment of Metagenomic Interpretation (CAMI) (Meyer,
Fritz et al., 2022) challenge (Please refer to Appendix B for further details of the CAMI datasets).
Multiple samples from each dataset were co-assembled together to obtain the final contigs for binning.
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Figure 5.7: Visualization of the tetranucleotide composition and binning results of three Streptococcus
genomes in the simHC+ dataset. (a) Tetranucleotide distributions of the three Streptococcus genomes; Strepto-
coccus pneumoniae (red) with 56× coverage, Streptococcus suis (yellow) with 60× coverage and Streptococcus
thermophilus (green) with 50× coverage. (b) Visualization of the binning results from MaxBin2 and Meta-
CoAG for three Streptococcus genomes. White colour nodes denote discarded contigs and gray colour nodes
denote contigs which were binned to bins other than the three Streptococcus genomes. MetaBAT2 was not
included as it had not recovered these three species.

We evaluated the binning results of the CAMI datasets using CheckM (Parks et al., 2015) and reported
the F1-score of the bins produced by all the binning tools. Figure 5.8 (a)-(e) shows that overall
MetaCoAG has achieved the best binning results among all the binning tools. The overall median
F1-scores averaging from all 5 CAMI datasets for MetaCoAG, MaxBin2, MetaBAT2 and Vamb are
86.77%, 75.41%, 1.57% and 33.30%, respectively. More specifically, MetaCoAG has recovered more
complete bins with higher purity when compared to other tools MetaCoAG produced the highest
numbers of high-quality and medium-quality bins combined together for all the CAMI datasets
(Please refer to Table 5.3). Note that only MaxBin2 outperforms MetaCoAG in terms of the number of
high-quality bins just for the GI dataset. This dataset had a low density in its assembly graph (Please
refer to Appendix B for density of the assembly graph) which prevented MetaCoAG from making full
use of the assembly graphs.

5.4.3 Benchmarks using real metagenomic datasets

We benchmarked MetaCoAG against MaxBin2 Wu, Simmons et al. (2015), MetaBAT2 Kang, Li et al.
(2019) and Vamb Nissen et al. (2021) on three real metagenomic datasets; Sharon Sharon et al. (2013),
COPD Cameron et al. (2016) and Deep HMP TD Lloyd-Price et al. (2017). Similar to the simHC+
dataset, we again use CheckM Parks et al. (2015) to evaluate the bins produced by all the binning
tools and identify high-quality bins. Fig. 5.9 shows that MetaCoAG has also achieved the best binning
result in terms of the median F1-score for the real datasets. For the Sharon dataset, MetaCoAG records
a median F1-score of 99.24% while the second-best tool (Vamb) has a median F1-score of 83.88%.
For the COPD dataset, MetaCoAG records a median F1-score of 75.68% while the second-best tool
(MaxBin2) has a median F1-score of 25.13%. For the Deep HMP TD dataset, MetaCoAG records a
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Figure 5.8: The F1-scores of the bins found in the CAMI datasets by all the binning tools.

median F1-score of 76.34% while the second-best tool (MaxBin2) has a median F1-score of 37.40%.
Furthermore, MetaCoAG has produced the highest number of high-quality bins for all the real datasets
(Please refer to Table 5.3 for the exact counts).

We used GTDB-Tk (Chaumeil et al., 2019) to annotate all the high-quality bins produced by MetaCoAG,
MaxBin2 and Vamb 3 for both datasets. Then we compared the taxonomic annotations (up to the
species level) with the analysis results reported by the authors of these datasets (Refer to Table 5.2).
Table 5.2 shows that MetaCoAG achieves the best consistency with the original analysis reported
by the authors. In the Sharon dataset, the five most abundant species reported according to the
authors (Sharon et al., 2013); Staphylococcus epidermidis, Enterococcus faecalis, Cutibacterium avidum,
Peptoniphilus lacydonensis and Staphylococcus aureus have been successfully identified by all the three
binning tools. However, Vamb missed Staphylococcus hominis, which is reported as a rare species in
the Sharon dataset (Sharon et al., 2013). Moreover, MetaCoAG is the only tool that is able to recover
Leuconostoc citreum, which is also identified as a rare species in the Sharon dataset (Sharon et al., 2013).

3MetaBAT2 results were not considered for GTDB-Tk annotations as the results had very low number of high-quality bins
compared to the other binning tools.
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Figure 5.9: The F1-scores of the bins found in the real datasets by all the binning tools.

These results denote the ability of MetaCoAG to recover rare species in real metagenomics samples
that are ignored by other binning tools.

In the COPD dataset, there is a larger discrepancy among MaxBin2, Vamb and MetaCoAG. Only two
species, Peptostreptococcus sp. and SR1 bacterium human oral taxon HOT-345, have been identified by all
the three binning tools. SR1 bacterium human oral taxon HOT-345 and Lachnospiraceae bacterium oral
taxon 096 have been added to NCBI taxonomy recently (Schoch et al., 2020) and hence are not found in
the original analysis (Cameron et al., 2016). Compared to MetaCoAG, MaxBin2 failed to identify three
species Prevotella pallens, Prevotella shahii and Prevotella histicola while Vamb only identified Prevotella
pallens under the genus Prevotella. Similarly, Vamb failed to identify two species, Capnocytophaga
gingivalis and Capnocytophaga leadbetteri, both of which are identified by MaxBin2 and MetaCoAG.
Moreover, the species Anaeroglobus micronuciformis only identified by MaxBin2 was not present in the
top 50 genera ranked by abundance in the original analysis (Cameron et al., 2016), which is likely
to be a false-positive. In the Deep HMP TD dataset, the species identified by MetaCoAG show best
consistency with the original analysis, while being the only tool to identify the species from the genus
Eubacterium. These results demonstrate that MetaCoAG has been able to recover more species correctly
with respect to the original analysis of these real datasets.

5.4.4 Implementation, Running Time and Memory Usage

Table 5.4 denotes the running times (wall time) and the peak memory used by all the binning tools.
All the binning tools were run on a Linux system with Ubuntu 18.04.1 LTS, 16 GB memory and Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz with 4 CPU cores. 8 threads were used for all the binning tools for
parallel execution.



Chapter 5. Binning Metagenomic Contigs using Composition, Coverage and Assembly Graphs 64

Table 5.2: High-quality species found from the GTDB-Tk annotations of MetaCoAG, MaxBin2 and Vamb for
the real metagenomic datasets.

Dataset Species MaxBin2 Vamb MetaCoAG Present in
original analysis

Sharon

Cutibacterium avidum 3 3 3 3

Enterococcus faecalis 3 3 3 3

Peptoniphilus lacydonensis 3 3 3 3

Staphylococcus aureus 3 3 3 3

Staphylococcus epidermidis 3 3 3 3

Staphylococcus hominis 3 7 3 3

Leuconostoc citreum 7 7 3 3

COPD*

Peptostreptococcus sp. 3 3 3 3

SR1 bacterium human oral taxon HOT-345 3 3 3 7†

Prevotella pallens 7 3 3 3

Haemophilus sputorum 7 3 3 3

Herbaspirillum huttiense 7 3 3 3

Capnocytophaga gingivalis 3 7 3 3

Capnocytophaga leadbetteri 3 7 3 3

Lancefieldella sp000564995 3 7 3 3

Actinomyces graevenitzii 3 7 7 3

Actinomyces oris 3 7 7 3

Anaeroglobus micronuciformis 3 7 7 7

Eubacterium sulci 7 7 3 3

Prevotella shahii 7 7 3 3

Prevotella histicola 7 7 3 3

Lachnospiraceae bacterium oral taxon 096 7 7 3 7†

Deep HMP TD*

Actinomyces graevenitzii 3 3 3 3

Saccharimonadaceae TM7x sp900557595 3 3 3 7†

Neisseria subflava_C 3 7 3 3

Prevotella pallens 3 7 3 3

Anaeroglobus micronuciformis 3 7 3 7

Actinomyces sp. ICM47 3 7 3 3

Lancefieldella sp000564995 3 7 7 7

Eubacterium_B sulci 7 7 3 3

We annotated all the high-quality bins of the real metagenomic datasets produced from MetaCoAG, MaxBin2 and Vamb
using GTDB-Tk up to the species level.
Then we determined whether these taxonomic groups are actually present in the original analysis.
The species were determined by the classification string produced by GTDB-Tk up to species level.
3 denotes that the species is present and 7 denotes that the species is absent in the result/analysis.
Green coloured items match the original analysis whereas the red coloured items do not match the original analysis.
*For the COPD nd Deep HMP TD datasets, the species were determined as present in the original analysis based on the
50 most abundant genera presented.
† These species were added to NCBI taxonomy in year 2020 (Schoch et al., 2020) which is after the relevant analyses.
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Table 5.3: The number of high-quality, medium-quality and low-quality bins produced by each binning tool
for all the datasets. The best values are highlighted in bold.

Dataset Tool Total number of
bins detected

Number of
high-quality bins

Number of
medium-quality bins

Number of
low-quality bins

simHC+

MaxBin2 95 59 11 25

MetaBAT2 32 4 4 24

MetaCoAG 90 69 8 13

CAMI UG

MaxBin2 98 49 17 32

MetaBAT2 202 5 12 185

Vamb 100 34 10 56

MetaCoAG 83 50 17 16

CAMI Skin

MaxBin2 176 42 30 104

MetaBAT2 240 0 5 235

Vamb 167 36 15 116

MetaCoAG 106 49 33 24

CAMI Oral

MaxBin2 137 54 24 59

MetaBAT2 152 1 7 144

Vamb 176 45 19 112

MetaCoAG 106 58 19 29

CAMI GI

MaxBin2 127 59 22 46

MetaBAT2 389 4 9 376

Vamb 156 44 14 98

MetaCoAG 113 57 28 28

CAMI Airways

MaxBin2 155 32 26 97

MetaBAT2 205 1 2 202

Vamb 173 20 14 139

MetaCoAG 96 33 29 34

Sharon

MaxBin2 14 6 2 6

MetaBAT2 24 2 2 20

Vamb 10 5 1 4

MetaCoAG 10 7 3 0

COPD

MaxBin2 156 9 24 123

MetaBAT2 76 0 2 74

Vamb 61 6 7 48

MetaCoAG 68 17 25 26

Deep HMP TD

MaxBin2 69 8 15 46

MetaBAT2 61 0 1 60

Vamb 29 2 3 13

MetaCoAG 27 8 9 10
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Table 5.4: Running time and memory usage of the different binning tools for all the datasets.

Dataset Tool Running time
(wall time)

Memory usage
(kbytes)

simHC+

MaxBin2 5m 37s 4,063, 345

MetaBAT2 12s 619,345

MetaCoAG 26m 34s 621,584

CAMI UG

MaxBin2 26m 04s 2,604,084

MetaBAT2 1m 51s 985,860

Vamb 2h 37m 32s 701,764

MetaCoAG 19m 24s 1,944,632

CAMI Skin

MaxBin2 1h 58m 56s 1,184,476

MetaBAT2 7m 21s 2,185,080

Vamb 8h 18m 42s 976,644

MetaCoAG 1h 01m 44s 5,291,572

CAMI Oral

MaxBin2 1h 11m 49s 1,130,420

MetaBAT2 3m 42s 1,585,200

Vamb 6h 31m 47s 891,608

MetaCoAG 43m 24s8 4,411,072

CAMI GI

MaxBin2 59m 53s 1,874,764

MetaBAT2 2m 53s 1,531,248

Vamb 3h 26m 43s 741,960

MetaCoAG 32m 16s 2,569,092

CAMI Airways

MaxBin2 1h 51m 35s 1,338,220

MetaBAT2 6m 28s 2,145,720

Vamb 10h 04m 16s 1,035,716

MetaCoAG 1h 03m 13s 6,476,888

Sharon

MaxBin2 1m 27s 384,264

MetaBAT2 9s 212,252

Vamb 34m 20s 607,708

MetaCoAG 7s 417,344

COPD

MaxBin2 1h 09m 17s 352,888

MetaBAT2 1m 31s 950,584

Vamb 6h 06m 54s 894,956

MetaCoAG 13m 50s 3,967,256

Deep HMP TD

MaxBin2 8m 33s 698,652

MetaBAT2 7s 473,924

Vamb 2h 56m 54s 743,728

MetaCoAG 10m 40s 1,282,096



67

Chapter 6

Conclusion and Future Work

In this thesis, we have studied how the assembly graph and its connectivity information can be
utilised to improve metagenomic contig-binning results. While existing binning tools face challenges
when binning short contigs, contigs shared between multiple species, contigs of species with high
intra-variance in composition and coverage and contigs of species belonging to the same genus, this
thesis has showed that the connectivity information among contigs in the assembly graph can be
used to accurately bin contigs in above scenarios and improve binning results. The following sections
summarise the conclusions for each of the problems presented in this thesis and discuss some future
directions which the methods can be extended to.

6.1 Refined Binning of Metagenomic Contigs using Assembly Graphs

Existing binning tools face problems when binning short sequences, sequences of low abundance
species and sequences of closely related species. Composition and abundance based binning tools
have been able to overcome these shortcomings up to a certain extent. In most cases, the assembly
process can produce a large number of short contigs having limited information about their nucleotide
composition and abundance. Most existing binning tools will discard such short sequences (e.g.,
shorter than 1,000 bp) due to their limited k-mer frequency information.

In Chapter 3, we proposed GraphBin, a new method to refine the binning results of existing binning
tools by using the information found in the assembly graph followed by label propagation. We
studied the assembly graphs constructed from both the de Bruijn graph and the overlap-layout-consensus
(more recent string graph) approaches, and how contigs are connected in them. As shown in previous
studies (Barnum et al., 2018), we observed that contigs connected to each other in the assembly graph
are most likely to belong to the same taxonomic group. We used the assembly graph, the binning
results of existing tools and a label propagation technique to correct mis-binned contigs and predict
the labels of discarded contigs. Finally, experimental results confirmed that our approach refined
the binning results by correcting mis-binned contigs and binning contigs which were discarded by
existing tools.

6.2 Overlapped Binning of Metagenomic Contigs using Assembly
Graphs

In Chapter 4, we presented a novel algorithm, GraphBin2, that incorporates the coverage information
into the assembly graph as an improvement of GraphBin (Mallawaarachchi, Wickramarachchi et al.,
2020a). While GraphBin uses only the topology of the assembly graph to refine and propagate labels,
GraphBin2 makes use of the coverage information on vertices to perform label propagation. Moreover,
in comparison to the label propagation algorithm used in GraphBin, GraphBin2 uses an improved
label propagation algorithm that takes into consideration the distance and coverage of neighbouring
contigs. Furthermore, GraphBin2 enables the detection of contigs that may belong to multiple species.

The performance of GraphBin2 was evaluated against its predecessor and three other contig-binning
tools on top of contigs obtained from short-reads assembled using metaSPAdes (Nurk et al., 2017)
and SGA (Simpson and Durbin, 2012) which represent the two assembly paradigms; de Bruijn graphs
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and overlap-layout-consensus (string graphs). The results showed that GraphBin2 achieves the best
binning performance in both simulated and real datasets. Furthermore, GraphBin2 shows the potential
to infer contigs shared by multiple species and we have experimentally shown that GraphBin2 could
be in principle applied to long-read assemblies.

6.3 Binning Metagenomic Contigs using Composition, Coverage
and Assembly Graphs

Metagenomic sequencing and de novo assembly, coupled with binning methods have facilitated the
characterization of different microbial communities. The majority of existing metagenomic contig-
binning tools do not make use of the valuable connectivity information found in assembly graphs
from which the contigs are derived. Moreover, existing tools do not make use of multiple single-copy
marker genes throughout the entire binning process. Furthermore, existing bin-refinement tools and
metabinners rely upon the bins produced by an existing binning tool and cannot dynamically adjust
the number of bins.

In Chapter 5, we have presented MetaCoAG, a tool for binning metagenomic contigs that makes use
of composition, coverage and assembly graphs simultaneously and does not rely on an initial binning
result. The use of connectivity information from the assembly graphs makes the binning process of
MetaCoAG robust against similar inter-species oligonucleotide composition and coverage (within
the same genus) as well as high variance of intra-species oligonucleotide composition and coverage.
Experimental results on both simulated and real datasets show that MetaCoAG achieves the best
binning results compared to state-of-the-art tools, especially in terms of bin quality.

6.4 Future Work

This thesis explores how the assembly graph can be incorporated in the process of binning meta-
genomic contigs and presents methods to obtain improved binning results. We showed that the
assembly graph contains valuable connectivity information among contigs that can be used in the
binning process and contigs connected to each other in the assembly graph are more likely to belong
to the same taxonomic group. We showed that the assembly graph can be used to recover short
contigs that are discarded by existing binning tools and determine contigs shared by multiple species.
Finally, we propose a stand-alone binning tool to bin metagenomic contigs using assembly graphs,
composition, coverage and single-copy marker genes. We showed that the usage of assembly graphs
has contributed to accurately bin challenging contigs such as those belonging to species of the same
genus and species with high intra-variance in composition and coverage. The findings in this thesis
suggest several future directions of research where the proposed methods can be extended.

6.4.1 Graph Representation Learning for Metagenomics Binning

The methods proposed in this thesis are based on combinatorial optimisation techniques. As new
machine learning techniques are developed and their applications are getting popular, it is worth
exploring if such techniques can be used to perform metagenomics binning based on assembly graphs.

Various machine learning techniques focusing on graphs have been used in many applications of
node clustering and classification as it is convenient to represent real-world data by graphs, especially
in biological networks (Chen, Wang et al., 2020). Graph representation learning methods try to learn
representations that encode structural information of the graph while preserving the intrinsic graph
properties (Chen, Wang et al., 2020; Hamilton, 2020). Once the learned graph representation is
obtained, various machine learning techniques can be applied to perform downstream tasks.

Reference-free metagenomics binning can be considered as a clustering task. Hence, we can make use
of graph learning techniques such as graph representation learning to obtain node embeddings of
the assembly graph and perform node clustering. We can model contigs connected together in the
assembly graph as homophily relations (that they should be in the same bin) and contigs containing
the same single-copy marker gene as heterophily constraints (that they should not be in the same bin),
learn the assembly graph with these constraints and perform constraint based clustering (Figure 6.1).
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This co-authored work was carried out as a collaboration with National University of Singapore and
is based on the paper H. Xue et al. (2022). RepBin: Constraint-based Graph Representation Learning for
Metagenomic Binning. W that has been accepted at the 36th AAAI Conference on Artificial Intelligence
(AAAI 22).

Figure 6.1: Traditional metagenomics binning and graph representation learning for metagenomics bin-
ning (Xue et al., 2022).

6.4.2 Improving Taxonomic Binning Pipelines

Recent studies on benchmarking taxonomic classification tools have identified that existing tools can
produce a large number of low-abundance false positive classifications for metagenomic datasets,
which can lower the precision of these results (Ye et al., 2019). Some tools provide certain confidence
parameters as a means of filtering results, but they do not provide any recommendations for using
them. Parameter settings can vary depending on the experimental design and even between different
classifiers, which can make it very difficult to use. These parameter changes can be very sensitive when
dealing with various metagenomic datasets containing different compositions of microorganisms and
affect downstream analysis results.

A recent study by Sun et al. (2021) suggests that different tools report different relative abundance
types; (1) relative sequence abundance which is the number of sequences assigned to a taxon relative
to the total number of sequences classified and (2) relative taxonomic abundance which is the number
of genomes of a given taxon relative to the total number of genomes identified in the sample. The
comparison of these different abundance types together can be misleading when analysing results of
metagenomic profiling studies.

We are currently working to improve taxonomic classification pipelines where we refine the search
space for a given metagenomics sample and try to annotate sequences as much as possible. This
work is carried out in collaboration with Prof. Liang Qiao’s group at Fudan University, China. A
manuscript is being prepared for submission at the moment.

6.4.3 Applications to Study Medical Data

Investigating the microbiome’s role in diseases such as Inflammatory Bowel Disease (IBD) can improve
the understanding of how microorganisms affect their hosts and develop efficient treatment methods.
Previous studies have shown that the gut microbes play an important role in IBD (Ni et al., 2017).
Studying the intestinal bacteria in healthy people and patients with IBD can identify what changes
have occurred in terms of microbial community composition and relative abundance of taxa (Ma et al.,
2021). In order to identify the intestinal bacteria present in healthy and patient samples, the binning
tools presented in this thesis can be incorporated into metagenomics analysis pipelines.

With the development of high-throughput sequencing technologies to sample at the time-scale,
longitudinal studies (Faust et al., 2015) have gained popularity in metagenomics (Coenen et al.,
2020; Faust et al., 2015). These studies analyse microbiome time-series data and record the temporal
variation of microbial communities in different environments (Coenen et al., 2020; Faust et al., 2015).
The binning tools proposed in this thesis can incorporate the different coverage values of sequences in
different samples and in turn can capture the changes in relative abundances of taxa.

https://arxiv.org/abs/2112.11696v1


70

Bibliography

Adams, J. (2008). ‘DNA sequencing technologies’. Nature Education, 1(1), p. 193. W (cited on p. 5).

Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K. L., Tyson, G. W. and Nielsen, P. H. (2013).
‘Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple
metagenomes’. Nature Biotechnology, 31(6), pp. 533–538. DOI: 10.1038/nbt.2579 (cited on pp. 9, 52,
54).

Alneberg, J., Bjarnason, B. S., Bruijn, I. de, Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J.,
Andersson, A. F. and Quince, C. (2014). ‘Binning metagenomic contigs by coverage and composition’.
Nature Methods, 11, pp. 1144–1146. W (cited on pp. 10, 12, 21, 38, 40, 41, 43, 44, 54).

Andreani, J., Verneau, J., Raoult, D., Levasseur, A. and La Scola, B. (2018). ‘Deciphering viral presences:
two novel partial giant viruses detected in marine metagenome and in a mine drainage metagenome’.
Virology Journal, 15(1), p. 66. DOI: 10.1186/s12985-018-0976-9 (cited on p. 2).

Baker, M. (2012). ‘De novo genome assembly: what every biologist should know’. Nature Methods, 9(4),
pp. 333–337. DOI: 10.1038/nmeth.1935 (cited on pp. 2, 6).

Bankevich, A. et al. (2012). ‘SPAdes: A New Genome Assembly Algorithm and Its Applications to
Single-Cell Sequencing’. Journal of Computational Biology, 19(5). PMID: 22506599, pp. 455–477. DOI:
10.1089/cmb.2012.0021 (cited on pp. 7, 20, 38, 57).

Barnum, T. P., Figueroa, I. A., Carlström, C. I., Lucas, L. N., Engelbrektson, A. L. and Coates, J. D.
(2018). ‘Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and
unexpected diversity in perchlorate-reducing communities’. The ISME Journal, 12(6), pp. 1568–1581.
DOI: 10.1038/s41396-018-0081-5 (cited on pp. 16, 32, 55, 67).

Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J. P. and
Lander, E. S. (2002). ‘ARACHNE: a whole-genome shotgun assembler’. Genome research, 12(1),
pp. 177–189 (cited on p. 6).

Berini, F., Casciello, C., Marcone, G. L. and Marinelli, F. (2017). ‘Metagenomics: novel enzymes from
non-culturable microbes’. FEMS Microbiology Letters, 364(21). DOI: 10.1093/femsle/fnx211 (cited
on p. 2).

Bohlin, J., Eldholm, V., Pettersson, J. H. O., Brynildsrud, O. and Snipen, L. (2017). ‘The nucleotide
composition of microbial genomes indicates differential patterns of selection on core and accessory
genomes’. BMC Genomics, 18(1), p. 151. DOI: 10.1186/s12864-017-3543-7 (cited on p. 12).

Bohlin, J., Skjerve, E. and Ussery, D. W. (2008). ‘Investigations of Oligonucleotide Usage Variance
Within and Between Prokaryotes’. PLOS Computational Biology, 4(4), pp. 1–9. DOI: 10.1371/journal.
pcbi.1000057 (cited on p. 12).

Bohlin, J., Snipen, L., Hardy, S. P., Kristoffersen, A. B., Lagesen, K., Dønsvik, T., Skjerve, E. and
Ussery, D. W. (2010). ‘Analysis of intra-genomic GC content homogeneity within prokaryotes’. BMC
Genomics, 11(1), p. 464. DOI: 10.1186/1471-2164-11-464 (cited on p. 12).

Bonfield, J. K., Smith, K. F. and Staden, R. (1995). ‘A new DNA sequence assembly program’. Nucleic
acids research, 23(24), pp. 4992–4999 (cited on p. 6).

Boulund, F., Berglund, F., Flach, C.-F., Bengtsson-Palme, J., Marathe, N. P., Larsson, D. J. and Kristians-
son, E. (2017). ‘Computational discovery and functional validation of novel fluoroquinolone resist-
ance genes in public metagenomic data sets’. BMC Genomics, 18(1), p. 682. DOI: 10.1186/s12864-
017-4064-0 (cited on p. 2).

https://www.nature.com/scitable/topicpage/dna-sequencing-technologies-690/
https://doi.org/10.1038/nbt.2579
https://doi.org/10.1038/nmeth.3103
https://doi.org/10.1186/s12985-018-0976-9
https://doi.org/10.1038/nmeth.1935
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/s41396-018-0081-5
https://doi.org/10.1093/femsle/fnx211
https://doi.org/10.1186/s12864-017-3543-7
https://doi.org/10.1371/journal.pcbi.1000057
https://doi.org/10.1371/journal.pcbi.1000057
https://doi.org/10.1186/1471-2164-11-464
https://doi.org/10.1186/s12864-017-4064-0
https://doi.org/10.1186/s12864-017-4064-0


Bibliography 71

Breitwieser, F. P., Lu, J. and Salzberg, S. L. (2017). ‘A review of methods and databases for metagenomic
classification and assembly’. Briefings in Bioinformatics, 20(4), pp. 1125–1136. DOI: 10.1093/bib/
bbx120 (cited on pp. 7, 11).

Burton, J. N., Liachko, I., Dunham, M. J. and Shendure, J. (2014). ‘Species-level deconvolution of
metagenome assemblies with Hi-C–based contact probability maps’. G3: Genes, Genomes, Genetics,
4(7), pp. 1339–1346 (cited on p. 12).

Cameron, S. J. S., Lewis, K. E., Huws, S. A., Lin, W., Hegarty, M. J., Lewis, P. D., Mur, L. A. J. and
Pachebat, J. A. (2016). ‘Metagenomic Sequencing of the Chronic Obstructive Pulmonary Disease
Upper Bronchial Tract Microbiome Reveals Functional Changes Associated with Disease Severity’.
PLOS ONE, 11(2), pp. 1–16. DOI: 10.1371/journal.pone.0149095 (cited on pp. 57, 61, 63).

Canard, B. and Sarfati, R. S. (1994). ‘DNA polymerase fluorescent substrates with reversible 3’-tags’.
Gene, 148(1), pp. 1–6 (cited on p. 5).

Chan, C.-K. K., Hsu, A. L., Halgamuge, S. K. and Tang, S.-L. (2008). ‘Binning sequences using very
sparse labels within a metagenome’. BMC bioinformatics, 9(1), pp. 1–17 (cited on p. 12).

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. and Parks, D. H. (2019). ‘GTDB-Tk: a toolkit to classify
genomes with the Genome Taxonomy Database’. Bioinformatics, 36(6), pp. 1925–1927. DOI: 10.1093/
bioinformatics/btz848 (cited on pp. 57, 58, 62).

Chen, F., Wang, Y.-C., Wang, B. and Kuo, C.-C. J. (2020). ‘Graph representation learning: a survey’.
APSIPA Transactions on Signal and Information Processing, 9, e15. DOI: 10.1017/ATSIP.2020.13 (cited
on p. 68).

Chen, K. and Pachter, L. (2018). ‘Bioinformatics for Whole-Genome Shotgun Sequencing of Microbial
Communities’. PLOS Computational Biology, 1(2). DOI: 10.1371/journal.pcbi.0010024 (cited on
p. 2).

Cleary, B., Brito, I. L., Huang, K., Gevers, D., Shea, T., Young, S. and Alm, E. J. (2015). ‘Detection of
low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning’. Nature
Biotechnology, 33, p. 1053. W (cited on p. 3).

Coenen, A. R., Hu, S. K., Luo, E., Muratore, D. and Weitz, J. S. (2020). ‘A Primer for Microbiome
Time-Series Analysis’. Frontiers in Genetics, 11. DOI: 10.3389/fgene.2020.00310 (cited on p. 69).

Davis, K. E., Sangwan, P. and Janssen, P. H. (2011). ‘Acidobacteria, Rubrobacteridae and Chloroflexi
are abundant among very slow-growing and mini-colony-forming soil bacteria’. Environmental
microbiology, 13(3), pp. 798–805 (cited on p. 2).

Deschavanne, P. J., Giron, A., Vilain, J., Fagot, G. and Fertil, B. (1999). ‘Genomic signature: characteriz-
ation and classification of species assessed by chaos game representation of sequences.’ Molecular
Biology and Evolution, 16(10), pp. 1391–1399. DOI: 10.1093/oxfordjournals.molbev.a026048 (cited
on p. 54).

Dick, G. J., Andersson, A. F., Baker, B. J., Simmons, S. L., Thomas, B. C., Yelton, A. P. and Banfield, J. F.
(2009). ‘Community-wide analysis of microbial genome sequence signatures’. Genome Biology, 10(8),
R85. DOI: 10.1186/gb-2009-10-8-r85 (cited on p. 9).

Dolz, R. (1994). ‘GCG: fragment assembly programs’. Methods Mol. Biol, 24, pp. 9–23 (cited on p. 6).

Dröge, J. and McHardy, A. C. (2012). ‘Taxonomic binning of metagenome samples generated by
next-generation sequencing technologies’. Briefings in Bioinformatics, 13(6), pp. 646–655. DOI: 10.
1093/bib/bbs031 (cited on p. 7).

Dupont, C. L., Rusch, D. B., Yooseph, S., Lombardo, M.-J., Richter, R. A., Valas, R., Novotny, M.,
Yee-Greenbaum, J., Selengut, J. D., Haft, D. H. et al. (2012). ‘Genomic insights to SAR86, an abundant
and uncultivated marine bacterial lineage’. The ISME journal, 6(6), pp. 1186–1199 (cited on pp. 9, 52).

Eddy, S. R. (2011). ‘Accelerated Profile HMM Searches’. PLOS Computational Biology, 7(10), pp. 1–16.
DOI: 10.1371/journal.pcbi.1002195 (cited on p. 52).

Faust, K., Lahti, L., Gonze, D., de Vos, W. M. and Raes, J. (2015). ‘Metagenomics meets time series
analysis: unraveling microbial community dynamics’. Current Opinion in Microbiology, 25. Environ-
mental microbiology • Extremophiles, pp. 56–66. DOI: https://doi.org/10.1016/j.mib.2015.
04.004 (cited on p. 69).

https://doi.org/10.1093/bib/bbx120
https://doi.org/10.1093/bib/bbx120
https://doi.org/10.1371/journal.pone.0149095
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1017/ATSIP.2020.13
https://doi.org/10.1371/journal.pcbi.0010024
https://doi.org/10.1038/nbt.3329
https://doi.org/10.3389/fgene.2020.00310
https://doi.org/10.1093/oxfordjournals.molbev.a026048
https://doi.org/10.1186/gb-2009-10-8-r85
https://doi.org/10.1093/bib/bbs031
https://doi.org/10.1093/bib/bbs031
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/https://doi.org/10.1016/j.mib.2015.04.004
https://doi.org/https://doi.org/10.1016/j.mib.2015.04.004


Bibliography 72

Flicek, P. and Birney, E. (2009). ‘Sense from sequence reads: methods for alignment and assembly’.
Nature methods, 6(11), S6–S12 (cited on p. 6).

Frank, J. A., Pan, Y., Tooming-Klunderud, A. et al. (2016). ‘Improved metagenome assemblies and
taxonomic binning using long-read circular consensus sequence data’. Scientific Reports, 6. Article,
p. 25373. W (cited on p. 3).

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. USA: W. H. Freeman & Co. ISBN: 0716710447 (cited on p. 37).

Garza, D. R. and Dutilh, B. E. (2015). ‘From cultured to uncultured genome sequences: metagenomics
and modeling microbial ecosystems’. Cellular and Molecular Life Sciences, 72(22), pp. 4287–4308. DOI:
10.1007/s00018-015-2004-1 (cited on pp. 1, 2).

Ghurye, J. S., Cepeda-Espinoza, V. and Pop, M. (2016). ‘Focus: microbiome: metagenomic assembly:
overview, challenges and applications’. The Yale journal of biology and medicine, 89(3), p. 353 (cited on
pp. 2, 7).

Giani, A. M., Gallo, G. R., Gianfranceschi, L. and Formenti, G. (2020). ‘Long walk to genomics:
History and current approaches to genome sequencing and assembly’. Computational and Structural
Biotechnology Journal, 18, pp. 9–19. DOI: https://doi.org/10.1016/j.csbj.2019.11.002 (cited on
pp. 5, 7).

Girotto, S., Pizzi, C. and Comin, M. (2016). ‘MetaProb: accurate metagenomic reads binning based on
probabilistic sequence signatures’. Bioinformatics, 32(17), pp. i567–i575. DOI: 10.1093/bioinformatics/
btw466 (cited on p. 3).

Gleeson, T. J. and Staden, R. (1991). ‘An X windows and UNIX implementation of our sequence
analysis package’. Bioinformatics, 7(3), pp. 398–398. DOI: 10.1093/bioinformatics/7.3.398 (cited
on p. 6).

Gourlé, H., Karlsson-Lindsjö, O., Hayer, J. and Bongcam-Rudloff, E. (2018). ‘Simulating Illumina meta-
genomic data with InSilicoSeq’. Bioinformatics, 35(3), pp. 521–522. DOI: 10.1093/bioinformatics/
bty630 (cited on pp. 19, 37, 57).

Green, P. (1999). ‘Documentation for phrap and cross_match’. http://bozeman.mbt.washington.edu/phrap.docs/phrap.html
(cited on p. 6).

Gryan, G. (1994). ‘Faster sequence assembly software for megabase shotgun assemblies’. In: Genome
Sequencing and Analysis Conference VI (cited on p. 6).

Haider, B., Ahn, T.-H., Bushnell, B., Chai, J., Copeland, A. and Pan, C. (2014). ‘ Omega: an Overlap-
graph de novo Assembler for Metagenomics ’. Bioinformatics, 30(19), pp. 2717–2722. DOI: 10.1093/
bioinformatics/btu395 (cited on p. 7).

Hamilton, W. L. (2020). ‘Graph Representation Learning’. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 14(3), pp. 1–159. DOI: 10.2200/S01045ED1V01Y202009AIM046 (cited on p. 68).

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. and Goodman, R. M. (1998). ‘Molecular biological
access to the chemistry of unknown soil microbes: a new frontier for natural products’. Chemistry &
biology, 5(10), R245–R249 (cited on p. 2).

He, X., McLean, J. S., Edlund, A., Yooseph, S., Hall, A. P., Liu, S.-Y., Dorrestein, P. C., Esquenazi, E.,
Hunter, R. C., Cheng, G. et al. (2015). ‘Cultivation of a human-associated TM7 phylotype reveals
a reduced genome and epibiotic parasitic lifestyle’. Proceedings of the National Academy of Sciences,
112(1), pp. 244–249 (cited on p. 2).

Herath, D., Tang, S.-L., Tandon, K., Ackland, D. and Halgamuge, S. K. (2017). ‘CoMet: a workflow
using contig coverage and composition for binning a metagenomic sample with high precision’.
BMC Bioinformatics, 18(Suppl 16), p. 571. DOI: 10.1186/s12859-017-1967-3 (cited on pp. 21, 34).

Hofer, U. (2018). ‘The majority is uncultured’. Nature Reviews Microbiology, 16(12), pp. 716–717. DOI:
10.1038/s41579-018-0097-x (cited on p. 1).

Hu, T., Chitnis, N., Monos, D. and Dinh, A. (2021). ‘Next-generation sequencing technologies: An
overview’. Human Immunology, 82(11). Next Generation Sequencing and its Application to Medical
Laboratory Immunology, pp. 801–811. DOI: https://doi.org/10.1016/j.humimm.2021.02.012
(cited on p. 5).

https://doi.org/10.1038/srep25373
https://doi.org/10.1007/s00018-015-2004-1
https://doi.org/https://doi.org/10.1016/j.csbj.2019.11.002
https://doi.org/10.1093/bioinformatics/btw466
https://doi.org/10.1093/bioinformatics/btw466
https://doi.org/10.1093/bioinformatics/7.3.398
https://doi.org/10.1093/bioinformatics/bty630
https://doi.org/10.1093/bioinformatics/bty630
https://doi.org/10.1093/bioinformatics/btu395
https://doi.org/10.1093/bioinformatics/btu395
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.1186/s12859-017-1967-3
https://doi.org/10.1038/s41579-018-0097-x
https://doi.org/https://doi.org/10.1016/j.humimm.2021.02.012


Bibliography 73

Huang, X. and Madan, A. (1999). ‘CAP3: A DNA sequence assembly program’. Genome research, 9(9),
pp. 868–877 (cited on p. 6).

Hugenholtz, P. and Tyson, G. W. (2008). ‘Metagenomics’. Nature, 455(7212), pp. 481–483. DOI: 10.1038/
455481a (cited on p. 2).

Hyman, E. D. (1988). ‘A new method of sequencing DNA’. Analytical Biochemistry, 174(2), pp. 423–436.
DOI: https://doi.org/10.1016/0003-2697(88)90041-3 (cited on p. 5).

Idury, R. M. and Waterman, M. S. (1995). ‘A new algorithm for DNA sequence assembly’. Journal of
computational biology, 2(2), pp. 291–306 (cited on p. 7).

Imelfort, M., Parks, D., Woodcroft, B. J., Dennis, P., Hugenholtz, P. and Tyson, G. W. (2014). ‘GroopM:
an automated tool for the recovery of population genomes from related metagenomes’. PeerJ, 2,
e603 (cited on p. 10).

Kang, D., Li, F., Kirton, E. S., Thomas, A., Egan, R. S., An, H. and Wang, Z. (2019). ‘MetaBAT 2:
an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome
assemblies’. PeerJ Preprints, 7, e27522v1. DOI: 10.7287/peerj.preprints.27522v1 (cited on pp. 10,
12, 16, 18, 21, 22, 32, 54, 57, 58, 60, 61).

Kang, D. D., Froula, J., Egan, R. and Wang, Z. (2015). ‘MetaBAT, an efficient tool for accurately
reconstructing single genomes from complex microbial communities’. PeerJ, 3, e1165. DOI: 10.7717/
peerj.1165 (cited on p. 5).

Karilin, S. and Burge, C. (1995). ‘Dinucleotide relative abundance extremes: a genomic signature’.
Trends in genetics, 11(7), pp. 283–290 (cited on p. 8).

Karlin, S. and Ladunga, I. (1994). ‘Comparisons of eukaryotic genomic sequences’. Proceedings of the
National Academy of Sciences, 91(26), pp. 12832–12836 (cited on p. 8).

Karp, R. M. (1980). ‘An algorithm to solve the m × n assignment problem in expected time O(mn log
n)’. Networks, 10(2), pp. 143–152. DOI: 10.1002/net.3230100205 (cited on p. 55).

Kececioglu, J. D. and Myers, E. W. (1995). ‘Combinatorial algorithms for DNA sequence assembly’.
Algorithmica, 13(1), p. 7. DOI: 10.1007/BF01188580 (cited on p. 6).

Kislyuk, A., Bhatnagar, S., Dushoff, J. and Weitz, J. S. (2009). ‘Unsupervised statistical clustering of
environmental shotgun sequences’. BMC Bioinformatics, 10(1), p. 316. DOI: 10.1186/1471-2105-10-
316 (cited on p. 9).

Kolmogorov, M., Bickhart, D. M. et al. (2020). ‘metaFlye: scalable long-read metagenome assembly
using repeat graphs’. Nature Methods, 17(11), pp. 1103–1110. DOI: 10.1038/s41592-020-00971-x
(cited on pp. 7, 32, 38, 52).

Kolmogorov, M., Yuan, J., Lin, Y. and Pevzner, P. A. (2019). ‘Assembly of long, error-prone reads using
repeat graphs’. Nature Biotechnology, 37(5), pp. 540–546 (cited on pp. 7, 38).

Köpke, B., Wilms, R., Engelen, B., Cypionka, H. and Sass, H. (2005). ‘Microbial diversity in coastal sub-
surface sediments: a cultivation approach using various electron acceptors and substrate gradients’.
Applied and environmental microbiology, 71(12), pp. 7819–7830 (cited on p. 2).

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H. and Phillippy, A. M. (2017). ‘Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation’.
Genome research, 27(5), pp. 722–736 (cited on p. 7).
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Appendix A

GraphBin Results
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Figure A.1: Binning results of MetaWatt with GraphBin for the datasets ES+metaSPAdes, ESC+metaSPAdes,
Sharon+metaSPAdes, CAMI_l+metaSPAdes, CAMI_m+metaSPAdes and CAMI_h+metaSPAdes. Each
graph denotes the precision, recall, F1-score and ARI values at the species level of the original tool compared
with the scores obtained after applying GraphBin. The dark blue bars denote the original tool scores and the
light orange bars denote the final scores of GraphBin.
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Figure A.2: Binning results of BusyBee Web with GraphBin for the datasets Sharon+metaSPAdes,
CAMI_l+metaSPAdes and CAMI_m+metaSPAdes. Each graph denotes the precision, recall, F1-score
and ARI values at the species level of the original tool compared with the scores obtained after applying
GraphBin. The dark blue bars denote the original tool scores and the light orange bars denote the final
scores of GraphBin. BusyBee Web was unable to bin the datasets ES+metaSPAdes and ESC+metaSPAdes
as there were not enough sequences that had the minimum contig length of 500 bp. CAMI_h+metaSPAdes
dataset could not be binned using BusyBee Web due to the restriction on input file size.
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Figure A.3: Binning results of MetaWatt with GraphBin for the datasets ES+MEGAHIT, ESC+MEGAHIT,
Sharon+MEGAHIT, CAMI_l+MEGAHIT, CAMI_m+MEGAHIT and CAMI_h+MEGAHIT. Each graph
denotes the precision, recall, F1-score and ARI values at the species level of the original tool compared with
the scores obtained after applying GraphBin. The dark blue bars denote the original tool scores and the light
orange bars denote the final scores of GraphBin.
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Figure A.4: Binning results of MaxBin2 with GraphBin for the datasets ES+metaSPAdes, ESC+metaSPAdes,
Sharon+metaSPAdes, CAMI_l+metaSPAdes, CAMI_m+metaSPAdes and CAMI_h+metaSPAdes. Each
graph denotes the precision, recall, F1-score and ARI values at the species level of the original tool compared
with the scores obtained after applying GraphBin. The dark blue bars denote the original tool scores and the
light orange bars denote the final scores of GraphBin.
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Figure A.5: Binning results of MaxBin2 with GraphBin for the datasets ES+SGA, ESC+SGA, Sharon+SGA,
CAMI_l+SGA, CAMI_m+SGA and CAMI_h+SGA. Each graph denotes the precision, recall, F1-score and
ARI values at the species level of the original tool compared with the scores obtained after applying
GraphBin. The dark blue bars denote the original tool scores and the light orange bars denote the final
scores of GraphBin.

Precision Recall F1-Score ARI0

20

40

60

80

100

Sc
or
es

(%
)

ES+SGA with MetaBAT2

(a)
Precision Recall F1-Score ARI0

20

40

60

80

100

Sc
or

es
(%

)

ESC+SGA with MetaBAT2

(b)
Precision Recall F1-Score ARI0

20

40

60

80

100

Sc
or
es
(%

)

Sharon+SGA with MetaBAT2
Original Tool Score
Final Gra hBin Score

(c)

Precision Recall F1-Score ARI0

20

40

60

80

100

Sc
or

es
(%

)

CAMI_l+SGA with MetaBAT2

(d)
Precision Recall F1-Score ARI0

20

40

60

80

100

Sc
or
es
(%

)

CAMI_m+SGA with MetaBAT2

(e)
Precision Recall F1-Score ARI0

20

40

60

80

100

Sc
or

es
(%

)

CAMI_h+SGA with MetaBAT2

(f)

Figure A.6: Binning results of MetaBAT2 with GraphBin for the datasets ES+SGA, ESC+SGA, Sharon+SGA,
CAMI_l+SGA, CAMI_m+SGA and CAMI_h+SGA. Each graph denotes the precision, recall, F1-score and
ARI values at the species level of the original tool compared with the scores obtained after applying
GraphBin. The dark blue bars denote the original tool scores and the light orange bars denote the final
scores of GraphBin.
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Figure A.7: Binning results of MetaBAT2 with GraphBin for the datasets ES+MEGAHIT, ESC+MEGAHIT,
Sharon+MEGAHIT, CAMI_l+MEGAHIT, CAMI_m+MEGAHIT and CAMI_h+MEGAHIT. Each graph
denotes the precision, recall, F1-score and ARI values at the species level of the original tool compared with
the scores obtained after applying GraphBin. The dark blue bars denote the original tool scores and the light
orange bars denote the final scores of GraphBin.
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Figure A.8: Binning results of SolidBin with GraphBin for the datasets ES+SGA, ESC+SGA, Sharon+SGA,
CAMI_l+SGA and CAMI_m+SGA. Each graph denotes the precision, recall, F1-score and ARI values at the
species level of the original tool compared with the scores obtained after applying GraphBin. The dark blue
bars denote the original tool scores and the light orange bars denote the final scores of GraphBin. SolidBin
did not complete binning the CAMI_h+SGA dataset after 72 hours.
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Figure A.9: Binning results of SolidBin with GraphBin for the datasets ES+MEGAHIT, ESC+MEGAHIT,
Sharon+MEGAHIT, CAMI_l+MEGAHIT and CAMI_m+MEGAHIT. Each graph denotes the precision, recall,
F1-score and ARI values at the species level of the original tool compared with the scores obtained after
applying GraphBin. The dark blue bars denote the original tool scores and the light orange bars denote the
final scores of GraphBin. CAMI_h+MEGAHIT dataset could not be binned using SolidBin due to insufficient
memory (576GB).
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Figure A.10: Binning results of BusyBee Web with GraphBin for the datasets ES+SGA, ESC+SGA,
Sharon+SGA, CAMI_l+SGA, CAMI_m+SGA and CAMI_h+SGA. Each graph denotes the precision, recall,
F1-score and ARI values at the species level of the original tool compared with the scores obtained after
applying GraphBin. The dark blue bars denote the original tool scores and the light orange bars denote the
final scores of GraphBin.
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Appendix B

Datasets

B.1 Datasets used in experiments of GraphBin

The data sets used for the experiments in GraphBin are as follows.

• ES+metaSPAdes - metaSPAdes assembly of the ES dataset

• ES+SGA - SGA assembly of the ES dataset

• ES+MEGAHIT - MEGAHIT assembly of the ES dataset

• ESC+metaSPAdes - metaSPAdes assembly of the ESC dataset

• ESC+SGA - SGA assembly of the ESC dataset

• ESC+MEGAHIT - MEGAHIT assembly of the ESC dataset

• Sharon+metaSPAdes - metaSPAdes assembly of the Sharon dataset

• Sharon+SGA - SGA assembly of the Sharon dataset

• Sharon+MEGAHIT - MEGAHIT assembly of the Sharon dataset

• CAMI_l+metaSPAdes - metaSPAdes assembly of the CAMI_l dataset

• CAMI_l+SGA - SGA assembly of the CAMI_l dataset

• CAMI_l+MEGAHIT - MEGAHIT assembly of the CAMI_l dataset

• CAMI_m+metaSPAdes - metaSPAdes assembly of the CAMI_m dataset

• CAMI_m+SGA - SGA assembly of the CAMI_m dataset

• CAMI_m+MEGAHIT - MEGAHIT assembly of the CAMI_m dataset

• CAMI_h+metaSPAdes - metaSPAdes assembly of the CAMI_h dataset

• CAMI_h+SGA - SGA assembly of the CAMI_h dataset

• CAMI_h+MEGAHIT - MEGAHIT assembly of the CAMI_h dataset

The details of the resulting data sets such as read length, assembly size, number of contigs, mean
contig length, median contig length, number of edges in the assembly graph and the number of
species identified can be found in Table B.1.

To keep the experiments simple and less time consuming, we removed all the contigs which were
shorter than 500 bp from the CAMI_m+metaSPAdes assembly and removed all the contigs which
were shorter than 1,000 bp from the CAMI_h+metaSPAdes assembly.
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B.2 Datasets used in experiments of GraphBin2

Table B.2: Information on the datasets used for experiments of GraphBin2

Dataset Assembler
Read

length
(bp)

Number
of paired
end reads

Total number
of non-isolated

contigs

Mean contig
length (bp)

Number of
species in
ground

truth

Sim-5G
metaSPAdes 300 2,000,000 516 51,723 5

SGA 300 2,000,000 18,192 1,675 5

Sim-10G
metaSPAdes 300 6,999,998 900 47,279 10

SGA 300 6,999,998 32,389 1,300 10

Sim-20G
metaSPAdes 300 15,000,001 1,404 48,021 20

SGA 300 15,000,001 72,791 873 20

Sharon-1
metaSPAdes 100 14,869,863 371 17,144 12

SGA 100 14,869,863 766 3,034 12

Sharon-All
metaSPAdes 100 135,493,567 2,730 7,689 12

SGA 100 135,493,567 20,942 1,547 12

50G-SR metaSPAdes 300 20,730,313 4,159 37,027 50

Lake Water metaSPAdes 300 4,627,091 96,880 1,020 57

100G-LR metaFlye 8,000 3,754,639 958 2,538 100

Note that the metaSPAdes assemblies were obtained using SPAdes version 3.13.0 with the default parameters.
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Table B.3: Species details of the simulated short-read datasets Sim-5, Sim-10 and Sim-20 used in the
experiments of GraphBin2

Dataset Species present Genome size Coverage Abundance

Sim-5G

Acetobacter pasteurianus 2.9 Mb 115× 28%

Aeromonas veronii 4.6 Mb 72× 28%

Amycolatopsis mediterranei 10.4 Mb 26× 22%

Arthrobacter arilaitensis 3.9 Mb 41× 13%

Azorhizobium caulinodans 5.4 Mb 20× 9%

Sim-10G

Acetobacter pasteurianus 2.9 Mb 357× 25%

Aeromonas veronii 4.6 Mb 225× 25%

Amycolatopsis mediterranei 10.4 Mb 80× 20%

Arthrobacter arilaitensis 3.9 Mb 128× 12%

Azorhizobium caulinodans 5.4 Mb 62× 8%

Bacillus cereus 5.3 Mb 58× 7%

Bdellovibrio bacteriovorus 3.8 Mb 11× 1%

Bifidobacterium adolescentis 2.1 Mb 20× 1%

Brachyspira intermedia 3.4 Mb 11× 1%

Campylobacter jejuni 1.7 Mb 21× 1%

Sim-20G

Acetobacter pasteurianus 2.9 Mb 705× 23%

Aeromonas veronii 4.6 Mb 445× 23%

Amycolatopsis mediterranei 10.4 Mb 157× 18%

Arthrobacter arilaitensis 3.9 Mb 253× 11%

Azorhizobium caulinodans 5.4 Mb 123× 7%

Bacillus cereus 5.3 Mb 114× 7%

Bdellovibrio bacteriovorus 3.8 Mb 22× 1%

Bifidobacterium adolescentis 2.1 Mb 40× 1%

Brachyspira intermedia 3.4 Mb 21× 1%

Campylobacter jejuni 1.7 Mb 41× 1%

Candidatus Pelagibacter ubique 1.3 Mb 54× 1%

Chlamydia trachomatis 1.1 Mb 64× 1%

Clostridium acetobutylicum 4.0 Mb 18× 1%

Corynebacterium diphtheriae 2.5 Mb 28× 1%

Cyanobacterium UCYN 1.5 Mb 47× 1%

Desulfovibrio vulgaris 3.6 Mb 20× 1%

Ehrlichia ruminantium 1.5 Mb 47× 1%

Enterococcus faecium 3.0 Mb 24× 1%

Erysipelothrix rhusiopathiae 1.8 Mb 39× 1%

Escherichia coli 5.0 Mb 14× 1%
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Table B.4: Species details of the 50G-SR dataset used in the experiments of GraphBin2

Species present Genome size Coverage Abundance

Acetobacter pasteurianus 2.9 Mb 773× 4%

Aeromonas veronii 4.6 Mb 493× 3%

Amycolatopsis mediterranei 10.4 Mb 175× 2%

Arthrobacter arilaitensis 3.9 Mb 281× 2%

Azorhizobium caulinodans 5.4 Mb 136× 2%

Bacillus cereus 5.3 Mb 126× 2%

Bacillus thuringiensis 5.4 Mb 35× 2%

Bdellovibrio bacteriovorus 3.8 Mb 25× 2%

Bifidobacterium adolescentis 2.1 Mb 44× 2%

Bifidobacterium animalis 2.0 Mb 48× 2%

Brachyspira intermedia 3.4 Mb 23× 2%

Campylobacter jejuni 1.7 Mb 47× 2%

Candidatus Pelagibacter ubique 1.3 Mb 59× 2%

Candidatus Phytoplasma mali 0.6 Mb 129× 2%

Candidatus Sulcia muelleri 0.3 Mb 279× 2%

Chlamydia psittaci 1.2 Mb 66× 2%

Chlamydia trachomatis 1.1 Mb 74× 2%

Clostridium acetobutylicum 4.0 Mb 20× 2%

Clostridium botulinum 2.8 Mb 28× 2%

Clostridium tetani 2.8 Mb 28× 2%

Clostridium thermocellum 3.9 Mb 20× 2%

Corynebacterium diphtheriae 2.5 Mb 31× 2%

Corynebacterium pseudotuberculosis 2.4 Mb 33× 2%

Corynebacterium ulcerans 2.5 Mb 31× 2%

Cyanobacterium UCYN 1.5 Mb 54× 2%

Cyanothece sp 6.2 Mb 13× 2%

Desulfovibrio vulgaris 3.6 Mb 22× 2%

Ehrlichia ruminantium 1.5 Mb 52× 2%

Enterococcus faecium 3.0 Mb 26× 2%

Erysipelothrix rhusiopathiae 1.8 Mb 43× 2%

Escherichia coli 5.0 Mb 16× 2%

Continued to next page ...
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Species present Genome size Coverage Abundance

Fervidicoccus fontis 1.3 Mb 59× 2%

Fibrobacter succinogenes 3.9 Mb 20× 2%

Flavobacterium branchiophilum 3.6 Mb 22× 2%

Francisella novicida 1.9 Mb 41× 2%

Francisella tularensis 1.9 Mb 41× 2%

Fusobacterium nucleatum 2.2 Mb 36× 2%

Gardnerella vaginalis 1.8 Mb 45× 2%

Granulicella tundricola 4.4 Mb 18× 2%

Haemophilus influenzae 1.9 Mb 41× 2%

Haemophilus parainfluenzae 2.1 Mb 37× 2%

Haemophilus somnus 2.3 Mb 34× 2%

Halobacterium sp. NRC-1 2.0 Mb 38× 2%

Halothiobacillus neapolitanus 2.6 Mb 30× 2%

Helicobacter pylori 1.6 Mb 49× 2%

Hyphomicrobium sp. MC1 4.9 Mb 16× 2%

Ignavibacterium album 3.7 Mb 21× 2%

Klebsiella oxytoc 6.1 Mb 13× 2%

Krokinobacter sp 3.4 Mb 23× 2%

Lactobacillus brevis 2.3 Mb 34× 2%
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B.3 Datasets used in experiments of MetaCoAG

Table B.5: Samples used for the real datasets in experiments of MetaCoAG

Dataset BioProject number NCBI accession numbers of
the samples (runs) used

Sharon PRJNA60717

SRR492197, SRR492196, SRR492195, SRR492194,
SRR492193, SRR492192, SRR492191, SRR492190,
SRR492189, SRR492188, SRR492187, SRR492186,
SRR492185, SRR492184, SRR492183, SRR492182,

SRR492066, SRR492065

COPD PRJEB9034

ERR970477, ERR970476, ERR970475, ERR970474,
ERR970473, ERR970472, ERR970471, ERR970470,
ERR970407, ERR970406, ERR970405, ERR970404
ERR970403, ERR970402, ERR970401, ERR970400,

ERR970399, ERR970398

Deep HMP TD PRJNA48479 SRR1031078, SRR1031179, SRR1031181, SRR1031229,
SRR1031267, SRR1031290, SRR1031684, SRR1031924

Table B.6: Information of the datasets used in experiments of MetaCoAG

Dataset
No.
of

samples

Read
length
(bp)

Assembly
size
(Mb)

Total
no. of

assembled
contigs

No. of
contigs
longer
than

1,000 bp

No. of
edges
in the

assembly
graph

Density†

of the
assembly

graph

N50
(bp)

simHC+ 1 301 314.23 15,729 6,706 31,199 1.984 154,030

CAMI UG 9 150 336.69 192,679 49,927 40,861 0.212 8,081

CAMI Skin 10 150 639.91 600,508 139,217 51,139 0.085 1,965

CAMI Oral 10 150 517.35 493,149 96,079 87,910 0.178 2,405

CAMI GI 10 150 507.09 255,722 75,913 39,240 0.153 9,319

CAMI Airways 10 150 664.49 729,063 142,477 49,531 0.067 1,506

Sharon 18 100 45.06 37,164 7,067 20,328 0.547 5,609

COPD 18 151 343.52 452,600 67,753 73,519 0.162 1,042

Deep HMP TD 8 101 158.01 227,635 28,164 86,250 0.379 1,123

Note that the assemblies were obtained using SPAdes version 3.15.2 with -k 21,33,55,77,99,127.
†Density of the graph is calculated as (the number of edges) / (the number of nodes).
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Appendix C

simHC+ Dataset

C.1 Binning results of simHC+ Dataset

Table C.1: Information about the recovered species for the simHC+ dataset. “-" represents that the species
was not recovered by the binning tool.

Species NCBI accession
number

Relative
Abaundance

(%)

Coverage
(×)

MaxBin2
F1-score

(%)

MetaBAT2
F1-score

(%)

MetaCoAG
F1-score

(%)

Acetobacter pasteurianus AP011170.1 2.30 1533 96.92 - 98.85

Aeromonas veronii NC_015424.1 1.90 979 96.52 22.16 97.18

Amycolatopsis mediterranei CP003729.1 1.30 348 97.21 63.99 97.33

Arthrobacter arilaitensis NC_014550.1 1.20 557 97.65 - 98.99

Azorhizobium caulinodans NC_009937.1 1.20 269 85.55 67.81 85.65

Bacillus cereus NC_011658.1 1.10 251 94.33 - 88.56

Bacillus thuringiensis NC_014171.1 1.10 69 47.56 - -

Bdellovibrio bacteriovorus NC_005363.1 1.10 49 99.81 99.95 99.83

Bifidobacterium adolescentis NC_008618.1 1.10 88 98.40 - 96.52

Bifidobacterium animalis CP001892.1 1.10 95 94.58 46.89 92.23

Brachyspira intermedia CP002874.1 1.10 46 99.41 - 99.90

Campylobacter jejuni NC_002163.1 1.10 94 99.88 - 99.88

Candidatus Pelagibacter ubique NC_007205.1 1.10 117 99.17 - 99.31

Candidatus Phytoplasma mali NC_011047.1 1.10 255 93.69 - 95.25

Candidatus Sulcia muelleri NC_013123.1 1.10 554 88.65 - 91.46

Chlamydia trachomatis CP002054.1 1.10 147 95.25 - 97.68

Chlamydophila psittaci CP002807.1 1.10 131 98.49 74.33 84.43

Clostridium acetobutylicum CP002118.1 1.10 39 - 64.09 65.26

Clostridium botulinum NC_015425.1 1.10 55 - - 84.74

Clostridium tetani NC_004557.1 1.10 55 - - 90.00

Clostridium thermocellum NC_009012.1 1.10 40 - - 96.04

Corynebacterium diphtheriae NC_016788.1 1.10 62 65.76 43.14 55.56

Corynebacterium pseudotuberculosis NC_017462.1 1.10 66 92.29 - 93.23

Corynebacterium ulcerans CP002790.1 1.10 61 86.39 - 54.43

Continued to next page ...
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Species NCBI accession
number

Relative
Abaundance

(%)

Coverage
(×)

MaxBin2
F1-score

(%)

MetaBAT2
F1-score

(%)

MetaCoAG
F1-score

(%)

Cyanobacterium UCYN NC_013771.1 1.10 106 96.72 61.16 85.86

Cyanothece sp NC_014501.1 1.10 25 99.77 - 92.77

Desulfovibrio vulgaris NC_002937.3 1.10 25 99.81 33.14 99.75

Ehrlichia ruminantium NC_006831.1 1.10 102 96.90 - 98.38

Enterococcus faecium CP003351.1 1.10 52 95.85 - 97.81

Erysipelothrix rhusiopathiae NC_015601.1 1.00 86 98.17 - 86.43

Escherichia coli NC_011415.1 1.00 31 - - -

Fervidicoccus fontis NC_017461.1 1.00 116 99.63 80.62 -

Fibrobacter succinogenes CP002158.1 1.00 40 99.93 51.60 75.97

Flavobacterium branchiophilum NC_016001.1 1.00 43 98.24 - 99.20

Francisella novicida NC_008601.1 1.00 80 62.68 - 55.32

Francisella tularensis NC_009749.1 1.00 81 24.67 - -

Fusobacterium nucleatum NC_003454.1 1.00 71 98.24 - 99.05

Gardnerella vaginalis CP002725.1 1.00 89 96.98 54.71 98.36

Granulicella tundricola NC_015064.1 1.00 36 98.52 24.17 98.59

Haemophilus influenzae NC_009567.1 1.00 81 - - 97.37

Haemophilus parainfluenzae FQ312002.1 1.00 74 - - 95.05

Haemophilus somnus NC_010519.1 1.00 68 - - 97.87

Halobacterium sp AE004437.1 1.00 76 98.47 - -

Halothiobacillus neapolitanus NC_013422.1 1.00 59 99.51 - 99.36

Helicobacter pylori CP001680.1 1.00 98 99.78 - 99.82

Hyphomicrobium sp NC_015717.1 1.00 32 90.25 72.49 90.49

Ignavibacterium album NC_017464.1 1.00 42 99.43 27.36 99.04

Klebsiella oxytoca NC_016612.1 1.00 26 52.76 - 80.72

Krokinobacter sp NC_015496.1 1.00 45 99.43 60.11 99.45

Lactobacillus brevis NC_008497.1 1.00 67 79.75 - 98.26

Lactobacillus casei CP002618.1 1.00 50 93.29 - 98.91

Lactobacillus delbrueckii NC_008054.1 1.00 82 97.31 - 97.27

Lawsonia intracellularis NC_008011.1 1.00 105 75.83 98.17 73.93

Legionella pneumophila NC_014125.1 1.00 44 96.27 70.13 95.55

Metallosphaera cuprina NC_015435.1 0.90 83 99.63 65.17 -

Methanocorpusculum labreanum NC_008942.1 0.90 85 99.61 - -

Methanosarcina acetivorans AE010299.1 0.90 27 74.10 - -

Methanosarcina barkeri NC_007355.1 0.90 32 56.89 - -

Micrococcus luteus NC_012803.1 0.90 61 85.81 - 84.35

Mycobacterium bovis CP002095.1 0.90 35 - - 96.85

Mycobacterium sp NC_008146.1 0.90 27 42.07 - 86.88

Mycoplasma gallisepticum CP003512.1 0.90 157 97.28 - 97.77

Mycoplasma hyorhinis CP002669.1 0.90 185 97.81 - 99.39

Continued to next page ...
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Species NCBI accession
number

Relative
Abaundance

(%)

Coverage
(×)

MaxBin2
F1-score

(%)

MetaBAT2
F1-score

(%)

MetaCoAG
F1-score

(%)

Neisseria meningitidis CP001561.1 0.90 68 97.51 - 97.13

Nitrosococcus watsonii NC_014315.1 0.90 46 99.56 29.08 99.33

Nitrosomonas sp NC_015222.1 0.90 48 93.71 - 92.12

Nocardia farcinica NC_006361.1 0.90 26 42.18 31.56 69.90

Odoribacter splanchnicus NC_015160.1 0.90 35 96.13 - 99.05

Paenibacillus mucilaginosus NC_017672.1 0.90 14 88.49 13.08 93.45

Paenibacillus sp NC_013406.1 0.90 17 96.00 58.24 93.77

Photobacterium profundum NC_006370.1 0.90 30 94.56 - 95.72

Prochlorococcus marinus NC_009091.1 0.90 75 94.81 - 98.81

Pseudogulbenkiania sp NC_016002.1 0.90 28 97.82 - 98.23

Pseudomonas putida CP002290.1 0.90 21 59.78 - 99.56

Rhizobium leguminosarum NC_008380.1 0.90 24 93.22 35.11 94.09

Rhodococcus jostii NC_008268.1 0.90 16 - - 92.09

Rickettsia prowazekii CP003391.1 0.90 111 95.64 - 94.92

Rickettsia rickettsii NC_016909.1 0.90 97 - - -

Rickettsia slovaca NC_016639.1 0.90 96 - - 67.69

Ruegeria sp NC_008044.1 0.90 38 97.11 62.75 97.11

Salmonella enterica NC_011083.1 0.90 25 66.15 - 76.74

Sebaldella termitidis NC_013517.1 0.90 28 99.16 39.46 99.40

Shewanella sp NC_008322.1 0.90 26 99.21 - 99.25

Shigella flexneri NC_004741.1 0.90 27 73.77 - 78.92

Sodalis glossinidius NC_007712.1 0.90 29 - - 75.67

Staphylococcus aureus CP001844.2 0.90 44 99.29 - 99.29

Streptococcus pneumoniae NC_010582.1 0.90 56 46.51 - 93.40

Streptococcus pyogenes NC_004606.1 0.90 65 98.55 - 97.30

Streptococcus suis CP002570.1 0.90 60 72.39 - 95.95

Streptococcus thermophilus NC_008532.1 0.90 50 49.97 - 95.67

Streptomyces scabiei NC_013929.1 0.90 9 66.74 - 84.41

Symbiobacterium thermophilum NC_006177.1 0.90 26 98.36 - 98.63

Thermoanaerobacter brockii NC_014964.1 0.90 39 - - -

Thermoanaerobacter sp NC_014538.1 0.90 38 62.12 - 54.04

Thermococcus sibiricus NC_012883.1 0.80 50 99.00 95.95 -

Variovorax paradoxus NC_012792.1 0.80 82 98.44 99.48 -

Weeksella virosa CP002455.1 0.80 41 98.53 - 98.86

Wolbachia sp NC_012416.1 0.80 64 63.15 - 61.90

Xanthobacter autotrophicus NC_009720.1 0.70 17 90.11 - 90.35

Yersinia pestis NC_010159.1 0.40 20 59.47 - 91.93
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Appendix D

Commands

D.1 Assembly Tools

metaSPAdes

spades --meta -1 reads_1.fastq -2 reads_2.fastq -o /path/output_folder -t 20

spades --meta -1 reads_1.fastq -2 reads_2.fastq -k 21,33,55,77,99,127
-o /path/output_folder -t 20

SGA

sga preprocess -o reads.fastq --pe-mode 1 reads_1.fastq reads_2.fastq

sga index -a ropebwt -t 16 --no-reverse reads.fastq

sga correct -k 41 --learn -t 16 -o reads.k41.fastq reads.fastq

sga index -a ropebwt -t 16 reads.k41.fastq

sga filter -x 2 -t 16 reads.k41.fastq

sga fm-merge -m 45 -t 16 reads.k41.filter.pass.fa

sga index -t 16 reads.k41.filter.pass.merged.fa

sga overlap -m 55 -t 16 reads.k41.filter.pass.merged.fa

sga assemble -m 95 reads.k41.filter.pass.merged.asqg.gz

MEGAHIT

megahit -1 reads_1.fastq -2 reads_2.fastq -o /path/output_folder -t 56

megahit_toolkit contig2fastg 141 final.contigs.fa > final.fastg

metaFlye

flye --meta --pacbio-raw reads.fastq -t 56 -g 500m -o /path/output_folder

D.2 Binning Tools

MetaWatt

java -jar MetaWatt-3.5.3/dist/MetaWatt-3.5.3.jar --run /path/input_folder
--threads 8 --skip-database-update

MaxBin2

perl MaxBin-2.2.5/run_MaxBin.pl -contig contigs.fasta -abund abundance.abund
-thread 8 -out /path/output_folder
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Note: abundance.abund is a tab separated file with contig ID and the coverage for each contig in
the assembly. metaSPAdes provides the coverage of each contig in the contig identifier of the final
assembly. We can directly extract these values to create the abundance.abund file. However, no such
information is provided for contigs produced by SGA. Hence, reads should be mapped back to contigs
in order to determine the coverage of SGA contigs.

MetaBAT2

jgi_summarize_bam_contig_depths --outputDepth depth.txt *.bam

metabat2 -i contigs.fasta -a depth.txt -m 1500 -t 8 -o /path/output_folder/bin

SolidBin

python scripts/gen_kmer.py contigs.fasta 1000 4

sh gen_cov.sh

python SolidBin.py --contig_file contigs.fasta --composition_profiles kmer_4.csv
--coverage_profiles cov_inputtableR.tsv --output /path/output_folder/result.tsv
--log /path/output_folder/log.txt --use_sfs

BusyBee Web

The default parameters provided by the BusyBee Web application were used to bin the contigs of all
the data sets. Moreover, BusyBee Web has restrictions on the input file size where the maximum file
size for the contigs file allowed is 200MB.

CONCOCT

cut_up_fasta.py contigs.fasta -c 10000 -o 0 --merge_last -b
contigs_10K.bed > contigs_10K.fa

concoct_coverage_table.py contigs_10K.bed aln-pe.sorted.bam > coverage_table.tsv

concoct --composition_file contigs_10K.fa --coverage_file coverage_table.tsv
-b /path/output_folder -t 8

merge_cutup_clustering.py /path/output_folder/clustering_gt1000.csv >
/path/output_folder/clustering_merged.csv

extract_fasta_bins.py contigs.fasta /path/output_folder/clustering_merged.csv
--output_path /path/output_folder/fasta_bins

Vamb (Co-assembly mode)

minimap2 -d catalogue.mmi contigs.fasta

minimap2 -t 8 -N 50 -ax sr catalogue.mmi reads_1.fastq reads_2.fastq | samtools view
-F 3584 -b --threads 8 > reads.bam

vamb --outdir /path/output_folder --fasta contigs.fasta --bamfiles *.bam
--minfasta 200000

MetaCoAG

./MetaCoAG --assembler spades --contigs contigs.fasta
--graph assembly_graph_with_scaffolds.gfa --paths contigs.paths
--abundance abundance.tsv --output /path/output_folder
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D.3 Bin Refinement Tools

GraphBin

metaSPAdes version

python graphbin.py --assembler spades --graph assembly_graph_with_scaffolds.gfa
--paths contigs.paths --binned binning_result.csv
--output /path/output_folder

SGA version

python graphbin.py --assembler sga --graph default-graph.asqg
--binned binning_result.csv --output /path/output_folder

MEGAHIT version

python graphbin.py --assembler megahit --graph final.gfa
--binned binning_result.csv --output /path/output_folder

GraphBin2

metaSPAdes version

python graphbin2.py --assembler spades --graph assembly_graph_with_scaffolds.gfa
--contigs contigs.fasta --paths contigs.paths
--abundance abundance.abund --binned binning_result.csv
--output /path/output_folder

SGA version

python graphbin2.py --assembler sga --graph default-graph.asqg
--contigs contigs.fasta --abundance abundance.abund
--binned binning_result.csv --output /path/output_folder

Flye version

python graphbin2.py --assembler flye --contigs edges.fasta
--abundance abundance.abund --graph assembly_graph.gfa
--binned binning_result.csv --output /path/output_folder
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