

Introduction to FORTRAN

... .
The Australian National University Computer Services Centre

An Introduction to FORTRAN

Course Notes

Author Leslie Landau

Revision 6 K. Handel July 1981

...

-1

Introduction to FORTRAN -2

These course notes are designed for use in conjunction with an introductory
FORTRAN course on the UNIVAC 1100/82 computer at ANU, using the ASCII FORTRAN
compiler in checkout mode (load and go).
Any enquiries regarding attendance at one of these courses should be directed
to

The Secretary
Computer Services Centre
Australian National University
P.O. Box 4
CANBERRA 2600
A.C . T.

The Secretary's phone nllllber is 49-4564.

First printing May 1976
Revised Edition 1 September 1977
Revised Edition 2 December 1977
Revised Edition 3 November 1979
Revised Edition 4 January 1981
Revised Edition 5 March 1981

A note on standards.

In 1966 a standard for Fortran was issued by the American National Standards
Institute (ANSI).

In 1977 a revised standard was issued by ANSI. This standard compr ised a FULL
language specification and also a SUBSET language specification. The subset

is more restrictive than the full specification , and as Univac Ascii Fortran
level 9R1 (and above) implements the full language specification, reference

to the 1977 standard refers to the full specification.

If you wish to use a Fortran other than Univac Ascii Fortr·an level 9R1 (or
higher) then you should consult your manual to see if the version of Fort r an

you wish to use is the full, subset or non-standard Fortran specification .

Introduction to FORTRAN 1-1

1. CHAPTER 1

A computer is a tool used to solve certain classes of problems,
Before this can be done we have to solve the problem ourselves and then use
the computer to apply the solution to given data. The programmer specifies the
solution in the writing of the program - the computer provides speed and

accuracy,

1. 1. A model of a computer

Figure 1-1 below shows a clerk seated at his desk with a calculating sheet
in front of him. He has an IN-TRAY into which slips are placed and an OUT-TRAY

into which he places results. He has a calculating machine to do the
arithmetic,

: :
l In I I Out:

Instructions

Calculator

+---------+
:

Clerk :

The clerk's task is to take an input slip which contains the following
information about employees:-

NAME
RATE OF PAY
NUMBER OF HOURS WORKED

and he has to prepare an output slip with the above information plus
calculations for:-

Introduction to FORTRAN

OVERTIME HOURS
NORMAL PAY
OVERTIME PAY
TOTAL PAY

1-2

A section of the calculating sheet contains instructions for him to enable
the required calculations to be performed. These instructions are:-

1. Take the next slip from the IN-TRAY and copy the name,, rate and total
hours .

2. Calculate the overtime hours as (Total hours - 40).
3, Calculate the normal earnings as (40 x Rate) .
4. Calculate overtime earnings as (Overtime hours x Rate x 1,5)
5. Calculate gross earnings as (Normal earnings + Overtime earnings).
6. Prepare an output slip and put it in the OUT-TRAY .
7. If there are any more slips in the IN-TRAY go to step 1, otherwise stop.

Now let us automate this system, by using a computer in the
following way:-

i
: Input : : Output :
: Device : : Device :

Main Storage Area

Program Central

Control

Processing
Unit

The IN-TRAY is replaced by an INPUT DEVICE. There are many types of input
devices that may be attached to a computer , we will consider it as a
convenient means of putting information into the machine.

The OUT-TRAY is replaced by an OUTPUT DEVICE. There are many types of
output devices that may be attached to a computer, we will consider it as a
convienent means of getting information out of the machine.

The CALCULATING SHEET, wi th both its instruction area and its calculating
area, is replaced by the MAIN STORAGE AREA,

Introduction to FORTRAN 1-3

The CALCULATOR is replaced by the Central Processing Unit. This performs
the calculations.

Finally, the clerk is replaced by a CONTROL program. The function of the
control program is to take each instruction in turn from the main store
(memory) and cause the appropriate action to take place. This might be:-

1. To read some information from the outside world via the input device.
2. To write some information to the outside world via the output device.
3, To calculate some quantity, using the central processing unit.

1.2, Solving problems using computers

Toe steps involved in solving problems by using computer a are:-

1. Formulate the problem carefully and determine exactly the objective to be
reached.

2. Find a method for solving the problem, This is sometimes referred to aa
finding an ALGORITHM for the solution of the problem,

3. Organise the information associated with the problem, in a way suitable
for processing by the computer. This is called PREPARING THE INPUT DATA.

1'. Prepare instructions for the computer. A program is a sequence of
instructions, which is a translation of the algorithm found in step 2,,
written in a computer language.

5. Run the program on the computer, with the input data, to produce an
answer to the problem.

If you wanted to solve a problem without using a computer, you would still
carry out the first two steps, and some modification of the third.

1. 3. Prog ramming languages

Each computer has its own 1 private' language called its MACHINE language.
Programming in MACHINE LANGUAGE is very tedious because:-

1. Detailed knowledge of how the computer 1«>rks is necessary .
2. The program will only be able to run on the type of machine for which it

was originally written.
3, The machine instructions are very primitive, and very many of them are

required for a simple program.

Attempts to overcome such problems have resulted in the so-called HIGH
LEVEL LANGUAGES such as FORTRAN, ALGOL, PASCAL, PL/1, COBOL.

A computer cannot directly accept a high level language, so a program,
called a COMPILER is used to read the high level language and translate it to
machine language. Steps involved in using a high level language are : -

1. Problem analysis, and the formation of an algorithm to be used to solve
the problem.

2, Translation of the algorithm to a program written in the high level

Introduction to FORTRAN 1-4

language. The program is then transformed into some machine readable form
(e ,g. punched cards or placed into some storage, say via a terminal).
This is referred to as the SOURCE PROGRAM.

3 , Compiling the source program into machine language (called the OBJECT

PROGRAM or RELOCATABLE PROGRAM} using a compiler. This is referred to as
a compilation of a program, and this occ urs at COMPILE TIME.

4. Collection of all object programs to form an ABSOLUTE or EXECUTABLE

program.
5, Execution of the program, using supplied data (possibly). This occurs at

EXECUTION TIME.

The phases are represented below. It is important to
understand ~he different phases that a program will go through before it is

actually executed.

1, 3. 1. Compile time

The compilation (or translation phase) that your program goes through may be

represented by the following diagram.

: Source l I Language Relocatable
l Program :-->-----: Compiler : --->----: Object
l t : : Program

+---------+

1. 3,2, Collection Time

Program
Li sting

The output from the compile phase, the relocatable object, is the input for

the next phase, that of collecting together all the relocatable objects that

are necessary to form an absolute object , which is what the computer will

execute.

Relocatable objects come from your program, the system library, and other

subprograms that may have been written by other people or by you,

Introduction to FORTRAN

Reloc
: Object :
: Program :--->-----

1.J.3. Execution time

Collector System Reloc

l Absolute I
IExecutablel
: Program

--<---- Library and
Others

1-5

Execution time refers to the execution of your program. Note that much has

happened to your program prior to it reaching this point on its way to

producing results for you.

Later we will see some Fortran commands that relate to compilation.

1.4. Operating systems

An OPERATING SYSTEM is a large complex program used to control the

operation of a computer. All programs execute under the guidance of the

operating system. Part of the operating system functions are:-

1. General job scheduling.
2. Identify each user and label his output.
J. Check account m111bers
4. Monitor users jobs to ensure they do not exceed a maximun time.

5. Load the required compilers into the computer as needed.

6. Control activities of input and output devices,

The programmer must provide special CONTROL STATEMENTS for the operating

system which will specify such things as:-

1. Which compiler to use.
2. Name of the program, and your account minber

3. Estimates of total run time.
4. The end of your run.

Such CONTROL STATEMENTS must be provided with each program that is to be

run, and they must be prepared according to a fixed format, that is dependent

upon the particular computer installation. The operating system control

statements are independent of the FORTRAN language, but must be used with each

run.

Introduction to FORTRAN 1-6

1. 5. Program debugging and diagnostics

The source program is entered into the computer and becomes input to the

FORTRAN compiler. If the compiler detects any errors it writes messages

describing the errors. These messages are called DIAGNOSTICS. Errors in a

program are often referred to as BUGS and the process of submitting a program

for compilation , examining diagnostics, resubmitting the changed program, and

repeating this, is called DEBUGGING a program. The compiler will detect most

errors in the SYNTAX or grammar of the Fortran program. The SEMANTICS or

meaning of the program may still be 'wrong• • The answers may be wrong in that

they may not be the desired ones , but the fault is not in the computer or the

compiler. In this case the fault is with the author of the program, who

either has a faulty method or has failed to correctly transform the method

into a program or has faulty input data.

1.5. 1. Debugging tools

1. Intermediate output
A program is normally written to solve a problem and output an answer. If a

program is producing incorrect answers, the errors must be located and fixed.

In theory all errors can be located by reading the program and examining the

input data, but many errors are difficult to locate this way, due to their

subtlety and the complexity of some programs.

Sometimes it is difficult to know in which part of a program an error has

occurred - indeed, even to know which parts of the program have been executed,

and in what order . Intermediate WRITE statements within the program enable

you to easily follow what is actually happening - this may then be compared to

what should be happening and so errors may be localised, detected and

corrected . The WRITE statements may then be removed from the program.

If the value of the answer is incorrect then the programmer may request

intermediate output of the values of some variables, at key points in the

program such that the programmer has some idea of what their value should be.

Then he can, hopefully, detect where t he incorrect val ues first occur and so

detect, or at least narrow the se~rch for the location of the error.

2. Simple Test Data
Choose simple input data for which there are known answers and see that the

program will produce the desired results. The design of test data is very

difficult and is usually not exhaustive. The test data should cover extremes

as well as typical data.

3. Desk checking
This is a hand calculation per formed by the programmer going through the

program step by step. At each step the necessary calculations are performed,

and the values of all the variables are recorded. By 'each step' it is meant

each instruction or -part instruction in the program. In a sense the

programmer is to 'pla y the role of the computer' . The objective is not to

check the arithmetic o_f the computer, but to force the programmer to focus

attention on each detail of the program.

Introduction to FORTRAN 1-7

4, Manufacturer-supplied debugging aids

Some Fortrans. such as Univac Fortran, come supplied with a debugging package.

There are two types of debugging aids available - interactive and static.

These aids enable you to trace through the program, print out values of

variables when they change, do subscript checking and many other things. The

Fortran reference manual has details.

Introduction to FORTRAN 2-1

2. CHAPTER 2

2. l. Computer memory

The main memory of a computer consists of entities called WORO.S or LOCATIONS.
Each word can store a certain amount of information.

Computer memory is vastly different to human memory. Humans tend to display
the use of their memory by saying such things as I I remember \otlen I was last
in Thargomindah and all the frogs climbed trees'. The computer memory is quite
different. It consists of recall to the extent of:

If you put something into memory, then it will stay there until you put
something else in its place.

An analogy to this is recording a piece of lllusic on a cassette tape. The
cassette tape now remembers what you recorded on it, to the extent that it
will play it back, and this recall will continue until you record something
else on it.

Another analogy is if you had a box and you placed a blue sheet of paper in
it. If you looked inside this box some time later and saw that the blue sheet
was still there, would you say that the box had remembered the sheet of paper?
Probably not, and yet this is really how a memory cell on the computer
'remembers 1 •

2.2. What is stored in computer memory

Some of the things that are stored in the computer memory are:

(a) Integer nunbers , e.g. 123, -724. Each memory cell may store one
integer nunber. There is a limit on the 3ize of an integer which
varies from computer to computer. ~ the UNIVAC computer the range
ls -34 359 738 367 to
34 359 738 367. These ranges are most easily remembered by rounding
them to a 10 digit ntmber.

If an integer constant that is out of the legal range i3 3pecified in
a program, then Fortran will produce a compilation diagnostic of

NUMERIC CONSTANT I xxxxxxx I IS OUT Of RANGE

(b) Real (or floating point) m111ber3, e.g. 62.43, -0,74. Each memory
cell may store one real nunber. A real nllDber is stored as two
parts, viz, mantissa and exponent, e.g. 7.3 x 1000000. The magnitude
(sign not considered) of a real mmber must be zero or lie between
limits that vary between computers . ~ the UNIVAC computer , these
limits are approximately

-39 38

Introduction to FORTRAN 2-2

1.48 X 10, 3,37 X 10

Up to 8 significant digits will be kept. The nl.lllbers of computations
that are performed to evaluate a REAL nl.lllber determines how many of
these 8 digits are accurate. We will see the effect of ROUNDING and
TRUNCATION of REAL nllllbers later,

If a type REAL constant is specified that has too many significant
digits, then the excess is just dropped (that is, the value recorded
is truncated} without issuing a diagnostic.

(c) Computer instructions. This is done automatically for us by the
FORTRAN compiler and so the exact form does not concern us.

(d) Text or messages, e.g. FRED. Toe computer stores characters by using
an integer code for each possible alphabetic (A,B,C, ••• ,Z), nl.llleric
(0,1,2, ... ,9), or spec ial ($,/,*,space) character. Text is stored
four characters per word on the Univac computer, in a code called
ASCII, or 6 characters per word in a code called FIELDATA. Ascii
Fortran stores characters in the Ascii code (although text can be
represented in Fieldata).

These four different types are stored as some combination of zeros and ones
(i.e. a BINARY code) in a computer word. The representations in each case are
different, so the real nunber 3.0 will be stored in a completely different way
to the integer 3. Suppose a word contains an integer nunber. If this word is
then referenced as a real nunber, we should not expect it to be the correct
value. It is therefore important that these different types be •Used
correctly. Memory stores all information unselectivel-y, and information only
•has meaning when you reference it as a certain type.

2.3. Names

Fortran allows us to reference locations in the computer memory by the use of
names. Any reference to this NAME will reference the corresponding LOCATION
in the computer memory. The information stored in a location may be of two
types.

'A CONSTANT references a location in memory whose value remains fixed for the
duration of execution of the program.

A. VARIABLE refers to a memory location whose stored value may be changed
during the execution of t he program,

An analogy to thi s is in a bank vault, A bank vault contains deposit boxes in
the names of the bank's customers. The boxes are distinguished by a name
{being the customer name and account niinber). So we can refer to box name:

MACINTOSH551549

and put something in the box. Note the difference between the name of the box
and its contents.
This kind of box is analogous to the VARIABLE in Fortran as its contents ·ban

Introduction to FORTRAN 2-3

be examined OR changed.

2.3, 1, Rules for the formation of constant names

The word containing a constant number is given a symbolic name which is the
same as its value. Unless a minus sign precedes a constant, it is assumed to

be JX)Sitive.

(a) An integer constant is written as a signed or unsigned string of
digits without a decimal JX)int, e.g. 1, -10, 31234

(b) A real constant is written as a signed or unsigned string of digits

containing a decimal JX)int, e.g. 10~23, 6., -72.189

For large ntrnbers (e.g.
written with an integral
constant name could be
1278.0E-10

128700000, 0), the real constant may be
decimal exponent. In this case, the
128. 7E6 Other examples are -0.179E24,

Note that the nunber to the left of the E may be an integer, but the

whole name is the name of a REAL quantity. For example 42E3 is the
same as the REAL nunber 42000. 0

(c) A literal constant is written as a string of characters encloaed by
single quote characters, e.g. 'FRED', 'I AH'.

The major difference between an integer and real constant is the absence or

presence respectively, of a decimal point (or the use of the E format of

naming). Thus 3 is an integer constant, but 3,0 is a real constant. The

forms are not interchangeable as they are stored and processed within the

computer in entirely different ways. Note that 3.0, 3., and 3,00000 are all

equivalent.

2.3.2. Rules for the formation of variable names

A variable name

conaists of one to six
alphanumeric (i.e. alphabetic and m.rneric) characters,
the fir at of which must be alphabetic.

By default, if the name starts with one of the letters I,J,K,L,H,N, then the

variable is of the type INTEGER and refers to a word that may store INTEGER

mmbers only. If the name begina with one of the other alphabetic characters,

A to H, 0 to Z inclusive, then the variable is of the type REAL and refers to

a word that may contain REAL Ollllbers only.

For example,

I, I10, NAME
A, DATA, PLANE

are integer variable names, while
are real variable names.

Introduction to FORTRAN

It should be noted that the compiler places no significance on variable names

beyond inspecting the first letter to establish whether the variable is

integer or real. A name such as 87 does not mean B times 7. or B raised to

the 7th power. Host programmers assign variable names that simplify the

recall of the meaning of the variable, but no such meaning is attached by the

Fortran system, It should also be noted that every combination of letters and

digits is a separate name. Thus the name ABC is not the same as BAC, and A.

AB, and ABS are all distinct.

2.~. Arithmetic expressions

Arithmetic expressions may cor:itain

variable names,
constants,
arithmetic operators, and
brackets.

The arithmetic operators are

representing addition,
subtraction,
multiplication,
division, and

H exponentiation.

2.5, Formation of Arithmetic expressions

The basic expression is a single operation and has the form

<variable or constant> <operator> <variable or constant>

or <operator> <variable or constant>

Examples:- A*2, A-Band -Bare basic expressions,

11\e result of evaluating an expression is a variable or constant. Complex

expressions are built up from basic expressions, with operations being done

one at a time, For example. A + B + C is evaluated in two stages as follows:-

Introduction to FORTRAN

A B

' variable

' variable

intermediate variable created.

answer.

Variables and constants must be separated by an arithmetic operator.

2-5

Two arithmetic operators cannot be adjacent. If this situation arises, then
the operators must be separated by brackets. For example, A*-B is illegal and
should be A*(-B). The error could also be corrected by using -B•A.

2.5 .1. Order of evaluation of an arithmetic expression

Arithmetic expressions, in algebra, may be interpreted in different ways.
This ambiguity is not acceptable in a programming language, and so there are
strict rules which determine the order of evaluation of an otherwise ambiguous
expression.

For ex ample, consider the expression

HOURS*RATE + BONUS

Do we do the multiplication first, or the addition first?. There is a vast
difference in the answer we may get.
In evaluating an expression, the order is

(1) brackets, (innermost first)
(2) exix>nentiation,
(3) multiplication and division,
{ 4) add it ion and subtraction.

For example, the expression A*B-C/D is evaluated as if it were written
(A*B)-(C/D), Where two operators have the same priority (e.g. multiplication
and division), the order is taken from left to right. For example, the
expression A/B*C is evaluated as (A/B)*C which will probably
be different from A/(B*C). Exponentiation is the exception : I**J**K is
evaluated as I**(J**K), and not (I**J)**K.

A more complex expression is:

A+ ((B-C)*D + (E-F**K))/3,2*G+H

1. The expression ((B-C)*D + (E-F**K)) is in brackets so it will be
evaluated first. Within this expression:
1. 1 (B-C) is the leftmost bracketed expression, so it will be done first.
1. 2 (E-F**K) is the next bracketed expression to be evaluated. Within

this expression:-
1, 2. 1 F**K is evaluated

Introduction to FORTRAN

1.2,2 E - 1,2. 1 is evaluated
1.3 1.l*Disevaluated,

Finally the result for 1. is obtained by adding:
1.3 + 1.2.2

2. The result from 1. is divided by the real constant 3.2

3, The result from 2. is multiplied by G

4. A is added to the result from 3

5. His added to the result from 4 giving the final answer.

2-6

Another way of representing the above explanation is to place a m111ber under
the arithmetic operators to indicate the order in which they are applied.

A + (CB - C) * D + (E - F •• K)) / 3,2 * G + H
8 1 4 5 3 2 6 7 9

A quick method of checking that an expression has the correct m111ber of right
and left brackets is to count each bracket, adding 1 to the total for each
left bracket and subtracting 1 for each right bracket. The total should be D.
In the above example:-

A + ((B - C) * D + (E - F •• K)) / 3 . 2 • G + H
12 1 2 10 correct!

In the erroneous expression:-

A + ((B - C) • D + (E - F •• K) / 3. 2 * G + H
12 1 2 1

A positive total indicates a surplus of left brackets but does not show
where the error is.

2.5.2. Expression Mode

Integer expressions and real expressions are arithmetic expressions whose
resulting values are o f type integer and real respectively. The result of an
i!'Xpression containing one operand, such as -B, has the same type as the
qperand. The result of a basic expression with two operands, such as A + B,
has the same I type' as its components if they are both the same type. If both
cQmponents are INTEGER then the resultant variable or constant will be
INTEGER . For example :-

! + J gives an integer result.
X/Y gives a real result,

Introduction to FORTRAN 2-7

2,5,3, Integer division

This is the division of an integer quantity (either a constant or an integer
variable) by another integer quantity, The result of the division is an
INTEGER,

Where the division is not exact, the result is TRUNCATED to an integer value.
That is, the result of 12/5 is 2 and not 2,4, while the result of -9/4 is -2
and not -2 , 25,

As a result, 10/3*4 is 12 while 10*4/3 is 13, Also, 10/3*3 is 9 and not 10.

N.B. It is NOT rounded.

Note that 2**(-3) is equivalent to 1/(2**3), which is O and not 0, 125

2,5.4. Mixed mcxle expressions

Fortran allows mixed mode arithmetic expressions. A mixed mode arithmetic
expression is one that contains more than one type of variable or constant
(i ,e. mixture of integer and real).

If there is a mixture of REAL and INTEGER, then the INTEGER is converted to
REAL, internally by Fortran, and the result is of type REAL.

Toe result of 10/3 + 4.2 is 7 ,2
The result of 10/3,0 + 4.2 is 7,533

The resultant type of an expression is determined as follows:

Right expression

Int Real

Left Int Int Real

Expr. Real Real Real

2.6. The ASSIGNMENT statement

An assignment statement is of the form

variable = expression

where variable is a legal variable name, and
expression is a well formed arithmetic expression.

The assignment statement causes the expression on the right to be evaluated
and the resulting value to be stored in the variable on the left hand side of

Introduction to FORTRAN 2-8

the ::: character. The assignment statement is read as:-

variable BECOMES the value of the expression

as the variable will become the value of the expression, thus losing any

previous value that it may have had.
The expression on the right is evaluated according to the rules we have seen

for evaluating expressions. References to variables on the RIGHT cause their

values to be fetched from memory. It is impossible to fetch a value of a

variable from memory, unless it has already been given a value somehow, prior

to this point in the program. A violation of this principle is just as

ridiculous as an attempt by us to know the future. So an expression on the

RIGHT is said to be EVALUATED. The name on the LEFT is the place in the

computer memory in which the result of evaluation of the right side is stored.

For example, after the statements

A = 3.0
B = 12. 3
C = -10.2
D = 47. 1
D ::: A*B+C

are executed, the values of the variables will be

A
3. 0

B
12. 3

C
-10.2

We can now say such things as:

3, O has been stored in A

D
26. 7

12.3 is the current value of B
C has been overwritten by the mrnber -10.2
Dis26.7

The statement

1:::1+1

is legal and results in the value of the variable I being incremented by 1.

The ::: character is not an EQUALS sign in the sense of algebra, but is

sometimes known as a REPLACEMENT operator as it causes the REPLACEMENT of the

current value of the variable on the left hand side with the result of the

expression on the right hand side.

2.6.1. Mode conversion across the replacement operator

In the statement

variable expression

the mode of the variable (i.e. INTEGER or REAL) and the expression do not

Introduction to FORTRAN 2-9

necessarily have to be the same. For example,

(a) I:;A+B

(b) A=I*J

are both legal. In these cases, the expression is evaluated according to its
mode (viz real for (a) and integer for (b)). The result is then converted to
the mode of the variable on the left hand side before being stored. So the
statement A:;3 results in 3.0 being stored in A. The statement ICE :; 4.8
results in the number 4 being stored in the variable ICE.

2.7. OVERFLOW, UNDERFLOW, and DIVIDE CHECK errors

If a result (integer or real) is calculated whose magnitude is greater than
the maximun value allowed, (which is specific to a particular machine) than an
OVERFLOW is said to have occurred. An UNDERFLOW occurs when the magnitude of
a real result is less than the minimun value allowed. Division by zero
(either integer or real) is not defined and results in a DIVIDE CHECK
condition. All of the above are considered to be errors, but UNDERFLOW is
generally considered far less serious.

These errors may be handled differently on different machines, and you should
acquaint yourself with the actions taken for these errors on the computer you
are using. The actions may vary fri:>m ignoring the error (and not telling you),
or reporting that it happened somewhere in the program, to stopping the
program when one occurs.

Univac Ascii Fortran provides a m.lllber of subroutines to trap arithmetic
faults. Al though these are important, they will not be covered in this course,
but the reader is referred to the Univac Ascii Fortran Manual for details.

2.8. Exercises

2.8. 1. Exercise 2A

Write FORTRAN statements to evaluate the following algebraic formulae.

a+b
(i) z =

c+d

(ii) z :; a + ----
c+d

Introduction to FORTRAN

a+b
(iii) + d

(iv) z=a+

(v) z =

(vi) z =

C + -
e

n(n-1)

(a-b) (c-d)

e(f+g)

--'I 3 7
(vii) y = -2.314 + (5 .67z - 3.29 x 10)z + 4.13z

2.8.2. Exercise 2B

2-10

Identify each of the following as either a REAL constant, an INTEGER constant,
or neither.

(a) 0.001 (f) 3ij35.11
(b) .2 (g) $66
(c) 77 (h) 6. lE-.5
(d) 1-23 (i) ij67+1
(e) 87E-05 (j) ij3. 1.2

(k) 223.

2.8. 3. Exercise 2C

Identify which of the following are legal variable names. Which ones are
INTEGER variable names, and which are REAL variable names?

(a) QAZ (g) TUFF.
(b) COMPUTER (h) BSCBSC
(c) REAL (i) A+B
(d) 69 (j) 3XY
(e) CD-5 (k) AJKLHN
(f) L9A522 (1) BLOOD

2.8.ij. Exercise 2D

What is the error in each of the following Fortran arithmetic statements?

N·etice that al though we may recognise errors in the statements below, we

Introduction to FORTRAN 2-1 1

cannot correct them, as there a r e many possible changes t hat may be made, which would correct them. The Fortran compiler will al so ado pt t his a ppr oach ,
and these statements would r esult in errors occurring at compile time .

(i) X = A+3B

(ii) Y = ((A+B)*(C+D)-(A- D) * B-C))

(iii) 3.14159 = PI

(iv) J : H- 4.5*N**- 2

(v) AMOUNT = BALANCE + RECEI PT - SALES

(vi) X+Y : (A+B)/Z-2*PI*R

(vii) TOAST (TOAST + BUTTER)(BREAD/TOAST)

2.8.5. Exercise 2E

What wo uld be the resu l t of executing t he follo wing statement s ? The initial
values of the var iables are

A = 6.0 X = - 9.0 J = 2
B = 3.6 I = -3 N = 5

(1) z = (A+B) /X (vi) K = B

(ii) : J +l +N (v ii) K = N/J

(iii) z = (J - I)/N (viii) K :8*3.0 + X

(iv) z = N- I/J (ix) K = (A+B- X)/3.0

(v) 2 : N/J +I+2 (xl K : I *J/N

(xi) K : I/N*J

Introduction to FORTRAN

3. CHAPTER 3

3.1. The Fortran character set

A Fortran program is written using the following characters.

(1) The twenty-six upper case alphabetic characters A through z.

(2) The ten numeric digits O through 9.

(3) The thirteen special characters:

blank
equals
plus
minus
asterisk
slash
left parenthesis
right parenthesis
comma
decimal point
currency symbol
apostrophe
colon

3-1

In addition to the standard character set above, Lriivac Ascii Fortran includes
lower case alphabetics and the special characters:-

< less than
> greater than
& ampersand

The full Ascii character set is legal in literal constants, eg. 'why?' ,
'[...]'
See Appendix 3 for the table of Ascii characters.

3.2. Spaces in Fortran

Except for certain specified uses, e.g. a5 part of a literal con5tant, spaces
or blanks have no meaning and may be used freely to improve the appearance of
the program, For example,

AHP = AJ + 3. 6

and
A HP = AJ+ 3.

and
AMP=AJ+3.6

Introduction to FORTRAN

are equivalent, the first being the most desirable.

3.3, Fortran Program Layout

3-2

A program is a sequence of statement:, and comments written on 80-collnn lines.
Eac h statement of a program is written on a separate line. The 80 coliinns are
divided into a m.111ber of field.s with different use.s. <Ally the first 72 coltrnns
are read by the computer •

3. 3, 1. STATEMENT line

A statement i s written in coltrnns 7 through 72 • The only Fortran .statement
covered oo far is an assignment statement. So an example of a :statement is:-

coltrnn:-

AMA = (BAG-12.6) + 234S.2•FEE - DOC

For good program layout you should start each Fortran command on coliinn 7
(rather than after coltrnn 7). This makes your program easier to understand,
easier to read, fix md alter.

3,3.2, CONTINUATION line

Often a statement may require more than colllllns 7 through 72 and so a method
of continuing the statement is required. This may be done by putting a
non-zero, non-blank character in collllln 6 of the line that is the continuation
of the previous line. Up to 19 continuation lines are allowed for a single
statement. An example of this is if we wanted to spread the following
statement over 3 lines

INCHES = HILES*1760*3 1 12 + YARDS*3 1 12 + FEET1 12 + INS

This is not normally done if it is not necessary, however the following three
lines have an identical effect to the one line above.

cOllllln: 67
INCHES = MILES 1 17601 31 12

+ YARDS 1 31 12

+ FEET*12 + INS

When using continuation lines, it is best to indent the continued lines to
highlight the continuation, as in the above exanple. This practice makes your
program easier to read and understand.

Introduction to FORTRAN 3-3

3.3.3. COMMENT line

The letter C (or an asterisk) in col LITln 1 designates that line as a comment,
and whatever follows on that line is the text of the comment. A comment line
does not affect the program in any way, and is available as a means of
docL1T1entation and a convenience for the programmer. A line containing blank
c haracters in colLITlns 1 to 72 is also treated as a comment, and may be used to
space out the program. Comments are allowed between the lines of a statement
which has continuations. In the above example, there is a blank line between
each line of the statement.

If a line has a C in col Linn 1 the rest of the line is IGNORED by Fortran, but
it will be printed in the listing of the program, Corrrnent lines may not be
continued . To have a multi-line comment, put a C in colllnn 1 of each
additional line , All programs should commence with a series of comments to
detail the foll o wing things : -

1. The name of the author of the program.

2. The date

3. What the program does from the point of view of a user of the program -
including information as to how the uaer should prepare any required input
data for the program.

J.t. What the program does from the point of view of a person trying to
understand the Fortran program.

5, Any limitations of the program, and how they may be overcome.

The comments at the program head should be made using English
sente nces rather than pseudo Fortran sentences.

It is easier to locate the different comment sections if
standard headings are used and if the comments themselves are
indented (as shown below).
For example, you may find the head of a program has:-

Author: Fortesque Quincy Zlad inov Mc &nith The Thir-d

C Date: 27th June 1976
C Modified: January 1981 by Les Landau

Modifications were to clarify comment headings

Program Description:
This program finds the average of nunbers read in
from input data. Any mmber of data lines may be
read. The last line
contains a sentinel (the m.rnber -999) and so
no other line may contain this value.
To change the ending indicator, change the value
of IF IN in the program.

Introduction to FORTRAN

Input Description:
The mmbers to be read in must be integers, one per

C line right justified in colunns 1 - 6.

C The last line to be read in is a line with -999 in

C it. This special ending indicator may be altered by

C changing the value of !FIN in the program below.

C
List of Variables Used:

C
C AV •••• •• •• CONTAINS TI!E AVERAGE OF TI!E NUMBERS

C !FIN •••••• CONTAINS TI!E ENDING INDICATOR

C N •• • •••••• CONTAINS TI!E NUMBER JUST READ IN

C NUM ••••••• CONTAINS TI!E NUMBER OF DATA LINES READ

TOT ••••••• CONTAINS TI!E TOTAL OF TI!E NUMBERS

3-4

The above may seem to be rather verbose and unnecessary, however it does

explain all that a person needs to know to either USE or MODIFY the program.

Remember that INCORRECT or MISLEADING comments are far worse than none, so

ensure that those that you use are accurate!

In addition to the above program header, there should also be comments within

the program, describing each logical section.

Appendix 1 contains information regarding the commenting of programs in

general and specifically on what is expected for your assignments. You should

read this appendix before attempting your assignments.

3. 3. 4. Statement Label

Optionally, a statement other than a comment may be labelled so that it may be

referenced in other statements. In Fortran, a statement should not have a

label unless it is referenced by some other statement in the program (we will

see such commands as DO and GO TO later). In the programming language called

BASIC, all statements must be labelled.

A statement label consists of from one to five digits. Toe value of the

integer represented is not significant but must be greater than zero. The

statement label may be placed anywhere in colt11rns 1 through 5 of the first

line of a statement, i.e. not on continuation lines. Leading zeros are not

significant, nor are blanks.

The same statement label may not be given to more than one statement in a

program, otherwise the label is not unique and a reference from another

statement to this label will be ambiguous.

A statement label is also known as a statement ntlllber.

Although not required, statement ntlllbers are generally allocated in ascending

order so that a referenced statement ntlllber may be easily found without having

to search the complete program.

Introduction to FORTRAN 3-5

For ex ample: -

colt.mn : 1 7
65 RAIN = PERIOD*MOIST + O. l*PROB

3, 3, 5. Sequencing

Colunns 73 through 80 are ignored by the Fortran compiler but are printed as

part of the compilation listing. These col unns may be used to contain

sequence nt.mbers. so that if the program is on cards and the card deck is

dropped, it may be easily put back in order by sorting on the sequence

numbers. Toe program name may be put in the first four colunns of this field,

with numbers in the next four colunns. As in the case of statement labels,

the numbers may be incremented by 5 or 10 to allow for lines that may need to

be inserted at a later stage.

This field is normally not used for small programs {of less than 50 lines).
Programs for this course do not require sequencing.

3. 4. Structure of a Fortran Program

A program consists of a m.mber of lines of Fortran statements. The program is

executed sequentially, starting at the first executable statement. A comment

is not executable. The execut_ion of each statement is completed before going

on to the next one.

3.4.1. ENDStatement

The physically last statement in a program must be an END statement which

contains the characters END anywhere in col1.111ns 7 through 72, This

statement indicates to the compiler that this is the last statement to be

compiled.

3.4.2. STOP statement

When a STOP statement is encounter ed , the execution of the program terminates.

There must be at least one STOP command in a Fortran program.

Remember the difference between compile time and execution time, as covered in

Chapter 1? Understanding this difference will help in understanding the

different functions of the END and STOP statements.

Introduction to FORTRAN

3. 1'. 3. Simple Fortran Program

So a valid Fortran program is

THIS IS A SAMPLE PROGRAM

A:2.0
8:3. 0/A
STOP
END

Each of these statements is entered on a separate line.

3-o

A program may have several STOP commands. but only one END directive. Note
that there is no output from this program. and that values of variables are
not kept after the program stops.

3.5. Reading and writing in Fortran

Programs must converse with the outside world, to locate any data to operate
on, and to display the results of any calculation. In batch mode this is done
via the card reader for input and the line printer for output. When running
interactively you can also read and write to a terminal that is executing the
program, and also read and write to a data file (or files).

There are - Fortran statements to do this, and they are known as INPUT/OUTPUT or
I/O statements. Initially we will use free format (sometimes called list
directed) input and output. and only refer to the card reader (or terminal}
and the line printer (or terminal). Later we will discuss fixed format l/0 and
reading and writing data files.

3.5.1. READ statement

Toe READ statement is of the form

READ (5.* ,END:n) input list

where input list is a list of variable names separated by commas.

Execution of this statement causes some nllJlbers to be read from data . The
nllllber of nun.hers to be read is determined by the n1.1J1ber of variables on the
input list. Toe nllJlbers read are stored in the respective variables on the
,1,nput list.

The first parameter in brackets is the 'unit minber' for I/O. Unit 5 mean~
that data is to be read from the card reader (in batch) or the terminal
(on-line). Up to 80 colunns per line are read.

The END=n clause (and the preceding comma) may be omitted. If present, and an
end-of-file condition is encountered (by reading in a line of data with an

Introduction to FORTRAN 3-7

@-sign in coll.lTln 1. apart from @ADD, on the Univac) then the program will jl.lTlp

to the statement whose mrnber is n. If the END=n clause is missing, and you

attempt to read a line of data with an @-sign in coll.lTln 1, then you will get a

run-time error and your program will terminate.

If the end-of-file is indicated by an @EOF image. then reading may continue at

some other point in the program. If it is any other image (apart from @ADD)

then any attempt to read more will result in an error.

3,5,2, Layout of data

The data values themselves appear in the RUN on the lines following the @FTN.C

and @EOF commands. The n1.1T1bers are separated by commas or blanks. If you use

commas to separate values. then do not have any blanks in the data. If you use

blanks to separate data values, then do not have any commas in the data.

3,5,3, Examples of read

1. For example. the statements

READ (5,*) WEIGHT ,AGE,MONEY

will read three ntrnbers where

(i) the first nl.lTlber is a REAL and will be assigned to the variable

WEIGHT,

(ii) the second is also REAL and will be assigned to AGE,

(iii) the third is INTEGER and will be assigned to HONEY,

The data will contain these three nl.lTlbers separated by colllillas. Note that

real nlJllbers MUST contain a decimal point, and that integer mrnbers must NOT
contain a decimal point. The data line for this example could be

17.23,-150.,-7

The above read statement 1-K)Uld cause the variables WEIGHT, AGE, MONEY to

contain the numbers 17.23, -150.0, and -7 respectively.

2. To read in a value for the variable NUH. If no value is in the input

stream. then assume a value of 1.

NUM = 1
READ (5,* ,END:10) NUM

10 WRITE (6,*) 'VALUE FOR NUM IS ' NUH

l

Introduction to FORTRAN 3-8

3.5.4. WRITE statement

The WRITE statement is very similar to the READ statement and Ls of the form

WRITE (6,*) output list

where output list is a list of variable names separated by commas, whose
values are to be written out by the program, Analogous to the READ statement,
the list indicates the variable names whose values are to be printed.

Unit 6 means that output is to be written to the line printer (in]?atch) or
terminal (on-line). Up to 132 collll'lns per line are written.

For example, to print the nllllbers that were read in the previous example, the
statements could be

READ (5,*) WEIGHT ,AGE,MONEY
WRITE (6,*) WEIGHT ,AGE,MONEY
STOP
END

Try this program on the computer so that you may. see what happens. D:rn 1 t
forget to include a line of data with the three nunbers on it.

3,5.5. Examples of READ and WRITE statements

READ statements should be used to read data that may vary from one run of the
program to another. Consider the following problems.

Find the average of the ten nunbers 1.3, 2.4, 5.4, 6.3, -3,7, 0.0, 13,4,
-12 . 0, 17.7, -21.3.

In this problem, all data has already been defined and so there is no need to
read any data. The program would be

C
C FIND THE AVERAGE OF TEN SPECIFIED NUMBERS
C

FNUM a 10.0
AVER= (1.3 + 2.4 + 5.4 + 6.3 - 3,7 + 0.0 + 13,4 - 12.0 +

$ 17.7 -21.3)/FNUM
WRITE (6,•) AVER
STOP
END

Find the average of any ten mrnbers.

In• this problem, the values of the ten nt.lllbers are not known when the program
is written. Thus, they must be supplied as data and so must be read by the
program which could be as follows:

Introduction to FORTRAN 3-9

C FIND THE AVERAGE OF ANY TEN NUMBERS
C

FNUM : 10.0
REAO (5,•) VAL1,VAL2,VAL3,VAL4,VAL5,VAL6,VAL7,

$ VAL8,VAL9,VAL10
AVER = (VAL 1+VAL2+VAL3+VAL4+VAL5+VAL6+VAL 7+

$ VAL8+VAL9+VAL 10)/FNUM

WRITE (6, •) AVER
STOP
END

Find the average of any number of nunbers.

Now. not only the values of the nunbers, but also the nunber of nunbers, are

not known when the program is written. The program would thus have to read a

value indicating how many values there were, and then read that many values.

It 1s not yet possible to write this program, but it will be set as an

exercise later.

3.6. Writing out heading information

The method below of writing out headings is very non-standard, but because it

is also very easy we will use it initially, and will discuss the more standard

methods later.

The output of mrnbers on their own is quite often confusing to interpret.

Tables of figures in books and even single results usually have some

accompanying text to indicate what the results mean, or how they were

obtained.

Fortran provides a mechanism to allow headings to be output very easily by

means of a WRITE statement .

To write a heading that will appear at the beginning of a list of values that

are to be written out, include the heading in the output list, enclosed in

single quotes. If you want to include a quote sign within the heading itself,

then the quote must be followed immediately by a quote.

For example, to write out values for ECCLES and JIM to appear after a heading

of GOON WITH THE WAND

WRITE(6,*)' GOON WITH THE WAND' ,ECCLES,JIM

Headings may be written out on their own, without any variable values. In this

case the corresponding write statement simply has the heading on its own.

For example, to write out:

MIN, MIN, MIGHTY MODERN MIN
HENRY, WHAT HAVE YOU DONE WITH THE PAPER?
AH MIN, IT'S IN THE BOX MARKED 3

Introduction to FORTRAN

the following lines of Fortran may be used.

I : 3
WRITE(6,*)' MIN, MIN, MIGHTY MODERN HIN'
WRITE(6,*)' HENRY, WHAT HAVE YOU DONE WITH THE PAPER?'
WRITE(6,*) 'AH MIN, IT 11 S IN THE BOX MARKED', I

3. 7. Exercises

3.7.1. Exercise 3A

3-10

Read in 4 numbers. The first two should be real, the next two should be
integer.
Write out the numbers in reverse order.

3.7.2. Exercise 38

Read two integers i and j. Do the following calculations and write out the
results.

k = i +

1 : i X

m = i / j

n = i

3. 7 . 3. Exercise 3C

Read a positive rea l nunber. Place the integral part (ie, the \oo'hole nl.J'llber
part) into a variable called INT and the fractional part into a variable
called FRACT. Write out the m.1nber , INT, and FRACT.

For example, if the number is 53.261, then INT = 53 and FRACT = 0.261.

3,7.4. Exercise 3D

Read in two real nunbers. Calculate the difference between the first one
squared and the second one squared. Write out the the two minbers, their
squares and the difference.

Introduction to FORTRAN 4-1

4. CHAPTER 4

4.1. Relational expressions

A RELATIONAL EXPRESSION compares the values of two arithmetic expressions,
The expressions are separated by a RELATIONAL OPERATOR and the result will
have the value TRUE or FAI.BE, as the relation is TRUE or FALSE. The
relational operators are

.LT. meaning less than

.LE. less than or equal to
• EQ. equal to
.NE. not equal to
,GE. greater than or equal to
• GT. greater than

Some examples of relational expressions are

(a) PAY .LT. CREDIT

The arithmetic expressions involved here are simply single variables.
The relational expression will have the value TRUE if the value of
the real m.rnber stored in PAY is less than the real value stored in
CREDIT. Otherwise (i.e., if PAY is greater than or equal to CREDIT),
it will have the value FALSE,

(b) NURKE*2 .GE.MIN**3/KO

Here the arithmetic expressions are a little more involved. The
relational expression will have one of the following values.

TRUE if NURKE*2 is greater than or equal to MIN**3/KO

FALSE if NURKE*2 is less than MIN**3/KO

(c) Brackets may be used within the arithmetic expressions involved.

(KOLD*ICE)/(MAN-KG)**4 + 7,EQ,((MINE - IODINE)*3)**JEWEL

Relational operators have a lower order of precedence than arithmetic
operators, so the arithmetic expressions are evaluated first.

4.1.1. Use of .EQ. with REAL variables and constants

The computer cannot represent most real m.rnbers exactly due to the nature of
storage of these m.rnbers in a fixed size memory word. For example, in decimal
arithmetic, 1/3 cannot be represented exactly in 6 significant digits, and is
approximated by 0,333333, If this is then multiplied by 3, then you have
(approximately) 0,999999 which is not exactly equal to 1.0

Introduction to FORTRAN 4--2

Also, errors may be introduced when performing arithmetic operations on REAL
nllllbers. For these reasons, it may not be meaningful to form a relational
expression using .EQ. between two REAL arithmetic expressions.
For example, 0. 1 cannot be represented exactly in a computer word and in fact
could be 0.1 + e where e is a very small anount. If this is then
multiplied by 10, the result is

10 x (0. 1 + e} = 1. O + 10 x e

which has ten times e. Hence, 10 x 0.1 is not EXACTLY equal to 1.0

4.2. Logical Expressions.

A logical expression is a relational expression, or a combination of
relational expressions. These expressions may be combined with logical
operators. The logical operators are:-

.OR. meaning logical disjunction, and

.AND. logical conjunction.

The logical expression a ,AND,b is TRUE if and only if both the logical
expressions a and bare TRUE. The logical expression a.OR.b is TRUE
if and only if at least one of the logical expressions a and b is TRUE. (i.e.
it is an INCWSIVE OR).

AND. has precedence over .OR.
Arithmetic operators have precedence over relational operators, which have
precedence over logical operators, If in doubt, always use brackets.

For example, the logical expression:-

JILL • EQ. JACK*2 • OR. JACK • GT. 0 • AND. JACK • LE. 100

is equivalent to

(JILL .EQ. (JACK*2)) .OR. ((JACK .GT. 0) .AND. (JACK .LE. 100))
2 1 6 3 5 4

The munbers show the order of evaluation.

4, 3. Logical IF statement

A logical IF statement is of the form

IF(logical expression) S

The logical expression is as described above.

S . • • is any executable statement except a 00 statement, another logical IF

Introduction to FORTRAN 4-3

statement or any block-IF command.

The logical expression is evaluated, and if it has the value TRUE, the
statement S is executed. If the value of the expression is FALSE, the
statement S is not executed. In either case, control then passes to the next
statement.

4.3.1. Examples of Logical IF statement

(a)

If PAY is less than 4000,00, then increase PAY by 275.25

IF(PAY.LT.4000.0) PAY= PAY+ 275.25

(b)
Read a card. If the integer on it is equal to 7, then read another card.

(c)

READ (5,*l NUMBER
IF(NUMBER.EQ.7) READ (5,*) NUM2

Read a card. If the number on the card was 99 then stop.

(d)

REA0(5,*)NUM
IF(NUM. EQ. 99)ST0P

Test if SALARY is in the range 30,000 to 100,000 and write out a message
saying FAT CAT if it is.

IF (SALARY.GE.30000,0 .AND. SALARY.LE.100000.0) WRITE(6,*)'FAT CAT'

4,3,2, Common errors with IF statements

(a) Where you want to do one of two things depending on a test.

Suppose that you want to test to see if PAY is less than STARVE then add 250,0
to PAY, but if it is not less than STARVE then only add 100,0 to PAY

One solution, which is incorrect, may be:

IF(PAY.LT.STARVE) PAY =PAY+ 250.0
PAY : PAY + 100.0

This will not work of course because if PAY was less than STARVE then we would
add on 250,0 to PAY, but then we would also add on 100,0, It is true that it
would work in the case of PAY being greater than (or equal to) STARVE, as we
would only add 100,0

So, another attempt at a solution leads us to another erroneous answer:

Introduction to FORTRAN

IF(PAY.LT.STARVE) PAY : PAY+ 250.0
IF(PAY.GE.STARVE) PAY : PAY + 100.0

Why is this wrong? It seems to work: if PAY is less than STARVE then we will
add on 250.0 and then we test again and only if PAY is greater than or equal
to STARVE do we add on 100.0

Well this WILL work, but if PAY lies between STARVE and STARVE - 250,0 then
PAY will be increased by 350 . 01 Try it in the case of STARVE having the value
4000.0 and PAY having the value 3950.0

Assuming that this was not the intention of the exercise, the following
solution will work:

IF(PAY.LT.STARVE ADDON = 250.0
IF(PAY.GE.STARVE ADDON : 100.0
PAY = PAY + ADDON

compare this with:

ADD0N : 100. 0
IF(PAY.LT . STARVE) ADDON = 250.0
PAY = PAY + ADDON

4. 4. Block-IF statements

The logical IF statement above is limiting in that only one statement is
allowed after the logical expression on the IF.

1977 standard Fortran introduced a construction known as a block-IF, that
allows several Fortran statements to be executed as a result of one logical
test. Further, it incorporates an ELSE mechanism which can be used to specify
a block of statements that are to be performed if the logical test comes out
false. This reduces the mrnber of GO TOs in - the program, thus making the
program easier to read and debug.

4.5, Block-IF terminology

Block-IF The name of the IF statement. It starts with an
IF •••••• IBEN statement (see below) and ends w1 th an
END IF statement .

IF-block The group of lines that lie between an
IF •...•• IBEN and the next ELSE IF, ELSE or END IF
statement.

ELSE-IF-block
Toe lines that lie between an ELSE IF
statement and the next ELSE IF, ELSE or END IF,

Introduction to FORTRAN

ELSE-block
The lines between an ELSE statement and the
following END IF statement.

4.6. Basic Block-IF

The form of the block-IF is:

IF (logical expression) THEN

lines of Fortran > The IF-block

END IF

4.6.1. Evaluation

4-5

The logical expression is evaluated, If it has the value of TRUE then all the

lines of Fortran in the IF-block are executed.

If the value of the logical expression is FALSE then the program skips the

IF-block and continues execution with the statement immediately following the

END IF statement.

Any executable statement may appear within the IF-block, including another

block-IF. In this case of nested block-Ifs there must be an END IF that

corresponds to each IF ••.••••• THEN

4.6.2, Excrnples of block-IF

(a) Read in a value for SALARY and if it is negative then write out a message

and stop the program. If it is non-negative, then write it out and go on

with the program.

READ (5, •) SALARY

IF (SALARY .LT. 0) THEN

WRITE (6,*) Negative salary is illegal ',
'A value of 1 , SALARY,' was read'

STOP
END IF
WRITE (6,*) Salary: 1 , SALARY

(b) Read in a value for NUM, If NUH equals O then read in another value for

NUH, write out a message saying that has been done and calculate values

for HALF (half of NUM) and TWICE (2 times NUM).

Introduction to FORTRAN 4-6

READ (5,•) NUM
IF (NUM .EQ. 0) THEN

READ (5,•) NUM
HALF = NUM/2. 0
TWICE = NUM*2
WRITE (6,*) 'Second value of 1 , NUH, 1 read'

END IF

In this program, if NUM was originally read in as non-zero then HALF (and
TWICE also) would not have a value.

(c) Same exercise as above, but if the second value of NUH is less than 10,
then do not calculate HALF or TWICE.

READ (5 ,•) NUM
IF (NUM .EQ . 0) THEN

READ (5,•) NUM
IF (NUM. GE. 10) THEN

HALF : NUM/2. 0
TWICE = NUM*2

END IF
WRITE (6,*) 'Second value of I NUH, 1 read'

END IF

4. 7. ELSE-IF statement

This forms part of the block-IF. Any nl.Elber of ELSE IFs may be part of the
block-IF.

4. 7. 1. Syntax of the ELSE IF

IF (logical expression-1) THEN

lines of Fortran > An IF-block

ELSE IF (logical expression-2) THEN

lines of Fortran > An ELSE IF-block

ELSE IF (logical expression-3) THEN

Introduction to FORTRAN 4-7

' lines of Fortran > An ELSE IF-block

etc

END IF

There is only one END IF and that END IF corresponds to the block-IF at the
top.

4.7.2, Interpretation of ELSE IF

The use of ELSE IF within a block-IF is to test a logical expression and if it
is true then execute the Fortran in the IF-block. If the logical expression is
false, then go to the next ELSE IF and test that expression, When eventually a
value of TRUE is found, the corresponding block of statements is executed, and
then the program skips to the END IF statement.

More exactly:

1. Logical expression-1 is evaluated

2. If it is TRUE then:
(a) the statements in the IF-block are executed.
(b) the program skips all the ELSE IF blocks and continues execution

following the END IF.

3, If logical expression-1 is FALSE then skip to the next ELSE IF (or END IF
if there isn• t an ELSE IF) and evaluate the logical expression there
(logical ex pression-2) •

4. If the logical expression is TRUE then:
(a) the statements in the ELSE IF block are executed.
(b) the program skips to the END IF

5. If the logical expression is FALSE then skip to the next ELSE IF
(or END IF if there isn't an ELSE IF) and evaluate the logical expression
there.

6. Repeat steps 4 and 5 until eventually arriving at an END IF.

Any of these blocks can contain other (nested) block-IF expressions, but one
and only one END IF statement exists for each IF THEN expression. That is,
there is NOT any END IF statement that corresponds to an ELSE IF .. • •..• TIIEN
statement.

Introduction to FORTRAN 4-8

4. 7. 3. Ex anple of ELSE IF

(a) Test for PAY less than STARVE. If it is, then add 250,0 to PAY, otherwise
add 100.0 to PAY.

IF (PAY ,LT. STARVE) THEN
PAY : PAY + 250.0

ELSE IF (PAY .GE. STARVE) THEN
PAY = PAY + 100, 0

END IF

(b) Read in a number.

Value Action
1 Read in 3 m.unbers and write out their average
2 Read in 2 numbers and write out the result of raising the first to

the IX>Wer of the second.
Read in two mmbers and if the second mrnber is zero, then write
out an error message and stop, If the second mmber > 0 then
calculate the value of the first divided by the second.

All input is integer.

READ (5,•) NUM
IF (NUM .EQ, 1) THEN

READ (5,*) Il, 12, 13
AVE = (Il+I2+I3)/3,D
WRITE (6 , •) ' Average is ' AVE

ELSE IF (NUM .EQ, 2) THEN
READ (5,*) 11, IPOWER
IVAL = I1**IPOWER
WRITE (6, *) 1 Power calculation: 1 IVAL

ELSE IF (NUH .EQ. 4) THEN
READ (5,*) Nl, N2
IF (N2 .GT. D) THEN

IQUOT = N 1/N2
WRITE (6,•) ' Integer quotient: ', IQUOT

ELSE IF (N2 ,EQ, 0) THEN
WRITE (6,*) ' Divisor of zero found'
STOP

END IF
END IF

4.7 .4 . ELSE statement

The form of an ELSE statement is just the command:

ELSE

on a line of its own

Introduction to FORTRAN 4-9

4,7,5. Use of ELSE

The ELSE block (if present) must come after all ELSE IF blocks (if there are

any). Execution of the ELSE block will be done if all logical expressions (at

that level of nesting) evaluate to FALSE,

For ex ample:

IF (logical expression-1) THEN

' lines of Fortran > An IF-block

ELSE IF (logical expression-2) THEN

lines of Fortran > An ELSE IF-block

ELSE IF (logical expression-3) THEN

lines of Fortran > An ELSE IF-block

etc

ELSE

lines of Fortran > An ELSE block

END IF

The ELSE block will only be executed if logical expressions 1, 2, 3 etc all

evaluate to FALSE.

So, each logical expression is tested and if one is found that is TRUE, then

the corresponding block is evaluated. otherwise, the ELSE block is evaluated.

Introduction to FORTRAN 4-10

4.8. Notes on block-IF in general

(a) To facilitate the understanding of programs, use indentation within a
block-IF. This way statements that fall into the block stand out from
those that are not in the block. An indentation of 3 or 4 characters is
advised (for each level of nesting).

(b) Any executable statement, comment or FORMAT statement (see chapter 8) is
allowed within any of the three different types of blocks. A statement
must be wholly contained within a block.

(c) In the next chapter, 00 statements are covered. If a 00 statement appears
in a block, it must be wholly contained in that block.

(d) Chapter 7 introduces a GO TO statement, which transfers control to another
part of the program. It is not allowed to transfer control to within a
block from outside that block.

(e) Do not use a block-IF statement if there is only one thing that;. is to be
done as a result of a test. In such cases use a simple logical IF
statement.

(f) Try to avoid very large block-lFs. This may be done by using a GO TO
statement (see chapter 7) .• Large ranging block-IFs make it difficult to
keep track of where you are in a program.

(g) Try to avoid very deep nesting of block-IFs (you are allowed 25 nested
levels).

4.9. Exercises

4.9 , 1. Exercise 4A

Identify the following r elational expressions as valid or invalid.

(a) MPX.LE.19+K
(b) LAX.GT.AMA
(c) COB, LT .. EQ. CORN
(d) 14.NE.LS
(e) .EQ. 6
(f) (I+19) *K .EQ. J*L*(JJ+I)/K
(g) P.GRT.Q
(h) L.=,77

Introduction to FORTRAN 4-11

4.9.2. Exercise 48

Read a card containing two integers. Determine which is the larger one and
write out the two integers with the larger one appearing first .

4.9.3. Exercise 4C

Rewrite the following us i ng block-IF statement(s).

READ (5, *) MAXIN
IF (MAXIN .EQ. 16) WRITE (6,•) 'Gotit'
IF (MAXIN .EQ. 19) FORGET , 0.5
IF (MAXIN .EQ. 10) FORGET , 0.0
IF (MAXIN .EQ. 16) STOP
... F (MAXIN .EQ. 19) WRITE (6,*) ' Found one'

4.9.4. Exercise 4D

Write a logical IF statement that will test if A is in the range
(-0.00001,0.00001) and if it is, set A to 0.0

4.9.5. Exercise 4E

Rewrite the following using only one level of block-IF (and so only one END IF
statement)

IF (IND .EQ 16) THEN
K , 6

ELSE
I , 9

IF (L .GT. J+4) THEN
X , 19.6

ELSE

READ (5,*) Y
L , 0

IF (MAIN . LT. I) THEN
COST , 19.0
TRY , 14.2

ELSE
PAY , 0.0

END IF
END IF

END IF

Introduction to FORTRAN 5-1

5. CHAPTER 5

5 . 1. 00 statement

The DO statement is a mechanism which enables repeated execution of a block of

code (i.e., a group of Fortran statements) a number of times, without having

to write the statements repeatedly.

The form of the DO statement is

DO n i m1 ,m2,m3

where

(i) n is the statement label of the terminal statement of the DO , which

must be physically later in the program than the corresponding DO

statement.

The range of a DO statement is the block of statements following the

DO statement, up to and including the statement labelled n.

(ii) i is an integer or real variable and is called the DO-variable. The

value of i may not be changed within the range of the 00-loop.

(iii) m1, called the initial parameter, m2, called the terminal parameter,

and m3, called the incrementation parameter, are each an integer or

real expression.

m3 is optional and it (and its preceding comma) may be omitted. In

that case a value of 1 is assumed for m3. At the time of execution

of the DO statement m3 must not equal O. m1, m2 and m3 may be

changed during execution of the loop, but this will not change the

nUT1ber of times that the loop is executed.

5.1.1. Restrictions on terminal statements

_ The terminal statement may not certain kinds of commands, some of which we

have already done. The list of commands that the terminal statement HUST NOT

be is

unconditional GO TO
assigned GO TO
END
arithmetic IF
block-IF
ELSE IF
ELSE
END IF
RETURN
STOP

_ntroduction to FORTRAN 5-2

DO

5.2. CONTINUE statement

The CONTINUE statement is an executable Fortran statement which does nothing.
When a CONTINUE statement is executed, its effect is a 'no operation' effect,
and the program will simply go on to execute the next .statement.
The main use of the CONTINUE statement is a.s the terminal .statement of a 00
loop, to avoid the illegal terminal .statements listed above.

It is a good idea to always end your 00 loops on a CONTINUE statement. This
way

(a) The loop is easier to alter
(b) The terminal statement .stand s out more
(c) You always end on a legal statement

5.2.1. The 00 statement and 1977 standards

A major change in the semantics of the DO statement occurred when 1977
standard Fortran was announced.

In 1966 standard Fortran, the testing of the DO-variable was done at the end
of executing the statements in the range of the DO. This means that the
statements in the range of the DO will always be done at least once, even if
the finish value of the 00 (m2) is less than the start value (ml) with a
positive increment (m3).

In 1977 standard Fortran, the test is done BEFORE executing any statements in
the range of the DO. This means that you can have a null DO loop (that is, one
in W'lich the statements in the range of the DO are not executed at all).

In 1966 Fortran, the DO-variable became undefined when the loop became
inactive. In 1977 Fortran, the 00-variable retains its last defined value,
i.e. the value after the increment which caused the loop to terminate.

Univac Ascii Fortran level 9R1 (and higher) introduced the 1977 version. If
you use a compiler other than this, then you should check to see which version
it adheres to.

In the examples below, it is assumed that the 1977 standard is in effect, but
for compatability the way o f interpreting the 1966 standard is also presented
(see Append ix 5) .

5.2.2. Evaluation of the DO statement

A DO statement is used to define a loop.

Introduction to FORTRAN 5-3

The action following the execution of a DO statement is described in the
following steps.

(i) The initial parameter, the termination parameter and the increment
parameter are converted to the type of the DO-variable, and the
00-variable is given a value of the initial parameter.

(ii) The iteration count is established and is the value of the expression
maximum of: (a) truncation of ((m2-ml+m3)/m3)

and
(b) 0

(iii) The iteration count is tested. If the iteration count is zero, then
the 00-loop becomes inactive 1 and the program continues with the
statement immediately following the terminal statement.

If the iteration count is greater than zero, then all the statements
within the range of the DO (i.e. the statements following the DO line
up to and including the terminal statement) are executed.

(iv) The value of the 00-variable is incremented by the incrementation
parameter (mJ) 1 and the iteration count is decremented by 1.

(v) The action starting at step (111) of this procedure is then
commenced, and so on around the loop until eventually the test in
step (iii) leads to the DO-loop becoming inactive.

So, effectively a DO statement will repeat all the statements from the one
immediately after the DO line, up to and including the terminal statement.
This will be done a number of times, determined by the interactions of ml, m2,
and m3 (bearing in mind that the n\Jllber of times could be zero).

5.2.3, Exc1t1ples of 00 statements

(a) Read 3 cards and write them out. This will produce 3 lines of output.

DO 25 I= 1,3,1
READ (5,*) VAL1,TIHE,LIHIT
WRITE(6,*) 'INPUT VALUES WERE:', VALl,TIHE,LIHIT

25 CONTINUE

(b) Write all the even mrnbers between 1 and 100 inclusive.

006K:2,100,2
WRITE (6,*) K

6 CONTINUE

(c) Read a card containing an integer into the variable INT. Now read INT
more cards and write them out. This is a very common method used to enable a

program to process a variable amount of data.

Introduction to FORTRAN

READ (5,•) INT
DO 12 I = 1,INT

READ (5,•) NUMBER
WRITE (6,•) NUMBER

12 CONTINUE

5-4

(d) Read up to 25 cards and write them out, until a card containing -9 is
found, and then stop. This is another method of determining when there is no
more data to read •

DO 16 I = 1, 25
READ (5,•) NUMBER
IF(NUMBER. EQ. -9) STOP
WRITE (6, •)' INPUT VALUE IS ', NUMBER

16 CONTINUE

(e) Suppose that we read in some JX)pulation statistics for the years from 1960
back to 1950 (in that order) and we wanted to write them out prefixed by the
year to which they correspond.

DO 20 IYEAR = 1960, 1950,-1
READ(5, •) IPOP
WRITE(6,*)' IN ' ,IYEAR,' THE POPULATION WAS ',IPOP

20 CONTINUE

This would write out:

IN 1960 THE POPULATION WAS xxxxxxxx
IN 1959 THE POPULATION WAS xxxxxxxx
IN 1958 THE POPULATION WAS xxxxxxxx
etc

If you were using 1966 standard Fortran (which does not allow DO loops to go
backwards) then you would have the program

DO 24 I = 1950,1960
IYEAR = 1950 + 1960 - I
REA0(5, •) IPOP
WRITE(6,*)' IN 1 ,IYEAR, 1 THE POPULATION WAS 1 ,IPOP

24 CONTINUE

(f) Read 10 cards each containing an integer, and print each nt111ber. When a
card contains the number -7, stop AFTER printing the nt111ber.

DO 18 I = 1, 10
REA0(5, •)NUMBER
WRITE (6, *)' INPUT NUMBER : 1 , NUMBER
IF(NUMBER.EQ.-7) STOP

18 CONTINUE

Introduction to FORTRAN 5- 5

5. 3. Nested 00 statements

It h possible to have a 00 loop wholly conta ined within another 00 l oop,
This is known as I nesting 00 loops.' For example,

00 42 I , 1, 15

. . . code A

DO 5 J 3,30 , 3

READ(5 ,*) L

CONTINUE

. . . code B . • .

42 CONTINUE

. • . code C • . •

Inner

DO

LOOP

Outer

DO

LOOP

The INNER loop (down to statement nl.lllber 5) is said to be nested within the
OUTER loop (which ranges down to statement m.,nber 42). The operation of this
ex ample is as follows.

1. Set I to its initial value (1)

2. Calculate the iteration count for the outer 00

3, Test the iter ation count. If > 0 then go on. If <= 0 then go to step 12 .

4. Execute the code marked A

5. Set J to its initial value

6 . Calc ulate the iteration count for the inner 00

7 . Test the iteration count. If > 0 then go on . If <= 0 then go to step 10 .

8 . Execute the code i n the inner 00

9. At label 5:
increment J by 3
decrement the iteration count of the inner 00
go to step 7 above .

10. Execute the code marked B

Introduction to FORTRAN

11, At label 42:
increment I by 1
decrement the iteration count of the outer DO
go to step 3 above.

12. Execute code marked C

5,3.1, Rules for nested 00 loops

5-6

An inner 00 must terminate ON OR BEFORE the terminal statement of the outer
DO. This means that 00 loops must not 'cross over'. The following nesting
construction is ILLEGAL.

DO 12 I = 3, 17

DO 88 J = 2,37,3

12 CONTINUE

88 CONTINUE

The following construction. where the inner and outer DO loops finish on the same statement, is legal.

DO 16 J = 1, 12
DO 16 K = 3,17,2

16 CONTINUE

In this example the INNER 00 will be completed before control is returned to
the outer oo. even though they have the same terminal statement mmber.
There is a limit to the depth of nesting of 00 loops. This limit is not
defined in the ANSI standard, but most computers allow at least 5 levels, and
usually a lot more, al though very few programs ever need more than a depth of
3,

5, 3.2. Final value of the DO-variable

When the range of a 00 loop is exhausted (ie, when the loop variable has a
value that exceeds the terminal parameter on the DO statement), then control
is passed 'out the bottom' of the DO loop. When this occurs, the value of the
DO-variable retains its last defined value, which is the value after the last increment, when the iteration count is zero.

5 .4. Examples of nested DO loops

Introduction to FORTRAN 5-7

5.4.1. Example 1

Suppose we want to find out the average salary earned in different

electorates. We have a number of electorates to process and a variable ntlllber

of people in each electorate.
The program below will first read in a card indicating how many electorates

there are. Following this there will be sets of salary data for each person in

each electorate, one salary per card. The first line in each electorate set

indicates the number of people in that electorate, and then following this

card will be that nunber of salary lines. Each salary is a real ntlllber.

For example if there were 3 electorates, with the following minbers of people

in each:

electorate 1 2 people

electorate 2 li people

electorate 3 3 people

Then the data deck would look like:

C
C
C
C

3
2
256. 50
291.85
4
196, 45
202. 44
180,00
175, 10
3
120, 45
133, 22
110,90

AllrHOR:

DATE:

PURl'OSE:

G. MANDER

NOVEMBER 1979

earning $256, 50
$291, 85

earning $196,45
$202, 44
$180,00
$175, 10

earning $120,45
$133,22
$110, 90

C TO FIND THE AVERAGE SALARY OF PEOPLE IN A NUMBER OF

C ELECTORATES. TIIE AVERAGE IN EACH ELECTORATE IS PRINTED,

C AND AT TIIE END THE AVERAGE OF ALL SALARIES IS PRINTED,

C INPUT DATA:
C
C

Introduction to FORTRAN

AU. INPUT IS FREE FORMAT
C
C (A) FIRST CARD
C CONTAINS 1llE TOTAL NUMBER OF ELECTORATES (INTEGER)

C (B) FOLLOWING CARDS
C CONTAIN ELECTORAL SALARY DATA. 1llE FIRST CARD
C INDICATES 1llE NUMBER OF PEOPLE IN AN ELECTORATE,
C AND THEN ONE SALARY PER CARD, WHICH REPRESENTS
C THE EARNINGS OF A RESIDENT IN THE ELECTORATE.
C

C
C
C
C
C
C
C
C
C
C
C
C

VARIABLES USED :

GRAND

NELECT
NPEEP
NPOP

SALARY
TCYfAL

the total salary earned by all
the people
the number of electorates
the nunber of people in an electorate
the total nunber of people in all
electorate s
the salary earned by a person
the total salary earned by an electorate

READ (5, •) NELECT
GRAND • O. 0
NPOP • 0
DO 10 I • 1 , NELECT

C
C READ THE NUMBER <:E PEOPLE IN EACH ELECTORATE

READ (5, •) NPEEP
C READ AND TOTAL THE SALARIES IN AN ELECTORATE

C

TCYfAL • 0.0
DO 5 J • 1,NPEEP
READ (5,•) SALARY
TOTAL : TOI'AL + SALARY

5 CONTINUE

C FORM 1llE AVERAGE FOR 1llIS ELECTORATE
C

AVER : TOTAL/ NPEEP
WRITE (6, •)• THE AVERAGE FOR ELECTORATE ',I,' IS ',AVER

C ADD TO GRAND TOTAL
C

GRAND • GRAND + TCYfAL
NPOP = NPOP + NPEEP

10 CONTINUE
C
C CALCULATE AND WRITE OUT GRAND AVERAGE
C

GAVE • GRAND/NPOP

5-8

Introduction to FORTRAN

WRITE(6,*)' AVERAGE OF ALL'.NELECT, 1 ELECTORATES IS ',GAVE
STOP
END

The output from this program, using the data above would be:

THE AVERAGE FOR ELECTORATE 1 IS
THE AVERAGE FOR ELECTORATE 2 IS
THE AVERAGE FOR ELECTORATE 3 IS
AVERAGE OF ALL 3 ELECTORATES IS

5.4.2, Example 2

274.17500
188. 49750
121. 52333

185.21222

5-9

To write out a series of headings for a monthly diary. There is to be a one
line heading for each month of each year between 1975 and 1982.

Al!rHOR;
DATE;

INPUT;
PURPOSE;

H. MOOD
OCTOBER 1979
THERE IS NO INPUT

TO WRITE OUT A HEADING SA YING THE
EACH MONTH BETWEEN 1975 AND 1982

DO 15 IYR = 1975.1982
WRITE(6,*) 1

DO 10 MONTH = 1 0 12
WRITE(6.*) IYR. MONTH
WRITE(6.*)

YEAR AND MONTH FOR

WRITE (6. *) 1 ++++++++++++++++++++++++,
10 CONTINUE
15 CONTINUE

STOP
END

5.5. Exercises

5.5. 1. Exercise 5A

Identify the following statements as being TRUE or FALSE.

(i) Statement labels must be as.signed sequentially.
(ii) The largest statement m111ber is 99999.
(iii) Every FORTRAN statement must be assigned a statement label.
(iv) Statement m.inbers may be variable quantities.
(v) Statement nunbers do not have to start in collJ'.lln 1.
(vi) It is valid to assign the _same statement label to several statements

Introduction to FORTRAN

in a program.
(vii)
(viii)
(ix)

A CONTINUE statement must be the last statement of a DO loop.
A CONTINUE .statement may be used outside a DO loop.
A 00 loop must finish before another one may start.

(x) A CONTINUE statement must be labelled.

5.5.2. Ex ercise 58

Identify the following statements as correct or incorrect 00 statements.

(i)
(ii)
(iii)
(iv)
(v)
(vi)

DO 8 KAN • J,K,L
DON K6 • 5,N,2
DO 5 IY • 1, 12
DO 692 3 • 1 ,K
DO 99 N1234 • 1,3,K
DO 9 K • 1, 9, 5

5.5.3. Exercise SC

(vii)
(viii)
(ix)
(x)
(xi)
(xii)

DO 88 KIRSH • 1, K+4
DO. 2 L = S,2
DO 7453 FRED • 1,N4A2,2
D0222K,J,6
DO I:: 1,9,2
DO 60 J • I,J,K

What is written out by the following groups of statements:

(a) VP • 98.6
J • 16
IF(VP. LE. 62. 3)WRITE(6, •)J
J • 14
WRITE(6,•)J

(b) DO 16 KX • 1,30,4
IF(KX.GT. 16)WRITE (6, •)KX
LX • KX-1

16 IF(KX.LE.13)WRITE(6,•)LX

5.5.4. Exercise 5D

Using a DO statement
add up all the even integers between 98 and 224 inclusive
and write out the total .

5.5.5. Exer cise SE

5-10

ead a line of data containing an integer indic ating the nl.lllber of lines to
fpllow. Read in the rest of the data, one m.mber per line, and determine the
largest and snallest m111ber. For example, if the data were

12.2

Introduction to FORTRAN 5-11

16. 4
-7 . 1
4. 4

the output would be

THE LARGEST NUMBER WAS 16. 4
THE SMALLEST NUMBER WAS -7 . 1

5.5 .6. Exercise SF

Assuming that there is one integer punched per data card , how many cards will
be read in the following?

(i) DO 16 I . 1, 3
DO 16 J • 1,4

16 READ(5, *) L

(ii) DO 16 I . 1, 3
DO 14 J • 1, 4

READ(5, 1) L
14 CONTINUE
16 CONTINUE

(iii) DO 16 K • 1, 3
DO 14 J • K,4

14 READ(5, 1) L
16 CON TINUE

(iv) DO 16 K • 1, 3
READ(5 , 1) L
DO 14 J = 1,!J

14 READ(5, 1) L
16 CONTINUE

(v) DO 16KK•3,6, 1
DO 16 LH • 8 , 11,4

16 READ(5, 1) L

5.5.7. Exercise 5G

What number would be written out in the following?

DO 17 J • 17 , 38,9

17 CONTINUE
WRITE (6, 1) J

Introduction to FORTRAN 5-12

5. 5. 8 . Exercise 5H

Write a program to find the average of any ntnber o f m.mber.s.

Introduction to FORTRAN 6-1

6, CHAPTER 6

6. 1. Supplied FUNCTIONS

There are some special routines available to the FORTRAN programmer that
result in certain actions taking place. These routines are invoked by
mentioning a key name, called the function name, followed by a list of
parameters for that function.

For example, the function ABS will find the absolute value of a real variable.
'ljle only parameter is the name of the real variable whose absolute value is
required . To find the absolute value of the variable BILL and to store that
value in the variable FRED, the statement is

FRED • ABS (BILL)

This could also be achieved by using a logical IF statement, viz,

FRED • BILL
IF(BILL,LT.0,0) FRED • -BILL

The use of the ABS function is a little clearer and certainly more concise.
You should try to use FUNCTIONs extensively for this reason.

A function is said to RETURN a value. In the above example, the function ABS
returns a value which is the absolute value of its parameter.

Another function is MAXO which requires two integer parameters . The function
returns an integer value which is equal to the larger of the two parameters .

The statement

L • 12
LARGE • HAX0(L, 6)

results in LARGE having the value 12.

1977 standard Fortran introduced the concept of generic functions. These are
functions that may be used with different data types as parameters to the
function. Prior to this, you had to have specific data types for any specific
function, and the function to find the larger of two integers (HAX9) had a
different name to the function that found the larger of two reals (AHAX1).
Now, you can just use the generic name MAX in either case, however, you still
cannot mix data types.

Later on we will see how you can write your own functions, but in that case
you can only write specific functions, that must ALWAYS have the mix of data
types you expect as their parameters. More of that later.

Toe list below has some of the more common generic functions. The
abbreviations mean

Introduction to FORTRAN

type integer
type real
the type of the parameters used

Number
Function Result of

Name Type Parameters Description

INT Truncated value of its parameter.

REAL Value of its parameter converted
to type REAL representation.

ABS 1 Absolute value of its parameter.

HOD 2 Performs modulus arithmetic.
p 1 ••• first parameter
p2 ••• second parameter
computes: p 1-int(p1/p2)•p2.

MAX p >1 Largest of its parameters.

HIN p)1 Smallest of its parameters.

For a more complete list of functions see your Fortran manual.

6.2. More FUNCTIONS

6- 2

There are some more complicated functions such as the trigonometric functions

sine and cosine that are used in the same way as the functions described

above.

Some of the more common ones are

SIN (real)
COS(real)

EXP(real)
SQRT(real)
LOG(real)

returns the sine of real nunber expressed in radians

returns the cosine of a real nunber expressed in

radians
returns the exponential of a real nunber
returns the square root of a positive real m.mber

returns the natural logarithm of a real nunber

Using a function to return a value is called a FUNCTION REFERENCE.

Note that some functions return real values (eg. the function REAL) while

others return integer values (eg, INT). The NUMBER and TYPE of the parameters

in a function reference are important and MUST be exactly what the function

expects. In the case o f generic functions, the parameters may be REAL or

I NTEGER (but not a mixture) •

The parameters in a function reference may be arithmetic expressions of the

same type that the function expects, For example. to find the square root of

2
(X1 - X2) + (Y1 - Y2)

the statement may be

ANS = SQRT((X1 -X2) H 2 + (Y1 - Y2) H 2)

Introduction to FORTRAN 6-3

Function references may be used wherever arithmetic expressions are legal.

For example, to find the sum of the sine and cosine of the variable A, the
statement would be

ANS = SIN(A) + COS(A)

Another example may be to find the square root of the larger of two real
nunbers . This may be done by:

ANS= SQRT (MAX(VAL 1,VAL2))

So a parameter in a function reference may be another function reference, as
long as it is a different function.

6. J. LOGICAL variables

So far the only variable types we have introduced are INTEGER and REAL.
Integer variables can store integer nunbers and real variables can store real
numbers. Now, we introduce LOGICAL variables, which can store LOGICAL values.
A LOGICAL value is one of:

• TRUE.
.FALSE.

meaning true
meaning false

Logical variables may be assigned values that are either .TRUE. or .FALSE.
They may also appear in IF statements as part, or all of the logical
expression in parentheses.

For example, if NOGOOD was a LOGICAL variable we could use it as:

IF(NOGOOD) WRITE(6,*) 1 ERROR FOUND IN DATA'

The way to read the above statement is to say: 'If N(XjOOD is true then write
out the message'. Note that the value of .TRUE. does NOT appear in the
expression.

6_.3.1. Declaring LOGICAL variables

Before using LOGICAL variables they must be declared by appearing on a LOGICAL
declaration statement. These DECLARATION or TYPE statements should appear at
the top of a program before any executable statements . They may be in any
order if there is more than one.
The form of a logical type statement is:

LOGICAL <list of variables>

For example:

LOGICAL POOR, MID, HIGH, MALE, FEMALE

Introduction to FORTRAN 6-4

The variables appearing on the list are called logical variables and must be
treated as such throughout the program. Note that the first letter of the
variable name has no special significance as the variable appears on a type
statement.

6.3.2 , Assignment

Logical variables may be assigned values that are true or false. For exanple

LOGICAL SWAP, ENDATA
SWAP = • FALSE.
IF(NUM.LT.O) ENDATA = .TRUE.

In this last case. if NUM was not less than zero then ENDATA would not have a
value. A much better way, that would give ENDATA a value of .FALSE. if NUH was
not less than zero and • TRUE. otherwise is:

ENDATA = NUM.LT.O

6.3,3, Using logical variables

Suppose a program reads in a salary and that salary is classified as:

0 - 5000
5001 - 12000

12001 - 20, ODO
20,001 - 100,000

100. 001 onwards

poor
medium
high
fat cat
suspect error

In a program we can classify this by:

LOGICAL POOR, MID, HIGH, FATCAT, SUSP
READ(5,*) !WAGES
POOR = !WAGES • LE. 5000
MID !WAGES .GT. 5000 .AND. !WAGES .LE. 12000
HIGH = !WAGES ,GT. 12000 .AND. !WAGES ,LE. 20000
FATCAT: !WAGES .GT. 20000 .AND. !WAGES .LE. 100000
SUSP = !WAGES .GT. 100000

and then later in the program we can test these values and take different
action depending on the wage classification as:

IF(POOR) TAXHIT = TAXHIT - 5.0
IF(MID .OR. HIGH) TAXHIT • TAXHIT + 0.75
IF(FATCAT) TAXHIT = TAXHIT + 7.5

This way we localise the classi fi cation ranges and then can refer to them
using meaningful names. If in the future we want to change this program by
altering the range classifications then we only have to make the change in one
place, no matter how many times we refer to the ranges.

Introduction to FORTRAN 6-5

Another example is in the processing of SEX. Suppose that we read in a
classification of 1 meaning FEMALE and O meaning MALE.

LOGICAL FEMALE, MALE

READ(5,*) ISEX
FEMALE = ISEX • EQ.
MALE ISEX • EQ.

later in the program

IF(FEMALE) JOBFEM = JOBFEM + 1
IF(MALE) JOBMAL = JOBMAL + 1

6 . 3. 4. The . NOT. operator

The .NOT. operator is used to turn logical values (i.e •. TRUE. and .FALSE.)
into their opposite.
For ex ample:

LOGICAL POS, NEG
POS = NUM .GE. 0
NEG = • NOT. POS

Now if ?OS is .TRUE. then NEG will be .FALSE •• but if POS was .FALSE. then NEG
will be .TRUE.

The .NOT. operator can also be used within an IF statement. For example:

IF(. NOT. ENDATA) READ(5, •) MORE

The READ will be done only if ENDATA is .FALSE.

Consider the setting of MALE and FEMALE above. Suppose that we wanted to set
the logical variable ERRSEX to .TRUE. for any code other than O or 1. and to
set it to .FALSE. otherwise.

ERRSEX = .NOT. (MALE .OR. FEMALE)

this is equivalent to

ERRSEX = • NOT. MALE .AND •• NOT. FEMALE

6.4. TYPE statements for integers and reals

So far. the IJKLHN naming convention has been used for distinguishing between
integer and real variables. This convention may be overridden so that, for
example, ABC may be the name of an integer variable and IH the name of a real
variable.

Introduction to FORTRAN 6-6

A type statement consists of one of the declarations INTEGER or REAL followed

by a list of variable names separated by commas, specifying those variables as

being of type INTEGER or REAL. Some examples are

INTEGER B
REAL J
INTEGER I,ABC, ROOTS
REAL MATRIX, NUMBER, X

Type statements must precede all executable statements.

The variable I could have been omitted from the INTEGER statment and X from

the REAL statement without effect. These names are already identifi ed as

integer and real respectively by their first letters. On the other hand,

there is no harm in such •unnecessary' inclusions in type_ statements. This

may help to guard against failure to give the correct type to a variable whose

name does not agree with the IJKLHN naming convention.

There are various arg1.1nents for and against violating the default naming

convention .

If you stick to the I to N default typing, then it is much easier to follow

the program, from the point of view of mixed mode arithmetic problems,

relating I/O lists to data, and typing of parameters to functions.

If you declare variables as being a particular type, then you can use more

meaningful variable names to describe the contents of variables .

6. 5. Exercises

6.5. 1. Exercise 6A

Use function references to return answers to be stored in either !ANS or ANS

depending on whether the function returns an integer or real result.

(i) find the square root of S- B - 4. a• A* C

(ii) find the sine of 2.4
(iii) find the larger of J and LARG
(iv) find the largest of A and BIG
(v) find the absolute value of ECC
(vi) find the absolute values of I, H, and A
(vii) convert KKK to real
(viii) find the square root of INT
(ix) find the largest of I and X

Introduction to FORTRAN 6-7

6.5.2, Exercise 68

Write a program to calculate the factorial of a ntl!lber that is read in.
Factorial n is defined to be n! n*(n-1)*(n-2)* •.. *3*2*1.
For example, 5! :: 5•4•3•2•1.

6.5.3, Exercise 6C

Replace the line(s) of FORTRAN following by a single line that will produce
the same answer in the indicated variable:

(i) M
M = I J/K
M :: IJ - M*K

(ii) SMALL
IF(A. LE. B) SMALL = A
IF(A.GT.B) SMALL= B

(iii) WARM
QWERK = ION
YIPE = KAN
WARM = QWERK/YIPE

(iv) ADAM
NUM = VAL/WORLD
A = ABS(VAL)
B = ABS(WORLD)
IF(NUM.LT.O)NUM = -NUM
00 10 I :: 1, NUM

10 A = A - B
IF(VAL.LT .O.O)ADAH = -A
IF(VAL.GE.O.O)ADAH = A

Introduction to FORTRAN 7-1

7. CHAPTER 7

? • 1. GO TO statement

Fortran statements are executed in order of occurrence, starting with the
first executable statement. Each statement is then executed in turn, and some
function is performed. depending on the statement concerned.

Toe GO TO s t atement is of the form

GO TO n

where n is the statement label of an executable statement. Execution of the
GO TO statement causes the statement identified by the statement label n to be
executed next. Toe program would then continue on from that point. Thus the
GO TO statement may be used to transfer control to a statement other than the
next one in sequence.

7. 1. 1. Examples of GO TO statements

Example 1:

Suppose we want to find the average salary of people who are defined as low
salary earners. A low salary is defined as one below $5,000, The data that we
have to process is entered as one salary per line, and we are to process data
until an END OF FILE (@EOF) is encountered.

7. 1. 1. 1. Algorithm

One method for solving the problem may be outlined as:

1. Initialise a salary total and worker nl.lDber total to zero
2. Repeat for as many salaries as there are:

2a. Read in a salary
2b. If the salary is greater than 5000 ignore it

If the salary is less than 5000 then:
(i) add it to the salar"y total

(11) add 1 to the nunber of wrkers total
3. When all salaries are processed calculate the average

A program to do the above may be:

C AlJfHOR: L. YAMAHA
C DATE: SEPT 1979

Introduction to FORTRAN

C LANGUAGE: UNIVAC ASCII FORTRAN LEVEL 9R 1
C
C
C
C
C
C
C

INPUT DESCRIPTION:

EACH LINE CONTAINS AN INTEGER IN FREE FORMAT INDICATING THE YEARLY SALARY OF A WORKER (IN DOLLARS), THE INPUT IS
TERMINATED BY AN @EOF.

C PURPOSE:

C TO CALCULATE THE AVERAGE SALARY OF PEOPLE WHO EARN LESS
C THAN $5000,
C

NTOT = 0
NPEEP = 0

C READ IN AND PROCESS THE WORKERS
C

10 CONTINUE
READ(5,* ,END=20) ISAL
IF (ISAL • LT. 5000) THEN

NTOT : NTOT + !SAL
NPEEP = NPEEP + 1

END IF
GO TO 10

C
C END OF DATA, NOW WORK OUT THE AVERAGE
C CHECK FOR ZERO IN CASE THERE ARE NO LOW WAGE EARNERS
C

20 CONTINUE
IF (NPEEP • EQ. 0) THEN

WRITE (6,*) 'NO LOW INCOME EARNERS FOUND'
ELSE

AVE = NTOT/REAL(NPEEP)
WRITE(6,*) 'THE AVERAGE SALARY OF THE 1 ,NPEEP,

$ 1 LOW INCOME EARNERS FOUND IS 1 ,AVE
END IF
STOP
END

7-2

Notice that there is only one GO TO in the above program . If it J,1ere not for the use of the block-IF statement there would be at least two more GO TOs •

.Example 2:

Read an integer from a card and write it out. Continue this process until a card with -99 is read . When this happens, write out a message and then stop.

AUTHOR:
DATE:
PURPOSE:

DEE
SEPT 1973
TO READ INTEGERS FROM CARDS AND TO
LIST THEM OUT

INPUT DESCRIPTION:

Introduction to FORTRAN

FREE FORMAT INPUT
ONE INTEGER PER CARD, LAST INTEGER MUST
BE -99

RESTRICTIONS:
ONLY THE LAST DATA CARD MAY CONTAIN -99.

C IF IBIS IS NOT POSSIBLE, THEN CHANGE
C THE VALUE OF ISTOP
C

!STOP = -99
10 CONTINUE

READ(5,*) INT
C
C TEST FOR THE END OF DATA
C

IF (!NT .EQ. !STOP) THEN

ELSE

WRITE (6,*) 1 END OF JOB 1

STOP

WRITE (6,*) INT
GO TO 10

END IF
END

7.1.2, Using GO TO statements with 00 loops

7-3

The terminal statement of a 00 loop cannot be a GO TO statement or a logical
IF statement that contains a GO TO statement,

It is not legal to junp into the middle of a 00 loop from outside the 00 loop.
For example, the following is NOT allowed.

DO 40 I :1, !FREQ

20 CONTINUE

40 CONTINUE

GO TO 20

It is possible to leave a DO loop by using a GO TO statement. If this is
done, the control variable of the DO is defined and is equal to the mqst
recent value attained. For example,

MAX : 4
LOW = 2

Introduction to FORTRAN

D020I:1,4
LOW = LOW+l
IF(HAX. EQ, LOW) GO TO 30

20 CONTINUE
30 WRITE(6,*) 1 THE VALUE OF I IS ',I

will print the line

TilE VALUE OF I IS 2

7. 1. 3. Using GO TO statements with block-IF

It is illegal to jlJ"llp into the middle of a block-IF (any of the three types of

blocks) from out.side of a block. A GO TO that transfers control within a block

is allowed as is a transfer of control from within a block to outside

(provided that you do not GO TO the middle of another block or a DO).

7. 1. 4. Reachability of statements

Every executable statement must be I reachable' along some logic path of the

program. If some statement is not reachable, then an error is said to have

occurred. Some computers will warn you of this but proceed and try to execute

anyhow, or they may not allow an attempt at execution until the problem has
been rectified. It is always best to eliminate all diagnostics from your

program, even if they are only warnings. For example, in the program

ISUH = 0
DO 20 I = 1, 12

20 ISUH = ISUM + I
GO TO 60
WRITE(6,*) 1 JUST A HEADING 1

60 STOP
ENO

the WRITE statement can never be reached.

7. 1, 5. Some common errors associated with GO TO statements

(i) Two statements having the same label.

(ii) The label referred to by the GO TO is missing.

(iii) There is an unlabelled statement after a GO TO statement, and hence

unreachable.

(iv) Generation of an infinite loop by a GO TO an e~lier statement

without any proper 'escape line' in between, to get ow; of the loop.
For example,

Introduction to FORTRAN

I = 5
10 I = I+l

IF(I.EQ.O) GO TO 20
GO TO 10

20 CONTINUE

is an infinite loop.

7.1.6. When and how to use the GO TO

7-5

A program is easiest to follow and thus easier to get running successfully if
it has • forward control' which refers to branches always going down the
program. This is sometimes not possible, nor desirable, as shown in the first
example in this chapter.

Given that there are valid cases for using the GO TO there are still different
program designs available, some of which are considered better than others.

For example, consider the two blocks of code below (which are equivalent):
IF(PAY.GE.6500.0)GO TO 10
GO TO 20

10 PAY= PAY+ 250.5
NRICH = NRICH + 1

20 CONTINUE

IF(PAY.LT.6500.0)GO TO 20
PAY =PAY+ 250.5
NRICH = NRICH + 1

20 CONTINUE

By reversing the sense of the test in the logical IF the second block of code
contains one less GO TO and one less statement label.

Of course a much better way of doing this is to avoid using GO TOs entirely
by:

IF (PAY .GE. 6500.0) THEN
PAY = PAY + 250.5
NRICH = NRICH + 1

END IF

7. 1. 7. CeJ,tMENTS and GOTO'S

The GO TO statement may transfer control a long way away from where the test
that caused the branch of control occurred. If this does occur, then it is
desirable for a comment to appear above the statement gone to detailing why it
is that you have come here. For example, suppose a program reads in cards each

Introduction to FORTRAN 7-6

containing an integer. If a value of 1 is read, then this will indicate that
the cards following are personnel records. If a value of 2 is read this will
indicate that the cards following are required for inventory control.

READ AN INDICATOR CARD

READ(5, •)!TYPE

C TEST TilE TYPE
C

IF(ITYPE.EQ. l)GO TO 25
IF(ITYPE.EQ.2)GO TO 30

test for further types

TYPE 1 RECORD FOUND, PROCESS PERSONNEL RECORDS
C
25 CONTINUE

TYPE 2 RECORD FOUND, PROCESS INVENTORY RECORDS
C
30 CONTINUE

7. 2. Exercises

Some of these exercises do NOT require the use of GO TO statements. Where GO
TO statements are not required, don't use them, It can become a bad habit to
use GO TO statements excessively.

7,2.1. Exercise7A

,Write a program to evaluate

1/2
y = (a + sin p) if k is negative,

2 2 1/2
y = (b - sin p) if k is positive,

2 2 1/2
y = (a + b) if k is zero.

a. b, p and k are to be read from a line of data.

Introduction to FORTRAN 7-7

7.2.2. Exercise 7B

Write a program to read x and evaluate

20
COS X COS X COS

f = 1 + COS X +
21 31 201

where n! is called factorial n and is defined as the product n*(n-l)*(n-2)*
••• •1. For example, 5! = 5•4•3•2•1.

7.2.3, Exercise 7C

Write a program to evaluate the exponential of x for every integer from 1 to
100, printing x and its exponential side by side.

Run the program and see what happens !

Introduction to FORTRAN 8-1

8. CHAPTER 8

8. 1. FIXED FORMAT with WRITE statement

So far, free field format has been used with both READ and WRITE statements.

When using WR ITE statements with this type of format on the Univac, up to ten

nllllbers may be printed per line in a form dictated by Fortran. It is possible

to specify (in a FORMAT statement) the layout of each line to be printed.

In order to do this the asterisk in the WRITE(6 , *) is replaced by a statement

number, that is the mmber of a FORMAT statement.

The form of a FORMAT statement is:

FORMAT (field descriptors)

where n is a statement label.
When using this type of output, the headings may no longer appear on the

output list, but must be placed within the I field descriptors' part of the

FORMAT.

The FORMAT statement is referenced when the corresponding WRITE statement is

executed, It provides information (via field descriptors) as to how the

information to output, should be written out.

The FORMAT statement itself is called NON-EXECUTABLE. It may appear anywhere

within the program, but it is not good practice to terminate a 00-loop with a

FORMAT. It may appear either before, after or nowhere near its corresponding

WRITE statement(s). The correspondence between the two statements is achieved

via the statement nunber. For example

WRITE(6, 103)K,A

103 FORMAT(field descriptors)

The FORMAT statement will contain FIELD DESCRIPTORS which will describe the

fields for integers, real m.mbers, headings, etc. Field descriptors are

inserted between the brackets of the FORMAT statement and are separated from

other field descriptors by commas.

A FORMAT statement may be referenced by several WRITE statements.

8. 1. 1. Spacing across a line, leaving blanks

This may be done with the X field descriptor which is of the form

nX

where n is the ntrnber of spaces to be placed in the printed line.

The first character on an output line is not printed, but treated specially.

For the moment, let us put 1X as the first field descriptor so that the first

Introduction to FORTRAN

character is a blank (which is not printed).

8.1.2. Writing headings using FIXED FORMAT

8-2

The headings should appear within the FORMAT statement enclosed in quotes.
For example

WRITE(6, 104)
104 FORMAT(1X, 'SHOP INVENTORY' ,25X, 1 GROCERY SECTION')

8. 1.3. INTEGER FIELD DESCRIPTOR

The integer field descriptor is of the form

Iw

where is the letter I and indicates that an integer value will be
printed in this field. This MUST be the letter I. ·
is a nunber (that you must supply) and refers to the width
of the field. The width of the field is the maximun nunber
of d~gits that may be printed using this field descriptor.

For example, the statements

!NT • -27
WRITE (6,100) !NT

100 FORHAT(1X, 15)

will print the line

bb-27

where b indicates the blank character.

The 1X in the FORMAT statement is not printed as a space. The 5 characters
(viz, bb-27) come from the 15 in the FORMAT statement. The m.mber is printed
right justified in the field with leading blanks to make up the required field
width.

If more than one value is to be written out, then there will be more than one
variable in the output list . In this case there must also be field descriptors
that correspond to each variable in the output list.

For example, if MEN has value 12345
and LIB has value 0

WRITE(6, 100) MEN, LIB
100 FORMAT(1X,I8,I4)

produces the output

Introduction to FORTRAN 8-3

bbb12345bbb0

The IB is used to write out a value for MEN, and the 14 is used to write out a
value for LIB.

8. 1. 4. REAL FIELD DESCRIPTOR

The real field descriptor is of the form

Fw.d

where is the letter F and indicates that a real value will be
printed in this field

w is a number and refers to the width of the field
d is a nLJ11ber indicating the nLJ11ber of decimal places to be

printed.

For example, the statements

VICE • -33. 47
WRITE (6,110) VICE

110 F0RMAT(1X,F10.3)

will print the line

bbb-33,470

Again, the 1X is not printed. The ten characters (viz, bbb-33. 470) come from
the 10 in F10,3. The three characters 470 come from the 3 in F10,3, Note
that the minus sign (if there is one) and the decimal point in the printed
line are included in the field width.

8. 1. 5. Mixing REAL and INTEGER FIELD DESCRIPTORS

Of course, it is possible to print out more than one mrnber per line, and to
have both real and integer nt111bers on the same line. When a mixture of real.s
and integers are written out in the one WRITE statement there must be an exact
correspondence between the types of variables on the output list (integers or
reals) and the type of field descriptor used (I or F). An F field descriptor
in the FORMAT statement must correspond to a real variable in the output list
in the WRITE statement, and an I field descriptor in the FORMAT statement must
correspond to an integer variable in the output list in the WRITE statement.
Field descriptors are separated by commas in the FORMAT statement.

Introduction to FORTRAN

For ex ample. the statements

AVE = 10,3
SHALL = -7 ,53
NOH = 23
MINT = -10
WRITE (6,120) AVE, SHALL, NUH, HINT

120 FORMAT(1X,F7,2,F7, 1,I5,I6)

will print the line

bb10. 30bbb-7. 5/bbb23bbb-10

also

WRITE (6,140) AVE, SHALL, NUM, HINT
140 FORMAT(1X,F7 ,2, 3X, F7, 1, 1X, I5, 20X, I6)

\Ifill print the line

bb 10, 30bbbbbb-7, 5bbbb23bbbbbbbbbbbbbbbbbbbbbbb-1 0

8.1,6, Repetition of a FIELD DESCRIPTOR

8-4

Where two or more consecutive field descriptors are identical in every
respect. then a shorthand notation may be used. This is accomplished by
writing the field descriptor only once and prefixing it with a n1..111ber
indicating the desired mrnber of repetitions. For · example, the following
FORMAT statements are equivalent:

(a) 160 FORMAT(1X,I5,I5)
and

160 FORMAT(1X,2I5)

(b) 130 FORMAT(1X, F10, 3, F10, 3, F10, 3, I4, I3, I3,F10. 3)
and

130 FORMAT(1X, 3F 10, 3, I4, 2I3,F10. 3)

8. 1. 7. Combining headiniis with nunbers output

The heading is placed between quotes symbols (as before) in the FORMAT
.statement. and will be printed I in place'. This means that it will be printed
on the line immediately prior to the nunber whose· corre.sponding field
descriptor follows the heading.

Introduction to FORTRAN

For example, the .statements

WRITE (6,150)
150 FORMAT(1X, 'THIS IS A HEADING')

WRITE (6,160) AVE, SMALL, NUM, HINT
160 FORMAT(1X,'VALUE 1 ,F7.2,' HI THERE 1

* F7.1,I5,I6,' MESSAGE')

will print the lines

THIS IS A HEADING
VALUE 10. 30 HI THERE -7. 5 23 -10 MESSAGE

Note that 5X in a FORMAT statement is equivalent to I bbbbb'.

8. 1. 8. Print Control of the printer

8-5

So far, the first field descriptor in a FORMAT statement has been 1X. This
first character of EVERY output line has the special function of controlling
paper spacing and is NEVER actually printed. In 1966 standard Fortran, this
character was actually part of the output line, and so you could only ever
print 131 colt.rnns. In 1977 standard Fortran, you can print 132 coll.rnns as the
print control character is not part of the output image, The character that
is in the first col unn is known as a print control character and has the
following effect.

character

blank

O (zero)

1 (one)

vertical spacing before printing

one line, ie single spacing

two lines. ie double spacing

to first line of next page (printer only)

no advance, ie print on the same line.

These characters are usually provided using a literal such as 'b' (or 1X),
1 0 1 , 1 1 1 and '+ 1 • If a character other than one of those defined above is
used, the result is unpredictable. The Univac is kind, and ass1JT1es a blank,
but the erroneous character is still not printed. A '+' should only be used to
underline headings, and not to set up a line of m.rnbers with different WRITE
statements.

When printing output at a terminal. you must still allow for the print control
character. For example:-

Print a line on the top of a new page, and write out the values for variables
MIN and MAX. Then write a blank line followed by values for the variables
DOLLAS and KOST on one line. Suppose the values had been set up as:

MIN = -126

r-

Introduction to FORTRAN

HAX = 2
DOLLAS = 77.2576
KOST = 10301

then the lines following, are those required.

WRITE (6,170) MIN, HAX
170 FORHAT('1',I6,3X,I5)

WRITE(6, 180) DOLLAS, KOST
180 FORHAT('O' ,F10.2,I7)

The output (on a new page) would be:

bb-126bbbbbbb2

bbbbb77 .26bb10301

8. 1.9. MULTI-LINE FORMAT

8-6

A slash (ie, /) in a FORMAT statement indicates that the current output line
is complete and the next one is to begin. It does not need to be :separated
from field descriptors with commas .

For ex ample,

WRITE (6,190) AVE, SHALL, NUH, HINT
190 FORMAT(1X,2F10.3/1X,2I4)

will print the lines

10. 300
23 -1 0

-7. 530

Note that the 1X after the slash is required as it will be at the start of a
new line and is therefore taken as carriage control.

If n consecutive slashes are written in sequence at the start of a FORMAT
statement, n lines are left blank before printing the first line.
If n consecutive slashes are written in sequence at the end of a FORMAT
statement, n lines are left blank after printing the last line.
If n consecutive slashes are written in sequence between other field
descriptors in a FORMAT statement. n-1 lines are left blank between the two
sets of printed lines.

Introduction to FORTRAN

8.2. Example of FORMATTED WRITE statement

Suppose the desired output is
(new page)
GROSS INCOME :; xxxxx .xx
TAX PAID :; xxxxx .xx
SUPER :; XXX .xx DEDUCTIONS xxx .xx
MONTHS OF SERVI CE :; xxx

where x represents a digit.

8-7

This will require 5 variables, the first four will be real and the last an
integer. Assume the variables have these values.

GROSS : 6847. 2
TAX = 948.353
SUPER : 66. 1
DED : 2.65
MONTH : 95

Then the WRITE and FORMAT statements are

WRITE (6,200) GROSS,TAX,SUPER,DEO,MONTH
200 FORMAT(' 1 1 ,'GROSS INCOME :; ',F8.2/

$ lX,'TAX PAID',5X, 1 :; 1 ,F8.2/
$ lX,'SUPER :; 1 ,F6.2,5X,'DEDUCTIONS ',F6,2/
$ lX,'MONTHS OF SERVICE:; ',I3)

8,3. Design of FORMAT statements

Format statements are often the source of errors as they can become quite
complex. There are two things that may be done to simplify the task of format
design.

1, Before starting to write out the format statement you should first draw out
the form of output that you require, marking in all the headings and blanks
that are required, as in the example above.

2. Use sensible continuation points. There is no need to go right up to
col unn 72 before going to a continuation card. Pick an easy break between
field descriptors at least.

J. Never continue a FORMAT statement (onto a continuation line) in the middle
of a heading - rather terminate the heading in a convenient place (e.g. on a
word boundary) and then start again on the continuation line. So instead of:

WRITE(6, 100)
100 FORMAT(1X, '1°HE NUMBER OF POLITICIANS IN THE UPPER

+HOUSE IS LIMITED')

put:

Introduction to FORTRAN

WRITE(6, 100)
100 FORHAT(1X, 'THE NUMBER OF POLITICIANS IN THE UPPER '

'HOUSE IS LIMITED')

Note the space after the word UPPER and the comma between the two headings,

The output in both cases would all be on the same line.

8-8

In the first case, the first line of the FORMAT statement uses all 72
characters even though 'UPPER' ends in collJ'lln 55, so 17 spaces will be printed
between 'UPPER' and 'HOUSE'. Remember that any characters after col lJ'lln 72 are
ignored.

8.4. Common errors and points to note

(a) Trying to print a mrnber that is too large for the space allowed.
The UNIVAC computer will fill the entire field with asterisks. The statements

OOPS = -6.235
WRITE (6,210) OOPS

210 FORHAT(1X,F5,3)

will print the line

(b) Omitting the print control character.
Remember the FIRST character of EVERY output line is used for print control
and is not printed.

I = 1234
WRITE (6,220) I

220 FORMAT(I4)

will print the following line at the top of the next page,

234

(c) Using variables in a FORMAT statement.

legal illegal

F5,3 FJ.K
3110 NI10

(d) Trying to WRITE an integer using an F field descriptor ami1 a real using an
I field descriptor.
r,he order and type of variables in the list of the WRITE statement MUST
correspond with the order and type of field descriptors in the FORMAjt'

Introduction to FORTRAN

statement.

(e) Trying to print more than 132 charac ters on a line.
If this is attempted, an error occurs.

8. 5 . Exercises

8.5. 1. Exercise BA

8-9

Find the errors in the following FORTRAN statements and suggest ways in which

they might be corrected.

(i)
WRITE (6,230) K

230 FORMAT(' FINISHEO THE JOB')

(ii)
WRITE (6,240) ROLLED,STONES,GATHER,NO,MOSS

240 FORMAT(1X ,2F10.2,2I5,F3,5)

(iii)

250 I = 17
DO 250 K=3, 49
READ (5 ,*) I,F,K
WRITE (6 ,270) I

270 FORMAT(1X,F7)
IF(I.=.26) STOP

280 CONTINUE

8.5.2. Exercise 88

How many lines will be printed?

WRITE (6,290) ZAP,BAH,ZOWJE,POW
290 FORHAT(1X, 1 A = 1 ,/,' ',2F10.3,' B = 1 ,F6.l/

1 0 1 1 1 C = ',F9.1)

8.5.3. Exercise 8C

What is the output from the following?

JILL = 0
ZERO = 0.0
YOURS= 16.77
TAX = -586 .21

Introduction to FORTRAN

MARVIN : 90062
MIN : -587
JACK : 10
IN : 123456
OUT : 5. 4827
WHYNOT : 131. 1
WRITE (6,300) JILL, JACK,MIN ,HARVIN, IN

300 FORMAT(1X,5I5)
WRITE (6,310) ZERO,YOURS,TAX,OUT,WHYNOT

310 FORMAT(1X,5f7.2)

8.5.4. Exercise 8D

8-10

Indicate whether the field descriptors on the left are sufficient to print the
nl.lllbers on the right and show what would be printed.

field descriptor

F5, 1
I4
F10, 1
F4,2
I 10

8.5,5. Exercise SE

nl.lllber

676, 71
6381
132 ,63
12.16
99999

Consider two blocks a and b. Block a is a cube of side length h and block b
has sides k, 2k, 3k. Read in the values of hand k. Print your name and,
after two blank lines, write the heading

COMPARISON OF SURFACE AREAS

in the middle of the line. After three blank lines, write the following lines
with their calculated values.

SIDE OF CUBE A:
WIDTH OF BLOCK B:
HEIGHT OF BLOCK 8:
LENGTH OF BLOCK B:

SURFACE AREA OF A:
SURFACE AREA OF B:

DIFFERENCE IN SURFACE AREA:

LARGER SURFACE AREA:

Introduction to FORTRAN 8-11

8. 5. 6, Exercise 8F

Write a program to evaluate the sine , cosine , tangent, secant, cosecant, and
cotangent of every integral angle from 1 to 89 degrees inclu.sive.

l

Introduction to FORTRAN 9-1

9. CHAPTER 9

9. 1, READ statement with FIXED FIELD FORMAT

Fixed field format may also be used with READ statements. The data line is
divided into fixed length fields as defined by field descriptors in the FORMAT
statement.

Toe fie ld descriptors will specify particular colunns on a data line that will
contain the m.rnber to be read. This now means that nunbers will no longer be
separated by commas in the data, but must be exactly within the colunns
specified, As blanks take up colunns, they are significant, and in fact act
as though they were zeros.

9. 1. 1. INTEGER FIELD DESCRIPTOR

The integer field descriptor is of the form

Iw

where w is an integer constant indicating the width of the field, which
includes any leading sign that may be present.

Consider the statements

READ (5,100) NUMBER,NEXT
100 FORMAT(I5, 14)

If the input were

bb345b-12

then NUMBER would be set to 345 and NEXT would be set to -12.

For integer field descriptors. blanks in the data are taken as zeros, so if
the input was

b345bb-12

then NUMBER and NEXT would be set to 3450 and -12 respectively.

To read in integers from input, that are laid out on one line as:-

nllllber
1
2
3
4

col unns
1 - 4
5 - 10

11 - 17
18 - 19

width
4
6
7
2

r

Introduction to FORTRAN

the Fortran statements would be:-

READ(5, 122)JANE, KINDA, LIKES, NUDES
122 FORMAT(H, I6, I7, I2)

The data may look like:-

col tnn 1
9876bb-129bbbbbb320 (a 'b1 indicates a blank)

9-2

The effect of this READ statement is the same as the four assignment
statements:-

WARNING

JANE = 9876
KINDA = -129
LIKES = 3
NUDES = 20

BLANKS IN INPUT DATA ARE INTERPRETED AS ZEROS. This means that the READ
statement:-

READ(5, 134)KOOL
134 FORMAT(I5)

would read the data card:

b2bbbbb

causing KOOL to become the value 2000

9 . 1. 2 . REAL FIELD DESCRIPTOR

The REAL field descriptor is of the form:

Fw.d

where
w is an integer constant indicating the total width of the nllllber

(i.e . the total m.rnber of colunns it takes up).

is an integer constant indicating how many coll.rnns are to be
interpreted as following an implied decimal point. This 'd' is
ignored if there is a decimal point in the nll!lber being read.

Consider the following statements : -

READ(5, 110)VAL,EWE
11 0 FORMAT(F10.3,F7.2)

apd the data card

Introduction to FORTRAN 9-3

bbb 1234567bb-45892633

The first value (to be read into variable VAL) starts in colllnn 1, and is 10

colunns wide, the last 3 coltrnns are to be interpreted as being AFTER the

decimal point. So, VAL will contain the nunber 1234.567, as a result of the

READ. The READing then continues from this place (colt.rnn 11) and the next 7

colunns are to be used to form the value for variable EWE, the last 2 colunns

to be interpreted as that part of the nunber after the decimal point. So, EWE

will have the value of -45.89 Notice that the remaining colunns are

ignored, as there are no further variables on the input list. Remember,

blanks are taken as zeros, and a decimal point appearing in the data will

override the 'd' specification, in the Fw,d

For example consider:-

READ(5, 123)VICE, SQUAD
123 FORMAT(F10. 3, F7.2)

and the data card

bb47D47. 9bb-12bbb2345

This will set VICE to 47047,9 and SQUAD to -120,0

9. 1. 3. READING INTEGERS and REA LS

You can mix up both integers and real s in the one READ statement, so long as

your FORMAT statement reflects the type of variable you are reading into.

It is an error to read in a real nunber using I format, or to read in an

integer using F format, and both of these will cause your program to error, or

give incorrect results .

Another common error is to forget to ensure that there is a 1 to 1

correspondence between the type of format descriptor used (I or F), and the

type of variable name in the input/output list (integer or real respectively).

If this is not the case, then the computer will not tell you of any error, but

will not store the nunber you want in the variable on the input list, or will

not write out the correct value of a variable on the output list. This happens

because of the way that reals and integers are stored in the computer memory,

We will not go into this in any detail, but merely point out that there is a

difference, and it matters, at least in input/output.

For example, we wish to read 5 ntlTlbers from a card, the first 2 real, the next

2 integer, and the last one real. Now we will have to reflect this in Barff the

READ input list, and in the FORMAT. So let us first choose variable names of:-

GREAT, BLUE, MOVIES, NEVER, FAIL

Notice, the first two are REAL, the next two INTEGER, and the last is REAL,

Now before we can go any further, we must specify where on the card the

numbers are to go.

Introduction to FORTRAN 9- 4

col 1.1J1ns width

1 - 7 7
8 - 16 9

17 - 24 8
25 - 30 6
31 - 40 10

Assume that if there is no decimal point in a mmber t hat we wan t the n1.1J1 ber
to be interpreted as having 1 dig i t after t he decimal poin t (for REA U onl y!).
Then, consider the statements:-

REA0(5, 211)GREAT, BLUE , MOVIES, NEVER , FAIL
211 FORMAT (F7, 1, F9 . 1, 18, 16, F 10. 1)

and the data card of

bb23. 44b-8. 23899bbbb2bbbbb-234 bbbb98 1233bbb

You should verify that the following is equival ent to the above:

GREAT : 23.44
BLUE = - 8. 23899
MOVIES : 2000
NEVER : -234
FA I L = 98123.3

9. 1.1'. Skipping col 1.1J1 ns on the input line

To skip across (and ignore) colunns in the input may be done using a field
descriptor of:-

nX

Where 'n' is the nl.lllber of col1.1J1ns to skip over.

For example , suppose we wanted to read a line that contained two integers. The
first was in coltJnns 10 to 15, and the second was in col 1.1J1 ns 55 to 60. So we
want to skip over colunns 1 to 9, read the first integer, then skip the next
39 col1.1J1ns, and read the second integer. The following woul d do this for us: -

READ(5 , 102)MOOD,MUSIC
102 FORMAT(9X, 16, 39X, 16)

9. 1.5. Skipping lines of input data

As with WRITE statements, the slash may be used in FORMAT staiements wi t h READ
statements to indicate that the current line is no longer required and t hat
further values should be read from the next line. For example, when the lines
of data

Introduction to FORTRAN

bb123bbb-12
b--46104b56

are read by the statements

READ (5,130) MORE,LlME,KOOPS
130 FORHAT(l5/14, 16)

9-5

the variables MORE, LIME, and KOOPS are set to 123, -46, and 104056
respectively.

9. 2. More on FORMAT REPEAT specifications

It has already been shown that the statement

140 FORMAT(1 X, FlO. 3, FlO. 3, FlO. 3, 14, 13, 13, FlO. 3)

is equivalent to

140 FORMAT(lX, 3F 10. 3, 14, 213,FlO. 3)

The facility exists to repeat a group of field descriptors by enclosing the
group in parentheses and optionally preceding the left parenthesis with an
integer constant called the group repeat count indicating the nl.lllber of times
to interpret the enclosed group. If no group repeat count is specified, a
group repeat count of one is assumed. For example,

150 FORMAT(lX, 2(F10. 2/lX, 14) ,2X, 15)

is equivalent to

150 FORMAT(lX, FlO. 2/1 X, 14, FlO. 2/lX, 14,2X, 15)

except in the case of the FORMAT being used for a READ or WRITE statement
where there are more variables on the I/O list than there are field
descriptors in the FORMAT. See below for an explanation.

9.3. Interaction between READ/WRITE and FORMAT statements

The nl.lllber of values that will be read/written is determined solely by the
nl.lllber of variables in the I/O list in the READ/WRITE statement. The position
of these values on the line is determined by the FORMAT statement.

When a READ statement is executed. the next input line is read and thereafter
additional lines are read only as the format specification demands (e.g. on
encountering / in a FORMAT statement). When a WRITE statement is executed 1 a
new line is started and thereafter additional lines are started only as the
format specification demands (e.g. a slash).

Except for the effects of the repeat count, the format specification is
interpreted from left to right. To each I and F field descriptor in a FORMAT

Introduction to FORTRAN 9-6

statement, there corresponds one variable in the I/O list in the READ/WRITE
statement. To each literal { string in quotes) or X field descriptor, there is
no corresponding variable in the I/O list.

Whenever the format control encounters an I or F field descriptor in a FORMAT
statement, it determines if there is a corresponding variable specified in the
I/O list. If there is, the value of that variable is either read or written
using the conversion specified by the field descriptor. If there is no
corresponding variable, the format control terminates. For example, the
statements

160

A • 12. 3
B • 24.6
C • -56.8
WRITE (6 0 160) A.B
FORMAT(1X,'THIS IS A HEADING'/1X,'A

F10.2/1X,'C = ',Fl0.2)

will write the lines

THIS IS A HEAOING
A 12. 30
B • 24.60
C •

1 ,F10.2/1X, 1 8

If the format control proceeds to the last right parenthesis in a FORMAT
statement, a test is made to determine if another variable is specified in the
I/O list. If another variable doesn't exist, control terminates. However, if
another variable is specified, a new line is started and control reverts to
the group repeat specification terminated by the second last right parenthesis
(i.e. to the left parenthesis corresponding to the second last right
parenthesis) or, if none exists, to the first left parenthesis. In the case
of cycling back to a repeat group, the repeat count is used also (i.e. the
repeat count that is outside of the left parenthesis that is gone back to).
For example, the statements

AVE • 1.0
BEST • 2.0
COUNT • 3. 0
TOTAL • 4.0
FIVE • 5 . 0
WRITE (6,180) AVE, BEST, COUNT , TOTAL, FIVE

180 FORMAT (1X,'FIGHT = ',F6.2,3X,'RING = ',F6.2,3X,'BELL 1)

This writes out:

FIGHT 1.00 RING 2.00 BELL
FIGHT • 3.00 RING 4.00 BELL
FIGHT • 5. 00 RING

,Another example is

WR ITE (6,190) AVE, BEST, COUNT, TOTAL, FIVE
190 FORMAT (1X,'FIGHT'/2(1X,'RING = ',F6.2),3X,'BELL ',F9: ?)

Introduction to FORTRAN 9-7

This would produce

FIGHT
RING: 1.00RING 2.00 BELL 3.00
RING • 4.00 RING 5 .00 BELL

The following output indicates what would be produced if the group repeat were
expanded rather than being included as a repeat.

WRITE (6,200) AVE, BEST, COUNT, TOTAL, FIVE
200 FORMAT (1X , 1 FIGHT 1 /1X, 'RING : 1 ,F6.2, 1X, 'RING

$ F6.2,3X, 'BELL ',F6.2)

This would produce the following (note the extra line of FIGHT) :

FIGHT
RING • 1. 00 RING 2.00 BELL 3.00
FIGHT
RING 4.00 RING 5.00 BELL

9. 4. Exercises

9.4.1. Exercise9A

Find the errors in the following FORTRAN statements and suggest ways in which
they might be corrected.

READ (5, 1DD) I,J,A
100 FORMAT(3I5)

READ (5,110) I
IF(J.GRT.I) WRITE (6,120) J

110 FORMAT(I5. 1)
120 FORHAT(1 1 ',F6.2)

DO 130 JJK : 1, 10
J • -5
K • 0
READ (5,130) A
L : J/K+A
IF(L. LT.J) STOP

130 FORMAT(F6.2)

Introduction to FORTRAN

9.4.2. Exercise 98

How many lines will be read?

READ (5,160) A,I,B,J,CRASH,KREME
160 FORMAT(F3. 1, IS)

READ (5,170) A,I,B,J,CRASH,KREME
170 FORMAT(F3.1,I5,F3.1,I5)

9.4.3. Exercise 9c

How will the line of data

123456. 12798. 00012004567800. 10

be read by the following statements?

READ (5,180) I,WUNDA,war,IT,WILL,BE
180 FORMATCI3,F7.0,F4.2,I4,F5.1,F4.2)

READ (5,190) I,WUNDA,war,IT,WILL,BE
190 FORMAT(I5,F6.2,F3.1,I7,2F5.2)

READ (5,200) I,WUNDA,WITT,IT,WILL,BE
200 FORMAT(I1,F3.1,F4.1,I3,F10.6,F3.2)

9-8

Introduction to FORTRAN 10-1

10. CHAPTER 10

10. 1. A new dimension, the ARRAY

Consider the problem in which we read in data, being student grades in some
subject. Toe problem is to read in the marks, and calculate the average grade.

This may be done for N students by the following algorithm.

1. Set the total to zero initially
2. Repeat for each of the N students:

(a) read in his/her grade
(b) add it to the total

3. Calculate the average as the total divided by the nunber of students.

A FORTRAN program to do this is then:

READ(5,*)N
SUM = 0,0
D020M=1,N

READ(5, 10)SCORE
10 FORMAT(F6.2)

SUM = SUM + SCORE
20 CONTINUE

AVE = SUM/N

Now consider a similar problem. We wish to calculate the average mark, and
then print out those marks that are GREATER THAN the average. An algorithm

(i.e. method) for solving this problem is:

1. Read in the marks, summing them as they are read.

2. Calculate the average

3. Scan ALL the marks, to find and print out all marks
greater than the calculated average.

To solve this problem we need to store ALL the exam marks when we read them,
so that we will be able to scan through them later, after we have calculated
the average.

(x}e solution would be to read all the data twice. This would be inefficient as
I/O is very slow compared to the rest of your program, and would also be
inconvenient to the user, who would have to enter his data twice. Another
solution you may propose is to store each of the marks in a SEPARATE variable

name. This approach suffers from two points. Firstly, what would happen if we

had a large nunber of marks (say 9000), we would have TI-IAT MANY variables!
Secondly, this method would be very tedious, when it came to writing the 9000
odd IF statements to test if the variable value was greater than the average.

This last statement implies that we wish to treat all the nunbers in exactly
the same way.

Introduction to FORTRAN 10-2

The solution to our problem is to introduce a new type in FORTRAN, called an
ARRAY,

An array is a means of specifying a nunber of quantities that are to be stored
in the one variable name, In order to use an array, we must specify two
things:

(a) The variable name of the array
(b) The size of the array. This is the maximun nunber of quantities

that may be stored in the array.

The statement:

DIMENSION GRAOC(125)

specifies 125 quantities (of type REAL). These quantities are called GRADE(l),
GRADE(2), and so on up to GRADE(125). Note that they each have the ~ame name
GRADE, and are distinguished by what we call a SUBSCRIPT - an integer enclosed
in brackets. The individual quantities are called ARRAY ELEMENTS, and all 125
of them considered together are called an ARRAY.

ARRAY ELEMENTS can be used anywhere that a variable can, for example, in an
arithmetic expression, on the left hand side of an assignment statement, in a
FUNCTION reference, and so on.

The real power in the use of arrays lies in the fact that we can refer to
array elements, such as GRADE(!). If I has the value 25, then GRADE(!) refers
to GRADE(25), and if I has the value 79 then it refers to GRADE(79).

In practice, of course , we arrange for I to take on the series of values in
which we are interested, while referring to GRADE(!). And we do this in a
loop . For example, to read in N nanbers into the array GRADE we write:

0020I=1,N
READ(5, 10)GRADE(I)

10 FORMAT(f6 .2)
20 CONTINUE

So now we are in a position to write the new program. The complete program
is:

C PROGRAM TO READ IN STUDENT GRAOCS, ONE PER CARD, AND
C TO CALCULATE THE AVERAGE GRAOC . THEN TO PRINT OUT ALL
C THOSE GRADES THAT ARE GREATER THAN THIS AVERAGE.
C
C THE fIRST CARD CONTAINS THE NUMBER Of GRAOCS (IN COLS 1-5)
C THE GRAOCS APPEAR IN COLUMNS 1-6
C THERE IS A MAXIMUM Of 125 GRADES

DIMENSION GRADE:(125)
READ (5, 10) N

10 FORMAT(I5)
SUM = 0.0

Introduction to FORTRAN

C READ IN THE GRADES AND SUM IBEM

0050I:l,N
READ (5,40) GRADE(I)

40 FORMAT(F6.2)
SUM = SUM..GRADE(I)

50 CONTINUE

C FIND THE AVERAGE

AVE = SUM/N

C SCAN, PRINTING ALL GREATER THAN THE AVERAGE

0070I:l,N
IF (GRADE(I).GT.AVE) WRITE(6,60) GRADE(I)

60 FORMAT (1X,F7.2)
70 CONTINUE

STOP
END

10. 1. 1. Array sizes

10-3

You will notice that although we don't know how many grades there are going to
be - it is N - the size of the array GRADE is specified as 125. The rules of
FORTRAN insist that the size of an array (as declared in the DIMENSION
statement} be a positive i nteger constant, and 125 was chosen on the grounds
that it will always be bigger than the m.rnber of grades used. Clearly, some
judgement must be applied in choosing suitable sizes for arrays. An array that
is declared unnecessarily large will waste memory space (or worse still, may
not fit in memory!). An array that is declared too small, will result in
errors occurring, as you are not allowed to reference array elements that are
OUT OF BOUNDS of the declared array size. In many programs a test is made to
check that you never try this. For example, in the above example, we could
insert after reading a value for N, the lines:

IF (N.GT.125) THEN
WRITE (6,*) ' HAXIHUN OF 125 GRAOOS ALLOWED '
STOP

END IF

10.1.2. Forms of subscripts

When referring to an array element, it is possible to use slightly more
general subscripts than the simple integer constant or integer variable we
have seen so far.

1966 standard Fortran had very strict rules as to what forms of subscripts
were allowed. The 1977 standards extended the allowable expressions to be any
integer expression, including function references and other subscripted
variables.

Introduction to FORTRAN 10-4

Univac has extended this further to allow any integer or real expres.sion. Host Fortrans will accept a fairly general form of integer expression as a subscript, but you should try to keep your subscript expression simple for the sake of understandability.

If the version of Fortran that you wish to use has a limited form of subscript, then this is very easy to get around by replacing

TOP = GRADE(A+B)

with

IND = A+B
TOP = GRADE (IND)

So as well as referring to GRADE(25) and GRADE(!) we can refer to GRADE(I-10), which, if I has the value 25, refers to GRADE(15) and also GRADE(2*I+3) which refers to GRADE(53).

10 . 1, 3, Examples of Subscripts

Whenever a subscript is used, any variables within the subscript expression must have been given a value at some prior point in the program, as the subscript expression is evaluated first and then this uniquely identifies a particular element within the array. It is the programmer's responsibility to ensure that the subscript expression has a value between 1 and the maximt111 array size as declared in the DIMENSION statement. Some Fortrans will provide error termination at execution time if this happens, and some do not, but merely give incorrect results.

Provided that

(a) the arrays mentioned have been dimensioned (i.e . appear in a DIMENSION statement)

(b) the variables in the subscript expressions have been given a value at some prior point in the program

(c) the subscript expression has a value between 1 and the dimensioned size of the array (inclusive)

the following are valid array references

FIRST(677)
HGIELS(LE)
A(MAX(LAD, 10))
HUNTER(LFS+l)
XHAS(2*KANBRA)
NEXT (4 *KRAFT-3 *KAAS)
TOOH (19*KAT+HARK(7))

Some examples of invalid subscripts are:

Introduction to FORTRAN

Example

OOGS(BAR)

KATZ(I +J +1. 0)

Reason

Real var iable not allowed as a subscript

Real expression not allowed as a subscript

10. 1. 4. Example of complex subscript use

10-5

Sometimes it is difficult to see why you would want to ever use a subscript
that is more complicated than a simple integer variable . One example of this
is given as follows.

Suppose that we had an array in \olhi c h each set of three consecutive locations
referred to rainfall figures: the mint.mlJ'll, the maximllll, and the average. This
means that i f we had 25 areas, we would have 25 lots of 3 figures, and so
would need an arr ay of size 75.

Suppose that variable LOC indicates the area nunber that we are interested in.
Now if we want the minimllll rainfall figures for this area, it would be given
by

RAIN ((L0C -1)*3 + 1)

Value of LOC Elemen t of RAIN
1
4
7

10
etc etc

10 . 1.5. Type Declarations for Arrays.

As with integer and real variables, an array name need not have the default
type depending on its fir st letter. To specify array GRAt.£ as integer. use
INTEGER GRAr!:(125) instead of DIMENSION GRAt.£(125). To specify A(10) as an
integer array, and IX(12) and Y(14) as real arrays, use : -

INTEGER A(1 0)
REAL IX(12),Y(14)

instead of

DIMENSION A(10),IX(12),Y(14)

10. 1.6. Summary points about DIMENSION statements

1. Any nllllber of DIMENSION statements may appear in a program .

2. A variable may a ppear onl y once in any DIMENSION statement.

Introduction to FORTRAN 10-6

J. The size of an array HUST be an integer CONSTANT or integer expression
containing constants (not variables).

1'. The DIMENSION statement must appear in the program before any executable
statements, (i.e. at the top), with REAL and INTEGER type declarations.

5. Any array used in the program must appear in a DIMENSION statement or
INTEGER or REAL declaration.

6. 1977 Fortran introduced a mechanism for allowing the lower bound of the
dimension of an array to be any value (and consequently the upper bound could
be anything greater than the lower bound). This will not be covered in this
course. The syntax for such a declaration is

DIMENSION variable(lower-bound : upper-bound)

10.2. Reading and writing arrays

Suppose that we have 10 integers on an input line, and that each integer takes
6 coltmns. So we say the nunbers may be read by the format:

20 FORMAT(10I6)

We could read them like this:
DIMENSION NUMS(10)
READ(5,20)NUMS(1), NUMS(2), NUMS(3),,NIJHS(10)

This is tedious, and seems to be made for a DO loop. So can we write this?

DIMENSION NUMS(10)
D030I:1,10

READ(5, 20)NUMS(I)
20 FORMAT(10I6)
30 CONTINUE

The answer of course is NO. The reason is that every READ statement will start
reading a new line. The first time around the loop, the first nunber is read
into NUMS{1) correctly. The second time around, a new line is read, and so the
other nine values (that were on the first line) are lost.

Clearly, some form of DO-looping is required. Let us look at the correct piece
of program to see how it is implemented.

DIMENSION NUHS(10)
REA0(5,20) (NUHS(I), I= 1,10)

20 FORHAT(10I6)

Here, instead of a normal input list, such as A, B, ZAP we have a DO - IMPLIED
list . In this case it consists of the array element name, NUM;S(I), followed
tiy a comma, followed by I = 1, 10 (which clearly reflects the structure of the
00 statement), and the whole lot is enclosed in brackets. It c~n be thought of
as 'NUMS(I) for I going from 1 to 10'. There are really 10 yariables on thE:
input list, the variables NUHS(1) to NUHS(10). The IMPLIED DO lpop is merely ii
shorthand way of explicitly writing out the ten array element~.

Introduction to FORTRAN 10-7

The 00-implied list may be part of a larger input-output list. For example.
the statement:

REA0(5,60) P, BEAN, (NUMS(I), I: 1,10)

causes the first two nunbers to be read into P and BEAN and then the next 10
into NUMS(1) to NUMS(10).

REA0(5,70) (ZOT(I), I= 1,5), (NUMS(I), I: 1,10)

causes the first five nllllbers to be read into ZOI(1) to ZOT(5), and the next
10 numbers into NUMS(1) to NUMS(10).

READ(5,80) (ZOT(I), ZCMIE(I), I= 1,5)

illustrates the fact that there may be a list as the first part of the DO -
implied list. The first two nlJ'llbers are read into ZOI(1) and ZOfiIE(1), the
next two into ZOI(2) and ZCMIE(2) and so on.

We have shown the initial and final value of the 'control variable' to be both
integer constants. In fact they may be integer variables { just as in a real DO
loop). Further, we may also specify an increment value. if we want one other
than the default value of 1 (also just like a 00 loop).

The following example will read in ntJ11bers into every second element of array
SPRED. Notice that 10 numbers will be read, the first going into SPRED(l), AND
THE LAST GOING INTO SPRE0(1 9) •

INTEGER SPRE0
DIMENSION SPRED(20)
READ(5,90) (SPRED(IND), IND 1,20,2)

90 FORMAT(l0I6)

10.3. Common errors with arrays

A variable has been used as a subscripted variable but has not been declared
as an array in a DIMENSION statement, or has not been given a dimension in a
type declaration.

A declared array name is referenced without specifying its subscript.

The size of an array specified in a DIMENSION statement or type declaration iB
not an integer constant.

An array element is referenced using a variable, but this variable 1.s either
real, or does not currently have a defined value, or has a value les.s than 1
or greater than the maximlJ'll size .specified in the declaration.

Introduction to FORTRAN

10, 4. Exercises

All exercises involvin_g arrays must include array declarations.

10,4,1, Exercise 10A

Find the mistakes in the following.

DIMENSION J(20)
DO 14 I:1, 100

14 J (I) = 0

DIMENSION ARRAY(150)

DO 22 K:2,47,2
22 ARRAY : ARRAY(K+3) + K

DIMENSION I(10),ARRAY(20)
DO 7 I = 1,20,2
ARRAY(I) = -3.
ARRAY(I-1) = REAL(I)

10,li ,2, Exercise 10B

10-8

Write a program to calculate and print the average rainfall figures for each

of 8 localities.

Data consists of 8 lines of input (one line per locality). Each line of input

has 12 nun.bers on it representing the rainfall for each of 12 months, for a

locality.

Use only one (one dimension) array.

10. 4. 3 , Exercise lOC

Identify the following DIMENSION statements as bei~g correct or not.

(i) DIMENSION A(4),K(7)

(ii) DIMENSION BAD(12),ROTTEN(17+12)

(iii) DIMENSION GOOD(K)
(iv) DIMENSION BIG(lOOO) ,SHALL(3)

Introduction to FORTRAN 10-9

10, 4. 4. Exercise 10D

Consider each pair of the following statements (not necessarily contiguous) to
be in separate programs, For each pair, indicate any inconsistencies. This
means, any errors that are NECESSARILY errors, not merely potentially errors.

DIMENSION X(5),L(10),A(15)
Y = X-Hi5. 0/ A(I)

W : N(3)+I4*6
D = W**4

DELTA = A(I)/X**B
START = DELTA**Y-A(B)

DIMENSION A(10),K(15),A(3),T(6)
T<15) = 2.0•T(3)+K(5)*3.14159

10.4.5. Exercise lOE

Write a series of statements to zero all locations in the array B from B(1) to
8(100) inclusive.

10. 4. 6. Exercise lOF

Statistics are being kept on 20 southern Queensland national purple tailed
hens. At the end of each month, a card is punched which contains the
following information for each chicken.

Col llllnS 1 to 2 contain an integer to be used for identification,
colllllns 3 to 4 contaih the nunber of eggs laid this month,
col unns 5 to 8 contain an integer which is the weight of feed consumed

grams,
COlllllnS 9 to 12 contain an integer which is the weight of

grams.

Write a program to read the 20 cards and print out for each hen ,

identification m111ber
nunber of eggs laid and difference from the average,
weight of feed consumed and difference from the average,
weight of the bird and difference from the average .

the bird

in

in

Introduction to FORTRAN 11-1

11. CHAPTER 11

11. 1. Arrays with TWO dimensions

The arrays we have considered to date have been one dimensional. We have been
able to specify a unique array element by using only one subscript. In
mathematical terms these are vectors.

We can also have arrays of two dimensions (and indeed 3 dimensions, but we
will not be considering those). These may be considered as equivalent to
matrices in mathematics.

Suppose we were analysing the results of a mrnber of students who sat a mrnber
of exams. The results might be tabulated (by us) as:

Chemistry A01 Forestry D31 Zoology A01

Bloggs 66 72 51
Nurke 73 88 60
Eccles 50 71 75
Seagoon 24 12 51
Moriarty 77 79 62

For convenience sake, we give students STUDENT NUMBERS , and also give the
particular subjects, SUBJECT NUMBERS. So, our table then becomes:

66
73
50
24
77

72
88
71
12
79

51
60
75
51
62

Let us give this table a name, say call it HARKS. We may no w refer to the
mark obtained by student nunber 2, in subject nunber 3, by referring to the
SECOND ROW and the THIRD COLUMN of the table HARK, and we obtain the mark 60.

We may represent this table in Fortran by declaring a two dimensional arr ay
that has five ROWS (corresponding to the 5 student nunbers) and three collmns
(corresponding to the 3 subject nunbers). This is done with the DIMENSION
statement:

DIMENSION HARK(5,3)

The reason for representing this as a two dimensional array, rather than a one
dimensional array, is that all the Chemistry marks ar e in one colunn, and all
of Eccles marks are in one row .

If we imagine a general version of this array, then to find the total mark for
subject 2, we would write the following. (NSTUDS is the mmber of students ,

Introduction to FORTRAN 11-2

i.e. the minber of rows in the table, and it is assl.l'lled that MARK has been
DIMENSION' ed to an appropriate size):

ITOT • 0
DO 5 I • 1, NSTUDS

ITOT = !TOT + MARK(!, 2)
CONTINUE

Similarly, we could find the total marks for a particular student, say for
Eccles, student nllllber 3.

ITOT • 0
DO 6 J • 1,NSUBS

!TOT • ITOT + HARK(3,J)
CONTINUE

where NSUBS is the nunber of subjects, Le. the nunber of colunns of the ho
dimensional array MARK.

Let us now generalise this a little further. We want a program that will read
in the table of marks and store them in the array HARK. Now read data that
requests the total marks for either a particular student, or a particular
subject. We will indicate that we want a student total by reading a line with
a 1 in colunn 1 and the student n1mber we want in colunns 3 - 5. If we want a
subject total, then we will have a O in collllln 1, and the subject nunbe'r in
colll!lns 3 - 5.

Before we can attack this problem, we need to know a little more about how we
may read in a two dimensional array.

11.1.1. Reading and writing two dimensional arrays

A t1«> dimensional array is composed of a nl.l'llber of rows, each row being made
up of a mmber of collmns. One way of thinking about two dimensional arrays
is to consider that they are composed of a nunber of one dimensional arrays
(each corresponding to a row for example) repeated for however many rows we
have.

The subscripts required to identify an element of the two dimensional array
are

(a) a row subscript to identify which row vector to choose
(b) a colunn subscript to identify which colunn to choose of the row vector

specified by (a).

The reading of a two dimensional array may be expressed in the following
algorithm.

Repeat for each row of the array:

Read in mmbers into a row vector.

Suppose we want to read nunbers into a 2 dimensional array, of size 4 rows and

Introduction to FORTRAN 11-3

3 col unns. There are 4 lines of data, each containing 3 nunbers to go into
one row of the array and each nunber taking 5 col unns of a data line.

First, look at how to read in any given row of the array, say row 1. This may
be done by:

DIMENSION NURGLE (4, 3)
READ(5, 110) (NURGLE(l ,J) ,J=l ,3)

110 FORMAT (3I5)

To read in all 4 rows we could have

READ(5, 110) (NURGLE (1, J) ,J=l, 3)
REA0(5, 110) (NURGLE(2, J) ,J=l, 3)
REA0(5, 110) (NURGLE (3, J), J=l, 3)
REA0(5, 110) (NURGLE (4, J), J=l, 3)

This may be abbreviated further by the use of a DO loop that will vary the row
subscript from 1 to 4, and so giving:

DIMENSION NURGLE (4, 3)
005I=l,4

READ(5, 1 lO)(NURGLE (I, J), J=l, 3)
5 CONTINUE
110 FORMAT (3I5)

11.1.2. Nested Implied DO loops

Let us go back to reading in a one dimensional array using an IMPLIED 00 loop.

DIMENSION A(15)
READ(5,107) (A(I), I=l,15)

107 FORMAT(15F5.1)

We can see that the syntax of the implied 00 loop is:

(list of variables, control :: start, finish, increment)

The 'list of variables' may also contain a 00-implied list. So, we can write:

READ(5,109)((B(I,J), J = 1,10), I= 1,5)

This may be thought of as being 'B(I,J) with J going from 1 to 10 and I going
from 1 to 5 1 • J is in the INNER loop, and so varies most frequently (i.e. the
inner loop completes for each value of the outer loop). So this statement
would read B(1,1) then 8(1,2) then B(1,3) •••• up to 8(1,10) then B(2,1) and
so on.

We can now use this to read and write two dimensional arrays. For example, to
read integers into a two dimensional array, of size 4 rows and 3 coll.mns
(supposing all 12 nunbers are on one line in 15 format), we need the
statements:-

Introduction to FORTRAN 11-4

DIMENSION NURGLE(4,3)
READ(5,1D1) ((NURGLE(I,J), J = 1,3), I= 1,4)

101 FORMAT(12I5)

Remember the 00 implied list is merely a shorthand form for writing out all
the array elements explicitly, so in the above READ statement there are really
12 variables on the I/O list.

Suppose we wish to do the same thing, but now we design the data differently,
and say that a line will contain 3 m.anbers, these corresponding to a row. So
there will be 4 lines of data, each with one row to be read into NURGLE. We
can do this by FORMAT control, with:

DIMENSION NURGLE(4, 3)
READ(5,109) ((NURGLE(I,J), J:1,3), I=l,4)

109 FORMAT(3I5)

This works, because when we get to the end of the FORMAT statement (which we
will after reading three nunbers), we start the FORMAT statement again and
start reading another line. So a total of 4 lines is read.

A much better way, because it is more straight forward, is to use an explicit
DO loop with an implied DO loop as in:-

DIHENSION NURGLE(4, 3)
DO 5 IROW = 1,4

READ(5, 110) (NURGLE(IROW,J), J:1,3)
5 CONTINUE
110 FORMAT(3I5)

11.1.3. Example

Let us now return to our exam mark example. We shall define the format of the
data as being:

1. Each line of data will contain the marks for a particul~r student in all
subjects. There will be a total of 25 subjects, and the marks will be in 13
format.

2. There will be a maximun of 200 students, and the last line will be a
'dunmy' student that has a negative mark, thus signalling the end of the
data.

So to read in the marks we need:

DIMENSION MARK(201,25)
MAXS = 200

C READ IN THE STUDENT TABLE

NROWS = 1
10 CONTINUE

Introduction to FORTRAN

READ (5,20) (MARK(NROWS,J),J:1,25)
20 FORMAT(25I3)

C
C INCREMENT AND TEST ROW POINTER
C

IF (MARK(NROWS,1),LT.O) THEN
NROWS = NROWS - 1
GO TO 40

ELSE IF (NROWS,LE,MAXS) THEN
NROWS = NROWS + 1
GO TO 10

ELSE
WRITE (6, 30) MAXS

30 FORMAT (1X,'TOO MANY STUDENTS MAXIMUM 0F',I3,' ALLOWED')
STOP

END IF
40 CONTINUE

11-5

So at this point in the program, we have set up the array of marks in the
Fortran array called MARK. Now we need to read in data, which will indicate
the type of total we want, and which student, or subject, to total. We have
not specified how the mrnber of requests will be indicated. Let us say that we
should read requests until a type greater than 1 is read.

C
C READ IN A REQUEST
C

50

60
C
C
C
C
C

C
C
C

70

60

C
C
C
C

90

CONTINUE
READ(5, 60)ITYPE, NUMBER
FORMAT(I1, 1X,I3)

BRANCH ON THE VALUE OF ITYPE
!TYPE = 0, FORM TOTAL FOR A GIVEN SUBJECT

= 1, FORM TOTAL FOR A GIVEN STUDENT
GT 1, STOP

IF (ITYPE,GT,1) STOP
IF (ITYPE.EQ.O) GO TO 90

FIND THE TOTAL MARKS GAINED BY THE REQUESTED STUDENT

ITOT = 0
DO 70 J = 1 ,25

ITOT = ITOT + MARK(NUMBER, J)
CONTINUE
WRITE(6, 60)NUMBER, ITOT
FORHAT(1X, 'THE TOTAL FOR STUDENT NUMBER ',13,' IS ',15)
GO TO 50

FORM IBE TOTAL MARKS SCORED IN THE
REQUESTED SUBJECT (ITYPE:O)

CONTINUE
ITOT = 0
DO 100 I = 1,NROWS

ITOT = ITOT + MARK(I,NUMBER)

Introduction to FORTRAN

100 CONTINUE
WRITE(6, 110)NUMBER, ITOT

110 FORMAT(1X, 1 THE TOTAL FOR SUBJECT NUMBER 1 ,I3, 1 IS 1 ,I5)
GO TO 50
END

11-6

Now let us put all the sections together, and include the necessary commands
to execute the program on the UNIVAC computer assiining that no mistakes were
made in inputting the program! The data will be set up to read in the array
as specified in the example above, and to request totals for student 2, and
al so for subject 1,

sign-on procedure (user-id/password)
@CAT, P PROG.
@ASG,AZ PROG.
@ED,I PROG.STUD
C
C
C
C
C
C

AIJ!'HOR:
DATE:
HODS:

C LANGUAGE:
C COMPUTER:
C LOCATION:
C

L. LANDAU
12 MAY 1976
FEB 1981
L.LANDAU
TO RENUMBER STATEMENT NUMBERS
UNIVAC ASCII FORTRAN LEVEL 9R 1
UNIVAC 1100/82
AUSTRALIAN NATIONAL UNIVERSITY

C PROGRAM IESCRIPTION:
C
C
C
C THIS PROGRAM WILL READ IN A TABLE OF STUDENT MARKS
C OBTAINED IN EACH OF 25 EXAMS.
C
C THE PROGRAM WILL THEN READ IN REQUESTS FOR TOTALS OF EITHER
C (0) TOTAL MARKS GAINED IN A PARTICULAR SUBJECT
C (1) TOTAL MARKS GAINED BY A PARTICULAR STUDENT
C (>1) STOP PROGRAM
C
C
C DATA IESCRIPTION:
C
C
c· THE STUDENT/SUBJECT TABLE COMES FIRST IN THE DATA,
C WITH EACH STUDENT TAKING ONE LINE,
C AND EACH SUBJECT TAKING 3 COLUMNS. IF ANY HARKS ARE
C OMITTED, THEN THEY WILL BE TREATED AS ZERO.
C THERE WILL BE A MAXIMUM OF 200 STUDENTS.
C THE END OF THE STUDENT DATA
C IS SIGNIFIED BY A NEGATIVE FIRST SUBJECT HARK.
C
C FOLLOWING THE TABLE OF MARKS, THERE ARE REQUESTS FOR TOTALS
C OF EITHER STUDENT MARKS IN A PARTICULAR SUBJECT, OR
C THE TOTAL HARKS FOR A PARTICULAR STUDENT. THESE REQUESTS
C TAKE THE FORM:
C

Introduction to FORTRAN

C

C

COLUMN

3-5

MEANING

TYPE OF REQUEST
IF O THEN TOTAL THE STUDENT MARKS IN THE
GIVEN SUBJECT
IF 1 THEN TOTAL THE SUBJECT MARKS FOR THE
GIVEN STUDENT
IF GREATER THAN 1 THEN STOP

THE STUDENT NUMBER, OR SUBJECT NUMBER.

DIMENSION MARK(201,25)
MAXS : 200
MAXSUB = 25

READ IN THE STUDENT TABLE
NROWS = 1

10 CONTINUE
READ (5,20) (MARK(NROWS,J),J:1,MAXSUB)

20 FORMAT(25I3)

C INCREMENT AND TEST ROW POINTER
C

IF (MARK(NROWS,1).LT.O) THEN
NROWS = NROWS-1
GO TO 40

ELSE IF (NROWS.LE.MAXS) THEN
NROWS = NROWS + 1
GO TO 10

ELSE
WRITE (6 , 30) MAXS

30 FORHAT(lX, 'TOO MANY STUDENTS MAXIMUM OF ',13,' ALLOWED')
STOP

END IF

C COME HERE WHEN END OF STUDENT TABLE FOUND
C

40 CONTINUE
C
C READ IN A REQUEST
C

READ(5, 5D)ITYPE, NUMBER
50 FORHAT(I1,1X,I3)

VALIDATE THE REQUEST IS IN RANGE

IF(ITYPE . GT .1) STOP
IF((ITYPE . EQ. O.AND. NUMBER.GT .HAXSUB) .OR.

$ (ITYPE.EQ. 1.AND.NUMBER.GT.NROWS)) THEN
WRITE(6, 60)ITYPE, NUMBER

60 FORHAT(lX,'FOR A TYPE ',11,' REQUEST, NUMBER 1 ,13,
$ ' IS OUT OF RANGE •••• IGNORED')

GO TO 40
END IF

11-7

Introduction to FORTRAN

C BRANCH ON THE VALUE OF ITYPE

C ITYPE = 0, FORM TOTAL FOR A GIVEN SUBJECT

C = 1, FORM TOTAL FOR A GIVEN STUDENT

C
IF (ITYPE.EQ.O) GO TO 90

C FIND THE TOTAL HARKS GAINED BY THE REQUESTED STUDENT

C
!TOT = 0
DO 70 J = 1,HAXSUB

ITOT = !TOT + HARK(NUHBER,J)

70 CONTINUE

C
C

WRITE(6, 80)NUHBER, ITOT
80 FORHAT(1X, 1 THE TOTAL FOR STUDENT NUMBER 1 ,13, t IS 1 ,15)

GO TO 50

FORM THE TOTAL HARKS SCORED IN THE

REQUESTED SUBJECT (ITYPE=O)

90 CONTINUE
ITOT = 0
DO 100 I = 1, NROWS
!TOT =!TOT+ HARK(l,NUHBER)

100 CONTINUE
WRITE(6, 110)NUHBER, ITOT

110 FORHAT(lX,' THE TOTAL FOR SUBJECT NUMBER ',13,' IS ',15)

GO TO 50
END

@EOF
@ED, I PROG. STUD/DATA

66 72 51
73 88 60
50 71 75
24 12 51
77 79 62
-1

1 2
0 1
3
@EOF
@FTN,CS PROG.STUD
@EOF
@ADD,E PROG.STUO/DATA

This would print out :

THE TOTAL FOR STUDENT NUMBER 2 IS 221

THE TOTAL FOR SUBJECT NUMBER 1 IS 290

This program is still very primitive.

11-8

Introduction to FORTRAN 11-9

For example. it cannot handle the situation of students not sitting for exams.
It provides only elementary output. What may be more interesting is to provide
figures on who got more than 50%, or who the top student was . How would you
make these changes? How much program re-design would it require?

11.1.4. Rainfall example

Suppose that we had a table of rainfall figures for different areas over
different years starting from 1950. So the table may look like:

Qld NSW Vic Tas NT ACT SA WA

1950 103 , 5 99,3 89.6 121.6 41.2 88.8 84,5 77 .4
1951 104. 7 98.4 90, 6 125, 8 38,5 86. 3 78, 3 68,3
1952 109,8 101,6 92, 4 132, 6 39, 5 85. 4 79,5 72, 1

1953 101.6 101.9 99,9 119, 1 32. 1 90, 5 81. 6 85.6

and SC on for other entries, one row per year
until the last one in (say) 1979:-

1979 117,7 103,2 97,1 128.8 40.0 91.4 86,3 88,7

We could write a program to read these rainfall figures into an array and then
extract rainfall figures for different areas over different years. For
example, the Fortran to read the figures in could be:

C
C MAXIMUM OF 40 YEARS (STARTING AT 1950)
C MAXIMUM OF 10 AREAS

DIMENSION RAIN(41, 10)
MAXARA = 10
MAXYRS = 40

READ IN HOW MANY AREAS THERE ARE

READ (5,20) NAREAS
20 FORMAT (I2)

IF (NAREAS,LE,MAXARA) GO TO 40
WRITE (6,30) MAXARA

30 FORMAT(1X, 'TOO MANY AREAS, CAN ONLY HANDLE ',I3)
STOP

C
C READ IN RAINFALL FIGURES, THE END IS INDICATED BY
C A NEGATIVE RAINFALL FOR THE FIRST AREA
C

40 CONTINUE
IYR = 1

50 CONTINUE
READ (5,60) (RAIN(IYR,LOC), LOC 1, NAREAS)

60 FORMAT (16F5,0)

Introduction to FORTRAN

IF (RAIN(IYR,1).LT . O) GO TO 80

!YR : IYR + 1
IF (IYR .LE. HAXYRS+1) GO TO 50
WRITE (6, 70) MAXYRS

70 FORHAT (1X, 'TOO MANY YEARS, CAN ONLY HANDLE ',I3)

STOP

C COME HERE WHEN ALL RAIN DATA IS READ

C
80 CONTINUE

IYR : IYR - 1

11-10

Now the problem is to produce rainfall figures. Suppose that we want the

average rainfall in Tasmania betwen 1960 and 1969 (inclusive).

TOTAL : 0.0
DO 90 !YEAR : 1960, 1969
TOTAL : TOTAL + RAIN (IYEAR-1949,4)

90 CONTINUE
AVRAIN : TOTAL/ 10

Generalising thi s a little, we want to solve the following problem:

To be able to read in 3 n1.J11bers indicating:

(a) the start year (for example 1960)

(b) the m.mber of years to cover
(c) the area n1.J11ber that we are interested in

and from this find the average rainfall in that area over the requested years.

C
C READ IN THE INPUT PARAMETERS: START YEAR

C NUMBER OF YEARS

C LOCATION CODE

C

!BEGIN : 1950
READ (5 ,100) 1ST , NUM YR, UJCAT

100 FORMAT (14, 1X,I2 , 1X,I2)

C
C CHECK VALIDITY OF REQUESTS

C
LAST : !BEGIN + IYR - 1
IF(IST.GE.IBEGIN .ANO. !ST.LE.LAST) GO TO 120

WRITE (6,110) !BEGIN, LAST

110 FORHAT (lX ,'THE FIRST RECORDING YEAR IS ',14, 1 AND THE',

$ ' LAST IS ',14)
STOP

120 CONTINUE
IF (NUMYR+IST-1 .LE. LAST) GO TO 130

WRITE (6,110) !BEGIN , LAST

STOP

Introduction to FORTRAN

130 CONTINUE
ff (LOCAT .LE. NAREAS) GO TO 150
WRITE (6. 140) LOCAT

140 FORMAT(lX. 'THERE ARE NO FIGURES FOR AREA ',13)
STOP

NOW WE HAVE VALIDATED THE INPUT SO 00 THE CALCULATION
C

150 CONTINUE
LAST = !ST + NUMYR - 1
TOTAL = 0.0
DO 160 IYEAR = IST, LAST

INDEX = !YEAR - IBEGIN + 1
TOTAL = TOTAL + RAIN (INDEX, LOCAT)

160 CONTINUE
AVRAIN = TOTAL/NUMYR
WRITE (6,170) LOCAT , AVRAIN

170 FORMAT(1X,'THE AVERAGE RAINFALL IN AREA '.13.
$ 1 IS ',F8.2.' CENTIMETRES')

STOP

11-11

As an exercise. how could you find out the yearly difference in rainfall
between any two areas between any two years?

11.1.5. More FORMAT Descriptors: E format

The UNIVAC computer is able to represent very large, and very small REAL
numbers (in the range 10**(-38) to 10n3a), and using the F format descriptor
is not convenient for writing out these mrnbers.

The E format descriptor may be used with REAL . variables to read or write
numbers, so that they appear with an EXPONENT. The form of this format
descriptor is:

Ew.d

The 'w' and the 'd' have the same meaning as for F format.

If E format is used to output a m.rnber the form of output will be:
.nnnnn+eee

The 'nnnnn' are the digits after the decimal place. Plus or minus •eee' is the
exix>nent for the decimal mmber, and is so arranged that the first 'n' of the
'nnnnn' is non-zero. There will NEVER be any digits to the left of the decimal
point.

The nllllber of places after the decimal point is specified by 'd'. Note that a
space must be left for a possible ' - ' sign to the left of the nunber, so there
are a possible 6 extra places taken up other than the d decimal place:, and 1:10
'w' must be at least six greater than 'd'. The statements:

FIRST = 2. 3756

Introduction to FORTRAN

SEC = -677.32E-12
THIRD = 3444. 55E 18
WRITE(6,101) FIRST,SEC,THIRD

101 F0RHAT(1X,E12.3,E20.6,E14.7)

will print the line:

bbbb. 238+001 bbbbbbbb-. 677320-009bb. 3444550+022

11-12

On input, if the decimal point is on the data card it overrides the 'd'
specification of the E format descriptor. The exponent need not be three
digits, and the nlJllber must be right-ju_stified in the field (otherwise the
blanks at the right end of the field are read as zeros, and included in the
exponent).

11.1.6. Lformat

Logical values (true and false) may be read or written with the L format,
which has the form:

Lw

where w is an integer representing the width of the field.

On input, blanks and/or a decimal point are allowed to precede a T or F, and
the rest of the field is ignored. So with a format descriptor of L7,

b.TRUE •
• FALSE.

bbbTbbb and THAT'Sb are all read as TRUE, and
Fbbbbbb and bbbbFAT are FALSE.

On output , w-1 blanks are written, followed by a T or F.

11. 2. Exercises

11,2.1. Exercise 11A

Show how the given data values would be printed under the control of the
format descriptor ElO. 3

(a) 0.0
(b) 323.33
(c) 44.3E10

(d) 10.0
(e) -42.lE-5
(f) 0. 001002

(g) 0.00027
(h) -663.2544
(i) 0.0000003E-17

Introduction to FORTRAN 11-13

11.2,2, Exercise 118

rite a program to generate the numbers 1 to 30 in a one dimensional array and
then print this array so that there is a heading before the numbers, and then
the m.rnbers on one line. Print the numbers again, six per line, with a line
number on each line. The output should be

THE NUMBERS ARE

1 2 3 4 6 7 8 9 30

1 1 2 4 5 6
2 7 8 10 11 12
3 13 14 15 16 17 18
4 19 20 21 22 23 24
5 25 26 27 28 29 30

11.2.3. Exercise 11C

Repeat exerc ise 118, but using a two dimensional array with 10 rows and 3
columns, The output should be exactly the same. Fill up the 10 by 3 array by
rows rather than by columns.

11,2 , 4. Exercise 110

Write a series of statements to add the corresponding elements of two m x n
arrays A and B and store the result as an m x n array C. Assume that the
maximLrn values of m and n will be 14 and 10 respectively.

11.2.5. Exercise 11E

The coordinates of a point in an n dimensional space are punched .on cards.
The value of n is punched on a separate card which is placed first. Write a
program to read these values and find the distance d of the point from the
origin.

2 1/2
d = (x1 + x2 + + xn

Assume that n will not be greater than 25.

11.2.6. Exercise 11F

Re-write your answer to exercise 108, this time also pr inting out the entire
rainfall figures for the month with the highest average. Use only one
two-dimensional array.

Introduction to FORTRAN 12-1

12. CHAPTER 12

12. 1. Sub programs

A program is a sequence of Fortran s tatements that is executed by a computer.
The programs we have seen to date are referred to as MAIN programs.

When a MAIN program is executed, the computer starts by executing the first
line and then proceeds sequentially according to the rules we have learned. A
subprogram is also a sequence of Fortran statements. Execution of a subprogram
is initiated by the main program, when the main program refers to the name of
the subprogram, ie. when the main program CALLS the subprogram. When a
subprogram finishes, control goes back to the next statement in the main
program and so execution of the main program is continued.

There are two types of sub prog rams in Fortran, known as SUBROUTINES and
FUNCTIONs. The main difference between the two is in the manner by which they
are started .

An example of a subprogram reference 18 the use of the standard generic
FUNCTION covered in a previous chapter. The Btatement:

VAL • MAX(QUANT ,ZENA)

is an example of a program referring to the subprogram (in this case FUNCTION)
called MAX. As well as referring to the Bubprogram by name, it may be
required to supply a parameter list for the sub program to use. This is done
in the above example by enclosing the parameters in brackets after the
function name, in the reference to the function.

The parameters provide a means of passing information to and from the
sub program. i.e. they are the communication between the tt«> program parts.

The referencing of the function causes execution of the Fortran statements
that comprise the body of the function. So far we have not been able to see
the lines of Fortran involved. as the system keeps track of it all for the
standard Fortran functions. Now we shall see ways in which to create our own
Bubprograms for \otlich the lines of Fortran that make up the body of the
subprogram (i.e. what it will do) must be 8Upplied by us.

12 .2. Subroutines

12. 2. 1. Referencing subroutines

When a subroutine is referenced we say that a CALL has been made to the
subroutine.

Introduction to FORTRAN 12-2

Subroutines have names that are from 1 to 6 characters in length composed of
alphabetic and/or nuneric characters with the firsf one being alphabetic
(these are the same rules as for variable names). Some examples of valid
subroutine names are below.

ADDER
F47A62
J
READ
MOVE

A subroutine is called by using the CAU. statement, which has the form:

CALL name (parameter list)

The parameter list (called a list of ACTUAL parameters) is composed of
constants, variables, arrays, function names and expressions separated by
commas . As is the case with FUNCTIONS used so far, these ACTUAL parameters
supply the subroutine with variables and values that it actually requires to
operate on.

The subroutine may reference the parameters (use their values) or in the case
of an actual parameter being a variable name, the subroutine may assign it
some other value.

The actual parameters are referenced within the subroutine by their
association with a corresponding list of parameters that the subroutine is
aware of. These parameters are called DUMMY parameters (sometimes referred to
as FORMAL parameters). The list of DUMMY parameters is kept in the first line
of the subroutine, called the subroutine header.

The ACTUAL and DUMMY parameters represent the same corresponding physical
location in computer memory. The main program may call them one set of names
(ACTUAL parameters), and the subprogram another set of names (DUMMY
parameters). However, both refer to the same physical object. The winner of
the 1977 Melbourne Cup could be referred to as No. 2, or "Gold and Black", but
it is the same horse.

If there are no parameters then the brackets may be omitted.

12.2,2. SUBROUTINE statement

The form of the subroutine header is :

SUBROUTINE name (DUMMY parameter list)

The DUMMY parameters MUST be variable or array names which are associated with
a list of ACTUAL parameters when the subroutine is called. If the parameter
list is empty, the brackets may be omitted.

The association between ACTUAL and DUMMY parameters is in the order in which
the parameters appear. The first ACTUAL parameter is associated with the first
DUMMY parameter, the second parameter of each list associated with the second

Introduction to FORTRAN

parameter of the other, etc.

To make the association possible, both lists must correspond in:

(a) the m.rnber of parameters appearing in each
(b) the TYPE of the parameters (INTEGER or REAL)

12-3

The lines of Fortran within the subroutine (called the BODY of the subroutine)
involve the use of the DUMMY parameters. When the subroutine is called,
references within the subroutine to DUMMY parameters become references to the
corresponding ACTUAL parameters.

The DUMMY parameters are so called because they do not exist as separate
variables. They are merely used as "alias 11 names in the subprogram for the
ACTUAL parameters, which have physical locations associated with them.
When a subroutine references one of its DUMMY parameters, it is actually
referencing the physical location of the corresponding ACTUAL parameter.

For Example

TAX = 1. 6
CALL SUB(TAX)

SUBROUTINE SUB(CASH)

XYZ = CASH/2, 0
WRITE(6,•)XYZ

would have exactly the same effect as :-

TAX = 1.6
PQR = TAX/2. 0
WRITE(6,•)PQR

CASH is just a name used by the SUBROUTINE to reference a variable, which in
this case happens to be known by another name in the main program.
Since a DUMMY and ACTUAL parameter are the same location, any alteration in
the value of a DUMMY parameter in a subprogram will also alter the value of
the ACTUAL parameter in the main program.

12.2.3. A subroutine for getting into a car

Suppose that it is possible to write a subroutine in FORGLISH, which is a
mixture of FORTRAN and ENGLISH. The following may then be a subroutine for
getting into a car.

SUBROUTINE ENTER (CAR, DOOR)
1. open the DOOR of the CAR
2. move through the OOOR into the CAR
3. close the OOOR of the CAR

END

This FORGLISH subroutine would work equally well on any type of CAR. If it

Introduction to FORTRAN

were called by:

CALL ENTER (HOLDEN, DOOR)

then the CAR referred to in the subroutine would actually be HOLDEN, as the
actual parameter HOLDEN is associated with the dlll'lll1y parameter CAR. In the
call:

CALL ENTER (VW, DOOR)

the CAR referred to in the subroutine would be VW. In the call :

CALL ENTER(DATSUN,BOOT)

the subroutine would now be used to get into the BOOT of DATSUN.
In the call:

CALL ENTER (Fl 11 , CANOPY)

the subroutine would now be used to get into an F111.
What would happen in the call:

CALL ENTER(GATE,HOUSE)

Following through the subroutine, and associating the parameters together, we
get the following:

GATE is associated with CAR
HOUSE is associated with OOOR

and now the subroutine would be trying to:
1. open the HOUSE of the GATE
2, move through the HOUSE into the GATE
3 , close the HOUSE of the GATE

What has gone wrong?

;I'he associations are not what was intended. What was meant was to have the
associations:

HOUSE is associated with CAR
GATE is associated with COOR

In order to do this we would need the call :

CALL ENTER(HOUSE,GATE)

lfhe order of the ACTUAL parameters is VERY important. The subr;.outine cannot
.j:.ell if the order is 'correct' or not, it merely sets up tbe associations
according to the order in which the parameters appear.

Introduction to FORTRAN 12-5

12.2.4. Execution of the BODY of a subroutine

When a CALL is made to a subroutine the following events occur:

1. The association between ACTUAL and DUMMY parameters is made
2. The statements in the BODY of the subroutine are executed.

The subroutine must return control of execution back to the MAIN program that
called it, so that the MAIN program may proceed with the lines of Fortran that
follow the CALL.
This is done by executing a RETURN statement in the subroutine. causing the
execution of the MAIN program to proceed from the line immediately following
the CALL statement that caused us to get into the subroutine in the first
place. There must be at least one executable RETURN statement in the
subroutine. The need for conditional RETURN's may result in there being more
than one RETURN statement in a subroutine. For example

IF(NAME. EQ. LEIGH) RETURN
READ(5, 100) MESAGE

100 F0RMAT(I5)
WRITE(6, 101)MESAGE

101 FORMAT(1X,' FOUND MESAGE or ',15)
RETURN

This part of the subroutine body says to return to the calling program in one
of two ways. If the value of NAME is equal to the value of LEIGH then return
straight away. But if they are not equal, then read in a value for MESAGE and
write it out before returning.

12.2.5. Execution paths using subroutines

The use of subroutines causes the execution path through the program to
deviate at each CALL, to execute the body of the subroutine ~ich causes a
RETURN to the caller (eventually) which then proceeds on. This sequence of
events may be shown by following the m1Dbers on the arrows of the diagram
below. (The arrows and minbers will be inserted in the lectures.)

Introduction to FORTRAN

Hain Program

CALI. A ODER(. •••)

CALL TOT(. •••)

STOP
END

12 .2. 6. Program structure

SUBROUTINE ADDER(. •••)

RETURN
END

SUBROUTINE TOT(••••)

RETURN
END

12-6

The subroutines are set up so that they follow the HAIN program. The main
program and each of the subroutines will have their own END statements.

This structure is one way of organising the main program and subroutines and
is not necessarily the way that it is done by all Fortrans, even on the same

computer.

12.3 . Example of a subroutine

Write a subroutine that will determine if a parcel may be posted, given the
dimensions of the parcel and its weight.

The criteria for acceptance are

weight < 10kg
length + 2*(width+depth) < 100cm

We define the length as the longest side, depth as the smallest side, and

width as the remaining side,

It should be up to the program to sort out which side is which, so that all
that the program user has to do is to input the three dimensions in any order,
and also the weight of course.

Introduction to FORTRAN 12-7

12 . 3, 1. Choosing parameters

We need to have parameters to pass to the subroutine and also a parameter that
will be returned from the subroutine, so that we will know if we can ~st the
article or not. So we have the following:

Name Type Description

SIDE 1 Real One of the dimensions of the parcel
One of the dimensions of the parcel
One of the dimensions of the parcel
The weight of the parcel in kg.
Will be set by the subroutine to

SIDE2 Real
SIDE3 Real
WEIGHT Real
POST Logical

• TRUE. if the parcel can be posted
.FALSE, if the parcel cannot be posted

12.3.2. Subroutine header and call

The subroutine header line will be

SUBROUTINE SEND (SIDE1,SIDE2,SIDE3,WEIGHT,POST)
LOGICAL POST

Note that we must declare the type of POST explicitly. The corresponding
actual parameter in the main program will have to be declared as a logical
variable in the main program also,

The subroutine call will have 5 parameters, the first 3 will be REAL and
r epresent the dimensions of the parcel, the next is REAL and represents the
weight of the parcel, t'he last is LOGICAL and is an indicator that we can test
to see if the parcel passed our tests.

So, an example of the subroutine use will be

LOGICAL OK
READ (5,•) Sl, S2, S3, WEIGHT
CALL SEND (S1,S2,S3,WEIGHT,OK)
IF (.NOT. OK) WRITE(6,•)S1,S2,S3,WEIGHT,' IS NOT ACCEPTABLE'

12.3,3. Subroutine body

The subroutine has to first work out l«lich dimension is which and then see if
both criteria are satisfied.

C

SUBROUTINE SEND (SIDE 1, SIDE2, SIDE3, WEIGHT, POST)
LOGICAL POST

C WORK OUT WHICH SIDE IS WHICH,
C LENGTH IS THE LONGEST
C DEPTH IS THE SHORTEST

Introduction to FORTRAN

C WIDTH IS THE H IDDLE ONE
C

AL a MAX (SIDE 1, SIDE2, SIDE3)
AD a HIN (SIDE 1, SIDE2, SIDE3)
AW a SIDE1
IF (SIDE2 ,GT. SIDE1 .AND, SIDE2 .LT. SIDE3) AW a SIDE2
IF (SIDE3 ,GT, SIDE1 .AND. SIDE3 ,LT , SIDE2) AW a SIDE3
DIM :: AL+ 2 .O* (AW + AD)
POST a (WEIGHT ,LT, 10,0) .AND, (DIM .LT. 100.0)
RETURN
END

12. 3. 4. Alternate approach

12-8

One disadvantage of the above subroutine is that we don't know exactly what is
wrong with the rejected parcel. We could overcome this in a n1nber of ways:

(a) Write out a message in the subroutine if something is wrong with the
parcel, and still return the value of POST as above, so that we would know
how to process that parcel further (if needed).

(b) Return one of a ntmber of values (rather than just TRUE or FALSE)
depending on what was wrong with the parcel. Then we'd have to test this
value in the main program and write out an appropriate message.

As an exercise, re-write the subroutine adopting approach (a) above ,

12.4, Simulation exercise

Appendix 4 contains a much fuller example of the stages in writing a
subroutine. It is also a simulation exercise, where two walkers approach each
other, one step at a time until they meet . The exercise is to find out where
they meet, and how far each one walked. It is worth while working your way_
through this example .

12,5. Using SUBROUTINES

Subroutines may be referenced from other subroutines as well as from the main
program. Care must be taken to ensure that a subroutine does not cal l itself,
either directly or indirectly. An example of calling oneself indirectly would
be

Main calls A., A calls B., B calls C,, then C calls A again .

The significant characteristic of a subroutine is that it is quite
independent. It can be written in isolation from the main program. The main
program need know nothing about how it works. It needs to know only its
SPECIFICATION (i.e. WHAT it does and how to call it). This means that it is
possible to set up LIBRARIES of subroutines, so that once a subroutine has

.I

Introduction to FORTRAN 12-9

been written for, say, solving linear simultaneous equations or calculating
standard deviations or correlation coefficients, it may be made available to
other interested programmers, to be used by them as larger building blocks, or
simply to save them the trouble of writing their own versions.

12.6. Calculate the area of a triangle

Problem:

To calculate the area of a triangle given its sides, and also to determine if
the triangle is reasonable. A reasonable triangle is one where the sun of any
two sides is greater than the third. The steps involved in writing a
subroutine to do this are:

(a) Choose a name for the subroutine, say, TRI, and decide on the DUMMY
parameters. Here the dun.my parameters will be:

A, B and C the three sides
AREA the calculated area
OK a LOGICAL variable, set to TRUE if the triangle is

reasonable and FALSE otherwise

So we arrive at the heading line:

SUBROUTINE TRI (A,B,C,AREA,OK

(b) Next we write the body of the subroutine, to perform the desired
operations on the dunmy parameters.

The entire sub program is then:

SUBROUTINE TRI (A,B,C,AREA,OK
C
C AUIHOR: L. LANDAU

DATE: SEPT 1977
MODIFIED BY L. LANDAU OCT 1979

C PARAMETER DESCRIPTION
C
C
C PARAMETERS WITH AN • NEXT TO THEM ARE ALTERED BY THIS
C SUBROUTINE
C
C A ONE SIDE OF THE TRIANGLE (REAL)
C B ONE SIDE OF THE TRIANGLE (REAL)
C C ONE SIDE OF THE TRIANGLE (REAL)
C * AREA THE CALCULATED AREA OF THE TRIANGLE (REAL)
C • OK • TRUE. IF THE TRIANGLE IS REASONABLE (LOGICAL)
C .FALSE. IF THE TRIANGLE IS NOT REASONABLE
C
C IF THE TRIANGLE IS NOT REASONABLE AN AREA OF a.a WILL
C BE RETURNED
C

Introduction to FORTRAN

C

PURPOSE:

TO CALCULATE THE AREA OF A TRIANGLE GIVEN ITS SIDES
AND TO TEST TO SEE IF THE TRIANGLE IS REASONABLE BY
ENSURING THAT THE SUM OF ANY TWO SIDES EXCEEDS THE THIRD

LOGICAL OK
IF(A+B .LE. C) GO TO 5
IF(A+C .LE. 8) GO TO 5
IF(B+C .LE. A) GO TO. 5

TRIANGLE IS REASONABLE

OK = • TRUE,
S = 0.5 * (A + B + C)
AREA = SQRT(S•(S-A) • (S-B) •(S-C)
RETURN

C TRIANGLE IS UNREASONABLE
C

5 CONTINUE
OK = .FALSE.
AREA = 0.0
RETURN
END

12-10

This subroutine can now be used by any program to calculate the AREA of any
given triangle specified by the program. So hTlen writing such a program, the
programmer need not worry about finding areas of triangles. but can simply
write

CALL TRI(SIDE1,SIDE2,BASE,AREA,LEGAL)

where SIDE1, SIDE2, BASE have been given values in the MAIN program at some
point prior to the call, and LEGAL has been declared as type LOGICAL.

12.7. Matching ACTUAL and DUMMY parameters

It is important to note that there MUST be a one to one correspondence between
ACTUAL parameters and DUMMY parameters. They must agree in three things:

1. NUMBER OF PARAMETERS.

There must be the same nllllber of actual parameters as there are dllllllly
parameters, for ANY call of the subroutine.

2. TYPE OF PARAMETERS.

There may be a mixture of REAL and INTEGER parameters, but the respective
types of the actual parameters must agree with the respective types of the
dllllmy parameters. For example, if the subroutine has a first line of :

SUBROUTINE ZOT(I, ADDER, LAST, AVER,MANY, ZZ, CORR)

Introduction to FORTRAN 12-11

then the actual parameters would have to be of type INTEGER, REAL, INTEGER,
REAL, INTEGER, REAL, REAL, respectively,

3 . DIMENSIONALITY.

If an array name is used as a parameter, then it must be dimensioned BOI'H in
the calling program, and also in the subroutine.

12. 8. Use of arrays as parameters: ADJUSTABLE DIMENSIONS

Problem:

To write a subroutine that will calculate the sum and average of the elements
of a one dimensional array.

(a) First choose a name, say, CALSUH, and decide on the dt1J1my parameters. Here
they are the number of elements of the array, say N, which is an INTEGER. Also
we need the name of the array, say A, which we will say is of type REAL, and
then the Slll'l, say SUH, which again is REAL, and lastly the average AVE which
is also REAL. This produces the subroutine header line of : -

SUB ROUT !NE CALS UM (A, N, SUM, AVE)

(b) Second, write the body of the subroutine to per form the desired operations
on the diinmy parameters:

SUBROUTINE CALSUM (A, N,SUH,AVE)

C AlJTHOR: L. LANDAU
C DATE: SEPT 1977

PURPOSE:
TO CALCULATE THE SUH AND THE AVERAGE OF THE FIRST N

C ELEMENTS OF AN ARRAY

C
C

PARAMETER DESCRIPTION

C
C
C

ANY PARAMETERS WITH AN * TO THEIR LEFT WILL BE ALTERED
IN THE SUBROUTINE

C A
C N
C * SUM
C AVE

THE NAME Of THE ARRAY
THE SIZE OF THE ARRAY 'A 1

THE TOTAL OF 'N I ELTS OF 'A 1

THE AVERAGE OF THE FIRST 1 N1

ELEMENTS OF THE ARRAY I A 1

DIMENSION A(N)
SUM = 0.0
D05I,1,N

SUM , SUH + A(I)
5 CONTINUE

AVE , SIJH/N
RETURN
END

(REAL)
(INTEGER)
(REAL)
(REAL)

Introduction to FORTRAN 12-12

The body of the subroutine is quite straight forward, except for the DIMENSION
of A. Clearly we must DIMENSION it, as rule 3 above states that we must, but
we are not sure of the dimensioned size of the corresponding actual parameter
in the main program.

A special facility exists to cater for this, as shown above. We can make it an
ADJUSTABLE ARRAY A(N). This says that the size of the array is unknown and may
even vary from one call to the next. However at each call its size will be
known, it will be given by N. As A is called an ADJUSTABLE ARRAY, so N is
called an ADJUSTABLE DIHENSON.

BarH ADJUSTABLE ARRAY AND ADJUSTABLE DIMENSION HUST BE DUMMY PARAMETERS.

12.9. Example of SUBROUTINE use

Problem:

We have a record and tape collection and wish to maintain a register of items·,
so that it may be easily updated, listed and maybe in the future, resorted.
At the moment, we can only process nU'llerical data, so that the record title
etc will have to be coded. The data to be recorded may be such things (coded
as integers) as:

- type of medium (record or tape)
- record/tape nU'llber
- location code (shelf nunber, borrowed, missing)
- music type
- condition of record/tape
- date obtained
- playing time (minutes and seconds)
- type of tape (low noise, chrome)
- Dolby indicator
- source of tape (pre-recorded, tapecopy)

The program should:

1. Read in all the data.
2. F.d.it the data, and print out any formatting errors.
3. List the data, printing 50 entries per line

and a heading and page nllllber on the top of each page.

The main program may look something like this:

comments describing the codes used and input data etc.

SUBROUTINES USED

REED THIS REAffi IN DATA FOR ONE TAPE OR RECORD AND RETURNS
INFORMATION IN AN ARRAY

EDIT THIS CHECKS THE INFORMATION READ IN
AND RETURNS A PARAMETER TO INDICATE

Introduction to FORTRAN

IF TiiERE WAS AN ERROR. IT IS
C RESPONSIBLE FOR PRINTING ERROR
C MESSAGES TOO.
C
C HEAD PRINTS A HEADING ON THE TOP OF A PAGE.
C ALSO INCREMENTS A PAGE COUNTER, AND RESETS
C THE LINE COUNT TO ZERO.

C OUTPUT WRITES OUT A LINE, INCREMENTS LINE COUNT
C

DIMENSION MUSIC (1 0)
LOGICAL OK
LINCNT • 0
NGOOO • 0
!PAGE • 0
CALL HEAO (IPAGE,LINCNT)

C REAO IN A MUSIC RECORD
C END OF FILE IS INDICATED BY A
C NEGATIVE TAPE/RECORD IDENTIFIER
C

5 CONTINUE
CALL REED(HUSIC, 10)
IF(HUSIC(1).LT.O)GO TO 99

C
C CHECK VALIOITY OF THE ENTRY
C AND COUNT THE NUMBER OF INVALIOS
C

CALL EOIT(MUSIC, 10,0K,LINCNT)
IF(OK)NGOOD•NGOOD+1
CALL OUTPUT(MUSIC, 10,LINCNT)
IF (LINCNT.GT.~O)CALL HEAD (IPAGE,LINCNT)
GO TO 5

C END OF FILE FOUND
C

99 CONTINUE
WRITE (6,100) NGOOD

100 FORMAT('l','THERE WERE ',13,' GOOD INPUTS')
STOP
END

12-13

Each subroutine wuld be described by a block of comments at its head saying:

(a) what parameters it uses
(b) what values are returned
(c) what the subroutine does

The main program does not do very much but call a m.nber of subroutines, but
it is easy to follow and provides an ideal starting point for understanding or
changing the program.

Introduction to FORTRAN

12. 10. Exercises

12. 10. 1. Exercise 12A

Given a SUBROUTINE line, and declaratives of:

SUBROUTINE JEDDA(DG,HAX, LOG, STRAD)
REAL UJG
DIMENSION DG(HAX,HAX) ,LOG(MAX, 10)

12-14

which of the following calls are legal, given the following declarations in
the calling program.

DIMENSION CT(44, 44) ,SUNNY(44, 44) ,KASH(1 D, 10)

(a) CALL JEDDA(CT,18,SUNNY,14.8)
(b) ISZ = 30

BROK= 98, 4
CALL JEDDA(SUNNY, ISZ+3, CT, BROK+ISZ)

(c) CALL JEDDA(KASH,8,CT,9. 1)
(d) CALL JEDDA(CT ,6, SUNNY)
(e) CALL JEDDA(14,CT,SUNNY,18.9)
(f) CALL JEDDA(CT(13,4),10,SUNNY(3,3),CT(2,2))
(g) CALL JEDDA(CT,45,SUNNY,CT(2,3))

12.10.2. Exercise 12B

JA is a one dimensional array with 50 elements. Write a SUBROUTINE subprogram
to compute the average of the first N elements and a count of the m.111ber of
these elements that are zero. Call the subprogram AVERNZ(JA,N,AVER,NZ).

12.10.3. Exercise 12C

Write a SUBROUTINE that reads in a two dimensional array, using adjustable
dimensions.

1.2.10,4. Exercise 120

;.'rite a SUBROUTINE which, given an angle in degrees, e.g. 37.278, calculates
degrees, minutes, and seconds as integers. Take the seconds to the nearest
integer. There are 60 seconds in a minute and 60 minutes in a c;legree.

Introduction to FORTRAN 12-15

12. 10.5, Exercise 12E

Write a complete program, consisting of a main program and three SUBROUTINE
sub programs. which will sort a list of minbers as follows. The n1.111ber of

nunbers will be read by the main program which then calls the first SUBROUTINE
to read the m.rnbers to be sorted. The main program will then call the second
SUBROUTINE to sort the n1.111bers into descending order. The third SUBROUTINE

will be called to print the mrnbers in their original order, and will then be
called again to print out the mll'lbers in their sorted order. All input should
be in fixed field format and all output should be in a presentable form with

suitable headings.

12. 10. 6. Exercise 12F

Set a variable to the value 1.0. Multiply the variable by 0, 1 and then this
result by 10.0 and set this result back in the variable. Repeat this

multiplication procedure for a total of 10000 times and print out the final
result, Why isn't it 1.0?

Be careful that your program is correct before you nm it on the computer.

Otherwise, you may attempt to print out 10000 lines of output, and then you' 11
be in trouble for wasting paper!

Introduction to FORTRAN 13-1

13. CHAPTER 13

13. 1. FUNCTIONS

Functions have already been introduced in a previous chapter. So far the
functions that have been used have been standard Fortran functions such as
MOD. ABS, SIN etc. Each function has a specific name, a list of actual
parameters and a type of result (i.e. integer or real).
Functions are used directly within arithmetic expressions, unlike subroutines
which require a CALL statement to invoke them.

13.2. Writing your own FUNCTIONS

A function is a type of subprogram and it is composed of a mmber of lines of
Fortran (just as a subroutine is).
The form of a function is:

FUNCTION name (dunmy parameters)

body of the function

END

13.2. 1. FUNCTION header

The first line is the function header I which identifies the lines that follow
as being a FUNCTION. The function header is composed of

(a) name
This is the name of the function (some standard Fortran function names are

HOD. ABS etc) and it follows the rules for variable names. The TYPE of the
name (i.e. integer or real) identifies the TYPE of result that the function
will return. So a function whose name is of type integer will return an
integer result, similarly a real name .«lUld mean that the function will return
a real result. The result of a function is that value which is assigned to
the name of the function fr-om within the body of the function. That is, the
function name is treated as a variable, which is assigned a value within the
function I and this is the value which is returned to the calling program.

(b) dunmy parame:ters
These are the same as specified in subroutines. When the function is used,

it will have corresponding actual parameters. If there are no parameters then
the brackets may be omitted fr-om the function header, but they should be

Introduction to FORTRAN 13-2

included in the function reference (so that the compiler can distinguish it
from a variable reference).

13,2,2, Last line of a FUNCTION specification

The last line of function must be

END

as is the case with a subroutine,

13.2.3. Body of a FUNCTION

The body of a function contains

(a) At least one RETURN statement.
(b) At least one assignment of a value to the name of the function.

The RETURN statement is used in the same way as it is in a subroutine: 1 t
specifies that execution of the calling program is to continue on from the
point at which the function was referenced in the calling program (the calling
program may be a MAIN program, a subroutine or a function).

The assignment of a value to the name is done so that a value may be returned
from the function. This assignment must be by either

(a) The function name appearing on the left hand side of an assignment
statement

(b) The function name appearing in a READ statement

13 . 3. Ex ample of a FUNCTION

Suppose that we wanted to find the average of the first N nllDbers in a real
array, The FUNCTION AVER will return this answer. This average is used to
write out a message. If the average is greater than 50.0 then write out that
the average is good; otherwise write out that the average is low.

DIMENSION VALUES (1 00)

1. read in values into this array
2. read in a value for N
3. test to ensure that N is less than or equal to 100

Introduction to FORTRAN

IF (AVER(VAWES,N) .GT. 50) THEN
WRITE (6, 10)

ELSE
WRITE (6,20)

END IF
10 FORMAT(lX,'THE AVERAGE IS GOOD')
20 FORMAT(1X, 'THE AVERAGE IS LOW 1)

STOP
END

FUNCTION AVER(ARR,NUM)
DIMENSION ARR(NUM)

CALCULATE THE AVERAGE OF THE FIRST NUM ELEMENTS
OF THE ARRAY ARR

TOTAL = 0.0
DO 12 I = 1,NUM

TOTAL : TOTAL+ARR(I)
12 CONTINUE

AVER : TOT AL/NUM
RETURN
END

13.4. Explicit Type Declarations for Functions

13-3

The default type of the result of a function is given by the type of its name.
Just as the default type of a variable name can be overridden by an explicit
TYPE statement (i.e. INTEGER or REAL) so we may do the same with a function,
by specifying its explicit type on the function header line as

type FUNCTION name (dunmy parameters)

For example

REAL FUNCTION NS(A, I)

would return a REAL n1m1ber even though the name NS is an integer name. It is
as if the name of the function (in this case NS) appears in a type statement.
Toe function type must be the same in the calling program and the function, so
if this form of typing of a function is used then the function name HUST also
appear in a type statement in each program (or subprogram) where it 1:s
referenced. In the above example, the calling program would need the type
:statement

REAL NS

13.4.1, Example of a LOGICAL function

It is very useful to have type LOGICAL functions, but you HUST ensure that you
explicitly TYPE the function name in the program (or subprogram) that

Introduction to FORTRAN

references the function. For example, suppose that we had a program that read
in an array of n1.111bers that represented the salaries of people. Further
suppose that these salaries are sorted into ascending order, but just to
ensure this we have a LOGICAL function called EDIT to test for this, and also
to test that no salary is less than 100.0 nor greater than 100,000.0

The data description is:

Salaries appear one per line, and the last one is a negative salary. The
values are entered in colllDns 1-10.

C
C AllrHOR: L. LANDAU

DATE: OCTOBER 1979
C INPUT DESCRIPTION:
C SALARIES ARE ENTERED ONE PER LINE AS REAL NUMBERS, IN
C COLUMNS 1-10.

C

END OF DATA IS SIGNALLED BY A SALARY LESS THAN ZERO

SUBPROGRAMS USED:

EDIT A WGICAL FUNCTION THAT TESTS THE VALIDITY
OF TIIE DATA

LOGICAL EDIT
DIMENSION SALARY(1001)
MAXNUM • 1000
IROW • 1

C READ IN SALARIES
C

10 CONTINUE
READ(5,20) SALARY(IROW)

20 FORMAT(FlO.O)
IF (SALARY(IROW) .LT. 0.0) GO TO 40
mow = IROW + 1
IF (IROW .LE. MAXNUM+l) GO TO 10
WRITE (6, 30)MAXNUM

30 FORMAT(1X, 'TOO MANY SALARIES, CAN ONLY HANDLE ',14)
STOP

C
C COME HERE WHEN END OF DATA IS FOUND
C

40 CONTINUE
IROW • IROW - 1
IF (EDIT(SALARY,IROW)) GO TO 60
WRITE(6,50)

50 FORMAT(lX, 'NOT SORTED SALARIES OR OUT OF RANGE')
STOP

60 CONTINUE

the rest of the main program would come here

END

Introduction to FORTRAN

LOGICAL FUNCTION EDIT(SALARY, N)
C
C AllrHOR : L. LANDAU
C DATE : OCT 1979
C PURfOSE:

C

TO CHECK THAT THE ARRAY IS SORTED INTO ASCENDING ORDER AND
THAT ALL THE NUMBERS LIE IN THE RANGE Of 100.0 TO 100,000.0

PARAMETER DESCRIPTION:

SALARY
N

A REAL ARRAY OF SALARIES
THE NUMBER Of SALARIES IN THE ARRAY

VALUE RETURNED BY THE FUNCTION:

IF THE DATA IS OK THEN RETURN • TRUE.
IF THE DATA I S NBG THEN RETURN .FALSE.

DIHENION SALARY(N)
IF(SALARY(l).LT.100 . 0) GO TO 90
IF(SALAR Y(N). GT .100 000.0) GO TO 90
D05I,2,N
IF(SALARY(I-1).GT.SALARY(I)) GO TO 90

5 CONTINUE

C ALL OK SO RETURN TRUE

EDIT , • TRUE.
RETURN

C
C COME HERE IF ERRORS FOUND
C

90 CONTINUE
EDIT , .FALSE.
RETURN
END

13. 4.2. Writing FUNCTIONS

13-5

Using fun ctions will pose no problems, as we have been using the basic ones
all along. Any problems that arise will do so in the writing of the functions
themselves . Clearly, we do not first write a subroutine and then convert it to
a function, as we did above : we write it directly. Let us see this by writing
a ft.mction to calculate the area of a triangle from its sides. The technique
used in writing the function is the same as for the subroutine:

(a) Choo.se a NAHE and TYPE for the function (say REAL FUNCTION AREA) and
decide on its d1.1nmy parameters (the REAL quantities A, B, and C representing
the sides). Thus we arrive at the heading:

REAL FUNCTION AREA(A, B, C)

Introduction to FORTRAN 13-6

{b) Write the body to calculate the appropriate value from the dunmy
parameters, and assign that value to the name of the function. This is
quite simply done here by calculating S, and then AREA and then returning.

REAL FUNCTION AREA(A, B, C)
S : O. 5*(A + B + C)
AREA = SQRT(s•(S-A)•(S-B)•(S-C)
RETURN
END

13.5. Why use subprograms?

Subroutines and functions may be used as self-contained building blocks to
write a program. If a problem can be decomposed into sub-problems that may
easily be solved, so a Fortran program may be designed in a similar way. This
is the divide and conquer strategy of solving problems. Further, since a
subprogram may exist in isolation from a main program, it may be tested
independently also, and when it has been proved to work, it may be combined
with other routines in the overall programming system.

If a subprogram is general, it may be used in a variety of situations, thus
saving much repetitive effort on the part of the programmer.

Programs that use sub programs are easier to follow, and easier to maintain,
two of the desirable goals that make a program 'better'.

Host computer installations maintain a library of subprograms which may be
used to solve common problems such as sorting, solving sets of linear
equations, returning the date and time, statistical analysis subroutines, and
many more.

13 . 5.1. Common errors and points to note

There must be the same minber of parameters in the use of a subprogram as
there are in the definition.

There must be a one to one correspondence between variable types in both
parameter lists i.e. if a parameter is an integer in the definition, then an
integer must be supplied as the actual parameter.

If an array name is used as a parameter, then it must be dimensioned in the
calling program and the corresponding parameter in the defilltt15m must be
dimensioned also. Both of these dimensions must be id~q,tical, unless
adjustable dimensions are being used. In this case, the array must be defined
in the calling program witJ') a fixed dimension, and the values of the DIMENSION
statement must be supplied as parameters to the subprogram. Only arrays in
,the parameter list can have adjustable dimensions.

pie name of a FUNCTION subprogram must appear at least once in the definition
subprogram on the left hand side of an assignment statement or in a READ
statement.

Introduction to FORTRAN 13-7

The name of a SUBROUTINE subprogram must not appear in any statement in the
defined sub program, except as the name of the SUBROUTINE in the SUBROUTINE
statement itself.

If the definition of a subprogram changes the value of a variable in the
parameter list, then a constant cannot be used as the corresponding actual
parameter, or the value of the constant may be changed.

A RETURN state ment or a logical IF statement containing a RETURN statement
must not be the terminal statement of a DO loop.

A CA LL statement or a logical IF statement containing a CALL statement must
not be the terminal statement of a 00 loop.

13.6. Exercises

13, 6.1. Exercise 13A

Write a REAL function to calculate the area of a circle of radius r.

2
area = 3, 11'159265r

13,6.2. Exercise 13B

Define an REAL function to compute

2 1/2
f(x) = x + (1 + 2x + 3x)

Then use the function to compute

6,9 + y

•=-----------
2 1/2

y + (1 + 2y + 3y

2. 1z + z

b=-----------
1/2

z + (1 + 2z + 3z

Introduction to FORTRAN

sin y

1/2
y + (1 + 2y + 3Y

d:----------------
sin y + (1 + 2sin y + 3sin y)

13.6.3. Exercise 13C

1/2

13-8

Write a FUNCTION subprogram, with two parameters r and p, that calculates the
area of

an equilateral triangle of side r i.hen p = 1,

a square of side r when p = 2,

a circle of radius r when p = 3.

13. 6. 4. Exercise 13D

Write a FUNCTION subprogram for which the parameter list contains A, H, and N,
where A is an array name, and H and N are the m.abers of rows and collmns
respectively. Toe function value is to be the sin of the absplute values of
all the elements in the array. The dimensions are to be adjustable.

13.6.5. Exercise 13E

Write a FUNCTION subprogram that searches a one dimensional array and returns
the largest value.

13.6.6. Exercise 13F

Write a function that will count the m..rnber of zeros in a two dimensional
integer array.

Introduction to FORTRAN 14-1

14. CHAPTER 14

14. 1. Character manipulation

1977 standard Fortran ·introduced major changes in the way characters (text)
are handled. 1966 standard Fortran had no special data type for character
handling and no character handling operations possible (such as concatenation
and substringing). Because of these major changes, both the 1966 and 1977
versions of character handling are bcluded.

The 1966 standards are presented in Appendix 5.

14.2. Declaration

In 1977 a new data type was introduced, called type CHARACTER, which is used
to store a nunber of characters. On the Univac the limit is 511, The form of
declaration of character variables is

CHARACTER*! variable list

The 1 indicates the length, or nunber of characters that may be stored in the
variables on the list. In addition to this, variables on the list may be
followed by an asterisk and a length specification.

For ex ample:

1 CHARACTER*20 NAME, ADDR
2 CHARACTER NAME*20, ADDR*20
3 CHARACTER*5 AXLE*lO, MINE, ROB*100

Line 1 indicates that the two variables NAME and ADDR are character variables,
and can each store 20 characters.

Line 2 has the same effect as line 1, but does it by including individual
length specifications.

Line 3 declares that any variables that do not have their own length
specifications will be able to store 5 characters each. So, AXLE can store 10
characters, HINE can store 5 and ROB can store 100.

111.3. Character arrays

Character arrays are similar to integer or real arrays except that they
contain a m.mber of characters in each element of the array.

Character arrays can be dimensioned in a dimension statement or within the
character declaration. For example, the following declarations are identical,

Introduction to FORTRAN 14-2

and they each declare TRIAL to be a character array of size 100 and X to be a
character array of size 10. Each element of TRIAL can store 48 characters. and
each element of X can store 2 characters.

CHARACTER
DIMENSION

TRIAL*48. X*2
TRIAL(100) ,X(10)

CHARACTER*48 TRIAL(100) ,X(10)*2

CHARACTER TRIAL*48(100) ,X*2(10)

14.4. Character constants

A character constant, sometimes called a literal or text constant, is any
string of characters enclosed within single quotes. If a single quote appears
within the character constant, then it must be immediately follol!fed by another
single quote. So far. we have been using character constants in headings in
J,iRITE statements. Now they can also appear within character expressions,
analagous to integers and reals appearing within arithmetic expressions.

If a character constant appears on the right hand side of an assignment
statement. then its value is placed in the character variable on the left, so
that the constant is truncated if it is too long, or is placed left justifed
in the variable, with blanks filling the rightmost characters if the constant
is too short.

For example:

CHARACTER*8 HAN. FUSS*12
HAN = 'ABCD'
FUSS = 'THE BOY' 'S JOB IS DIFFICULT'

The value stored in HAN is: ABCil>bbb
The value stored in FUSS is: THE BOY'S JO

A b indicates a blank,

14.5, Substrings

Reference is made to substrings by

VAR(e1:e2) ARRAY(subscripts) (e 1 :e2)

where VAR is a character variable. ARRAY(subscripts) is an elem~nt of an array
of type character. and e1 and e2 are integer expressions.

The value of el specifies the leftmost character position of tti,e substring.
The value of e2 specifies the rightmost character position of the substring.

If len is the length of the character variable, then

Introduction to FORTRAN

l<: e1 <= e2 <= len

where <= means less than or equal to.

If el is omitted, a value of 1 is implied.
If e2 is omitted, a value of len is implied.

14,6. Examples of substrings

(a) CHARACTER*20 STATE
CHARACTER*10 NAME
STATE : 'WESTERN AUSTRALIA'
NAME : STATE (9: 17)
STATE(1 :7) = STATE (9: 15)

After this.

NAME is AUSTRALIA
STATE is AUSTRAL AUSTRALIA

(b) Assuming the original declarations above,

STATE : 'ABCDEFGHIJKLMNOPQRSTUVWXYZ 1

NAME : STATE(5: 20)

After this the values are

STATE
NAME

ABCC£FGHIJKLMN0PQRST
EFGHIJKLMN

(c) Find all the blanks in a character string LINE:

CHARACTER*80 LINE
READ (5,*) LINE
0010!=1,80

IF CLINE (I: I) . EQ. 1 1) WRITE (6, *)'BLANK IN POSITION ' • I
10 CONTINUE

(d) CHARACTER*4 C(2,2),C1
C1 : 'abcd 1

C(1,1)(3:4) = C1(1:2)
C(1,1)(1:2) = C1(3:4)

puts I cdab' into C(1 , 1) •

14. 7. Reading and writing characters

14-3

Introduction to FORTRAN

14. 7 .1. Free format

Character variables may be read and written using free format. In writing,

the resultant output takes as many coll.mns as the size of the character

variable.

In reading. the data is presented as a character constant. namely, a string of

characters enclosed in single quotes.

14.7.2. Fixed format

Input and output of characters is handled by the A field descriptor, which has

the form

Aw

where w indicates the width of the input or output field.

If the w is omitted then the declared length of the character variable {that

is being read/written) is assumed.

If w is specified and is different to the length of the I/0 item then

(i) On input,

{a) If w < length then w characters are placed left justified with blank fill,

in the I/O list item.
(b) If w > length then the rightmost 'length' characters are taken from the

input field.

(ii) On output.

(a) If w < length then the leftmost w characters are output

(b) If w> length then 'length' characters are written, right justified in a

field of length w.

14, 7. 3, Exc111ple of reading and writing

Consider the following data and program

CHARACTER*l O CODE, LOCAT
CHARACTER*4 MED, LOST
READ (5,10) CODE, LOCAT, MED, LOST

10 FORMAT (A5,A12,A3,A)

WRITE (6,20) CODE, LOCAT, MED, LOST

20 FORMAT (1X,A,A,2A6)

The input data is

Introduction to FORTRAN

ABCI:EFGHIJKLMNOPQRSTUVWXYZ

The result is

Variable
CODE
LOCAT
MEO
LOST

and the output is

Value
ABCDEbbbbb
HIJKLMNOPQ
RSTb
uvwx

ABC C£bbbbbHI JKLM NOPQb b RSTb bb UVWX

14.8 . Character operators

The only character operator is the concatenation operator (//)

expr1 // expr2

14-5

where exprl and expr2 are character expressions. The value of the above
expression is a character value that is the first expression immediately
followed by the second.

For example

(a) CHARACTER A*4, B*8
A ::: 'abcd'
B =A// 'efgh'

results in B containing 'abcdefgh'

(b) CHARACTER*25 T 1, T2, T3*15
Tl = 'GONE SHOPPING'
T2 ::: 'BLUE JUMPERS ARE IN THERE 1

T3 = Tl(l:2) // ' ' // T2(6:9) // T2(17:23) // ' LAKE'

What is stored in T3?

See Hierarchy of Operators (Appendix 3).

14.9. Comparing character expressions

This is done with a logical IF statement where both sides of the relational
exp-ession are character expressions.

1977 Fortran. as well as introducing character variables. made it illegal to
compare a character expression (for example something enclosed in quotes) with
anything other than another character expression. This may cause 301De problems
to people who have 1966 version programs that do character comparisons as
there will be comparisons between integers or reals with character expressions

'\

Introduction to FORTRAN

(because in 1966 Fortran characters were stored in integer or real variables).

Greater than and less than operators are satisfied by an Ascii collating
sequenc e (see Appendix 3 for Ascii codes).

If two character expressions of unequal length are compared, then the shorter
one is considered to be extended by blanks.

14. 10. Supplied Functions

Ascii Fortran supplies functions to operate on character variables, array
elements and expressions.
The following abbreviations are used:

I = integer
C = character
L : logical

param = parameter

Fune No. Type Type Description
narae of of of

!CHAR

CHAR

params par am result

LEN 1
INDEX 2

LGE

LGT 2
LLE 2
LLT 2

Position of the par am in the table of ASCII codes
(Appendix 3), starting at position O.
Character in the ASCII code table indexed by the
parameter.
Length of param, ie. nunber of characters.
Starting position of param 2 within param 1 (= 0 if
string not found) •
, TRUE. if param 1 is lexically greater than or equal
to param 2 , otherwise ,FALSE.
Lexically greater than.
Lexic ally less than or equal.
Lex i cally less than.

14.11 . Functions and subroutines

A c harac ter function is a funct i on whose type is c haracter (tht value returned
by the function is a c haracter string). The function is declar.ed to be of type

charac ter, and the fun c tion name must also be declared in the calling program.
The form is

CHARACTER*length FUNCTION name (dunmy parameters)

Introduction to FORTRAN 14-7

14.11.1. Passing character parameters

Passing characters can be a painful process, because you need to know the
length of the character variable in order to declare it within the function or
subroutine. Fortran has a mechanism for allowing an 'adjustable' character
length for parameters, so that the length used will be the length of the
actual parameter for each subprogram reference. This is done by declaring (in
the subprogram) the dl.lllmy parameter as

CHARACTER*(*) list of dlmllly parameters

For example

SUBROUTINE X (LINE, WORD)
CHARACTER*(*) LINE, WORD(10)

declares LINE as a character variable and WORD as a character array.

14.12. Sample program

The following program will read a list of names and addresses and print them
out in a presentable form. The name on the input line occupies the first 36
coll.lllns and the address takes coll.lllns 37 to 80 inclusive. The end of the data
is indicated by a blank name field.

AUTHOR: L. LANDAU
C DATE: OCTOBER 1979
C MODS: JANUARY 1981 to update to 1977 Fortran
C Done by Les Landau
C
C INPUT a;:SCRIPTION:
C
C
C EACH LINE CONTAINS NAMES AND ADDRESSES. 1l!E LAST LINE
C CCJITAINS BLANKS IN THE NAME FI~LD.
C
C
C
C
C
C
C
C

COLUMNS
1 - 36

37 - 80

PURPOSE:

MEANING
NAME CF PERSON
ADDRESS CF PERSON

C TO READ IN AND LIST PEOPLES NAMES AND ADDRESSES
C HAVING 50 PER PAGE, WITH PAGE COUNTS AT THE TOP
C

CHARACTER*ll4 ADDR
CHARACTER*36 NAME

IPAGE = 1

Introduction to FORTRAN

LINCNT • 0
C
C WRITE OUT A HEADING

C
WRITE(6, 10) !PAGE

10 FORMAT(' 1NAHE 1 ,46X, 'ADDRESS' ,20X, 'PAGE: 1 ,14/

$ 1X, 1 --- 1 ,46X, 1 ------ 1 /1)

C
C READ THE NEXT NAME AND ADDRESS
C

20 CONTINUE
READ (5,30) NAME, ADDR

30 FORMAT(A36,A44)
C

TEST FOR END OF DATA

IF (NAME ,EQ, ' ') STOP
C
C CHECK IF A HEADING IS REQUIRED, THEN WRITE OUT NAME

C AND ADDRESS AND THEN GO BACK FOR MORE

C
IF (MOD(LINCNT,50) ,NE. 0) GO TO 40

IP.A.GE = IPAGE + 1
WRITE (6, 10) !PAGE

40 CONTINUE
WRITE (6,50) NAME, ADDR
LINCNT = LINCNT + 1

50 FORMAT(lX,A, 14X,A)
GO TO 20
END

14-8

As an exercise suggest how you could modify this program to write out the

address immediately following the name, ignoring the trailing blanks in the

name field. So the output wuld be

NIT ALLEN, 23 WALDORF GRADE HOLLYOAK DRAIN

instead of

NIT ALLEN 23 WALDORF GRADE HOLLYOAK DRAIN

14, 13. Exercises

14.13,1, Exercise 14A

Write a program that will read in a line of text, and then will write out

HAPPY BIRTHDAY text

Input is terminated by an end of file. Use the program to print out

Introduction to FORTRAN

HAPPY BIRTHDAY to you
HAPPY BIRTHDAY to you
HAPPY BIRTHDAY dear Erin
HAPPY BIRTHDAY to you

14 . 13 . 2. Exercise 148

14-9

Write a subroutine that will return the first word in a line of text that is
passed to it as a parameter. A word may be delimited by a blank, a comma or a
full stop.

You can assume that the line is a maximl.111 of 80 characters. If no delimiter is
on the line, then just return the value of the line itself,

The answers present a more general version of this subroutine, and its calling
program. When you have answered the question, look carefully at the presented
answer.

14. 13 . 3. Exercise 14C

Given an integer variable I, with I not less than 1 and not greater than 12,
set up a program that will print in three printing positions one of the
abbreviations JAN, FEB, MAR, APR, etc., depending on the value of I. This
program can and sho uld be done without the use of GO TO statements,

14.13.4. Exercise 14D

Given an integer variable J with J not less than 1 and not greater than 7, set
up a program to print one of the words MONDAY, TUESDAY, etc., depending on the
value of J.

14. 13, 5, Exerci3e 14E

A canpany manufactures n products totiere n is not greater than 50. Each
product has a 5-character code and a 20-character description. Write the
following main program and SUBROUTINE.

The main program reads the i:roduct information into two one-dilllensional arrays
of length SO, with codes in the first array and the corresponding descriptions
in the second array. It then should read in a product cod e and call the
SUBROUTINE which searches the first array, finds the product, and prints out
the code and description. The main program should be capable of reading any
n1.aber of product codes.

Introduction to FORTRAN
14-10

14.13.6. Exercise 14F

Write a program to read an integer which represents the day in the year 1981. Print out the the corresponding date in the form

day of week day of month month year

For example, if the input were

328

the output should be

TUESDAY 24TH NOVEMBER 1981

14.13.7. Exercise 14G

~rite a program that will read with the A field descriptor a line of data containing integers in free field format. The data may contain the ten decimal digits, plus and minus signs, and commas. The program is to convert the characters into the corresponding integer n1.111.bers, and print out the original data and the computed integer values.

Introduction to FORTRAN 15-1

15. APPENDIX 1 - Notes on doing assignments

The assignments are designed to try to teach you some aspects of Fortran
programming. Although it is important for your program to produce the correct
answer, we are not interested in JUST this. We already know the answers, and
know how to do the problems! It is HOW you arrive at the answers (i.e. the
structure of the program, and to some extent, the method used in the program)
that is important. The note.s below are intended to let you know the kinds of
things that will be looked for in marking your assignments. The comments below
apply only to those question.s that require the writing of a Fortran program.

1. The program must correctly solve the question asked.
You .should check your results. Some results are more easily checked than
others. You should look very carefully at your answers and satisfy yourself
that they are correct. If there is insufficient information printed out then
you should change your program to print out sufficient information, before
handing the assignment in.

2 . The program should be written in such a way that it can be easily
understood by you in a year's time, and also by anyone else (who has not
read the assignment sheet) who understands FORTRAN, most importantly the
person marking your assignment!

This may be achieved by:

(a) Good program design
(b) Choice of meaningful variable names
{ c) Well structured COMMENTs

3. At the beginning of the program you should use comments to explain:

(a) What the program is designed to do.

(b) Who wrote it.

(c) When it was written.

(d) What general method the program em.ploys.

(e) How the data is designed (if any) , and how to use the program.

(f) Any limitations the program has.

In order to help you to remember to put in this information y_ou should
include the following titles within your comments, even if they do not seem to
apply:

AlJfHOR:
DATE:
INPUT DESCRIPTION:
PURPOSE:

All assignments handed in HUST have those titles, at least, or they will be

r
i

Introduction to FORTRAN 15-2

rejected. Of course you mu~t also fill out the titles with appropriate information.

Whenever helpful or necessary throughout the program you should use comments to explain:

(a) What a variable is used to represent (unless obvious).

(b) Why a particular operation is being performed.

(c) Any special 'tricks' you use.

4. Headings on output
All the output from the program should be clearly headed so that even if you didn't have a program listing to accompany the output, it would be clear from your headings what the results are and how they are to be interpreted.

5. Program Generality
There are various degrees of program generality, and a balance needs to be foimd. Minimally, the program should be able to be run again, using different (although the same quantity) of data, WITHOUT ANY CHANGE TO THE PROGRAM WHATSOEVER! Sometimes program changes may be necessary, in order that the program can run with an increased amount, or different type of data. In this case, the fewer changes required (generally) the more general the program.

Remember that the suggested data for any program is only sample, and the program must be able to handle other data sets as well.

6. Elimination of unnecessary program statements.

This is NOT to be taken to an extreme! A program with fewer statements may in fact be a much worse program both in the sense of understandability and efficency.

An example of what will be looked for in this area is:

We shall see how it is possible to repeat a series of instructions in Fortran by the use of a 00 statement (as one means). Another means is to write out the statements (explicitly) the m.mber of times t!iat you wish them to be repeated. The latter is far worse.

If you have any queries as to what is expected in assignments~ ask about it in tutorials, and the point will be clarified.

In spite of what you may think, the assignments are not meant t,o TEST you, but to help you LEARN.

Introduction to FORTRAN 16-1

16. APPENDIX 2 - Control commands required by the UNIVAC

Computers use many programs and compilers other than the Fortran compiler :so
it is necessary to indicate which compilers are to be used and \otlere the data
is . The se commands to the computer as known as CONTROL STATEMENTS. These
were introduced and explained in Chapter 1.

The control statements required to r1.r1 FORTRAN exeroises are as follows.
Please ensure that you type them EXACTLY as they appear below, with no extra
or fewe:r blanks than is indicated.

16 , 1. Log-on procedure

Log onto a Uniscope terminal by typing its site-id, or into a network terminal
by typing CONTROL-V U, and then enter the userid/password that has been given
to you. Enter a rlD'lid, up to 6 characters long, beginning with your three
initials , Line printer output will be filed under the third character of your
run id, unless you are using the bag service.

16. 2, File creation

Use only one file to contain your program:!! and also your data. The filename
that you use could be anything, for example, PROGS. To create the file use:

@CAT,P PROGS.

16. 3, Element creation for programs

You will use the editor (@ED) to create your program, choosing element names
that reflect your assignment. For example to create the program for assignment

_2 question 3b

@ED, IQ PROGS.A2Q3B

type in the text of your program

EXIT

16.4. Eleraent creation for data

You can type data directly at the terminal, but you should always create an
element to put the data in, and then use the @ADD command to introduce your
data to the program. This means that you only have to type the data in once,
and errors can be corrected. Some consistent element naming is required, and
one 3Uggestion is to use version names. So, the element that contains the data

Introduction to FORTRAN

for assignment 2 question 3b would be created by

@ED, IQ PROGS.A2Q3B/DATA

• • • enter your data

EXIT

16.5. Program execution

Assuming your program is in the element

PROG.A1Q2

then the following commands will compile and run the program:

@FTN,CS PROG.A1Q2
@EDF

You will then get a message appearing at the terminal saying:

ENTERING USER PROGRAM

16-2

At this point, you should enter your data, by udng an @ADD command. So,
leaving out the computer's responses you would have

@FTN,CS PROGS.A1Q2
@EDF
@ADD PROGS.A1Q2/DATA

The S option on the @FTN command will cause a program listing to appear at the
terminal. The C option is to run the program after compiling it .

16. 6. Obtaining a program listing

To obtain a listing of your program (without doing an execution) do

@SUSPEND
@FTN,S PROGS.A2Q3B
@EDF
@RESUME, E

now examine the listing of the program with
@ED commands, to see if you want to print it.
If you do want to print it then:

@RESUME PR
or
@RESUME, D

will print it and delete the printfile afterwards

will delete the printfile

Introduction to FORTRAN 16-3

To obtain a listing of your program complete with an execution (for handing
in) do

@SUSPEND
@FTN, CS FROGS. A 1Q3B
@EOF
@ADD FROGS.A 1Q3B/DATA
@RESUME, E

Then proceed as above to examine and print or delete the printfile.

Introduction to FORTRAN 17- 1

17. APPENDIX 3 - Ascii Codes, and Hierarchy of ~erators

17.1. ASCII Codes and Symbols

A S C I I 0 D E S A N D SYMBOLS
(all codes are expressed in OCTAL)

CODE SYMBOL CODE SYMBOL CODE SYMBOL CODE SYMBOL
000 040 100 @ 140
001 041 101 A 141 a
002 042 " 102 B 142 b
003 043 , 103 C 143 C

004 044 $ 104 D 144 d
005 045 J 105 E 145 e
006 046 & 106 F 146 f
007 047 ' 107 G 147 g
010 050 110 H 150 h
011 051 111 I 151 i
012 052 . 11 2 J 152 j
013 053 + 11 3 K 153 k
014 054 114 L 154 1
015 055 - 115 M 155 m
016 056 116 N 156 n
017 057 I 117 0 157 0

020 060 0 120 p 160 p
021 061 1 121 Q 161 Q

022 062 2 122 R 162 r
023 063 3 123 s 163 5

024 064 4 124 T 164 t
025 065 5 125 u 165 u
026 066 6 126 V 166 V

027 067 7 127 w 167 w
030 070 8 130 X 170 X

031 071 9 131 y 171 y
032 072 132 z 172
033 073 133 [173
034 074 < 134 \ 174
035 075 135 l 175
036 076 136 .

176 -
037 077 137 177

000-037 and 1 77 are contro l
is the code for a blank.

charact ers (e .g. car riage return, del et e). 040

Introduction to FORTRAN 17-2

17. 2. Hierarchy of Operators

The following hierarchy is used to determine the order of evaluation of
expressions :

Rank

7
8
9

10
11

Kind Operation

expressions in all
parentheses

functions all

arithmetic

character

logical

•• (exponentiation)
•,; (multiplication, division)
+, - (addition, subtraction)

// (concatenation)

.GT., .GE., .LT., .LE., .EQ., .NE.

.NOT.

.AND.

.OR.

.EQV. 0 .NEQV.

Introduction to FORTRAN 18-1

18 . APPENDIX 4 - Simulation of two walkers

Suppose we wish to simulate two people walking toward one another and will use
a main program to provide us with the input data and results listing - and a
subroutine that will be used for each of the two walkers in order that they
can take a step.

Two people (let's oall them Dale and Erin) leave their respective homes and
walk (in a straight line) towards each other. How long will it take before
they meet? They each take a step alternately and if one walker is within
(their) stepsi ze of the other, the two are said to have met.

Each person's step size is different and is calculated in the following way.

1. Every 100th step the person must rest (1,e. no distance is travelled in
that step.

2. The length of one step is determined by multiplying an initial stepsize
by a fitness factor for that person.

3. If the people are within 200 steps of each other, this excitement enables
them to take a 10 percent longer step than usual.

18.1 . 1. Input Data

Toe input data for each person is described below.

Colll!lns

1-10
11-15
16-20

18. 1.2. Diagram

Type

Real
Real
Real

Meaning

Toe distance the home is from an origin point.
The initial step size (metres)
Toe percentage fitness factor.

The problem may be represented below, with simple data values shown.

0

origin
O->->->->->->->->->-> X <-<-<-<-<-<-<-<-O
Dale

Distance = 44 metres
Stepsize = 1. 0 metres
Fitness = 0.9

Meeting
Point

Erin

Distance = 2347 metres
steps! ze = 1. 2 metres
Fitness = D.8

Using this data. the two will meet, with Dale walking 1,114.9 metres taking
1243 steps and Erin walking 1,191.1 metres taking 1243 steps.

Introduction to FORTRAN 18-2

18. 1. 3. Algorithm outline

1. Read in data for Dale
2. Read in data for Erin
3. Repeat the following 1.r1t1l they have met

3. 1 Dale takes a step
3. 1 .1 If the n1.111ber of steps is exactly divisible by 100 then no

distance is to be travelled in this step .
3.1.2 If Dale is within 200 steps of Erin then the stepsize is to

be increased by 10 percent.
3. 1. 3 Calculate Dale's new position
3. 1. 4 Add to the n1.111ber of steps made by Dale so far.

3.2 Erin takes a step
3.2.1 If the n1.111ber of steps is exactly divisible by 100 then no

distance is to be travelled in this step.

3.2.2 If Erin is within 200 steps of Dale then the stepsize is to

be increased by 10 percent.

3.2.3 Calculate Erin's new position
3.2.4 Add to · the n1.111ber of steps made by Erin so far.

4. Report the nunber of steps and distance travelled.

18.1.4. Taking a step

Since each person must take a step, let us write some Fortran which will

(a) Calculate the step size
(b) Take the step, which alters the distance from the origin and mnber of

steps taken.

In order to do this, the following quantities are required.

(a) current distance from the origin of the walker

(b) c urrent distance from the origin of the other
person

(c) the stepsize (as altered by the fitness factor)

(d) the n1.111ber of steps taken so far
(e) the direction of walking (positive for Dale,

negative for Erin).

The Fortran to do this is then
C
C INITIALLY THE STEPSIZE IS THE GIVEN ONE

C
STEP = SIZE

WALICD

(YfHERD
SIZE
NSTEPS

DIRECT

IF THE NUMBER OF STEPS IS EXACTLY DIVISIBLE BY 100 THEN

C NO DISTANCE IS TO BE TRAVELLED
C

IF (HOO(NSTEPS, 100) .EQ.O)GO TO 10

Introduction to FORTRAN 18-3

IF lllE WALKERS ARE WITHIN 200 STEPS OF EACH OTHER lllEN
THE STEP SIZE IS INCREASED BY 10 PERCENT

IF (ABS(WALKO-OTHERD) .LT.SIZE•200)STEP = SIZE•l .1

CALCULATE THE NEW PCSITION

WALKO = WALKO + STEP*DIRECT
10 CONTINUE

NSTEPS = NSTEPS + 1

These lines of Fortran are a subprogram that is to be referenced from the HAIN
program on two occasions.

1. When Dale takes a step
2, When Erin takes a step

When Dale takes a step, then we want to supply the subprogram with his/her
parameters (or attributes) and similarly for Erin.

Corresponding
Erin's Dale's Subprogram
Parameters • Parameters Parameters

EDIST DDIST WALKO

DDIST EDIST OTHERD

ESIZE DSIZE SIZE
NERIN NDALE NSTEPS

-1 .o +1.0 DIRECT

18.1.5, Subroutine Description

Meaning

The current distance from the
origin of the walker.
The current distance from the
origin of the other person.
The step size.
The mrnber of steps taken so far,
by the walker.
The direction of walking, +1. O
indicates walking left to right,
-1.0 indicates walking right to
lefi.

Placing the SUBROUTINE line at the head of the walking subprogram and adding
the other required garnishes (1.e. at lea:st one RETURN statement and an END as
the final statement) we get the complete subroutine below.

SUBROUTINE HOVE (WALKO, OTHER D, SIZE, NSTEPS, DIRECT)
C
C INITIALLY THE STEPSIZE IS THE GIVEN ONE
C

STEP = SIZE

IF lllE NUMBER OF STEPS IS EXACTLY DIVISIBLE BY 100 THEN

In trod uotion to FORTRAN

C NO DISTANCE IS TO BE TRAVELLED
C

IF (MOD(NSTEPS, 100),EQ,O)GO TO 10

C IF lliE WALKERS ARE WITHIN 200 STEPS OF EACH OTHER lliEN

C THE STEP SIZE IS INCREASED BY 10 PERCENT

C
IF (ABS(WALKD-OTHERD) .LT,SIZE•2oo)STEP • SIZE•1. 1

CALCULATE lliE NEW PCSITION

WALKD = WALKD + STEP•DIRECT
10 CONTINUE

NSTEPS = NSTEPS + 1
C
C FINISHED WALKING, SO RETURN TO THE CALLING PRGGRAH

C
RETURN
END

18. 1, 6. Calling the subroutine

The subroutine calls will differ for each of the two walkers, because of the

different parameters that each have.

1. The call for Dale:
CALL MOVE(DDIST, EDIST ,DSIZE, NDALE, 1, 0)

2. The call for Er in :
CALL HOVE(EDIST, DDIST, ESIZE, NERIN ,-1. 0)

18. 1. 7. The complete program

Putting this all together and using the algorithm described above, tt"1e

following program results . .

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AlJrHOR: L. LANDAU
DATE: DECEMBER 1977

MODIFIED BY L. LANDAU, OCTOBER 1979

INPUT DESCRIPTION:

TWO LINES, ONE FOR EACH WALKER GIVING THE WALKER'S

STATISTICS . BOTH ARE IN THE SAHE FORMAT.

THE FIRST LINE DESCRIBES TIIE WALKER ON THE LEFT WHO IS

WALKING TOWARDS lliE WALKER ON THE RIGHT (WHO IS DESCRIBED

BY TIIE SECOND LINE).
TIIE FORMATS ARE:

TYPE COLUMNS MEANING

REAL 1 - 10 STARTING POSITION, RELATIVE TO

Introduction to FORTRAN

REAL
REAL

11 - 14
15 - 19

Sc»!E ORIGIN.
PACE LENGTH (METRES)
FITNESS FACTOR IN THE RANGE
a.a TD 1.0

C THE FIRST WALKER READ IN WILL TAKE THE FIRST STEP
C
C PURPOSE:
C
C TO SIMULATE TWO WALKERS WHO ARE WALKING TOWARDS EACH OTHER.
C TO FIND OUT WHERE THEY MEET AND HOW MANY STEPS ARE TAKEN.

THE WALKING RULES ARE:
1. EACH TAKES A STEP ALTERNATELY

C 2. EACH HAS A REST EVERY 100 STEPS
C 3. IF WITHIN 200 STEPS OF EACH OTHER, THE NORMAL STEPSIZE
C INCREASES BY ,OJ, FOR THAT STEP.
C

VARIABLES USED

DDIST
DFIT
DPACE
DSIZE
DST ART
EDIST
EFIT
EPACE
ESIZE
ESTART
NDALE
NERIN

DALE'S CURRENT DISTANCE FROM TIIE ORIGIN
DALE'S FITNESS FACTOR
DALE'S NORMAL PACE SIZE
DALE ' S FITNESS MODIFIED STEPSIZE
DALE 1 S START POSITION
ERIN'S CURRENT DISTANCE FROM ORIGIN
ERIN'S FITNESS FACTOR
ERIN'S NORMAL PACE SIZE
ERIN'S FITNESS MODIFIED STEPSIZE
ERIN'S START POSITION
NUMBER OF STEPS TAKEN BY DALE
NUMBER OF STEPS TAKEN BY ERIN

SUBROUTINES USED :

HOVE TO SIMULATE TAKING A STEP BY EITHER WALKER

INITIALLY, NEITHER HAS TAKEN ANY STEPS

NDAL.E = 0
NERIN = 0

READ IN DATA FOR EACH PERSON

READ(5, 100)DST ART, DPACE, DFIT
READ(5, 100)ESTART, EPACE, EFIT

100 FORHAT(F10. 0, 2F5. 0)
C
C SAVE THEIR RESPECTIVE START POSITIONS
C

ODIST = DSTART
EDIST = ESTART

CALCULATE THEIR STEP SIZES ACCORDING TO THEIR FITNESS

DSIZE = DPACE*DFIT

18-5

Introduction to FORTRAN

ESIZE = EPACE•EFIT
C
C WALK TOWARDS EACH OTHER UNTIL MEETING OCCURS
C

5 CONTINUE

C

CALL MOVE(DDIST, EDIST, DSIZE, NDALE, 1, 0)
If(DDIST ,GE. EDIST)GO TO 50

NOW THE SECOND PERSON TAKES A STEP

CALL MOVE(EDIST, DDIST, ESIZE, NERIN , -1.0)
IF(EDIST,LE,DDIST)GO TO 50
GO TO 5

C CO!E HERE WHEN THEY HAVE MET
C

50 CONTINUE

C
C
C
C
C
C
C
C
C
C
C
C
C
C

OTRIP = DDIST-DSTART
ETRIP = ESTART-EDIST
WRITE(6, 101)NDALE ,OTRIP, NERIN, ETRIP

101 FORMAT(1 HELLO I 1 ,/

$ 1X,'DALE TOOK 1 ,110,' STEPS TO WALK 1 ,F10.2, 1 METRES'/
$ 1X, 1 ERIN TOOK 1 , I 10, 1 STEPS TO WALK 1 ,FlO. 2,' METRES 1 /)

STOP
END

SUBROUT !NE MOVE (WALKO, OTHER D, SIZE, NSTEPS, DIRECT)

AUTHOR: L. LANDAU
DATE: DECEMBER 1977

MODIFIED BY L, LANDAU IN OCTOBER 1979
PURPOSE:

TO SIMULATE THE TAKING OF A STEP EITHER IN THE POSITIVE
DIRECTION (TO THE RIGHT) OR THE NEGATIVE DIRECTION (TO
THE LEFT).

PARAMETER DESCRIPTION:

PARAMETERS THAT ARE ALTERED BY THE SUBROUTINE ARE
INDICATED BY AN •

C • WALKO
OTHERD

THE CURRENT DISTANCE FROM THE ORIGIN
THE DISTANCE FROM THE ORIGIN OF C

SIZE
DIRECT

THE OTHER WALKER
THE STEP SIZE FOR THIS WALKER
THE DIRECTION OF WALKING .
+1, 0 MEANS TO THE RIGHT
-1.0 MEANS TO THE LEFT

INITIALLY THE STEPSI ZE IS THE GIVEN ONE

STEP = SIZE

18-6

Introduction to FORTRAN

C IF THE NUMBER OF STEPS IS EXACTLY DIVISIBLE BY 100 THEN
C NO DISTANCE IS TO BE TRA YELLED
C

IF (MOD(NSTEPS, 100).EQ.O)GO TO 10
C
C IF THE WALKERS ARE WITHIN 200 STEPS OF EACH OTHER THEN
C THE STEP SIZE IS INCREASED BY 10 PERCENT
C

IF (ABS(WALKD-OTHERD). LT. SIZE*200)STEP = SIZE*1. 1
C
C CALCULATE THE NEW PCSITION
C

WALKO = WALKO + STEP*DIRECT
10 CONTINUE

NSTEPS = NSTEPS + 1
C
C FINISHED WALKING, SO RETURN TO THE CALLING PROGRAM
C

RETURN
END

18-7

Introduction to FORTRAN 19-1

19, APPENDIX 5 - 1966 standards

19.1, 00 locips

A 00 statement is used to define a loop. The action following the execution
of a 00 statement is described in the following steps.

(1) The DO-variable is assigned the value of the initial parameter.

(ii) The range of the 00 (i.e., the statements following the DO, up to and
including the terminal statement) is executed.

(iii) The 00-variable is incremented by the value of the incrementation
parameter.

(iv) If the value of the 00-variable is now less than or equal to the
value of the terminal parameter, then the action starting at step
(ii) is repeated. If the value of the 00-variable is greater than
the value of the terminal parameter, the statement following the
terminal statement is executed.

So, effectively a 00 statement will repeat all the statements from the one
immediately after the 00 line, up to and including the terminal statement.
This will be done a nunber of times, determined by the interactions of m1, m2,
and m3.

The 00-variable becomes undefined after normal termination of the loop, but
keeps its value if you jl.Jllp out of the loop.

19.2. Nested 00 loops

It is possible to have a 00 loop \iholly contained within another 00 loop.
This is known as I nesting 00 loops.' For example,

Introduction to FORTRAN

D042!=1,15

code A •

DO 5 J 3,30,3 ----+

REAO(S, I) L

CCWTINUE

• • • code B • •

42 CCWTINUE

• • • code C • • •

Inner

DO

LOOP

19-2

Outer

> DO
I
I LOOP

The INNER loop (down to statement nunber 5) ia said to be nested within the
OUTER loop (which ranges down to statement n1.111ber 42). The operation of this
example is as follows.

(i) Set I to its initial value of 1.

(ii) Execute code A.

(111) Set J to its initial value of 3.

(iv) Execute the inner 00 loop.

(v) At label 5, increment J by 3 and test if it is greater than 30.
If TRUE, go on to execute code B.
If FALSE, go back to the statement AFTER the inner 00 statement, and
go back to do step (iv) above .

(vi) When execution arrives at label 42, increment the outer loop
DO-variable, I, by 1, and test if it is greater than l5.
If TRUE, go on to execute code C.
If FALSE, go back to the statement AFTER the outer 00 statement and
repeat step (ii) above.

QUESTION: How many lines will be read in the above example?

19. 3. Character handling

As well as m111bers, characters may be stored in computer l®ations. These
characters are stored using an integer code for each char,a.cter, and on the
UNIVAC computer, four characters are stored per word. If there are less than
four characters to be stored in a word, those characters are left justified in
the word and blanks are inserted to make up a total of four crniracters. Note
that the m.rnber of characters per word is dependent on t~ computer being

Introduction to FORTRAN 19-3

used. If a different computer is being used, these details should be
determined before use. The following remarks relate to the UNIVAC computer.
A character constant is written as a string of up to four characters enclosed
by quote characters, e.g. 'FRED', 'I AH'.

Character variables do not exist as such in standard (pre-1977) Fortran but
are stored in integer, real, or double precision variables. Integer and real
variables may hold up to four characters while double precision variables may
hold up to eight characters. Suppose that there are some characters in the
integer variable MONEY and that these characters are to be placed in the real
variable CHARS. The statement

CHARS = MONEY

would normally do this. However, this statement is really indicating that the
integer nllllber in MONEY should be stored in the real variable CHARS. This, of
course, involves an integer to real conversion before storing, which plays
havoc with the characters that have actually been stored in MONEY. Hence, all
variables that are to contain characters should be of the same type, generally
integer. The same is true in using variables that contain text, in IF
statements, namely that both variables in the relational expression must be
the same type.
Arithmetic operations on variables containing characters are generally not
meaningful.

Input and output of characters is handled with the A field descriptor, which
is of the form

Aw

where is the width of the field.

The field descriptor causes w characters to be read into, or written from, the
associated list element. Toe characters may be any of the allowable Fortran
characters, including the blank character. The following description of the
operation of the A field descriptor assumes that the characters are stored in
integer or real variables.

On output, if w is greater than four, w-!4 blanks followed by the four
characters in the variable are printed in the field. If w is less than or
equal to four, the leftmost w characters in the variable are printed.

On input, if w is greater than or equal to four, the rightmost four characters
will be taken from the field of width wand stored in the variable. If w is
less than four, the w characters will appear left justified (at the extreme
left) in the variable, and blanks are inserted to make up a total of four
characters.

Consider the statements

READ (5,100) FIRST, SECOND, TIIIRD, FOURTH
100 FORMAT(A8,A3,A4,A1)

WRITE (6,110) FIRST,SECOND,TIIIRD,FOURTH
110 FORHAT(1X,A8,A2,A6,A8)

Introduction to FORTRAN

and the input data card

TIIEbDATAbIS 134. 86

The READ statement will give the variables the following values.

FIRST 'DATA t
SECOND : 1 IS t

THIRD = '134.'
FOURTH : '8 1

The WRITE statement will print the line

bbbbDATAbibb134 . bbbb8

where 1 b' indicates a blank

19-4

The following program will read a list of names and addresses and print them

out in a presentable form. The name on the input line oooupies the first 36

coll.Inns and the address takes colunns 37 to 80 inclusive. The end of the data

is indicated by a blank name field.

C
C AlJfHOR: L. LANDAU

DATE: OCTOBER 1979

INPUT DESCRIPTION:

EACH LINE CONTAINS NAMES AND ADDRESSES. TIIE LAST LINE

CONTAINS BLANKS IN THE FIRST FOUR COLUMNS

COLUMNS
1 - 36

37 - 80

C PURPOSE:
C
C

MEANING
NAME OF PERSON
ADDRESS OF PERSON

C TO READ IN AND LIST PEOPLES NAMES AND ADDRESSES

C HAVING 50 PER PAGE• WITH PAGE COUNTS AT THE TOP

C
C

DIMENSION NAME(9) ,ADDR(11)

IBL = t I

!PAGE = 1
LINCNT = 0

C
C WRITE OUT A HEADING

WRITE(6, 1DD) IPAGE

Introduction to FORTRAN

100 FORMAT(' 1NAHE 1 ,46X, 'ADDRESS' ,20X, 'PAGE: 1 ,14/

lX, '--- 1 ,46X, '---- 1 //)

C
C READ THE NEXT NAME AND ADDRESS

C
11 0 CONTINUE

READ (5 ,1 20) (NAME(!), I:1,9), (ADDR(I), I:1,11)

120 FORHAT(9A4, 11A4)
C
C TEST FOR ENO OF DATA

C
IF(NAHE(l) .EQ. IBL) STOP

C
C CHECK IF A HEADING IS REQUIRED, THEN WRITE OUT NAME

C AND ADDRESS AND THEN GO BACK FOR HORE

C
IF(HOD (LINCNT ,50) .NE. 0)GO TO 125

IPAGE = IPAGE + 1
WRITE (6 , 100) IPAGE

125 CONTINUE
WRITE (6 ,1 30) (NAME(!), I:1,9), (ADDR(I), I:1,11)

LINCNT = LINCNT + 1

130 FORHAT(1X, 9A4 , 14X, 11A4)
GO TO 11 0
END

19-5

Introduction to FORTRAN 20-1

20. APPENDIX 6 - Summary of Fortran commands covered

It is stressed that this s1.111mary is only of those commands covered in this
text and is NOT a complete st.rnmary of all the commands or of all the
capabilities and extensions of the commands that are covered. A complete list
could be obtained from a FORTRAN programmers reference manual that may be
borrowed from the computer centre.

20. 1. A command list

20. 1. 1. Executable statements

Assignment
Block-IF
CALl.
CONTINUE
00
END
GO TO
IF
READ

Formatted
Free Format

RETURN
STOP
WRITE

Formatted
Free Format

20, 1,2. Non executable statements

C ••• comment
CHARACTER
DIMENSION
FORMAT
FUNCTION
INTEGER
LOGICAL
REAL
SUBROUTINE
type declaration

Introduction to FORTRAN

20.2. Individual statement formats

20.2. 1. Assignment

V : e

a variable name or array element
arithmetic, character or logical expression

20.2,2. Block-IF

IF (logical expression) THEN
••• block 1 •••

ELSE IF (logical expression) THEN
••• block 2

ELSE
•.• block 3 •••

END IF

20-2

An ELSE IF block is optional, and there may be several ELSE IF blocks. The

ELSE block is optional, there can only be one and it must appear after all

ELSE IF blocks.

20,2,3, CALL

CALI. n(a,a,a , ••••)

n subpr-ogram name
a actual parameters (or argllTlents) which may be:

1 . variable or array names .
2. arithmetic, character or logical expressions.
3. function or subroutine names.

If there are no parameters , then the brackets may be omitted.

20. 2. 4, CHARACTER

CHARACTER*length list

Variables on the list without a length specification following them have a

length as specified on the CHARACTER declaration. Form of Variable5 on the

li st is

Introduction to FORTRAN 20-3

variable* len 1. variable* len2, variable. • ••• etc

20.2.5, Comment

C ••• comment

A line with a C in coltrn n 1 is a comment I and the rest of that line is ignored

by the Fortran compiler. A blank line is also treated as a comment.

20, 2, 6, CONTINUE

CONTINUE

x an optional statement label

20.2. 7. DIMENSION

DIMENSION a(d) ,a(d), •••••

a variable names being specified as arrays

d a list of integer constants or formal parameters (in functions or

subroutines) which specify the dimension bounds for the array. Up to 7

dimensions may be specified.

20,2,6, DO

00 n i = m1 ,m2.m3

n a statement label indicating the last statement in the range of the 00,

an integer or real variable (not an array element) called the control

variable.

ml an integer or real expression indicating the initial value for the

control variable.

m2 an integer or real expression indicating the finishing or terminal value

for the control variable.

m3 optional (if omitted the preceding comma should also be omitted. If

omitted it is asstaned to be 1). When specified, it is an integer or real

expression indicating the increment for the control variable,

DO loops may be executed zero times. The mmber of iterations is given by:

MAX (INT ((m2-m1+m3)/m3), 0)

Introduction to FORTRAN

20.2. 9. END

END

20.2.10. FORMAT

x FORHAT(format - specifications)

x 1s a statement label

format-specifications may be nested to a max 1mun of 4 levels on the
Univac. They are field descriptors separated by commas, and grouped in
brackets . A slash Cl) indicates that a record (either input or output) is
to be skipped •

Field descriptors Meaning
Iw Integer
Aw Alphanlllleric
wX Blank (or skip)
1 text' Character string (head ins)
Fw.d Real
Ew.d Real With exponent

Where:
w field width is an integer constant
d decimal point designator

Print control characters (for the first character of output line image):

blank advance one line
O advance two lines

go to first line of next page.
no advance. Print from coll.Inn 1 of same line.

20. 2. 11. FUNCTION

type FUNCTION n (a ,a ,a, . . • .)

type may be blank or a variable TYPE

function name
dllYIDly parameters which may be variable or array names. If .there are no
dlJilll1y parameters then the brackets may be omitted.

20.2 . 12 . GO TO

GO TO x

Introduction to FORTRAN

x a statement label

20.2.13. IF

IF(1) s

1 a logical expression

20-5

s an executable statement except a DO, another logical IF or any block-IF
command.

20.2.14. READ

20, 2. 14. 1. Formatted

READ (5,f ,END:::n) iolist

f statement mrnber of a FORMAT
statement nunber of an executable statement. END ::: n clause is
optional.

iolist the input list, variables separated by commas.

20.2.14.2. Free Format

READ(5, *, END:::n) 1olist

statement mrnber of an executable statement. END = n clause is
optional ',

iolist the input list, variables separated by commas.

20.2.15. RETURN

RETURN

20.2.16. STOP

STOP

Introduction to FORTRAN

20.2. 17. SUBROUTINE

SUBROUTINE n (a ,a ,a, •••)

n a SUBROUTINE name

20-6

a d1.JM1y parameters whioh may be variable names or array names. If there are
no dlilltny parameters then the brackets may be omitted.

20.2.18. Type Declaration

t n ,n ,n, •••••

t is a data type and may be one of INTEGER, REAL, CCJ'4PLEX, LOGICAL,
CHARACTER or OOUBU: PRECISION.

n are symbolic names

20.2.19. WRITE

20.2.19. 1. Formatted

WRITE(6,f) iolist

f statement nunber of a FORMAT
iolist the output list, variables separated by commas. The iolist may be

omitted.

20.2.19.2. Free Format

WRITE(6,*) iolist

iolist the output list, variables separated by commas. The iolist may include
text enclosed in quotes.

20. 3. Constants

20.3. 1. Integer constants

Form: +d or -d

(a) d is a string of digits from the set O through 9

Introduction to FORTRAN

(b) the + sign may be omitted
(c) the range of values is -2 .. 35+1 to +2H35-1 (which is 34,359,738,367)

20. 3, 2. Real Constants

Forml: + or - d.d
Form2: + or - d,dE + or - x

(a) d is a string of digits from the set O through 9
(b) x is an integer
(c) in Form2 the decimal point may be omitted
(d) + signs may be crnitted

20-7

(e) the range of values is (approximately) + or - (1.46936794 *10**- 39,
1. 70141182*1 QH38)

20. 3. 3, Character constants

Form: ' cccc •••• '

c... is a string of ASCII characters. A quote mar k in the string is
represented by two consecutive quote marks.

20. 4. Logical Operators

Operator Usage
. AND. e1.AND,e2

. OR. e1.0R.e2

,NOT. • NOT ,el

Explanation
True if both e1 and e2 are t r ue .and fa l se if at least
on of el or e2 is fa l se.
True if at least one of el or e2 is true and false if
both el and e2 are false.
True if el is false, and false if el i s true •

20. 5. Relational opera~ors

Operator Usage Explanation
.GT. e1.GT.e2 True if the value of el i.s greate r than that of e2,
.GE. e1.GE.e2 True if the value of e l is greater than or equal to

that of e2.
.LT. e1.LT.e2 True if the value of el is l ess than that of e2.
, LE. e1.LE.e2 True if the value of el is l ess than or equal to t ha t

of e2.
. EQ. e1.EQ.c2 True if the value of el is equal to t hat of e2.
• NE. e1.NE.c2 True if the value of el is not equal to t hat of e2.

Introduction to FORTRAN 20-8

20 . 6. Some Fortran Mathematical Functions

Abbreviations : DP double precision
INT integer
param = parameter

No. of Type of Type of
Name Params Params Result Description

LOG REAL or OP REAL or DP Natural logarithm
LOG10 REAL or DP REAL or DP Log base 10
EXP REAL or DP REAL or DP Exponential
SQRT REAL or DP REAL or DP Square root
ASIN REAL or DP REAL or DP Arc sine (radians)
ACOS REAL or DP REAL or DP Aro cos (radians)
ATAN REAL or DP REAL or DP Arc tan (rad tans)
SIN REAL or DP REAL or DP Sine (radians)
cos REAL or DP REAL or DP Cosine (radians)
TAN REAL or DP REAL or DP Tangent (radians)
COTAN REAL or DP REAL or DP Cotangent (radians)
SINH REAL or DP REAL or DP Hyperbol io sine
COSH REAL or DP REAL or DP Hyperbolic cosine
TANH 1 REAL or DP REAL or DP Hyperbol io tangent
ABS 1 REAL, DP or INT REAL, DP or INT Absolute value
MAX >1 REAL, DP or INT REAL, DP or INT Haxim1.111 value
HIN >1 REAL, DP or INT REAL, DP or INT Minim1.111 value
HOD 2 REAL, DP or INT REAL, DP or INT Remainder on dividing the first

param by the second
REAL INT or DP REAL Convert INT or DP to real
INT REAL or DP INT Convert real or DP to INT

Introduction to FORTRAN 21-1

21. APPENDIX 7 - Fortran not covered in the course

This appendix introduces those areas of Fortran that have not been covered in
the lecture course. The topics here are considered to be of secondary
importance to the new programmer, but they are very useful, and should
probably be learned at a later stage.

A sub program is a subroutine or function. A program 1.mit is a main program or
a .sub program.

21, 1, FURTHER DATA TYPES

There are two other data types that exi.st in Fortran.

21. 1. 1. DOUBLE PRECISION

The data type OOUBLE PRECISION may be used if the size of a variable will
exceed the maximllll limit allowed in single preci.sion or will be too small to
be represented in single precision (ie. underflow). On the UNIVAC computer
the maximll'll size of a double precision variable is about 10**308, and the
minimllll size is lQH(-308).

Hore often it is the case that rather than the size of the real variable
causing problem.s, it is the maximt.111 minber of significant figures (depleted by
truncation and rounding errors) that motivates the move to double preci.sion,
which (on the Univac) keep.s up to 18 .significant figure.s. In fact on some
computer.s the size of nt111ber that may be represented in single or double
precision is the same, the only reason then is to be able to have a greater
nllllber of significant figure.s.

The disadvantages of using DOUBLE PRECISION are:

(a) That each double precision variable requires TWO memory cells of storage
as compared with the ONE required by ordinary REALs.

(b) That the time taken for double precision arithmetic is appreciably longer
than the time for the corresponding operation in REALs.

21, 1, 1. 1. DOUBLE PRECISION CONSTANTS

These are very similar in form to the exponent form of REAL constants, except
that there is a D instead of the E. The general form is:

nnnn ,nnnnD+eee The 'n' are digits comprising the base value of the
nt111ber.
The 'eee' is the exponent part of the m.mber.

For example the nunber 1 .23456 would be represented as 1.23456D0 as a double

-----'

Introduction to FORTRAN

precision constant.

Other examples are:
21. 3ijD-10, 123ij56789. 98765ij0-127, 1. ODO

21. 1. 1. 2. DOUBLE PRECISION VARIABLES

21-2

A double precision variable is formed in the normal way and is declared to be
double precision by the type statement

DOUBLE PRECISION variable-list

Arithmetic expressions are formed in double precision according to the same
rules that apply to real expressions. The arithmetic operators C+,-,•,1,••)
are the same. The combination of double precision with real and integer
constants and variables in an arithmetic expression is explicitly permitted .
In both cases, the result is always a' double precision value.

It is permissible to have an integer, real, or double precision variable on
the left side of an arithmetic statement and an expression of some other type
on the right side. All arithmetic is done according to the type of the
expression on the right, and the result 1:s converted according to the variable
on the left. Acceptable uses of double precision quantities are

DOUBLE PRECISION D1, 02, D3, Dij, D5, D6
D1 : D2•D3+(Dij-8756. 7865ij32D0)/D5
D 1 = ij. o•D2-D 3/1. 1D0
D1 = R1+D1+R2
R1 : (D1•D2-D3•Dij)/ (D1•D5-D3•D6)
D1 = R1+2 . 0
D1 = (I1-8)•I2
11 = R1+D1
D1 : D2H2

21. 1. 1. 3. DOUBLE PRECISION FUNCTIONS

Generic functi ons, described in chapter 6, may have double precision
parameters and/or return doub l e precision results. Some of these functions
are :

ABS(double)

MOD(dbl 1 ,dbl2)
HAX(dbl 1 ,dbl2, ••.)
MIN(dbl 1,dbl2, • ••)
DBLE (real or int.)

INT(double)
REAL(double)

SIN(double)

returns the absolute value of a double precision
nllllber
same as HOD but uses double precision nLlllbers
returns largest of double precision m.rabers
returns smallest of double precision nuabers
returns double precision equivalent of real or integer
nLlllber
trunc ates double precision nllllbers to integer
returns most significant part of double precision
nllllbe r as a real nllllber
returns sine of double precision nunber expressed in .

Introduction to FORTRAN 21-3

radians
COS(double)

EXP(double)
SQRT(double)

returns cosine of double precision nunber expressed in
radians

21. 1. 1.4. INPUT/OUTPUT

returns exponential of double precision nunber
returns square root of double precision nunbe·r

Input and output of double precision quantities is handled with the D field
descriptor which is similar to the E field descriptor except that

(i) the list variable associated with this field descriptor must be
double precision,

(ii) there may be more digits, and
(111) D is used for the exponent indicator rather than E.

21.1.2. COMPLEX

This data type is used to represent a complex nunber (in mathematical terms,
comprising a real and an imaginary part).

The representation is as a pair of REAL nunbers.

COMPLEX constants are represented as a pair of real m.inbers separated by a

comma and enclosed in brackets.

COMPLEX variables must be declared in a type C01PLEX declaration statement.

Input/output is accomplished by using two real field descriptors for each

complex value written or read.

For example consider the statements:

COMPLEX FREUD, FRASER, QUINCY
READ(5, 100) FREUD

100 FORMAT(2F10.0)
QUINCY = (1.2,-3,4679)
FRASER = QUINCY•FREUD + 2.5

Mixed mode (with the exception of exponentiation) is allowed between type
COMPLEX and REAL or OOUBLE PRECISION, and the result will be CotPLEX.

A type C01PLEX variable or constant may only be assigned to a type CotPLEX
variable.

Introduction to FORTRAN

21,1.2,1, C~PLEX FUNCTIONS

The generic functions for CCMPLEX data types are:

REAL(complex)
AIMAG(complex)
CHPLX(a ,b)

CON JG (complex)
INT(complex)
ABS(ar ,ai)

returns the REAL part of a CCMPLEX nt.nber.
returns the imaginary part of a CCMPLEX m.mber.
express two real nt.111bers or two integers in
complex form .
obtain the complex conjugate of a complex nt.111ber.
returns the real part, truncated to an integer.
returns the real result of SQRT(ar••2 + aiH2),
where ar is the real part and ai is the imaginary
part of a complex nt.nber.

SQRT, EXP, LOG, SIN or COS(c0111plex) as for other data types

21,2, DATA STATEMENT

The DATA statement 1s used to assign initial values to variables. This
assignment 1s done at the time of compilation and not at the ti~e of execution
of the compiled program. The DATA statement 1s not an executable statement.
The form of the statement is

DATA data-list

where the data-list is a list of the form

variable-list / value-list /

The variables in the variable-list are assigned the corresponding values of
the constants in the value-list. There must be a one to one correspondence
between the variables and the values, and generally the type of a variable and
its value must be the same. If the types do not match then the value is
converted to the variable type if possible (eg integer to real), or if
conversion is not possible, the initialization causes an error (eg integer to
logical or character).

The statement

DATA A,B,C /14,7,62.1, 1.5E-20/

ass igns the value 14. 7 to A, 62 . 1 to B, and 1. SE-20 to C.

The two statements

DATA A /67,87/, B /54,72/, C /5.0/
DATA A,B,C /67.87 , 54,72,5,0/

have the same effect, the choice being a personal preference.

It is possible to repeat a value a nunber of times. Fo.r example, the
statement

I
Introduction to FORTRAN 21-5

DATA R,S,T,U,V,W /6*21.7/

assigns the value 21. 7 to all six variables.

As the DATA statement assigns initial values to variables, it is legal to
redefine the values of these variables later in the program, but, having done
so, it is NOT pos5ible to •re-execute' the DATA statement to return the
variables to their initial values.

Initial values may be assigned to variable lists in any program unit. Initial
values may not be specified for dunmy parameters, and may not be specified for
any variable more than once.

A variable list on a DATA statement may include variables, arrays, array
elements, sub string names, and implied-DO groups, separated by commas. The
format of an implied-DO group is

(variable-list, index = start, end, increment)

where start, end and increment are integer constant expressions. The
increment is optional and must be positive. Implied-DO groups may be nested.

Array subscripts must be integer expressions using only constants, parameter
variables (see below) and implied-DO index variables. Sub string expressions
must be integer constant expressions.

If an entire array is initialized (with no implied-DO), then the elements are
initialized with the first subscript changing fastest, etc. (eg, down the
colunns in a 2D array).

If the value list is too short, the last elements of the variable list are not
initialized and if it is too long, the last values are ignored.

A DATA statement is placed after type and dimension declarations of variables
which appear in the DATA statement.

Example :

REAL A(10), 8(10)
CHARACTER•4 C(2)
DATA A/ 10•0.o /
DATA (B(I), I= 1,5) / 5•1E5 /, (B(I), I= 6,10) / 5•2E10 /
DATA C(1)(1:2), C(2) /'ab', 'cdef'/

21. 3. IMPLICIT

The IMPLICIT statement assigns a data type to a name depending on the initial
letter of the name. It has the form :

IMPLICIT type (letters), type (letters)

where 'type' may include a length (eg. CHARACTER*1') and the letters are single
letters or letter ranges separated by commas. A letter range consists of two

Introduction to FORTRAN 21-6

letters separated by a hyphen. For example, B-F means B,C,D,E,F.

IMPLICIT overrides the default association of particular letters with data
types. The letters in brackets become associated with the specified type,
Letters which are not included on an IMPLICrr statement retain their default
types.

Names affected are all variables, arrays, parameter constants, functions and
statement functions within the program unit.

Toe IMPLICIT statement 1s placed before tYi>e declarations and DATA statements.
It may appear after a PARAMETER statement, in which case default types apply
to the parameters.

Example :

IMPLICIT LOGICAL (L)
IMPLICIT CHARACTER*4 (C-E), CCNPLEX (F-H,X-Z)

!After this, A,B,0-W still default to real nunbera and I-K,M,N to integers.

The usual method of converting a program to use double precision instead · of
real nunbers 1s to use:

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

21. 4. PARAMETER

The PARAMETER statement allows constants in a program ll'lit to be referenced by
names, in order to make a program easier to alter. It has the form :

PARAMETER (n1 = e1, n2 = e2, .••)

where n1, n2, •• • are variable names and e1, e2, ••• are cons~ant expressions.

The PARAMETER statement 1s not executable, and is placed in the program before
the parameter variables are referenced. If a parameter variable is not to
have a default type, then its type must be declared (with IMPLICIT or an
explicit type declaration) before the PARAMETER ·statement.

The constant expression is evaluated at compile time, and .~ay tCon.siat of
constants, parameter variables defined on previous PARAMETER .statements, or
Fortran-supplied functions.

A parameter variable cannot be redefined in the program. Each reference to a
parameter variable in the program ll'lit is replaced by its con_stant value. It
_is usually used in declaring array sizes in the main program. It cannot be
,used as a constant in a FORMAT statement .

Example

PARAMETER (N 100, L = 80)
REAL ARRAY(N)

Introduction to FORTRAN 21-7

CHARACTER*L LINE
DATA ARRAY / N • 0. 0 / LEN / L /

21.5. CO!HON

COMMON refers to an area of memory that Fortran dedicates for the storage of
variables. Normally variables are stored somewhere in the computer's msnory
and it 1s of no concern to us where this is, a:, we may always refer to a
variable by it:, name and thus retrieve its value.

The form of a COMMON declaration statement is:

COMMON variable list

For ex ample:

COMMON FRED, I,KID, HUCH, ZAP(26), NUH(18, 3)

The above line declares that the variables indicated be stored in the CCJtlMON
area in the order that they appear on the COMMON line. The arrays indicated
(i.e. ZAP and NUM) have their dimensions appearing in the COMMON declaration,
rather than on a DIMENSION statement. Dimensions may be declared in type
declarations or DIMENSION statements and then the array names (without the
dimensions) are listed in the COMMON statement.

A COMMON declaration may occur in main programs and subprograms. The purpose
of a COMMON declaration is so that a main program may share the same storage
as a subprogram for particular variables. So this then is another way of
communicating between subprograms, in addition to the parameter list.

The main thing to remember about Cc»4HON blocks is that storage for variables
is allocated in strict order of Occurrence on the CCJ4HON declaration. Many
program errors re:,ul t from a 'mismatching' of CCJtlHON blocks across
subprograms.

For example:

To write a program that will find the average of the m.mber of integer:, stored
in the array BLAH, of size 25:

COMMON BI.AM(25), ANS
READ(5 ,•) (BLAM(I), 1=1, 25)
CALL AVER
WRITE(6, 10)ANS

10 FORMAT(1X, 1 AVERAGE OF 25 NUMBERS IS 1 ,F10.2)

END
SUBROUTINE AVER
COMMON ARRAY(25), VAWE
TOT = 0.0

Introduction to FORTRAN

DO 20 I = 1,25
20 TOT = TOT+ARRAY(I)

VAWE = TOT/25
RETURN
END

21-8

In addition to having Cc:»4:MON blocks as above, it is possible to have a m.nber

of different Cc»4MON areas in the one program. In this case the C<JitMON blocks

must be distinguished by giving them each a different name (following the same

rules as variable names). The type of CCJIMON block above is called BUNK

COMMON as distinct from NAMED COMMON (which m■y also be called LABELLED

COMHCXI) , .

In order to declare a named Cc»4MON block, enclose the name in slashes

following the word C(Ji(MON. For example:

COHMCXI FRED, JIM, HENRY, BLOGGS

COHHCXI /XERXES/NEDDY, NAV(27) ,DUH

COHHCXI /UFO/SPUD,F111(10),TEACUP

FRED, JIM, HENRY and BLOGGS occupy the f1rat ij looationa of BLANK CCJIMOH,

NEDDY, NAV and DUH occupy the first 29 locations of the NAMED .CCMMON block

called XERXES.

SPUD, Fl 11 and TEACUP occupy the first 12 locations of the NAMED CCJIMON block

UFO ,

It does not matter in which order the Cc»4MON statements appear, ■s long aa

each refers to different Cc»4MON blocks. If more than one refers to the same

named (or blank) COMMON block, then each successive C(lilMON declaration is

taken to be a continuation of the previous one.

COMMON blocks make the passing of many values between program mits a little

easier, but leas flexible. It is al30 leas obvious Milich variab\es are needed

and / or changed by" the program unit.

21. 6. BLOCK DATA

A third type of subprogram is BLOCK DATA. It contains no executable code and

is used 30lely to assign initial values to variables in CCMMON ·blocka. A BLOCK

DATA subP"ogram is not called in the program, so on the lJn.ivac, it must be

specifically mapped into a program.

The first statement of a BLOCK DATA subprogram is

BLOCK DATA BLOCK DATA name

where 'name' is an optional name for the subprogram, and only peeds to b8 used

if there is more than one BLOCK DATA subprogram in a program. lbe name follows

the rules for variable names and must not be the same as that of another

external aubprogram, common block or local name within the aubprogram.

Introduction to FORTRAN 21-9

The sub program contains data specification statements and comments, and finishes with an END statement.

21.6. 1. Ex1m1ples

(a) BLOCK DATA BLKA
initializes common block A
INTEGER K(10)
COMMON /A/ K
DATA K /1 O*O/
END

(b) BLOCK DATA
CHARACTER•8 LINE(10)
COMMON A,B,C /OUT/ LINE
DATA LINE /10•'12345678'/, B, C /1.0, 2.0/
END

Note that no initial value is assigned to A, but it is included in the CCMMON statement to keep Band C in the correct positions.

21. 7. EXTERNAL

EXTERNAL is a specification statement, and must precede all executable statements. It indicates that a name is a subroutine or function name, and not the name of a variable or Fortran-supplied function.

It has the form

EXTERNAL names

where •names' are subroutine or :Nmction names separated by commas.

This statement is needed when the first reference to a :,ubroutine or function does not have an explicit actual parameter list. For example, a :,ubroutine or function which is not called from a program mit, but is pas:,ed to a subroutine or function as an actual parameter, is only referenced by its name, not with its parameter list, so the program wiit needs to be able to distinguish it from a variable that ~as not been explicitly declared.

Note that a function with no parameters need not have brackets on its FUNCTION statement, but when it is called it must have empty brackets (as shown in the example below).

If a name is the same as a Fortran-supplied function, then the user-supplied function will be used instead of the Fortran-supplied function (eg. to write your own SIN routine) •

Example :

Introduction to FORTRAN

COMMON A,8,C
EXTERNAL FUN
READ (S,•) A,8,C
CALL SUB(FUN)
WRITE (6,•) A,8,C
STOP
END

FUNCTION FUN
COMMON A,B,C
FUN = en2 - 4•.A•c
RETURN
END

SUBROUTINE SUB(F)
COMMCII X, Y, Z
Z • SQRT(F())/ (2•X)
X • SIN(Z)
Y • COO(Z)
RETURN
END

oalls SUB with FUN as an actual parameter

Funcition F is a dUDl!ly parameter.

Call to function F needs empty
parameter list

21-10

EXTERNAL tells the main program that FUN is a function or subroutine, and not
a real variable like X, Y and Z.

21, 8, E'lJIVALENCE

This statement specifies sharing of storage by data within a program unit.
Note that Ca4HON specifies sharing of data between program ll'lits.
The form is :

EQUIVALENCE (n1, n2, n3, , ••) , (nij, n5, ...)

where n1 to n5 are names of variables. array~. array elemQ:nts or character
substrings.
They may not be dunmy parameter names. De.ta in Cc»tHON cannot~~ equivalenced.

The data in one set of brackets share some or all of the same ,storage, with
the first word of n 1 being given the same storage location H ,the first word
of each of n2, n3, etc., and consecutive locations of n1. n2, -n3 etc. are also
shared. The order of items in the brackets is not important .

For ex ample,

REAL A(10), 8(10)
EQUIVALENCE (A, 8(5))

defines A(1) to have the same storage location as 8(5). Beqi9_1.14e arrays are
always given consecutive locations , A(2) 1a equivalenced to <B(-6), •• • A(6) to
8(10). A(7) to A(10) follow in consecutive locations. Conseo_wtt.ve locatio,,_s
of memory may be depicted w1 th their contents as follows :

10 M 12 13 1)1

Introduction to FORTRAN 21-11

8(1) ••••• 8(5) 8(6) ••••• 8(10)
A(l) A(2) ••••• A(6) ••••••• A(10)

Data of different types and different lengths may be equivalenced. The types
are not changed, and no conversion is done. This can be used to reduce
storage requirements when some data is used in one part of the program unit
and other data is used in another part of the program unit. It is your
responsibility to make sure that the program does not destroy required
information.

Variables may appear in more than one list, thus effectively combining the
lists.

Examples

(a) CIIARACTER*4 A, B, C*8
EQUIVALENCE (A, C), (B, C(5:5))

equivalences A to the first 1' characters and B to the last 1' characters of C,

(b) A subroutine to use real or integer data depending on whether L is true or
false:

SUBROUTINE SWITCH L)
LOGICAL L
INTEGER N(l 000)
REAL A(1000)
EQUIVALENCE (N' A)

IF (L) GO TO 100
C data is integer

READ (5,*) N

RETURN
C data is real

100 READ (5,*) A

RETURN
END

Here, either array N or array A is used, but they must be declared separately
because they are different types, so equivalencing them saves 1000 words of
memory.

21. 9. ARITHMETIC STATEMENT FUNCTIONS

It often happens that a programmer will find some relatively simple
computation recurring through his program, making it desirable to be able to
set up a one-line function to carry out the computation. This function is
defined in a program unit and then used whenever desired in that program mit.
It is not defined for any other program unit.

An arithmetic statement function is defined by writing a -single statement of

Introduction to FORTRAN

the form

where

a • b

is the name of the function, and
is an arithmetic expression.

21-12

The name, which is invented by the programmer, is formed according to the same rules that apply to a variable name, including the uae of type statements. This name must not be the same as that of any supplied function. The name of the function is followed by brackets enclosing the parameter(s) which muat be separated by commas if there is· more than one. The parameters i~ the definition must not be subacripted variables . The right hand aide of the definition statement may be any arithmetic expression not involvins subscripted variables. It may use variables not specified as parameters and it may use other functions (except itself). All function definitions must appear after other specification statements and before the first executable ·statement of the program. If the risht hand aide of the arithmetic statement function uses another arithmetic statement function, the other function de finition must hav e appeared earlier in the program mit.

As an example, suppose that in a certain program, it is frequently necessary to determine the distance between two points in a two dimensional space. An arithmetic statement function can be defined to carry out this· computation by writing

DIST(X1,Y1,X2,Y2) = SQRT((X2-X1)H2 + (Y2-Y1)H2)

This is only the DEFINITION of the function, and does not cause computation to take place. lhe variable names used as parameters are only dL1D111ies and may be the same as variable names appearing elsewhere in the program. The parameter
names are only important to distinguish between integer, real and double precisi on .

An arithmetic statement function is USED by writing its name whenever the function value is desired and substituting ~ppropriate exgr,essioii.s for its parameters. 'Appropriate' here means, in particular, that if a variable in the definition is real, then the expression substituted for tha't variable must also be real, and similarly for the other types of variables. 0 :rhe values of these expressions will be substituted into the function definition and the value of the function computed. The actual parameters may be ~uba?ripted if desired.

Suppose that it is now desired to use the DIST function to find the distance between the two points (16,9,R-S) and (T+6.9 , -22 . -li), and that then this value is to be added to the cos ine of X and the sun is to be stored in the variable ANS. All this can be done with the statement •

ANS: DIST(16,9,R-S,T+6,9, -22,4) + COO(X)

Suppose that later in the program it is necessary to compute the cube of the .distance between the two points (DATA(I),DATA(I♦l)) and (O •• O87,DATA(lO)) and store the result in TEMP. The statement required is

TEMP: DIST(DATA(I),DATA (I+1),0,087,DATA(10)) H3

Introduction to FORTRAN 21 -1 3

It must be emphasized that the variables X1, Y1, X2, and Y2 in the function
definition have no relation to any variables of the .same names that may appear
elsewhere in the program. To illustrate, suppose that the di.stance between
the two points (X1,T+3.4) and (Y2,X2) is required. This value may be found by
writing

VALUE: DIST(X1,T+3.4,Y2,X2)

The X1, X2, and Y2 that appear here in the USE of the function are completely
unrelated to the X1 1 X2, and Y2 in the DEFINITION of the function.

Some arithmetic statement functions are:

L0G2(X) : LOG(X)/L0G(2.0)

to find log of X in base 2, and

SIND(X) : SIN(0.01745329•X)
C0SD(X) : Cal(0.01745329•X)

to find the sine and cosine of angles in degrees.

Introduction to FORTRAN 21-14

2,. 10. Crdering of statements

1, SUBROUTINE, FUNCTION or BLOCK DATA (for a aubprogram)
2. PARAMETER
3, IMPLICIT
4. DIMENSION and type deolarations

(PARAMETER may oome after type deolarationa)
5, EXTERNAL
6. CCJ4HON
7, EQJIVAI.ENCE
8, DATA
9. statement fUnotions
10. executable statements
11. END

FORMATS may appear anywhere between 1 and 1 o. Some people group them all
together at the beginning (after 8) or ■t the end (before 11).

Comments may appear anywhere before 11.

2 to 7 are called specification statements, and to1ether with 8 set up storage
space and initial values at compilation time.

21.11. Arrays

Array subscripts range by default from 1 to N, where H is the n\111:ber of
elements in the array.

In 1977 Fortran, the range of subscripts need not have a lower bowd of 1.
Subscripts may start at any integer. with the reatr1ot1on tha,t the upper bound
be greater than or equal to · the lower bound. lnless the lower bound is 1. both
the lower and upper bounds appear on the declaration, separated by a colon.

For example,

REAL NUMBER(0:9)

declares an array of 10 real nunbers, with legal subscripts Oto\ 9. So

Introduction to FORTRAN 21-15

NUMBER(O) = 1.0 is legal, but
NUMBER(10) = 1.0 is not legal.

If the lower bound and colon are omitted from the declaration. the default
lower bound of 1 is assumed.

Up to 7 dimensions are allowed. Multi-dimensional arrays may be declared as
follows :

REAL X(10,0:9,-5:4), Y(-1:1,10:20)

X is a real 10 by 10 by 10 array. Legal array elements are X(l,0,-5).
X(4,4,4), X(10,9,-1).

Yisareal3by11 array. Legal array elements are Y(-1,10). Y(0,20),
Y(1, 15).

Illegal elements are X(1,10,1), X(0,0,0), Y(1,1), Y(-1,5).

There are two ways of avoiding the declaration of fixed-size arrays in
subroutines and functions \men the arrays are parameters.

(a) An adjustable-size array is declared to have variable length, where the
variable is a parameter.

(b) An assumed-size array has • as its LAST dimension . For example,

SUBROUTINE SUB(ARRAY,I)
REAL ARRAY(I,*)

defines a 2-dimensional array with an adjustable second dimension. Since
ARRAY is a parameter, no storag'e is actually allocated, so the compiler does
not need to know the exact size of the array. However, dtring program
execution I the dunmy array must not asstne more storage than is allocated to
the actual parameter.

- I

I
Introduction to FORTRAN 22-1

22. APPENDIX 8 - Additional features of UNIVAC FORTRAN

The complete differences between Univac FORTRAN V, Univac ASCII FORTRAN and
the ANSI standards of 1966 and 1977 are many and varied, depending on which
combination you look at. Some of these differences are described in Univac
manuals. In particular, the UNIVAC 1100 SERIES FORTRAN V Progranmer Reference
Manual provides details of the differences between Univac FORTRAN V and the
1966 standard. The UNIVAC 1100 SERIES FORTRAN(ASCII) Programmer Reference
Manual provides the differences between the two Univac FORTRANs. The Sllllmary
below is an attempt at combining all of this into an extension to the 1966
standard (using ASCII FORTRAN level 9R 1 as the version of ASCII FORTRAN). Some
points are elaborated later in this chapter.

22. 1, Summary

1, Internal sub programs are permitted, where main and internal sub programs are
part of the same program unit. which requires only one compilation. (See
description below).

2, ~tal values may be used to preset variables in a DATA statement,

3. Comment lines may precede a continuation line. Blanks lines are interpreted
as comments.

4, The END line is not essential. If missing. an RCL command signals the end
of the program unit, The END statement is executable. and implies a STOP in a
main program or RETURN in a subprogram.

5, The introduction of 'typeless' data. where a word is treated as 36
true/false values, and there are Boolean functions to operate on the data.

6. The use of the quote symbol to form a literal string rather than the use of
a Hollerith constant. Univac Ascii Fortran still allows Hollerith constants
(see description below).

7. Arrays may have up to seven dimensions (the 1966 standard only allowed
three).

8. An array element may have fewer subscript expressions than the dimensions
of the array. with the anitted subscripts being assmed to be 1.

9. Generalised forms of subscripts are allowed, including non-integer
subscript expressions.

10. The IMPLICIT statement may be used to extend and dynamically modify the
default typing rule of ANSI FORTRAN, so that it extends to other data types
and/or covers different first characters of the variable names.

11. A formal parameter of a subprogram may be the symbol $ which is used via
the RETURN statement as an alternate exit from the subprogram. The actual
parameter to be associated with the $ formal parameter is a statement label

Introduction to FORTRAN 22-2

preceded by a $. This mechanism is used to return control to the referencing
program unit at other than the normal return from the calling sequence.

12. The use of a formal parameter as a FUNCTION or SUBROUTINE name is
permissible if the associated actual parameter is the name of or an entry of a
function or subroutine, respectively.

13. All combinations of types are allowed in arithmetic expressions with the
exceptions that double precision may not be combined with complex, and
typeless may not be combined with either double precision or complex.

14. The RETURN statement is extended to allow a form or:

RETURN k

where k is a parameter position index into the SUBROUTINE, FUNCTION or ENTRY
statement through which the sub program was entered. Control is returned to the
referencing program at the label specified by the kth statement mrnber in the
actual parameter 11st. The quantity appearing on the RETURN statement may be
an integer constant, an integer variable, or a PARAMETER variable.

15. An optional comma 1s allowed in a DO statement. --F.g, 00 15, I = 1, 9

16. A 00 loop may have a negative increment value, and can be executed zero
times.

17. An INTRINSIC statement identifies a name as an intrinsic function, so that
it can be used as an actual parameter in a subroutine or function call.

18. Colons in a FORMAT specification. When a colon is encountered in a format,
the READ/WRITE operation is ended if the last item in the list has already
been processed .

19. The following clauses may be added to READ and WRITE statements:

ERR,11
END=l2

where 11 and 12 represent statement labels. Control will pass to l 1 if there
is an error in the 1/0 (ERR clause), or to 12 if the end of file has been read
(END clause).

20. Any print control character other than 0, 1, or + will be treated as if it
were a blank.

21. COMMON variables may be used as adjustable dimensions of an array in a
subprogram.

22. The use of sub.string names and array names with implied DO loops are
allowed in the variable list of a DATA statement.

23. Additional field descriptors are:
Tw ... character positioning
Iw .d Same as Iw but at least d digits to be written
Jw • Integer, zero filled

Introduction to FORTRAN

Rw •.• right justified alphanl.Eeric
Ow ••• octal

24. A form of FREE FORMAT is allowed for simplified I/O.

25, Additional intrinsic functions are provided, some are:-

DINT
FLO
BDOL
NINT
ANINT

AND
MAX
ICHAR
LGE
DNINT

COMPL
OR
CHAR
LGT
NINT

MIN
LOC
LEN
LLE
IDNINT

XOR
DDIM
INDEX
LLT
DPROD

26. Additional external functions are provided, some are:-
TAN DASIN DACOS CSINH CCOSH CBRT
DTAN ACOS SINH COSH DTANH DCBRT
CTAN
ASIN

LOG
LOG1O

DSINH DCOSH CTANH CCBRT

22-3

27. ENCODE and DECODE (or internal file READ and WRITE) statements may be used
to transfer data aroimd in storage using different format control. The
internal unit identifier is a character variable, array, array element or
sub.string.

28. The PARAMETER statement enables variables to be preset at compile time, so
that (amongst other things) they may be used to specify the size of arrays.
IMPLICIT and type declarations may be used to change the default type of
parameter constants.

29 . . Multiple entry points are available in any subprogram via the ENTRY
specification line.

30. The ability to use random access files.

31. The BITS function which allows access to the bit level.

32. An expanded character set to handle the full ASCII set of characters.

33. Dou~le precision complex data type is allowed.

34. Single precision CCJilPLEX may be 2 integers or 2 reals.

35. Character data type is introduced, with character asdgnments and
comparisons al so allowed.

36. Concatenation of character strings is allowed.

37, A 1 $ 1 is all~wed in symbolic names, except for the first character.

38, An actual parameter may be a substring. If it is an array element
sub.string then it may be associated with a dunmy parameter which is an array.

39. Hul tiple assignments are implemented\ ie. vl, v2, ••• = e •

40. Integer expressions are allowed on computed GO TOs.

Introduction to FORTRAN 22-4

41. Integer, real and double precision expressions are allowed for DO
parameters and the DO-variable may be real or double precision.

42. The STOP and PAUSE statements are extended to allow a message or an identification n1inber to be printed on stopping or pausing. The form is:

STOP n
STOP ' message'
PAUSE n
PAUSE 1 message 1

where n = up to 6 digits.

43, Expressions are permitted in an output 1/0 list.

44. Expressions are permitted in an implied DO (as with 00 loops), and implied DO-loops may be done zero times.

45. The EXTERNAL statement is extended to allow linkage to non-Fortran suproutines, and sub programs with the same names as intrinsic functions.

46. A I:£800 facility is provided.

47. Interactive debugging is provided.

48. Statement mnber variables may be used for the format m.mber in 1/0 statements.

49. Exponentiation between variables af all arithmetic types and lengths is permitted.

50. Conversion of constants in DATA statements to match the variable type (with a diagnostic warning also supplied).

51, The first statement of a main program may be:

PRcx;RAM name

52, A SAVE statement may be used to retain the values of variables and arrays as they were defined before returning from a subprogram . Cn re-entry into the subprogram, the specified variables have their saved values. Form:

SAVE n,n, ••• where n is a named common block (eg / NAME/), a
variable or an array name.

53, Logical operators ,EQV., .NEQV. are allowed.

54. EQJIVALENCE may contain character sub string names, and integer constant expressions for subscript and substring expressions.

55, The name of a statement function may appear in a type declaration or may be typed with IMPLICIT.

56. In a sub program, where an array is in the parameter list, it may have an 'assumed' size. The upper dimension bound of the last dimension is declared as

Introduction to FORTRAN 22-5

an asterisk, and it is assll!led that subscipts will not go out of bounds.
Example:

SUBROUTINE SUB(X,Y,N)
REAL X(N,*), Y(O:*)

57. A BlDCK DATA sub program may have a name. This name may appear in an
EXTERNAL statement.

58. A comma before variable lists in DATA statements is optional, ie.

DATA variable list /constant list/[,] variable list /constant list/

59 . Sub string names are allowed in input/output lists.

60, An empty input/ouput 11st is allowed on READ/WRITE to skip a record or to
write an empty record.

61. OPEN,CLOSE and INQUIRE statements are available for file-handling.

62. For a subroutine with no parameters, empty brackets are optional on the
SUBROUTINE statement and CALL. For a function with no parameters, empty
brackets are optional on the FUNCTION statement (but must be included on the
function reference except when the function name is an actual parameter).

22.2. Internal and External Subprograms

Subroutines, functions and BlDCK DATA are referred to collectively as
subprograms. A program consists of a main program and zero or more
subprograms.

Subprograms may be internal or external. An external subprogram is either the
first sub program in a file element or follows a previous END statement. If a
subprogram is not terminated by END then the following subroutine or function
is internal to it.

An internal subprogram is considered to be nested within the previous external
subprogram, and has access to its data as well as having its own local data.
Data consists of variables, arrays, statement functions, parameter variables
and common variables. Any data declarations (eg. REAL, DIMENSION, CCMHON) in
an internal subprogram create variables local to that subprogram, and any
variable3 used that do not exist in the external sub program are local.
Statement labels are local.

An external subprogram may have many internal subprograms, which may not be
referenced by any other external sub program except as parameters. Internal
subprograms can call others within the same external subprogram but cannot
reference each other's data except through Cc»tHON blocks and parameters. Data
used in an external subprogram cannot be referenced by another external
subprogram except through COMMON blocks and parameters.

A main program must appear first in a file element, and the last sub program in
an element must finish With an END statement. (Note : to use @FTN, C all

Introduction to FORTRAN 22-6

subprograms must be in the same element.)

BLOCK DATA is an external subprogram wt!.ich cannot contain any internal subprogams. Functions and subroutines wt!.ich have been specified as EXTERNAL may be internal or external subprograms.

Example

main program

FUNCTION A (internal to main proaram)

SUBROUTINE B (internal to main program)

END
FUNCTION (external)

SUBROUTINE D (internal to function C)

END
SUBROUTINE E (external)

END

22. 3. Hollerith Data Types

1966 Fortran did not have type CHARACTER, and a character cona:tant was not enclosed in quotes. Characters were stored in integer, r.ejill, logical and double precision variables, and constants were ~ l ;t.erith constants. Univac Ascii Fortran has retained this data type for comp~tibility with 1966 Fortran.

A Hollerith constant has the form:

nHstring

where n is the nunber of characters in the string.
Examples:

3HWCll
6Hthat I s

1 lHUPPER/lower
(equivalent to 'that• 1 s ')

Hollerith constants may be assigned to character variabl1p as well as to integer, real, logical and double precision variables (but type Hollerith is distinct from type CHARACTER). -4 characters fit into an .!_nteger, real or

Introduction to FORTRAN 22-7

logical variable, and 8 into a double precision variable. en input and output,
A4 format is required for characters in integer I real and logical variables,
and AS format is required for characters in double precision variables.
Example:

DOUBLE PREC JS ION TITLE
CHARACTER•3 TAIL
TITLE = 8HHEADING
TAIL = 'END'
WRITE (6, 10) TITLE, TAIL

10 FORMAT (1X,A8/1X,A3)

1977 Fortran made it illegal to compare a character expression with anything
other than another character expression. In Univac Ascii Fortran, a Hollerith
constant may only be compared with another Hollerith constant or an expression
of type character (ie character constant, character variable, or combination
of these).

Introduction to FORTRAN

23. APPENDIX 9 - Answers to selected exercises

23. 1. CHAPTER 2

23. 1. 1. Exercise 2A

(i) = (A+B)/(C+D)

(ii) = A + B/(C+D)

(iii) = (A+B)/C + D

(iv) 2 = A + 8/(C+D/E)

(v) 2 = N•(N-1)/2

(vi) 2 = (A-B)•(C-D) / (E•(F.G))

(viii) Y = -2. 314 + (5.67•2 - 3.29E-4)•zu3 + 4.13•zu7

23, 1.2. Exercise 2B

(a) REAL

(b) REAL

(c) INTEGER

(d) NEITHER

(e) REAL

(f) REAL

(g) NEITHER

(h) NEITHER

(i) NEITHER

(J) NEITHER

(k) REAL

23-1

Introduction to FORTRAN 23--2

23.1.3. Exercise 2C

(a) REAL

(b) ILLEGAL

(c) REAL

(d) ILLEGAL

(e) ILLEGAL

(f) INTEGER

(g) ILLEGAL

(h) REAL

(1) ILLEGAL

(j) ILLEGAL

(k) REAL

(1) REAL

2).1.4. ExerciH 2D

(1) 38 is an illegal variable name

(11) There is a mismatch of open and close brackets

(iii) J.14159 is an illegal variable name

(iv) Adjacent operators ** and -

(v) Only 6 characters are allowed for variable names .

(vi) X+Y is an illegal variable name.

(vii) Hissing operator between the two bracketted expres:sions

23. 1.5. Exercise 2E

(1) Z becomes-1.0666667 (approximately)

(ii) becomes 4.0 (note that this is NOT 4, but 4.0)

(111) becomes 1,0

Introduction to FORTRAN

(iv) becomes 6 . 0

(v) becomes 1,0

(vi) K becomes

(vii) K becomes 2

(viii) K becomes

(ix) K becomes

(x) K becomes -1

(xi) K becomes

23.2. CHAPTER 3

23.2, 1. Exercise 3A

C

(note that this is NOT 3,0. but 3)

C AllrHOR ; LESLIE LANDAU
C DATE: OCTOBER 1977
C INPUT DESCRIPTION: FREE FORMAT, 2 REALS 2 INTEGERS
C PURPOSE:
C TO READ IN 4 NUMBERS AND TO WRITE THEM OUT IN REVERSE
C

READ(5, •)VAL 1, VAL2, NUH3, NUH4
WRITE(6, •)NUM4, NUM3, VAL2, VAL 1
STOP
END

23. 2. 2. Exercise 38

AllrHOR:
DATE :

LESLIE LANDAU
OCTOBER 1977

C INPUT ;
C PURPOSE :

TWO INTEGERS IN FREE FORMAT

C
C
C
C

TO ADD, MULTIPLY, DIVIDE THE TWO INTEGERS
AND TO RAISE THE FIRST TO THE POWER CF
THE SECOND

READ(S,•)l,J
WRITE(6.•) 1 ORIGINAL INPlTI' IS ',I,J
K = I+J
L : I•J
M = I/J
N : IHJ

23-3

Introduction to FORTRAN

C
C WRITE M RESULTS
C

WRITE(6,•) 1 ADDITION: ',K, 1 HULT~ ',L, 1 DIV z ',M,
$ I POWER= ',N

STOP
END

23.2.3. Exercise JC

C AUfHOR: L, LANDAU
OCT 1977 C DATE :

C INPUT : A POSITIVE REAL NUMBER IN FREE FORMAT
C PURPOSE:
C
C
C

TO CALCULATE THE INTEGRAL AND FRACTIONAL PARTS
OF THE REAL NUMBER READ IN

READ(5, •)VAWE
INT :z VALUE
FRACT = VALUE - INT
WRITE(6,•) 1 THE INTEGRAL PART OF 1 ,VALUE, 1 IS 1 ,INT,

$ ' AND THE FRACTIONAL PART IS ',FRACT
STOP
END

23,2,4. Exercise 3D

C AUfHOR : L. LANDAU
OCT 77 C DATE

C INPUT : TWO REAL$ IN FREE FORMAT
C PURPOSE: TO CALCULATE THE DIFFERENCE BETWEEN

THE SQ\JARES (FIRSTSQ - SECONDSQ) C
C

READ(5, •)VAL 1, VAL2
SQ1 = VAL1•VAL1
SQ2 : VAL2H2
DIFF: SQl - SQ2
WRITE(6,•)VAL1,' SQUARED IS ',SQ1
WRITE(6,•)VAL2,' SQUARED IS ',SQ2
WRITE(6,•) 1 DIFFERENCE BETWEEN SQUARES 1 ,DIFF
STOP
END

23,3, CHAPTER

23-4

Introduction to FORTRAN

23.3.1. Exercise 4A

(a) Valid
(b) Valid
(c) Invalid (Illegal adjacent operators)
(d) Valid
(e) Invalid (Hissing arithmetic expression)
(f) Valid
(g) Inv al id (Illegal operator)
(h) Invalid (Illegal operator)

23. 3.2 . Exercise 4B

C
C Al/fHOR: LES LANDAU

9 SEP 79 C DATE:
C INPUT: ONE CARD CONTAINING TWO INTEGERS IN FREE FORMAT
C PURPOSE: TO DETERMINE WHICH INTEGER IS THE LARGER, AND WRITE

THAT ONE OUT FIRST C

READ(5,•) INT1, INT2
IF (INT 1 • GT. INT2) THEN

WRITE(6, •)' NUMBERS ARE 1 , INT 1, INT2
ELSE

WRITE(6,•)• NUMBERS ARE ',INT2,INT1
END IF
STOP
END

23.3 .3, Exercise 4C

READ (5,•) MAXIN
IF (MAXIN .EQ. 10) THEN

FORGET = 0.0
ELSE IF (MAXIN .EQ. 16) THEN

WRITE (6,•) 1Gotit'
STOP

ELSE IF (MAXIN .EQ. 19) THEN
FORGET = O. 5
WRITE (6,•) 1 Fo1.11d one'

END IF

23.3.4. Exercise 4D

IF (A.GT.-0.00001 .AND. A.LT.0.00001) A = 0.0

23-5

r
Introduction to FORTRAN

23.3.s. Exercise 4E

IF (IND .EQ. 16) THEN
K = 6
I = 9

ELSE IF (L .GT. J+ll) THEN
X = 19. 6
READ (5,•) Y
L = 0

ELSE IF (HAIN • LT. I) THEN
COST : 19.0
TRY : 14.2

ELSE
PAY s 0.0

END IF

23.4. CHAPTER 5

23.4. 1. Exercise SA.

(I) FALSE
(II) TRUE
(111) FALSE
(Iv) FALSE
(v) TRUE
(vl) FALSE
(vii) FALSE
(viii) TRUE
(Ix) FALSE
(x) FALSE

23.4.2. Exercise 5B

(1) CORRECT

(II) INCORRECT (statement label is a variable)

(111) CORRECT

(Iv) INCORRECT (DO-variable cannot be a mnber)

(v) CORRECT

(vl) CORRECT (real m.mber is trW1cated to an integer)

(vii) CORRECT

23-6

Introduction to FORTRAN

(viii) CORRECT

{ix) CORRECT (1. N1'A2 and 2 are converted to real mmbers)

(xl CORRECT

(xi) INCORRECT (missing statement label)

(but confusing) (xii) CORRECT

23.1'.3. Exercise SC

{a) 14
(b) 0, 4, 8, 12, 17, 21, 25, 29

23.4.1'. Exerci se 5D

C
C
C
C
C

C

AUTHOR:
DATE:
INPUT:
PURPOSE :

LES LANDAU
9 SEP 79
THERE IS NO INPUT
TO ADD UP ALL THE EVEN INTEGERS BETWEEN 98 AND 224
INCLUSIVELY, AND TO WRITE OUT THE TOTAL.

!TOTAL = 0
DO 5 NUH = 98,224,2

!TOTAL : !TOTAL + NUH
CONTINUE

C
C WRITE OUT THE RESULTANT TOTAL
C

WRITE(6,•) ' SUH OF EVEN INTEGERS FROM 98 TO 224 ' !TOTAL
STOP
END

23.1'.5. Exercise SE

C
C AUTHOR:
C DATE :
C INPUT:
C
C
C
C
C
C PURPOSE:

LES LANDAU
9 SEP 79
FIRST LINE:

THIS CONTAINS AN INTEGER IN FREE FORMAT WHICH
INDICATES THE NUMBER OF UNES TO FOLLOW

SUBSEQUENT LINES:
CONTAIN A REAL NUMBER (FREE FORMAT)

TO DETERMINE THE LARGEST AND SMALLEST NUMBER

RESTRICTION: THERE HUST BE AT LEAST ONE NUMBER

23- 7

Introduction to FORTRAN

C
C
C READ IN HOW MANY NUHBERS THERE ARE
C

READ(5,•) NUH
IF (NUH .LT, 1) THEN

WRITE(6,•)• YOU NEED AT LEAST ONE NUHBERII'
STOP

END IF
C
C READ IN THE FIRST NUMBER AND SAY ITS BOTH THE BIGGEST AND
C THE SMALLEST.
C

READ(5,•) VAL
BIG = VAL
SHALL = VAL

C NOW PROCESS THE REMAINING NUH-1 NIJHBERS
C

DO 5 L = 2,NUH
READ(5,•) VAL
IF(VAL,GT,BIG) BIG = VAL
IF(VAL.LT.SHALL) SHALL: VAL

5 CONTINUE

WRITE OUT RESULTS

WRITE(6,•) 'THE LARGEST NUMBER WAS 1 ,BIG
WRITE(6,•) 'THE SMALLEST NUMBER WAS ',SHALL
STOP
END

23. 4. 6. Exercise 5F

(i) 12
(ii) 12
(iii) 9
(iv) 15
(v) 4

23.4.7. Exercise 5G

23-8

44 J is incremented to 44, then tested against 38, and control is passed
to the WRITE statement .

. 23.4.8. Exercise 5H

AUTHOR : K. HANDEL

Introduction to FORTRAN

C
C
C
C

DATE
INPUT

PURl'OSE

28 JUNE 81
(1) AN INTEGER IN FREE FORHAT INDICATING THE NUMBER

OF VALUES TO FOLLOW
(2) THE VALUES, REAL NUMBERS, ONE PER LINE

: FIND THE AVERAGE OF ANY NUMBER OF NUMBERS READ IN
FROH INPUT

RESTRICTION : THERE HUST BE AT LEAST ONE NUMBER

TOTAL : 0

READ (5, 1) NUH
DO 100 I: 1,NUH

READ (5, 1) VAL
TOTAL : TOTAL + VAL

100 CONTINUE

AVER : TOTAL/NUH
WRITE (6 , 1) 'AVERAGE IS ',AVER
STOP
END

23.5. CHAPTER

23.5, 1. Exercise 6A

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(vii)

(viii)
(ix)

23.5.2.

ANS : SQRT(B'B - 4.01 A1 C)
ANS : SIN(2.4)
IANS: HAX(J, LARG)
ANS : HAX(A,BIG)
ANS : ABS(ECC)
IANS: ABS(!)
JANS: ABS(H)
ANS : ABS(A)
ANS : REAL(KKK)
ANS : SQRT(REAL(INT))
ANS : HAX(REAL(I) ,X)

Exercise 68

C AUTHOR
C DATE

L.LANDAU
7TH OCTOBER 1977

C INPUT
C PURl'OSE

RESTRICTIONS:

ONE INTEGER IN FREE FORMAT
TO CALCULATE THE FACTORIAL OF THE INTEGER
READ IN

THE UNI VAC COMPUTER CAN ONLY REPRESENT

23-9

Introduction to FORTRAN

C

INTEGERS UP TO 2u35 - 1 AND SO THE
HAXIHlM FACTORIAL IS 131

READ(S,•)NUH

STOP THE PROGRAM IF HUH IS TOO BIG

IF (HUH .GT. 13) THEN
WRITE(6,•)NUH,' IS TOO BIG, 13 IS MAX'
STOP

END IF
!FACT : 1
DO 5 HULT = 1,NUH

!FACT • IFACT•HULT
5 C~TINUE

C OUTPUT RESULTS
C

WRITE(6 1 •) 1 THE FACTORIAL OF ',NIM,' IS 1 ,IF'ACT
STOP
END

23.5.3. Exercise 6C

(1) H = HOD(IJ,K)
(11) SHALL : HIN(A,B)
(111) WARM = REAL(ION)/REAL(KAN)
(iv) ADAM : AHOD(VAL,WORLD)

23.6. CHAPTER 7

23.6.1. Exerohe 7A

C AUTHOR: L. LANDAU
9 SEP 79 C DATE:

INPUT:

C

THREE REAL NUMBERS AND ONE INTEGER
IN FREE FORMAT. INPUT FOR VARIABLES
A, B, P, K (RESP)

C PURPOSE: TO DO ONE OF THREE CALCULATIONS
DEPENDING ON K BEING -VE,0,+VE C

READ(S,•)A, B, P, K
IF(K.LT.O) Y = SQRT(A•A + SIN(P) H 2)
IF(K.GT .0) Y = SQRT(B"B - SIN(P)H2)
IF(K.EQ.O) y = SQRT(A•A + B•B)

23-10

Introduction to FORTRAN

C WRITE OUT RESULTS

WRITE(6,•) 'PARAMETERS READ IN : A = 1 ,A,
$ '8 = ',8,'P = ',P, 1 K::: ',K

WRITE (6, •) 1 CALCULATED VALUE, Y = 1 , Y
STOP
END

23.6.2. Exercise 78

AUTHOR:
C DATE:

L, LANDAU
9 SEP 79

C INPUT: ONE REAL NUMBER IN FREE FORMAT
CORRESPCNDING TO X C

C PURPCSE: TO EVALUATE THE SUH OF THE
SERIES: C

C
C
C
C

N
COS (X)

N!

C FOR N = 0 TO 20
C THIS METHOD SUMS THE SERIES IN
C A FORWARD DIRECTION
C NOTE:
C TYPE REAL ARITHMETIC HUST BE USED

FOR FACTORIAL CALCULATION

READ(S,*)X
FACT = 1.0
SUH = 1.0
ex = COS(X)
TERM = 1, 0

C
C SUH THE SERIES
C

00 5 NTERHS : 1, 20
FACT = FACT • NTERMS
TERM = TERM • ex
SUH : SIii + TERM/FACT

5 COITINUE
C
C WRITE OUT RESULTS
C

WRITE(6,•) 'SUM OF SERIES USING ',X,' AS VALUE FOR X IS ',Sttl
STOP
END

23-11

Note that the factorial becomes large, and for a larger N would overflow. Can
you suggest another formula for cal ulating SlJi1 which does not require FACT to
be stored?

,
I

Introduction to FORTRAN

23. 6. 3. Exercise 7C

AllrHOR:
DATE:
INPUT:

K. HANDEL
5 AIJlUST 1981
NONE

PURPOSE: CALCULATE E TO THE POWER OF X
C FOR X RANGING FROM 1 TO 100 0

C USING THE EXP FUNCTION.
C RESTRICTION: X WILL BECOME TOO LARGE FOR EXP
C AT SOME STAGE. X COULD BE HADE
C INTO DOUBLE PRECISION TO EXTEND
C 1l!E RANGE.

INTEGER X
DO 10 X = 1,100

WRITE (6,•) X,EXP(X)
10 CONTINUE

STOP
END

23.7. CHAPTER

23.7,1. Exercise SA

23-12

(i) There is no field descriptor in the FORMAT corresponding to the
variable K. This may be fixed by putting in a field d8soriptor for K
or by eliminating K from the WRITE statement.

(ii) (a) GATHER requires an F field descriptor
(b) MOSS requires an I field descriptor
(c) The fiel d descriptor FJ . 5 doe:m't make sense,

(111) (a) There i s no term i nal statement for the 00

(b) There is no point in setting I to 17 outside the 00 as we read in a
value for it within the 00.

(c) We cannot read in a value for K within the 00 as K is the control
variable (and we are no allowed to change it). ·

(d) As F is not used within the loop, its value will ,. be overwritten
each time arot.md the loop. ·

(e) The writing out of I requires an I field descriptor.
(f) The construction ,:, is not allowed and should be,,, ,:,_,EQ.

Introduction to FORTRAN

23.7 , 2, Exercise 88

There will be 4 lines printed (including blank lines).

23.7,3, Exercise ec

0 10 -58790062 •
• oo 16. 77- 586.21 5 .48 131.10

23.7,4. Exerche 8D

(a) 676.7
(b) 6381
(c) 132.6
(d) HH (need FS.2 to get 12.16)
(e) 99999

23 . 7. 5 . Exercise SE

C
C At11HOR: LES LANDAU

9 SEP 79 C DATE:
C INPUT: TWO REAL NUMBERS I N FREE FORMAT

THE FIRST IS THE LENGTH OF CUBE A C
C
C

THE SECOND IS THE SMALLEST SIDE OF .BLOCK B

PURPOSE: TO CALCULATE THE SURFACE AREAS OF CUBE A AND
BLOCK B, AND ALSO TO FIND THE LARGER ONE AND THE

C DIFFERENCE I N AREA
C METHOD OF CALCULATION:
C THE AREA OF A CUBE IS 6 TIH&'l THE SQUARE OF THE WIDTH

C THE AREA OF THE BLOCK B IS GIVEN BY :
2• 2K• 3K + 2•2K•K + 2•3K•K

C

WHERE K IS THE LENGTH OF THE SHORTEST SIDE

READ(S,•) H , BK
AREAA = 6 • H•H
BKH = BK•2
BKL : BK•3
AREAB = 2•eJCH•BKL + 2•eJCH•BK + 2•eKL•BK
DIFF : ABS(AREAA-AREAB)
BIG : HAX(AREAA,AREAB)

C NOW WRITE OUT THE RESULTS
C

WRITE (6, 100)
100 FORHAT('l','LES LANDAU',///

$ 52X, 'COMPARISON OF SURFACE AREAS' ///)

23-13

Introduction to FORTRAN

WRITE(6, 101) H, BK, BICH, BKL, ARE.AA, AREAB
101 FORHAT(1X, 'SIDE OF CUBE A: 1 ,5X,F10.2,/

$ 1X, 'WIDTH OF BLOCK 8:' ,3X,F10.2/
$ 1X, 'HEIGHT OF BLOCK B:' ,2X,F10 . 2/
$ 1X, 'LENGTH OF BLOCK B: ',2X,F10.2//
$ lX, 'SURFACE AREA OF A:' ,2X,F10.2/
$ 1X,'SURFACE AREA OF B:',2X,F10.2/)

WRITE(6, 102) DIFF,BIG
102 FORMAT(1X, 'DIFFERENCE IN SURFACE AREA: ',3X,F10,2//

1X, 'LARGER SURFACE AREA: 1 ,3X,F10 . 2)
STOP
END

23. 7. 6 . Exercise SF

C
C AUTHOR: L: LANDAU

9 SEP 79 C DATE:
C INPUT: THERE IS NO INPUT
C PURPOSE : TO PRINT OUT THE SINE, COSINE

TANGENT, SECANT, COSECANT, COTANGENT
OF EVERY INTEGRAL ANGLE FROM

C
C
C 1 TO 89 DEGREES

WRITE(6, 10)
10 FORMAT(1 1 ' , 'ANGLE 1 ,4X, 'SINE' ,6X, 1 COSINE',

$ 6X, 'TANGENT 1 , 7X, 1 SECANT 1 , 7X, 1 COSECANT',
$ 6X, 1 COTANGENT')

C CALCULATE THE VALUE OF PI FROM ATAN FUNCTION

PI • 4 ,0 • ATAN(1. 0)
DE GRAD • PI/180 .0
DO 15 !DEG • 1, 89

C FIN D THE TRIG FUN CTIONS

ANGLE • !DE G • DEGRAD
S • SIN(ANGLE)
CS • COS(ANGLE)
T • TAN (ANGLE)
SEC • 1. 0/CS
case . 1.01s
COT • 1,0/T

C WRITE OUT RESULTS

WRITE (6, 20) IDEG, S , CS , T, SEC, COSC , COT
15 CONTINUE

20 FORMAT(1X, 3X , 12 , 3X , F7 . 4, 4X, F7. 4, 4 (4X,F10. 4))
STOP
END

Introduction to FORTRAN

23. 8. CHAPTER 9

23. 8.1. Exercise 9A

(i) A type F field descriptor is required for reading in a value for A

(ii) There is no such relational operator as .GRT.
A field descriptor of 15. 1 does not make sense .
The format for writing out J should contain an I field descriptor.

23-15

(iii) Finishing a 00 statement on a FORMAT statement is nOt a good practice.
Cannot divide by zero (J/K is trying to do this)

23.8.2. Exercise 98

(a) 3
(b) 2

23. 8. 3- Exercise 9C

WUNDA war IT WILL BE

(a) 123 456. 127 98. 0 12 45 . 6 78.0
(b) 12345 6. 1279 8.0 12004 567 .8 o. 1
(c) 1 23. 4 56. 1 279 8.00012004 5.67

23. 9. CHAPTER 10

23.9. 1. Exercise 10A

(a) The array J is dimensioned to size 20 and yet the 00 loop will index up
to 100

(b) The left hand side of the third line should have a subscript, as the
array ARRAY must always appear with a .subscript.

(c) - The variable I i.s being used as both an array AND as a .simple
variable. This i5 not allowed.
- ARRAY(I-1) when I is 1 will be referencing ARRAY(O) which is illegal.

Introduction to FORTRAN

23. 9. 2. Exercise 10B

C AllfHOR: K, HANDEL
C DATE: 5 Al.GUST 1981
C INPUT: Rainfall data for 8 localities, one line per loo1lity.

12 real n1.111bers per line, in free format, C
C representing the rainfall for e1oh of the 12 months

for a locality.
PURPOSE: calculate averase rainfall for each of 8 localities.

20

$

REAL RAIN(12)
DO lj() LOCAL• 1,8

READ (5,*) RAIN

AVE • 0.0
DO 20 MONTH = 1, 12

AVE = AVE + RAIN(HONTH)
CONTINUE
WRITE (6,*) 'Average rainfall for locality' ,LOCAL,

' is', AVE/12.0
40 CONTINUE

STOP
END

23, 9,3, Exercise ,cc

(1) correct
(11) correct

(111) incorrect
(iv) correct

23.9.4. Exercise 10D

(a) X appears in a DIMENSION statement and so should
have a subscript in the second line

(b) no error

(c) Cannot have a REAL variable as a subscript.

(d) A variable may not appear twice on a DIMENSION
statement.

The maximun subscript for T is 6

23. 9, 5, Exercise lOE

DIMENSION B(100)
DO 5 LOC = 1,100

23-16

Introduction to FORTRAN

B(LOC) = 0 . 0
5 CONTINUE

23.9 , 6 . Exercise 10F

C
C AUTHOR: L LANDAU
C DATE : SEPT 1979
C INPUT r:t:SCRIPTION:
C FIRST CARD:
C CONTAINS AN INTEGER
C WHICH INDICATES THE
C TO FOLLOW.
C
C
C
C
C
C
C
C
C

FOLLOWING CAROO:
COLUMNS TYPE

1-2 INTEGER
3-li INTEGER

s-a
9-12

PURFOSE:

INTEGER
INTEGER

(IN FREE FORMAT)
NUMBER OF CAROO

MEANING
IDENTIFICATION NUMBER
NUMBER OF EGGS LAID
TIIIS MONTH
FEED CONSUMED (GRAHS)
WEIGHT OF TIIE BIRD (GRAHS)

READ IN HEN DATA AND PRINT OUT FOR EACH HEN
C (A) IDENT
C (B) EGGS LAID AND DIFFERENCE FROH AVERAGE
C (C) FEED EATEN, DIFFERENCE FROH AVERAGE
C (D) BIRD WEIGHT, DIFFERENCE FROM AVERAGE
C
C THERE IS A LIMIT OF 50 HENS

C

DIMENSION IDENT(50) ,LAYD(50), IFEED(50)
DIMENSION IWEIGH(50)

READ IN NUMBER TO PROCESS AND ENSURE < 50

READ(5, •)NUM
IF(NUM. GT. 50) THEN

WRITE(6,*)' TOO HANY HENS, HAX IS 50. REC04PILE',
1 PROGRAM WITH LARGER ARRAYS 1

STOP
END IF
ITOTEG = 0
ITOTFD : 0
ITOTWT = 0

C READ IN HEN DATA AND C04PUTE TOTALS
C

DO 5 IHEN = 1,NUM
READ (5, 10) IDENT(IHEN) ,LAYD(IHEN), IFEED(IHEN),

IWEIGH (IHEN)
ITOTEG = ITOTEG + LAYD(IHEN)

23-17

Introduction to FORTRAN

ITOTFD = ITOTFD + IFEED(IHEN)
ITOTWT = ITOTWT + IWEIGH(IHEN)

5 CONTINUE
10 FORHAT(I2, 12, 14, 14)

C WRITE OUT RESULTS
C

C

15

20

WRITE(6, 15)
FORHAT('1','HEN ANALYSIS'/

$ 1X, 11X, 'EGGS DIFFERENCE FEED
$ 'DIFFERENCE BIRD DIFFERENCE'/
$ 1X, 1 IOENT' ,SX, 1 LAID 1 ,4X, 'FROM. AVE',
$ 4X, 1 EATEN FROM AVE',5X, 1 WEIGHT 1 ,

$ 3X,'FROH AVE')
AVEEG = REAL(ITOTEG)/NUH
AVEFD = REAL(ITOTFD)/NUH
AVEWT = REAL(ITOTWT)/NUH
00 25 !HEN = 1, NUH

DIFEG = LAYD(IHEN) - AVEEG
DIFFD = IFEED(IHEN)- AVEFD
DIFWT = IWEIGH(IHEN)-AVEWT
WRITE (6,20) IDENT(IHEN) ,LAYD(IHEN) ,DIFEG,

IFEED(IHEN) ,DIFFD,

•
!WEIGH (!HEN) ,DIFWT

FCllHAT(2X, 14, 5X, 14, 4X,F8, 1, 5X, I4,4X,F8, 1,
6X, I4,4X,F8.1)

25 CONTINUE

C WRITE OUT TOTALS AND AVERAGES
C

WRITE(6, 30)ITOTEG, ITOTFD, ITOTWT
30 FORMAT(//1X,'TOTALS: ',I5,16X,I5,17X,I5)

WRITE(6, 35)AVEEG, AVEFD, AVEWT
35 FORMAT(1X, 'AVERAGE: ',F6. 1, 15X,F6. 1, 16X,F6.1)

STOP
END

23.10, CHAPTER 11

23.10.1. Exerci.se 11A

(a)
(b)
(c)

• 000+000
• 323+003
.443+012

(d) • 100+002
(e) -.421-003
(f) • 100-002

(g) ,270.,003
(h) -.663+003
(1) ,300-023

23-18

Introduction to FORTRAN

23.10.2. Exercise 118

AITTHOR: L LANDAU
C DATE : SEPT 1979

INPUT DESCRIPTION:
THERE IS NO INPUT

C
C PURPOSE:
C TO GENERATE THE NUMBERS 1 TO 30 IN AN ARRAY
C ANO TO WRITE OUT THE ARRAY

(A) ON ONE LINE
C (B) SPREAD OVER 5 LINES WITH LINE NUMBERS
C

DIMENSION NUM(30)

PUT NUMBERS INTO NUM AND WRITE IT OUT

D051=1,30
NUM(I) = I

CONTINUE
WRITE(6, 10)(NUM(I), I:1, 30)

10 FORMAT{1X,'THE NUMBERS ARE'/
'0' ,30(!3, 1X))

NOW WRITE OUT THE ARRAY OVER 5 LINES
PREFIXING EACH LINE WITH A LINE NUMBER

IST = 1
IFIN: IST+5
D020I=1,5

WRITE(6, 15)!,(NUM(K),K = IST,IFIN)
15 FOOMAT(1X, IS, 6I5)

IST = IFIN+1
IFIN: IFIN+6

20 CONTINUE
STOP
END

23.10.3. Exercise 11C

AITTHOR: LES LANDAU
DATE: 25TH MARCH 1981

INPUT DESCRIPTION:
NO INPUT

C PURPOSE:
C TO GENERATE NUMBERS IN A TWO DIMENSIONAL ARRAY
C OF SIZE 10 BY 3 AND TO WRITE OUT THE ARRAY:
C (A) SPREAD OVER ONE LINE
C (B) SPREAD OVER 5 LINES, WITH LINE NUMBERS

23-19

Introduction to FORTRAN

DIMENSION NUM (10, 3)

C PUT NUMBERS INTO THE ARRAY BY ROWS

KNT • 1
00 20 I = 1, 10
DO 10 J • 1, 3

NUM (I ,J) : KNT
KNTzKNT+1

10 CONTINUE
20 CONTINUE

NOW WRITE THEM OUT ON ONE LINE

WRITE (6,30) ((NUM(I,J), J • 1,3), I• 1,10)

30 FORMAT (1X, 'THE NUMBERS ARE'//
$ 1X, 30(13, 1X))

NOW WRITE THEM OUT OVER 5 LINES

IR • 1
DO 50 LINE = 1, 5

WRITE (6,40) LINE, ((NUM(I,J),Jz1,3),hIR,IR+1)

40 Fa!MAT (lX,15,615)
IRaIR+2

50 CONTINUE
STOP
END

23.10.4. Exercise 11D

C Add M x N arrays A and B together and store in M x N

C array C, Max M is 14, max N is 10,
C This is just a series of statements, not a full program,

REAL A(14,10), 8(14,10), C(14,10)
DO 100 I • 1,H
00 100 J • 1, N

C(I,J) • A(I,J) + B (I,J)
100 CONTINUE

23.10.5. Exercise 11E

C AUTHOR:
C DATE:
C INPUT:
C
C
C

K. HANDEL
5 AIXl 1981
CARD1 - an integer N, in tree format , representing
the nunber of dimensions in space ,
CARD2 - co-ordinates of a point in N-dimensional

space, in free format.

23-20

Introduction to FORTRAN

Further cards each contain co-ordinates of a point.

C PURPOSE: Find the distance fr'om the origin of points in

C N-dimensional space. N is read from input 1 then

C the co-ordinates of the points are read from input.

C RESTRICTION: N, the nll!lber of dimensions in space, is less

C than or equal to 25.

REAL POS(25)
READ (5,*) N
IF (N .GT .25) THEN

WRITE (6,*) 'Max m111ber of dimensions is 25. '
'Number read is' 1 N

STOP
END IF

100 READ (5,•,END:140) (POS(I),I = 1,N)

DIST = 0
D0120I=1,N

DIST = DIST + POS(I)H2
120 CONTINUE

WRITE (6,*) 'Distance of (' ,(POS(I),I = 1,N), 1) 1

$ 'from origin is ', SQRT(DIST)

GO TO 100
140 STOP

END

23, 10,6. Exercise 11F

C AUIHOR: K. HANDEL
C DATE: 5 AUGUST 1981

C INPUT: Rainfall data for 8 localities, one line per locality.

12 real nllllbers per line, in free format, C
C
C

representing the rainfall for each of the 12 months

for a locality.
C PURPOSE: Calculate average rainfall for each of 8 localities,

and also the entire rainfall figures for the month

with the highest average.
C
C

REAL RAIN (8, 12)

· DO 40 LOCAL = 1,8
READ (5,•) (RAIN(LOCAL,MONTH) ,MONTH = 1, 12)

C Find the average rainfall for locality LOCAL.

AVE = 0.0
DO 20 MONTH = 1, 12

AVE = A VE + RAIN (LOCAL, MONTH)

20 CONTINUE
WRITE (6,•) 'Average rainfall for locality', LOCAL,

$ 1 is', AVE/12.0
40 CONTINUE

C Find month with highest rainfall (HRAIN).

23-21

Introduction to FORTRAN 23-22

HRAIN = -1
DO 80 MONTH: 1,12

TOT : 0.0
DO 60 LOCAL: 1,8

TOT : TOT + RAIN (LOCAL,HONTH)
60 CONTINUE

IF (TOT .GT, HRAIN) THEN
HRAIN = TOT
MAXMTii : MONTH

END IF
80 CONTINUE

WRITE (6,*) ' Rainfall for month ',HAXMTH, 1 , which had the 1

$ 1higheist average, was 1 , (RAIN(LOCAL,MAXMTH), LOCAL: 1,8)
STOP
END

23, 11, CHAPTER 12

23.11.1. Exercise 12A

A) OK
B) OK
C) ILLEGAL (MISMATCH OF PARAMETER TYPES)
D) ILLEGAL (WRONG NUMBER OF PARAMETERS)
E) ILLEGAL (MISMATCH OF PARAMETER TYPES)
F) THIS WOULD WORK, BUT CONFUSING AND SHOULD NOT BE USED.
G) LEGAL, BUT COULD CAUSE AN ERROR ACCESSING OUT OF BOUNDS

IN ARRAYS CT AND SUNNY,

23. 11. 2. Exercise 12B

SUBROUTINE AVERNZ(JA,N,AVER,NZ)
AUTHOR: K. HANDEL
DATE: 5 AtK; 1981
INPUT: None

C PURRJSE: Find the average of the first N elements of
C an integer array and the m.mber of those
C elements which are zero.
C
C
C
C
C
C

PARAMETERS:
INPUT:

OUTPUT:

INTEGER JA(N)

JA - array of length N (INTEGER)
N - dimension of JA (INTEGER)

AVER - average of first N elements
of JA (REAL)

NZ - m.rnber of zeros in first N
elements of JA (INTEGER)

.. ntroduction to FORTRAN

NZ = 0
AVER = 0 . 0
DO 10 I = 1, N

AVER = AVER + JA(I)
IF (JA(I) .EQ. 0) NZ = NZ + 1

10 CONTINUE
AVER = AVER/ N
RETURN
END

23,11,3, Exercise 12C

SUBROUTINE READA (A,NROWS,NCOLS)

C AllrHOR:
C DATE:
C INPUT:
C
C PURPOSE:
C PARAMETERS:
C INPUT:
C
C OUTPUT:

K. HANDEL
5 AU, 1981
NROWS lines of data, each containing
NCOLS real mrnbers in free format .
read data into array A.

NROWS = nlJ'llher of rows
NCOLS = nunber of collJ'llns
A = real array, dimensions NROWS x NCOLS.

REAL A(NROWS, NCOLS)

DO 10 !ROW = 1, NROWS
READ (5,•) (A(IROW,ICOL), !COL 1,NCOLS)

10 CONTINUE
RETURN
END

23. 11.£1. Exercise 12D

SUBROUTINE TRIG (ANGLE, IDE GS, MINS, ISECS)

C AllrHOR:
C DATE:
C INPUT:
C PURPOSE:
C

PARAMETERS:
INPUT:

C OUTPUT :
C

K. HANDEL
5 AU, 1981
None
Convert an angle in degrees (real mJDber)
into degrees, minutes and seconds (integers) .
Seconds are rotmded to the nearest integer.

ANGLE - angle in degree:, (REAL)
IDEGS,MIN,ISECS - integer n\Jllber of degrees,
minutes and seconds.

IDEGS = ANGLE

C After subtracting the Wlole degrees, convert the remainder
c to minutes (REAL).

23-23

Introduction to FORTRAN

REH : (ANGLE - IDE GS) 1 60
MINS : REH

C After subtracting the \lihole minutes, convert the remainder
C to seconds. 0.5 is added before truncating the seconds to
C an integer, so the effect is rounding to the nearest integer.

ISECS • (REH - MINS) 1 60 + 0,5
RETURN
END

23.11.s. Exercise 12E

C AUTHOR : K. HANDEL
5 ALU 1981 C DATE:

C INPUT: (A) the m.mber of nunbers to be sorted - an integer,
right-justified in coll.mns 1-5 . C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE:

(B) the nllllbers to be sorted - starting in coll.nn 1
on a new line, put 5 real n1.1nbers per line,
10 col unns per nunber. If a nmber does not
have a decimal point, 3 decimal places will be
assumed. [Read in subroutine INPUT]
Read a list of real n1.1abera, and :,ort into
descending order.

The following subroutines are used:
INPUT(ALIST,N) - reads N real m.mbers into array ALIST.

OlTfPUT(ALIST,N) - prints the first N elements of ilIST.
SORT(ALIST, N) - sorts the first N elements of ALIST

into descending order.
RESTRICTIONS : ALIST contains real nunbers. To sort a list

of integers , change the declarations in the
main program and all subroutines.
A max of 100 m.rnbers may be sorted. To
increase this maximi.n, change the
declaration in the main progam.

REAL ALIST(lOO)
READ (5, 10) N

10 FORHAT(I5)
CALL INPUT (ALIST , N)
WRITE (6,20)

20 FORMAT (1 10r iginal data'///)
CALL OUTPUT (ALIST, N)
CALL SORT (ALIST, N)
WRITE (6,30)

30 FORMAT(' 1Sorted data'///)
CALL OUTPUT (ALIST,N)
STOP
END

SUBROUTINE INPUT (A, N)

C PURPOSE: Read N real minbers into array A, in SF10. 3 format
C PARAMETERS: INPUT - N = ni.nber of integers (INTEGER)

23--24

Introduction to FORTRAN

OUTPUT - A = array of N mmbers (REAL)

REAL A(N)
READ (5 ,10) (A(I), I: 1,N)

10 FORHAT (5F10.3)
RETURN
END

SUBROUTINE OUTPUT (A, N)

C PURPOSE: Print the first N nlJ!lbers from array A.
C
C

double spaced •
PARAMETERS: INPUT - N = mnber of m .. mbers (INTEGER)

A = array of N nU11bers (REAL)

REAL A(N)
WRITE (6,10) (A(I),I: 1,N)

10 FORMAT ('O' ,5F10,3)
RET URN
END

SUBROUTINE SORT (A, N)

C PURPOSE: Sort the first N elements of array A into descending
C order, using an Exchange Sort.
C PARAMETERS: INPUT - N = n1.111ber of elements to be sorted
C (I NT EGER) •
C A = original list (REAL)
C OUT PUT - A = sorted list

REAL A(N), ATEHP
DO 40 I : 1, N-1

HIN : I
DO 20 J = I+1, N

IF (A(J) .LT. A(HIN)) HIN : J
20 CONTINUE

IF (HIN .NE. I) THEN
ATEHP : A (HIN)
A(HIN) : A(I)
A(I) : ATEHP

END IF
40 CONTINUE

RETURN
END

23.11,6. Exercise 12F

X : 1.0
DO 10 I : 1, 10000

X: (X •o.1) • 10.0
10 CONTINUE

WRITE (6,•) X
STOP

23-25

Introduction to FORTRAN

END

23. 12. CHAPTER 13

23. 12. 1. Exercise 13A

FUNCTION AREA (R)
C PURPOSE: to calculate the area of a oirole of radius R

C PARAMETERS:
C NAME TYPE
C R REAL

PI • ~.o•ATAN(l.O)
AREA a PI • ftH2
RETURN
END

23.12.2. Exercise 138

FUNCTION FN (X)

C PARAMETERS:

DESCRIPTION
radius of the oirole

C NAME TYPE DESCRIPTION
C X REAL A PARAMETER TO THE FUNCTION
C PURPOSE:
C TO CALCULATE THE EXPRESSION
C 2 2 1/2
C X + (1 + 2X + 3X)
C
C A WARNING MESSAGE WILL BE SENT IF THE SQUARE ROOT
C CANNOT BE TAKEN (DUE TO NEGATIVE ARGUMENT). IN THIS
C CASE A VALUE OF ZERO WILL BE RETURNED BY THE FUNCTION.

VAL :: 1 + 2•X +3•xn2
IF (VAL .LT. 0) THEN

WRITE (6, •) 'ROOT NEGATIVE FOR VALUE OF X OF ', X,
$ 1 ----ZERO RETURNED---> ERROR! I'

FN • O. 0
ELSE

FN :: XH2 + SQRT (VAL)
END IF
RETURN
END

USE OF TilE FUNCTION WOULD BE

23-26

Introduction to FORTRAN

(I) A = (6. 9 + Y) / FN (Y)
(II) B : (2 . 1• z + ZH4) / FN(Z)
(III) C : SIN(Y) / FN (Y H 2)
(IV) D = 1.0 I FN (SIN(Y)

23.12.3. Exercise 13C

FUNCTION AREA (R , P)
AUIHOR: K. HANDEL
DATE 5 All, 1981

C I NPUT : None
C PURPOSE: If P = 1, calculate area of an equilateral

triangle of side R. C
C
C
C
C
C

If P = 2, calculate area of a square of side R.
If P = 3, cal culate area of a c ircl e of radius R.
Return the result as the function value (REAL).

PARAMETERS : INPUT - P = switch to indicate whic h type of area
is required (INTEGER)

INTEGER P
REAL R, RSQ
AREA = 0.0
RSQ = R • R

R = length of side or radius (REAL)

C EClJILATERAL TRIANGLE

IF (P .EQ. 1) AREA = SQRT (3.0) • RSQ/4.0

C SClJARE

IF (P • EQ. 2) AREA = RSQ

C CIRCLE

IF (P .EQ. 3) AREA 3.14159 • RSQ
RETURN
END

23.12 .4 . Exercise 130

FUNCTION SIM (A,H,N,)

C AUIHOR : K. HANDEL
C DATE: 11 All,UST 1981
C INPUT: None
C PURPOSE: Return the s1.111 of the absolute values of all
C e lements in M x N array A.
C PARAMETERS: A - H x N array (REAL)
C M, N - integer dimenaions of array A (RCJIS, COLUMNS)
C NO PARAMETER IS ALTERED IN THE FUNCTION.

23-27

Introduction to FORTRAN

REAL A(H, N)
SUH : 0.0
DO 100 I : 1,H
DO 100 J • 1, N

SUH : SUH + ABS(A(I, J))
100 CONTINUE

RETURN
END

23.12.5. Exercise 13E

FUNCTION AMAX (A, N)
C AUTHOR: K. HANDEL
C DATE: 11 AOO 1981
C INPUT : None
C PURPOSE: Return the max value in array A.
C PARAMETERS: A - 1-dimensional real array of length N.
C N - integer dimension of A.
C NO PARAMETER IS ALTERED IN THE FUNCTION.

REAL A(N)
AMAX : A(1)
DO 100 I : 2, N

IF (A(I) .GT . AMAX) AMAX : A(I)
100 CONTINUE

RETURN
END

23. 12 . 6. Exercise 13F

FUNCTION NZ (IARRAY,H, N)

C AUTHOR: K. HANDEL
C DATE : 11 AOOUST 1981

None C INPUT:
C PURPOSE: Retur n a count of the m.mber of zeros

in H x N array IARRAY. C
C
C
C
C

PARAMETERS : IARRA Y - i nteger array with dimensions H x N.
H - m.rnber of rows in IARRAY.
N - nunber of col1i11ns in IARRAY.

NO PARAMETER I S ALTERED IN THE FUNCTION .

INTEGER IARRAY (H,N)
NZ = 0
DO 100 I = 1, H
DO l OOJ = l,N

IF (IARRAY(I,J) .EQ. 0) NZ = NZ + 1
100 CONTINUE

RETURN
END

23-28

Introduction to FORTRAN

23 . 13. CHAPTER 14

23. 13 . 1, Exerc i se 14A

AUTHOR:
DATE :

K. HANDEL
11 AUC 1981

C I NPUT : Line s o f t e x t . No :spec ial end-of-file marker.
C PURPOSE: Fo r eac h line of text read in , print HAPPY BIRTHDAY

f oll o wed by the text. C

CHARACTER TEXT*80 , HB1 15
HB : 'HAP PY BIRTHDAY'

10 READ (5 ,20,END = 40) TEXT
20 FORMAT (A)

WRITE (6, 30) HB, TEXT
30 FORMAT (2(1X,A))

GO TO 10
40 STOP

END

23, 13.2. Ex erche 148

AUT HOR: LES LANDAU

DATE: 5TH JULY 1981

C LANGUAGE : UNIVAC ASC II FORTRAN LEVEL 9R1

C PURPOSE: REA D I N LINES OF TEXT AND SEPARATE EACH LINE
C INTO WOROO, WHERE THE DELIMITERS BLANK, COMMA
C AND FULL STOP ARE WORD DELIMITERS.
C TWO DELIMITERS IN A ROW IMPLY THE END OF THE
C INPUT LINE, AND THEN A NEW INPUT LINE WILL

BE SOLICITED.

C INPUT DESCRIPTION:
C INPUT IS FROM UNIT 5 AND CONSISTS OF LINES OF DATA
C TERM INA TED BY AN END-OF-FILE •

CHARACTER1 80 LINE,WORD

READ IN LINES Of DATA AND BREAK EACH INTO WORllS

50 CONTINUE
! START = 1
READ (5,60 ,END:200)LINE

60 FORMAT (A)

C COM E HERE TO FIND THE NEXT WORD (STARTING FROM !START)

23-29

Introduction to FORTRAN

65 CONTINUE
CALI. GETWD (WORD, LINE, !START ,LEN)
IF (LEN , EQ. 0) THEN

WRITE (6,•) 'LENGTH OF ZERO RETURNED, NEXT IMAGE PLEASE'
GO TO 50

ELSE
WRITE (6,70) WORD (1:LEN)

70 FORMAT (1X,A)
END IF
!START : !START + LEN + 1
GO TO 65

C Cc»IE HERE WHEN END OF INPUT HAS BEEN FOUND

200 CONTINUE
WRITE (6,•) 'END OF INPUT FOUND'
STOP

SUBROUTINE GETWD (WORD, UNE, !START, LEN)
CHARACTER• 1 DE LIM(3)
CHARACTER•80 LINE, WORD

C PARAMETERS :
C NAME TYPE DESCRIPTION
C WORD CH THE WORD FOUND ON THE LINE

INCLUDING THE FOLLOWING DELIMITER
THE LINE TO SEARCH FOR WOROO ON
THE START POSITION ON THE LINE TO
START SEARCHING FOR A WORD

C
C LINE CH
C !START INT
C
C LEN INT THE LENGTH OF THE WORD FOUND
C

LEN 0
DELIM (1)
DELIM (2)
DELIM (3)

(NOT INCWDING THE FOLLOWING DELIMITER)

NOEL = 3
IF (!START ,GT. 80 .OR, !START .LT. 1) THEN

LEN = 0
RETURN

END IF

C LOOK FOR A WORD STARTING FROM !START, JUMP OUT OF
C THE LOOP WHEN A DELIMITER HAS BEEN FOUND

DO 50 LOOK = !START, 80
DO 40 J = 1,NDEL

IF (LINE (LOOK:LOOK) ,EQ. DELIM(J)) GO TO 60
40 CONTINUE
50 CONTINUE

C Cc»IE HERE IF NO DELIMITER HAS BEEN FOUND

23-30

Introduction to FORTRAN

WORD = LINE (ISTART:)
LEN : 80 - ISTART + 1
RETURN

COME HERE WHEN A reLIMITER HAS BEEN FOUND

60 CONTINUE
WORD = LINE(ISTART:LOOK)
LEN , LOOK - ISTART
RETURN
END

23. 13. 3. Exercise 14C

C AUTHOR: K. HANDEL
11 AUG 1981 C DATE:

C INPUT: An integer in the range 1-12, repesenting a month.
Given a month represented by an integer, print the
name of the month (abbreviated to 3 characters).

C PURPOSE:
C

CHARACTER•3 HONTH(12)

DATA MONTH/'JAN' ,'FEB' ,'HAR' ,'APR' ,'MAY' ,'JUN',
$ 'JUL' ,'AUG' ,'SEP' ,'OCT' ,'NOV' ,'DEC'/

• READ (5,•) I
IF (I .GE. 1 .AND. I .LE. 12) WRITE (6, 10) MONTH(I)

10 FORMAT (1X,A3)
STOP
END

23-31

Note: Appendix 7 describes the DATA statement, which 1.s the best way of
setting up MONTH.

23.13.4. Exercise 14D

C AUTHOR: K. HANDEL
11 AUG 1981 C DATE:

C INPUT: An integer in the range 1-7, representing a day
of the week. C

C PURPOSE: Given a day represented by an integer, print
the day (in characters). C

CHARACTER•9 DAY(7)

DATA DAY/'MONDAY ','TUESDAY 1 , 1 WEDNESDAY','THURSDAY'
$ 'FRIDAY ','SATURDAY ','SUNDAY 'I

READ (5,•) J
IF (J .GE. 1 .AND. J .LE. 7) WRITE (6, 10) DAY (I)

10 FORMAT (lX,A)

Introduction to FORTRAN

STOP
END

Note: The DATA statement 1a described in Appendix 7.

23.13.5. Exercise 14£

C AIJJ:HOR : K. HANDEL
11 AOO 1981 C DATE:

C INPUT: (A)
C

Product information for a company.
The first line contains the nunber of products
(INTEGER in free format). C

C
C
C
C

C
C
C

Then put information on each product on a separate
line as follows:-
colunns 1-5 produot code (5 characters)
coll.ans 11-3 product description (20 characters)

Quotes should not be put around codes or
descriptions.

CB) Product codes for which descriptions are required.

C PURPOSE:

Any maber of product codes may be read, one per line
in col1.111ns 1-5. Input is terminated by end-of-file.
Read all product information, then for given

C product codes, print the corresponding descriptions.

SUBROUTINES CALLED: DSPLAY - prints code and description for
a given code.

CHARACTER CODE*5 (50), DESCR*20(50), ACODE*5

C Read the nllllber of products (N) then read codes and
C descriptions.

READ (5,*) N
IF (N .err. 50) THEN

WRITE (6 ,*) 'No more than 50 products are allowed. N ',N
STOP

END IF

0020I=1,N
READ (5, 10) CODE(I), DESCR(I)

10 FORMAT (A5,5X,A20)
20 COffTINUE

C Print heading for next section
WRITE (6 , 25)

25 FORMAT ('1CODE DESCRIPTION' //)

C Read product codes for which descriptions are required.
C Call DSPLAY to print descriptions.

30 READ(5,40,END = 50) ACODE

23-32

Introduction to FORTRAN

40 FORMAT (AS)
CALL DSPLAY (ACODE, CODE, DESCR, N)
GO TO 30

50 STOP
END

SUBROUTINE OOPLAY (ACODE, CODE,DESCR,N)

C PARAMETERS: ACODE - a 5-character product code
C CODE - a 1-dimensional array of length N,
C containing 5-character product codes .
C DESCR - a 1-dimensional array of length N,
C containing 2O-character product descriptions.
C N - integer dimension of arrays CODE and DESCR.
C NO PARAMETERS ARE ALTERED IN THE SUBROUTINE,

PURPOSE: Search for ACODE in the list of codes in CODE,
then print it and its corresponding description.
A linear search is used.

CHARACTER•S A CODE, CODE (N), DESCR•20 (N}

DO 10 I = 1, N
IF (ACODE ,EQ. CODE(I}} GO TO 20

10 CONTINUE
WRITE (6 ,*) 'CODE ',ACODE, 1 NOT FOUND'
RETURN

20 WRITE (6 ,30) ACODE, IJESCR (I}
30 FORMAT (1X,A5,5X,A20}

RETURN
END

23.13. 6. Exercise 14F

AUTHOR: K. HANDEL
C DATE : 11 AUGUST 1981
C INPUT: Integers repesenting days of the year, one per line,

in free format. Input is terminated by end-of-file.
Print the day and date in full for each day of 1981
read in. ~. if input is 328, output is

C
C PURPOSE:
C
C TUESDAY 24th NOVEMBER 1981

C RESTRICTIONS: only works for 1981 because it uses the facts
that Jan 1, 1981 is a Thursday, and 1981 is
not a leap year.

C
C

CHARACTER MONTH•9(12}, DAY•9(7}, TH•2(4}, YEAR•4
INTEGER MlliEND(12}

DATA HCJffH/ 1 JAHUARY ','FEBRUARY ','MARCH ','APRIL
$ 'HAY ','JUNE ','JULY ', 'AI.XiUST
$ 'SEPTEMBER' ,'OCTOBER ','NOVEMBER 1 ,'DECEMBER 'I

Introduction to FORTRAN 23-34

DATA DAY/'Hc»fD.lY 1 , 1TUESDAY ', 1 WEONESDAY','THURSDAY 1

$ 'FRIDAY ','SATURDAY ','SUNDAY 1 /

DATA Ill/ 1 at ' , 'nd',' rd', 'th' /, YEAR/ 1 1981 '/

C Day of year of l ast day in eaoh month, for I non-leap year.

DATA HnlEND/31 , 59, 90, 120, 151,181,212,243,273,304,334, 365/

C Read a day of the year .

10 READ (5,• ,EHD : 100) !DATE
IF (!DATE .LE. 0 .00. !DATE .GT, 365) THEN

WRITE (6,•) IDATE, ' is an illegal · date. Ianored.'
GO TO 10

END IF

Find the nionth, H.

DO 10 M z 1, 12
IF (!DATE .LE. HnlEND(H)) GO TO 20

10 CONTINUE

C Find the day of month, HDAY, and appropriate suffix, nt(ITH).

20 HDAY : !DATE - HnlEND(H - 1)
ITH : HDAY
IF (ITH .GE, 4) In! : 4

C Find the day of week, IDAY.
C Jan 1, 1981 is Thursday, ie. 4th day, ao add 3 to IDA.TE.

IDAY = HOD (!DATE + 3, 7)
IF (IDAY .EQ. 0) !DAY = 7

C Print the lot and read another date.

WRITE (6,30) DAY(IDAY), HDAY, nl(ITH), HONTH(H), YEAR
30 FORMAT (1X,A9, 1X,12,A2, 1X,A9, 1X,A4)

GO TO 10
100 STOP

END

Note: The DATA statement is described in Appendix 7 .

23.13,7 , Exercise 14G

C AUTHOR:
C DATE:
C INPUT :
C
C PURPOSE:
C

K,HANDEL
11 AUG 1981
Lines of text containing only digits, commas,
plus and minus. Input is terminated by end-of-file.
Decode the text into integers, and print both ~the
lines of text and the integer values in the ,text.

Introduction to FORTRAN

C FlllCTION CALLED:
C LENGTH - finds the length of TEXT, excluding
C blanks at end of line.

CHARACTER TEXT•ao. CH• 1. SIGN*l

10 READ (5,20,END = 50) TEXT
20 FORMAT (A)

WRITE (6,30) TEXT
30 FORMAT (//1X,A)

L = LENGTH (TEXT)
IF (L .EQ. 0) GO TO 10

C initialize

SIGN = '+'
NUM = 0
0040I=1,L

CH = TEXT (I:I)
IF (CH .EQ. 1 + 1 .OR. CH .EQ. 1 - 1) THEN

SIGN = CH

ELSE IF (CH .GE. '0' .AND. CH .LE. '9') THEN
NUM = NUM•10 + ICHAR(CH) - ICHAR('O')

ELSE IF (CH . EQ. 1 , ') THEN
correct sign, print and reset nunber
IF (SIGN .EQ. '-') NUH = -NUH
WRITE (6 , •) NUH
NUM = 0
SIGN = '+'

ELSE
WRITE (6, •) CH, ' is an illegal char&oter. Ignored.'

END IF
40 CONTINUE

C Print last nunber in TEXT unless it was terminated by a comma.

IF (CH .NE. 1 1 1) THEN
IF (SIGN .EQ. '-') NUM = -HUM
WRITE (6 ,•) HUM

END IF
GO TO 10

50 STOP
END ·

FUNCTION LENGTH (TEXT)

C PURPOSE: Return length of TEXT when blanks at end are
C excluded.

CHARACTER•eo TEXT
DO 60 I = 60, 1,-1

IF (TEXT(I:I) .NE,' ')GOTO 70
60 CONTINUE

23-35

1/

Introduction to FORTRAN

70 LENGTH : I
RETURN
END

23-36

Introduction to FORTRAN

Table of contents

1. CHAPrER 1
1, 1, A model of a computer
1,2, Solving problems using computers
1, 3, Programming languages
1. 3, 1, Compile time
1. 3, 2. Collection Time
1.3,3, Execution time
1,4, Operating systems
1. 5. Program debugging and diagnostics
1,5,1, Debugging tools

2, CHAPrER 2
2. 1. Computer memory
2. 2. What is stored in computer memory
2, 3, Names
2. 3, 1. Rules for the formation of constant names

2.3,2, Rules for the formation of variable names

2.4. Arithmetic expressions
2 . 5, Formation of Arithmetic expressions
2.5.1, Order of evaluation of an arithmetic expression

2 . 5, 2 , Expression Mode
2,5,3, Integer division
2,5.4. Mixed mode expressions
2.6, The ASSIGNMENT statement
2. 6. l. Mode conversion across the replacement operator

2 , 7. OVERFLOW, UNDERFLOW, and DIVIDE CHECK errors

2. 8, Exercises
2. 8. 1. Exercise 2A
2 .8 .2. Exercise 2B
2.8.3, Exercise 2C
2.8.4. Exercise 2D
2 . 8.5. Exercise 2E

3. CHAPTER
3, 1. The Fortran character set
3,2. Spaces in Fortran
3. 3. Fortran Program Layout
3,3. 1. STATEMENT line
3,3 , 2, CCfiTINUATI0N line
3,3.3, CCMHENT line
3 , 3.4. Statement Label
3, 3, 5, Sequencing
3,4. Structure of a Fortran Program
3,4. 1. END Statement
3,4.2. STOP statement
3,4,3, Simple Fortran Program
3 , 5, Reading and writing in Fortran
3,5. 1, READ statement
3,5 . 2. Layout of data
3, 5. 3. Exanples of read
3,5.4. WRITE statement
3 , 5,5, Exanples of READ and WRITE statements

1-1
1-1
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-6

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-7
2-7
2-7
2-a
2-9
2-9
2-9

2-10
2-10
2-10
2-11

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-6
3-a

Introduction to FORTRAN

Table of contents

3.6. Writing out heading information
3.7. Exercises
3.7.1. Exercise 3A
3.7.2. Exercise 38
3,7,3. Exercise 3C
3.7.4, Exercise 3D

4. CHAPTER
4. 1. Relational expressions
4. 1. 1. Use of , EQ. with REAL variables. and oonstants
4.2. Logical Expressions.
4. 3. Logical IF statement
4. 3, 1. Examples of Logical IF statement
4,3,2. Conaon errors with IF statements
4. 4. Block-IF statements
4.5. Block-IF terminology
4. 6. Basic Block-IF
4.6. 1. Evaluation
4. 6. 2. Examples of block-IF
4 . 7. ELSE-IF statement
4 . 7. 1. Syntax of the ELSE IF
4.7.2. Interpretation of El.SE IF
4. 7. 3. Exanple of ELSE IF
4,7.4. ELSE statement
4.7.5. Use of ELSE
4.8. Notes on block-IF in general
4,9, Exercises
4. 9, 1. Exercise 4A
4.9.2. Exercise 48
4,9.3. Exercise 4C
4,9.4. Exercise 4D
4,9,5. Exercise 4E

5. CHAPTER
5, 1. 00 statement
5. 1. 1, Restrictions on terminal statements
5.2. CONTINUE statement
5,2·. 1. The 00 statement and 1977 standards
5.2.2. Evaluation of the 00 statement
5.2.3. Examples of 00 statements
5.3, Nested 00 statements
5.3, 1. Rules for nested DO loops
5.3,2. Final value of the DO-variable
5.4. Examples of nested DO loops
5.4.1. Exanple 1
5.4.2. Example 2
5.5. Exercises
5.5. 1. Exercise 5A
5.5.2. Exercise 58
5,5,3. Exercise 5C
5. 5. 4. Exercise 5D
5.5,5. Exercise SE
5,5.6, Exercise SF

-2

3-9
3-10
3-10
3-10
3-10
3-10

4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-8
4-8
4-9

4-10
4-10
4-10
4-11
4-11
4-11
4-11

5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-5
5-6
5-6
5-6
5-7
5-9
5-9
5-9

5-10
5-10
5-10
5-10
5-11

Introduction to FORTRAN

5. 5. 7. Exercise 5G
5. 5. 8. Exercise 5H

6. CHAPTER 6
6. 1. Supplied FUNCTIONS
6. 2. More FUNCTIONS
6.3. LCXiICAL variables

Table of contents

6.3.1. Declaring LOGICAL variables
6.3.2. Assignment
6.3.3. Using logical variables
6.3.4, Toe .NOT. operator
6,4. TYPE statements for integers and reals
6.5. Exercises
6.5.1. Exercise 6A
6.5.2. Exercise 6B
6.5.3. Exercise 6C

7. CHAPTER 7
7. 1. GO TO statement
7.1.1. Exanples of GO TO statements
7. 1. l. 1. Algorithm
7. 1. 2. Using GO TO statements with DO loops
7. 1. 3, Using GO TO statements with block-IF
7.1.4. Reachability of statements
7. 1.5. Some common errors associated with GO TO statements
7.1.6. When and how to use the GO TO
7. 1. 7. CCMMENTS and GOTO I s
7. 2. Exercises
7.2.1. Exercise 7A
7 .2.2. Exercise 7B
7,2.3, Exercise 7C

8. CHAPTER 8
8. 1. FIXED FORMAT with WRITE statement
8. 1. 1. Spacing across a line, leaving blanks
8.1.2. Writing headings using FIXED FORMAT
8. 1. 3. INTEGER FIELD DESCRIPTOR
8. 1. 4. REAL FIELD DESCRIPTOR
8. 1.5. HiXing REAL and INTEGER FIELD DESCRIPTORS
8.1.6. Repetition of a FIELD DESCRIPTOR
8. 1. 7. Combining headings with nllDbers output
8. 1.8. Print Q:>ntrol of the printer
8. 1.9. HUI.TI-LINE FORMAT
8.2. Example of FORMATTED WRITE statement
8.3. Design of FORMAT .statements
8.4. Conman errors and points to note
8.5. Exerches
8.5. 1. Exercise 8A
8.5.2. Exercise 8B
8.5,3, Exercise SC
8.5.4. Exercise 8D
8. 5. 5. Exercise 8E
8.5.6. Exercise BF

-3

5-11
5-12

6-1
6-1
6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-7

7-1
7-1
7-1
7-1
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-7
7-7

8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-4
8-4
8-5
8-6
8-7
8-7
8-8
8-9
8-9
8-9
8-9

8-10
8-10
8-11

J

Introduction to FORTRAN

Table of contents

9. CHAPTER 9
9. 1, READ statement with FIXED FIELD FORMAT
9. 1. 1. INTEGER FIELD DESCRIPTOR
9. 1.2. REAL FIELD DESCRIPTOR
9. 1.3. READING INTEGERS and REALS
9. 1, 4. Skipping colt.lflns on the input line
9, 1,5. Skipping lines of input data
9, 2. Hore on FORMAT REPEAT specifications
9,3 , Interaction between READ/WRITE and FORMAT statements
9.4. Exercises
9,4. 1. Exercise 9A
9,4.2. Exercise 9B
9. 4. 3, Exercise 9C

10. CHAPTER 10
10, 1. A new dimension, the ARRAY
10.1,1 , Array sizes
10.1.2. Forms of subscripts
10.1.3. Exsnples of Subscripts
10. 1.4. Exsnple of complex subscript use
10, 1.5. Type Declarations for Arrays.
1 O. 1. 6. Summary points about DIMENSION statements
1 o. 2. Reading and writing arrays
10,3, Conlnon errors with arrays
10.4. Exercises
10,4.1, Exercise 10A
10.4.2. Exercise 10B
10 . 4,3 , Exercise lOC
10.4.4. Exercise 10D
10 , 4. 5 , Exercise lOE
10 . 4.6. Exercise 10F

11. CHAPTER 11
11. 1. Arrays with . TWO dimensions
11.1 . 1. Reading and writing two dimensional arrays
11. 1.2. Nested Implied DO loops
11. 1. 3, Example
11.1.4. Rainfall example
11.1,5. More. FORMAT Descriptors: E format
11 • 1. 6. L format
11. 2. Exercises
11.2.1. Exercise 11A
11.2,2. Exercise 118
11. 2. 3. Exercise 1 lC
11.2.4. Exercise 11D
11.2 , 5, Exercise 11£
11.2.6. Exercise 11F

12. CHAPTER 12
12. 1, Subprograms
12.2. Subroutines
12. 2, 1. Referencing subroutines
12. 2. 2. SUBROUTINE statement

9-1
9-1
9-1
9-2
9-3
9-ll
9-ll
9-5
9-5
9-7
9-7
9-8
9-8

10-1
10-1
10-3
10-3
10-ij
10-5
10-5
10-5
10-6
10-7
10-8
10-8
10-8
10-8
10-9
10-9
10-9

11-1
11-1
11-2
11-3
11-ll
11-9

11-11
11-12
11-12
11-12
11-13
11-13
11-13
11-13
11-13

12-1
12-1
12-1
12-1
12-2

Introduction to FORTRAN

Table of contents

12.2.3, A subroutine for getting into a car
12,2.4. Execution of the BODY of a subroutine
12,2.5. Execution paths using subroutines
12.2.6. Program structure
12.3, Example of a subroutine
12,3.1. Choosing parameters
12 . 3. 2. Subroutine header and call
12. 3, 3, Subroutine body
12,3,4. Alternate approach
12.4, Simulation exercise
12. 5. Using SUBROIJT INES
12.6. Calculate the area of a triangle
12, 7. Hatching ACTUAL and DUMMY parameters
12.8. Use of arrays as parameters : ADJUSTABLE DIMENSIONS
12.9. Example of SUBROlrrINE use
12. 10. Exercises
12 . 10.1. Exercise 12A
12.10.2. Exercise 128
12. 10. 3, Exercise 12C
12.10.4. Exercise 120
12. 10 .5 . Exercise 12E
12, 10.6. Exercise 12F

13. CHAPTER 13
13. 1. FUNCTIONS
13,2, Writing your own FUNCTIONS
13,2 , 1. FUNCTION header
13,2.2. Last line of a FUNCTION specification
13.2. 3. Body of a FUNCTION
13,3. Example of a FUNCTION
13,4. Explicit Type Declarations for Functions
13,4. 1. Example of a LOGICAL function
13.4.2. Writing FUNCTIONS
13,5. Why use subprograms?
13,5. 1. Connon errors and points to note
13 , 6. Exercises
13.6. 1. Exercise 13A
13.6.2. Exercise 138
13,6.3. Exercise 13C
13,6. 4. Exercise 13D
13,6,5. Exercise 13E
13,6.6. Exercise 13F

14. CHAPTER 14
14. 1. Character manipulation
14 , 2. Declaration
14.3, Character arrays
14.4. Character constants
14. 5. Sub strings
14.6. Examples of substrings
14. 7. Reading and writing characters
14. 7. 1. Free format
14.7,2, Fixed format

-5

12-3
12-5
12-5
12-6
12-6
12-7
12-7
12-7
12-8
12-8
12-8
12-9

12-10
12-11
12-12
12-14
12-14
12-14
12-14
12-14
12-15
12-15

13-1
13-1
13-1
13-1
13-2
13-2
13-2
13-3
13-3
13-5
13-6
13-6
13-7
13-7
13-7
13-8
13-8
13-8
13-8

14-1
14-1
14-1
14-1
14-2
14-2
14-3
14-3
14-4
14-4

Introduction to FORTRAN

Table of contents

14.7.3 . Exanple of reading and writing

14. 8. Character operators

14 . 9. Comparing character expressions

14.10. Supplied Functions
14. 11. Functions and subroutines

14. 11.1, Passing character parameters

14. 12, Sample program
14.13, Exercises
14. 13 . 1. Exercise 14A
14.13 . 2. Exercise 148
14.13.3. Exercise 14C
14. 13.4. Exercise 14D
14. 13.5. Exercise 14E
14.13,6. Exercise 14F
14.13,7. Exercise 14G

15. APPENDIX 1 - Notes on doing assignments

16. APPENDIX 2 - Control commands required by the UNIVAC

16, 1, Log-on procedure
16.2. File creation
16.3, Element creation for programs

16.4 . Element creation for data

16.5. Program execution
16.6. Obtaining a program listing

17. APPENDIX 3 - Ascii Codes, and Hierarchy of Operators

17, 1. ASCII Codes and Symbols
17. 2. Hierarchy of Operators

18. APPENDIX 4 - Simulation of two walkers

18. 1. 1. Input Data
18. 1.2. Diagram
18. 1.3. Algorithm outline
18. 1.4. Taking a step

18.1.5. Subroutine Description
18. 1. 6. Calling the subroutine
18. 1, 7. The complete program

19. APPENDIX 5 - 1966 standards
19. 1. DO loops
19. 2. Nested DO loops
19. 3, Character handling

20 . APPENDIX 6 - Summary of Fortran commands covered

20. 1. A command 11:!t
20. 1.1. Executable statements

20. 1. 2. Non executable statements

20.2. Individual statement formats
20.2. 1. Assignment
20.2.2. Block-IF
20.2.3. CALL
20.2.4. CHARACTER

-6

14-'4
14-5
14-5
14-6
14-6
14-7
14-7
14-8
14-8
14-9
14-9
14-9
14-9

14-10
14-10

15-1

16-1
16-1
16-1
16-1
16-1
16-2
16-2

17-1
17-1
17-2

18-1
18-1
18-1
18-2
18-2
18-3
18-4
18-4

19-1
19-1
19-1
19-2

20-1
20-1
20-1
20-1
20-2
20-2
20-2
20-2
20-2

Introduction to FORTRAN

20,2,5, Col!lllent
20.2.6. CONTINUE
20.2. 7. DIMENSION
20.2.8. DO
20.2. 9. END
20.2. 10. FORMAT
20.2.11. FUNCTION
20.2.12. GOTO
20.2.13. IF
20.2. 14. READ
20.2. 14. 1, Formatted
20.2.14.2. Free Format
20.2. 15. RETURN
20.2.16. STOP

Table of contents

20. 2. 17. SUBROUTINE
20.2. 18, Type Declaration
20.2.19. WRITE
20.2. 19 . 1. Formatted
20.2.19.2. Free Format
20.3. Constants
20. 3. 1. Integer constants
20.3.2. Real Constants
20. 3 , 3, Character constants
20. 4. Logical Operators
20.5. Relational operators
20. 6. Some Fortran Mathematical Functions

21. APPENDIX 7 - Fortran not covered in the course

21. 1. FURTHER DATA TYPES

21. 1. 1. DOUBLE PRECISION
21 • 1. 1. 1. DOUBLE PRECISION Cc»iSTANTS

21. 1. 1 .2. DOUBLE PRECISION VARIABLES

21. 1. 1. 3. DOUBLE PRECISION FUNCTIONS

21.1.1.4. INPUT/OUTPUT
21.1.2. CCJ4PLEX
21. 1 .2. 1. CCJ4PLEX FUNCTIONS

21. 2. DATA STATEMENT
21.3. IMPLICIT
21.4. PARAMETER
21.5. CCJ4MON
21. 6. Bl.OCK DATA
21.6.1. Examples
21. 7. EXTERNAL
21. 8. EQUIVALENCE
21. 9. ARITHMETIC STATEMENT FUNCTIONS

21. 10. CK'dering of statements
21.11. Arrays

22. APPENDIX 8 - Additional features of UNIVAC FORTRAN

22.1. Sumnary
22.2. Internal and External Subprograms

22.3. Hollerith Data Types

-7

20-3
20-3
20-3
20-3
20-4
20-4
20-4
20-4
20-5
20-5
20-5
20-5
20-5
20-5
20-6
20-6
20-6
20-6
20-6
20-6
20-6
20-7
20-7
20-7
20-7
20-8

21-1
21-1
21-1
21-1
21-2
21-2
21-3
21-3
21-4
21-4
21-5
21-6
21-7
21-8
21-9
21-9

21-10
21-11
21-14
21-14

22-1
22-1
22-5
22-6

!!"

Introduction to FORTRAN

Table or contents

23. APPENDIX 9 - Answers to aeleoted exercises 23. 1. CHAPTER 2
23.1.1. Exercise 2A
23.1.2. Exercise 28
23. 1. 3. Exercise 2C
23. 1. 4. Exercise 2D
23. 1. 5. Exercise 2E
23.2. CHAPTER 3
23.2. 1. Exercise '3A
23.2.2. Exercise 38
23.2.3. Exercise 3C
23.2.4. Exercise 3D
23.3. CHAPTER 4
23.3. 1. Exercise 4A
23.3.2. Exercise 48
23.3.3. Exercise 4C
23.]. 4. Exercise 4D
23. 3. 5. Exercise 4E
23.4. CHAPTER 5
23.4. 1. Exercise SA
23.4.2. Exercise 5B
2].4.]. Exercise 5C
23. 4. 4. Exercise 50
2] . 4.5. Exercise SE
2].4.6. Exercise SF
2].4.7. Exercise 5G
23.4 .8. Exercise SH
23.5. CHAPTER 6
23.5. 1. Exercise 6A
23.5.2. Exercise 6B
23.5.3. Exercise 6C
23. 6. CHAPTER 7
23. 6. 1. Exercise 7A
2].6.2. Exercise 7B
23. 6.]. Exercise 7C
23. 7. CHAPTER 8
23. 7. 1. Exercise 8A
23.7.2. Exercise 8B
23 . 7.]. Exercise ac
23. 7. 4. Exercise 8D
23.7.5, Exercise SE
23,7,6. Exercise SF
23. 8. CHAPTER 9
23.8. 1. Exercise 9A
23 ,8 .2. Exercise 98
23,8,3, Exercise 9C
23.9. CHAPTER 10
23,9.1 . Exerci:se 10A
23 ,9 ,2. Exercise 10B
23.9.3. Exercise 10C
23.9.4. Exercise 10D
23. 9. 5. Exercise lOE
23. 9. 6. Exercise 10F

-8

23-1
23-1
23-1
23-1
23-2
23-2
23-2
23-3
23-3
23-3
23-4
23-4
23-4
23-5
23-5
23-5
23-5
23-6
23-6
23-6
23-6
23-7
23-7
23-7
23-8
23-8
23-8
23-9
23-9
23-9

23-10
23-10
23-10
23-11
23-12
23-12
23-12
23-13
23-13
23-13
23-13
23-14
23-15
23-15
23-15
23-15
23-15
23-15
23-16
23-16
23-16
23-16
23-17

""I
Introduction to FORTRAN -9

Tabl e of contents

23. 10. CHAPTER 11 23- 18
23.10.1. Exercise 11A 23-1 8
23.10.2. Exercise 11B 23-1 9
23.10.3. Exercise 11C 23-1 9
23. 10. 4. Exercise 110 23- 20
23. 10 . 5. Exercise 11E 23-20
23 . 10.6 . Exercise 11F 23-21
23. 11. CHAPTER 12 23- 22
23.11. 1. Exercise 12A 23-22
23. 11.2. Exercise 12B 23- 22
23.11 . 3. Exercise 12C 23- 23
23. 11. 4. Exercise 120 23- 23
23.11.5. Exercise 12E 23- 24
23 . 11.6. Exercise 12F 23-25
23.12. CHAPTER 13 23- 26
23 . 12.1. Exercise 13A 23- 26
23. 12.2 . Exercise 13B 23-26
23. 12. 3. Exercise 13c 23- 27
23 . 12.4. Exercise 130 23-27
23.12.5 . Exercise 13E 23- 28
23 . 12.6. Exercise 13F 23-28
23 . 13. CHAPTER 14 23- 29
23. 13.1 . Exercise 14A 23-29
23. 13.2. Exercise 14B 23- 29
23. 13.3 . Exercise 14C 23- 31
23.13. 4. Exercise 140 23- 3 1
23.13.5. Exerc ise 14E 23- 32
23. 13 . 6. Exercise 14F 23-33
23.13.7. Exercise 14G 23- 34

Introduction to FORTRAN

A field descriptor
ABS
absolute value
Actual parameters
Additional Fortran
Adjustable dimensions
AND operator
arglments (see parameters)
Arithmetic expression
Arithmetic expression evaluation
Arithmetic faults
Arithmetic operators
Arithmetic overflow
Arithmetic statement function
Arithmetic underflow
Array sizes
Arrays
arrays character
Arrays of one dimension
Arrays of two dimensions
arrays reading and writing
ASCII codes
ASCII table
Assignment statement
Assignment statement mode conversion

Becomes operator (assignment)
Blanks in a FORTRAN statement
Block-IF statement
Block-IF statement

CAU. statement
Card deck structure
Card format of a FORTRAN 1 ine
character arrays
character expressions comparison
character formal parameters
Character manipulation
character operator
Character representation
Character set in Fortran
character variables •• declaration
characters reading
character:, writing
Code - ASCII
COMMENT line
Comments
COMMON
comparing character expressions
compile time
compiling programs
Computer · Memory

Index

19,3,
6. 1.
6. 1.
12. 7 ,
21.
12.8.
4.2.
12.2.
2.4.
2.5.
2,7,
2.4.
2. 7,
21. 9.
2. 7,
10, 1.
10. 1.
14. 3.
10. 1,
11.1.
10 . 2.
17, 1.
17, 1.
2.6.
2.6.

2.6 .
3,2.
4.4.
20.2.

12.2.
16.
3,3,
14.3.
14,9,
14.11.
14. 1.
14.8.
2.2.
3, 1.
14.2.
14. 7.
14. 7.
17. 1.
3,3,
20.2.
21.5.
14.9.
1.3.
1. 3,
2. 1.

-1

19-3
6-1
6-1

12-10
21-1

12-11
4-2

12-2
2-4
2-5
2-9
2-4
2-9

21-11
2-9

10-3
10-1
14-1
10-1
11-1
10-6
17-1
17-1
2-7
2--8

2-7
3-1
4-4

20-2

12-2
16-1
3-2

14-1
14-5
14-6
14-1
14-5
2-2
3-1

14-1
14-3
14-3
17-1

3- 3
20-3
21-7
14-5

1-4
1-4
2-1

Introduction to FORTRAN -2

Index

Con:stants 2. 3. 2-2
Constant:, maximllD values 2.2. 2-1
Continuation line 3. 3. 3-2
CONTINUE 5.2. 5-2
Control cards 16. 16-1
Control variable value (DO statement) 5.3. 5-6
Conversion from INTEGER to REAL 2.6. 2-8
Conversion from REAL to INTEGER 2.6. 2-8
cos 6.2. 6-2
Cycling arol.11d a FORMAT 9. 3. 9-5

data element creation 16.4. 16-1
DATA statement 21.2. 21-'I
deb 1.188 ing tools 1.5. 1-6
declaration character variables 14.2. 14-1
declaring logical variables 6.3. 6-3
DIMENSION statement 10. 1. 10-3
Dimensions adjustable 12.8. 12-11
DIVIDE CHECK 2.7. 2-9
Divis ion by zero 2.7. 2-9
DO loop (implied) 10.2. 10-6
DO loops, Nested 5.3. 5-5
DO loops, Nested 19.2. 19-1
DO range 5. 1. 5-1
DO statement 5. 1. 5-1
DO terminal statement 5. 1. 5-1
DO's and GO TO's 1. 1. 7-3
DOUBLE PRECISION 21. 1. 21-1
DOUBLE PRECISION functions 21. 1. 21-2
DOUBLE PRECISION Input/Output 21. ,. 21-3
DOUBLE PRECISION variables 21. 1. 21-2
Dummy parameters 12. 7. 12-10

E field descriptor 11. 1. 11-11
E format 11.1. 11-11
element creation for data 16.4. 16-1
element creation for programs 16 , 3. 16-1
ELSE IF statement 4. 7. 4-6
ELSE statement 4. 7. 4-8
END 3.4. 3-5
EXP 6.2. 6-2
Explicit typing 6 , #. 6-5
expression mode 2.5. 2-6

FALSE 6.3. 6-3
Field descriptor Aw 19.3. 19-3
Field descriptor carriage control 8.,. 8-5
Field descriptor Ew .d 11.1. 11-11
Field descriptor Fw.d (READ) 9. 1. 9-2
Field descriptor Fw.d (WRITE) 8. 1. 8-3
Field descriptor headings 8. 1. 8-'I
Field descriptor Iw (READ) 9. 1. 9-1
Field descriptor Iw (WRITE) 8. 1. 8-2

In trod uotion to FORTRAN

Field descriptor multi line format
Field descriptor nX (READ)
Field descriptor nX (WRITE)

Index

Field descriptor repeat specification
Field descriptor skipping cards
Fixed field format •••• READ
Fixed Format (WRITE)
Form of .sub3Cripts
FORMAT Cycling
Format repeat :specification:,
Format .statement de.sign
Free format read and write
Function.s
FUNCTIONS body
FUNCTIONS dt.mmy parameters
FUNCTIONS example
FUNCTIONS explicit typing
FUNCTIONS FORTRAN supplied
FUNCTIONS header
FUNCTIONS last line
functions LOGICAL
FUNCTIONS name
functions of type character
FUNCTIONS writing your own

GO TO
GO TO and block-IF
GO TO and the 00 loop

Headings
Hierarchy of Operators

I Format
I format for READ
I /0 l i.st and the format
IF block
IF block and GO TO
IF .statement
IF :statement error.s
IF lliEN ELSE
implied 00 loop
Input/output of :single dimension array.s
Input/ output of two d imen:sional array:,
INT
Integer con.stant name.s
INTEGER declaration
Integer division
INTEGER field descriptor •• READ
Integer maximllD values
Internal representation
holated .statements

JUMP

a.,.
9. 1.
a.,.
9.2.
9. 1.
9. 1.
a.,.
10. 1.
9. 3.
9.2.
8.3.
3.5.
13. 1.
13.2.
13.2.
13. 3.
13.4.
6. 1.
13.2.
13.2.
13.4.
13.2.
14. 11.
13.2.

7. 1.
7. 1.
7. 1.

3.6.
11.2.

a. 1.
9. 1.
9. 3.
4.4.
7. 1.
4. 3.
4.3.
4.4.
10.2.
10.2.
11.1.
6. 1.
2. 3.
6. 4.
2.5.
9. 1.
2.2.
2. 1.
7. 1.

-3

8-6
9-4
8-1
9-5
9-4
9-1
8-1

10-3
9-5
9-5
8-7
3-6

13-1
13-2
13-1
13-2
13-3
6-1

13-1
13-2
13-3
13-1
14-6
13-1

7-1
7-4
7-3

3-9
17-2

8-2
9-1
9-5
4-4
7-4
4-2
4-3
4-4

10-6
10-6
11-3
6-1
2-3
6-5
2-7
9-1
2-1
2-1
7-4

7-1

Introduction to FORTRAN

Index

L format 11.1. 11-12

Label 3, 3, 3-4

Layout of a FORTRAN program 3,3. 3-2

LOG 6,2. 6-2

log-on procedure 16, 1, 16-1

Logical expressions (More) 4,2. 4-2

LOGICAL functions 13.4, 13-3

Logical IF statement 4,3, 4-2

logical operator .NOT. 6.3, 6-5

logical variable assignment 6,3, 6-4

LOGICAL variables 6, 3, 6-3

logical variables declaration 6,3, 6-3

Loopa 5. 1, 5-1

matrices 11.1. 11-1

MAX 6. 1. 6-1

MAXO 6. t. 6-1

Memory Cells 2, 1, 2-1

KIN 6, 1, 6-1

Mixed mode expressions 2,5, 2-7

HOD 6. 1. 6-1

Hul ti line format 8. 1, 8-6

Names 2,3, 2-2

Nested 00 loopa 5,3, 5-5

Nested 00 loopa 19,2, 19-1

NOT 6,3, 6-5

OR operator 4.2. 4-2

Overflow 2,7, 2-9

parameter ACTUAL 12.2. 12-2

parameter DUMMY 12.2. 12-2

parameter 11st 12.2. 12-2

parameter transfer 12.2. 12-2

Print control character 8. 1, 8-5
Printer control character 8. 1. 8-5
program creation 16,3 . 16-1

Program Layout 3, 3, 3-2

range of a 00 5, 1, 5-1

Reachability of statements 7. 1. 7-4

READ :statement with fixed field format 9, 1. 9-1

READ, WRITE ,FORMAT interaction 9,3, 9-5

READ .•• Free format 3,5, 3-6

reading text 14, 7, 14-3

REAL 6. 1, 6-1

Real constant names 2,3, 2-3

REAL declaration 6.4. 6-5

Real maximun valuea 2.2. 2-1

real repreNntation 4, 1, 4-2

Relational expresaions 4, 1, 4-1

Repeat groups 9,2, 9-5

Introduction to FORTRAN

Index

Repeating field descriptors
Representation of information in a computer
rounding error

Sequence field
simulation exercise
SIN
Size of m111bers
Skipping collillns on READING
SLASH
spaces
Spacing across a line
SQRT
Standard FUNCTIONS
Statement label
Statement line
Statement nu:nber
STOP
Structure of a program
Subprograms
Subroutine
Subroutine actual parame.ters
Subroutine adjustable dimensions
Subroutine BODY execution
Subroutine CALL statement
Subroutine dllllffly parameters
subroutine example
Subroutine header
Subroutine path of execution
Subroutine program layout
Subroutine referencing
Subroutine simulation of two walkers
Subroutine statement
Subroutine use
Subscripts
substrings
supplied functions for characters

. terminal statement of a 00
terminology block-IF
testing character expressions
Text representation
Titles
Transfer of control
TRUE
truncation
truncation
Two dimensional arrays
type statement logical
TYPE Statements
type statements

Underflow

8. 1, 8-4
2 , 1. 2-1
4. 1. 4-2

3,3, 3-5
12.4. 12-8
6.2. 6-2
2. 1. 2-1
9, 1. 9-4
8. 1. 8-6
3,2. 3-1
8. 1. 8-1
6.2. 6-2
6, 1. 6-1
3,3, 3-4
3,3, 3-2
3,3, 3-4
3, 4. 3-5
3,4. 3-5
12. 1. 12-1
12 . 2. 12-1
12. 7, 12-10
12.8. 12-11
12.2. 12-5
12.2. 12-2
12. 7, 12-10
12. 3, 12-6
12.2. 12-2
12.2. 12-5
12.2. 12-6
12 . 2. 12-1
18. 18-1
12.2. 12-2
12.5. 12-8
10. 1, 10-3
14.5. 14-2
14.10. 14-6

5. 1, 5-1
4.5. 4-4
14,9, 14-5
2.2. 2-2
3,6, 3-9
7. 1. 7-1
6,3, 6-3
2,3, 2-3
4. 1. 4-2
11.1. 11-1
6, 3, 6-3
6,4. 6-5
6,3, 6-3

2.7. 2-9

r-
• L. s.
'.!:'. ' t;. 7?J. FU

1032703

111111111111111111H \. L
\q& { Introduction to FORTRAN

'--~--"-' '-' J..Jl 0._1,.,2c..1)J10--13.!.•--

Variable diaenaions
Variable names
Variables

Words
WRITE with Fixed Format
Writing INTEGERS
Writing messages out
Writing REAL values
writing text

X field descriptor

Index

AWTIU\LIJIN NATIONAL UNIVERSITY

CHIFLEY BUILDING

This book i

trAlh!~mD:
fl»~

~ l.r,ij

l l"J'.1};1;,"

1, oc~ 1990 _ J

du.a on:-

qu'c;:

-6

12,8, 12-11
2,3, 2-3
2,3, 2-2

2, 1. 2-1

8. 1, 8-1
8, 1, 8-2
3.6. 3-9
8. 1, . 8-3
14, 7, 14-3

8, 1, 8-1

	IMG-2637_1
	IMG-2638_1
	IMG-2639_1
	IMG-2640_1
	IMG-2641_1
	IMG-2642_1
	IMG-2643_1
	IMG-2644_1
	IMG-2645_1
	IMG-2646_1
	IMG-2647_1
	IMG-2648_1
	IMG-2649_1
	IMG-2650_1
	IMG-2651_1
	IMG-2652_1
	IMG-2653_1
	IMG-2654_1
	IMG-2655_1
	IMG-2656_1
	IMG-2657_1
	IMG-2658_1
	IMG-2659_1
	IMG-2660_1
	IMG-2661_1
	IMG-2662_1
	IMG-2663_1
	IMG-2664_1
	IMG-2665_1
	IMG-2666_1
	IMG-2667_1
	IMG-2668_1
	IMG-2669_1
	IMG-2670_1
	IMG-2671_1
	IMG-2672_1
	IMG-2673_1
	IMG-2674_1
	IMG-2675_1
	IMG-2676_1
	IMG-2677_1
	IMG-2678_1
	IMG-2679_1
	IMG-2680_1
	IMG-2681_1
	IMG-2682_1
	IMG-2683_1
	IMG-2684_1
	IMG-2685_1
	IMG-2686_1
	IMG-2687_1
	IMG-2688_1
	IMG-2689_1
	IMG-2690_1
	IMG-2691_1
	IMG-2692_1
	IMG-2693_1
	IMG-2694_1
	IMG-2695_1
	IMG-2696_1
	IMG-2697_1
	IMG-2698_1
	IMG-2699_1
	IMG-2700_1
	IMG-2701_1
	IMG-2702_1
	IMG-2703_1
	IMG-2704_1
	IMG-2705_1
	IMG-2706_1
	IMG-2707_1
	IMG-2708_1
	IMG-2709_1
	IMG-2710_1
	IMG-2711_1
	IMG-2712_1
	IMG-2713_1
	IMG-2714_1
	IMG-2715_1
	IMG-2716_1
	IMG-2717_1
	IMG-2718_1
	IMG-2719_1
	IMG-2720_1
	IMG-2721_1
	IMG-2722_1
	IMG-2723_1
	IMG-2724_1
	IMG-2725_1
	IMG-2726_1
	IMG-2727_1
	IMG-2728_1
	IMG-2729_1
	IMG-2730_1
	IMG-2731_1
	IMG-2732_1
	IMG-2733_1
	IMG-2734_1
	IMG-2735_1
	IMG-2736_1
	IMG-2737_1
	IMG-2738_1
	IMG-2739_1
	IMG-2740_1
	IMG-2741_1
	IMG-2742_1
	IMG-2743_1
	IMG-2744_1
	IMG-2745_1
	IMG-2746_1
	IMG-2747_1
	IMG-2748_1
	IMG-2749_1
	IMG-2750_1
	IMG-2751_1
	IMG-2752_1
	IMG-2753_1
	IMG-2754_1
	IMG-2755_1
	IMG-2756_1
	IMG-2757_1
	IMG-2758_1
	IMG-2759_1
	IMG-2760_1
	IMG-2761_1
	IMG-2762_1
	IMG-2763_1
	IMG-2764_1
	IMG-2765_1
	IMG-2766_1
	IMG-2767_1
	IMG-2768_1
	IMG-2769_1
	IMG-2770_1
	IMG-2771_1
	IMG-2772_1
	IMG-2773_1
	IMG-2774_1
	IMG-2775_1
	IMG-2776_1
	IMG-2777_1
	IMG-2778_1
	IMG-2779_1
	IMG-2780_1
	IMG-2781_1
	IMG-2782_1
	IMG-2783_1
	IMG-2784_1
	IMG-2785_1
	IMG-2786_1
	IMG-2787_1
	IMG-2788_1
	IMG-2789_1
	IMG-2790_1
	IMG-2791_1
	IMG-2792_1
	IMG-2793_1
	IMG-2794_1
	IMG-2795_1
	IMG-2796_1
	IMG-2797_1
	IMG-2798_1
	IMG-2799_1
	IMG-2800_1
	IMG-2801_1
	IMG-2802_1
	IMG-2803_1
	IMG-2804_1
	IMG-2805_1
	IMG-2806_1
	IMG-2807_1
	IMG-2808_1
	IMG-2809_1
	IMG-2810_1
	IMG-2811_1
	IMG-2812_1
	IMG-2813_1
	IMG-2814_1
	IMG-2815_1
	IMG-2816_1
	IMG-2817_1
	IMG-2818_1
	IMG-2819_1
	IMG-2820_1
	IMG-2821_1
	IMG-2822_1
	IMG-2823_1
	IMG-2824_1
	IMG-2825_1
	IMG-2826_1
	IMG-2827_1
	IMG-2828_1
	IMG-2829_1
	IMG-2830_1
	IMG-2831_1
	IMG-2832_1
	IMG-2833_1
	IMG-2834_1
	IMG-2835_1
	IMG-2836_1
	IMG-2837_1
	IMG-2838_1
	IMG-2839_1
	IMG-2840_1
	IMG-2841_1
	IMG-2842_1
	IMG-2843_1
	IMG-2844_1
	IMG-2845_1
	IMG-2846_1
	IMG-2847_1
	IMG-2848_1
	IMG-2849_1
	IMG-2850_1
	IMG-2851_1
	IMG-2852_1
	IMG-2853_1
	IMG-2854_1
	IMG-2855_1
	IMG-2856_1
	IMG-2857_1
	IMG-2858_1
	IMG-2859_1
	IMG-2860_1
	IMG-2861_1
	IMG-2862_1
	IMG-2863_1
	IMG-2864_1
	IMG-2865_1
	IMG-2866_1
	IMG-2867_1
	IMG-2868_1
	IMG-2869_1
	IMG-2870_1
	IMG-2871_1
	IMG-2872_1
	IMG-2873_1
	IMG-2874_1
	IMG-2875_1
	IMG-2876_1
	IMG-2877_1
	IMG-2878_1
	IMG-2879_1
	IMG-2880_1
	IMG-2881_1
	IMG-2882_1
	IMG-2883_1
	IMG-2884_1
	IMG-2885_1
	IMG-2886_1
	IMG-2887_1
	IMG-2888_1
	IMG-2889_1
	IMG-2890_1
	IMG-2891_1
	IMG-2892_1
	IMG-2893_1
	IMG-2894_1
	IMG-2895_1
	IMG-2896_1

