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Abstract

This thesis advances Active Noise Control (ANC) over three-dimensional (3D)

space using feasible loudspeaker and microphone array systems. By definition,

ANC reduces unwanted acoustic noise by generating an anti-noise signal(s) from

secondary loudspeakers. The concept of spatial ANC aims to reduce unwanted

acoustic noise over a continuous 3D region, by utilizing multiple microphones and

multiple secondary loudspeakers to create a large-sized quiet zone for listeners in

three-dimensional space. However, existing spatial ANC techniques are usually

impractical and difficult to implement due to their strict hardware requirements

and high computation complexity. Therefore, this thesis explores various aspects

of spatial ANC, seeking algorithms and techniques to promote the reliability and

feasibility of ANC over space in real-life applications.

The spherical harmonic analysis technique is introduced as the basis of conven-

tional spatial ANC systems. This technique provides an accurate representation

of a given spatial sound field using higher-order microphone (spherical microphone

array) recordings. Hence, the residual noise field in a spatial ANC system can be

effectively captured spatially by applying the spherical harmonic technique. Incor-

porating conventional spatial ANC methods, we developed a series of algorithms

and methods that optimize conventional methods regarding array geometries and

ANC algorithms, towards improving the feasibility of a conventional spatial ANC

system involving the spherical harmonic analysis.

Overall, motivated by feasible and realistic designs for spatial ANC systems,

work included in this thesis mainly solves the three problems of: (i) the impracti-

cality of realizing spherical microphone and loudspeaker arrays, (ii) achieving sec-

ondary channel estimation with microphones remote from their desired locations,

and (iii) unreasonable delays inherent to frequency domain spatial ANC methods.

Based on our work, we have stepped towards achieving a spatial ANC system in

a real-world environment for people to enjoy silence in the control region with the

vii
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reliable usage of resources and algorithms.

Several contributions of this work are: (i) designing a 3D spatial ANC system

using multiple circular microphone and loudspeaker arrays instead of spherical ar-

rays, (ii) proposing a 3D spatial ANC method with remote microphone technique

such that noise reduction over a region is achieved with microphones remote from

the region, (iii) proposing a secondary channel estimation method using a moving

higher-order microphone such that usage of an error microphone array is not nec-

essary, (iv) deriving a time domain spherical harmonic analysis method for open

spherical microphone array recording with less delay than in the frequency domain,

and (v) designing a feed-forward adaptive spatial ANC algorithm incorporating the

time domain spherical harmonic analysis technique to better minimize the noise in

the region of interest.
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Chapter 1

Introduction

1.1 Motivation and Scope

A wide range of human activities generate perceptible noise. These acoustic noises

are usually undesired and uncomfortable for the listener. Excessive amounts of

acoustic noise pose a health risk to a majority of the population and it is the

most significant single cause of hearing loss (37%) in Australia [1]. The need of

eliminating acoustic noises keeps increasing over the years with the development

of industries.

There are two categories of methods to reduce excessive noise: passive noise

control, and Active Noise Control (ANC) [2]. Passive noise control methods isolate

the noise with sound absorbing materials, such as acoustic foam, sponge, or glass-

wool [3]. Using a pair of earplugs to enjoy a quiet sleep is a common application of

passive noise control. The performance of passive noise control depends on various

factors, including the noise frequency, the material type, shape, and thickness. In

general, the wavelength of the noise needs to be less than the thickness of the ma-

terial to achieve an effective reduction of noise. As a result, passive noise control

performs better at higher frequencies than lower frequencies.

In contrast, for low frequency noises, an alternative method, named active noise

control becomes more effective than passive noise control [2]. In its simplest form,

an ANC system aims to reduce the unwanted acoustic noise by generating an

anti-noise using loudspeakers which maintains the same magnitude but is 180◦ out

1
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Noise
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Secondary
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Noise

Noise

Reduced
Noise

Figure 1.1: An ANC system.

of phase with the noise (Fig. 1.1 [4]). These anti-noise producing loudspeakers

are named secondary loudspeakers or secondary sources. The two sound waves

corresponding to the noise and the anti-noise cancel each other, resulting in a

reduced noise level [5]. ANC is more efficient at lower frequencies, because the

wave-length of the noise is longer, which makes it easier for the anti-noise to match

with the undesired noise [6].

In recent years, ANC has been applied commercially through ANC headphones

[7]. While ANC headphones have gained much popularity among users by providing

them with satisfactory noise reduction levels, they are not immune to fundamental

limitations. For example, the users are required to constantly wear the headphones,

which is inconvenient, potentially uncomfortable, and impractical in some situa-

tions. Hence, it is desirable for the noise to be attenuated over a spatial region, such

that people inside the region can enjoy a headphone-free quiet environment. The

common solution for achieving such a quiet region is via a well developed approach:

Multiple-input-multiple-output (MIMO) ANC system. In a MIMO ANC system,

multiple secondary loudspeakers are applied to generate an anti-noise field, while
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Figure 1.2: A feed-forward MIMO ANC system.

multiple microphones are applied in the region of interest to monitor the residual

noise field [2]. For a feed-forward system, reference microphones are applied close

to the noise sources to record the noise signals. In a feed-back system, the reference

microphones are not necessary [8]. Figure 1.2 [9] shows a feed-forward MIMO ANC

system.

MIMO ANC systems successfully reduce the noise in a range of applications in-

cluding noise control in cars [10,11], in-flight [12,13], through an open window [14],

and inside other enclosures [15, 16]. However, this conventional system is only

able to minimize the sound pressure at the error microphones because the noise

level is only known at these microphones’ locations. As a result, when the error

microphones are randomly located within a desired quiet region, the significant

noise reduction can be only obtained in the proximity of each microphone, leav-
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ing the area not covered by microphones to remain noisy. To achieve a uniform

noise reduction performance over the region of interest, a large number of error mi-

crophones needs to be applied evenly throughout the region. Commercial MIMO

ANC systems in cars released recently overcome this problem either by focusing

on extremely low frequencies (under 125 Hz) [17], or by using virtual sensing tech-

niques [18]. However, these applications constrain the noise reduction to be at a

limited number of discrete points (such as at 2 human ears or a very small region),

which limits the movement of listeners, thus limiting their applications in many

other real world applications of spatial ANC.

Wave domain signal processing [19] has thus been introduced into ANC systems.

The noise can be captured and analysed over space by a microphone array with the

spherical harmonic decomposition technique. This technique achieves an accurate

recording of the noise field throughout a continuous region. Hence, it is possible for

an ANC system to achieve noise reduction spatially over a continuous region, rather

than at a number of distributed points [20]. Note here that sound field processing

involving wave field synthesis is also called wave domain processing in some papers,

in this work, by ‘wave domain processing’ we strictly mean spherical harmonic

based sound field processing. In order to apply spherical harmonic analysis to

a spatial ANC system, the error microphones need to be in specific geometries.

Conventionally, an evenly distributed spherical microphone array is necessarily

placed on the boundary of the region of interest to record the residual sound field

inside the region in the wave domain [21,22]. These error microphone arrays need

to be open arrays surrounding the region of interests which is not often practical

due to the physical obstruction of entering and exiting the region. Compared to

rigid arrays where the microphones are mounted on a rigid spherical baffle, open

arrays which are built as cage like structures are also more difficult to design and

implement. On top of array complexities, the frequency domain definition of the

spherical harmonic analysis also introduces undesirable system delays and adds

computational costs to spatial ANC systems.

From the discussion above, we pose the following research problem to address

in this thesis:

How to achieve a feasible spatial ANC system for practical applications rather
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than theoretical models?

1.2 Problems and Solutions

We breakdown the above research problem into three sub-tasks (the array geometry,

the secondary channel estimation, and spatial ANC algorithms) where each subtask

optimizes the conventional spatial ANC system from a different aspect and provides

intended solutions to each of the following tasks:

(i) Feasible array geometries

Given that the open spherical microphone array is impractical and blocks peo-

ple entering and exiting the quiet region, an alternative error microphone array

geometry for wave domain ANC is necessary to be developed, as well as the sec-

ondary loudspeaker array. Hence, we propose a spatial ANC system with multiple

circular arrays, where the error microphones and loudspeakers are all located on or

above the x-y plane of the region of interest. The circular arrays are more friendly

to build and use, and the lower hemi-sphere in the proposed method is left empty

for users to enjoy the noise reduction.

Alternatively, virtual sensing techniques can be a useful tool in spatial ANC.

These techniques allow the error signals to be estimated at locations that are

remote from the physical error microphones [23]. In other words, virtual sensing

algorithms are able to reduce the residual noise over the region of interest with some

knowledge of systems while physical microphones record error signals away from

the region. We develop a wave domain ANC system based on one of the virtual

sensing techniques, named remote microphone technique [24], for noise reduction

over a spherical region. In this case, we avoided the usage of a spherical error

microphone array, or even any error microphones inside the region of interest when

the noise is being controlled such that users can move freely in the region.

(ii) Feasible secondary channel estimations

Since typical noise is often time-varying, adaptive filtering is considered to be a

beneficial tool in ANC. Adaptive filters typically adjust their coefficients to generate

the secondary loudspeaker driving signals such that the signals recorded by the error

microphones are minimized as they vary. Hence, the secondary channels, or the

impulse responses (IRs) from the secondary loudspeakers to the error microphones,
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are required as pre-knowledge before the ANC system begins to work [25]. In task

(i), we have proposed the wave domain remote microphone technique to avoid

the usage of a spherical error microphone array. However, an impractical error

microphone array is still necessary for the secondary channel estimation. To solve

this problem, we introduce spatial sound field recording methods with higher order

microphones into secondary channel estimations in spatial ANC systems. We also

discuss the potential of further replacing these higher order microphones with a

single moving higher order microphone.

(iii) Feasbile spatial ANC algorithms

Other than improving the feasibility of the hardware implementation in a spa-

tial ANC system, we also investigate a more practical spatial ANC algorithm. For

a feed-forward ANC system, the system delay which includes the filter group delay

(signal processing algorithm), the A/D and D/A converters, and the data process-

ing delay, should all be less than the acoustic delay from the reference microphones

to the secondary loudspeakers in order to satisfy causality. Conventionally, the

spherical harmonic analysis based wave domain spatial ANC system is developed

in the frequency domain, where a Fourier transform and an inverse Fourier trans-

form are necessary. These time-frequency domain transforms introduce undesired

system delay. We develop a time-wave domain spatial ANC system, where Finite

Impulse Response (FIR) filters are designed based on the inverse Fourier transform

of the frequency domain spatial functions. Furthermore, we replace these inverse

Fourier transform based filters by proposing a pure time domain spherical har-

monic decomposition method for sound field recording in a region of interest. The

proposed method achieves less latency than the conventional frequency domain

methods.

Beyond the three aspects that we address in this thesis, the wave domain spatial

ANC system has some other limitations and disadvantages. The major concern is

the hardware complexity. The usage of a large amount of transducers (microphones

and loudspeakers) leads to a heavy workload in constructing and operating the

system. Additionally, the necessary multi-channel audio interface with a higher

number of channels is costly. Although there is a few commercially available audio

interface, they are not yet enough popular. Nevertheless, the distances between

secondary loudspeakers and error microphones are longer in spatial ANC systems
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Figure 1.3: Thesis outline.

compared to well-developed ANC headphone models. As a result, the stability and

the accuracy of the secondary channel estimation become a harder problem and

are still to be solved.

1.3 Thesis Outline

Based on the discussions above, this thesis aims to improve the feasibility of a

conventional spatial ANC system. Figure 1.3 presents an overview the thesis outline

and the logical flow. The detailed structure of the thesis is presented as follow:

Chapter 2: Literature Review and Background Theory
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We present an extensive literature review of past and present spatial ANC

methods. We first review the past work on the development and advancement

of ANC methods including recent methods. Thereafter, we introduce background

knowledge of spherical harmonic based wave domain signal processing along with

some helpful mathematical properties. Finally, we introduce basic feed-forward

and feed-back adaptive filtering structures for both MIMO ANC systems and wave

domain spatial ANC systems. These theories reviewed in this chapter are the

fundamental elements for building up this thesis.

Chapter 3: A Realistic Multiple Circular Array System for Active

Noise Control over 3D Space

This chapter presents an array geometry optimization method for spatial ANC

systems. We first introduce a spatial sound field recording method and a repro-

duction method using multiple circular arrays instead of the impractical spherical

arrays, respectively. Then, we apply these two methods in a feed-forward spatial

ANC system. Both the microphone arrays and loudspeaker arrays are located at

the upper hemi-sphere of the region of interest, which allows the users to easily

enter the quiet region from the lower hemi-sphere. The human head scattering

effect is also considered in the proposed method. We construct a second order

system in both simulation and experiment to demonstrate the effectiveness of the

proposed method on noise reduction over space, and illustrate by experiment that

the scattering effect by the human head (user) is negligible. By conducting the

experiment in a real-world environment, the proposed method is also proved to be

more feasible than conventional methods.

Chapter 4: Active Noise Control over 3D Space with Remote Micro-

phone Technique in the Wave Domain

Conventionally, the error microphone array in a MIMO system or a wave-

domain spatial ANC system is not practical. In addition to the method we pro-

posed in chapter 3, in this chapter, we overcome the impractical error microphone

problem by introducing virtual sensing techniques to a spatial ANC system. The

error signals are estimated at locations that are remote from the physical error

microphones. We develop a wave domain ANC system based on this remote mi-

crophone technique to achieve noise reduction over a spherical region where all the

microphones are located away from the region of interest during the noise reduc-
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tion processing. By simulation, we demonstrate that the proposed method can

obtain comparable ANC performance to conventional methods, while introducing

new freedoms to user movement within the wider region of interest.

Chapter 5: Secondary Channel Estimation in Spatial Active Noise

Control Systems Using a Single Moving Higher Order Microphone

In this chapter, we further optimize the array geometry of spatial ANC sys-

tems by proposing an alternative method for the secondary channel estimation. In

chapter 4, we proposed a method where the impractical error microphone array

is avoided when the noise reduction is achieved in the region of interest. How-

ever, the system still requires an error microphone array inside the region of inter-

est for the secondary channel estimation. In this chapter, we introduce a spatial

sound field recording method using a moving higher order microphone to estimate

the secondary channels in a spatial ANC system. With this approach, Impulse

Responses (IRs) over the entire region within the desired frequency range can

be measured with one higher order microphone, including the required secondary

channels. Hence, the usage of the impractical error microphone array can be fully

avoided. By simulation, we demonstrate that the proposed method is able to record

the desired IRs with tolerable error.

Chapter 6: Active Noise Control over a Spatial Region in the Time

Domain

In this chapter, we optimize the adaptive algorithm in a spatial ANC system.

Conventionally, the wave domain spatial ANC system is investigated based on the

spherical harmonic decomposition method. This method is developed in the fre-

quency domain, where a Fourier transform is necessary before the recorded signal is

further processed. This Fourier transform increases the system latency, which is un-

desirable in an ANC system. We develop a time domain spherical harmonic based

spatial ANC system in this chapter. Two time-wave domain feed-forward adaptive

filters are designed with different cost functions. These time domain methods do

not require a time-frequency domain transform of the recorded signals. Hence,

the Fourier transform related buffers are not necessary. The proposed method is

also more practical to be applied on an embedded system or other resource limited

hardware. Through simulations we show that the proposed method can achieve

noise reduction over the control region with less system delay.
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Chapter 7: Time Domain Spherical Harmonic Processing with Open

Spherical Microphones Recording

We present a time domain spherical harmonic processing approach for open

spherical microphone array recording in this chapter. When we were developing the

time-wave domain feed-forward adaptive filters for sptial ANC systems in chapter

6, we met the problem that the residual sound field recorded by the error micro-

phones are hard to be analysed in the time-wave domain. The spherical harmonic

related functions are developed in the frequency domain. In chapter 6, we avoid

this problem by using filters given by the inverse Fourier transform of spherical

Bessel functions. In this chapter, we develop the spherical harmonic decomposi-

tion algorithm in the time domain, where microphone signals are processed by a

series of pre-designed finite impulse response (FIR) filters to obtain a set of time

domain spherical harmonic coefficients. These filters do not rely on the inverse

Fourier transform. We corroborate the time domain algorithm with a numerical

simulation of a fourth order system, and show the proposed recording method to

have lower delay than existing approaches, which can be beneficial to a spatial

ANC system.

Chapter 8: Conclusions and Future Work

This chapter concludes this thesis, as well as discusses potential future work to

further improve the feasibility or the performance of a spatial ANC system.



Chapter 2

Literature review and background

Overview: This chapter provides a literature review on the development of spatial

ANC, where the advances towards problems out of the scope of this thesis are also

included. Afterwards, detailed background knowledge on the spherical harmonic

decomposition method and its properties are provided. By the end, we introduce

existing multi-channel ANC methods and wave domain spatial ANC methods based

on the spherical harmonic decomposition.

2.1 Literature Review: Active Noise Control

Back in the 1930s, ANC was first achieved by a microphone and an electronically

driven loudspeaker in [26]. From then on, researchers have shown considerable

interests in ANC and have made significant progress. In 1992, Nelson and Elliott

published a book [27] detailing the theory of ANC with emphasis on the acoustical

aspects. They mentioned that the frequency content, amplitude, and phase of a

given noise is often non-stationary as the noise signal and the environment are

both time varying. Therefore, adaptive algorithms are necessary in ANC systems

to cope with such variations [28]. During the same period, the development of more

powerful digital signal processors enabled the low-cost implementation of complex

algorithms and encouraged the application of ANC systems based on digital chips

[29]. The usage of adaptive filtering was hence possible, which was one of the

important foundations to develop the concept of ANC.

11
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Up until now, other than ANC headphones which have become popular in this

decade, there are few commercial ANC applications. By the time this thesis is

complete, spatial ANC will still be acting as an academic exercise more than some-

thing that can be applied in practice. The challenges of the high requirements on

resources (loudspeakers and microphones) and computation (Digital Signal Pro-

cessors) barricade the real-world implementation. However, researchers have been

working for years to gradually advance ANC systems from various aspects. We

are hoping that there will be a day that other ANC applications, including spatial

ANC, can be as practical as ANC headphones such that more people can enjoy the

world of quiet.

We now review the relevant literature to have a brief introduction of the past

and current development regarding ANC systems. There are mainly two types

of adaptive filtering structures for ANC: feed-forward and feed-back. A typical

single channel feed-forward adaptive filter requires both a reference microphone to

capture the original noise and an error microphone to record the residual noise for

generating the driving signal of the secondary loudspeaker [30], which is suitable

for both narrow-band and wide-band noise. On the contrary, a feed-back filter

does not require a reference microphone, but is only effective with narrow-band

noise [31].

While ANC with single channel adaptive filtering using one error microphone

and one secondary loudspeaker can only achieve noise reduction in narrow ducts or

at one point, researchers are not satisfied with it. To achieve ANC for more complex

enclosures or larger areas, algorithms using multiple microphones and loudspeakers

(MIMO ANC) are developed [2]. To improve the robustness and the performance

of MIMO ANC systems, other than the conventional FxLMS method [32], Normal-

ized LMS [33], adjoint LMS [34], and recursive LMS [35] are developed for more

stable and effective filtering. An Eigenvalue equalization FxLMS algorithm is de-

veloped in [36] to increase the convergence speed, while in [37] and [38], a fast affine

projection algorithm is proposed, which provides a better convergence speed and

steady-state control performance in adaptive systems. With these optimizations

of MIMO systems, successful applications of ANC have been developed including

noise control in cars [10], [11], [39], in flights [12], [13], in rooms [40], through an

open window [14], and inside other enclosures [15], [16].
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Beyond the investigation of adaptive algorithms, researchers are also working

on advancing the ANC system from other aspects. Analysis on the acoustic energy

density provides a more robust algorithm against number and location of error

microphones [41], [42]. The sparsity of the noise signal is considered in [43] to fur-

ther increase the robustness of convergence in reverberant environments. A source

localization technique is added in reference signals recording in [44] to separate the

target noise and the disturbance noise such that a better noise reduction perfor-

mance is achieved. A neural-network based training process with particle swarm

optimization is investigated to accelerate the convergence speed [45] and improve

the scalability [46]. A selective fixed-filter ANC method based on convolutional

neural network is addressed in [47]. The estimation of secondary channels is an-

other important topic where the accuracy of the estimation highly influences the

stability of the system [48]. On-line secondary channel estimation approach is pro-

posed in [49] and analysed in [50]. In [51], sparsity based nonlinear modeling is

given to reduce the computational complexity in a complex environment. More-

over, in a feed-forward adaptive filtering system, the feedback from the secondary

loudspeakers to the reference microphones is settled in [52]. Later, this effect has

been push to online processing in [53], [54], and decoupled from the feed-forward

system in [55].

Generally, noise reduction can only be achieved around an error microphone

with the spatial limit being approximately λ/10, where λ is the wavelength of the

undesired noise [56]. Hence, to achieve noise reduction over a large region, we

need a large amount of microphones to cover the entire region of interest, which is

difficult and costly [57].

One of the solutions for these impractical microphone arrays is virtual sensing

techniques [58]. These virtual sensing algorithms estimate the error signals at the

remote virtual locations using the signals obtained at physical microphones, and

the control signals and knowledge of the system. Instead of minimising the physical

error signals, the estimated error signals are minimised at the virtual locations [23].

These techniques are widely applied to MIMO ANC in enclosures [59], [60], in

mobile phones [61], in vehicles [11], [62] and proved to be especially beneficial in

head-sets [63], [64], [65], [66]. In [67] and [68], the causality and robustness of two

different virtual sensing techniques are optimized, respectively, while the guidance
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of choosing a suitable method is provided in [60]. Other than these methods,

non-acoustic sensors are applied in virtual sensing ANC systems to provide more

feasible design [69], [70].

Although virtual sensing techniques improve the feasibility of ANC over a re-

gion, the analysis of the sound field is still point based. In other words, the noise

reduction is achieved at multiple points of interest instead of a continuous area.

Wave field synthesis [71] has been introduced into ANC systems in [72], [73]. This

technique not only provides the spatial and temporal information of the noise field,

but also is proved to be more efficient for non-stationary noises [74] and impulsive

noises [75]. Additionally, Kernel interpolation has been applied to improve the

performance of noise reduction [76], [77].

Spherical harmonic analysis [19] is considered to be another useful tool for spa-

tial ANC. It can provide a more insightful and efficient spatial sound field record-

ing [21], [78], and reproduction [79], [80] using discrete arrays. A wide range of ap-

plications related to the spatial sound field processing have been developed based on

this wave domain technique including echo cancellation [81], room equalization for

sound field reproductions [82], [83], higher order loudspeaker array design [84], [85],

source separation [86] and personal audio systems [87], [88]. Spherical harmonics

also show its efficiency in spatial ANC systems for noise reduction of both outgoing

sound fields [89] and incoming noise fields [90], [91], [92], and is optimized regard-

ing computational complexity recently [93]. The spherical harmonic based spatial

ANC algorithm in [90] is considered to be the fundamental work of this thesis. In

this thesis, we provide multi-faceted optimization of the spherical harmonic based

spatial ANC system in [90] for a more feasible design.

Conventionally, wave domain sound field recording and reproduction approaches

are developed using spherical arrays, which is not practical in most of ANC real-

world applications. In [94], deep learning is applied for spherical harmonic based

sound field recording for less microphone usage. In [95], [96], [97], [98], [99], several

approaches are provided for wave domain sound field reproduction using circular

or irregular loudspeaker arrays. On the other hand, [100], [101], [102] provide the

sound field recording methods with non-spherical microphone arrays. From these

papers, we can see a potential to optimize the array geometry in a wave domain

spatial ANC system.
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ANC systems have another important requirement regarding system delay [2].

This is because the system delay including the filter group delay (signal processing

algorithm), the A/D and D/A converter, and the data processing delay, are required

to be less than the acoustic delay from the reference microphones to the secondary

loudspeakers in order to satisfy causality [27]. Moreover, ANC systems, especially

ANC systems employing adaptive filtering, are usually real-time processing, where

lower latency is always desired for time-varying noises. In [103], [104], sound field

reproduction over space is achieved by the wave field synthesis in the time domain.

The time domain spherical harmonic descriptions are provided in [105], [106], which

have been applied in beam-forming [107], and scattering problems [108], [109].

These researches show that the time domain processing of the spatial sound field is

often computationally efficient and thus benefits real-time applications, including

spatial ANC.

2.2 Background: Spherical harmonic Properties

The essential idea of spherical harmonic analysis of a sound field is to use the

weighted sum of a set of orthogonal basis functions to describe the pressure field

of propagating sound. These functions are given by the fundamental solutions of

the Helmholtz wave equations [19]. In general, there are two classes: the interior

sound field expression, and the exterior field expression. The interior sound field

expression describes the sound field within a spatial region with absent of sound

sources inside; while the exterior expression is for the sound sources are within a

limited area, and the region of interest is the source-free space enclosing the source

area. We only focus on the interior expression in this thesis.

We start with defining the coordinate system used in this thesis to represent

the spatial attributes of a given sound field. In 3-D space, it is convenient to use a

spherical coordinate system as shown in Figure 2.1. The spherical coordinates of a

point in the space can be represented in terms of the position vector x = (r, θ, φ)

where r = ‖x‖ denotes the distance from the origin with ‖·‖ implying the Euclidean

distance, θ denotes the polar angle from the vertical axis with 0 ≤ θ ≤ π, and

φ denotes the azimuths angle in the horizontal plane containing the origin with

0 ≤ φ ≤ 2π.
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ф

θ
r

y

z

x

Figure 2.1: Representation of a position vector x in the 3-D spherical coordinate
system.

2.2.1 Spherical harmonic expansion

Assuming a sound field within a source-free region Ω of radius rΩ, the sound pres-

sure at a point x = (r, θ, φ) inside the region with respect to the origin ΩO can be

expressed as [19]

z(x, k) =
∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (2.1)

where order n and mode m are integers, αnm(k) is a set of spherical harmonic

coefficients representing the sound field inside Ω, k = 2πf/c is the wave number, f

is the frequency of the sound signal, c is the speed of sound, jn(kr) is the n-th order

spherical Bessel function of the first kind [110], Ynm(θ, φ) is the spherical harmonic

function, defined by

Ynm(θ, φ) = Pnm(cos θ)Em(φ), (2.2)

where

Pnm(cos θ) =

√
2n+ 1

2

√
(n− |m|)!
(n+ |m|)!

Pn|m|(cos θ) (2.3a)
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Figure 2.2: The spherical Bessel function jn(kr) for n = 0, 1, 2, 5 and 10.

Em(φ) =
√

(1/2π)eimφ, (2.3b)

are the the normalized associated Legendre function and normalized exponential

functions, respectively; Pn|m|(cos θ) refers to the associated Legendre function.

The spherical harmonic functions have the important property of orthogonality

that ∫ π

0

∫ 2π

0

Ynm(θ, φ)Y ∗n′m′(θ, φ) sin(θ)dθdφ = δn−n′,m−m′ , (2.4)

where (·)∗ refers to the conjugation operator, and δn−n′,m−m′ is the two dimensional

Dirac Delta function.

In (2.1), the summation of order up to an infinite order is not practical. Hence,

a truncation of this summation at a maximum order N is common, due to the low

pass nature of the spherical Bessel functions, as shown in Fig. 2.2. Thus, (2.1) can

be approximated as

z(x, k) ≈
N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (2.5)

where N = dkre [80].

In the free space, the Green’s function of a point source at xs can be written
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by

g(x|xs, k) =
e(ik|x−xs|)

4π|x− xs|
, (2.6)

which can be expanded into the wave domain with (2.5) as

g(x|xs, k) = ik

N∑
n=0

n∑
m=−n

hn(krs)Y
∗
nm(θs, φs)jn(kr)Ynm(θ, φ), rs > r, (2.7)

where hn(·) refers to the spherical Hankel function of the n-th order.

Therefore, there is an analytical solution of the spherical harmonic coefficients

of Green’s function in the free space that

α(g)
nm(k) = ikhn(krs)Y

∗
nm(θs, φs). (2.8)

2.2.2 Properties of the associated Legendre function

We list some useful properties of the associated Legendre function in this section.

When θ = π/2, we have

Pn|m| (cos θ) = Pn|m|(0)

= 0 n+ |m| is odd,

6= 0 n+ |m| is even,
(2.9)

while when θ = 0, we have

Pnm(cos θ) = Pnm(1)

= 0 m 6= 0

6= 0 m = 0
(2.10)

A recurrent relationship between the associated Legendre function and its first

order derivative is given by [111]

(x2 − 1)
dPn|m|(x)

dx
= nxPn|m|(x)− (|m|+ n)P(n−1)|m|(x). (2.11)

When x = 0, (2.11) can be simplified to

P ′n|m|(0) = (|m|+ n)P(n−1)|m|(0). (2.12)
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A similar equation can be derived for the normalized associated Legendre function

that

P ′n|m|(0) =

√
(2n+ 1)(n2 −m2)

(2n− 1)
P(n−1)|m|(0). (2.13)

Moreover, we have the Fourier relationship between the spherical Bessel function

jn(kr) and the Legendre function Pn(x) given by [112]∫ ∞
−∞

eikrxjn(kr)dk = πinPn(x). (2.14)

These properties helps us to develop algorithms and design the array geometry

in the following chapters.

2.2.3 Addition theorem

The addition theorem describes the relationship of spherical harmonic coefficients

with respects to two different coordinate systems. This enables the transforma-

tion in the wave domain decomposed sound fields, such that the obtained spherical

harmonic coefficients can be represented with respects to desired locations. The

derivation of 3-D addition theorems uses the Hobson’s theorem, the Erdelyi oper-

ator and the linearisation formula for spherical harmonics, as given in [113], [114].

While there exist a number of different addition theorems derived in the above

manner, we only discuss the ones that are useful in the current context, namely

the addition theorems for Bessel functions and the addition theorems for Hankel

functions for an interior field.

Consider two origins O and O1. Let x0 and x1 be the position vectors of

a general point S with respect to O and O1 respectively. Let x2 represent the

position vector of O1 with respect to O, so that x0 = x1 +x2. See Figure 2.3 for a

sketch of the geometry. Let x0 = (r0, θ0, φ0), x1 = (r1, θ1, φ1) and x2 = (r2, θ2, φ2)

in spherical coordinates. The addition theorem for spherical Bessel functions is

then given by [113]

jn(kr0)Ynm(θ0, φ0) =
∞∑
ν=0

ν∑
µ=−ν

Tmµnν (x2)jν(kr1)Yνµ(θ1, φ1) (2.15)
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Figure 2.3: Geometry for three dimensional addition theorems.

where ν and µ denote higher order indices and

Tmµnν (x2) =4πiν−n
n+ν∑
u=0

iu(−1)2m−µ

√
(2n+ 1)(2ν + 1)(2u+ 1)

4π

× ju(kr2)Y ∗u(µ−m)(θ2, φ2)W1W2,

(2.16)

with

W1 =

(
n ν u

0 0 0

)
and W2 =

(
n ν u

m −µ (µ−m)

)
(2.17)

denoting Wigner 3− j symbols [113].

2.2.4 Real-valued spherical harmonics

Real valued functions are necessary in many applications of spherical harmonic

analysis. The real-valued spherical harmonic is defined as [115]

Ynm(θ, φ) =(−1)|m|

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

×

{
Pnm(cos θ) cos(mφ) m ≥ 0

Pnm(cos θ) sin(mφ) m < 0
,

(2.18)
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which has the orthogonality property of∫ 2π

0

∫ π

0

Ynm(θ, φ)Yn′m′(θ, φ) sin θdθdφ = δnn′δmm′ . (2.19)

The complex value spherical harmonic functions are widely applied in the fre-

quency domain signal processing. In the time domain, sound pressures are usually

real-valued. Hence, it is preferable to use real-valued spherical harmonic functions

for the time domain analysis. In this thesis, we use the complex valued spherical

harmonic function in most chapters unless explicit mentioned.

2.2.5 Spatial sound field recording with spherical micro-

phone arrays

The conventional way of capturing the spherical harmonic coefficients αnm(k) is by

applying a spherical microphone array surrounding the region. The methods with

open and rigid spherical microphone arrays for interior sound field recording are

given in [21] and [116], respectively.

For an open spherical microphone array of radius RQ > RΩ, αnm(k) can be

extracted by integrating the recording over the spherical surface while exploiting

the orthogonality property of Ynm(·) , which gives

αnm(k) =
1

jn(kRQ)

∫ 2π

0

∫ π

0

z(RQ, θ, φ, k)Y ∗nm(θ, φ) sin θdθdφ. (2.20)

In practice, this integration is achieved using an equivalent discrete summation

of spatial samples over the sphere, where at least Q = (N + 1)2 samples are

necessary. We rewrite (2.20) as

αnm(k) ≈ 1

jn(kRQ)

Q∑
q=1

z(RQ, θq, φq, k)Y ∗nm(θq, φq)χ(q), (2.21)

where θq, φq are the elevation and azimuth angle of the q-th microphone, respec-

tively, and χ(q) is the weighting coefficients specific to the sampling scheme of

the microphone array. For regularly distributed sampling, χ(q) = 1 for all the
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microphone samples.

In the case of the rigid spherical array, the sound pressure on the surface of the

rigid baffle is derived with

z(x, k) =
N∑
n=0

n∑
m=−n

αnm(k)bn(kr)Ynm(θ, φ), (2.22)

where

bn(kr) = jn(kr)− j′n(kr0)

h′n(kr0)
hn(kr) (2.23)

where r0 (r0 ≤ RΩ) denoting the radius of the rigid spherical baffle, hn(·) is the

spatial Hankel function, (·)′ refers to the first order derivative. Using the same

integration method, the spherical harmonic coefficients of a region recorded by a

rigid array can be calculated by

αnm(k) ≈ 1

bn(kRQ)

Q∑
q=1

z(RQ, θq, φq, k)Y ∗nm(θq, φq)χ(q). (2.24)

Comparing with the open spherical array, the rigid array provides more robust-

ness on implementation. Additionally, rigid array avoids potential ill-conditioning

problem caused by jn(kr) = 0 at certain combinations of k and r by using 1/bn(kRQ)

in (2.24) instead of 1/jn(kRQ) in (2.21). However, the rigid baffle completely en-

closes the region of interest, rendering this array hard to implement in a large area,

and barricades its application in spatial ANC systems. In the spatial ANC system

involving wave-domain processing, open spherical microphone arrays are commonly

used, which will be introduced in the next section.

2.3 Background: Active Noise Control

After reviewing the spherical harmonic analysis for sound field recording and anal-

ysis in the wave domain, we now move to the introduction of basic ANC structures

which provide us conventional solutions of noise reduction. As we mentioned in

Sec. 2.1, we use feed-forward adaptive filtering in this thesis for its benefits on

wide-band noise reduction performance.
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Figure 2.4: Block diagram of a Fx-LMS feed-forward ANC system.

2.3.1 Single channel Feed-forward system

A feed-forward adaptive filtering system for ANC contains an error microphone, a

reference microphone, a secondary source, and an adaptive algorithm. We use the

Fx-LMS algorithm to implement the system. The block diagram is shown in Fig.

2.4. In the figure, P represents the primary path, which is the acoustic impulse

responses from the reference sensor to error microphone. Secondary channel and

its estimation are given by S and Ŝ, respectively. The reference input signal is

N (t), and the instantaneous error microphone measurement is e(t).

In this system, the controller is the adaptive filter using the LMS algorithm.

The adaptive filter W continuously tracks variations in the primary noise field.

The error signal recorded by the error microphone is given by

e(t) = d(t) + y′(t), (2.25)

where t refers to the time interval. In general, this t is given by discrete time

sampling. y′(t) is the anti-noise at the error microphone generated by the secondary

loudspeaker, which is given by

y′(t) = y(t) ∗ S, (2.26)
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where y(t) = N (t) ∗W (t) is the driving signal of the loudspeaker, ∗ denotes linear

convolution, S refers to the secondary channel from the secondary loudspeaker

to the error microphone. W (t) = [w0(t), w1(t), · · · , wLw(t)] is the adaptive filter

weight coefficients with filter length Lw at the time interval t, and N (t) is a vector

containing the reference noise recorded by the reference microphone with a length

of Lw.

Minimizing the mean square value of the error signal e(t), the cost function is

ξ(t) = e(t)2. (2.27)

The update equation is hence derived based on the steepest descent method, which

is

W (t+ 1) = W (t)− λ

2
∇ξ(t), (2.28)

where λ is the step size, and ∇ is the gradient operator.

Taking the derivative of ξ with respect to W (t), we can derive

∇ξ(t) = ∇(e(t)2)

= 2e(t)∇e(t)

= 2e(t)N (t) ∗ Ŝ,

(2.29)

where Ŝ is the estimated value of the secondary channel S, which is usually ob-

tained by taking an impulse response measurement from the secondary loudspeaker

to the error microphone.

Substituting (2.29) to (2.28), we derive the final update equation of the Fx-LMS

feed-forward adaptive filtering algorithm as:

W (t+ 1) = W (t)− λe(t)N (t) ∗ Ŝ. (2.30)

We observe from (2.30) that the filter coefficients W in the next iteration

are related to the error signal and the filtered reference signal vector at current

iteration.
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Figure 2.5: Block diagram of a multi-channel Fx-LMS feed-forward ANC system.

2.3.2 Multi-channel Feed-forward system

After the discussion for signal channel feed-forward adaptive filtering algorithm,

which is only able to reduce the noise at a single point, we now move on to the

multi-channel case, where multiple error microphones and secondary loudspeakers

are employed in the system [35].

A block diagram of the commonly used Fx-LMS multi-channel algorithm is

shown in Fig. 2.5. In the figure, P are the primary paths, which are the acous-

tic impulse responses from the reference sensors to error microphones. Secondary

channels and their estimation are given by S and Ŝ, respectively. The reference

input signals are Nj(t), j ∈ J , and the instantaneous error microphone measure-

ments are eq(t) q ∈ Q, where J and Q is the number of reference microphones and

error microphones, respectively. The number of secondary loudspeakers is given by

L.

The error signal at the q-th error microphone is given by

eq(t) = dq(t) + y′q(t), (2.31)

where dq(t) is the primary noise at the q-th microphone, y′q(t) is the secondary
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field, which can be written as

y′q(t) =
L∑
`=1

y`(t) ∗ S`q(t), (2.32)

where S`q(t) is the impulse response from the `-th secondary loudspeaker to the

q-th error microphone, y`(t) is the driving signal of the `-th secondary loudspeaker.

This driving signal is generated as

y`(t) =
J∑
j=1

wT
j`(t)Nj(t), (2.33)

for ` ∈ L, where wj`(t) are the adaptive filter coefficients of the `-th loudspeaker at

the t iteration, Nj(t) is the reference signal at the j-th reference microphone with

the same length of wj`(t).

For a multi-channel feed-forward ANC system, the cost function is given by the

sum of mean squared error signals:

ξ(t) =

Q∑
q=1

|eq(t)|2. (2.34)

Therefore, we write the update equation of the multi-channel feed-forward algo-

rithm for wj`(t) as

wj`(t+ 1) = wj`(t)− λ
Q∑
q=1

eq(t)Nj(t) ∗ Ŝ`q(t). (2.35)

Comparing with the single channel ANC system, multi-channel systems provide

better noise control over multiple points, which enable the application of spatial

ANC. The computation cost is also significantly increased. However, the noise

reduction of multi-channel system is limited by the position of error microphones,

which is inconvenient to be implemented in real life applications.
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2.3.3 Wave domain ANC

We introduce the wave domain approach for spatial ANC in this section. Being

different from the conventional multi-channel ANC system, the wave domain ANC

system is developed based on the spherical harmonic analysis, hence allows the

noise reduction over a continuous region instead of discrete points. Several kinds

of spatial ANC algorithms are developed in the wave domain. We only detail one

of them in this thesis, which is also used as the conventional method to compare

with in the following chapters.

In [90], the conventional wave domain spatial ANC system is proposed in 2-D

space. In this thesis, we directly introduce the corresponding spatial ANC system in

3D space. We first transform necessary components in multi-channel ANC system

into the wave domain using spherical harmonic based wave equation that we have

addressed in Sec. 2.2, and then introduce the wave domain feed-forward ANC

system structure. To introduce the wave domain processing of the sound field,

spherical arrays of the error microphone and the secondary loudspeaker are used.

The array geometry of a wave domain spatial ANC system in 3-D space is shown

in Fig.2.6. We use single reference microphone as an example such that it is clearer

to focus on the wave domain processing. The wave domain algorithm can be also

applied for multiple reference microphones.

We rewrite (2.31) in the frequency domain that the residual noise at the q-th

microphone located at xq as

eq(xq, k) = dq(xq, k) + y′q(xq, k), (2.36)

where k = 2πf/c is the wave number.

Consider a source free region Ω with a radius of rΩ. As described in (2.21), if

we have Q microphones evenly distributed over a sphere with radius rq ≥ rΩ, the

spherical harmonic coefficients in the region of interest Ω can be express as

α(e)
nm(k) ≈ 1

jn(krq)

Q∑
q=1

e(xq, k)Y ∗nm(θq, φq)χ(q), (2.37)

where at least Q ≥ (N + 1)2 microphones are required. N = dkmaxrΩe is the
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Figure 2.6: A spatial ANC system in 3D space with a spherical error microphone
array in ‘+’ (blue); a spherical secondary loudspeaker array in ‘o’ (orange); and a
noise source/reference microphone in ‘*’ (purple).

maximum order that the system is recording, kmax is the maximum noise frequency

that we are targeting.

These wave domain coefficients of the residual noise can be written as the

summation of the corresponding coefficients for the noise field and the secondary

sound field, given by

α(e)
nm(k) = α(d)

nm(k) + α(s)
nm(k). (2.38)

In the wave domain ANC system, the adaptive algorithm minimises the instan-

taneous squared error of the residual wave domain coefficients, such that the cost

function at the t-th iteration becomes

ξ(k, t) =
Nmax∑
n=0

n∑
m=−n

|α(e)
nm(k, t)|2 = α(e)(k)Hα(e)(k). (2.39)

where α(e)(k) = [α
(e)
00 (k), α

(e)
1−1(k), · · · , α(e)

NN(k)] is a vector contains all the spher-

ical harmonic coefficients of the residual noise field, (·)H denotes the conjugate
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transpose.

Given the update equation in (2.28) that

W `(k, t+ 1) = W `(k, t)−
λ

2
∇ξ(k, t), (2.40)

we take the derivative of ξ(k, t) with respect to W , which gives

∇ξ(k, t) = ∇(α(e)(k)Hα(e)(k))

= 2N ′`(k)Hα(e)(k),
(2.41)

where N ′`(k) is the vector of the spherical harmonic coefficients of the filtered

reference signal, with each of the elements given by

N ′`nm(k) = N (k)Ŝ`nm(k), (2.42)

where Ŝ`nm(k) is the spherical harmonic coefficients of the `-th loudspeaker’s sec-

ondary channel, which can be pre-measured and calculated by measuring the im-

pulse responses from the secondary loudspeaker to the error microphone array.

Hence, the update equation is given by

W `(k, t+ 1) = W `(k, t)− λN ′`(k)Hα(e)(k). (2.43)

By replacing the LMS filter by the normalized LMS filter, the final update

equation of the normalized wave domain feed-forward algorithm can be written as

W `(k, t+ 1) = W `(k, t)−
λ0

||N ′`(k)H ||2
N ′`(k)Hα(e)(k), (2.44)

where λ0 ∈ [0, 1] is the normalized step size.

2.4 Summary

In this chapter, we reviewed the literature regarding developments and advances

of spatial ANC systems over the past years, and gave a brief introduction to sound

field properties in the wave domain, as well as conventional ANC feed-forward
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adaptive algorithms. We started with the conventional ANC method of the single

channel and multi-channels, and then introduced the wave domain approach in

spatial ANC systems. Standing on top of other researchers work, and based on

the conventional wave domain ANC algorithm, we propose multiple novel methods

and approaches from different aspects to improve the feasibility of the spatial ANC

system in Chapters 3, 4, 5, and 6.



Chapter 3

A realistic multiple circular array

system for ANC over 3D space

Overview: Conventionally, spatial ANC systems are proposed using point based

multi-channel systems and recently wave-domain methods have been developed us-

ing spherical harmonic analysis of spatial sound fields, as introduced in Chapter

2. A major limitation for implementing the latter approach is the requirement of

regularly distributed microphones and loudspeakers over spherical surfaces. In this

chapter,the above constraint is relaxed by constructing a system utilizing multiple

circular microphone and loudspeaker arrays and designing a corresponding ANC

algorithm. By simulation, we show that the proposed method can achieve compa-

rable ANC performance to conventional spherical array methods. By experiment,

we demonstrate the feasibility of implementing the multiple circular array structure

and verify its effectiveness given practical constraints.

3.1 Introduction

As reviewed in Sec. 2.3, an ANC system aims to reduce unwanted acoustic noise by

generating anti-noise with secondary loudspeakers [6]. A spatial ANC system aims

to reduce the unwanted noise inside a continuous region of interest, and it is often

achieved by a multi-input-multi-output (MIMO) system utilizing error microphones

and secondary loudspeakers [117], [118].

31
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Adaptive filtering is considered to be a beneficial tool in ANC systems because

the noise we are facing is often time-varying [119], [120]. The adaptive filters adjust

their coefficients to generate the secondary loudspeaker driving signals such that

the signals recorded by the error microphones are minimized [121], [122]. Con-

ventionally, a MIMO spatial ANC system requires the error microphones to be

uniformly distributed inside the control region [19], which is one of the main draw-

backs prohibiting practical implementation. Space domain signal processing using

harmonic (cylindrical/spherical) based sound field processing has been recently ap-

plied in ANC to decrease the use of resources by placing error microphones on the

boundary of the region of interest [118], [73]. While space domain methods are

proven to be effective for 3D space noise reduction [90], there is a prerequisite of

regularly spacing the error microphones [123] and the secondary loudspeakers [80]

about a certain sphere. Conventional spherical arrays surrounding the region of in-

terest still complicate the implementation of an ANC system due to the restrictions

of regular spherical sampling as well as mobility constraints of users entering and

exiting the region. Hence, a more practical array geometry for spherical harmonic

based spatial ANC is desirable.

Okamoto [124] has addressed an external noise control system with a planar

loudspeaker array based on spherical harmonic analysis. Zhang et al [125] have

developed a 2.5D reproduction method to reproduce sound field inside a 2D region

using 3D-distributed point sources. Although a cumbersome 3D spherical array

is avoided in [125], the reproduced sound field is restricted to be height invariant.

Later on, Maeno et al [126] have achieved spatial ANC with a circular array design.

However, this method only considers the even spherical harmonics, hence it can

only achieve noise reduction within the x-y plane. Zhang et al [97] have developed a

spatial sound field reproduction method based on Hilbert space spherical harmonic

analysis. This method has achieved a 3D sound field reproduction with multiple

circular loudspeaker arrays. However, it requires the distance between two adjacent

circular arrays to be within a given range. As a result, the arrays are placed over

the entire region which highly restricts the users movement. In [127] and [128],

Gupta and Abhayapala introduce 3D spatial sound field recording and reproduction

methods that use multiple circular arrays. Based on azimuth harmonic analysis,

these two papers do not restrict the positioning of arrays in order to cover the
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entire region, which provides us the building blocks for constructing a realizable

3D spatial ANC system with multiple circular arrays.

The previous work on spatial ANC always focus on an empty region of interest

where free-space is assumed inside. However, we design ANC systems for people

to enjoy the silence. Therefore, the presence of users should be taken into consid-

eration. The scattering effect of a human head has been studied in [129], [130] for

personal audio system purposes. Betlehem and Poletti have developed a spatial

sound field reproduction system with a rigid spherical scatter inside the region of

interest in space domain based on mode matching [131]. While most of the previ-

ous work focus on modelling and reducing the scattering sound field, there are few

studies on the scattering effect in a spatial ANC system. In this chapter, we focus

on analysing the scattered sound field in the region of interest in space domain. As

we are often not able to perfectly cancel the noise field, it is valuable to study the

influence of the scattering effect of the users in a spatial ANC system to increase

the noise reduction performance.

In this chapter, we propose a spatial ANC structure with multiple circular

microphone and loudspeaker arrays (shown in Fig. 3.1), along with a feed-forward

adaptive filtering algorithm in space domain to achieve ANC over the whole 3D

region of interest which includes a human head modeled as a rigid scatter. The

ANC method utilizes a novel flexible array geometry isolated in the upper hemi-

sphere such that does not obstruct users entering and exiting the region of interest.

3.2 Problem Formulation

In this section, we review the basic ideas of recording a noise field and performing

noise reduction inside a 3D source free region Ω, and relate these algorithms to the

current problem.

We use the same spherical coordinates x = (r, θ, φ) to describe a location of

a point x where r is the distance to the point from the origin, θ is the elevation

angle downwards from the z-axis from 0 to π, φ denotes the azimuth angles, and

the origin refers to the centre of Ω. Specifically, the radius of a circular array is

defined as the distance from any point on the circle to the origin of the region,

instead of to the centre of the circle.



34 A realistic multiple circular array system for ANC over 3D space

x

y

z

Figure 3.1: Geometry of microphones (•) and loudspeakers (◦) with the region of
interest being the lower hemi-sphere of the shaded area for the MCAD method.

The residual noise field at an arbitrary point x = (r, θ, φ) inside a spherical

region of interest Ω of radius rΩ can be expressed as [19]

e(x, k) ≈
N∑
n=0

n∑
m=−n

α(e)
nm(k)jn(kr)Pnm(cos θ)Em(φ), (3.1)

where order n and mode m are integers, N = dkrΩe [80], α
(e)
nm(k) is a set of spherical

harmonic coefficients representing the residual sound field inside Ω, k = 2πf/c is

the wave number, f is the frequency of the noise signal, c is the speed of sound,

jn(kr) is the spherical Bessel function [110], Em(φ) =
√

(1/2π)eimφ is the normal-

ized exponential function and Pnm(cos θ) is the normalized associated Legendre

function given by

Pnm(cos θ) =

√
2n+ 1

2

√
(n− |m|)!
(n+ |m|)!

Pn|m|(cos θ), (3.2)
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where Pn|m|(cos θ) refers to the associated Legendre function.

If we have a continuous spherical microphone array, then we can integrate the

sound pressure e(x, k) with respect to θ and φ to obtain [21]

α(e)
nm(k) =

∫ 2π

0

∫ π
0
e(x, k)P∗nm(cos θ)E−m(φ) sin θdθdφ

jn(kr)
, (3.3)

where (·)∗ refers to the complex conjugation.

However, when there are only circular microphone arrays, we can only integrate

the sound pressure over φ but not over θ in (3.3). Therefore, we are not able

to obtain the spherical harmonic coefficients α
(e)
nm(·) of the sound field inside Ω.

To propose an efficient circular array geometry, we first obtain azimuth harmonic

coefficients on the ~-th circular microphone array with r = r~ and θ = θ~ as [127]

am(r~, θ~, k)
4
=

∫ 2π

0

e(r~, θ~, φ, k)E−m(φ)dφ. (3.4)

By substituting (3.1) to (3.4), we obtain the relationship between the spherical

harmonic coefficients α
(e)
nm(·) and the azimuth harmonic coefficients am(·) as

am(r~, θ~, k) ≈
N∑

n=|m|

α(e)
nm(k)jn(kr~)Pnm(cos θ~). (3.5)

To reduce the noise inside Ω, we need to reproduce an anti-noise field with

its spherical harmonic coefficients given by α
(s)
nm(·) = −α(e)

nm(·). From previous

work [80], we know the aperture function of a continuous spherical loudspeaker

array at the point (R, θ`, φ`) can be expressed as

ζs(θ`, φ`, k) ≈
N∑
n=0

n∑
m=−n

σnm(k)Pnm(cos θ`)Em(φ`), (3.6)

and the spherical harmonic coefficients due to this loudspeaker array are

α(s)
nm(k) = 4πikh(1)

n (kR)σnm(k), (3.7)

where h
(1)
n (·) is the spherical Hankel function of the first kind. This method is called
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mode-matching since it matches the desired sound field α
(s)
nm(·) and the aperture

function of loudspeakers σnm(·) mode by mode.

However, with these σnm(·) in hand, it is not possible to obtain the aperture

function of a horizontal continuous circular loudspeaker in (3.6). We have these

circular aperture functions at the τ -th loudspeaker array with θ = θτ defined

as [128]

ζ(τ)(φ
(τ)
` , k)

4
=

∞∑
m=−∞

β(τ)
m (k)Em(φ

(τ)
` ), (3.8)

where

β(τ)
m (k) =

∫ 2π

0

ζ(τ)(φ
(τ)
` , k)E−m(φ

(τ)
` )dφ

(τ)
` , (3.9)

is defined as circular harmonics of the aperture function. The resulting secondary

sound pressure at a point x due to this circular loudspeaker aperture is

y′(x, k) =

∫ 2π

0

ζ(τ)(φ
(τ)
` , k)

eik‖Y −x‖

‖Y − x‖
dφ

(τ)
` , (3.10)

where Y is a point on the circular loudspeaker aperture. With (3.8), (3.10) and the

addition theorem of the Green’s function, the sound field due to β
(τ)
m (k) is derived

as

y′(x, k) ≈
N∑
n=0

n∑
m=−n

4πikh(1)
n (kRτ )Pnm(cos θτ )

× β(τ)
m (k)jn(kr)Pnm(cos θ)Em(φ).

(3.11)

Hence, the spherical harmonic coefficients of the sound field in Ω due to the circular

harmonics of multiple circular loudspeaker arrays in the free space can be expressed

as

α(s)
nm(k) =

F∑
τ=1

4πikh(1)
n (kRτ )Pnm(cos θτ )β

(τ)
m (k) for n ≥ |m|. (3.12)

According to the discussion above, we are not able to directly record the spher-

ical harmonic coefficients α
(e)
nm(·) of the residual sound field in Ω. Instead, we need

to record a series of am(·) for solving α
(e)
nm(·). Similarly, we are not able to obtain

the aperture function of loudspeakers from spherical aperture coefficients σnm(·) by
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mode matching. We need to obtain the circular harmonics of the aperture functions

βm(·) from the desired sound field given by α
(s)
nm(·) = −α(e)

nm(·). At first glance, we

can achieve these two requirements by solving the least mean square problems in

(3.5) and (3.12). However, we risk our system having singular values associated

with matrix inversion and spatial aliasing if we randomly place the arrays. In-

stead, a carefully designed array geometry is necessary to achieve unrestricted user

movement and a guaranteed existence of the solutions for α
(e)
nm(·) and βm(·).

We utilize the natural properties of Bessel functions and Legendre functions

to obtain α
(e)
nm(·) from a given set of am(·) in (3.5) with a specific microphone

array geometry in Sec. 3.3.1. In Sec. 3.3.2, a loudspeaker array is designed to

derive the solution of the circular aperture function βm(·) based on a desired set of

α
(s)
nm(·). In addition to the array design, we address other problems including; 1)

In reality, the user of our system causes scattering in the region of interest; 2) For

real time ANC, we need an adaptive filtering algorithm in the spherical harmonic

domain. We detail the solutions of these two problems in Sec. 3.4 and Sec. 3.5.1,

respectively.

3.3 Array Configuration

In this section we continue to design a N -th order spatial ANC system employing

circular arrays. We first discuss the placement of continuous circular microphone

and loudspeaker arrays for recording and reproduction, respectively, and then dis-

cretize those circular arrays for realistic implementation. For brevity, we assume

N is even for the subsequent derivations. If N is odd, some of the derivation needs

to be adjusted correspondingly.

3.3.1 Microphone array design

We detail the design procedure of obtaining the spherical harmonic coefficients

αnm(k) of a given region of interest with multiple circular array in this subsection.

To configure the placement of microphones, we separate spherical harmonic

coefficients αnm(k) into even-coefficients (n + |m| is even) and odd coefficients

(n+ |m| is odd). Furthermore, we separate the even coefficients into α00(k) and the
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remaining even coefficients αe
m = [α|m|m, α(|m|+2)m, · · · , αNm]T , and separate the

odd coefficients into zero mode odd coefficients αo
0 = [α10, α30, · · · , α(N−1)0]T and

the remaining odd coefficients αo
m = [α(|m|+1)m, α(|m|+3)m, · · · , α(N−1)m]T . For the

remainder of this subsection we discuss how to record each sub-set of coefficients.

α00(k) estimation: By inspecting (3.5), we observe that at r = 0, the only

active coefficient is α00(k) since jn(0) = 0 for n > 0. Hence, we can obtain α00(k)

by placing a single microphone at the origin as

α00(k) =
a0(0, 0, k)

P00(cos 0)
=
√

2a0(0, 0, k), (3.13)

where a0(0, 0, k) is calculated by (3.4).

αe
m estimation: We notice that the normalized associated Legendre function

has a property of

Pn|m|
(

cos
π

2

)
= Pn|m|(0)

= 0 n+ |m| is odd,

6= 0 n+ |m| is even,
(3.14)

such that only even coefficients are active with θ = π/2 (on the x-y plane) in

(3.5). For a N -th order system, we have maximum N/2 − 1 elements in αem with

a specific mode m, excluding α00(k). Hence, we need De = N/2− 1 arrays on the

x-y plane with θ~ = π/2 and radius r~, ~ = 1, 2, · · · , De, respectively, to obtain all

the elements in αe
m, given by

αe
m = J e(−1)

m am, (3.15)

where am = [am(r1,
π
2
, k), am(r2,

π
2
, k), · · · , am(rDe ,

π
2
, k)]T is obtained from (3.4),

and J e(−1)
m is the inverse matrix of

J e
m =


J

(1)
|m|m J

(1)
(|m|+2)m . . . J

(1)
Nm

...
. . .

...

J
(De)
|m|m J

(De)
(|m|+2)m . . . J

(De)
Nm

 , (3.16)

where J
(~)
nm = jn(kr~)Pnm(cos θ~).
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We select the radii of each array to avoid spherical Bessel zeros and to make

sure that jn(kr~) 6= 0 for k ∈ [kl, kh], where kl and kh are the lowest and the

highest wave number of the noise signal we focus on, respectively. Meanwhile, we

uniformly space the arrays in the range of (0, rΩ) as best as possible while avoiding

Bessel zeros. Therefore, we avoid the singularity of matrix J e
m so that the system

does not rely on the ability of the least squares for matrix inversion. One of the

arrangements can be:

r~ =
2

k0

,
4

k0

, · · · , N
k0

, (3.17)

where k0 = N/rΩ. We also note that more circular arrays can be applied for

improving the accuracy of the measurements. In this case, we use J e†
m, the Moore-

Penrose inverse of J e
m instead of J e(−1)

m in (3.15).

αo
0 estimation: When θ = 0, which refers points along the z-axis, we have

Pnm(cos 0) = Pnm(1)

= 0 m 6= 0

6= 0 m = 0
(3.18)

such that the sound field on the z-axis only contains the components with mode

m = 0. A similar property is found at θ = π. Since we only want the microphones

above the head (in the upper hemi-sphere), we do not use θ = π. For a N -th order

system, there are N/2 elements in αo
0. Hence, we put Dz = N/2 microphones on

the z-axis (θz~ = 0) at (rz~, 0, 0), q = 1, 2, · · · , Qz. In addition, we have already

acquired even αe
0 = [α00, α20, · · · , αN0]T by (3.15), which allows us to derive

αo
0 = J z,o†0 az

0 − J
z,o†
0 J z,e

0 α
e
0, (3.19)

where az
0 = [a(rz1, 0, k), a(rz2, 0, k), · · · , a(rzDz , 0, k)]T , J z,o†

0 is the Moore-Penrose

inverse of J z,o
0 given by

J z,o
0 =


J

(z1)
10 J

(z1)
30 . . . J

(z1)
(N−1)0

...
. . .

...

J
(zDz)
10 J

(zDz)
30 . . . J

(zDz)
(N−1)0

 , (3.20)

and J z,e
0 is of the same expression of J z,o

0 but the order n is even, varying from 0
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to N . The selection of rz~ follows the same rules in choosing r~ on the x-y plane.

αo
m estimation: For a 1-st order system, we have already finished estimating

all the spherical harmonic coefficients after the previous three steps. For a N -th

order system where N > 1, there are some odd coefficients that remain unknown.

We define Do
4
= max{n − |m|} where αnm(k) remains unknown. We place Do

circles parallel to the x-y plane at (ro~, θo~, φ), where q = 1, 2, · · · , Do. For the ~-th

circle, we select the radius ro~ to be No~/k0, where No~ is the highest order of the

unknown αnm(k) with n − |m| = ~. θo~ is chosen such that Pn|m|(cos θo~) 6= 0 for

all remaining modes where n − |m| = ~, which can be π/3 for ~ = 1 and π/6 for

~ = 2. As the normalized associate Legendre function is symmetric to θ = π/2,

we can always find a θo~ < π/2 to meet the requirement, which refers to this array

being in the upper hemi-sphere of Ω. With the given αe
m in (3.15) and αo

0 in (3.19),

along with (3.5) we derive

αo
m = Jo†

mam − Jo†
mĴ

e
mα

e
m, (3.21)

where Jo
m is given by

Jo
m =


J

(o1)
(|m|+1)m J

(o1)
(|m|+3)m . . . J

(o1)
(N−1)m

...
. . .

...

J
(oDo)
(|m|+1)m J

(oDo)
(|m|+3)m . . . J

(oDo)
(N−1)m

 , (3.22)

J e
m is similar to Jo

m when the order is even and is varying from |m| to N , and

am = [a(ro1, θo1, k), a(ro2, θo2, k), · · · , a(roDo , θoDo , k)]T .

With (3.15), (3.19) and (3.21), we obtain the full set of spherical harmonic

coefficients αnm(k) with circular arrays of microphones isolated to the upper hemi-

sphere, on and above the x-y plane, and along the z-axis.

3.3.2 Loudspeaker array design

Since the spherical harmonic decomposition is valid only in a source free region,

we are unable to place loudspeakers inside Ω. Hence, for loudspeaker array design,

it is not practical to consider the same method that we proposed in Sec.3.3.1 with

the spherical harmonics separated into even and odd components.
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We observe in (3.12) that α
(s)
nm(k) is only influenced by βm(k) = [β

(1)
m (k), β

(2)
m (k),

· · · , β(F )
m (k)] when n ≥ |m|. For example, α

(s)
NN(k) and α

(s)
N−N(k) are only influenced

by βN(k). Additionally, βm(k) controls the sound field along the degree m but not

order n. Based on this observation, we address the location of loudspeaker arrays

to calculate the azimuth aperture function βm(k) with a given set of α
(s)
nm(k).

For |m| = N coefficients: Consider (3.12) with |m| = N , we have

α
(s)
NN(k) =

F∑
τ=1

4πikh
(1)
N (kRτ )PNN(cos θτ )β

(τ)
N (k), (3.23)

where there is only one coefficient α
(s)
NN(k) to be controlled by β

(τ)
N (k). In other

words, we only need one circular array of loudspeakers to have one aperture function

β
(1)
N (k). Hence, with a desired α

(s)
NN(k), we calculate β

(1)
N (k) by

β
(1)
N (k) =

α
(s)
NN(k)

4πikh
(1)
N (kR1)PNN(cos θ1)

. (3.24)

By examining (3.24), we observe that the placement of this loudspeaker array is

required to avoid the zeros of the spherical Hankel function h
(1)
N (kR1) and the

associated Legendre function PNN(cos θ1). One solution is placing the first circle

on the θ1 = π/2 x-y plane because we know that PNN(cos π/2) 6= 0 from (3.18).

For |m| = N−1 coefficients: We observe that β
(τ)
N−1(k) influences two coefficients

α
(s)
N−1N−1(k) and α

(s)
NN−1(k). Hence, we need at least two circular aperture functions

β
(1,2)
N−1(k) to realize the desired sound field coefficients. We can reuse the first circle

(τ = 1), and place another circle at an elevation angle θ2 such that PNN−1(cos θ2) 6=
0. From (3.12) we know

α
(s)
N−1N−1(k) =

2∑
τ=1

4πikh
(1)
N−1(kRτ )

× PN−1N−1(cos θτ )β
(τ)
N−1(k),

(3.25)

and

α
(s)
NN−1(k) =

2∑
τ=1

4πikh
(1)
N (kRτ )PNN−1(cos θτ )β

(τ)
N−1(k). (3.26)
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Therefore, we obtain βN−1(k) as[
β

(1)
N−1

β
(2)
N−1

]
= H−1

N−1

[
α

(s)
(N−1)(N−1)(k)

α
(s)
N(N−1)(k)

]
, (3.27)

where Hm is given by

Hm =


H

(1)
|m|m . . . H

(N−m+1)
Nm

...
. . .

...

H
(1)
|m|m . . . H

(N−m+1)
Nm

 , (3.28)

and H
(τ)
nm = 4πikh

(1)
n (kRτ )Pnm(cos θτ ). To ensure that the second array does not

influence the |m| = N series coefficients, we set β
(2)
N = 0.

For |m| = N − 2 coefficients: Similar to the discussion we had for |m| = N − 1

series coefficients, now we need to calculate three unknown aperture functions

for three desired sound field coefficients α
(s)
N−2N−2(k),α

(s)
N−1N−2(k) and α

(s)
NN−2(k).

Reusing the first and the second array, we set one more circular array at θ3 such

that PNN−2(cos θ3) 6= 0. Hence, we haveβ
(1)
N−2

β
(2)
N−2

β
(3)
N−2

 = H−1
N−2

α
(s)
(N−2)(N−2)(k)

α
(s)
(N−1)(N−2)(k)

α
(s)
N(N−2)(k)

 . (3.29)

Additionally, we set β
(3)
N = 0 and β

(3)
N−1 = 0 to avoid the influence on previous series

of coefficients. Repeat the process for |m| = N − 3, N − 4, · · · , 1 coefficients.

For |m| = 0 coefficients: There are N+1 coefficients in this series. We reuse the

previous N circles and place an additional circle at θN+1 such that PN0(cos θN+1) 6=
0 to calculate β

(N+1)
0 with (3.12). The simplest solution is θN+1 = 0, which refers

to a single loudspeaker on the z-axis. We set β
(N+1)
m = 0 for m = 1, 2, · · · , N .

In total, we utilize F = N+1 circular arrays to reproduce the full set of desired

sound field coefficients α
(s)
nm(k). These arrays are also used to estimate β

(τ)
m (k) when

m is negative, starting from m = −N , with the same equations as (3.24), (3.27)

and (3.29).

Since the associated Legendre function is symmetric about θ = π/2, we are
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able to choose θτ ≤ π/2 for all F circular arrays, which allows for no array to be

below the x-y plane. Furthermore, since spherical Hankel functions have no zeros,

the radii of these loudspeaker arrays are not restricted by our proposed method.

These loudspeaker radii share the requirements of traditional MIMO ANC systems.

Secondary loudspeakers should be put outside the region of interest while also

remaining closer to the origin than the reference microphones or the noise sources.

For a reverberate room, we suggest placing the secondary loudspeakers closer to

the region of interest for a higher direct to reverberate radio as this increases the

robustness of the system [9]. One of the benefits of our proposed loudspeaker

array design is that the placement of circular loudspeaker arrays is flexible. Both

radii and elevation angles are flexible to within a range for the convenience of

construction, making the system more practically viable.

3.3.3 Discretization and sensor placement

We have assumed the arrays of microphone and loudspeaker to be continuous in

the previous discussion. In this sub-section, we discretize them into a finite number

of sensors for the purpose of practical realization following the Nyquist-Shannon’s

sampling theorem.

For the ~-th microphone array with radius of r~, it can record up to N~ = dkr~e
order of coefficients. We need at least Q~ = 2N~ + 1 microphones uniformly placed

on the circle. Thus, we approximate (3.4) as

am(r~, θ~, k) ≈ 2π

Q~

Q~∑
q=1

S(r~, θ~, φq, k)E−m(φq), (3.30)

For loudspeaker arrays, we define the highest active mode of one circular array

as Nτ = N − τ + 1, where β
(τ)
m (k) = 0 for m > Nτ . At least Lτ = 2Nτ + 1

loudspeakers are required uniformly on the circle. We approximate (3.9) as

β(τ)
m (k) ≈ 2π

Lτ

Lτ∑
`=1

ρ(φ`, k)E−m(φ`). (3.31)



44 A realistic multiple circular array system for ANC over 3D space

Hence, the aperture function of the `-th loudspeaker at the τ -th circle is given by

ζ(φτ` , k) ≈ 2π

Lτ

Nτ∑
m=−Nτ

β(τ)
m (k)Em(φτ` ). (3.32)

3.3.4 Array design procedure

We review the design process and give a general guidance of setting up the pro-

posed spatial ANC system in this section. We note here that we focus on the

geometric design of secondary loudspeakers and error microphones. Although ref-

erence microphones are often necessary in ANC systems, the placement of reference

microphones is out of the scope of this work. The design procedure is as follows:

1. Determine the highest desired frequency band k and the radius of the region

of interest rΩ.

2. Calculate the maximum order of the system, given by N = dkrΩe.

3. Determine the number of microphone arrays. At least N/2 arrays on the x-y

plane (including one at the origin), N/2 microphones on the z-axis and N/2

arrays parallel to the x-y plane are necessary.

4. Determine the radii of the microphone arrays. Make sure these radii avoid

the spherical Bessel zeros for the target frequency band and have a good

diversity over (0, rΩ).

5. Determine the elevation angle θ~ for each array parallel to the x-y plane.

Select θ~ such that Pn(n−~+1)(cos θ~) 6= 0 for all 1 < n < N . If the lower

hemi-sphere of the region of interest is desired to be empty, choose θ~ < π/2.

6. For each circular array, calculate the maximum spherical harmonic order

N~ = dkr~e and uniformly place at least 2N~ + 1 microphones on the circle.

7. Determine the number of loudspeaker arrays, given by N + 1.

8. Determine the elevation angle θτ of those loudspeaker arrays. For the τ -th

array, choose θτ such that PN(N−τ+1)(cos θτ ) 6= 0. We suggest θ1 = π/2 and
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θN+1 = 0. If the lower hemi-sphere of the region of interest is desired to be

empty, choose θτ < π/2.

9. Determine the radii of the loudspeaker arrays. Those radii should be larger

than rΩ, but smaller than the radii of the noise sources and radii of the

reference microphones.

10. For each circular array, calculate the maximum active spherical harmonic

order Nτ = N − τ + 1 and uniformly place at least 2Nτ + 1 loudspeakers on

the circle.

3.4 Influence of human head scattering on sound

field recording

In the previous sections, we assume the region of interest Ω is a free-space region

without sources or scatters. However, this assumption is not always true since

users (human heads) need to stay inside the region to enjoy the noise reduction.

In other words, in the application of a spatial ANC system, we often have to deal

with the scattering sound field instead of the free-space sound field. In this section,

we modify our proposed method to consider the human head as a spherical rigid

scatterer inside Ω.

For a spherical rigid scatterer of radius ra at the center of Ω, the expression

(3.1) changes to [19]

e(x, k) ≈
N∑
n=0

n∑
m=−n

α(e)
nm(k)bn(kr)Pnm(cos θ)Em(φ), (3.33)

where

bn(kr) = jn(kr)− jn(kra)
′

h
(1)
n (kra)′

hn(kr), (3.34)

and (·)′ refers to the differential operator, r is defined with respect to the centre of

the scatter. However, it is not convenient to fix the user’s head at the origin of Ω.

Moreover, as detailed in Sec.3.3.1, we place one error microphone at the origin of Ω

for residual sound field recording, making it impossible for the user to place their
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head at the same position. Therefore, we investigate the case that the scatterer is

inside the region of interest but not co-centered.

Define the origin of the region of interest Ω as O and the origin of the scatterer

as O1. As the scatterer is located inside the region, we have rΩ > |x̂|, where

x̂ = O − O1 = (|x̂|, θx, φx). Thus, the location at an arbitrary point inside Ω can

be written as x = (r, θ, φ) with respect to O and x1 = (r1, θ1, φ1) with respect to

O1. With the addition theorem [113], we have

jn(kr1)Ynm(θ1, φ1) =
∞∑
ν=0

ν∑
µ=−ν

T µmnν (kx̂)jν(kr)Yνµ(θ, φ), (3.35)

and

h(1)
n (kr1)Ynm(θ1, φ1) =

∞∑
ν=0

ν∑
µ=−ν

T µmnν (kx̂)h(1)
ν (kr)Yνµ(θ, φ), (3.36)

where

T µmnν (kx̂) = 4πiν−n
n+ν∑
u=0

iu(−1)µ
√

(2n+ 1)(2ν + 1)(2u+ 1)

4π

× ju(k|x̂|)Y ∗u(µ−m)(θx, φx)W1W2,

(3.37)

with

W1 =

(
n ν u

0 0 0

)
, W2 =

(
n ν u

m −µ µ−m

)
, (3.38)

denoting Wigner 3− j symbols [113]. With (3.35) and (3.36), we derive

bn(kr1)Ynm(θ1, φ1) =
∞∑
ν=0

ν∑
µ=−ν

T µmnν (kx̂)bν(kr)Yνµ(θ, φ). (3.39)

As a result, the sound pressure at a point with respect to O1 and with respect to
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O is expressed as

z(x1, k) ≈
N∑
n=0

n∑
m=−n

αnm(k)bn(kr1)

× Pnm(cos θ1)Em(φ1)

=
N∑
n=0

n∑
m=−n

∞∑
ν=0

ν∑
µ=−ν

αnm(k)T µmnν (kx̂)

× bν(kr)Pνµ(cos θ)Eµ(φ) = z(x, k).

(3.40)

By examining (3.40), we obtain the sound pressure at the point with respect to O

as

z(x, k) =
∞∑
ν=0

ν∑
µ=−ν

α
′

νµ(k)bν(kr)Pνµ(cos θ)Eµ(φ), (3.41)

where

α
′

νµ(k) ≈
N∑
n=0

n∑
m=−n

αnm(k)T µmnν (kx̂). (3.42)

Comparing (3.33) and (3.41), we observe that the spherical harmonic decom-

position utilizes bn(·) instead of jn(·) when there is a scatterer inside the region

of interest, regardless of whether the scatterer is co-centered with the region of

interest or not. Therefore, we are able to model the human head scattering by

modifying all of the spherical Bessel functions jn(·) in our proposed method to

bn(·) with respect to the origin of Ω regardless of the location of the human head.

Furthermore, the movement of the scatter only influences the secondary channels

(impulse responses from the secondary loudspeakers to the error microphones) but

does not influence the algorithm for noise reduction. This supports that if online

secondary channel estimation [132] is applied, users are able to move freely inside

the region of interest.
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3.5 Design example

3.5.1 Feed-forward adaptive filtering for spatial ANC

In this section, we design a feed-forward adaptive filter in the spherical harmonic

domain based on filtered-X LMS algorithm, for the proposed geometry of secondary

loudspeakers and error microphones. A feed-forward adaptive filter is selected

because, in practice, we are more likely to face wide-band noise, where a feedback

adaptive filter is not effective [9].

The residual noise inside the region of interest Ω is the summation of the noise

field by outside noise sources, and the anti-noise field by loudspeaker arrays, where

we desire

α(s) = −α(d), (3.43)

where α(d) is the noise field coefficients vector and α(s) is the desired anti-noise

sound field coefficients vector generated by secondary loudspeaker arrays. We omit

the frequency component k in the following derivation for simplicity. The residual

sound field coefficients in Ω are given by

α(e) = α(d) +α(s) = α(d) +Nref S̃W , (3.44)

where S̃ is the spherical harmonic coefficients matrix of the secondary channel

transfer function from each secondary loudspeaker to the error microphones, Nref
is the known reference signal, andW is the vector with elements w(`, t) as the filter

weight for the `-th loudspeaker at the t iteration. In the free-space, the channel

coefficient S̃nm(`, k) of the `-th loudspeaker at (R`, θ`, φ`) for order n, mode m, and

wave number k, is given by [19]

S̃nm(`, k) = 4πikh(1)
n (kR`)Pnm(cos θ`)E−m(φ`). (3.45)

In a simulated room, S̃nm(`, k) can be obtained with the image source method in

the spherical harmonic domain [133]. For practical implementation, the transfer

functions can be obtained by measuring the impulse response between the `-th

loudspeaker and the error microphones in advance. The coefficients S̃nm(`, k) can
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then be calculated using the method we address in Sec. 3.3.1 and Sec. 3.4.

We define the cost function as

ξ = α(e)∗α(e). (3.46)

Taking the derivative of ξ with respect to W , we obtain

∇ξ =
∂ξ

∂W
= 2α(e)∂α

(e)

∂W
= 2α(e)(Nref S̃)∗. (3.47)

Hence, we obtain the filter weights update equation as [9]

W (t+ 1) = W (t)− λ

2
∇ξ = W (t)− µα(e)(Nref S̃)∗, (3.48)

where t is the iteration index and λ is the step size. Thus, the updated driving

signal of the `-th loudspeaker at time iteration t is given by

Y (`, t) = Nrefw(`, t), (3.49)

where w(`, t) is the `-th element of W at iteration t.

This adaptive algorithm also works with multiple noise sources and multiple

reference signals, where Nref in (3.44) becomes a vector and W becomes a matrix

with each row representing the loudspeaker weights with regards to one reference

signal [9].

We note that the adaptive filtering algorithm remains the same with different

loudspeaker geometries since the update equations for obtaining the loudspeaker

weights (3.48) do not rely on the spherical harmonic or azimuth harmonic de-

composition of the loudspeaker aperture functions. Thus, the proposed algorithm

can also work with conventional spherical loudspeaker arrays or any geometry of

loudspeakers. Furthermore, the proposed geometry in Sec. 3.3.2 is guaranteed to

be able to control any noise field with its recorded spherical harmonic coefficients

α(e). However, using fewer loudspeakers or a different geometry may not reach the

same ideal ANC performance over the region of interest. The highest performance

of a certain loudspeaker geometry relies on its sound field reproduction ability in

spherical harmonic domain, which can be estimated by [134].
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3.5.2 Simulation results

In this section, we first evaluate the noise reduction performance of the proposed

multiple circular array geometry (MCAD) over the x-y, x-z, and y-z planes. Then,

we compare its overall noise reduction performance and the convergence speed

inside the full 3D region against the conventional spherical array geometry (SAD)

[90], with the same adaptive algorithm detailed in Sec. 3.5.1. Finally, we test the

robustness of the proposed MCAD method by evaluating the overall noise reduction

performance inside the region with random positioning errors and calibration errors.

Simulation Setting: The radius of the region of interest is set to be rΩ = 0.25

m, where a human head can fit within the lower hemi-sphere. In general, ANC

systems are targeting noise signals up to 400 Hz, with passive control being more

effective with high-frequency noises. Hence, we construct an N = dkre = 2-nd

order system. A single noise source is located at (3 m, π/4, π/4), with a reference

microphone nearby. The noise is set to be a combination of 250 Hz and 350 Hz

mono-tone signals. A 60 dB signal to noise ratio (SNR) white Gaussian noise is

added to each microphone, where the ‘signal’ in SNR refers to the residual noise

signal at the microphone, and the ‘noise’ in SNR refers to the thermal noise of the

microphone itself. We test the system in both free-space and a room environment.

The room environment is simulated by the image source method [133], with 5 m

× 4 m × 3 m dimensions and wall reflection coefficients of 0.7, which is considered

to be a reasonable simulation of an office room.

Array Description: We apply multiple circular arrays to construct the proposed

MCAD method according to our discussion in Sec. 3.3. A circular array with 5

microphones is set on the x-y plane with a radius of 0.25 m. A second circular array

with 5 microphones is set at θ = π/3 with a radius of 0.25 m. A single microphone

is placed on the z-axis with a height of 0.12 m, and the final single microphone is

set at the origin. A circular loudspeaker array with 7 loudspeakers is set on the x-y

plane with a radius of 2 m. A circular array with 4 loudspeakers is set at θ = π/3

with a radius of 2 m. A single loudspeaker is placed on the z-axis with a height

of 1.5 m. In total, we use 12 microphones and 12 loudspeakers, all of them are

within the upper hemi-sphere, leaving the lower hemi-sphere free of microphones

and loudspeakers, as shown in Fig. 3.1.
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For the SAD method, we use a spherical microphone array with 9 microphones

regularly distributed on a sphere of 0.25 m radius. We place 9 loudspeakers with

the same geometry of microphones on a concentric sphere with a radius of 1 m.

Noise Reduction Performance: We first evaluate the noise reduction perfor-

mance of the MCAD method at different planes. Figure 3.2 shows the noise reduc-

tion performance at the x-y plane (a,b), x-z plane (c,d), and y-z plane (e,f) in a

free-space and room environment, respectively. The noise reduction performance

is defined as

η(x) = 10 log10

∑
k E{|e(x, k)|2}∑
k E{|d(x, k)|2}

, (3.50)

where e(x, k) is the residual noise pressure at the point x, d(x, k) is the original

noise pressure without ANC at the point x, and E{·} is referred to as the expecta-

tion. We observe that the MCAD method can reduce the noise level in the x-y, y-z,

and x-z planes within the focus radius for both the free-space and the simulated

room. Hence, the MCAD method is considered to achieve ANC over the whole

region of interest. Performance inside the room is worse than in free-space, as the

sound field is more complicated due to reverberation.

Robustness to Microphone Noise: Figure 3.3 shows the variation of average

noise reduction performance over the region of interest during the noise reduction

process over time (iterations), with the microphone SNR to be 40 dB and 60 dB.

This result further supports that both the SAD method and the MCAD method

can achieve ANC inside the whole 3D region in both free-space and in a room.

While the performance of the MCAD method is not as stable as the SAD method

in a room, it still achieves a more than 20 dB noise reduction after convergence,

which is considered to be satisfactory performance. The convergence speed of

the MCAD method becomes slower after a few iterations than the SAD method.

Meanwhile, the MCAD method is more sensitive to the SNR, as we observe that

the noise reduction level of the MCAD method keeps fluctuating during and after

convergence. The fluctuation of the performance is relatively large with a high

SNR. This is because the MCAD method solves more minimization problems than

the SAD method. In the MCAD method, (3.15), (3.19) and (3.21) are required

to be solved in order to obtain a set of spherical harmonic coefficients. Each

equation involves matrix inversion, which is more sensitive to measurement errors.
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Figure 3.2: Noise reduction performance of the MACD method in the free-space
(first column) and in the room (second column) at x-y, x-z, y-z planes.
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Figure 3.3: Average noise reduction performance of MCAD method and SAD
method inside the whole region in free-space (a,b) and in room (c,d) over iter-
ations with different SNR.
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(a) Position error on microphones
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Figure 3.4: Average noise reduction performance of the MCAD method and the
SAD method against the positioning error with a length of εp and a random direc-
tion added to microphones (a) and loudspeakers (b).

Moreover, the calculation of odd coefficients in the MCAD method is reliant on the

correct calculation of even coefficients in (3.21). A higher SNR leads to a higher

error when we estimate even coefficients by (3.15), and hence a higher error in odd

coefficient estimation by (3.21). Whereas, the SAD method calculation of different

order/mode coefficients are independent to others.

Robustness to Positioning errors: Figure 3.4 shows the change of average

noise reduction performance against positioning errors. We add a positioning er-

ror of length εp with a random direction on the location of each microphone or

loudspeaker. We then estimate the average noise reduction performance over the

region of interest after convergence. We repeat the simulation several times to

evaluate the average performance. We observe that the average noise reduction

performance is about the same when εp increases in a limited range. However,

the distribution spreads more as εp increases, resulting in more randomness on the

noise reduction performance. Compared to the SAD method, the noise reduction

performance of the MCAD method is influenced more by the positioning error. We

argue that although the proposed MCAD method has less tolerance on position-

ing error, the noise reduction performance still varies within an acceptable range
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Figure 3.5: Average noise reduction performance of the MCAD method and the
SAD method against the Gaussian distributed random microphone calibration er-
rors between [1− εc, 1 + εc].

(more than 20 dB with 2 cm positioning error on random direction). Meanwhile,

the positioning error of loudspeakers is not as significant as the positioning error

of the microphones, for both the MCAD method and the SAD method. This is

within our expectation as the proposed adaptive filtering algorithm does not rely

on the circular/spherical aperture function of the loudspeaker arrays, but instead

highly relies on the recording accuracy of the spherical harmonic coefficients of the

residual sound field. Thus, accurate positioning of error microphones contributes

more towards noise reduction performance.

Robustness to Microphone Calibration errors: Figure 3.5 shows the average

noise reduction performance against microphone calibration error. We estimate

the microphone calibration error by adding a Gaussian distributed random weight

between [1− εc, 1+ εc] to the recorded signal. We observe that the calibration error

results in a decrease of the noise reduction performance for both methods. The

performance of the proposed MCAD method decreases more when εc increases,

compared to the SAD method. However, this decrease on performance is tolerable

when the calibration error is in a reasonable range, less than 30% in this simulation.

Overall, we observe that the proposed MCAD method is more sensitive with
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measuring error (higher SNR, higher positioning error, and higher calibration error)

than the SAD method. The noise reduction performance of the MCAD method

decreases and fluctuates more than the SAD method with higher system errors.

However, this decrease and fluctuation of the performance is within a acceptable

range. The noise reduction performance remains to be satisfactory at more than 20

dB. As the proposed MCAD method has a realistic geometry of microphones and

loudspeakers, which is an important advantage over the SAD method, we argue

that the proposed method is preferred to a conventional method. In the next

section, we will present experimental results with uncalibrated microphones, to

further support the proposed system’s feasibly and capability in achieving spatial

noise reduction in a realistic environment.

3.5.3 Real world experiment in a room

In this section, we evaluate our proposed method with a practical experiment. We

build a second order multiple circular array spatial ANC system in a lab-room at

the Australian National University with the dimension of [3.6, 6.7, 2.8] m. Following

the discussion in Sec. 3.3, we implement a circular array with 5 microphones on the

x-y plane with a radius of 0.25 m. Another circular array with 5 microphones is set

at θ = π/6 with a radius of 0.25 m. A single microphone is set on the z-axis with

a height of 0.22 m, and another single microphone is set at the origin. A circular

loudspeaker array with 10 loudspeakers is set on the x-y plane with a radius of

1 m. Another two circular arrays each with 5 loudspeakers are set at θ = π/6

and θ = π/3 with a radius of 1 m, respectively. In total, we use 12 microphones

and 20 loudspeakers, where all of them are located within the upper hemi-sphere

of the region of interest, leaving the lower hemi-sphere free for users. Figure 3.6

shows the experiment setup, where the active microphones and loudspeakers are

circled in red and blue, respectively. We use Grover Notting CR1 speakers (Classic

Audio Designs Pty Ltd.) as secondary sources, and Dayton Audio EMM-6 Electret

Measurement Microphones (Dayton Audio) for recording.

Since we are not able to place a loudspeaker on the ceiling, we instead use a

circular array to replace the single loudspeaker on the z-axis. Therefore, we use

more loudspeakers than required. Furthermore, with the highest frequency of the
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Figure 3.6: The proposed set up for spatial ANC with 12 error microphones (red
circle) and 20 secondary loudspeakers (blue circle) in a lab room.

noise signal to be limited below 300 Hz, the radius of the region of interest can be

up to rΩ = 0.36 m. However, it is not convenient for us to place microphone arrays

on the boundary of the region of interest due to hardware constraints. We find

a circle-shaped piece of wood with a radius of r = 0.25 m to fix the microphone

positions in our lab. Therefore, we set the radius of the microphone array on the

x-y plane to be r = 0.25 m. We reiterate here that one of the advantages of our

proposed method is that the positioning of arrays are flexible within a given range,

and that other configurations may be viable.

Before the experiment, we first measure the system delay by generating a clip

signal with a small loudspeaker near one of the error microphones. As the acoustic

delay from this small loudspeaker to the error microphone can be omitted, the

delay we obtained in the measurement is considered to be purely system delay.

With our set up, this delay is usually around 1219 samples. Then, we estimate the

secondary channels for adaptive filtering by measuring the impulse responses from

each secondary loudspeaker to the error microphone arrays with sinusoidal sweep
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Figure 3.7: Secondary channel measurements from one secondary loudspeaker to
12 error microphones with a scatter in the region of interest.

signals. In total we get 12×20 channels. The first 1219 samples are discarded from

each measurement result to remove the system delay. Figure 3.7 shows the impulse

responses from one of the secondary loudspeakers to all of the error microphones.

We note that as we are unable to calibrate our microphones, the amplitude of these

impulse responses have more disparity than expected. The noise is generated by a

single loudspeaker located 3 m away. We assume the noise signal is known instead of

placing a reference microphone near the noise loudspeaker because the suppression

of the feedback signal from the secondary loudspeakers to the reference microphone

is out of the scope of this work. The noise is generated with a combination of 150

Hz and 200 Hz mono-tone signals. Sampling frequency is set to be 48000 Hz.

We evaluate our proposed method with the above set-up in two scenarios: 1)

Free-space inside the region of interest; 2) A human head model (dummy head) [135]

is placed inside the region of interest.

Figure 3.8 shows the energy of the signal (square of the average amplitude)

recorded by the error microphones in scenario one. The proposed method is enabled
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Figure 3.8: Sound energy measurements at 12 error microphones in a free-space
region of interest with ANC enabled at t = 1 s.

at t = 1 s. We observe that the energy of the recorded signals decreases at all of

the error microphones, which illustrates the effectiveness of our proposed method.

We then place a dummy head in the region of interest and modify our proposed

method with scattering considerations according to Sec. 3.4. Figure 3.9 shows

the energy of the signal recorded (a) by the error microphones and (b) by the

microphones in the ears of the dummy head. The proposed method achieves a

reduction in the noise signals at both error microphones and dummy head ears.

Figure 3.10 shows the frequency spectrum amplitude of the original noise signals

and the reduced signals recorded at the ears of the dummy head. We observe an

average 9.5 dB noise reduction at the focused frequency bins, proving that the

proposed method is reliable for spatial ANC in the real world environment. The

ANC performance in the experiment is lower than the simulation. We consider

this reduction of performance to be reasonable due to the error introduced by

the secondary channel measurements and the unstable environment (temperature,

people movement, etc..).

The influence of the scattering effects of the dummy head is then investigated

by deriving the secondary loudspeaker driving signals with the scattering method
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Figure 3.9: Sound energy measurements (a) at 12 error microphones and (b) at
ears on a dummy head with ANC enabled at t = 1 s.
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Figure 3.10: Frequency spectrum of the noise signals before ANC of 150, 200 Hz
and the residual signals after ANC at both ears of the dummy head.
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Figure 3.11: Noise reduction performance with the scattering method and the free
space method averaged over two ears of the dummy head at different frequencies.

detailed in Sec. IV and the free space method, respectively. We estimate the

residual noise level at the dummy head ears in the region of interest with both

methods over different frequencies by using noise signals of 100, 150, 200, 250, 300,

and 350 Hz, respectively. Figure 3.11 shows the noise reduction performance with

the scattering method and the free space method averaged over the two ears of the

dummy head. Note that we show the noise reduction performance with positive

numbers in Fig. 3.11 such that higher bars mean better performances. We observe

from Fig. 3.11 that the noise reduction performance at the dummy head ears

with the scattering method is higher than the free space method at most of the

frequencies. However, this difference between the two methods is not significant.

We observe a discrepancy at 200 Hz, which we consider that it is due to the

experimental errors. Hence, we believe that the scattering effect of the human

head is negligible such that the region of interest can be considered as a free space.

The scattering effect by the human head is not significant because 1) the size of the

human head is smaller than the wavelength of the noise signal’s frequency contents;
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2) the residual noise level in the region of interest is low after ANC, resulting in

little scattering effect. However, we think the proposed work regarding scattering

effect is still valuable because it provides us the confidence to omit the scattering

due to the human head.

3.6 Conclusions

In this chapter, we address the spatial ANC problem for a 3D region with multiple

circular microphone arrays and loudspeaker arrays. We construct a second order

system in both simulation and experiment to demonstrate the effectiveness of the

proposed method on noise reduction over space, and illustrate by experiment that

the scattering effect of the human head is negligible. Although we use a few more

microphones and loudspeakers than conventional spherical array systems, the pro-

posed method is advantageous in its circular array design that is isolated to the

upper hemi-sphere. This provides a practical design that is easier to position and

implement, while also freeing the lower hemi-sphere for user movement. As a result,

the proposed method in this chapter is a step forward in realizing spatial ANC for

real world applications.
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Chapter 4

ANC over 3D space with remote

microphone technique in the wave

domain

Overview: Conventionally, a spatial ANC system is achieved by using error mi-

crophones evenly distributed over the region of interest, or evenly on the surface

of a spherical region with the spherical harmonic analysis of spatial sound fields

in the wave domain. A major disadvantage for these systems comes from the er-

ror microphone arrays, which have bulky cumbersome designs that block the user

movement into the region. In Chapter 3, we proposed a method using multiple cir-

cular arrays to over come this problem. In this chapter, we propose an alternative

method to overcome this problem by introducing the remote microphone technique

where the error signals are estimated at locations that are remote from the physical

error microphones. We develop a wave domain ANC system based on the remote

microphone technique for noise reduction over a spherical region. The error mi-

crophones are located away from the region of interest when the noise reduction is

achieved. By simulation, we demonstrate that the proposed method can obtain com-

parable ANC performance to the conventional methods without remote microphone

technique, while being more feasible in practice.

63
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4.1 Introduction

Conventionally, a spatial ANC system is achieved by a multi-input-multi-output

(MIMO) adaptive filtering system utilizing multiple error microphones and multiple

secondary loudspeakers, where the error microphones are required to be uniformly

distributed inside the control region [19]. Wave domain signal processing using har-

monic (cylindrical/spherical) based sound field processing has been recently applied

in ANC to decrease the use of resources by placing error microphones on the bound-

ary of the region of interest [73]. While the wave domain methods are effective for

3D space noise reduction [90], there is a prerequisite of regularly spacing the error

microphones on a certain sphere [123]. Whereas, this spherical microphone array

surrounding the region of interest blocks the users entering and exiting the region.

Hence, an advanced method with more realistic error microphone placements to

achieve spatial ANC is worth considering.

Virtual Sensing is one of the solutions [23]. Given the physical error signals

recorded by the physical microphones, the noise signals, and knowledge of the

system, virtual sensing algorithms minimize the noise signals at the virtual micro-

phone locations instead of the physical microphone locations. Noise reduction is

achieved based on MIMO feed-forward adaptive filtering at human ears [66] and

over 2D space [136] with microphones away from the desired noise reduction point

(region) during the noise control stage.

There are two popular virtual sensing algorithms applied to ANC systems: Aux-

iliary Filter based Virtual Sensing (AF-VS) method [67] and Remote Microphone

(RM) method [137]. AF-VS method shows a better noise reduction performance in

some cases with wide band noise [138]. However, this method utilizes an auxiliary

filter which relies on the secondary channels between the secondary loudspeakers

and the physical microphones. In a wave domain Fx-LMS adaptive filtering ANC

system, these physical secondary channels are required to be measured in the wave

domain. In this case, if we want to develop a wave domain (spherical harmonic

based) AF-VS method, the physical microphones, as well as the virtual micro-

phones, have to be uniformly distributed spherical arrays. These spherical arrays

are against our motivation to have a reliable geometry for users’ movements. On

the other hand, RM method does not rely on the spatial modelling of physical sec-
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ondary channels [139]. A filter is pre-measured in the tuning stage to compensate

the differences between the primary channels of the physical microphones and the

virtual microphones, which also shows a capacity of wide-band noise reduction [24].

Very recent work [140] has mentioned a RM method for ANC in a 2D environment,

which supports our idea that RM method has higher potential in 3D spatial ANC

than AF-VS method.

In this chapter, we develop a wave-domain remote microphone method to

achieve ANC over a spherical region of interest. The virtual microphones are lo-

cated as a spherical array surrounding the region of interest such that the recorded

signals can be obtained in the wave-domain by spherical harmonic analysis. By

applying the remote microphone technique, the noise signals recorded by physical

microphones and the virtual microphones are related with a pre-measured wave-

domain filter in the turning stage. As a result, noise reduction can be achieved over

the region of interest in the control stage without the existence of the microphones

inside the region. Hence, these microphones do not obstruct the movement of the

users in and out of the quiet region, which is the main novelty of this work. We com-

pare the noise reduction performance of the proposed method to the conventional

method without remote microphone technique by simulation, and demonstrate that

the proposed method can achieve comparable noise reduction performance over the

3D region of interest.

4.2 Problem formulation

Consider a source-free region of interest Ω in 3D space, where noise sources are

outside of Ω. The noise field at an arbitrary point x = (r, θ, φ) inside Ω can be

expressed as [19]

z(x, k) =
N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (4.1)

where order n and mode m are integers, N = dkRe [21], R is the radius of Ω,

αnm(k) is a set of location independent spherical harmonic coefficients representing

the sound field inside Ω, k = 2πf/c is the wave number, f is frequency, c is
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the speed of sound, jn(·) is the spherical Bessel function, Ynm(·) is the spherical

harmonic function [110].

The conventional way of obtaining αnm(k) is by applying a spherical microphone

array that surrounds the region, where at least Q = (N + 1)2 microphones are

uniformly distributed over the sphere. The corresponding αnm(k) can be extracted

by integrating (summation for discrete sampling) the recording over the spherical

surface while exploiting the orthogonality property of Ynm(·) [21]

αnm(k) ≈ 1

jn(kR)

Q∑
q=1

z(R, θq, φq, k)Y ∗nm(θq, φq)χ(q), (4.2)

where z(R, θq, φq, k) refers to the recorded sound pressure of the q-th microphone

located at (R, θq, φq), and χ(q) is the sampling weight of the q-th microphone,

where χ(q) for uniformly sampling.

Hence, to achieve spatial ANC, we need to measure the spherical harmonic

coefficients of the residual sound field with error microphones to obtain α
(e)
nm(k),

and to produce a cancelling secondary sound field given by α
(s)
nm(k) in the region of

interest such that the residual sound field coefficients given by

α(e)
nm(k) = α(d)

nm(k) + α(s)
nm(k), (4.3)

are to be minimized through loudspeakers driving signals, where α
(d)
nm(k) represents

the primary noise field coefficients.

Consider a spherical array of L loudspeakers located at a distance RL from

the origin of Ω with a driving signal y(`, k) at the `-th loudspeaker located at

(RL, θ`, φ`). The resulting sound pressure at the point x due to this loudspeaker

array is

z(x, k) =
L∑
`=1

y(`, k)S(`,x, k), (4.4)

where S(`,x, k) is the frequency response at frequency bin k from the location of

the `-th loudspeaker to the point x.

In a typical feed-forward adaptive ANC system, the driving signal y(`, k) is

obtained by filtering the reference noise signal N (t) using a FIR adaptive filter
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w`(k) such that

y(`, k) = N (k)w`(k). (4.5)

Hence, we have the secondary sound field coefficients α
(s)
nm(k) given by

α(s)
nm(k) =

L∑
`=1

N (k)w`(k)S̃nm(`, k), (4.6)

where S̃nm(`, k) refers to the nm-th mode of the spherical harmonic decomposition

of the pre-recorded S(`, q, k) at the error microphones.

Define the cost function of the adaptive filter to be

ξ(t) =
N∑
n=0

n∑
m=−n

‖α(e)
nm(t, k)‖2, (4.7)

where α
(e)
nm(t, k) is the recorded spherical harmonic coefficients by the error micro-

phone array at the t-th iteration. With (4.3, 4.6, 4.7), we have the update equation

of the weight w`(k) to be [90]

w`(t+ 1, k) = w`(t, k)− λN (k)
N∑
n=0

n∑
m=−n

α(e)
nm(t, k)S̃nm(`, k), (4.8)

where λ is the step size.

In (4.5) and (4.8), it is shown that the driving signal of a wave domain spatial

ANC system relates to the coefficients of the residual signal recorded by the error

microphone array and the secondary channels. However, the spherical microphone

array is not reliable as it will block the users to enter or exit the region. In the

following sections, we solve this problem by introducing the RM technique into the

system.

4.3 Wave domain remote microphone method

To achieve noise reduction with RM, the system is separated into two stages: the

Tuning Stage and the Control Stage, as shown in the Fig. 4.1. A group of filters
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which contains the information of the primary channels of the physical microphone

locations and the virtual microphone locations (points of interest) are estimated in

the Tuning Stage. Then, this filter is applied in the Control Stage to reduce the

noises at the virtual microphone locations with the recordings of the residual noise

at physical microphones.

The block diagram of an adaptive feed-forward Fx-LMS filtering ANC system

with the wave domain RM method is shown in Fig.4.1. The ‘SH’ block, colored

yellow, refers to the spherical harmonic decomposition of the input signals, given in

Eq.(4.2). By this block, the input signals are decomposed into a series of spherical

harmonic coefficients with respect to the origin (centre of the region of interest).

According to the discussion in Sec.4.2, these wave domain coefficients are location

independent, which contain the information of the input sound field in the region

of interest. We use (̃·) to represent that a variable is given in the wave domain

by spherical harmonic coefficients, and (̂·) to represent the estimation value of a

variable.

In the tuning stage, a group of filters C̃ is estimated in the wave domain to

compensate the difference between the primary channels of the virtual microphones

and the primary channels of the physical microphones. The optimal solution is

given by

C̃ = d†pd̃v, (4.9)

where dp is the vector of the recorded signals from the physical microphones, d̃v is

the vector of the wave domain recording of the virtual microphones, and (·)† refers

to the Moore-Penrose inverse. We omit the frequency component k from now on

for simplicity.

In the control stage, we can not obtain the residual sound field in the region of

interest by recording ẽv, due to the lack of the microphones at virtual positions.

Hence, we record the sound pressure at the physical microphone locations as ep to

estimate the primary noise at the physical locations as

d̂p = ep − ŷp = ep −NW Ŝ, (4.10)

where ŷp is the estimation of the secondary sound pressure at the physical lo-

cations, N refers to the noise signal given by the reference microphone, W =
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Figure 4.1: Block diagram of an adaptive feed-forward spatial ANC system with
wave domain remote microphone technique, to minimize the error signals at virtual
microphones ev from the signals recorded at physical microphones ep.
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[w1, w2, · · · , wL]T is a group of adaptive filter weights for the driving signals of

the secondary loudspeakers, Ŝ is the estimation of the secondary channels of the

physical microphones. With (4.9), the estimated primary noise coefficients of the

region of interest is given by:

˜̂
dv = C̃d̂p = C̃ep − C̃NW Ŝ. (4.11)

Therefore, we have the estimated residual sound field coefficients of the region of

interest ˜̂ev with the estimated virtual secondary channel coefficients
˜̂
Sv as

˜̂ev =
˜̂
dv +NW ˜̂

Sv = C̃ep − C̃NW Ŝ +NW ˜̂
Sv. (4.12)

Define the cost function of the adaptive filter as

ξ(t) = ˜̂ev˜̂eTv , (4.13)

where (·)T refers to the conjugate transpose of a matrix. The update equation is

given by

w`(t+ 1) = w`(t)−
λ

2
∇ξ(t), (4.14)

where ∇ξ(t) is the derivative of ξ(t) with respect to w`(t), which is given by

∇ξ(t) =
∂ξ(t)

∂w`(t)
= 2˜̂ev ∂(˜̂ev)T

∂w`(t)
= 2˜̂ev ∂(

˜̂
dv +NW ˜̂

Sv)
T

∂w`(t)

= 2N ˜̂ev ˜̂STv .
(4.15)

Hence, we have

w`(t+ 1) = w`(t)− λN ˜̂ev ˜̂STv . (4.16)

We observe that the update equation of the proposed remote microphone method

(4.16) is similar to the update equation of the conventional method (4.8). However,

in the proposed method, the spherical harmonic coefficients of the residual noise

field is given by (4.12), which is related to the recorded sound pressures ep instead

of the direct recording at virtual positions ev.

Additionally, by introducing the RM technique into spatial ANC systems, a
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causality problem appears. Thus, the distance between the physical microphones

and the noise source should be smaller than the distance between the virtual mi-

crophones and the noise source such that the filters C̃ are causal. In the proposed

method, a spherical array is applied as virtual microphones which surround the

region of interest. The physical microphones to sample over all directions is also

desired such that the noise can be properly recorded wherever the noise source is.

In this case, the causality of filters C̃ may not be satisfied. The solution of this

problem is given in [68], where a delay block is added in the filters C̃ and at the

virtual secondary channels. It is also shown in [68] that the use of feed-forward

adaptive filtering has its advantage over feed-backs on the causality issue of the

RM technique.

4.4 Simulation and results

In this section, we evaluate the noise reduction performance of the proposed method

by simulation, and compare the result with the conventional method where error

microphones are physically located at the virtual microphone locations as a spher-

ical array.

To control the noise below 600 Hz, a 4-th order system is constructed with a re-

gion of interest of the radius r = 0.3 m. The noise source is located at (1.5, 1.7, 0.5)

m, with a reference microphone nearby. We assume the reference microphone

records the reference noise signal without any disturbance1. A 40dB signal to noise

ratio (SNR) white Gaussian noise is added to each microphone (virtual in the Tun-

ing stage and physical in both stages). We test the system in a room environment

with 5 m × 6 m × 4 m in size and with 0.8 for wall reflection coefficients. The

room environment is simulated by the image source method [133]. A spherical loud-

speaker array concentric with the region of interest of radius R = 1.5 m with 32

loudspeakers evenly distributed on the surface is applied as secondary loudspeakers.

For the proposed method, we need both physical microphone array and virtual

microphone array. We use 32 microphones uniformly distributed on the surface

of the region of interest as virtual microphone array. Note that this microphone

1The controlling of the feedback signal from the secondary loudspeakers is out of the scope of
this work.
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array is not applied in the control stage during the noise reduction. At least the

same amount of physical microphones should be applied to make the filter C̃ a

under-determined system. However, a system with less physical microphones is

able to work when the noise environment is simple, as long as the adaptive filter

at tuning stage is able to reach convergence with little error. We apply 8 physical

microphones at the 8 corners of a 0.8 m side length cubic concentric with the region

of interest. For the conventional method, we apply 32 error microphones uniformly

distributed on the surface of the region of interest. This error microphone array

shares the same location as the virtual microphone array in the proposed method.

Figure 4.2 shows the sound field over the x-y plane and the x-z plane of the origi-

nal noise field, the residual noise field after noise reduction by the proposed method,

and the residual noise field after noise reduction by the conventional method, re-

spectively. A single tone sine wave of 500 Hz is applied as the noise signal. The

region of interest is marked by a white circle. We observe that the residual noise

energy decreases inside the region of interest with both the proposed method and

the conventional method, while the noise energy increases outside the region of

interest due to the secondary sound field.

Figure 4.3 shows the average power spectral density of the noise inside the region

of interest before and after control by the proposed method and the conventional

method against the frequency of the noise signal. The frequency of the noise signal

varies from 40 Hz to 1000 Hz. In total 3000 evaluation points are examined in the

region of interest. We note from Fig. 4.3 that both the proposed method and the

conventional method can achieve noise reduction over the region with the noise

signal frequency in the range of focus. The noise reduction performance begins

to decrease when the frequency is higher than 600 Hz. This is due to the 4-th

order system is not able to record enough active spherical harmonic coefficients of

the residual sound field when the frequency of the noise signal is higher than 600

Hz. The average performance of the proposed method is slightly worse than the

conventional method due to the error introduced in the tuning stage. However,

this performance difference is not significant comparing with the more than 20 dB

noise reduction.

In Fig. 4.4, we further examine the average noise reduction performance in the

region of interest against time (iterations) with different adaptive filtering step size
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Figure 4.2: Noise field over (a) the x-y plane and (b) the x-z plane of the original
noise field; the residual noise field after noise reduction by the proposed method
over (c) the x-y plane and (d) the x-z plane; and the residual noise field after noise
reduction by the conventional method over (e) the x-y plane and (f) the x-z plane.
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λ. We define the average noise reduction performance as

η(k) = 10 log10

∑
xE{|e(x, k)|2}∑
xE{|d(x, k)|2}

, (4.17)

where e(x, k) is the residual noise pressure at point x ∈ Ω and d(x, k) is the original

noise without ANC. A noise signal of 500 Hz is applied as an example. The perfor-

mance after convergence of the proposed method is slightly worse than the conven-

tional method, which matches the result we obtain from Fig. 4.3. Meanwhile, the

proposed method has the same speed of convergence with the conventional method

if the same step size is applied to the adaptive filtering.

While the proposed method provides a similar ANC performance as the conven-

tional method and has advantages in sensor placements, there are some drawbacks.

The introduction of the remote sensing technique requires an accurate estimation

of both the virtual and the physical secondary channels. Any change in the acoustic

environment may result in higher performance degradation or an unstable system.

To this end, investigation of extra constraints in the update equations may con-

tribute to a more stable system, which can be one direction of future work.

4.5 Conclusions

In this chapter, we address a spatial ANC problem for a spherical region with the

remote microphone technique. By simulation, we show that the proposed method

provides a comparable noise reduction performance and speed of convergence with

the conventional wave domain ANC method. Meanwhile, the proposed method

shows its advantage that the noise reduction over space is achieved with the error

microphone absent of the inside or on the surface of the region. Comparing to

the conventional method where a spherical error microphone array is necessary

surrounding the region of interest, the proposed method does not block the users

to enter/exit the quiet region. Hence, we consider the proposed method is more

realistic in implementing spatial ANC for real-world applications. Future work can

include further investigations on the noise reduction performance with multiple

noise sources as well as real-world experiments.
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Chapter 5

Secondary channel estimation in

spatial active noise control

systems using a single moving

higher order microphone

Overview: Spatial ANC systems focus on minimizing unwanted acoustic noise

over continuous spatial regions by generating anti-noise fields with secondary loud-

speakers. Conventionally, an error microphone array is necessary inside the region

to measure the channels from the secondary loudspeakers to the error microphones,

and record the residual sound fields during the noise control. These error micro-

phone arrays highly limit the implementation of spatial ANC systems because of

their impractical geometry and obstruction to the users from accessing the quiet

regions. Recent advances, such as virtual sensing, focus on obtaining the residual

sound field with microphones placed away from the region. While these techniques

relax the usage of error microphones during the noise control, an error microphone

array remains necessary during the secondary channel estimation. In this chapter,

we propose a method to estimate the secondary channels without using an error mi-

crophone array. Instead, a moving higher order microphone, such as an Eigenmike,

is applied to obtain the impulse responses within the desired frequency range from

the secondary loudspeakers to the entire region of interest, which includes all desired

79
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error microphone locations. By simulation, we show that the proposed method is

robust against various measuring errors introduced by the movement of the higher

order microphone, and is suitable for the secondary channel estimation in spatial

ANC systems.

5.1 Introduction

Conventionally, a MIMO (multiple-input multiple-output) spatial ANC system re-

quires the error microphones to be uniformly distributed inside the control re-

gion [19] or regularly distributed on a surface enclosing the desired region. [118].

This error microphone array records the residual sound field at the multiple receiver

points of interest, and also measures the secondary channels from the secondary

loudspeakers to the target error microphone locations.

However, these error microphone arrays are difficult to assemble and often ob-

struct users from accessing the quiet zones, which is one of the main drawbacks

prohibiting practical implementation of a spatial ANC system. To address this

problem, virtual sensor techniques have recently been applied in spatial ANC sys-

tems [24]. By applying the remote microphone methods or virtual sensing methods,

noise reduction can be achieved at human ears [138] and over space [67] while the

microphones are located remotely away from these desired noise reduction points

(or region). However, prior to the noise reduction, error microphone arrays are

still necessary in the region of interest for secondary channel estimations [119].

The secondary channels are typically measured by directly measuring the impulse

responses (IRs) from the secondary loudspeakers to the error microphone at the

desired noise reduction points [121]. To completely omit the unpractical error mi-

crophone array from a spatial ANC system, it is worth developing a new secondary

channel estimation method which does not require an error microphone array at the

desired points. Since spatial ANC systems usually focus on low frequency noise [6],

the secondary channel measurements only need to focus on the limited frequencies,

resulting in only a limited number of microphones being used in a spatial recording

method.

Several previous studies have addressed spatial sound field recording over a

region of interest. Abhayapala et al [21] have achieved sound field recording with a
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spherical array on the surface of the region of interest. Although microphones are

not necessary at all desired recording points, the usage of a spherical microphone

array in this work is not practical either. Rafaely et al [141] achieve the spatial

sound field recording using a higher order microphone (HOM). The single HOM

applied for spatial sound field recording can only achieve the recording within a

limited region, while the region of interest in a spatial ANC system is usually

large. Samarasinghe et al [142] achieve sound field recording over a large region

with distributed HOMs by local-to-global spherical harmonic coefficient translation.

Ueno et al [100] achieve sound field recording over a large region with a similar

sound field translation theorem but without a global origin. These multiple HOM

methods can be beneficial for secondary channel estimations.

Therefore, in this chapter, we carry out a detailed exploration of the potential of

applying spatial sound field recording methods to secondary channel estimations.

Furthermore, we investigate replacing the multiple fixed-position HOMs with a sin-

gle moving HOM to further improve the feasibility of a spatial ANC system. The

potential relative scattering diffraction between multiple microphones can be also

avoided by using a single compact HOM. An Eigenmike (a commercially available

4-th order microphone) [143] is used as an example. We examine the robustness of

the sound field recording methods against various measurement errors to approx-

imate the usage of a moving Eigenmike. We propose a solution where the desired

secondary channels in a spatial ANC system can be estimated with a single moving

HOM. By simulation analysis of the IR measurements performance over a region,

we show that the proposed method is able to estimate the secondary channels in a

desired frequency range over the entire spatial region.

We organise the main body of this chapter as follows: In Section 5.2 we detail

the spatial sound field recording method with a spherical microphone array. In

Section 5.3, we introduce the spatial sound field recording methods with arrays

of HOMs (Eigenmike) based on the addition theorem and analyze the potential

of these methods on secondary channel estimation in spatial ANC systems. The

influence of substituting the fixed-position microphone array with a moving micro-

phone is given in Sec. 5.4. Section 5.5 presents simulation results for the proposed

method on sound field recording and secondary channel estimation, verifying the

effectiveness of the proposed method. We conclude the findings and insights gained
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from this work in Section 5.6.

5.2 Problem formulation

Consider a source free region of interest Ω with radius R. The impulse response

from a loudspeaker outside the region to an arbitrary point x = (r, θ, φ) inside the

region is given by h(x, t), where r refers to the distance between the point x and

the origin, θ and φ denote elevation and azimuth angles, respectively. Using the

solution to the wave equation, the frequency response at this point can be express

as [19]

z(x, k) =
∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (5.1)

where order n and mode m are integers, αnm(k) is a set of spherical harmonic

coefficients representing the sound field inside Ω, k = 2πf/c is the wave number,

f is the frequency of the noise signal, c is the speed of sound, jn(·) is the spherical

Bessel function, and Ynm(·) is the spherical harmonic function [110].

A spatial ANC system usually focuses on limited frequency range, where wave

number k has a highest limit kmax. In this case, (5.1) can be truncated as

z(x, k) =
N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Y ∗nm(θ, φ), (5.2)

where N = dkmaxRe [21]. Hence, we can obtain the frequency response at any

point x inside the region by obtaining the finite number of αnm(k).

The conventional way of obtaining αnm(k) is by applying a spherical microphone

array surrounding the region, where the radius of the array RQ ≥ R. The corre-

sponding αnm(k) can be extracted by integrating the recording over the spherical

surface while exploiting the orthogonality property of Ynm(·) , which gives [21]

αnm(k) =
1

jn(kRQ)

∫ 2π

0

∫ π

0

z(RQ, θ, φ, k)

× Y ∗nm(θ, φ) sin θdθdφ.

(5.3)

In practice, this integration is realized using an equivalent discrete summation of
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spatial samples over the sphere, where at least (N + 1)2 samples are necessary.

In other words, we need at least (N + 1)2 microphones on a sphere of radius RQ

to obtain the αnm(k) up to desired order N , in order to calculate the frequency

response S(x, k) up to a desired frequency. For example, if the radius of the region

of interest is R = 0.5 m, we need at least 36 and 100 microphones on the sphere to

record S(x, k) up to 500 Hz and 1000 Hz, respectively. However, such a spherical

microphone array over a large region is usually not realistic. Hence, we need to

develop an alternative way to measure αnm(k) of the region of interest.

5.3 Addition theorem based sound field record-

ing over a region using higher order micro-

phones

HOMs are a useful tool to record the spherical harmonic coefficients over large

regions. We outline two spatial sound field recording methods [100,142] using HOM

arrays in this section. In the following sections, we further investigate the potential

of replacing those multiple HOMs with a single moving HOM and evaluate their

performance, considering that the usage of multiple HOMs is difficult and expensive

to achieve. An Eigenmike is used as an example of a HOM, where 32 channels of

recording can be taken on a sphere of radius 0.042 m and up to 4-th order spherical

harmonic coefficients can be obtained from the given recording below 3000 Hz.

5.3.1 Spatial sound field recording with a spherical array

with HOMs

Conventionally, the spatial sound field recording over a large region with HOM

array is developed based on the addition theorem [142].

Consider an Eigenmike located at Y = (RE, θE, φE) inside the region of interest

Ω, where RΩ > RE. The spherical harmonic coefficients ιnm(k) up to 4-th order of

a given sound field with respect to the centre of the rigid sphere can be recorded
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as

ιnm(k) =

∑32
q=1 z(rq, θq, φq, k)Ynm(θq, φq)χ(q)

bn(rq, k)
, (5.4)

where

bn(rq, k) = jn(krq)−
j′n(krq)

h
′(1)
n (krq)

h(1)
n (krq), (5.5)

h
(1)
n (·) refers to the spherical Hankel function of the first kind, χ(q) refers to the

weight of the q-th microphone such that the summation in (5.5) can sufficiently

approximate the integration in (5.3). The frequency limit is given by kmax = N/RE.

These spherical harmonic coefficients recorded by the Eigenmike ιnm(k) can be

related to the spherical harmonic coefficients ανµ(k) up to the desired order N0

with respect to the centre of the region of interest using the addition theorem of

spherical Bessel functions as:

ιnm(k) =

N0∑
ν=0

ν∑
µ=−ν

ανµ(k)Tmµnν (Y , k), (5.6)

where

Tmµnν (Y , k) =4πiν−n
∞∑
u=0

iu(−1)2m−µ

×
√

(2n+ 1)(2ν + 1)(2u+ 1)

4π

× ju(kRE)Y ∗u(µ−m)(θE, φE)W1W2,

(5.7)

order ν, mode µ, and u are integers, W1 and W2 refers to the Wigner 3− j symbol.

Q Eigenmikes in the region of interest, where the q-th Eigenmike is at Oq =

(Rq, θq, φq), are able to capture local sound field coefficients ι
(q)
nm(k) with respect to

Oq up to the 4-th order. With these local coefficients, we can write (5.6) in matrix

form

ι = T α, (5.8)

where ι = [ι
(1)
00 · · · ι

(1)
44 · · · ι

(Q)
00 · · · ι

(Q)
44 ]T , α = [α00 · · ·αN0N0 ]

T , T = [T (O1), · · · ,T (OQ)]

is the translation matrix with the size of (4 + 1)2Q × (N0 + 1)2, T (Oq) is the

translation matrix of the q-th Eigenmike, with each element given by Tmµnν (Oq, k).
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Hereafter, frequency k is omitted for notational simplicity. Since T is known with

the location of the Eigenmikes, we can obtain the global coefficients α by solving

Eq.(5.8) as

α = T †ι, (5.9)

where (·)† is the psuedo-inverse of a matrix.

Exact solutions to the (5.8) exist when T is square or wide, i.e, (4+1)2Q ≥ (N0+

1)2, which results in an over-determined system. But for the purpose of recording

a given sound field, we need at least the same number of spatial samples. The

resulting over-determined system can be approximately solved using the method

of least squares. Hence, we need Q > (N0 + 1)2/(4 + 1)2 Eigenmikes to obtain

the global coefficients αnm(k) up to order N0. By applying Q Eigenmikes in the

region of interest, we can first record the impulse responses from the loudspeaker

to the microphones on the Eigenmikes, calculate ι
(q)
nm(k) for the q-th Eigenmike,

then obtain the global coefficients αnm(k) of the region of interest. In this way, the

desired secondary channels in a spatial ANC system can be obtained by (5.1) up

to kmax = N0/RE.

Regularly sampling with Eigenmikes is necessary in this method to make the

matrix inversion in (5.8) to be effective and to avoid spatial alising. Hence, the ac-

curacy of the Eigenmike locations highly influences the performance of the spatial

recording. However, we prefer the recording to be achieved by a moving Eigen-

mike, which introduces more error on the positioning of Eigenmikes. Therefore,

the aforementioned method may not achieve a good performance. Hence, in the

next sub-section, we introduce a recent advanced method on spatial sound field

recording, which provides better robustness with asymmetric/irregular Eigenmike

arrays.

5.3.2 Spatial sound field recording with distributed HOMs

We have introduced a method for spatial sound field recording over a region based

on the addition theorem in the last section. To achieve that, a series of global

spherical harmonic coefficients with respect to the global origin αnm(O) is obtained

from the recorded local coefficients. In this section, we introduce an alternative

method using the addition theorem for spherical harmonic coefficients recording
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over a region [100], which enables us to estimate the harmonic coefficients at an

arbitrary desired position without setting a global origin, and hence is more flexible

with Eigenmike geometry.

It can be shown that the translation matrix T satisfies [113]

T (−Y ) = T (Y )H ,

T (Y + Y ′) = T (Y )T (Y ′),
(5.10)

where Y and Y ′ are the location of two different points. Let the directivity pattern

of a microphone be represented as G(θ, φ), and the spherical harmonic coefficients

at this point Y is given by α(Y ) = [α00(Y ), α1−1(Y ), · · · , αNN(Y )], then the

recording of the microphone at the point Y can be express by

z(Y ) = G̃Hα(Y ) (5.11)

where G̃ = [G̃00, G̃1−1, · · · , G̃NN ], with G̃nm refering to the spherical harmonic

expansion of G(θ, φ) at order n and mode m.

Consider Q microphones with arbitrary directivity given by G1, · · · , GQ, and

with an arbitrary geometry within a certain region at Y 1, · · · ,Y Q, respectively.

The signal observed by the q-th microphone is given by [100]

z(Y q) = G̃
H

q α(Y q) = G̃
H

q T (Y q − Y 0)α(Y 0), (5.12)

where Y 0 is defined as the global origin.

By defining Ξ(Y 0) = [T (Y 0 − Y 1)G̃1, · · · ,T (Y 0 − Y Q)G̃Q], Eq. (5.12) can

be written in matrix form as

z = Ξ(Y 0)Hα(Y 0). (5.13)

Using Eq. (5.10), (5.11), and (5.13), the spherical harmonic coefficients α(Y )

with respect to an arbitrary point Y in the region of interest is given by [100]

α(Y ) = Ξ(Y )(Ψ + σ−2Σ)−1z, (5.14)

where Ξ(Y ) = T (Y − Y 0)Ξ(Y 0), σ−2Σ refers to the regularization parameter of



5.4 Influence of replacing fix-positioned HOMs with a moving HOM 87

the microphone’s noise, σ−2 is the average signal power of coefficients and Σ is

the covariance of noise, σ−2Σ could be a noise variance times identity matrix for

eigenmikes, and Ψ is a matrix with the element at the q-th column and the q′-th

row as

Ψ(q,q′) = G̃
H

q T (Y q − Y q′)G̃q′ , (5.15)

which does not rely on the position of the origin Y 0. Furthermore, we note that

G̃q is usually given by a finite order of non-zero coefficients, where the calculation

of matrix Ψ and hence α(Y ) are with a finite number of elements.

This method achieves sound field recording over the region by calculating the

spherical harmonic coefficients with respect to each desired point Y instead of

the global origin. Since only a limited order of coefficients can be recorded by an

HOM, there is a limitation of the frequency range and the distance between each

microphone to achieve spatial sound field recording. Comparing with the method

introduced in Sec. 5.3.1, this method is more flexible on the HOM geometry. As a

result, we consider this method to be more suitable to apply for secondary channel

estimation in a spatial ANC system with a moving HOM. The comparison of the

performance will be given in Sec. 5.5.

5.4 Influence of replacing fix-positioned HOMs

with a moving HOM

In the previous sections, we have introduced secondary channel estimation methods

with distributed HOM arrays. In the next step, we aim to replace these distributed

fix-positioned HOMs by a moving HOM to obtain the necessary IR measurements.

By replacing the fixed HOMs with a moving HOM, we face three new problems:

(1) The recording at the microphones are not taken at the exactly same points as

desired; (2) The Doppler effect introduced by the movement of a HOM; (3) The

microphone trajectories may not accurately cover the desired locations, while the

tracking of the measurement locations may have error. We analysis the influences

of the first problem in this section and demonstrate the influence of the second

problem in Sec. 5.5.

Consider a moving microphone with a constant speed of v m/s along a certain
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direction. The location of the microphone depends on the time of travel, given by

x(t) = x(0) + vt (t ≥ 0). At each time interval t, the sound pressure recorded

by the microphone is given by the convolution of the source signal denoted as z(t)

with the corresponding impulse response S(x, t). We assume the sound source to

be at a fixed location. Therefore, the sound pressure recorded by the microphone

is given by

zm(t) = z(t) ∗ S(x(t), t)

=

∫ ∞
−∞

z(t0)S(x(t), t− t0)dt0,
(5.16)

where ∗ denotes a convolution in the time domain. Comparing to the fixed micro-

phone located at x(0), whose recording is given by

zf (t) = z(t) ∗ S(x(0), t)

=

∫ ∞
−∞

z(t0)S(x(0), t− t0)dt0,
(5.17)

the recording error is given by

e(t) = zm(t)− zf (t)

= z(t) ∗ [S(x(0) + vt, t)− S(x(0), t)].
(5.18)

We observe from Eq. (5.18) that the error of recording depends on the moving

speed of the microphone and the time of travel t. The impulse response error

between the moving microphone and the fixed microphone depends on S(x(0) +

vt, t)−S(x(0), t). In practice, the impulse response is given by a vector with finite

length of discrete samples, and v � c, where c is the speed of sound. Hence, the

error introduced by the moving microphone into the system is limited. Additionally,

the Doppler Effect caused by the moving microphone is given by

ω = ω0(
c+ v

c
), (5.19)

where the ω0 is the original frequency, ω is the resulting frequency. The Doppler

Effect in our case is very weak and negligible because ω0 is small and v � c [144].

The same result can be extended to the Eigenmike recording, as well as other
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Figure 5.1: (a) Impulse response measurements and (b) the frequency response
error of [0, 2000) Hz by a moving microphone along a line with the speed of 5 cm/s
and a fixed microphone at the centre of the trajectory.

HOMs, as an Eigenmike contains 32 microphones where these microphones can

record the impulse responses independently.

We examine the moving error by simulating a single microphone moving along

a line while recording. Fig. 5.1(a) compares the impulse response recorded by a

moving microphone with a speed of 5 cm/s and a fixed microphone at the centre

of the microphone trajectory. The measurement error in the frequency domain up

to 2000 Hz of the moving microphone is also shown in Fig. 5.1(b), which is given

by:

η(k) = 10 log10

E{|Sm(k)− Sf (k)|2}
E{|Sf (k)|2}

, (5.20)

where Sm(k) is the frequency response recorded by the moving microphone at the

frequency k, and Sf (k) is the frequency response recorded by the fixed microphone.

A maximum length sequence signal of length 4095 samples is used. The signal is

repeated 3 times for a single impulse response recording.

It is shown in Fig. 5.1 that the estimation error within the frequency of interest

is lower than –20 dB. We consider that this error is tolerable. Furthermore, a

microphone recording usually consists of thermal noise, which is measured by the

Signal to Noise Ratio (SNR). In Fig. 5.2, the error between the frequency response
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Figure 5.2: Frequency response error by a moving microphone along a line with a
speed of 5cm/s and 2cm/s with 40 dB SNR.

by the moving microphone and by the fixed microphone with a SNR of 40 dB is

shown. The speed of the microphone is 2cm/s and 5cm/s, respectively. We conclude

that in both cases the moving microphone can measure the impulse response under

2000 Hz with a tolerable error. The average error is around –30 dB for the speed

of 5 cm/s and –35 dB for the speed of 2 cm/s. Hence, in the following sections, we

assume that a moving microphone of speed 5 cm/s with 40 dB SNR is equivalent

to a fixed microphone with 30 dB SNR.

5.5 Evaluation examples and analysis

In this section, we evaluate the proposed methods by simulation using Matlab

2019a. We use the Eigenmike’s microphone geometry as an example in this section

for our model. In Sec. 5.4, we have shown that the fixed Eigenmike can be replaced

with a moving Eigenmike through the desired points with slightly higher noise.

Hence, we apply fixed Eigenmikes with 30 dB SNR unless we explicitly mention

simulating a moving Eigenmike with 40 dB SNR. According to the discussion in

Sec.5.3, we consider three setups in a region of interest of the radius of 0.5 m with
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(a) Set up I (b) Set up II (c) Set up III

Figure 5.3: The proposed Eigenmike (blue dots) (a) set up (i) 64 Eigenmikes
regularly distributed on the spherical surface of the region with r = 0.5 m, (b) set
up (ii) concentric two spherical arrays with Q1 = 32 at r = 0.25 m and Q2 = 32
with r = 0.5 m, and (c) set up (iii) 64 Eigenmikes uniformly distributed on a grid
as a cubic shape having 4 Eigenmikes on each side.

(i) Q = 64 Eigenmikes regularly distributed on the spherical surface of the region;

(ii) concentric two spherical arrays with Q1 = 32 at r = 0.25 m, and Q2 = 32 with

r = 0.5 m; (iii) Q = 64 Eigenmikes uniformly distributed on a grid as a cubic shape

having 4 Eigenmikes on each side. The Eigenmike setups are shown in Fig. 5.3.

The centre of the region located at (2, 3.2, 3) m in a room with 4 m height, 6 m

length and 5 m width. A single loudspeaker (sound source) is located at (3, 4.4, 4) m

in the same room. The reflection coefficients of the 4 walls, roof and ground are

set to [1, 0.7, 0.7, 0.5, 0.2, 1]. This reflection coefficients are chosen as an example to

generate the impulse responses, while in real-world scenarios the impulse responses

are given by measurements. The sampling frequency is Fs = 48000 Hz and the

speed of sound is c = 343 m/s.

First, we evaluate the performance of the method introduced in Sec.5.3.2 on

sound field recording over the x -z plane with the three set-ups. The driving signal

of the loudspeaker is a single tone sine-wave at f = 750 Hz. The error of the

recording at x is defined by

η(x) = 10 log10

E{|zr(x)− z(x)|2}
E{|z(x)|2}

, (5.21)

where zr(x) refers to the recorded sound at x, and z(x) refers to the original sound
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Figure 5.4: (a) The original sound field, (b) (c) (d) the recorded sound field by the
proposed three set-ups on the x -z plane and (e) (f) (g) the estimation error with
the region of interest circled by pink.

field at x.

Figure 5.4 shows the original sound field (5.4(a)), the recorded sound field

(5.4(b),5.4(c),5.4(d)) by the method in Sec.5.3.2 and the error (5.4(e),5.4(f),5.4(g))

with the three proposed set-ups. The region of interest is circled by pink lines in the

figures. We can obtain that the proposed method can achieve sound field recording

over region with little recording error for all three set-ups. Note that the Eigenmike

set-up can be flexible depending on the applications and environments.

We further examine the capacity of the proposed methods on secondary channel

estimation over the region. We know from Sec.5.4 that the trajectory of a moving

microphone may not accurately cover the desired location. There is a potential

location error between the true trajectory of the moving Eigenmike and the desired

array.

Hence, we estimate the average error of the frequency response recorded by the

three Eigenmike set-ups with the proposed method using distributed Eigenmike
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Figure 5.5: The average frequency response error over the region recorded with two
proposed methods with location error e = 0, 1, 5 cm by the Eigenmike setups (i-iii)
for (a-c), respectively.

array (PD) in Sec. 5.3.2 and the proposed method using spherical Eigenmike array

(PS) in Sec. 5.3.1 over the region with some location error in Fig. 5.5. Due

to physical limitations and obstructions, we sometimes face difficulties in placing

error microphones at desired locations. Hence, we place microphones at the nearest

available locations with some location error. In the simulation, this location error

is added on each Eigenmike with a given distance e towards a random direction.

Thus, the true locations of Eigenmikes are e away from the desired locations. The

average error of the frequency response measurement over the region of interest at

the frequency is given by

η(k) = 10 log10

∑
x∈Ω E{|Sr(x, k)− S(x, k)|2}∑

x∈Ω E{|S(x, k)|2}
, (5.22)

We observe from Fig. 5.5 that the PD method can achieve the secondary channel

estimation over the region of interest within the target frequency range with all the

three set-ups. The estimation error is not significantly influenced by the position

error of the Eigenmike. In contrast, the results of the PS method drastically degrade

as position error increases, especially at frequencies above 300 Hz. Comparing

with the PS method, the PD method achieves a better performance with a higher

position error. We also observe that the PD method outperforms the PS method

for the other setups.

In spite of location error, the tracking error of a moving microphone is also
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Figure 5.6: The average frequency response error over the region recorded with
two proposed methods with Eigenmike tracking error e = 0, 0.2, 0.5, 1 cm by the
Eigenmike setups (i-iii) for (a-c), respectively.

expected to be significantly larger than a fix-positioned microphone. The loca-

tion information of a fixed microphone can be accurately pre-measured before the

acoustic measurement, while the location of a moving microphone has to be si-

multaneously observed and updated, which makes it very difficult to be as precise.

Being different from the location error, tracking error is the misplacement of mi-

crophones that we are not able to notice.

Fig. 5.6 shows the average error of the frequency response recorded by the

three Eigenmike set-ups with the PD method and the PS method over the region

with Eigenmike tracking error. This tracking error is added on each Eigenmike

with a given distance e towards a random direction. Thus, the true locations of

Eigenmikes are e away from the measured locations. We obtain from Fig.5.6 that

the PD method can achieve the secondary channel estimation over the region of

interest within the target frequency range with all three set-ups with Eigenmike

tracking error. Comparing with the PS method, the PD method shows the more

robustness against the tracking error in all three setups. The performance of the

PS method can only remain roughly the same for set up II with e ≤ 0.5 cm,

and degrades in all other scenarios when the tracking error is added, while the

performance of the PD method remains roughly the same. Hence, the PD method

is more suitable for secondary channel estimation in a spatial ANC system against

the tracking error of HOMs.

Overall, we consider the PD method is more robust when the accurate Eigen-
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mike location is not available with a high SNR such that it is applicable to estimate

the secondary channel with a moving HOM in a spatial ANC system.

5.6 Conclusions

We have shown in this work that a moving higher order microphone can record

impulse responses within the target frequency range over the region with a limited

movement speed. Hence, the proposed method can be a realistic solution to the

secondary channel estimation problem in a spatial ANC system with the absence of

an error microphone array. Hence, an error microphone array may not be necessary

in a spatial ANC system that applies virtual sensing techniques. As a result, we

relax the constraints of building up the unpractical error microphone array in the

region of interest, while avoiding these microphones to obstruct users into the

quiet zone. We leave the implementation of the proposed method, potentially

cooperating with virtual sensing techniques, in a real-world spatial ANC system as

future work.
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Chapter 6

ANC over a spatial region in the

time domain

Overview: The wave domain based spatial ANC is a recently introduced concept

that focuses on continuous spatial regions. The design of adaptive filters for spatial

ANC is often based on the frequency domain spherical harmonic decomposition

method. Given that the performance of an ANC system is highly correlated to the

system delay, a major limitation of the frequency-wave domain spatial ANC system

is the increased system latency. In this chapter, we develop a time-domain spherical

harmonic based signal decomposition method and use it to develop two time-space

domain feed-forward adaptive filters for spatial ANC. Through simulations we show

that the proposed methods can achieve higher noise reduction performance over the

control region with microphones located on the surface of the region compared to

the conventional time-domain adaptive filter.

6.1 Introduction

Conventional multi-channel ANC requires the error microphones uniformly dis-

tributed inside the control region [90], which is one of the main drawbacks. Space

domain signal processing, using harmonics (cylindrical/spherical) based sound field

processing, is recently applied in ANC [73], [145] to increase the performance with

microphones on the surface of control region. As space domain solution of wave

97
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equation is mainly developed in the frequency domain [19], most of space domain

adaptive filter designs are also done in the frequency-domain [90], [73], [146]. Given

ANC systems are very sensitive to time latency [9], significant delays from time-

frequency transform thus becomes a problem.

Barkefors and Berthilsson [40] have proposed a time-domain multi-channel spa-

tial ANC system, but it requires the error microphones to be distributed uniformly

inside the control region, which limits its usage scenario. Work by Zhang et al [90]

achieves noise control over a region with error microphones placed on the boundary

of the control region. However, this algorithm is designed for a 2D region in the

frequency domain. Chen et al [147] achieves noise control for a 3D region in a car.

Their approach is also based on frequency-domain signals, where latency problem

introduced by time-frequency transform is still an issue.

In this chapter, we first derive a new spherical harmonic based signal decompo-

sition method in the time-wave domain. Then based on this decomposition method,

we propose two new feed-forward adaptive filter designing methods using filtered-x

LMS algorithm [9]. These new methods not only have the advantage of the wave do-

main signal processing, but also avoid the latency caused by time-frequency domain

transform. We compare noise reduction performance of time-domain conventional

multi-channel method [9] and our proposed two methods by simulation, finding the

proposed methods achieve a higher noise reduction over the control region.

6.2 System model

Consider the region of interest Ω as a spherical region of radius rΩ without any

sound sources inside. To measure the residual sound field and to generate a sec-

ondary sound field, an array of Q omni-directional microphones and an array of L

loudspeakers are uniformly placed on the surface of this control region and on a

sphere with radius RL (RL > rΩ), respectively, as shown in Fig. 6.1.

Inside the control region, the residual sound pressure at an arbitrary observation

point x = (rx, φx, θx) is influenced by both the noise sources and the loudspeakers.

Let N (t) be the noise measured by a reference microphone near the noise source,

y`(t) be the driving signal of the `th loudspeaker, g(x|N , t) be the propagation

function between the point x and the noise source. Then, the noise sound field
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Figure 6.1: ANC system setup with a spatial control region (shaded area) consisting
a microphone array of radius rΩ and a loudspeaker array of radius RL.

present at x can be given by

d(x, t) = N (t) ∗ g(x|N , t), (6.1)

where ∗ denotes convolution operation. Similarly, the secondary sound field gener-

ated by the loudspeakers at point x is

y′(x, t) =
L∑
`=1

y`(t) ∗ S(x|`, t), (6.2)

where S(x|`, t) is the propagation function between the point x and the `-th loud-

speaker. Therefore, the total or residual sound field e(x, t) as observed at point x

is

e(x, t) = d(x, t) + y′(x, t). (6.3)

In a typical feed-forward adaptive system, the driving signal is obtained by filtering

the reference signal N (t) using a FIR adaptive filter with an impulse response of

w`(t), i.e.,

y`(t) = N (t) ∗ w`(t). (6.4)

More details on the process of developing this filter is discussed later in Sec.6.4.
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The novelty of this method lies in the introduction of a time-wave domain spher-

ical harmonic decomposition of the wave-field, which facilitates the design of the

aforementioned filter characteristics w`(t).

6.3 Time-domain analysis of spherical harmonic

decomposition

Typically, spherical harmonic based signal decomposition is formulated in the fre-

quency domain. In this section, we develop the corresponding time domain decom-

position method. Note that the time domain signal decomposition can be used not

only for ANC systems, but also other applications involving spatial sound.

Let z(x, t) be the sound pressure measured at a point x with respect to an

origin at time t, and let Z(x, f) be the Fourier transform of z(x, t), where f is the

frequency in Hz. Note that Z(x, f) is a solution to the Helmholtz wave equation [19]

and can be expressed as

Z(x, f) =
∞∑
ν=0

ν∑
µ=−ν

αµν (f)jν(
2πfrx
c

)Y µ
ν (θx, φx), (6.5)

where αµν (k) is frequency-dependent spherical harmonic coefficients, jν(·) is the

nth order spherical Bessel function of the first kind, and Y µ
ν (·) are the real valued

spherical harmonic function of the order ν and the degree µ [148]. For any rx < rΩ,

we can truncate the infinite summation in (6.5) at V = dkrxe [80].

Due to the Fourier transform relationship between z(x, t) and Z(x, f), we can

use (6.5) to write

z(x, t) =
V∑
ν=0

ν∑
µ=−ν

γµν (t) ∗ pν(t)Y µ
ν (θx, φx), (6.6)

where γµν (t) is the inverse Fourier transform of αµν (f) and pν(t) is the inverse Fourier

transform of jν(2πfrx/c), which is given by [149]

pν(t) =
iνc

2rx
Pν(

tc

rx
), (6.7)
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where Pν(·) is the Legendre function of order ν. A similar truncation to (6.5)

of order V can be obtained in (6.6) since γµν (t) ∗ pν(t) and αµν (k)jν(2πfrx/c) are

Fourier transform pairs.

By integrating (6.6) over the sphere of radius rx and using the orthogonal

property of Y µ
ν (·), we derive:

γµν (t) ∗ pν(t) =

∫ 2π

0

∫ π

0

z(x, t)Y µ
ν (θx, φx) sin θxdθxdφx. (6.8)

Then, by convolving (6.8) with ρν(t)
1, where ρν(t) ∗ pν(t) = δ(t), we have

γµν (t) = ρν(t) ∗
∫ 2π

0

∫ π

0

z(x, t)Y µ
ν (θx, φx) sin θxdθxdφx. (6.9)

We can approximate the integration in (6.9) with a finite summation to estimate

γµν (t) [21]. When sound field z(xq, t) is measured for q = 1, · · · , Q with the error

microphones, we can calculate γµν (t) by

γµν (t) ≈ ρν(t) ∗
Q∑
q=1

z(xq, t)Y
µ
ν (θq, φq)χq, (6.10)

where χq is a correction factor depending on the geometry of the microphones.

6.4 Time-space domain adaptive algorithms

In this section, we develop two time-space domain feed-forward adaptive methods

based on the time-domain Fx-LMS algorithm [9]. We use discrete-time signals

and discrete time-space domain coefficients in the following sections, thus the time

variable t representing the discrete time samples hereafter.

1Note that ρν(t) can be constructed by taking the inverse Fourier transform of 1/jν(2πfr/c)
and using a suitable band stop filter to avoid Bessel zeros.
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6.4.1 Formulation of time-space domain signal coefficients

In Sec.6.3, we introduced the spherical harmonic coefficients of the time-space signal

z(x, t) as γµν (t). By applying this relationship to (6.3), we have

γµν
(e)(t) = γµν

(d)(t) + γµν
(s)(t), (6.11)

where γµν
(e)(t), γµν

(d)(t) and γµν
(s)(t) are the spherical coefficients of e(x, t), d(x, t)

and y′(x, t), respectively. By substituting for (6.2) from (6.4), we have

γµν
(s)(t) =

L∑
`=1

N (t) ∗ S̃µν,`(t) ∗ w`(t), (6.12)

where S̃µν,`(t) is the spherical harmonic coefficient of S(x|`, t).
Based on (6.11) and (6.12), we design two time-space domain feed-forward

adaptive filters in the following sections with the block diagram shown in Fig. 6.2.

Primary  
channel

Secondary 
channel 

Time-space 
transfer 

Adaptive updating
algorithm

 adaptive filter
Estimated secondary

channel with time-
space transfer

Q Q

(V+1)^2

(V+1)^2

d(t)

L Q

Figure 6.2: Block diagram of time-space domain adaptive algorithms.
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By deriving the adaptive update algorithm of w`(t), we aim to minimize γµν
(e)(t),

which represents the residual sound field e(x, t) over the control region.

6.4.2 Minimizing Squared Residual Sound Field Coefficient

Error over Region (MSE-R)

Let W = [w1,w2,w3, · · · ,wL], where w` is the vector of filter taps for the `th

loudspeaker, with order of Lw. To minimize the residual sound field, we define the

adaptive algorithm cost function as

ξ(t) =
V∑
ν=0

ν∑
µ=−ν

‖γµν (e)(t)‖2. (6.13)

Taking the derivative of ξ with respect to W (t), and by using (6.11) and (6.12),

we derive

∇ξ(t) =
∂ξ(t)

∂W (t)
=

V∑
ν=0

ν∑
µ=−ν

2γµν
(e)(t)[

∂γµν
(e)(t)

∂W (t)
]

= 2
V∑
ν=0

ν∑
µ=−ν

γµν
(e)(t)[N (n) ∗ S̃µν,`(t)].

(6.14)

For conventional multi-channel adaptive filters, the update equation is typically

given by [9]

W (n+ 1) = W (t)− λ

2
∇ξ(t), (6.15)

where λ is the step size. Hence, for each secondary loudspeaker, the τ th element of

time-space domain update equation is

w`,τ (n+ 1) =w`,τ (t)− λ
V∑
ν=0

ν∑
µ=−ν

γµν
(e)(t)

× [N (n) ∗ S̃µν,`(t)].

(6.16)

We implement our adaptive algorithm (6.16) by the following steps: a) pre-estimate

the impulse response of secondary channel S(xq|`, t) from each loudspeaker to each

microphone, b) measure the error signal e(xq, t) by error microphones, and reference

signal N (t) by the reference microphone, c) estimate γµν
(e)(t) and S̃µν,`(t).
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To obtain γµν (t)(e) and S̃µν,`(t) using (6.10), an inverse Fourier transform based

function ρν(t) is involved, where its group delay can lower performance and slow

down convergence and its Bessel zeros can influence stability, which are not de-

sirable in the system. Therefore, in the next section, we study an alternate cost

function to avoid these drawbacks.

6.4.3 Minimizing Squared Residual Sound Field Error on

the Region Boundary (MSE-B)

Instead of minimizing the residual sound field over the whole control region as in

Sec. 6.4.2, here we only minimize the residual sound field on the boundary. As

there are no noise sources inside the region, this method should still achieve an

acceptable noise reduction within the region.

We define the adaptive algorithm cost function as

ξ =
V∑
ν=0

ν∑
µ=−ν

‖γµν (b)(t)‖2, (6.17)

where
γµν

(b)(t) = γµν
(e)(t) ∗ pν(t)

=

∫ 2π

0

∫ π

0

e(x, t)Y µ
ν (θx, φx) sin θxdθxdφx

≈
Q∑
q=1

e(xq, t)Y
µ
ν (θq, φq)χq.

(6.18)

By taking the derivative of ξ in (6.17) with respect to W (t) and using (6.11) and

(6.12), the gradient of this cost function can be derived as

∇ξ =
∂ξ

∂W (t)
=

V∑
ν=0

ν∑
µ=−ν

2γµν
(b)(t)[

∂γµν
(b)(t)

∂W (t)
]

= 2γµν
(b)(t)[N (n) ∗ S̃µν,`(t) ∗ pν(t)].

(6.19)

With (6.15) and (6.19), for each loudspeaker, the τ th element of the update equation
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is

w`,τ (n+ 1) =w`,τ (t)− λ
V∑
ν=0

ν∑
µ=−ν

[γµν
(e)(t) ∗ pν(t)]

× {[N (n) ∗ S̃µν,`(t)] ∗ pν(t)}

=w`,τ (t)− λ
V∑
ν=0

ν∑
µ=−ν

Q∑
q=1

e(xq, t)Y
µ
ν (θq, φq)

× [N (n) ∗
Q∑
q=1

S(xq|`, t)Y µ
ν (θq, φq)].

(6.20)

In this case, we avoid calculating ρν(t) to obtain the update equation, hence avoid

latency of inverse Fourier transform and Bessel zeros problem.

6.5 Simulation Results and analysis

In this section, we compare the performances of the proposed methods (MSE-R,

MSE-B) against the conventional multi-channel adaptive filtering method (MP) [2]

in both the free space and the room environment.

We simulate a feed-forward ANC system consisting of 9 error microphones and

9 loudspeakers uniformly spaced on two concentric spheres of radius 0.16 m and

0.48 m [150], respectively. A single noise source is located at (2, 90◦, 90◦), where

a reference microphone is placed nearby to obtain reference signals. We consider

four different noise signals in this simulation, each lasting 1 s.

Scenario 1: Multiple superimposing sine waves of frequency 100 Hz, 170 Hz, and

250 Hz;

Scenario 2: Single sine wave of frequency 210 Hz;

Scenario 3: filtered Gaussian distributed random signal with a 600 Hz cut-off

low-pass filter;

Scenario 4: filtered real noise recorded in a computer room with a 600 Hz cut-off

low-pass filter.

A signal-to-noise ratio (SNR) of 60 dB is added to the microphone recordings

for the first three scenarios. Sampling rate is 48 kHz, yet we down sampled at a

rate of 10 to reduce computational cost. In order to simulate the reverberant room
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environment, the image-source method [151] is employed, where the room size is

set to be 4 m × 5 m × 3 m with reflection coefficients of 0.9, 0.7, 0.8, 0.6, 0.5 and

0.8 of 4 walls and floor and roof respectively. The noise of scenario 4 is recorded in

a room full of computers. The majority of the noise is contributed by the computer

fan noise, and the air-conditioner noise exists, too. There are no people walking or

talking.

We define a metric for noise reduction at point x inside the control region as

η(x) = 10log10

∑
n e(x, n)2∑
n d(x, n)2

, (6.21)

where the summation is over the last 480 samples of the signals, to ensure that the

adaptive filter has reached convergence.

We first plot the performance of scenario 1 on the x-y plane with red and blue

circles indicating the sphere where the error microphones and the loudspeakers are

located, respectively.

As shown in Fig. 6.3, all methods can achieve some level of noise reduction

in both free-space and room environment. However, its clearly observed that the

noise reduction within the entire control region is better with the proposed methods

while MSE-B method achieves the highest performance. With MSE-B method, We

can see that almost every test point inside the control region is dark, which refers

to around 20 dB noise reduction.

Performance of these methods over the whole region are theoretically evaluated

by averaging η(x) over the whole control region with 2103 uniformly placed points.

Table 6.1: Average performance (dB) over the whole region in free-space.
MP MSE-R MSE-B

Single sine wave 5.55 18.76 21.27
Multi sine wave 6.52 14.06 20.92
Random noise 16.11 16.85 21.85
Real noise 9.00 10.03 13.50

Table 6.1 shows the results of average performance over the whole region for four

scenarios and three different methods in free space. From Table 6.1, we note that
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(f) MSE-B-room

Figure 6.3: Noise reduction performance in free field with a) MP, c) MSE-R, e)
MSE-B, and in a reverberant room with b) MP, d) MSE-R, f) MSE-B.
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the proposed two methods achieve higher performance than MP method. MSE-

B method achieves the highest noise reduction with all scenarios. For stationary

signals, MSE-R method performs significantly better than MP method.

Table 6.2 shows the results of average performance over the whole region for the

four scenarios mentioned earlier and three different methods in a room environment.

We find the same trends as in free-space with sinusoidal noises, that MSE-B method

Table 6.2: Average performance (dB) over the whole region in room.

MP MSE-R MSE-B
Single sine wave 8.60 20.09 23.67
Multi sine wave 8.85 13.43 17.51
Random noise 5.56 10.83 9.56
Real noise 4.40 5.72 4.41

achieves the highest performance. When the noise signals are non-stationary, MSE-

R method achieves the highest performance, which is different from what we found

in free space.

Theoretically, MSE-R method should achieve the highest performance since

it minimizes the coefficients over the whole control region. However, we note the

different results in free space and for stationary signals in room from the simulation.

This phenomenon is due to the group delay as described in Sec.6.4.2. In free space,

the system delay is mainly caused by filtering methods, hence we obtain an obvious

difference on performance between MSE-R method and MSE-B method. Using an

advanced windowing method can help to decrease the delay [152].

However in the room environment, as the reverberation from walls makes the

impulse responses between loudspeakers and microphones longer, the latency of

the whole system becomes much more longer than in free-space. Non-stationary

noises have time-varying frequency responses, hence are more sensitive with the

delays. We can observe in the room environment, performance of non-stationary

signals with all three methods are smaller than stationary signals. With those non-

stationary noises, as the delays caused by filtering methods are much more shorter

than channel delays in the room, MSE-R achieves the best performance with its

strong control over the whole control region.
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6.6 Conclusions

In this chapter, we derive a spherical harmonic based time-wave domain signal

decomposition method, providing a tool for spatial sound field analysis without

transforming signals to the frequency domain. Based on that, we proposed two

time-wave domain methods for feed-forward adaptive filtering to achieve noise re-

duction over a spherical region. We compared the noise reduction performance of

these proposed methods against the conventional time-domain multi-channel ANC

system in both the free-space and the reverberant room environments, finding that

the proposed two methods are effective with both narrow-band and wide-band noise

signals. In simple environments, such as the free-space, MSE-B method achieves

the best performance because of its short filtering latency. In a reverberant room

with long and complex channels between microphones and loudspeakers, MSE-R

method achieves a better performance with non-stationary noises since it minimizes

the coefficients of residual signals over the whole control region.

6.7 Related Publications

Much of this chapter’s work has been published in the following conference pro-

ceedings.

• H. Sun, T. D. Abhayapala and P. N. Samarasinghe, “Time Domain Spherical

Harmonic Analysis for Adaptive Noise Cancellation over a Spatial Region,”

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 516-520, Brighton, UK, May, 2019.





Chapter 7

Time domain spherical harmonic

processing with open spherical

microphones recording

Overview: Spherical harmonic analysis has been a widely used approach for spatial

audio processing in recent years. Among all applications that benefit from spatial

processing, spatial ANC remains unique with its requirement for open spherical

microphone arrays to record the residual sound field throughout the continuous re-

gion. Ideally, a low delay spherical harmonic recording algorithm for open spheri-

cal microphone arrays is desired for real-time spatial ANC systems. Currently, the

frequency domain algorithms for spherical harmonic decomposition of microphone

array recordings are applied in a spatial ANC system, where a Short Time Fourier

Transform is required, which introduces undesirable system delay for ANC systems.

We have developed the time-wave domain ANC system in Chapter 6 with Inverse

Fourier Transform based filters. In this chapter, we develop a time domain spheri-

cal harmonic decomposition algorithm for the application of spatial audio recording

mainly with benefit to ANC with an open spherical microphone array. Microphone

signals are processed by a series of pre-designed finite impulse response (FIR) filters

to obtain a set of time domain spherical harmonic coefficients. The time domain

coefficients contain the continuous spatial information of the residual sound field.

We corroborate the time domain algorithm with a numerical simulation of a fourth

111



112
Time domain spherical harmonic processing with open spherical microphones

recording

order system, and show the proposed method to have lower delay than existing ap-

proaches.

7.1 Introduction

Spherical harmonic analysis has been widely used for spatial acoustic signal pro-

cessing for years [80]. Sound field recordings can be decomposed into a set of

orthogonal spatial basis functions and respective coefficients when an appropri-

ately designed spherical microphone array is used [21,78]. The spherical harmonic

decomposition has the advantage that a given sound field can be analyzed over a

continuous spatial region rather than a set of distributed points [153]. This has

embraced a wide range of algorithms in three-dimensional (3D) audio signal pro-

cessing such as: sound intensity analysis [154], sound field diffusive analysis [155],

beamforming [156,157], source localization [158,159], and spatial ANC [90,146].

A spatial ANC system aims to reduce the unwanted acoustic noise [160] over

a space in order to create a silent zone for people. Multiple microphones are used

to record the residual noise, and multiple loudspeakers are used to generate the

anti-noise field. The recording’s accuracy of the residual sound field can highly

influence the performance of an ANC system. Furthermore, recording efficiency is

also important, as ANC usually focuses on low frequency and time-variant noise.

As a result, an accurate and low latency algorithm for residual sound field recording

is desired [9].

The sound field recording step in a spatial ANC system focuses on obtaining

the location independent spherical harmonic coefficients that represent the residual

sound field inside a region of interest. This is different to real time spherical

harmonic beamforming or directivity analysis which focuses on extracting source

location information from the spatial recording. Moreover, spatial ANC mainly

focuses on reducing the sound field inside the spherical microphone array (the region

of interest). While other spatial recording applications may focus on analysing

the sound field exterior to the array. Additionally, although most of the spatial

audio applications utilize a rigid spherical array [161–163] for its convenience to

build and use, an open spherical array is considered to be more suitable for a

spatial ANC system. This is because users should be able to enter and move
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within the ANC region of interest that is surrounded by the spherical microphone

array [90, 164]. Furthermore, there exists previous work focusing on optimising

the open array for spherical harmonic recording [102, 127], and for spatial ANC

systems [165]. However, we consider the optimisation of the open microphone array

design to be outside of the scope of this work, and instead focus on a time-domain

recording algorithm.

Real-time spatial beamforming systems illustrate that applications with strict

delay requirements can highly benefit from the small latency and efficient computa-

tion of time domain processing [166,167]. By posing the signal processing algorithm

in the time domain, system performance can be optimized with real-valued lower

order filters [168], and lower modeling delays [169]. Specifically, for a spatial ANC

system, the system delay which includes the filter group delay (signal processing

algorithm), the A/D and D/A converter, and the data processing delay, should

be less than the acoustic delay from the reference microphones to the secondary

loudspeakers in order to satisfy causality [27]. Furthermore, a longer signal pro-

cessing delay slows down the convergence speed of the adaptive filtering and may

lead to an unstable system [170,171]. Therefore, it is worthwhile to consider a time

domain spherical harmonic decomposition method to achieve sound field recording

with an open spherical array for the application of spatial ANC.

Frequency domain spherical harmonic recording has been well developed with

various optimised filters [172–174]. One benefit of developing the method in the

frequency domain is that the influence of the spherical Bessel zeros can be easily

removed by avoiding the estimation of the coefficients at these erroneous frequency

bins [100,102,175,176]. However, when we consider a time domain method, we can

not simply avoid the Bessel zeros because we do not apply a Fourier Transformation

to separate the Bessel zero frequency components from the others.

Meanwhile, there are also several work relate to time domain spatial audio signal

processing. In [105], Poletti and Abhayapala give a time domain description of the

free-space Green’s function in the spherical harmonic domain. This provides a so-

lution to decompose the free-space channel between a loudspeaker and microphone

into the time-space domain. This work only targets the free-space Green’s func-

tion, and as a result, the method is highly limited to the application of free space

sound field reproduction. In [104], a time domain wave field synthesis method
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is presented. Although an IFFT is applied to derive the time domain solution,

the work still demonstrates that time-domain wave field synthesis can be beneficial

to time-varying spatial acoustic applications. In [177], Hahn and Spors offer a time

domain representation of the spherical harmonic equation. They relate the time

domain spherical harmonic coefficients to the sound pressure, but do not include

the method of obtaining the time domain coefficients from a given recording. Time

domain beamformers are designed in [107, 178] with the IFFT of spherical har-

monics. These papers show certain advantages for finite impulse response (FIR)

filtering based signal processing systems. Overall, these time domain approaches

illustrate the advantages of time domain signal processing, however, they remain

unable to obtain location-independent spherical harmonic coefficients. This makes

them ill-suited for spatial ANC systems, as these location-independent coefficients

provide necessary information about the continuous residual sound field inside the

region of interest.

In this chapter, we propose a FIR filter based time domain spherical harmonic

analysis method to accurately record spatial sound fields with an open spherical

microphone array for the purpose of spatial ANC. We note that this work focuses

solely on the problem of sound field recording, and that the spatial ANC application

acts purely as motivation to our problem. Therefore, with spatial ANC in mind,

the recording method prioritizes a minimum processing delay, a bandwidth of in-

terest (low frequencies for typical noise scenarios), and a practical array geometry

(open sphere surrounding a quiet zone). Employing the recording method in an

actual ANC system, and its evaluation, is out of the scope of this work. The nov-

elty of the presented work is the investigation of time domain spherical harmonic

coefficients. These time domain coefficients match the properties of conventional

frequency domain spherical harmonic coefficients. That is, the coefficients are lo-

cation independent within the region of interest, and they represent the continuous

sound field over the space. Additionally, these coefficients are obtained in the time

domain, which relieves the block processing constraint (and can do sample-by-

sample processing) and results in lower system delay. Hence, the proposed method

is considered to be highly beneficial to spatial ANC systems.

We organise the main body of this chapter as follows: In Section 7.2 we detail the

background of the frequency domain spherical harmonic algorithm for spatial sound
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field recording. Additionally, we introduce the time domain equation of spherical

harmonic decomposition, while addressing the challenges of recording time domain

spherical harmonic coefficients. The filter’s design and implementation to obtain

the time domain spherical harmonic coefficients is presented in Section 7.3, along

with error analysis. Effects of truncation and filter length are shown in Section 7.4

via initial simulations of filter performance. Section 7.5 presents simulation results

for the proposed method’s estimation of spherical harmonic coefficients, as well

as sound field reconstruction performance at a point and over space, verifying the

effectiveness of the proposed theory and design. We conclude the findings and

insights gained from this work in Section 7.6.

7.2 Problem Formulation

We begin this section by reviewing the well-known frequency domain spherical har-

monic decomposition method. We then introduce the corresponding time domain

formulation, and detail the Fourier Transform relationship between the components

in the frequency domain equation and the time domain equivalent. Finally, we show

the difficulties in obtaining spherical harmonic coefficients in the time domain.

7.2.1 Spherical Harmonic Decomposition of Sound Field in

Frequency-Space Domain

An incident sound field at any arbitrary point x = (r, θ, φ) inside a source free

3D spherical region Ω, where r refers to the distance between the point x and

the origin, θ and φ denote elevation and azimuth angles, respectively [?], can be

expressed in the frequency domain as [19,80]

z(x, k) =
N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (7.1)

where order n (n ≥ 0) and mode m are integers, N = dkRe [80], k = 2πf/c is the

wave number, f is frequency, c is the speed of sound, R is the radius of Ω, αnm(k)

is a set of spherical harmonic coefficients representing the sound field inside Ω,
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jn(kr) is the nth order spherical Bessel function of the first kind, Ynm(θ, φ) are the

spherical harmonic functions. For convenience, we use real spherical harmonics in

this thesis, given by [148]

Ynm(θ, φ) =(−1)|m|

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

×

{
Pnm(cos θ) cos(mφ) m ≥ 0

Pnm(cos θ) sin(mφ) m < 0
,

(7.2)

where Pnm(·) is the associated Legendre function. Real spherical harmonics have

the orthogonality property of∫ 2π

0

∫ π

0

Ynm(θ, φ)Yn′m′(θ, φ) sin θdθdφ = δnn′δmm′ . (7.3)

If the spherical harmonic coefficients αnm(k) are available for a sound field, then

these coefficients can fully describe the sound field over the continuous spatial

region of interest. Traditionally, when spatial harmonic processing is used to record

a spatial sound field z(x, k), it is recorded over a spherical surface of radius RQ

(RQ ≥ r). The corresponding αnm(k) are extracted by integrating (7.1) over the

spherical surface while exploiting the orthogonality property of Ynm(·) in (7.3),

which gives [21]

αnm(k) =
1

jn(kr)

∫ 2π

0

∫ π

0

z(r, θ, φ, k)Y ∗nm(θ, φ) sin θdθdφ. (7.4)

In practice, this integration is realized using an equivalent discrete summation of

spatial samples over the sphere.

7.2.2 Equivalent Spherical Harmonic Decomposition of a

Sound Field in Time-Space Domain

While the frequency domain spatial sound field capture is well established as ex-

plained in Section 7.2.1, in this work, our objective is to investigate the possibility

of an analogous spherical harmonic analysis in the time domain. In a similar fash-
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ion to (7.1) and (7.4), we now consider the relationship between sound pressure

z(x, t) recorded by a spherical microphone array and the time domain spherical

harmonic coefficients, denoted as γnm(t). It is desirable to have these time do-

main coefficients γnm(t) independent of the measurement radius. Thus, we only

need to record γnm(t) to obtain the sound field over the entire region of interest

Ω. A time domain method can directly extract γnm(t), thus avoiding the Fourier

transformation of signals.

As a time domain analysis is usually with real-valued components, we rewrite

(7.1) in the form of

z(x, k) =
N∑
n=0

n∑
m=−n

inαnm(k)
jn(kr)

in
Ynm(θ, φ), (7.5)

where i =
√
−1, in order to make the inverse Fourier transform of all terms to be

real. Taking the inverse Fourier transformation of (7.5), we obtain

z(x, t) =
N∑
n=0

n∑
m=−n

γnm(t) ∗ pn(t, r)Ynm(θ, φ), (7.6)

where ∗ denotes the convolution operation,

γnm(t)
F−→ inαnm(k), (7.7)

where
F−→ denotes the Fourier transform operator,

pn(t, r)
F−→ jn(kr)

in
, (7.8)

which is given by

pn(t, r) =

{
c
2r
Pn( tc

r
) − r

c
≤ t ≤ r

c

0 |t| > r
c

, (7.9)

where Pn(·) is the Legendre function. We note that every component in (7.6) is

real valued. The proof of (7.9) is given below:

We have the Fourier relationship between the spherical Bessel function jn(kr)
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and the Legendre function Pn(t) given by (Eq.4) in [112] that∫ ∞
−∞

eikrtjn(kr)dkr = πinPn(t). (7.10)

With (7.10), pn(t, r) in (7.8) can be express as

pn(t, r) =
c

in2πr

∫ ∞
−∞

jn(kr)e
itckr
r dkr

=

{
c
2r
Pn( tc

r
) − r

c
≤ t ≤ r

c

0 ±t > r
c

.

(7.11)

This completes the proof of (7.9).

Equation (7.6) shows how to reconstruct the sound pressure at x = (r, θ, φ)

with the recorded time domain spherical harmonic coefficients γnm(t). We consider

an alternative time domain filter to obtain γnm(t) from the recorded signals rather

than taking the inverse Fourier transform of (7.4) since 1/jn(kr) is unbounded

when jn(kr) = 0. Note that jn(kr) as a filter has order dependent zeros when

jn(kr) = 0. As a result, 1/jn(kr) approaches infinity at these frequencies, making

it unstable to have an inverse Fourier transform. In other words, the z-transform of

pn(t, r) given in (7.9), has zeros on the unit circle because of Bessel zeros, refers to

a non-minimum phase system. In this case, the inverse system of pn(t, r), with the

frequency response of 1/jn(kr) is not stable. As a result, we first define

Γnm(t, r) , γnm(t) ∗ pn(t, r), (7.12)

which has a frequency response of

Γnm(t, r)
F−→ inαnm(k)

jn(kr)

in
= αnm(k)jn(kr). (7.13)

Since Ynm(θ, φ) is independent to both frequency and time, Γnm(t, r) can be

obtained by integrating (7.6) over a sphere of radius r such that

Γnm(t, r) =

∫ 2π

0

∫ π

0

z(x, t)Ynm(θ, φ) sin(θ)dθdφ. (7.14)
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If we regularly place Q ≥ (N + 1)2 omni-directional microphones on a sphere of

radius RQ, we can estimate the integration in (7.14) with a finite summation such

that

Γnm(t, RQ) ≈
Q∑
q=1

z(xq, t)Ynm(θq, φq). (7.15)

To simplify the implementation, we sample the signals with a sampling fre-

quency of Fs. Hence, the variable t refers to discrete time intervals hereafter.

We rewrite (7.12) as

Γnm(t, RQ) = γnm(t) ∗ pn(t, RQ)

=

Lp∑
u=−Lp

pn(u,RQ)γnm(t− u),
(7.16)

where

pn(t, RQ) =

{
c

2RQ
Pn( tc

RQFs
) −RQFs

c
≤ t ≤ RQFs

c

0 |t| > RQFs
c

, (7.17)

is a time limited function with pn(t, r) 6= 0 when −Lp ≤ t ≤ Lp, Lp = dRQFs/ce
such that the length of pn(t, RQ) is 2Lp + 1.

With (7.16) in hand, our problem reduces to obtaining γnm(t) from the measured

Γnm(t, RQ). This is not achievable since it is an under-determined problem. We

always have 2Lp+1 more unknowns (γnm(t)) than knowns (Γnm(t, RQ)). Moreover,

this is not practically feasible because the z-transform of pn(t, RQ) has zeros on the

unit circle, resulting in poles on the unit circle in its direct inverse, making the

system unstable. Alternatively, γnm(t) can be extracted from Γnm(t, RQ) using an

appropriately designed filter.

In this chapter, we attempt to design a filtering solution while overcoming the

above challenges. It is important to note that the Fourier transform relation-

ship discussed in this section were solely used to formulate the definition of the

time-domain spherical harmonic decomposition of a sound field. From this point

onward, we will focus on signal processing of the captured sound field only in the

time domain.
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7.3 Filter Design for Obtaining Time Domain Spher-

ical Coefficients

In Section 7.2, we have presented a method to obtain Γnm(t, RQ) from recorded

sound pressure z(xq, t) with a spherical microphone array. In this section, we design

a series of FIR filters to obtain γnm(t) from given Γnm(t, RQ).

7.3.1 Stability of Ideal Inverse Filter

Due to the challenges mentioned in Section 7.2, rather than directly using (7.16),

we pre-design a series of filters ρn(t, r) such that

Γnm(t, RQ) ∗ ρn(t, RQ)

= γnm(t) ∗ pn(t, RQ) ∗ ρn(t, RQ) = γnm(t),
(7.18)

where

pn(t, RQ) ∗ ρn(t, RQ) ≈ δ(t). (7.19)

We note here that ρn(t, r) should be order n dependent but mode m independent,

as is the same property with pn(t, r).

However, we can never achieve a precise δ(t) in (7.19), as the energy of measured

sound pressure at the frequency bins of Bessel zeros has been filtered to zero by

pn(t, RQ). Therefore, we refrain from designing the inverse filter at these zero

positions. Instead, we modify δ(t) to Zn(t) such that its frequency response Ẑn(f)

is given by

Ẑn(f) =

{
1 |jn(kr)| ≥ ε

0 |jn(kr)| < ε
, (7.20)

where ε is a small positive constant threshold which satisfies jn(kr) ≈ 0 when

|jn(kr)| < ε. For a fixed RQ, both jn(2πfRQ/c) and Ẑn(f) can be seen as a

function of f . Figure 7.1 shows jn(2πfRQ/c) and Ẑn(f) with ε = 1/40 (shown as

red and orange dash lines) of the first four orders of n, the black dash line represents

the maximum frequency of interest.

From Figure 7.1, we can see that Ẑn(f) is a superposition of a series of rectangu-
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(a) (b)

(c) (d)

Figure 7.1: The spherical Bessel function jn(2πfRQ/c) and Ẑn(f) of order (a)
n = 0, (b) n = 1, (c) n = 2, (d) n = 3 with fmax ≈ 1360 Hz, ε = 1/40, RQ = 0.16
m and c = 343 m/s.
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lar windows, meaning its inverse Fourier transformation, Zn(t), should be a super-

position of sinc functions. In practice, due to inherent properties of jn(2πfRQ/c),

for a given maximum frequency fmax, the number of active spherical harmonic or-

ders is up to N ≈ dkRQe [80]. We use the same truncation limit when designing

Ẑn(f), resulting in Zn(t) to be a superposition with a finite number of sinc func-

tions. The necessity and the influence of this truncation on frequency fmax will be

further discussed in Section 7.4.1.

Let us define ω(n) in radian (rad), such that jn(ω(n)FsRQ/c) = ε, where ε is

the positive threshold we explained in the last paragraph. Therefore, ω(n) can be

considered as the edges of window in Ẑn(f) (see Figure 7.1). Given the vector of

[ω
(n)
1 , ω

(n)
2 , ω

(n)
3 , · · · ], we can write Zn as

Zn(t) =
I∑
ı=1

(ω
(n)
2s − ω

(n)
2s−1)sinc

(ω(n)
2s − ω

(n)
2s−1

2
t
)

× cos(
ω

(n)
2s + ω

(n)
2s−1

2
t),

(7.21)

where I is the number of rectangular windows in Ẑn(f) for −fmax ≤ f ≤ fmax.

Furthermore, ω(n) are dependent on the radius of the microphone array RQ, sam-

pling frequency Fs and the speed of sound c, but the value of ω(n)FsRQ/c remains

constant for each order n such that |jn(ω(n)FsRQ/c)| = ε. The first four order

of ω(n) is given in Table 7.1 with the highest frequency limit of fmax = 2047 Hz

and sampling frequency Fs = 48, 000 Hz. Note that for the zero-th order, we set

ω1 = 8.9× 10−4 to block DC component in practice.

If we have a series of concentric spherical microphone arrays with the radii of

r1, r2, · · · , the value of ω(n)Fsrq/c would be different from a single sphere model,

which can be calculated by |jn(ω(n)r1/Fsc) + jn(ω(n)r2/Fsc) + · · · | = ε.

7.3.2 Modified Inverse Filter

Now that the design for Zn(t) is established, our next step is to design filters

ρn(t, RQ) which satisfies

pn(t, RQ) ∗ ρn(t, RQ) = Zn(t). (7.22)
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Table 7.1: The first four order of ω(n) to derive Zn(t) with fmax ≈ 2047 Hz, ε =
1/40, RQ = 0.16 m and c = 343 m/s.

n (order) ω
(n)
1 ω

(n)
2 ω

(n)
3 ω

(n)
4

0 0.0009 0.1369 0.1439 0.2680
1 0.0033 0.1957 0.2059 0.2680
2 0.0276 0.2509 0.3643 0.2680
3 0.0640 0.2680 - -

We notice in (7.22) that pn(t, RQ) is a finite length vector and we would like

ρn(t, RQ) also to be a finite length vector. However, Zn(t) is infinitely long with a

series of sinc functions. If we perform linear convolution of pn(t, RQ) with ρn(t, RQ),

we would obtain a vector with the length of 2(Lρ+Lp)+1 samples, where 2Lρ+1 is

the filter length of ρn, such that ρn(t, RQ) has none-zero values for −Lρ ≤ t ≤ Lρ.

Thus, we need to truncate the infinite length Zn(t) to 2(Lρ + Lp) + 1 samples for

every order of n where

Z ′n(t) ,

{
Zn(t) −(Lρ + Lp) ≤ t ≤ Lρ + Lp

0 otherwise
. (7.23)

We can then write (7.22) in a finite summation form as

Z ′n(t) = pn(t, RQ) ∗ ρn(t, RQ)

=

Lρ∑
u=−Lρ

pn(t− u,RQ)ρn(u,RQ).
(7.24)

We rewrite (7.24) into matrix form

ψn = P nρn, (7.25)

where ψn = [Zn(−(Lρ + Lp)),Zn(−(Lρ + Lp) + 1), · · · ,Zn((Lρ + Lp))]
T , ρn =

[ρn(−Lρ, RQ), ρn(−Lρ+1, RQ), · · · , ρn(Lρ, RQ)]T , and P n is the convolution matrix

based on the Toeplitz structure of pn(t, RQ), given in (7.26).

The size of matrix P n is [2(Lρ + Lp) + 1, 2L + 1], where we choose the filter

length 2Lρ + 1 of ρn(t, RQ) to be significantly larger than both 2Lp + 1 and the
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P n =

pn(−Lp, RQ) 0 . . . . . . . . . . . . 0
pn(−Lp + 1, RQ) pn(−Lp, RQ) 0 . . . . . . . . . 0

...
. . .

...
pn(Lp, RQ) . . . pn(−Lp, RQ) 0 . . . . . . 0

0 pn(Lp, RQ) . . . pn(−Lp, RQ) 0 . . . 0
...

. . .
...

0 . . . 0 pn(Lp, RQ) . . . pn(−Lp + 1, RQ) pn(−Lp, RQ)
0 . . . . . . 0 pn(Lp, RQ) . . . pn(−Lp + 1, RQ)
...

. . .
...

0 . . . . . . . . . 0 pn(Lp, RQ) pn(Lp − 1, RQ)
0 . . . . . . . . . . . . 0 pn(Lp, RQ)



.

(7.26)

main lobe width of function Z ′n(t), to avoid P n being ill-conditioned and minimize

the error of truncating Z ′n(t) into a finite length signal. The influence of choosing

Lρ will be detailed in Section 7.4.2.

Since (7.25) is an over-determined system of equations, we apply LMS method

to (7.25) to obtain

ρn = P+
nψn, (7.27)

where P+
n refers to the Moore-Penrose inverse of P n. As a result, with (7.18) and

(7.27), γnm(t) can be estimated by

γnm(t) ≈ Γnm(t, RQ) ∗ ρn(t, RQ)

=
( Q∑
q=1

Z(xq, t)Ynm(θq, φq)
)
∗ ρn(t, RQ).

(7.28)

In this way we obtain γnm(t) while overcoming the challenges listed in Sec-

tion 7.2.

7.3.3 Practical Considerations of Filter Implementation

In (7.28), γnm(t) is obtained by filtering Γnm(t, RQ) with ρn(t, RQ), where we get

Γnm(t, RQ) ∗ ρn(t, RQ) = γnm(t) ∗ Z ′n(t) ≈ γnm(t). (7.29)
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Naturally γnm(t) at time index t is only influenced by [Γnm(t−Lp, RQ),Γnm(t−Lp+

1, RQ), · · · ,Γnm(t + Lp, RQ)] because of the Legendre function in pn(t, RQ). How-

ever, with the influence of sinc functions in Z ′n(t) in our proposed filters ρn(t, RQ),

we now need the past Lρ samples and the future Lρ samples of Γnm(t, RQ) to

obtain γnm(t) at time index t. For offline signal processing, Lρ samples of zeros

should be added both in the beginning and the end of the vector of Γnm before

filtering it with pre-designed ρn(t, RQ). Moreover, an overlap of 2Lρ + 1 samples is

needed for frame based signal processing. For on-line real time signal processing,

we cannot obtain future samples of Γnm(t, RQ). As a result, we add Lρ samples

of zeros in front of the filter ρn(t, RQ), and create a buffer of the past 2Lρ + 1

samples of Γnm(t, RQ). At time index t, we obtain γnm(t − Lρ) with the buffer

of [Γnm(t− 2Lρ, RQ), · · · ,Γnm(t, RQ)]. Thus, there is a Lρ samples of group delay

of the system. We further discuss and compare the group delay with frequency

domain method in Section 7.5.5.

7.3.4 Error Analysis

We define the error εnm(t) as the difference between the desired time domain spher-

ical harmonic and the coefficients we obtained by the proposed method, which can

be decomposed to:

εnm(t) = εfilter(n,m, t) + εposition(n,m) + εtruncation(n), (7.30)

where εfilter(n,m, t) is filtering error introduced by ρn(t, RQ), εtruncation(n) is the

truncation error of order N , and εposition(n,m) is due to the microphones posi-

tion error. The qualitative analysis of εtruncation(n) and εposition(n,m) based on the

frequency domain method are addressed in [78], where we draw a similar conclu-

sion in the time domain that with increasing number of microphones and fixed N ,

εtruncation(n) decreases. Meanwhile, εposition(n,m) depends on the nature of inaccu-

rate microphone positioning, referring to the distance between the desired point

and microphone location. We mainly focus on εfilter(n,m, t) here as it is the main

error contribution due to the proposed filtering approach.

According to (7.29), εfilter(n,m, t) at a specific order n and mode m can be expressed
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as
εfilter(n,m, t) = |γnm(t) ∗ Z ′n(t)− γnm(t)|

= |γnm(t) ∗ εn(t)|,
(7.31)

where

εn(t) , δ(t)−Z ′n(t). (7.32)

Using (7.20) and (7.23), the Fourier transform of εn(t) is

εn(t)
F−→ ∆n(f) =

{
1 |jn(kr)| ≤ ε, kr < N

0 otherwise
, (7.33)

with the same truncation in frequency as Ẑn(f). Thus, εn(t) can be expressed as

εn(t) =
I−1∑
ı=0

(
w

(n)
2s+1 − w

(n)
2s

)
sinc

(w(n)
2s+1 − w

(n)
2s

2
t
)

× cos
(w(n)

2s+1 + w
(n)
2s

2
t
)
,

(7.34)

where I and w(n) have the same definition as in (7.21) and w
(n)
0 = 0.

With (7.31) and (7.34) we can quantitatively calculate εfilter(n,m, t) introduced

by the filter ρn(t, RQ). The total error caused by filtering can be calculated by a

summation of εfilter(n,m, t) over every order of n and mode of m. As this filtering

error is mainly due to Bessel zeros, it can be reduced by limiting the highest order

N of the system, where a smaller N results in lower Bessel zeros hence a smaller

εfilter(n,m, t). Also, N depends on the highest wave number k and the radius of the

microphone array RQ. By choosing N with a pre-knowledge of the frequency limit

of the input signals and RQ also helps to minimize the filtering error εfilter(n,m, t).

7.4 A Filter Design Example

To provide a further understanding of the filter design process, we present a design

example of a fourth (N = 4) order spherical microphone array of RQ = 0.16

m, designed to record the time domain spherical harmonic coefficients within the

spatial region enclosed by the array with a desired frequency band of [20, 1360] Hz.
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Figure 7.2: Frequency response of up to 4-th order of the pre-designed order de-
pendent FIR filter ρn(t, RQ) with Z ′n(t) frequency truncated at (a) f1 = 1023.6 Hz,
(b) f2 = 1364.8 Hz, and (c) f3 = 2047.1 Hz.

Let sampling frequency to be Fs = 48, 000 Hz and c = 343 m/s. Before we apply

the proposed method to recording signals, we first analyze the influence of several

steps in designing the proposed filter ρn(t, RQ).

7.4.1 Effect of Frequency Truncation of Zn(t)

As audio signals are often band limited in ANC applications [9], we can have a finite

truncation on spherical harmonic decomposition with order N = dkRQe. In other

words, if we have a fixed N-th order system, the highest frequency that the system

can successfully capture is given by fmax = Nc/(2πRQ) ≈ 1360 Hz. Figure 7.2

shows the frequency response of ρn(t, RQ), refers to Φn(f,RQ), which is designed

using (7.27) with Z ′n(t) truncated at f1 = 1023.6 Hz (Figure 7.2a), f2 = 1364.8 Hz

(Figure 7.2b), f3 = 2047.1 Hz (Figure 7.2c), respectively. The filter length is set

to be 500. To obtain the frequency response of ρn(t, RQ), a FFT of 4096 points is

applied with zero padding to ρn(t, RQ). We recall here that Z ′n(t) is given by (7.21)

in the time domain, which does not rely on any frequency domain processing.

We observe that for a N = 4th order system, the truncation at f1 is not

enough to get an accurate frequency response of ρn(t, RQ), as the frequency re-

sponse Φn(f,RQ) begins to decline at f1. In this case, ρn(t, RQ) can not provide

an acceptable filtering result with signals containing higher frequency components.

Truncation at both f2 and f3 can give a satisfied frequency response when f < fmax,
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that the frequency response remains at the desired amplitude for f < fmax. As the

frequency range of the system is also limited by N = dkRQe, it is not necessary to

look at the frequency response when f > fmax. So in both cases ρn(t, RQ) can give

an acceptable filtering output. As a result, we choose to truncate Z ′n(t) at fmax,

where 2πfmaxRQ/c = N . If the recorded signal is known as a band limited signal

where its highest frequency component is less than fmax, an alternative choice of

the frequency truncation of Z ′n(t) is at this highest frequency to reduce the compu-

tation complexity. Meanwhile, if Z ′n(t) has been designed with a higher frequency

truncation, it can also be used in a lower order system with a lower requirement of

frequency truncation.

7.4.2 Choice of Filter Length of ρn(t, RQ)

Intuitively, a longer filter often brings us less error and better performance. Figure 7.3

supports this idea by showing the result of ρn(t, RQ) ∗ pn(t, RQ) − Z ′n(t) with dif-

ferent choices of Lρ, which refers to the error introduced into the system by the

filtering processing. We observe that the filtering error decreases across all of the

orders with a higher L. This is due to the time truncation of Z ′n(t) (length of vector

zn in (7.27)), being related to Lρ. Thus, a higher Lρ leads to less information loss

in the time truncation of Z ′n(t), hence smaller error in ρn(t, RQ). However, Fig-

ure 7.4 shows the time domain filter ρn(t, RQ) with different lengths. We observe

that a longer filter results in a higher group delay of filtering. This is not desirable

because it leads to a higher system delay of our proposed method, while lowering

the system delay is one of the most important motivations that we develop the

proposed time domain method.

As a result, we need to balance the noise tolerance, group delay, and the filtering

error when we choose L. We suggest that filter length 2Lρ+1 should be significantly

larger than the main lobe width of Z ′n(t) and 2LP+1, the length of pn(t, RQ), but no

more than 50 times of 2LP + 1. Additionally, L should be less than the maximum

tolerance of the delay of the system. Based on these guidelines, for the current

example, we choose 2Lρ + 1 = 501.
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Figure 7.3: Error of ρn(t, RQ)∗pn(t, RQ) with length Lρ = (a) 25, (b) 250 (c) 2500.
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Figure 7.4: Time representation of the pre-designed order dependent FIR filter
ρn(t, RQ) with length Lρ = (a) 25, (b) 250 (c) 2500.
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7.5 Simulation Results and Analysis

In this section, we evaluate the result of the proposed algorithm for time domain

spherical harmonic analysis using a fourth order (N = 4) system. We consider

32 microphones regularly placed on an open spherical array of RQ = 0.16 m,

where the analysis region of interest is inside the array. A point source is placed

at [1, 2, 1] m with respect to the origin which coincides with the origin of the

microphone array. The sampling frequency is 48,000 Hz, and the filter length

2Lρ + 1 is 501. A noise signal at 40 dB SNR is added to each microphone to reflect

thermal noise. Considering the application of the proposed method to be spatial

ANC, we construct the desired frequency band to cover the target noise band,

and construct the radius of the region to be wide enough to fit one human head.

It is difficult to validate our method in the time domain directly because the

coefficients are time dependent and no ground truth has been given. Therefore, we

first validate our proposed time domain spherical harmonic coefficients in the fre-

quency domain. Thus, we compare the Fourier transformation of the time domain

coefficients to the theoretical frequency domain coefficients given in (7.4). Next,

to clarify that our proposed method has the ability to record a sound field in the

region of interest in the time domain, we reconstruct sound pressure at an arbi-

trary point as well as over a plane inside the region of interest with the captured

time domain spherical harmonic coefficients by (7.6). Finally, the time delay of the

proposed method is given.

7.5.1 Comparison between the Time Domain and the Fre-

quency Domain Spherical Harmonic Coefficients

We use a narrow band signal at 1200 Hz to test if our proposed method can ob-

tain the time domain spherical harmonic coefficients γnm(t) correctly with (7.28).

In (7.13), we give the relationship between γnm(t) and αnm(k). We compare the

Fourier transformation result of our obtained time domain spherical harmonic co-

efficients FT {γnm(t)} with the desired frequency domain spherical harmonic coef-

ficients αnm(k), obtained by Equation (7.4) in frequency domain. Fourier transfor-

mations use 1024 points. We do not compare the phase of these coefficients since
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Figure 7.5: (a) Amplitude and (b) phase difference comparison between the Fourier
Transform of the time domain spherical harmonic coefficients γnm(t) and frequency
domain spherical harmonic coefficients αnm(k) at a single frequency f = 1200 Hz.

the group delay of the time domain method and the frequency domain method is

different. Instead, we compare the phase difference, given by αnm(k)−αn(m−1)(k).

The results of both amplitude and phase difference are shown in Figure 7.5.

In Figure 7.5 we see that there is little to no difference on both amplitude

and phase difference between the Fourier Transformed time domain coefficients

and the frequency domain coefficients over all the order and modes. Thus, our

proposed time domain method successfully obtained the time domain spherical

harmonic coefficients, which can be related to the frequency domain coefficients by

Fourier transformation.

Next, we compare the coefficients over different frequencies with a wide band

test signal within the frequency limited of [20, 1300] Hz. In Figure 7.6, we show

the comparison of amplitude at FT{a00(t)} and α00(k), FT{a11(t)} and α11(k),

and FT{a31(t)} and α31(k) over frequencies respectively while Figure 7.7 shows

the phase difference.

A huge error is observed in Figure 7.6a at the 46th frequency bin. This error is

due to the fact that there is a Bessel zero of the zeroth order at this frequency bin

(around 1072 Hz). We see the frequency domain spherical harmonic coefficients

α00(k) has a much higher amplitude, while our proposed method suppressed the

amplitude at this certain frequency bin.
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Figure 7.6: Amplitude comparison between the Fourier Transform of the time
domain spherical harmonic coefficients γnm(t) and frequency domain spherical har-
monic coefficients αnm(k) at mode (a) 00, (b) 11 and (c) 31 with a white Gaus-
sian noise.

Meanwhile, we can see in Figures 7.6 and 7.7 that the error at a31(t) is higher

compared to the other two modes. As order increases, the error increases. This

error can be decreased by applying more microphones on the array. We also obtain

a non-negligible error before the 30th frequency bin of the coefficients amplitude

for (n,m) = (3, 1) in Figures 7.6c and 7.7c. This error is because our time do-

main proposed method and conventional frequency domain method have different

processing approaches for suppressing Bessel zeros. During the reconstruction pro-

cess, the high pass property of spherical Bessel function removes the information

at this frequency bin. Thus, this error will not influence the reconstruction of the

sound field.

7.5.2 Sound Pressure Comparison at a Point Of Interest

In this section, we reconstruct the sound field with the captured time domain

spherical harmonic coefficients at a point in the region of interest, and compare

it with the desired sound field at the same point of interest. We use a signal

containing three frequency components of 600 Hz, 850 Hz, and 1300 Hz. Figure 7.8

shows the desired sound pressure and the reconstructed sound pressure calculated

by γnm(t) at the point [−0.13, 0.07, 0.02] m and [−0.03, 0.01, 0.1] m inside the region

of interest in the time domain. The desired sound field has been manually delayed

for 272 samples to match the group delay of the reconstructed sound field, where
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the details of this delay will be shown in Section 7.5.5.

We note here that when reconstructing the sound-field with (7.6), we face the

problem that at a point x = (r, θ, φ) where the radius r is very small, the filter

pn(t, r), whose filter length dependent on rFs/c, is too short to perform efficient

filtering. To overcome this problem, we up-sample the obtained γnm(t) with a

rate of RQ/r and construct corresponding pn(t, r) with the same length of Lp =

2∗RQFs/c+1. We then down-sample the resulting Γnm(t, r) with a rate of r/RQ to

keep the sampling frequency consistent with Fs. The effective construction of the

sound field with small r will be shown in the next section. We can see from Fig. 7.8

that the obtained γnm(t) by our proposed method can successfully reconstruct the

sound pressure at a point inside the region of interest with a tolerable error. This

supports that our time domain coefficients contain certain spatial information of

the sound field that the sound pressure at an arbitrary point inside the region of

interest can be properly calculated with the measurements only being taken on the

boundary of the region.

7.5.3 Sound Field Comparison over a Plane

To further evaluate our method on reconstructing sound field over space, we now

reconstruct the sound field by γnm(t) over a plane. We use a narrow band signal

of 1200Hz here such that the sound field in the region of interest is simple and

clearly understood. Although the sound field is reconstructed over time, a 2D plot

can only show the result of one time index. Figure 7.9 shows the reconstructed

sound field and the desired sound field over the plane parallel to the x-y plane,

with z = 0.02 m at t = 0.3 s. The 272 samples group delay is manually fixed and

will be discussed later in the next subsection.

The white line in Figure 7.9 bounds the region of interest. We can see that the

reconstructed sound field inside this region in Figure 7.9a is roughly the same as the

desired sound field in Figure 7.9b. This confirms that the coefficients recorded by

our proposed method are able to capture the sound field inside the region of interest.
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Figure 7.7: Phase difference comparison between the Fourier Transform of the
time domain spherical harmonic coefficients γnm(t) and frequency domain spherical
harmonic coefficients αnm(k) at mode (a) 00, (b) 11 and (b) 31 with a white
Gaussian noise.
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Figure 7.8: Comparison between reconstructed sound pressure and desired sound
pressure at the point (a) (−0.13, 0.07, 0.02) m and (b) (−0.03, 0.01, 0.1) m.
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Figure 7.9: Comparison between (a) reconstructed sound field and (b) desired
sound field at the horizontal plane with a height of z = 0.02 m.

7.5.4 Sound Field Error Estimation over The Region

To evaluate the reconstructed sound field over time, we calculate the instantaneous

average squared spatial error over time, which is defined by

η(t) ,

∑
Ω ‖zr(x, t)− zd(x, t)‖2∑

Ω

, (7.35)

where zr(x, t) and zd(x, t) refers to the reconstructed and the original sound pres-

sure at the point x, respectively.

Figure 7.10 shows how the error fluctuates with time in a tolerable range (no

more than 5 × 10−4) with a 900 Hz tone and a 1072 Hz tone. We have already

observed in Figure 7.8 that the error of the sound pressure at a point of interest

is proportional to the desired sound pressure. We observe the same trend when

we evaluate the error over the region that the error increases when the sound field

inside the region of interest is at peak amplitude. We also observe in Figure 7.10

that the error with 1072 Hz signal is higher than 900 Hz signal. This is due to

the fact that there is a Bessel zero of the zeroth order (j0(kr)) at 1072 Hz in the

proposed spatial ANC system. Hence, the amplitude of a00(t) is suppressed by the

proposed method, leading to a higher error in reconstructing the sound field.
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Figure 7.10: Instantaneous region averaged squared spatial error of the proposed
method for sound field reconstruction over space at 900 Hz and 1072 Hz (Bessel
zero).

7.5.5 Processing Delay Analysis

In this section, we indicate the group delay of our method. Figure 7.11 shows the

desired sound pressure and the reconstructed sound pressure of a signal containing

three frequency components of [600, 850, 1300] Hz at the point [−0.13, 0.07, 0.02]

m. We can obtain from Figure 7.11 that the processing delay of the system is

1046− 774 = 272 samples, which equals to Lρ + dRQFs/ce. The Lρ samples of the

delay is from the group delay of the proposed filter ρn(t, RQ), while RQFs/c is the

delay introducing by the Legendre function within filter pn(t, r) to reconstruct the

sound pressure at a point with the time domain spherical harmonic coefficients.

Comparing to a conventional frequency domain scenario with 512 frame-size and

75% of overlap Short Time Fourier transformation with overlap save method, which

refers to a 2048 samples (4 frames) of delay [179], our proposed method can signifi-

cantly reduce the processing delay. Additionally, the frame size (and the number of

FFT points) can not be shorter in most of the scenarios to maintain the frequency

resolution in the frequency domain.

Comparing to one of the start-of-art frequency domain spherical harmonic filter
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Figure 7.11: Delay analysis between the desired signal and the reconstructed signal
at a point inside the region of interest.

designs [180], which states a 75 ms delay with a 900 sample long filter, our method

can achieve a 972 samples (20.25 ms with 48k Hz sampling frequency) delay with

the same length of filter. Meanwhile, as our method is processed in the time

domain, there is nothing to stop us from doing a sample by sample signal processing

instead of frame based signal processing. This sample based processing considerably

extends the application of spherical harmonic analysis.

7.6 Conclusions

In this chapter, a time domain spherical harmonic analysis method for spatial

sound field recording over 3D space has been developed with the goal to minimize

processing delay. This favours the specific application of spatial ANC. With the

proposed FIR filter designing, the time domain spherical harmonic coefficients can

be obtained from sound pressure measurements of an open spherical microphone

array. The filters are designed based on the inverse of the Legendre function.

Additionally, the filters are modified with considerations of stability and practical
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implementation. We have provided simulation results demonstrating the validity

of the proposed method.

We note that by obtaining the proposed time domain spherical harmonic coef-

ficients, the desired sound field can be efficiently captured and reconstructed over

space. The proposed time domain spherical harmonic coefficients can be related to

the conventional frequency domain coefficients, and both of the coefficients have

the same location independent property. The proposed method has the promi-

nent advantage of lower delay since it is developed in the time domain without the

introduction of a Fourier transformation or inverse Fourier transformation. Fur-

thermore, the proposed time domain filtering method can support the sample based

signal processing instead of the frame based, which indicates that the frame size

can be one sample if necessary. As a result, we consider the proposed time domain

spherical harmonic analysis method to be highly suitable for a spatial ANC system

where accurate spatial recording with low delay is desired.

7.7 Related Publications

Much of this chapter’s work has been published in the following journal proceedings.

• H. Sun, T. D. Abhayapala, and P. N. Samarasinghe, “Time Domain Spherical

Harmonic Processing with Open Spherical Microphones Recording,” Applied

Sciences, vol. 11, no. 3, pp. 1074, Jan. 2021.



Chapter 8

Conclusions and Future Work

In this chapter, we state the general conclusions drawn from this thesis. We also

outline some future research directions arising from this work.

8.1 Conclusions

To answer the question we raised in Chapter 1, several feasible designs have been

addressed for spatial ANC in this thesis, aiming for people to enjoy silence.

The array geometry of spatial ANC, especially the error microphone arrays, has

been optimized in Chapter 3 and Chapter 4. These methods not only avoid the

usage of impractical spherical arrays but also allow human heads to freely move in

to and out of the region of interest. Hence, compared to the conventional methods

where microphone arrays block the region of interest, the proposed ANC systems

are able to better serve people a quieter region around their heads.

In chapter 5, a secondary channel estimation method with a moving higher-

order microphone is detailed. We achieve secondary channel estimation without

the usage of the impractical error microphone array. This method, combined with

the remote microphone technique addressed in Chapter 4, can be applied to spatial

ANC systems to fully avoid the use of impractical spherical microphone arrays.

Moreover, the combined system has flexible physical array geometry, which makes

it possible for the system to suit different environments where the potential micro-

phone positions may be constrained.
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Beyond the optimization of practical array geometry, we also work on min-

imizing the system delay and hardware resource usage of a spatial ANC system.

Chapter 6 and 7 provide the time-wave domain spatial ANC system and the method

for the time domain spherical harmonic coefficients recording, respectively. While

the wave domain processing enlarges the application of ANC systems, the devel-

opment of the time-wave domain processing with less delay and fewer hardware

resources can further improve the chance of a spatial ANC system to be realized

in a real-world environment.

Overall, this thesis mainly works on spatial ANC systems which can be realized

in a real-world environment. Nowadays, the concept of ANC is becoming more and

more popular in the public, thanks to the commercialization of ANC headphones

and earphones. More and more people are paying attention to products with ANC

functions built in. The author believes that there is a significant potential for spatial

ANC to be commercially applied in wider scenarios (e.g., in virtual and augmented

physical spaces or inside autonomous cars/ flights) and for spatial ANC to benefit

a larger population. This thesis is also a part of the effort toward commercializing

spatial ANC, with the expectation for a brighter future.

8.2 Future Research

There are a number of future research problems arising from the work presented

in this thesis. We list some possible problems here.

Implement the time-wave domain spatial ANC with more

feasible array geometry.

While the time-wave domain spatial ANC is developed in Chapter 7, the usage of

an impractical open spherical microphone array remains necessary. To be more

feasible, a time-wave domain method can be developed for the multiple circular

array system we proposed in Chapter 3.
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Experimental validation of the spatial ANC system with the

remote microphone technique.

In Chapter 4, we introduced a spatial ANC system using the remote microphone

technique. In this method, the spherical error microphone array is not necessary

during the noise reduction. Meanwhile, we have the secondary channel estima-

tion method in Chapter 5, which estimates the secondary channels with a moving

HOM instead of an error microphone array. With these two methods in hand, a

spatial ANC system fully avoiding the usage of spherical microphone arrays can be

proposed and implemented. Without the requirement of impractical arrays, exper-

iments of spatial ANC in a real world environment become possible. Experimental

validation can strongly support the reliability of a spatial ANC system in the real

life.

Perceptual validation of a spatial ANC system

Optimizing for the feasibility of spatial ANC always introduces more errors into

the system. In other words, we are sacrificing the noise reduction performance to

make the implementation of the system more feasible. It would be nice to have

an experiment validation about the sensitivity of human ears regarding the spatial

ANC performance. Can people tell the difference between a 20 dB noise reduction

and a 25 dB noise reduction? If so, can people tell the difference between a 20

dB noise reduction and a 21 dB noise reduction? Where is the boundary? Is

this boundary related to the type (narrow-band or wide-band) and the frequency

spectrum of the noise? Additionally, is the result the same with the wave domain

ANC systems and the conventional ANC systems? A perceptual test can provide us

with the answer. Similar research can be found for binaural room impulse response

in [181]. In Chapter 3, a spatial ANC system providing satisfied noise reduction

performance over a 3D region with a human head in the region has been addressed.

With this experiment, we are able to control the noise reduction performance by

controlling the amplitude of the driving signals of the secondary loudspeakers or

the amplitude of the noise signal.
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Secondary channel estimation in non-stationary environments

As the spatial ANC system is becoming reliable, there are more problems that

should be taken into consideration. One of them is, what’s the influence of the

user’s movement? There are several kinds of movement: 1) moving inside the

region; 2) moving from outside the region to inside or vice versa; 3) moving outside

the region. These movements can lead to changes in secondary channels. The

secondary channels are pre-measured, and are usually assumed to be stable during

noise control. However, this assumption is not always true. In extreme cases, for

example, what would happen if a table is moved out of the room while a spatial

ANC system is active? Online secondary channel estimations [132] can partly solve

this problem. However, the remote microphone technique, as well as other virtual

sensing techniques, are not able to fit online secondary channel estimation. We

need alternative solutions for non-stationary secondary channels.

Multi-zone spatial ANC

In this thesis, the spatial ANC system focuses on creating a single quiet region in

3D space. In real life, multiple quiet regions in the same room can be necessary.

For example, in cars or aircraft, one region is necessary for each passenger. These

regions may share the same noise sources and secondary loudspeaker arrays. In

this case, a special algorithm is needed to take care of multiple regions. Moreover,

a quiet region with another ‘no influence’ region may also be necessary in some

cases. As a spatial ANC system influences the sound field not only inside the

region of interest, but also the sound field in the entire environment, there can

be another region in the same environment requiring no change of the original

noise field. Researches (such as [182]) in blocking the noise in one region while

keeping the original sound in another region are necessary. Hence, designing and

implementing the adaptive filtering algorithm for the multi-zone ANC system is

worth being achieved.



Bibliography

[1] Access Economics Pty Ltd, Listen hear! the economic impact and cost of

hearing loss in Australia, Access Economics, 2006.

[2] S. M. Kuo and D. R. Morgan, “Active noise control: a tutorial review,”

Proceedings of the IEEE, vol. 87, no. 6, pp. 943–973, 1999.

[3] C. M. Harris, Handbook of acoustical measurements and noise control,

McGraw-Hill New York, 1991.

[4] “Figure: what-is-anc-technology-how-does-it-work,”

https://www.cardinalpeak.com/blog/what-is-anc-technology-how-does-

it-work, 2022.

[5] S. J. Elliott and P. A. Nelson, “Active noise control,” IEEE signal processing

magazine, vol. 10, no. 4, pp. 12–35, 1993.

[6] C. C. Fuller, S. Elliott, and P. A. Nelson, Active control of vibration, Aca-

demic Press, 1996.

[7] Apple Pty Ltd, “Airpods max,” https://www.apple.com/airpods-max/,

2021.

[8] S. M. Kuo and D. Morgan, Active noise control systems: algorithms and

DSP implementations, John Wiley Sons, Inc., 1995.

[9] S. M. Kuo and D. Morgan, Active noise control systems: algorithms and

DSP implementations, John Wiley & Sons, Inc., 1995.

143



144 Bibliography

[10] H. Sano, T. Inoue, A. Takahashi, K. Terai, and Y. Nakamura, “Active control

system for low-frequency road noise combined with an audio system,” IEEE

Transactions on speech and audio processing, vol. 9, no. 7, pp. 755–763, 2001.

[11] W. Jung, S. J. Elliott, and J. Cheer, “Local active control of road noise inside

a vehicle,” Mechanical Systems and Signal Processing, vol. 121, pp. 144–157,

2019.

[12] S. J. Elliott, P. A. Nelson, I. M. Stothers, and C. C. Boucher, “In-flight

experiments on the active control of propeller-induced cabin noise,” Journal

of Sound and Vibration, vol. 140, no. 2, pp. 219–238, 1990.

[13] T. Haase, O. Unruh, S. Algermissen, and M. Pohl, “Active control of counter-

rotating open rotor interior noise in a dornier 728 experimental aircraft,”

Journal of Sound and Vibration, vol. 376, pp. 18–32, 2016.

[14] T. Murao, C. Shi, W. S. Gan, and M. Nishimura, “Mixed-error approach for

multi-channel active noise control of open windows,” Applied Acoustics, vol.

127, pp. 305–315, 2017.

[15] P. Belanger, A. Berry, Y. Pasco, O. Robin, Y. St-Amant, and S. Rajan,

“Multi-harmonic active structural acoustic control of a helicopter main trans-

mission noise using the principal component analysis,” Applied Acoustics, vol.

70, no. 1, pp. 153–164, 2009.

[16] A. Montazeri and C. J. Taylor, “Modeling and analysis of secondary sources

coupling for active sound field reduction in confined spaces,” Mechanical

Systems and Signal Processing, vol. 95, pp. 286–309, Oct. 2017.

[17] Hyundai Motor Group, “Hyundai’s world’s first road-noise

active noise control, ranc - hyundai motor group tech,”

https://tech.hyundaimotorgroup.com/article/hyundais-worlds-first-road-

noise-active-noise-control-ranc/, 2022.

[18] Silentium, “Enhance your driving experience with active noise control,”

https://www.silentium.com/automotive-2/, 2022.



Bibliography 145

[19] E. G. Williams, Fourier acoustics: sound radiation and nearfield acoustical

holography, academic press, 1999.

[20] J. Zhang, T. D. Abhayapala, W. Zhang, P. N. Samarasinghe, and S. Jiang,

“Active noise control over space: A wave domain approach,” IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 26, no. 4, pp.

774–786, 2018.

[21] T. D. Abhayapala, D. B. Ward, et al., “Theory and design of high order

sound field microphones using spherical microphone array,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2002,

vol. 2, pp. 1949–1952.

[22] B. Rafaely, “Analysis and design of spherical microphone arrays,” IEEE

Trans. Audio Speech Lang. Processing, vol. 13, no. 1, pp. 135–143, Jan. 2005.

[23] D. Moreau, B. Cazzolato, A. Zander, and C. Petersen, “A review of virtual

sensing algorithms for active noise control,” Algorithms, vol. 1, no. 2, pp.

69–99, 2008.

[24] S. Elliott, C.K. Lai, T. Vergez, and J. Cheer, “Robust stability and perfor-

mance of local active control systems using virtual sensing,” in 23rd Inter-

national Congress on Acoustics, integrating 4th EAA Euroregio 2019, 2019.

[25] Y. Xiao, L. Ma, and K. Hasegawa, “Properties of fxlms-based narrowband ac-

tive noise control with online secondary-path modeling,” IEEE Transactions

on Signal Processing, vol. 57, no. 8, pp. 2931–2949, 2009.

[26] P. Lueg, “Process of silencing sound oscillations,” US pat ent 2043416, 1936.

[27] P. A. Nelson and S. J. Elliott, Active control of sound, Academic press, 1991.

[28] B. Widrow and E. Walach, “Adaptive signal processing for adaptive control,”

IFAC Proceedings Volumes, vol. 16, no. 9, pp. 7–12, 1983.

[29] S. Kuo and C. Chen, “Implementation of adaptive filters with the tms320c25

or the tms320c30, indigital,” 1991.



146 Bibliography

[30] J. C. Burgess, “Active adaptive sound control in a duct: A computer simu-

lation,” The Journal of the Acoustical Society of America, vol. 70, no. 3, pp.

715–726, 1981.

[31] T. Wang and W. S. Gan, “Stochastic analysis of fxlms-based internal model

control feedback active noise control systems,” Signal Processing, vol. 101,

pp. 121–133, 2014.

[32] S. J. Elliott and P. A. Nelson, “The application of adaptive filtering to the

active control of sound and vibration,” NASA STI/Recon Technical Report

N, vol. 86, pp. 32628, 1985.

[33] C. H. Hansen, S. D. Snyder, X. Qiu, L. A. Brooks, and D. J. Moreau, Active

control of noise and vibration, Spon London, 1997.

[34] E. A. Wan, “Adjoint lms: An efficient alternative to the filtered-x lms

and multiple error lms algorithms,” in 1996 IEEE International Conference

on Acoustics, Speech, and Signal Processing Conference Proceedings. IEEE,

1996, vol. 3, pp. 1842–1845.

[35] S. Elliott, I. Stothers, and P. Nelson, “A multiple error lms algorithm and its

application to the active control of sound and vibration,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1423–1434,

1987.

[36] J. K. Thomas, S. P. Lovstedt, J. D. Blotter, and S. D. Sommerfeldt, “Eigen-

value equalization filtered-x algorithm for the multichannel active noise con-

trol of stationary and nonstationary signals,” The Journal of the Acoustical

Society of America, vol. 123, no. 6, pp. 4238–4249, 2008.

[37] M. Bouchard, “Multichannel affine and fast affine projection algorithms for

active noise control and acoustic equalization systems,” IEEE Transactions

on Speech and Audio Processing, vol. 11, no. 1, pp. 54–60, 2003.

[38] S. Pradhan, X. Qiu, and J. Ji, “Affine combination of the filtered-x lms/f

algorithms for active control,” in Vibration Engineering for a Sustainable

Future, pp. 313–319. Springer, 2021.



Bibliography 147

[39] J. Cheer and S. J. Elliott, “Multichannel control systems for the attenuation

of interior road noise in vehicles,” Mechanical Systems and Signal Processing,

vol. 60, pp. 753–769, 2015.

[40] A. Barkefors, S. Berthilsson, and M. Sternad, “Extending the area silenced by

active noise control using multiple loudspeakers,” in 2012 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2012, pp. 325–328.

[41] J. W. Parkins, S. D. Sommerfeldt, and J. Tichy, “Error analysis of a practical

energy density sensor,” The Journal of the Acoustical Society of America,

vol. 108, no. 1, pp. 211–222, 2000.

[42] J. W. Parkins, S. D. Sommerfeldt, and J. Tichy, “Narrowband and broadband

active control in an enclosure using the acoustic energy density,” The Journal

of the Acoustical Society of America, vol. 108, no. 1, pp. 192–203, 2000.

[43] J. Xie, D. Jin, W. Zhang, X. Zhang, J. Chen, and D. Wang, “Robust sparse

multichannel active noise control,” in ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2019, pp. 521–525.

[44] K. Iwai, S. Kinoshita, and Y. Kajikawa, “Multichannel feedforward active

noise control system combined with noise source separation by microphone

arrays,” Journal of Sound and Vibration, vol. 453, pp. 151–173, 2019.

[45] R. P. Monteiro, G. A. Lima, J. Oliveira, D. Cunha, and C. Bastos-Filho,

“Improving adaptive filters for active noise control using particle swarm op-

timization,” International Journal of Swarm Intelligence Research (IJSIR),

vol. 9, no. 4, pp. 47–64, 2018.

[46] N. V. George and G. Panda, “A particle-swarm-optimization-based decen-

tralized nonlinear active noise control system,” IEEE Transactions on In-

strumentation and Measurement, vol. 61, no. 12, pp. 3378–3386, 2012.



148 Bibliography

[47] D. Shi, B. Lam, K. Ooi, X. Shen, and W. S. Gan, “Selective fixed-filter active

noise control based on convolutional neural network,” Signal Processing, vol.

190, pp. 108317, 2022.

[48] I. T. Ardekani and W. H. Abdulla, “Effects of imperfect secondary path

modeling on adaptive active noise control systems,” IEEE transactions on

control systems technology, vol. 20, no. 5, pp. 1252–1262, 2011.

[49] Y. Xiao, L. Ma, and K. Hasegawa, “Properties of fxlms-based narrowband ac-

tive noise control with online secondary-path modeling,” IEEE Transactions

on Signal Processing, vol. 57, no. 8, pp. 2931–2949, 2009.

[50] C. Chang, S. M. Kuo, and C. Huang, “Secondary path modeling for narrow-

band active noise control systems,” Applied Acoustics, vol. 131, pp. 154–164,

2018.

[51] X. Guo, Y. Li, J. Jiang, C. Dong, S. Du, and L. Tan, “Sparse modeling of

nonlinear secondary path for nonlinear active noise control,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 67, no. 3, pp. 482–496,

2018.

[52] J. Lu, X. Qiu, and B. Xu, “The application of adaptive iir filter in active

noise control with consideration of strong acoustic feedback,” in Proc. Int.

Conf. Acoust, 2004, vol. 3.

[53] M. T. Akhtar, M. Abe, and M. Kawamata, “On active noise control systems

with online acoustic feedback path modeling,” IEEE transactions on audio,

speech, and language processing, vol. 15, no. 2, pp. 593–600, 2007.

[54] T. Bai, Z. Wang, Y. Xiao, Y. Ma, L. Ma, and K. Khorasani, “A multi-channel

narrowband active noise control system with simultaneous online secondary-

and feedback-path modeling,” in 2019 IEEE Asia Pacific Conference on

Circuits and Systems (APCCAS). IEEE, 2019, pp. 289–292.

[55] L. Wu, X. Qiu, I. S. Burnett, and Y. Guo, “Decoupling feedforward and

feedback structures in hybrid active noise control systems for uncorrelated



Bibliography 149

narrowband disturbances,” Journal of Sound and Vibration, vol. 350, pp.

1–10, 2015.

[56] J. Lorente, M. Ferrer, D. M. De, and A. González, “Gpu implementation of
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