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Complex polarization manipulation with dielectric metasurfaces

by Shaun Lung

Metasurfaces are an important, developing part of modern optics. They consist
of surface structures designed to shape the incident light beams through arrays of
sub-wavelength nano-resonators. In this thesis, I focus on the manipulation and
sensing of classical and quantum light using dielectric metasurfaces, comprising of
dielectric materials such as amorphous silicon on glass. Dielectric metasurfaces are
of exceptional interest due to the minimal material losses as compared to their
plasmonic counterparts, for which material losses are an intrinsic part. In partic-
ular, polarization of light is of great interest in many aspects of both quantum
and classical experiments, extending itself to uses such as communication, quantum
communication, and quantum computation, and oft times, particular polarization
manipulations are implemented using mechanically complex, space-intensive bulk
optics. This is problematic for cases demanding high precision and compactness,
such as fundmental quantum optical experiments, space-based installations, and
quantum communications. It is thus that in the course of this thesis, I explore a
fundamentally new form of polarization manipulation using metasurfaces. This new
polarization manipulation concept is known as complex birefringence, and is capable
of performing heretofore impossible forms of polarization transformation in a single,
monolithic structure. Throughout this thesis, I develop an analytical framework
utilizing an optimally minimal amount of loss, and explore it through experimen-
tal and numerical methods that this concept can implement truly arbitrary control
over polarization in classical and quantum cases, and further demonstrate that this
concept may be extended to a new form of polarization monitoring that allows for
rapid and highly sensitive response. Finally, I extend similar concepts to the con-
cept of singleshot polarimetry, overcoming challenges that previous approaches had
considered fundamental weaknesses.
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Chapter 1

Introduction

Light is an utterly fundamental part of the human experience —underpinning our
relationship with our life-giving sun, enabling agriculture and civilization, and
now powering our world-spanning communications networks. Ever since the first
fire was kindled, ways to produce, control, and alter light have been a steadfast
pursuit of humanity, from questions as seemingly innocuous as ’why do things
look different when underwater’ to the colour of the sunset to the entirely new as-
pects of life we have created from the answers; from telescopes, to movies, to X-rays.

Metasurfaces are merely the latest development in this endless exploration.
Comprised as they are as arrays of carefully engineered optical resonators on some
substrate, they offer unprecedented control over light, governed by extensions of the
concept of Mie scattering. First formalized as a solution of the Maxwell equations
by Gustav Mie [1], Mie scattering describes the scattering of electromagnetic plane
waves by homogenous spheres, arising from induced resonances, and metasurfaces
are an extension of this theoretical framework into designed materials. And of
course, within Mie scattering lies the answer to the brilliant colours of the sunset:
Rayleigh scattering, the process by which a sunset gains its distinctive hues, is a
close relative to Mie scattering for the scattering of light by particles much smaller
than the wavelength of the light.

Mie scattering, and its extension into more general forms beyond scattering by
a simple sphere, is predicated on the existence of structures with dimensions on the
order of the wavelength of incident waves. With the increasing sophistication of
semiconductor fabrication, it has become all but trivial to manufacture structures
on the scale of nanometers, with 7nm transistors already in mass production, and
5nm and 3nm on the horizon [2]. Considering that the visible range of light spans
the 380− 750nm range, an entire two orders of magnitude above what is possible to
manufacture, it becomes clear that Mie scattering and its related forms are readily
adapted as tools which we might reach for to manipulate light.

In this thesis, I conceptualize a novel framework with which the manipulation
and transformation of light, whether quantum or classical, can be accomplished,
and demonstrate through physical experiments that this concept is both practical to
implement and applicable to a broad range of usecases in both fundamental research
and sensing applications. In particular, I focus on the manipulation of polarization
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using a novel concept which has been termed as complex birefringence, implemented
via dielectric metasurfaces. This framework is developed first in theory, then through
relevant application of experimental characterization and analysis supplemented by
numerical simulation as needed.

1.1 An overview of polarization and metasurfaces

Metasurfaces are an important, developing part of modern optics. They consist
of surface structures on scales comparable to the wavelength of light designed
to control the properties of light incident on them. These structures act as
nano-antennas that resonate with incident light to produce varying interactions, the
properties of which may be varied by altering their physical properties such as size,
shape, and orientation. In particular, recent advances in design and fabrication
of all-dielectric metasurfaces, which do not suffer plasmonic losses and are highly
transparent in contrast to metallic structures, have led to demonstrations of very
efficient polarization manipulation combined with arbitrary phase shaping.

Polarization is a particularly important property of light, one that I will deal
with extensively throughout my thesis. Light is, of course, well-known to be a wave
having been considered such since the 1600s [3] —its quantum nature is, of course,
a more recent realization. A well known feature of waves is their polarization, the
property of a wave to oscillate perpendicular to its direction of propagation in
isotropic media. Light is, of course, no exception, and the polarization of light sees
extensive use in nearly all parts of everyday life, from sunglasses, to the LCD screen
you are almost certainly reading this text on, to materials analysis and quality
checking of a vast array of manufacturing.

Polarization in light is denoted using the direction of its electric field, typically
in terms of its orthogonal components. Interactions with physical media can
attenuate, filter, and shift the types of polarization, and in physics, we are
familiar with bulk optical components such as polarizers and waveplates, or more
generally, phase retarders of various stripes. In Fig. 1.1(a) we see a visualization
of unpolarized light filtered to a linear, diagonal polarization, and then rotated
into a circular polarization by a quarter-waveplate. Furthermore, an important
visualization tool for polarization is the Poincaré sphere, as seen in Fig. 1.1(b),
wherein a particular polarization may be represented in terms of its orthogonal
basis components, known as the Stokes parameters, as points within a spherical
volume, or more commonly, arrows terminating at the respective points. This
conveys full information about the polarization state in the direction of the point,
as well as the degree of polarization in the radius of a given point.

It should be no surprise that polarization has seen consistent interest over
the years, whether it be in extending our capabilities or utilizing it to solve an
ever-increasing breadth of problems. As such, new ways to control polarization
sees equally consistent interest, and in 2001 came arguably the first attempt to
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Figure 1.1: Polarization and its representation on a Poincaré
sphere. (a) Adapted from Wikipedia [4]. A visualization of polariza-
tion of light, showing the electric field oscillation of light beginning
with unpolarized light (right) that is restricted to a linear polariza-
tion, then rotated to a circular polarization. (b) Representations of
polarization by arrows within a Poincaré sphere, with polarization
properties represented by the radial length, azimuthal, and polar an-
gles. The degree of polarization is represented by the length of the
arrow, with fully polarization on the surface of the sphere (green)

and partial polarization not reaching the surface (red).

control polarization using sub-wavelength structures. This first attempt, formulated
theoretically and demonstrated in experiment, utilized a specific formulation of
geometric phase, the Pancharatnam-Berry (PB) phase, as opposed to propagation
phase. Geometric phase is the process by which some oscillatory function, such as a
light wave, proceeds through an adiabatic cycle and accumulates a phase difference.
In modern optics, two familiar examples exist: waveplate arrangements, and fiber
paddle polarization controllers. Fiber paddle polarization controllers comprise
laser light passed through a single mode optical fiber which is mechanically bent
in several locations so as to induce a phase shift in the light exiting the fiber,
thus controlling its polarization. This first attempt of polarization control using a
grating by Bomzom et al.[5], however, utilized a metallic spiral grating with spatial
variance, shown in Fig. 1.2, to convert circularly polarized light to an azimuthally
polarized beam. Of course, this was only the beginning.

From gratings, attention turned to arrays comprised of nano-resonators.
Comprised of arrays of individual pixels, each of which may be customized to the
designer’s liking, the nigh-infinite degrees of freedom, in turn, revealed an entirely
new design space to explore. Each individual pixel, comprised of an individual
nano-resonators (also referred to as nano-antennas) are subwavelength structures
resonating with incident light, each one offering individual control over incident
light. Analytically, they are best described using Mie theory.

Formulated by Gustav Mie as a solution to Maxwell’s solutions, Mie scattering
is a crucial part of metasurface design and analysis. While the initial solutions
formulated by Mie applied only to scattering by isotropic spheres, the principle may
be extended to other shapes, largely through numerical means as opposed to exact
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(a) (b) (c)

Figure 1.2: From Ref. [5]. Berry phase for polarization manip-
ulation. (a) Demonstration of space-variant polarization-state ma-
nipulations on a Poincaré sphere. Inset, resultant local polarization
ellipse. (b) Magnified geometry of the grating for converting circular
polarization into azimuthal polarization and (c) experimental mea-

surement of the local azimuthal angle φ.

analytical solutions due to the practical difficulty of solving the equations involved
in complex geometries. By considering a particle as a collection of elementary
charges, it is reasonably intuitive that these charges may readily be excited by an
incident electromagnetic wave, creating resonances within the structure. These
resonances, typically dipolar and confined within the particle, in turn re-radiate
the incident electromagnetic wave, and the superposition of these re-radiated waves
comprise the scattered light. In Fig. 1.3, we see some examples of these multipolar
moments, generated in two classes of material —plasmonic, and dielectric.

These two categories of materials and types of resonances define the two major
types of metasurfaces. Plasmonic metasurfaces consist of metasurfaces made
out of metallic materials, typically gold or silver, with permittivities ϵ < 0 and
structured on a scale on the order of the intended wavelength of light to affect the
desired scattering properties. They are characterized by the eponymous surface
plasmons, with the resonances confined largely near the surface of the structures.
The high negative permitivitty of the component materials are both the strength
and the weakness of plasmonic metasurfaces, allowing for extremely thin layers to
accomplish the same tasks, but coming at a substantial cost of high absorption
loss inherent to the material, resulting in a large degree of fundamental loss simply
to use these types of metasurfaces [7, 8]. Dielectric metasurfaces, by contrast,
utilize materials with near-zero absorption losses and consequently do not suf-
fer from such losses. It is on this latter class of metasurface that my thesis will focus.

Comprised as they are of high-contrast dielectric materials such as amorphous
silicon, dielectric metasurfaces have near to zero absorption loss. With positive
electric permittivities, they host internal resonances in contrast with the surface
plasmons of plasmonics, these internal resonances that afford full phase control in
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Figure 1.3: From Ref. [6]. The amplitude of the near-field electric
field distribution for a sphere of radius r = 0.75 at: (a) ϵ1 ≈ −3.5;
(b) ϵ1 ≈ −1.754; (c) ϵ1 ≈ 32.9; and (d) ϵ1 ≈ 57.93. These resonances
correspond to the first two plasmonic and dielectric resonances, i.e.,
(a,c) dipole and (b,d) quadrupole, respectively. These values are
labelled in meters, but may be considered to be in arbitrary units

due to the scale-invariance of the Maxwell equations.

transmission [9]. This control arises purely from the resonances of the subwave-
length structures, and thus exclusively from structural details of the nano-resonators
comprising the metasurfaces. Conventional dielectic metasurfaces comprise of some
number of discrete, geometrical nano-resonators arranged on the substrate, and can
even include multi-layered structures with non-trivial physical symmetries.

Subsantial interest in the use of machine learning networks and blackbox opti-
mization techniques have also delved into the use of periodic but highly nontrivial
geometries implemented as dielectric structures with which to manipulate light [10].
These are inevitably designed using computational simulations and numerical,
adjoint-based approaches collectively known as topological optimization, resulting
in extremely non-intuitive geometries and dynamics[11]. Such topologically
optimized metasurfaces allow for the exploration of previously inaccessible design
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Figure 1.4: From Ref. [9]. Representative figure of metasurfaces.
(a) Schematic side and top views of a metasurface utilizing hexagonal
unit cells. The incident electromagnetic wave Ein resonates with each
unit cell according to the (b) physical parameters Dx, Dy, θ of the
elliptic cylinder resonators. The metasurface shown schematically
has inhomogenous pixel shapes, thus resulting in varying alterations
to the transmitted light Eout, according to each individual pixel.

spaces, allowing in particular relatively easy design of multi-functional metasurfaces.

More conventional metasurfaces comprise geometrically simple nano-resonators
such as simple cuboidal or elliptical posts, the effects of which are characterized by
the real-valued phase difference accumulated along orthogonal axes, defined as the
ordinary (ϕo) and extraordinary (ϕe) axes. Effectively, each nano-resonator acts as
a waveplate of arbitrary phase shifts, controlled exclusively by its physical param-
eters —no material birefringence is necessary. Additionally, each nano-resonator,
hosting its own multipolar resonance, may be coupled by near-field interactions to
neighbouring resonators, allowing for further control of the scattering properties.
This is visually illustrated in Fig. 1.4, where the output polarization ellipses of each
individual nano-resonator are shown, demonstrating the customizability of any
given metasurface. This flexibility in construction naturally provides unprecedented
freedom for the modification of transmitted polarization, since the designs are not
bound by the starkly limited variety of birefringent material that may be usefully
fabricated, opening paths towards entirely novel types of phase control such as
gradient phase control [12], metalenses [13], holograms [14] and so forth, which
would have previously been entirely impossible with conventional birefringent
media [15].

As my thesis focuses primarily on the manipulation of polarization using meta-
surfaces, it is useful to consider some of the similarities and differences between
classical and quantum light. The quantization and addressing of light as photons
naturally introduces the notion of quantum mechanics, but it is no surprise that the
quantum nature of light, straddling the duality of particle and wave, shares much in
common with classical light. Indeed, classical light fields can and have been used to
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mimic the properties of quantum fields, allowing quantum experiments to be verified
and tested using classical techniques, going so far as to result in classical expression
of entanglement, a concept which seems utterly intertwined with quantum mechanics
[16]. Furthermore, quantum two-level systems can be analogously expressed using
polarization states of light, such as a spin 1/2 system. This extends further still to
the concept of quantum computing using light; with polarization being comprising
the equivalence of a two-level system, it is possible to define a qubit using two or-
thogonal polarizations. This depth of expression using polarization arises from its
nature as a multiply parametric quantity, a concept is discussed further in Chap-
ter 4. With multiple orthogonal bases freely available using the polarization degree
of freedom, it constitutes a SU(2) rotation group, and as such, may map to any
similar system, with the polarization states of light forming a full Hilbert space. We
may choose, for example, the horizontal (|H⟩) and vertical (|V ⟩) polarization states,
with the three Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
comprising the operators which generate the group. Of course, the choice of
polarization basis states are arbitrary and may be freely chosen.

Beyond even the already vast utility of classical light as an analogy to quantum
mechanical systems, quantum light is, of course, a hotly researched field. Even
within quantum regimes, polarization remains a critical property that may be
exploited, such as in general entanglement schemes, in which polarization is a
commonly used degree of freedom, or in quantum cryptography, where the polar-
ization of single photons is used to convey information. With the sheer flexibility
of light-matter interactions, metasurfaces comprise a potent tool with which to
manipulate said quantum light, and while a detailed accounting is beyond the
scope of this thesis, some examples of applications of metasurfaces with quantum
experiments are shown in Fig. 1.5.

We see, first of all, key schematics for the notion of photon entanglement
manipulation with Fig. 1.5(a,d) in vastly different ways. In (a) is an illustration a
standard experimental setup for Type-II Spontaneous Parametric Down Conversion
(SPDC) production and selection of polarization entangled photon pairs, and in (d)
is a conceptual sketch of the entanglement between the spin and optical angular
momentum modes of a single photon. Entangled photons are a key aspect of many
quantum-optical experiments and uses, and will be explored further in Chapter 3.
In Fig. 1.5(b) is another demonstration of the breadth of capabilities metasurface
platforms offer, in this case macroscopic quantum vacuum engineering utilizing the
metasurface to break vacuum fluctuation symmetry. Yet another example is shown
in Fig. 1.5(c), showing past works on singleshot polarimetry with metasurfaces.
In Chapter 5, I will present my own approach to this problem, building on and
improving existing techniques. Finally, in Fig. 1.5(e), we see a generic sketch of
the concept of quantum qubits mediated by interference at a surface. With qubits
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Figure 1.5: Figure adapted with permission from Ref [17], subfig-
ures originally taken from Refs [18, 19, 20, 21, 22]. Examples of ap-
plications of metasurfaces with quantum light. (a) Photon entangle-
ment transmitted through a plasmonic metasurface. (b) Metasurface-
enabled long-distance quantum interference. (c) Quantum optical
state reconstruction based on a metasurface. The top-right inset
shows a scanning electron microscope image of the fabricated all-
dielectric metasurface with a scale bar of 1µm. (d) Quantum entan-
glement of photon orbital angular momentum and spin using meta-
surfaces. (e) Quantum entanglement between atomic qubits mediated

by a metasurface.

as the quantum analogue of bits in conventional computing, quantum computing
is a burgeoning field with much to explore, promising incredible improvements for
certain classes of problems.

The exploration of quantum light is a field that has seen an enormous amount
of interest in recent years, and despite that, there remains a wealth of capa-
bility and applications waiting to be realized. Many of these aspects will be
discussed during the course of this thesis, with a focus towards more fundamental
building blocks of more elaborate experiments and research. In many cases,
there are strong conceptual crossovers and commonalities between classical and
quantum light, and accordingly, I shall be drawing inspiration from these grey areas.

Regardless of the nature of light, whether quantum or classical, manipulation
and measurement of polarization in light is an utterly fundamental aspect of life
and physics, seeing a wealth of diversity in use ranging from astronomy [23], to
seismology [24], biology [25, 26], materials science [27], quantum optics [28], and so
forth. The list is near endless, and growing with every day that passes.
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1.2 Design and fabrication of metasurfaces

Theoretical design notions aside, it is of course necessary to ground any such
theory in practical, experimental work. As mentioned in the previous section, the
key enabling factor that has seen metasurfaces explode into viability has been the
relative availablility of precision, nanometer scale fabrication, and at the same
time, this same availability is arguably one of the primary handicaps suffered by
metasurfaces. This unavoidable reliance on precision manufacturing techniques
presents its own problems, which will be discussed in this section.

The first problem is the scale on which metasurfaces exist. While the Maxwell
equations describing electromagnetic waves, and by implication Mie theory, are
scale-invariant, the fact that metasurfaces exist on a similar scale as the wavelength
of light presents practical issues. Notably, near-field interactions of the resonances
between the adjacent nanostructures comprising the metasurface can be non-
negligible, resulting in second order effects. These effects are equally non-trivial
to solve analytically, and require the application of numerical simulations to
investigate. I will, throughout this thesis, describe and adapt existing techniques
for the purposes of simple but highly flexible design processes, with a more in-depth
examination in Chapter 4, especially as pertains to the potential for creating
asymmetry from symmetric structures.

The second problem similarly relates to the scale of metasurfaces, and how this
scale affects the potential design space. With metasurfaces depending on fabrication
of structures on the scale of tens of nanometers, and thus, the precision which
metasurfaces can be designed and used is bounded by those fabrication techniques.
While industry silicon designs are indeed achieving nanometer-scale precision, such
techniques are largely proprietary and unavailable for our use. It becomes prudent,
therefore, to consider what is available for practical usage in metasurface fabrication.

Fabrication of metasurfaces involves, in general, some form of deposition of a
resist layer onto a base material, followed by patterning of the resist layer, and
finally, removal of the material not shielded by the patterned resist to achieve the
designed structure. This may occur in a number of permutations depending on
the desired metasurface, including multiple layers of patterning and etching, and
with various different types of materials and substrates. Numerous methods of
patterning and etching exist, each with benefits and drawbacks.

Industrial efforts are on the cusp of mass fabrication of metasurfaces, with
considerable effort and increasing investments towards the commerical development
thereof, seeing interest in both established industry and in startup companies [29,
30]. Following in the footsteps of these commerical efforts, we may consider the
industrial fabrication of silicon and other semiconductors as the closest analogue.
Such industrial fabrication efforts typically utilize photolithography, a process
which in general involves the creation of an opaque, negative-pattern mask which
is used to transfer the pattern to photoresist. This patterned photoresist acts
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as a protective shield, allowing the material beneath it to be safely etched into
that pattern. The specifics vary from process to process, with different functional
devices possessing substantially different characteristics [31], some of which are
shown in Fig. 1.6, however, all of these retain the same fundamental workflow of
preparing an opaque mask which is used to pattern the photoresist. This is both
the strength and the critical weakness of photolithography: the mask is non-trivial
to prepare, and while it results in highly reproducible and consistent patterning,
it substantially limits the flexibility of the lithography step. This is favoured in
industrial fabrication processes, however, it is not suitable for our purposes.

By contrast, in small-scale, laboratory prototyping, the primary method utilized
is Electron Beam Lithography (EBL)[32]. EBL utilizes a directed electron beam
to draw patterns on the surface in question, allowing for arbitrary patterns up to
the intrinsic resolution limits of 3 to 5nm[33]. However, this resolution limit is
naturally subject to equipment limitations, with similar equipment-specific caveats
applying to the repeatability and maximum surface area of any given patterning.
In return, with the potential for arbitrary patterning, EBL allows for rapid and
unconstrained prototyping, allowing for fast development cycles in fabricating and
testing new designs. These advantages make EBL the primary process used in
developing metasurfaces, though it is likely that any commercial production will
fall back to other techniques such as conventional photolithography. Nevertheless,
the practicalities of fabrication techniques dictate limitations on the minimum
structural features of any metasurface design. Accordingly, my work throughout
this thesis necessarily incorporates such considerations, with care taken to ensure
that the metasurfaces thus designed are fabricatable in practical terms. Some of the
measures taken include suiting minimum feature size to the minimum resolution of
the fabrication processes, and similarly, ensuring that there the minimum clearance
between features is met.

Numerical modelling is heavily used in the field of metasurface research to
predict and design properties of a given structure before fabrication. Correspond-
ingly, a great deal of work has been dedicated towards efficient methods to solve
this problem, producing a variety of computational tools with which to perform
such tasks. Among them are general solvers for Maxwell’s equations such as
the Finite-Difference Time Domain (FDTD)[34], Finite Integration Technique
(FIT)[35] and Finite Element Method (FEM)[36], as well as more constrained
methods such as Rigorous Coupled-Wave Analysis (RCWA)[37], which is limited to
the scattering of periodic, dielectric structures. These tools may be distinguished,
in general, by their algorithmic approaches to the discretization in the spatial and
temporal dimensions of the task as well as different solution goals, and some of
these approaches are illustrated in Fig. 1.7. A more detailed accounting of these
differences and approaches is beyond the scope of this thesis.

These modelling tools are typically employed as an optimization step during
the design process, which is naturally intermediate step, one which is preceded
by establishing optimization targets. Logically, one must first establish the
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Figure 1.6: Schematic illustration of several metasurface fabrica-
tion techniques, demonstrating several different use-cases and final
structures. (b, c, d) adapted from Ref [31]. (a) Electron beam
lithography followed by Inductive Coupled Plasma etching for small-
scale fabrication (b) Metasurface-based devices demonstrated on 12-
inch glass wafer using immersion scanner and layer transfer process.
(c) Metasurface-based devices demonstrated using immersion scanner
and direct etching on 12-inch Si wafer. (d) Metasurface-based devices
demonstrated using an immersion scanner on 12-inch Si wafer with

a dielectric layer on top.

desired properties and general structure of the metasurface before performing the
optimization step, which typically calls for an analytical design phase, during which
a number of factors must be considered. An alternative design paradigm does
exist in the form of inverse design optimization, wherein the desired performance
is specified and large-scale numerical modelling is used to generate a suitable
structure [39, 40]. Focusing instead on the conventional pathway that is utilized in
this thesis, my methodology encompasses several concerns, theoretical and practical
both, and addresses them in such a manner as to produce optimal designs which
maximize transmission while maintaining the full capabilities of the target design
via careful, analytical construction of the design parameters as well as a multistep
optimization process.

A particular pitfall of numerical optimization designs in the context of meta-
surface design is that metasurfaces are highly multivariate, with an exceptionally
large number of parameters specifying the metasurface properties. For something
as simple as a metasurface comprising two types of cuboidal pixels, as are demon-
strated in Chapter. 2, a multivariate optimization with a dimensionality of 6 must
be performed. Approaches such as topological optimization, which will be discussed
later, possess even large variable spaces, resulting in what is known as the curse
of dimensionality [41]. The volume of the space to be optimized over increases
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Figure 1.7: Figure adapted from JCMwave [38]. Visual representa-
tion of approaches taken by several electrodynamic solvers. (a) Finite
Element Method, decomposing a geometry into an unstructured or
irregular grid. (b) Finite-Difference Time Domain, decomposing the
geometry into a regular grid. (c) Rigorous Coupled-Wave Analysis,

which decomposes the geometry into layers.

proportional to the exponent of the number of variables, resulting in exponentially
increasing demands on computational resources. This is problematic even with
relatively limited dimensional spaces as encountered in this thesis, with singular
numerical simulations taking timespans on the scale of minutes. Furthermore,
simple optimization algorithms such as gradient descent can be problematic in such
multivariate environments, where local minima are common, resulting in failures to
locate global optimum solutions.

As such, a more judicious design process becomes necessary. An analytical
design may be used to constrain the design space of the metasurface, and with
a relatively coarse search, the optimization space constrained yet further. This
approach therefore hinges on the theoretical design approach, which is, in turn,
informed by the practical capabilities of fabrication available. As discussed earlier,
expecting a perfect replication of designed structures in a given fabrication is not
reasonable, absent highly specialized fabrication runs which are not necessarily
available for a prototyping stage. There are two ways by which this was addressed
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throughout the course of my thesis: error-tolerant designs and adaptable design
goals.

In this thesis, error-tolerance refers to the robustness of a metasurface against
fabrication and experimental error. In general, knowing the ideal parameters to
achieve a given goal with a metasurface, it is possible to quantify how that metasur-
face will respond to perturbations from that set of designed parameters. With that
quantification, it is thus possible to treat this error-tolerance as a property which
may both be defined in terms of other quantities, as well as a goal that can be
optimized towards in both theoretical and numerical design phases. By designing
metasurfaces with this robustness in mind, it is thus possible to mitigate the flaws
in physical fabrication processes. This will be addressed in more detail in Chapter 5.

Adaptable design goals are another way in which fabrication concerns may
be mitigated. Fabrication flaws result in largely unpredictable deviations of any
given metasurface’s optical properties from the theoretical design, however, if
the deviation is not overtly catastrophic, it remains eminently reasonable to
expect that the fabrication can still approximate the original design intent. If
the intention is merely to demonstrate some principle of action as opposed to a
specific scenario, then it is sufficient to consider cases that are close to the original
design, and a perfect replication may be sought after as a later, secondary goal
when some specific performance is desired. My thesis employs this principle to
demonstrate the fundamental concepts without constraining the design space too far.

In more general terms, metasurface design may be approached in several ways.
The first is as a strict replacement to one or more bulk-optical components; most
trivially, a uniform metasurface may act as a compact, exact replacement for a
waveplate [9], or indeed, a basic metalens may be used as a replacement for a lens
[15]. In and of itself, such advances already offer benefits in the form of a great
reduction in general size and weight, which is useful for applications such as minia-
turization and physical robustness of sensing setups, however, this barely scratches
the surface. With the versatility of metasurfaces and the complex optical transfor-
mations that can be attained, they can also act as replacements for multiple bulk
optical elements, compressing an entire optical circuit segment into a single element.

Considering a metasurface to be a strict replacement invites a particular design
methodology: one may naively tackle its design by considering the metasurface
in strict terms of the optical components it is replacing. For example, working
in the polarization regime, one may consider the mathematical Jones matrices
of the elements to be replaced, combine them, and simply design a metasurface
that replicates the resultant transfer matrix. While this is an intuitive design
process, however, it does not necessarily produce an optimal result. Instead,
the metasurface should be designed in terms of its analytical operation, which is
especially attractive when working in the polarization regime, as I will explore
throughout the rest of this thesis. In general, the desired analytical operation of a
set of bulk optics may be defined without reference to the physical structures, and
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this purely mathematical approach allows for the design of a metasurface towards
a more optimal solution, a general concept which I will explore in Chapters 2 and
4, especially as pertains to the idea of complex birefringence.

Even so, the versatility of metasurfaces does not end with acting as replace-
ments for bulk optics. Metasurfaces are equally capable of fundamentally new types
of operations, with new technologies and capabilities developing out of computer-
driven approaches, such as topological optimization and machine-learning driven
techniques. These new operations bring concepts such as information optics, quan-
tum metasurfaces and holography into the realms of possibility, where before these
were confined to strict theory. Quantum theory is particularly relevant. Not only
do metasurfaces enable the direct implementation of quantum theory and optics by
allowing for flexible and accessible photonic manipulation, quantum theory also sees
many analogues in classical light, and metasurfaces allow for these quantum-classical
experiments to be implemented with relative ease. Some of these will be discussed
in my thesis, for example, the manipulation of quantum polarized light with meta-
surfaces, as well as utilizing Positive-Operator Valued Measurements (POVM) with
polarimetry in Chapter 5.

1.3 Scope of thesis

This thesis focuses on the manipulation and measurement of polarized light
utilizing metasurfaces. The key concepts developed over the course of my thesis
revolve primarily around the concept of multi-part dielectric metasurfaces, working
exclusively in the transmission regime with a focus on maximizing the respective
transmissivities. In this context, I focus my work primarily around deepening our
capabilties in controlling and modifying a key aspect of light, polarization, through
the concept of complex birefringence.

In Chapter 2, I will be discussing my work on complex birefringence. Based
on recent works [42], complex birefringence extends the concept of conventional
birefringence by introducing the notion of gain and loss to a birefringent transfor-
mation. Here, I demonstrate that unlike original proposals, gain is unnecessary,
and completely arbitrary polarization manipulation may be accomplished using
only judiciously engineered losses via diffraction. I also cover in this chapter
the primary design and fabrication techniques which I employ throughout the
course of my thesis. These techniques were used to verify the practicality of
complex birefringence both in numerical modelling as well as classical experimental
implementation.

Chapter 3 extends the notion of complex birefringence yet further into the
quantum regime, utilizing experimental results and theoretical extension to discuss
the applicability of such metasurfaces into quantum experiments. This chapter
addresses, in general, biphoton states, which are both ubiquitous in many aspects of
quantum optics as well as being ideally suited as the primary target of manipulation
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with complex birefringence.

Next, in Chapter 4, I develop a concept for the sensitive monitoring of small
polarization deviations from an arbitrarily chosen state, revealing that the approach
chosen is analytically optimal within the constraint of chirality. This analysis
is further extended into the chiral regime, discovering that there exist a class
of polarization states which are best addressed using a chiral metasurface, and
subsequently designing an appropriate metasurface using numerical modelling
before finally demonstrate sensitive monitoring with experimental verification.

In Chapter 5, I explore singleshot polarimetry using a metasurface. My
work continues previous developments on the topic, applying a Positive Operator
Value Measurement approach from quantum mechanics to accomplish singleshot
polarimetry with imperfect measurement bases, revealing that a pathway towards
significantly eased precision constraints is both possible and practical. This is
demonstrated with both numerical as well as experimental verification, proving to
be both robust and efficient.

Finally, in Chapter 6, I summarize the works I have performed over the course,
drawing conclusions from the experimental and numerical results as well as providing
outlooks on potential future explorations of the concepts I have laid out.
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Chapter 2

Complex birefringence

Complex birefringence is a recently suggested concept that extends the concept
of conventional, real-valued birefringence [42]. As discussed in Chapter 1, phase
control is a critical aspect of optics, and is a part of nearly every optical experiment.
Much of this control is afforded by conventional birefringence in various forms,
from waveplates, to general phase retarders, to many nonlinear optical components
[43]. By introducing non-Hermiticity, whether gain or loss, to a birefringent trans-
formation, it is possible to enable fundamentally new types of polarization control,
expanding the degrees of freedom in which polarization might be manipulated.

In this chapter, I show that complex birefringence is a powerful tool with which
polarization may be readily transformed in various manners, as well as describing
and demonstrating in experiment a practical, analytically optimal design and
fabrication process through which this complex birefringence may be accomplished
in physical terms, allowing for flexible and compact access to regimes of polarization
manipulation that were not previously available.

Conventional birefringence is a Hermitian transformation. Birefringence is the
property of a material wherein different refractive indices are present along the
ordinary and extraordinary optical axes of the material, in turn imposing different
phase retardances to incident light, and inducing phase shifts in the polarization
of the light. Barring practical losses such as reflection, material absorption,
imperfections and so forth, conventional birefringence is lossless. Naturally, this
imposes restrictions on the possible transformations that may be performed, which
are typically alleviated by utilizing a combination of bulk optical elements to
accomplish. However, complex birefringence presents an additional degree of free-
dom in a singular element, delivering benefits in applications such as polarization
measurements and entanglement experiments, especially in scenarios like satellite
and long-term experiments where compactness and robustness is critical.

The most important restriction of conventional birefringence arises from
its strength, that of a conservative transformation. Here, ’conservative’ and
’Hermitian’ are used somewhat interchangeably, referring respectively to the
physical and the mathematical implications of the same concept. A conservative
transformation of light is one that does not alter the amount of energy present
within that light, and mathematically, that transformation may be described by
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a Hermitian transfer matrix. As such, this limits the types of transformations
that can be implemented using simple birefringence. Non-conservative operations
on light, such as the general case of polarization transformation, are currently
implemented using an optical circuit of bulk optical components. At minimum a
waveplate, partial linear polarizer, and another waveplate, implementing tunable
polarization-dependent loss, to create such a transformation. This is less than
ideal, introducing additional sources of inaccuracy to any experiment in both the
imperfection of individual optical elements, as well as that of mechanical error in
building the setup. Furthermore, for cases such as optical communications networks
and sensing, compactness is often prized, contraindicating the utility of such a setup.

Complex birefringence is termed as such due to the introduction of gain and-or
loss to the concept of birefringence [42], resulting in complex refractive indices
(and the related permitivitty tensors). However, gain is as yet a highly nontrivial
property to engineer, and as such, it is not a realistic concept to utilize. In the
hypothetical case that gain may be reasonably introduced within the desired
form-factor, however, there remains an additional obstacle in that gain media
amplify all incident light, including noise, which is especially undesirable in the case
of quantum experiments, working as they do with low photon count problems. As
such, it becomes clear that working exclusively with losses to implement complex
birefringence is a superior option, with the additional caveat that minimizing those
losses would of course be ideal.

It is precisely these aspects which I will focus on in this chapter, leveraging
judiciously engineered losses to enable true flexibility of manipulation of polarization
in a compact, monolithic structure, enabling full compacting of bulky and expensive
optical setups into a single unit. I will develop a theoretical analysis, showing that
the chosen approach is optimal, and subsequently demonstrate this approach in
experiment.

2.1 Complex birefringence from Singular Value

Decomposition

Consider a pair of states |Ai⟩ and |Bi⟩. Representing a transformation T in Jones
formalism, it is clear that under a conventional, unitary transformation, defining a
desired transformation T|Ai⟩ = |Af⟩ naturally fixes the corresponding transforma-
tion, since

⟨Bf |Af⟩ = ⟨Bi|T†T|Ai⟩ (2.1)

⟨Bf |Af⟩ = ⟨Bi|Ai⟩, (2.2)

given that T is unitary by definition. Thus, while it is possible to define an arbitrary
polarization state to another, it is not possible to define arbitrary transformations
for pairs of states using conventional birefringence [44].
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However, it has been demonstrated theoretically [42] that to achieve truly arbi-
trary control over pairs of polarisation states, it is a sufficient condition to achieve
for some transformation Tcompl:

|s1⟩ = Tcompl|θ⟩
|s2⟩ = Tcompl| − θ⟩, (2.3)

where |s1⟩ and |s2⟩ are opposing pairs of polarisation states, such as diagonal
and anti-diagonal states, and | ± θ⟩ are polarisation states coplanar with and
symmetrically separated by an angle θ about a state of equal distance to |s1⟩ and
|s2⟩. This transformation is necessarily non-conservative and non-hermitian, in
contrast to conventional birefringent materials. The action of such a transformation
may be seen in Fig. 2.1.
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Figure 2.1: Transformation of polarization states with a complex-
birefringent wave plate, visualized on a Poincaré sphere. Left: two
input states with close polarization state vectors indicated by purple
arrows. Right: state vectors (purple arrows) after a transmission via a
complex-birefringent wave plate, which become orthogonal. The dis-
torted gridlines additionally illustrate nontrivial polarization changes
for various input states. They are transformed by a non-conservative

transformation into the form as seen on the right.

Here, it is relevant to consider the Jones calculus representation of polarization.
Jones calculus is a mathematical treatment for fully polarized light, wherein a single
fully polarization state |ψ⟩ may be represented generally with

|ψ⟩ =
[
Ex

Ey

]
,

where Ex and Ey are complex values denoting the components of the electric field
aligned along some arbitrarily chosen, orthogonal axes perpendicular to the direction
of propagation of light. This is known as the Jones vector of a polarization state.
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It is important to emphasize that unlike Mueller calculus, which will be discussed
later, the Jones vector can only represent fully polarized light. A global phase factor
is frequently eliminated from this polarization representation for the sake of conve-
nience. Equivalently, we may express common types of polarization states under the
Jones formalism, for example, horizontal and vertical states denoted respectively as:

|H⟩ =
[
1
0

]
, |V ⟩ =

[
0
1

]
.

This formalism invites similar forms to denote the transformation implemented
by any given optical element. In this case, the transformations are denoted by
2× 2 matrices also known as the Jones matrix or transfer matrix of a given optical
element. Notably, if losses through practical concerns such as material absorption
or stray reflections are ignored, any conventional optical element such as polarizers
and waveplates are represented in the Jones formalism as Hermitian matrices. That
is to say, it is true of any conventional Jones matrix that

J = J†,

where J† denotes the conjugate transpose of the matrix J .

The task then becomes to formulate a non-Hermitian transfer matrix that is
capable of fulfilling the requirements for arbitrary control which does not rely on
gain. The starting point is the the Singular-Value Decomposition (SVD), which
decomposes a 2× 2 matrix as follows,

Tcompl = U

[
σ1 0
0 σ2

]
W† (2.4)

= U ·M ·W†, (2.5)

where U and W are complex, unitary matrices and σ1 and σ2 are non-negative and
real. The SVD of a matrix is a generalization of an eigenvalue decomposition,and
indeed, the column vectors comprising the matrices U and W constitute orthonor-
mal vectors which can be used as basis vectors, related by the corresponding
mapping of σiM. While general, complex SVD computation is a non-trivial task,
this thesis only requires consideration of the decomposition of a 2 × 2 matrix T,
which possesses known analytic solutions [45].

We contextualize this decomposition physically as Tcompl, a Jones transfer ma-
trix, which is a complex, 2× 2 matrix that represents the transformation of a polar-
ization element on an incident polarization state. Notably, the ratio σ2/σ1 defines
the degree of polarization-dependent transmission, and accordingly, the degree of
complex birefringence offerred by the transfer matrix in question. As such, we may
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further decompose the equation as follows:

Tcompl =
σ1
2
U

[
1 0
0 eiκ

]
W† +

σ1
2
U

[
1 0
0 e−iκ

]
W† =

σ1
2
(T1 +T2), (2.6)

where κ = cos−1(σ2/σ1). This solution is non-unique. Since U and W are both
unitary, it follows that T1 and T2 are, by construction, unitary matrices. This thus
demonstrates that by any arbitrary complex transformation may be performed
by the linear sum of two unitary transformations while considering only losses.
Each unitary transformation may be performed by a single metasurface pixel, and
as such, it follows that an arbitrary, complex transformation may be physically
implemented using the combination of just two types of metasurface pixels.

It may be observed from Eq. 2.5 that this reveals an analytically optimal
solution. Asserting for ease of notation that σ1 > σ2 and that W, U respectively
comprise the pairs of column vectors W1, W2 and U1, U2 such that W = [W1,W2],
U = [U1, U2], we observe that an input polarization state W1 is transformed to
σ1U1 at the output. In absence of gain, this state is fully transmitted when σ1 = 1.
This thus presents the fact that there exists a necessarily maximum transmission
for a single polarization state, which may be arbitrarily chosen. Correspondingly,
the orthogonal input polarization state W2 is attenuated and transformed to
σ2U2. As such, the transformation Tcmpl may be interpreted physically as the
combination of a waveplate and selective polarization attenuation, or general
elliptical dichroism combined with the tailored and specific phase retardance of
polarization eigenstates [46, 47, 48].

Absent any other constraints, this thus reveals that for any given transfer matrix
Tcompl there exists at least one solution by which we may decompose and express
it optimally as the sum of conservative transformations, demonstrating a way to
implement the transformation in a practical manner. The non-conservative nature
arises from the tailored loss, which, barring inevitable losses from experimental
concerns, is the minimum required to accomplish the the task.
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Figure 2.2: Concept of realizing complex birefringence with all-
dielectric metasurfaces. (a) Conventional polarization control com-
prising real-valued phases along the ordinary and extraordinary axes,
corresponding to a Jones vector (E0x, E0ye

iϕ)[49] as might result from
a (b) a homogenous array of nano-pillar dielectric resonators rotated
at an angle θ. (b) A unit cell with two pairs of distinctly sized nano-
pillars realizing complex birefringence, combining two singular pillars
of different sizes and angles. (c) A metasurface utilizing the unit cell
in (b), realizing engineered polarization-dependent losses via diffrac-
tion. (d) Schematic diagram of the experimental setup utilized to

characterize the manufactured samples.
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2.2 Tailored loss for polarization pair transforma-

tion

Having established that a transfer matrix transforming two arbitrarily chosen input
polarization states {Ai, Bi} into two other two arbitrarily chosen output states
{At, Bt} is an inherently non-conservative and therefore lossy transformation, we
established that in the form of Eq. 2.6 we present an analytically optimal solution
by construction. It then becomes prudent to consider the exact degree of loss that
is incurred for any given transformation.

Consider, using the Jones formalism, two arbitrary input states

Ai =

[
cosαi

sinαie
iφi

]
, Bi =

[
cos βi

sin βie
iϕi

]
,

and the desired output states

At =

[
cosαt

sinαte
iφt

]
, Bt =

[
cos βt

sin βte
iϕt

]
,

where α and β, φ ad ϕ define the polarization angle and phases of the respective
states. The corresponding orthogonal input states are then

A⊥
i = iς2A

∗
i =

[
− sinαe−iφi

cosα

]
, B⊥

i = iς2B
∗
i =

[
− sin βe−iϕi

cos β

]
,

where

ς2 =

[
0 −i
i 0

]
is the second Pauli matrix. We may then write Eq. 2.6 explicitly as:

T0 = ⟨A∗
t |Bi⟩ · |Bt⟩⟨A⊥

i | − ⟨B∗
t |Ai⟩ · |At⟩⟨B⊥

i | =
[
τ11 τ12
τ21 τ22

]
, (2.7)

where

τ11 =sinαi cos βi cosαt cos βt e
iφi + sinαi sin βi sinαt cos βt e

i(φi+ϕi+φt)

− cosαi sin βi cosαt cos βt e
iϕi − sinαi sin βi cosαt sin βt e

i(φi+ϕi+ϕt),
(2.8)

τ12 = τ21 = sinαi cos βi cosαt sin βt e
i(φi+ϕt) − cosαi sin βi sinαt cos βt e

i(φt+ϕi),
(2.9)

τ22 =cosαi cos βi sinαt cos βt e
iφt + sinαi cos βi sinαt sin βt e

i(φi+φt+ϕt)

− cosαi cos βi cosαt sin βt e
iϕt − cosαi sin βi sinαt sin βt e

i(ϕi+φt+ϕt).
(2.10)

The two singular values of T0 are given by

σmin/max =
1√
2

√
|τ11|2 + 2|τ12|2 + |τ22|2 ± γ , (2.11)
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where

γ =

√(
|τ11|2 − |τ22|2

)2
+ 4|τ12|2

(
|τ11|2 + |τ22|2

)
+ 8Re (τ ∗11τ

2
12τ

∗
22) . (2.12)

And finally, we arrive at

Tcomplex=
eiϕg

σmax

[
τ11 τ12
τ21 τ22

]
=

[
T11 T12
T21 T22

]
, (2.13)

where ϕg is an arbitrary global phase. For an input state Ai, the output is a pure
state, T |Ai⟩ = tA|At⟩, with a transmission coefficient

tA = −e
iϕg⟨B∗

t |Ai⟩⟨B⊥
i |Ai⟩

σmax

= −e
iϕg
(
cosαi cos βt + sinαi sin βt e

i(φi+δt)
) (

sinαi cos βi e
iφi − cosαi sin βi e

iδi
)

σmax

.

(2.14)
When the input state is Bi, the output pure state is T|Bi⟩ = tB|Bt⟩, where the
transmission coefficient is

tB =
eiϕg⟨A∗

t |Bi⟩⟨A⊥
i |Bi⟩

σmax

=
eiϕg

(
cos βi cosαt + sin βi sinαt e

i(δi+φt)
) (

sinαi cos βi e
iφi − cosαi sin βi e

iδi
)

σmax

.

(2.15)
Therefore, the power transmission efficiencies TA = |tA|2 and TB = |tB|2 depend
on the inner products of the states, which relate to the distances between the
states on the Poincaré sphere. A few notable singularities become apparent from
this analysis. Both TA and TB are zero when Ai = Bi and At ̸= Bt because it is
impossible to transform one state into two different states simultaneously. When Ai

is orthogonal to the conjugate state of Bt, TA will be zero. When Bi is orthogonal
to the conjugate state of At, TB will be zero. These features are evident in Fig. 2.3
showing the calculated transmission efficiency when four states are all linearly
polarized, i.e. φi = δi = φt = δt = 0. One can see that TA = 0 when |βt − αi| = π/2
and TB = 0 when |αt − βi| = π/2. However, there are always some cases that TA
and TB can reach 100% simultaneously.

In general, once the two polarization pairs are chosen, the transmission efficien-
cies may be analytically determined from these calculations. The solution shown
here in Eq. 2.7 is the analytical maximum efficiency given the constraints of sym-
metricality and exclusion of amplification, since it has by construction a maximum
singular value of one. However, this formulation also explicitly asserts that the off-
diagonals τ12 and τ21 are equal, resulting in a symmetric transfer matrix Tcmplx.
This is not a fundamental restriction of the concept as expressed in Eq. 2.6, and
this constraint is only necessary to guarantee that the decomposed transfer matrices
T1 and T2 are symmetrical, the utility of which will be explained in the following
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Figure 2.3: Transmission efficiency of the designed transfer matrix
for transforming two linear polarization states into other two polar-
ization states as functions of αt and βt when (a) αi = 0, βi = π/8;
(b) αi = 0, βi = π/4; (c) αi = 0, βi = 3π/8; and (d) αi = 0, βi =

π/2.

section. The notion of chirality in complex birefringence will be explored briefly in
Section 4.

2.3 Dielectric metasurface design and fabrication

Dielectric metasurfaces are highly transparent and can easily attain transmission
efficiencies greater than 85%[9]. As such, they are the ideal platform to complement
the minimal loss associated with the theoretical design. Here, the additional
constraint of symmetrical transfer matrices becomes clear: a symmetrical transfer
matrix corresponds to a metasurface pixel of D2 symmetry, such as a rectanglular
cuboid or elliptical cylinder. This is beneficial in multiple ways; not only do
dielectric metasurfaces exhibit weaker chirality as compared to the alternative of
plasmonic metasurfaces [50], practical concerns arising from numerical design and
fabrication meant that the simplification to a more constrained design space was
desirable.

For a desired pair of polarization state transformations {Ain, Bin} →
{Aout, Bout}, we may use the derived solution for the transformation Tcmpl as shown
in Eq. 2.13, expressing it with minor variations as:

T =
eiϕg

σ1
Tcmpl =

eiϕg

σm

[
⟨A∗

out|Bin⟩ · |Bout⟩⟨A⊥
in| − ⟨B∗

out|Ain⟩ · |Aout⟩⟨B⊥
in|
]
, (2.16)
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where σ1 is the larger SVD value of Tcmpl and ϕg is a global phase. This global
phase may be chosen arbitrarily, reflecting the invariance of this solution to the
construction, and σ1 is explicitly included as a scaling factor. The resultant transfer
matrices are, again, symmetric by construction, and it may be demonstrated that
⟨H|T|V ⟩ ≡ ⟨V |T|H⟩ for all values of T.

Following the choice of state transformations, Equation 2.6 can be used to de-
compose the transfer matrix into symmetrical, unitary components, which can be
easily expressed as simple metasurface pixels. It is known that a pixel with simple,
two-fold reflectional symmetry such as a cuboidal or ellipsoidal pixel produces a
symmetrical transfer matrix of the form

Tsingle = R(−θ) ·
[
eiϕo 0
0 eiϕe

]
· R(θ), (2.17)

where R(θ) is a rotation matrix of angle θ, and ϕo and ϕe are the ordinary and
extraordinary phase retardances of the pixel [9, 51]. Interleaving these metasurface
pixels as seen in Fig. 2.2(b,c) is equivalent to the linear sum of their transfer
matrices, effectively implementing the right-hand side of Eq. 2.6, thus offering a
straightforward path to implementing the initial complex transfer matrix. We
refer to this pairwise arrangement of metasurface pixels as binary structures. The
concept is not new, having seen usecases such as circular microwave polarizers [47],
terahertz polarization gratings [52], optical holograms [53, 14], generators of vector
vortex beams [54], however, the implementation of complex birefringence with
such structures was, as of the commencement of my work on the concept, entirely
unexplored.

Physically, this pairwise sum arises from the interference of coherent, incident
polarization states transmitted through the nanopillars comprising the meta-
surface in the forward direction. The resultant diffraction corresponds to the
polarization-dependent loss, thus constituting the non-Hermitian nature of the
complex birefringence without any gain necessary.

Accordingly, numerical simulations to design the metasurfaces were then per-
formed. Using Rigorous Coupled Wave Analysis [55, 56], sweeps across the physical
sizes of individual, cuboidal resonators without rotation were generated, see Fig. 2.4.
These sweeps were generated using idealized refractive indices of amorphous silicon
on glass. In general, the superpixel periodicities used in this thesis are either of
1600nm or 1800nm, with individual cuboidal pixels centered within a quadrant
of the period. A global search was then performed over the space of this sweep,
accounting for a degree of freedom in design of the nanoresonator rotation. The
selected physical parameters were then simulated as a full binary metasurface and
simulated numerically using a commercial electrodynamic solver, CST Studio. A
notable limitation of Eq. 2.6 is that it does not consider potential second- and
higher- order effects such as near-field interactions between nanoresonators. The
full simulations revealed that these relatively weak higher order interactions do
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Figure 2.4: Numerical simulation of transfer matrix of silicon
cuboidal resonators on glass substrate, with a silicon height of 700nm
and refractive index n = 3.486 and a periodicity of 800nm. Shown
here are the magnitudes of transmitted light in the ordinary and
extraordinary axes against the physical sizes of the pixels (Lx, Ly)

varying from 150nm to 550nm.



28 Chapter 2. Complex birefringence

exist for some configurations, particularly ones with subpixels that have relatively
small pairwise separations. Knowing that both the solutions to Eq. 2.6 and the
single resonators implementing a given degree of birefringence are non-unique, we
are thus able to design metasurfaces while giving minimal consideration to higher
order interactions, simplifying the process greatly.

While the analytical design based on Eq. 2.16 and the linear sum of pixels, it was
found to be necessary to perform secondary optimization passes using CST Studio
to fine-tune the parameters for real physical conditions. These optimization passes
targeted the phase-invariant fidelity measure, which we will now define. We define
first the Jones transfer matrix elements T

(n)
ij and T

(t)
ij , where the superscript (t) and

(n) denote the design target and numerically simulated transfer matrix respectively,
and the subscripts i, j denote the index of the element. We then assert that some
unknown value τ scales the target transfer matrix such that for all indices i, j, the
difference δ may be minimized:

δ =
∑
i,j

∣∣∣T (n)
ij − τT

(t)
ij

∣∣∣2 .
Minimizing the value of δ with respect to τ , we find that this minimum value of τ
to be

τ =

∑
i,j T

(n)
ij T

(t)∗
ij∣∣∣T (t)

ij

∣∣∣2
By solving these two equations, we arrive at the expression

δ =
1∑

i,j

∣∣∣T (t)
ij

∣∣∣
[∑

i,j

∣∣∣T (n)
ij

∣∣∣∑
i,j

∣∣∣T (t)
ij

∣∣∣−∑
i,j

∣∣∣T (n)∗
ij T

(t)
ij

∣∣∣2]

Finally, we normalize the right side elements, and arrive at a phase-invariant measure
of fidelity

δ = 1−

∣∣∣∑i,j T
(n)∗
ij T

(t)
ij

∣∣∣2∑
i,j

∣∣∣T (t)
ij

∣∣∣2∑i,j

∣∣∣T (n)
ij

∣∣∣2 . (2.18)

This fidelity measure was used for the final optimization step, aiming to minimize
the difference between the numerically simulated transfer matrix and the target
with a simple gradient descent algorithm. While this optimization step is insensitive
to overall efficiency, only fine variations of the nanoresonator parameters were
allowed, preserving the high efficiency of the initial design obtained from the
linear combination of resonators design step and subsequently to CST Studio while
suitably eliminating near-field interactions.

The metasurfaces were fabricated at the ANU node of Australian Nanofab-
rication Facility (ANFF). First, an amorphous-silicon thin film of approximately
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710nm thickness was prepared using Plasma-Enhanced Chemical Vapor De-
position (PECVD) on a 170µm thick glass substrate. This sample was then
characterized for its specific refractive index and thickness, both of which are
known to vary slightly between different runs of deposition. These newly obtained
values were then used to iteratively refine and re-simulate the design numerically
to ensure that the final design conformed to the deposited film as closely as possible.

Using these finalized parameters, etching was carried out via Electron Beam
Lithography (EBL) and Inductively Coupled Plasma (ICP) etching. Varying expo-
sures (from approximately 150µCcm−2 to 200µCcm−2) were utilized to produce a
small range of metasurfaces with slight variations in sizes to account for fabrication
variances.

During the fabrication, the dimensions of the fabricated structures may be
different from the designed values due to variations of the fabrication conditions in
the electron beam lithography and etching. In order to compensate for the possible
fabrication errors, for any given single design, we patterned the same dimension
multiple times using different doses during the electron beam lithography, effectively
tiling the metasurface multiple times across a single substrate. This is, in essence, a
form of stochastic error compensation; by both increasing and decreasing the ’ideal’
dose for a given patterning process, we are able to trial-and-error a small range
of physical dimensions of the metasurface, and in subsequent characterization, we
may choose the best-fit metasurface to suit the original design specifications. Once
characterized, the transfer matrix may be considered known with precision limited
only by the experimental setup (as opposed to the limitations of fabrication) and
thus, well defined and usable for experiment, the fabrication errors having been
accounted for in experiment and data analysis.

This general design and fabrication technique was used throughout the duration
of my thesis.

2.4 Experimental realization of complex birefrin-

gence

After the fabrication of the metasurface1, characterization was carried out in the
classical regime.

The fabricated metasurfaces were characterized using the experimental setup il-
lustrated in Fig. 2.2(e). A variable-wavelength laser operating in the 1500−1575nm
telecommunication range was used as the light source, and input polarization states
were prepared from this laser using a fixed linear polarizer (Pol1) and a motorized
half-wave plate (HWP). A 50:50 beam splitter (BS) and detector were introduced
immediately after the state preparation to provide a normalization baseline for the

1Fabrication was performed by Khosro Zangeneh Kamali using facilities at ANU’s ANFF
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measurements. A lens focused the beam to an approximate 80µm spot normally
incident on the metasurface, followed by an objective lens used to image the
transmitted light. To exclusively collect zero-th order transmitted light, a Fourier
lens was used to exclude higher orders of diffracted light. At times, an additional
diaphragm to further limit the capture of the diffracted light was incorporated
before the Fourier lens Finally, the polarization was characterized via a motorized
quarter-wave plate (QWP) and a linear polarizer (Pol2) to project the transmitted
state onto a varying basis, with the resultant power captured with an infrared
photodiode power detector. These measurements were performed multiple times
for any given state and wavelength, typically 10 measurements per datapoint, and
the average taken to ensure that any physical environmental factors were excluded,
as well as to obtain an accurate estimation of random, systemic variation. This
process was automated using a script written in Python, capable of controlling the
laser, waveplates, and power meters.

The Jones matrix of the metasurface was then reconstructed by performing a
normalized least mean squares (nLMS) fitting the measured power ratio to the form:

Pratio = ||⟨θPol2 |QWP(θQ1)|T|θin⟩||2 (2.19)

where θPol2 is the orientation angle of the linear polarizer (Pol2), |θin⟩ is the input
linear polarization state at an angle of θin selected by a corresponding rotation of
HWP, Q(θQ) is the transmission matrix of the quarter-waveplate rotated at an
angle θQ, and Pratio is the ratio of the measured powers at the detectors A and
B. This allows for accurate and unique reconstruction of the transfer matrix,
up to a global phase [57]. Exclusively in this chapter, we also assume that the
transfer matrix is symmetrical, allowing only one quarter waveplate to be used
to fully condition and calculate a unique transfer matrix. Details are provided in
Appendix A. This numerical reconstruction was performed using Python, utilizing
the differential evolution optimizer as implemented by SciPy [58] to locate global
minima. This allowed for relatively simple avoidance of local minima in a strongly
multivariate problem.

Here, I demonstrate the first experimental realization of a metasurface that
can transform a pair of very close polarizations into orthogonally polarized states.
Specifically, we aim to demonstrate the transformation sketched in Fig. 2.1,
transforming from the input linear polarization states |Ai⟩ = |41◦⟩ and |Bi⟩ = |49◦⟩
to the output states |At⟩ = |0◦⟩ and |Bt⟩ = |90◦⟩ [Fig. 2.1(right)]. The theoretical
framework as outlined was employed to determine the transfer matrices required,
and converted to a practical physical design that was then fabricated. Fig. 2.5(a)
shows the scanning electron microscopy (SEM) image of the fabricated metasurface
which was subsequently characterized under the classical regime.

I measured the optical transmission through the metasurface using the setup
outlined in Fig. 2.2(d), and reconstructed the experimental parameters of the
metasurface transfer matrix, as shown in Figs. 2.5(b,c) for the wavelength of
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1563nm. As discussed, a fitting was performed, minimizing the normalized least
mean squares difference between Eq. 2.19 and the measured power ratio to a value
of 4.1 × 10−7, with a maximum standard deviation in data of 7.2 × 10−7W . This
metasurface, as measured, realizes a transformation of the nearby input states to
the near-orthogonal output states |At⟩ = |0.3 ± 0.7◦⟩ and |Bt⟩ = |89.8 ± 0.7◦⟩, in
accordance with the theoretical design.

The singular value decomposition of the transfer matrix quantifies the efficiency
of the metasurface, and as such, I determined these to be σ1 = 0.751 and σ2 = 0.138,
corresponding to the maximally and minimally transmitted linear polarization
states |W1⟩ = |135◦⟩ and |W2⟩ = |45◦⟩. Of note is that the maximum singular
value σ1 is substantially below 1, indicating that the metasurface has a transmission
of approximately 56%, unlike the fully transmissive analytical design. It is likely
that this arises from experimental concerns with losses arising from reflection
and deviations from the numerical design, as well as potential angular dispersion
due to the focusing of the laser on the metasurface. These can be improved in
future works with higher quality sample fabrication, as well as the incorporation
of an anti-reflection coating to the substrate. Despite this, however, the ratio of
σ2/σ1 is substantially less than 1, demonstrating strong polarization dependent
transmission, in accordance with the theoretical design for complex birefringence.

Regardless of the less than ideal transmission efficiency, however, this meta-
surface performs as expected. Under a classical regime, we demonstrate that
the metasurface can map nearby polarization states into well resolved orthogonal
states, in accordance with the original design concept as shown in Fig. 2.1. In
Fig. 2.5(d), the solid blue line represents a dependence of the output vs. input
linear polarization angle. For the input states around |W2⟩ = |45◦⟩, there is an
enhanced responsivity of the output polarization with respect to small changes of
the input state, shown as the steepness of the gradient, since dθout/dθin ≃ 3.7 > 1.
In particular, the dashed lines mark the two close input polarizations which
are mapped to orthogonal states at the output, in accordance with Fig. (2.1).
Conversely, at input polarization angles around |W1⟩ = |135◦⟩, the metasurface
provides the opposite effect, bringing well-separated polarization states closer
together. We note that the increased responsivity is associated with a minimum
of power transmission [dashed-dotted line in Fig. 2.5(d)], which is the necessary
and inevitable tradeoff for the implementation of such functionality in all-dielectric
structures without amplification.

Also characterized was the responsivity of mapping linear polarization states
across a range of wavelengths, of which the results are shown in Fig. 2.5(e). The
visible oscillations vs. wavelength with a period of about 3nm (with peak-to-peak
amplitude up to 15% of the transmission amplitude) are consistent with the
Fabry-Perot interference due to the 170µm thick glass substrate used in the
experimental sample. We conclude, therefore, that these oscillations arise from the
internal reflection of laser light of the glass substrate, and in future works, these
may be reduced by applying an anti-reflection coating if not desired.
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In the specific case of this thesis, the interference fringes may be considered ac-
ceptable. While they do in fact alter the the transformation of the state, affecting as
they do the transmission of the metasurface, we may consider individual wavelengths
independently of each other, and evaluate the performance accordingly. As such,
regardless of these interference fringes, the increased responsivity is consistently no-
table around the input angle |W2⟩ = |45◦⟩, for a wavelength range 1550−1570nm, as
seen in Fig. 2.5(e). This demonstrates that a relatively wide bandwidth of operation
is attainable, and can be further enhanced by specially optimizing the nano-resonator
design and introducing anti-reflection coating on the substrate.

Under our scheme, it is possible to transform between arbitrary input to out-
put pairs of polarization states, including any elliptical ones. As an illustration of
these principles, we show in Fig. 2.6 the application of the general approach to the
following pairs of input states,

|Ai⟩ =
[

cos(29.1◦)
sin(29.1◦)e−i 0.5π

]
, |Bi⟩ =

[
cos(27.5◦)

sin(27.5◦)e−i 0.7π

]
and the target output states

|At⟩ =
[

cos(41.6◦)
sin(41.6◦)ei 0.25π

]
, |Bt⟩ =

[
cos(49.0◦)

sin(49.0◦)ei 0.82π

]
We designed and numerically optimized a metasurface which achieves theoretical
transmission values of σ2

max = 0.828 and σ2
min = 0.0324. Notably, this design

targets elliptical states instead of the linear ones shown in Fig. 2.5, demonstrat-
ing the additional degree of freedom in the rotation of the metasurface pixels.
However, while this design has a maximum singular value near to 1, it does not
attain a maximumally transmitted value even in analytical design. As discussed
in Section. 2.2, this analytical shortfall arises from the lack of chirality in the
formulation of the equations, and may be remedied in future works by the
implementation of chiral meta-pixels. This design was then fabricated and ex-
perimentally characterized using the same experimental technique as outlined above.

The characterized results were shown in Fig. 2.6, with the transfer matrix
and relevant state transformation plotted in the Poincaré sphere. As can be
seen in the figure, the transformation of states is highly elliptical, demonstrating
the capability of our metasurface of performing the transformations as expected.
However, the transmission efficiencies measured were lower than expected, with a
maximum transmission efficiency for |Ai⟩ of 34.9% at 1557nm. As before, this is
likely attributable to the experimental and fabrication concerns, in particular, it
is likely that angular dispersion of the beam may be responsible in large part for
the divergence. The metasurfaces fabricated were limited to 100 × 100µm in size,
and as mentioned, the beam was focused to an approximately 80µm diameter spot.
The metasurface is designed strictly for normal incidence, and the deviation from
normal incidence of the beam due to the tight focusing is likely to cause substantial
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Figure 2.5: Experimental results for a metasurface designed to
bring nearby states into orthogonal ones. (a) Scanning Electron Mi-
croscope (SEM) image of the manufactured metasurface. (b,c) Ex-
perimentally characterized arguments (b) and absolute values (c) of
the polarization transfer matrix T of the metasurface at a wave-
length of 1563nm. (d) Experimentally derived angular resolution of
input linear polarization states denoted by |θin⟩ to the output states
|θout⟩ and net transmitted power Pout, calculated at 1563nm (scaled
against input power of 0.995mW). Marked by dashed lines are the
corresponding two states denoted by the arrows in Fig. 2.1. (e) Re-
sponsivity dθout/dθin vs. the input wavelength and polarization an-

gle.
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Figure 2.6: Experimental results for a metasurface designed to
transfer two elliptical polarization states to other chosen states.
(a) Scanning Electron Microscope (SEM) image of the manufactured
metasurface. (b,c) Experimentally characterized arguments (b) and
absolute values (c) of the polarization transfer matrix T of the meta-
surface at a wavelength of 1557nm. (d) The transformation of states

calculated from the numerical model.

effects with regards to the quality of the transformation. Unfortunately, due to
experimental constaints, this was not characterized in detail.

These results demonstrate conclusively that the concept of complex birefrin-
gence is attainable in practical terms. Not only does the fabricated metasurface
demonstrate the desired polarization transformation in shifting a pair of nearby po-
larization states to a pair of fully orthogonal ones, it also demonstrates a relatively
high efficiency. While this efficiency is lower than is ideal, it is hoped that future
works can explore this particular aspect, and potentially address it via improved
fabrication techniques.

2.5 Summary

In this chapter, I have developed and expanded on the concept of a novel form of
polarization control relying on judiciously engineered loss to effect nonconservative
control over polarization states, termed complex birefringence. This is achieved in a
monolithic, dielectric metasurface, complementing the analytically optimal theory.
This technique was implemented in experiment using a binary metasurface, with
appropriate characterization and experimental procedure verifying that the control
may be attained under realistic conditions and over a broad range of wavelengths,
promising great suitability for replacement of conventional bulk optical methods of
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attaining similar effects in both classical and quantum experiments. We anticipate
that this platform may be extended to a great many uses, especially in cases where
compactness and lightweight control over polarization is required.

A notable area of expansion and development would be the consideration of
chirality in the transfer matrix. This work as presented restricts itself solely to
a symmetrical transfer matrix and thus achiral metasurface, limiting the degrees
of freedom utilized in the transformation. With reference to Section 2.2, we note
that a higher efficiency could be potentially achieved for some states by expanding
a range of transformations to include asymmetric matrices, which would require
tackling the nontrivial design task of metasurfaces with a chiral response [50]. Some
consideration of this is made in Section 5, however, it is not extensively considered
in my thesis.
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Chapter 3

Transformation of biphoton states

Complex birefringence also paves the way towards arbitrary transformation of
biphoton polarization states in a highly compact package. In quantum optics,
biphoton polarization states are an extremely common fixture; for example,
arguably the most common source of entangled photons, Spontaneous Parametric
Down Conversion (SPDC) production, produces photons that are entangled in
polarization (among other properties). It follows that the manipulation of such
states is an utterly fundamental aspect of experimental and practical imple-
mentation of quantum optics, seeing uses in fields of increasing interest such as
quantum computing and quantum cryptography [59, 60]. Accordingly, new ways
to manipulate such states will greatly facilitate such developments. Complex
birefringence, especially as implemented here with single metasurfaces, presents
just such an avenue for control and transformation.

Complex birefringence, a concept I presented in Chapter 2, provides a ready
answer to accomplishing this task. Conventional birefringence may only rotate
these states in parallel to each other across the surface of the sphere, maintaining
the relative angle under all transformations. Complex birefringence, by contrast,
enabling as an additional degree of freedom the divergence (or convergence) of
these states. As such, among other things, the non-Hermitian transformations
expressed in the form of complex birefringence allows for the tuning of the degree
of entanglement of entangled pairs of photons. Such non-Hermitian transformation
of polarization states further opens new regimes for the non-conservative manip-
ulation of quantum states and photon interference [61, 62, 63]. Non-conservative
transformations can also underpin the construction of optical neural networks [64].

In this chapter, I describe and analyze the application of complex birefringence
to quantum light, demonstrating through theoretical analysis as well as character-
ized results that this novel form of polarization control is both useful and practical
for such usecases. Not only do I extend the transformation and manipulation
as outlined in Chapter 2 to quantum light, I also demonstrate that this offers
fundamentally novel and powerful control over entanglement, which is a critical
aspect to many prospective applications.

Two-photon states, also known as biphoton states, are a strict subset of the
more general Fock state, involving only two photons, as suggested by the name.
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Despite this restriction, or perhaps because of it, biphoton states nevertheless
remain a common and useful part of quantum experiments, arguably comprising a
majority of currently extant experiments and research efforts, for example, quan-
tum two-level systems [65], quantum communication [66] and the aforementioned
entangled photon states such as might be used for quantum teleporation [67],
quantum cryptography, and many other areas of quantum optics, both fundamental
and practical [68, 69, 70].

SPDC is an especially ubiquitous source of temporally correlated photons,
having arguably changed the entire field of quantum optics, fundamentally enabling
many of the aforementioned fields to exist in the current day [71]. Biphoton sources
have been demonstrated in numerous different media, ranging from bulk crystals to
waveguides, or even two-photon emission in semiconductors [72, 73]. Regardless of
the physical implementation, SPDC setups are regarded as one of the most reliable
and readily available sources of biphotons, and are yet more attractive for their
relatively simple technical designs. They allow for flexible generation of temporally
correlated pairs of photons, which may be entangled in polarization, frequency,
angular momentum, or not at all, depending on the exact specifics of this setup.

Of interest for the purposes of this thesis are the photons distinguishable in the
polarization states. SPDC, as implied by the name, is a phenomenon where a pump
photon of higher energy decays into two lower energy photons, obeying the so-called
phase matching conditions, which are themselves consequences of the conservation
of energy and momentum of the photons [72]. The specific manner in which these
conditions are fulfilled are dependent on the SPDC medium, and are categorized
into Type I and II SPDCs, which can emit photons in the states

|ΨI⟩ =
|HH⟩+ eiϕ|V V ⟩√

2
, |ΨII⟩ =

|HV ⟩+ eiϕ|V H⟩√
2

.

Notably, the polarization states produced are relatively inflexible, and based on the
physical parameters of the SPDC source. Varying the polarization and degree of
entanglement are done in post-generation, and typically using bulk optical setups,
or some integrated optical circuit such as in the case of waveguide-based SPDC.
However, complex birefringence offers the possibility of manipulating these output
states in their polarization degree of freedom in a single structure, potentially
paving the way towards far more efficient and compact SPDC implementations.

Weak measurements are of further interest as a relatively new tool used in
quantum experiments. They are performed by integrating the signal over time, in
effect weakly perturbing the system, as opposed to an instantaneous, projective
(strong) measurement [74]. These are applied in cases where there is a limitation
in how strong a signal may be obtained from a system; for practical reasons such
as limiting the coupling between the detector and the system to be measured so as
to avoid disturbing the system to be measured. This lends further benefits such as
effectively acting as a frequency filter for noise, assuming of course that the source
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of the noise is periodic in nature.

As implied by the name, weak measurements are performed by coupling the
measurement weakly to the system to be observed. This weak coupling allows
the measurement to avoid strongly perturbing the system, and consequently,
avoids collapsing the system. In general, this allows for measurements of ongoing
time evolution of systems, such as in Hardy’s paradox [75], and by resolving the
paradoxical impossibility of inferring a system’s temporal evolution from its final
outcome, is an important tool for quantum measurements. These are applicable in
both general quantum experiments, as with particle-antiparticle pairs, but also in
optical experiments. However, these weakly-coupled measurements are not easy to
achieve experimentally, and in the case of polarization measurements, necessarily
require very specific polarization transformations [76, 77]. Developing complex
birefringence for such polarization control will only help to advance the capabilties
of weak measurements, paving the way towards more flexible implementations.

This unconventional polarization transformation is of further interest in par-
ticular to quantum computing. With the potential for arbitrarily controlling the
polarizations of a biphoton state into arbitrary output states, such metasurfaces
may be used to implement states with photons confined exclusively to some
combination of one polarization state or the other, known NOON states for their
wavefunction representation as |N, 0⟩ + |0, N⟩. These states are of particular
interest to quantum information applications, and can form the basis for quantum
optical logic gates [78, 79].

The manipulation of biphoton states is not a trivial task, whether it be in the
discussed NOON state, or some other ensemble. Typical methods for manipulating
these states revolve around the splitting of the biphotons along separate paths,
individual control, followed by their recombination [80]. This inevitably requires
the selection of the photons, in some manner, such as a Fock state filter, as
well as temporally-adjusted paths similar to the construction of a Mach-Zehnder
interferometer, none of which are trivial tasks to achieve in experiment. Mechanical
precision is a particular concern, especially outside of laboratory situations where
stray vibrations and physical robustness are a major concern. Even in the case
of a purely waveguide-integrated manipulation structure [81], these designs are
non-trivial.

The extension of complex birefringence into the manipulation of quantum light
thus forms the basis for solutions to many of these problems. Not only is com-
plex birefringence highly versatile, providing arbitrarily-designed solutions to these
manipulations, they are also monolithic and physically robust, providing a highly
attractive alternative to existing approaches.
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3.1 Biphoton states

Two-photon correlated states are notably common, in particular, as a result of
SPDC emission [72], with quantum dots being another source of two-photon states
in literature. Polarization entanglement is an especially common degree of freedom
utilized in experimental uses, for example, in quantum information transmission,
cryptography, and computation [82]. Manipulation of these polarization states and
associated entanglements is as always a non-trivial task, requiring the implemen-
tation of multiple bulk optical elements and, in most cases, mechanical adjustments.

As with any other quantum state, pure states may be represented by their wave-
functions, which can be written in the form:

|Ψ⟩AB =
∑
i,j

cij|i⟩A ⊗ |j⟩B, (3.1)

where ci,j are real, positive coefficients defining the probability amplitudes, and |k⟩χ
represents the photon χ in k basis state, of which the full set of |k⟩ states forms
a complete, orthonormal basis. It is always possible to express this in a form such
that

|Ψ⟩AB =
∑
n

√
λn |̃i⟩A ⊗ |j̃⟩B, (3.2)

where the set |k̃⟩ again form a complete, orthonormal basis, and
√
λn are known

as the Schmidt coefficients. n is known as the Schmidt rank, and is given by the
minimum of the dimensionalities of the original basis states, and in turn, this
is known as the Schmidt decomposition k[83]. In the case of a biphoton state,
these coefficients and basis states may be obtained exactly from the singular value
decomposition of the 2× 2 matrix given by cij, taking i and j to index positions in
the matrix, and thus giving n = 2.

These Schmidt coefficients may be used to quantify the entanglement of the
system, namely, the system is unentangled if and only if there is only one non-
zero Schmidt coefficient. In a multi-part system such as a two-photon state, any
combination of two non-zero Schmidt coefficients defines an entangled system, with
the degree of entanglement increasing towards a maximum for equal, non-zero values.
It is reasonable, therefore, to define some combination of the Schmidt coefficients
that gives a singular, scalar value that quantifies the entanglement of the system.
Several such formulations exist, however, for the purposes of this thesis, I will be
using the cooperativity parameter, sometimes known as the Schmidt number. This
is given [84] by:

Q =
(
∑

n λn)
2∑

n λ
2
n

. (3.3)

This value ranges with minimal to maximal entanglement from 1 to 2, providing a
way to readily evaluate the entanglement of a given system.
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In this chapter, I will be visualizing biphoton polarization states on a Poincaré
sphere, and as such, I will first establish an understanding of the equivalence to its
conventional wavefunction representation, based primarily on the work of Chekhova
et al. [59]. We first consider the standard form of an entangled biphoton wavefunc-
tion, such as one produced by an SPDC source, assuming without loss of generality
that only a single spatial and frequency mode exists, and write the wavefunction
explicitly as:

|Ψ⟩ = c1|2, 0⟩+ c2|1, 1⟩+ c3|0, 2⟩+ |0, 0⟩, (3.4)

where the kets |m,n⟩ represent a state with m number of photons in a chosen
polarization state x (for example, |H⟩) and n photons in its orthogonal polarization
state y (as a matching example, |V ⟩), and |0, 0⟩ represents the vacuum state. Since
the photons are assumed to be indistinguishable in spatial and frequency modes,
the |1, 1⟩ state comprises two photons that may be distinguished exclusively on
their polarization states. c1, c2, and c3 are complex coefficients determined by the
nature of the source, and by the normalization condition, we know that:

⟨Ψ|Ψ⟩ = 1 = |c1|2 + |c2|2 + |c3|2.

Discarding the vacuum state as irrelevant and expressing each coefficient in Euler
notation and discarding global phase as an arbitrary value we may choose, we further
express these coefficients as:

c1 = d1, c2 = d2e
iφ2 , c3 = d3e

iφ3 ,

where d1, d2, and d3 are again related via the normalization condition such that
d21+d

2
2+d

2
3 = 1, resulting in four real variables defining all three complex coefficients.

We now define the photon creation operators a†x and a†y, in the same basis states as
used in Eq. 3.4, and define further that an arbitrary photon creation operator exists
as:

a†(ϑ, φ) = cos
ϑ

2
a†x + eiφ sin

ϑ

2
a†y.

These parameters are bounded by ϑ ∈ [0, π] and φ ∈ [0, 2π]. This allows us to write
an equivalent representation of Eq. 3.4 as:

|Ψ⟩ = a†(ϑa, φa)a
†(ϑb, φb)|vac⟩

||a†(ϑa, φa)a†(ϑb, φb)|vac⟩||
(3.5)
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They are related by construction, giving us the coefficients (choosing d2 to be rep-
resented in terms of d1 and d3):

φ3 = φa + φb,

d1 =

√
2 cos ϑa

2
cos ϑb

2

ξ
,

d3 =

√
2 cos ϑa

2
cos ϑb

2

ξ
,

cosφ2 =
cosφa sin

ϑa

2
cos ϑb

2
+ cosφb sin

ϑb

2
cos ϑa

2

d2ξ
,

sinφ2 =
sinφa sin

ϑa

2
cos ϑb

2
+ sinφb sin

ϑb

2
cos ϑa

2

d2ξ
,

ξ =

√
1 + cos2

ϑa − ϑb

2
− sinϑa sinϑb sin

2 φa − φb

2
.

(3.6)

An inversion of these relations give us a mapping from the coefficients of an
arbitrary biphoton state to a basis in {ϑa, φa, ϑb, φb}, which we may see can be
used as the polar and azimuthal angles to plot a pair of points on the surface of a
sphere. As such, this is a convenient visualization of a biphoton states as a pair of
points on a Poincaré sphere, and will be used throughout this section to provide a
visual reference for the transformation of these biphoton states.

Visualizing these biphoton polarization states on a Poincaré sphere also allows us
a ready, visual intuition of the degree of entanglement of any given biphoton state.
In Fig. 3.1, we see three examples of polarization states, which are represented
both in terms of their respective Poincaré spheres, as well as their wavefunctions
as in 3.1. These are all pure states with photons indistinguishable in spatial and
frequency modes, and as such, the diagonal terms are equal. It is important to
note that due to the quantum nature of the biphoton state we are visualizing, these
are not the representations of two individual photons that are in the polarization
states represented by each vector arrow, rather, both vectors combined represent a
single biphoton wavefunction. Notably, we see that as expected, fully orthogonal
polarization states are maximally entangled, and a pair of identical polarization
states are minimally entangled seen in Fig. 3.1(a) and (b) respectively, with Schmidt
numbers of 1 and 2. And finally, in Fig. 3.1(c), we see a partially entangled state,
with a Schmidt number of Q = 1.275. Notably, we see that at the minimum Q =
1, the vectors representing the biphoton state overlap exactly, representing their
indistinguishability, and as the Schmidt number increases towards a maximum of
2, the vectors representing the component states on the Poincaré sphere diverge,
to a maximally diverged state of two vectors facing fully away from each other,
corresponding to fully distinguishable, orthogonal states. Finally, with the partially
entangled states, the vectors are in between these two extremes. This is in line
with theoretical expectations, and provides a visual comparison of the degree of
entanglement in any given biphoton state.
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Figure 3.1: Examples of polarization-correlated biphoton states
shown in Poincaré sphere representation, with the states represented
as pairs of arrows as well as in the wavefunction basis, shown as the
real and imaginary parts of Ψ in the bar graphs. (a) |0, 2⟩ state, with
both photons in the vertical polarization state and a Schmidt number
of Q = 1 (no entanglement). Note that the arrows representing the
states have been offset slightly purely for visual clarity. Under a true
representation, they would overlap fully. (b) |1, 1⟩ state, with photons
in orthogonal horizontal and vertical states, with a Schmidt number
of Q = 2 (maximum entanglement). (c) Photon state with arbitrary
polarization correlation, with a Schmidt number ofQ = 1.275 (partial

entanglement).
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3.2 Complex birefringence for transformation of

biphoton states

We now consider a mathematical treatment of the concept. The action of the meta-
surface on a two-photon state will, in general, produce a superposition of pure
two-photon and mixed single-photon states, the latter of which occurring when one
of the paired photons is lost. These states can be distinguished through conditional
detection schemes. We express this transformation as:

|Ψ(Ai, Bi)⟩ T−→ |Ψ(TAi,TBi)⟩ = |Ψ(At, Bt)⟩, (3.7)

where the subscripts i and t correspond to the input and transformed states after
the metasurface, respectively. This is analogous to the classical case described above
in Chapter 2, and it therefore follows that the same approaches we have already
formulated may be applied to achieving simultaneous, independent transformation
of a pair of polarization states using a single metasurface, described mathematically
and schematically in Eq. (2.16) and Fig. 3.4(a).
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Figure 3.2: Conventional polarization transformation of |Ψ(H,V )⟩
entangled input state by an ideal (π/2) phase retarder rotated at
angle α◦, shown in schematic in (a) with a half-wave plate and (b)

as a Poincaré sphere representation of biphoton states.

As previously discussed with Eq. 2.1, conventional birefringence does not
offer the degree of freedom required to attain independent transformation of
pairs of states; specifying the transformation of one state necessarily specifies
the transformation of the other. This may be seen visually in Fig. 3.2, where
the action of conventional birefringence is numerically demonstrated, using an
ordinary half-waveplate as the birefringent transformation. Starting with a pair of
horizontal and vertical polarization states, which are naturally orthogonal to each
other, the states were transformed by the waveplate rotated to an angle of α, given
by R(−α) · H · R(α), where R(α) represents the two-dimensional rotation matrix
at the angle α. The output polarization states were plotted across the surface
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of the Poincaré sphere in Fig. 3.2(b), with the colours of the points representing
the waveplate angle α. As can be seen from the plot, at no point are the output
polarization states anything but orthogonal to each other, demonstrating that the
states are rotated in parallel to each other, and thus degree of entanglement is
unchanged under conventional birefringence.

Complex birefringence alleviates this constraint, and may be easily visualized in
Fig. 2.1. Instead of locking the biphoton states to rotate in parallel to each other
across the surface of a Poincaré sphere, a complex birefringent transformation allows
them to diverge from each other, with the distortion of the gridlines in Fig. 2.1
demonstrating the overall distortion of the states. We can readily see that in the case
of a biphoton state, such a transformation would, in fact, allow for the modification
of the degree of entanglement between the photons, allowing for unprecendented
control over biphoton states in a monolithic structure. Conventional approaches to
this concept would typically operate by splitting the beam path by their polariza-
tions along a Mach-Zender interferometer path, with optical elements placed along
one or the other path to perform the required transformations to the biphoton states.

We then consider the experimental potential of tailored two-photon manipula-
tion and quantum state transformation1. Recent studies demonstrated that photon
interference at lossy couplers can demonstrate unconventional features, including
a transition between bunching and anti-bunching statistics [85, 62]. These stud-
ies were based on plasmonic structures, comprising metallic metasurfaces, and as
such, inherent losses associated with the metallic absorption of light. The logical
extension is thus a pivot to an all-dielectric metasurface in which we may minimize
the loss, and correspondingly, maximize the transmitted, useful light. As with Vest
et al.’s experiment, we design a polarization state coupler, coupling horizontal and
vertical polarization states together, as opposed to the usual beam splitter coupling
spatial modes as in the original Hong-Ou-Mandel experiment [86, 85]. Correspond-
ingly, we present here a design and experimental characterization for an all-dielectric
metasurface which realizes a non-conservative coupler as required for such an exper-
iment. In keeping with the experiment on bunching and anti-bunching of photons,
we consider the coupling transformation between the |H⟩ and |V ⟩ polarizations with
a non-conservative transfer matrix [62] in the form:

Tφ = ρ

[
1 eiφ

eiφ 1

]
, (3.8)

where ρ is a scaling coefficient. The phase value of φ = π/2 corresponds to a
conventional conservative coupler, while other phases generally correspond to
non-conservative transformations, notably, φ = 0 yielding the inverted bunching
behaviour demonstrated by Vest et. al. The optimal practical realization with the
minimal necessary amount of losses (in structures without gain) corresponds to the
maximum possible value of ρ, which is achieved when the maximum singular value

1Fabrication was performed by Khosro Zangeneh Kamali using facilities at ANU’s ANFF
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of the transfer matrix σ1 → 1.
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Figure 3.3: Fabricated complex-birefringent metasurface for ar-
bitrary transformation of polarization-entangled two photon states.
(a) SEM image of a metasurface made of amorphous-silicon on a glass
substrate. (b, c) Experimentally characterized transfer matrix at a
wavelength of 1560nm, including (c) arguments and (d) modulus of

the elements, which is close to Eq. (3.8) with φ = π/4.

Using the same analytic and numerical approaches to complex birefringence
as outlined in Section 2, binary metasurfaces implementing unconventional po-
larization coupling as per Eq. (3.8) for some arbitrary phases φ were designed.
These designs were then fabricated and characterized classically, with an example
of results presented in Fig. 3.3(a), which transfer matrix [Figs. 3.3(b, c)] realizes
the case of φ ≃ π/4. The results hown have a normalized least mean squares
parameter value of 3.5 × 10−7, with a maximum standard deviation in datapoints
of 6.9 × 10−7W . While the absolute values of the experimental transfer matrix
are not individually unitary as in Eq. (3.8), with a slight variation between the
diagonal and antidiagonal values, the fabricated metasurface nevertheless enables
unconventional interference and control of the biphoton states.

This demonstration of a transfer matrix in line with the inverted Hong-Ou-
Mandel experiment potentially paves the way towards efficient quantum computing.
Photonics are a prime candidate for the implementation of quantum computing,
owing to their innately quantum behaviour and extreme propagation speed. This
is a topic that has seen considerable interest over the past decade, and the meta-
surface demonstrated here, with its thoeretically optimal transmissivity, can only
complement further exploration of the concept. While the HOM effect of bunching
of photons may be utilized as the fundamental basis of bosonic qubit logic gates
[87], so too can anti-bunching result in the potential for fermionic qubit logic gates
[88], which may subsequently be used as the building blocks of a full optical com-
putation circuit. Nor should a metasurface implementing the exact φ = 0 transfer
matrix of Vest et al.’s experiments be impossible, only requiring a more carefully
designed and fabricated metasurface. Unfortunately, a more detailed exploration
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of this concept is well beyond the scope of this thesis, and may be left to a later work.
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Figure 3.4: Application of complex-birefringent metasurfaces for
arbitrary transformation of polarization-entangled two photon states.
(a) Schematic of a metasurface oriented at an angle α◦ to perform
the desired transformation for entangled photon pairs. (b) Transfor-
mation of |Ψ(H,V )⟩ entangled input state calculated with the exper-
imental transfer matrix of the metasurface oriented at angle α◦ as

shown in (a).

This metasurface serves a dual purpose as a demonstration platform for demon-
strating the capability of complex birefringence for control of entanglement of
biphoton states. Utilizing the experimentally measured transfer matrix [Fig. 3.3(b,
c)] of this metasurface, numerical calculations were performed to determine the
transformation of a biphoton state. Similar to the equivalent calculations performed
with a conventionally birefringent waveplate and shown in Fig. 3.2(a), an input
biphoton state comprising orthogonally polarized horizontal and vertical states was
projected through the metasurface, with the metasurface rotated at an angle α,
given by R(−α) ·T ·R(α) where T is the transfer matrix. The output polarizations
were again plotted on a Poincaré sphere, shown in Fig. 3.4(b), with the colours of
the points representing the pairs of states at a given angle α. As we can see in the
figure, the polarization states converge towards each other as the metasurface is
rotated, despite starting with a pair of fully orthogonal states. This demonstrates
that the metasurface is, indeed, capable of altering the degree of polarization of
light, unlike a conventionally birefringent transformation.

Unfortunately, resources were not available to perform the verification of
these experiments in the quantum regime, in particular, no quantum light source
was available for use. However, these classical results remain largely sound as a
demonstration of the key concepts involved.

One particular issue of note in the context of quantum experiments is that the
fundamental mode of operation of complex birefringence depends on loss through
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judiciously engineered diffraction. Unlike the case of classical light wherein the
lost light may be entirely disregarded beyond efficiency concerns, loss of half of a
pair of correlated photons must be accounted for in experiment. However, this is a
relatively well-understood problem which has been discussed [89] and in some cases,
exploited as a part of the experiment, such as in parity-time symmetry breaking
experiments [90].

Even in the case of losses of quantum light, information need not be lost, and
can be recovered in a systematic manner, via a technique called quantum state
distillation. The general intention of this technique, as the name implies, is to
distill some smaller set of states from a larger ensemble of states while preserving
the maximal amount of quantum information possible [91]. In other words, this is
a form of filtering of quantum states while not destroying information, with uses
such as remote state preparation [92] and the purification of qubits for quantum
computation [93]. More importantly, any filtering process may be considered a lossy
process in which some quantity of the initial pool of prepared states is removed. As
such, this both provides a formalism by which we may consider the loss of photons
and accordingly quantify the information lost, and by considering the lost photons to
be a form of random noise, a means by which they might be filtered out directly [94].

Procrustean filtering is a technique through which local filtering may be applied
to a single photon out of a biphoton state to recover information about the total
state [91]. Photon loss, as would be incurred using the non-conservative metasurfaces
I have outlined in this thesis, may in fact be addressed by this filtering technique
with the appropriate adjustments for what is functionally equivalent to bit-flip noise
[94]. Even so, a key advantage of my approach, implemented as it is on dielectric
metasurfaces, is that the loss is controllable. This is not the case in plasmonic meta-
surfaces, where the loss is a fundamental quality of the material used. Furthermore,
the formalism suggested here presents an exact means to quantify the probability
that any given input pair survives the filtering, or lossy transition process. A more
detailed analysis may be done in a future work, however, it remains that despite the
lossy nature of the complex birefringence proposed in this thesis, manipulation of
quantum light in a concise and efficient way remains very much within the realms
of possibility.

3.3 Summary

In this chapter, I have further developed the concept of complex birefringence,
demonstrating that it can be used to implement novel types of polarization
control. This includes the control over the degree of polarization entanglement in
a monolithic structure, allowing, in theory, full control of the entanglement using
a complex birefringent metasurface by employing judiciously engineered loss. The
principles used to engineer this metasurface are identical to those of Chapter 2,
demonstrating that the concept is both flexible and powerful while still managing
to achieve an optimal structure and analytically minimal amount of loss, however,
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while a metasurface capable of performing this transformation was fabricated and
verified with classical characterization, a full experimental verification of this in a
quantum experiment was not possible due to the limitations of time and access to
resources.

The concept of complex birefringence was also utilized to demonstrate a meta-
surface that was capable of performing an unconventional Hong-Ou-Mandel exper-
iment, with this metasurface implementing a highly unconventional polarization
coupler with a phase difference of φ = π/4 capable of achieving full coalesence of
photons on a dielectric structure which utilizes minimal amounts of loss, unlike pre-
vious works with inherently lossy plasmonic metasurfaces. Again, it was not possible
to verify this in quantum experiment, however, verification of the metasurface via
classical characterization was performed.
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Chapter 4

Polarization monitoring

Polarization is a multiply parametric property of light, defined by independently
measurable parameters that collectively comprise a property that is frequently
considered a singular attribute. Correspondingly, to measure the polarization of
light, it is usually necessary to take several sequential measurements which are
then processed for reconstruction, a process that typically requires multiple optical
components and independent measurements separated over time [95]. However, the
distribution of the independent measurements across some span of time results in
fundamental limits on the time resolution of any such measurement, and similarly,
the introduction of multiple optical components naturally increases the physical
bulk of any such system, as well as raising concerns of precision and accuracy for
every component added.

In select cases, however, a full characterization of the polarization of light is not
necessary to accomplish the desired experimental or practical goals. In such cases,
a full reconstruction of the polarization necessarily introduces experimental and
computational overhead to accomplish such reconstruction [96, 97, 98, 99], which
may be undesirable. Additionally, such techniques often rely on the projection of
the polarization state being measured to some known state, such as the horizontal
or vertical, before being measured and reconstructed, which once again introduces
more potential losses and errors. As such, a technique in which we directly monitor
ultrasmall deviations from an initial polarization state in some manner can be
desirable in experimental and practical usecases, allowing for rapid and immediate
response.

In the last decade, metasurfaces comprised by a thin layer of nanostructures
have shown exceptional capabilities in the manipulation of both classical [44] and
quantum [100, 99] light associated with the polarization degree of freedom. Partic-
ularly, metasurfaces have been used for compact and fast polarization measurement
in a static form by dividing the beam into multiple spatial paths [96, 97, 98, 99],
and in fact, I will delve into this aspect of polarization in Chapter 5. However,
these metasurface polarimeters still require computational data processing to
reconstruct the polarization state, and the achievable resolution in differentiating
adjacent polarization states is limited in turn by the precision of the detectors and
computational algorithm. This presents difficulties when the desired perturbations
are extremely small, and moreover, forces additional computational overhead
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and processing time. Here, I propose instead a means of directly monitoring
the perturbation of polarization states from a chosen anchor point, allowing for
sensitive, minimal detection.

Direct polarization monitoring has many potential uses, even limiting ourselves
to monitoring only the magnitude of the deviation as opposed to the exact deviation.
Materials analysis and quality control in manufacturing, for example, frequently
utilizes polarization to monitor for residual stresses and flaws in manufacture
[101, 102]. Similarly, polarization microscopy of various forms has seen rising
interest in biomedical sciences, in particular for various forms of cancer detection
[103], sometimes with the aid of some fluroescent dye introduced to the tissues in
question [104]. The principles in all of these usecases are similar: similar materials
produce similar polarization changes in incident light, whether the materials are
glass, plastic, or biological tissues, and as such, deviations from a known baseline
is sufficient to establish a deviation in the material. While a full analysis of the
polarization state in question can in some cases yield more information, it is
sufficient to simply know that some degree of deviation exists, perhaps as a first-
response sorting system, with unusual cases subsequently measured in greater detail.

Furthermore, following my development of the concept of complex birefringence
in Chapters 2 and 3, one notable weakness still remains. The scheme as discussed,
while principally speaking general, does not currently support the control of
arbitrary elliptical (or circular) polarizations. This is due to the fact that the meta-
surfaces utilized lack chirality, however, this lack of chirality is not a fundamental
limitation of complex bifringence. Rather, it is a limitation arising from the physical
implementations as discussed, coupled with the fact that dielectric metasurfaces
tend to offer weaker chiral responses than plasmonic metasurfaces, due to the lack
of surface plasmon enhancement of the resonances [105, 106]. This deficiency will
be addressed in this chapter, wherein I discuss the notion of introducing chirality to
extend the concept of complex birefringence, developing both a use-case as well as
a practical means of introducing chirality even in simple binary metasurface pixels
as used here.

Such chiral, dielectric metasurfaces for polarization monitoring naturally carry
the high transmissivity characteristic of dielectric metasurfaces. This remains a
strong positive despite the relative weakness of chiral responses inherent to dielec-
tric metasurfaces due to the high transmissivity, with the high transmissivity en-
abling sensitive detection for low-light measurements [44, 100, 99]. Furthermore,
this demonstrates more general cases of polarization transformation utilizing the
same basic principles of complex birefringence, greatly extending the flexibility of
the concept.
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4.1 Concept for polarization monitoring

To monitor deviations from a polarization state, we must first choose the state to be
monitored, now designated the anchor state |ψanch⟩. This is represented in Fig. 4.1
as a red cross on the surface of the Poincaré sphere. Any perturbations from this
state are then represented as the orthogonal state |ψ⊥⟩, thus yielding the overall,
perturbed input polarization state |ψin⟩ = |ψanch⟩ + δ|ψ⊥⟩, where δ is small, and
gives the magnitude of the perturbation. δ may also be complex, representing the
phase of the perturbation, ϕδ. Represented in the shaded region in Fig. 4.1(a) are
perturbations over the full 2π range of phases, for values of |δ|2 < 0.01. We note for
completeness that by definition of orthogonality, ⟨ψanch|ψ⊥⟩ = 0. We construct the
desired transformation mathematically as

T = ξ (|V ⟩ ⟨ψanch|+ α |H⟩ ⟨ψ⊥|) , (4.1)

yielding an output state of

|ψout⟩ = T|ψin⟩ = ξ(|V ⟩+ αδ|H⟩), (4.2)

where |ξ|2 gives the maximum transmission of power of the anchor state |ψanch⟩,
and |ξα|2 gives the transmission of the perturbation state |ψ⊥⟩. In this ideal case,
the anchor state is transformed purely to the vertical polarization state, albeit with
some loss, and any perturbations from said anchor state are transformed into the
horizontal polarization state. This yields an easily measurable value quantifying
the magnitude of the perturbation |δ|: the ratio of powers in the horizontal and
vertical output states, or mathematically, PH/PV = |α|2|δ|2. This measurement can
be trivially performed using, for example, only a polarizing beam splitter and two
power meters, as shown in Fig. 4.1(b). Accordingly, the metasurface design goal
would be to maximize |α|2, effectively amplifying the sensitivity of the metasurface
to any small perturbations. We term this the responsivity of the design, represented
by η = |α|2, and is seen in Fig. 4.1(c) as the greatly increased coverage of the
shaded area around the vertical polarization. With this concept, we only require an
initial characterization of the η of the metasurface, following which, the amplitude
of any deviation of the input may be determined through a single measurement of
the ratio PH/PV , and trivial calculation of |δ| =

√
(PH/PV )/η.

Note that the ideal transformation in Eq. 4.1 is in general non-unitary (and thus
nonconservative) and chiral, particularly for highly elliptical and circular anchor po-
larization states. In practice, chiral transformations with dielectric metasurfaces at
normal incidence are non-trivial to attain [107], and working within this limitation,
an additional term is added to Eq. 4.1 as follows:

T = ξ (|V ⟩⟨ψ|+ α|H⟩⟨ψ⊥|+ γ|V ⟩⟨ψ⊥|) . (4.3)

This additional term in γ represents the degree of the perturbation that is mapped
to the |V ⟩ polarization state instead of the horizontal, altering the ratio to
(PH/PV )/η = |δ|2/|1+γδ|2. This functionally introduces a degree of non-uniqueness
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Figure 4.1: Concept of sensitive polarization monitoring with meta-
surface. (a) An arbitrarily chosen elliptical anchor polarization (red
cross) on a Poincaré sphere and deviations |δ|2 up to 0.01 are indi-
cated by a crown. (b) An experimental scheme utilizing metasurface
performing a special non-unitary transformation T that transforms
a perturbed input polarization |ψin⟩ to an output polarization state
|ψout⟩, allowing for monitoring of polarization deviations using only
a polarizing beam splitter and the power measurements PV and PH .
(c) At the output, the anchor state is converted to the vertical polar-
ization and the horizontal component represents the deviation which

is amplified by a factor η = |α|2.

to the calculation of delta for a given power ratio as follows. Beginning with the
ratio of powers, given simply as:

PH

PV

=
|⟨H|T|ψin⟩|2

|⟨V |T|ψin⟩|2
=

|αδ|2

|1 + γδ|2
,

we assert that for some range of δmax to δmin

PH

PV

=
|αδmax|2

(1 + |γ| |δmax|)2
=

|αδmin|2

(1− |γ| |δmin|)2
, (4.4)

and solve to reveal that

|δmax| =
√
PH/PV

|α|+ |γ|
√
PH/PV

≈
√
PH/PV

η

(
1 + |γ|

√
PH/PV

η

)

|δmin| =
√
PH/PV

|α| − |γ|
√
PH/PV

≈
√
PH/PV

η

(
1 + |γ|

√
PH/PV

η

)
. (4.5)

Thus, for any measured power ratio PH/PV , the magnitude of perturbation is
determined to be within the range [δmin, δmax], which is in turn proporation to γ
and the input perturbation. Accordingly, we introduce an additional design goal: to
minimize the fraction of the perturbation power mapped to the vertical component
at the output, parametrized by |γ|2.
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Figure 4.2: Schematic representation of optimal metasurface for
monitoring of polarization deviations. (a, b) Response of metasurface
to incident anchor polarization state |ψanch⟩ and the perturbed state
|ψ⊥⟩, respectively, with diffraction losses shown as dashed lines.

Utilizing Jones formalism, we may define the anchor state and its orthogonal as
follows:

|ψanch⟩ =
[

cos β
sin βeiφ

]
, |ψ⊥⟩ =

[
− sin βe−iφ

cos β

]
, (4.6)

we may rewrite Eq. 4.3 in explict parameters of the input polarization as:

T = ξ

[
−α sin βeiφ α cos β

cos β − γ sin βeiφ sin βe−iφ + γ cos β

]
. (4.7)

This yields an analytic expression for a transfer matrix that maps a chosen anchor
state (β, φ) to the vertical output polarization with any perturbations mapped to
the orthogonal horizontal output polarization with a sensitivity α. This is an asym-
metrical transfer matrix with non-equal off-diagonal components, which will be an
important consideration in the subsequent design process.

4.2 Designining metasurfaces for polarization

monitoring

As discussed in Section. 2, the required non-unitary transfer matrix T may be
achieved in a monolithic, dielectric metasurface. In Figure 4.2, we can see the
desired transformation as physically implemented using tailored diffractive losses:
the metasurface transforms the anchor state |ψanch⟩ into |V ⟩ in the zeroth order
with a tailored reduction of power, where the attenuation is lost to high-order
diffraction, as shown in Fig. 4.2(b). Input perturbations |ψ⊥⟩, orthogonal to the
anchor state, are correspondingly the metasurface transformed into |H⟩ in the zero
order with (ideally) full transmission, since we aim to minimize the high-order
diffraction for such states as shown in Fig. 4.2(c).

However, as already noted, the ideal form of the transformation, where γ = 0,
requires in generality a chiral transformation, in contrast to the already-performed
work on complex birefringence, which focuses purely on the symmetric case. We
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therefore impose an additional constraint to equation 4.7, which yields by construc-
tion of equal off-diagonal terms the analytical condition:

γ = −cotβe−iφ(α− 1) (4.8)

to arrive at a modified transfer matrix of

Tsymm =

[
− sin βeiφ cos β

cos β 1−α cos2 β
sinβ

e−iφ

]
. (4.9)

Neglected for clarity is a scaling factor of 1/σ1, scaling the transfer matrix by
its maximum SVD value so as to ensure unity. This is an analytical optimal
solution, minimizing the necessary uncertainty of reconstruction γ for a given
responsivity α and chosen anchor state. It was observed that this constraint of
chirality to the transformation resulted in substantial loss of potential performance,
the specifics of which will be discusssed quantitatively in the experimental results.
The chosen platform of binary metasurfaces presented a potential solution in the
form of near-field coupling between nano-pillars and the inherent asymmetry of the
substrate, presenting a means by which chirality can be implemented.

Unlike the linear addition of uncoupled pixels, near-field coupled chiral struc-
tures are not readily analyzed with analytical methods, and as such, it was necessary
to design the metasurfaces using inverse design. Inverse design is a process in
which metasurface parameters are designated, and the numerical modelling is
utilized to generate and trial potential metasurfaces until the desired performance
is achieved [39, 40]. As discussed in Chapter 1, metasurface optimization is a highly
multivariate problem, in this case, utilizing 6 parameters: lengths, widths, and
angles of rotation for each cuboidal metasurface pixel, with heights and supercell
dimensions fixed. Furthermore, this is a multiobjective optimization problem
with the γ and overall transmission as minimization and minimization targets
respectively, and with the responsivity α a direct constraint on the optimization
problem. As such, this optimization problem cannot be easily approached with
a simple gradient descent: not only are gradient descent algorithms prone to
optimizing towards local minima in multivariate problems, such algorithms also
handle multi-objective problems poorly. An approach of writing a function with
which to combine the objectives tends to lead to biasing towards one target over
another, and while multi-objective variants of the gradient descent algorithm exist,
they tend to have poor overall performances [108].

As such, this optimization task was performed using the NSGA-II genetic
algorithm as implemented in a Python package [108, 109], interfacing with the
RCWA code as the numerical solver. This genetic algorithm was chosen due
to its robust handling of multiple objectives, as well as its high performance in
constrained optimization problems, exactly as was required for this design process.
This attained a highly efficient metasurface that was capable of implementing the
desired polarization monitoring for fixed anchor polarization state and responsivities.
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Following this inverse design process, an optimization pass was performed using
CST Studio, similar to the process described in section 2.3, and fabricated using the
same techniques.

4.3 Experimental demonstration for polarization

monitoring

After fabrication, the metasurfaces were characterized, in the zeroth order trans-
mission using a free space setup. Unlike in Chapter 2, a quarter waveplate and
halfwaveplate were used to project the states into the bases, allowing for fully
condition reconstruction of asymmetrical transfer matrices. Owing to the higher
specificity of design of this particular application, scans were performed over a range
of wavelengths as well as physical rotation angles θ of the metasurface (indicated
in Fig. 4.3(a)), searching for the best-fit design.

Figure 4.3(b-f) shows experimental results of fabricated metasurfaces1. Fig-
ure 4.3(b) shows the characterized Jones matrix of the metasurface at 1573.8nm
when the rotation angle is θ = 64◦. As before, the characterization was performed
using the tomography method laid out in Section 2.4, launching prepared polar-
ization states through the metasurface which are subsequently projected into basis
states for measurement with a power meter, and fitted using nLMS as the tar-
get fitting parameter. This fitting parameter was found to be 4.3 × 10−6. As per
the inversely-designed structure, the characterized transfer matrix turned out to be
highly chiral. The corresponding anchor state was determined from this characteri-
zation to be [cos(0.353π), sin(0.353π) exp(−0.388πi)]T , using an extension of Eq. 4.3
as:

|ψanch⟩ =
T−1|V ⟩

||T−1|V ⟩|| .

Similarly, |γ| and α were determined from the transfer matrix using:

|γ| = |⟨V |T|ψ⊥⟩|
|⟨V |T|ψanch⟩|

(4.10)

η = |α|2 = |⟨H|T|ψ⊥⟩|2
|⟨V |T|ψanch⟩|2

. (4.11)

This state is a highly elliptical state, indicated for visualization by the red cross on
the Poincaré sphere in Fig. 4.3(b), which shows the anchor states as a function of
the metasurface rotation angle in the range from −90◦ to 90◦.

Notably, this concept lends itself well to rotational tuning —one can use a sin-
gle metasurface to monitor a large range of different anchor states. As we see in

1Fabrication was performed by Jihua Zhang using facilities at ANU’s ANFF
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Fig. 4.3(c), a simple physical rotation of the metasurface results in a strong vari-
ation of the anchor state transformed to the vertical output, correspondingly, the
responsivity varies over a large range as we can see in Fig. 4.3(e), up to a maximum
of approximately 25. Despite this not being an explicit design goal, it is clear that
for a large range of anchor states, we are nevertheless able to maintain a strong
responsivity, with values > 5 being considered usable to perform measurements.
Furthermore, it is worth noting that this range may be effectively doubled simply
by considering the mapping of the anchor state to the horizontal, with the perturba-
tion correspondingly mapped to the vertical polarization state. Unsurprisingly, this
results in a mirroring of the results, with an optimal symmetrical transfer matrix of:

Tsymm =

[
1−α sin2 β

cosβ
e−iφ sin β

sin β − cos βeiφ

]
, (4.12)

with a corresponding γ = tan βe−iφ(α − 1). Accordingly, we see that it is possible
to map the anchor state to the horizontal and vertical output states when the 0 >
β > π/4 and π/4 > β > π/2 respectively, to minimize γ, which has a minimum
theoretical value of

|γ| = min(tanβ, cotβ) · (α− 1)

for all symmetrical transfer matrices. While this is not shown in Fig. 4.3, it is
clear that this approximately doubles the range of anchor states with effective
responsivities, while requiring essentially only an implementation modification of
swapping the positions of the vertical and the horizontal outputs in the results.

In Fig. 4.3(d), we see both the demonstration of sensitive monitoring of
polarization deviations, as well as the effect of γ on the measurement. This is an
analytical calculation derived from the experimental characterization of the transfer
matrix, plotting the power ratio PH/PV against the perturbation size |δ|2. It is, as
noted, all but trivial to find the size of the perturbation simply from the gradient
of the line, shown in red, simply by dividing the power ratio by η, however, we see
that as the phase ϕδ of the perturbation varies, a small range of |δ|2 appears for any
given measured power ratio, shown in the shaded colour of the figure. As discussed,
this uncertainty of determination of |δ|2 is dependent on γ, and is on the order
of 2|γδ|, proportional to the magnitude of the deviation. It remains reasonable,
therefore, to conclude that for small deviations, we can still obtain accurate and
useful reconstruction. The responsivity as a function of the rotation angle is shown
in Fig. 4.3(e). One can see that the responsivity is maximized near the rotation
angle we have chosen, as indicated by the vertical dashed line. The |γ| value also
reaches the smallest value of 0.646 near this angle, as shown by the solid line in
Fig. 4.3(f). This corresponds to a relative uncertainty of 1.292|δ|, or about 12.9%
when the deviation magnitude is 10% of the input anchor state.

The experimental characterization of the metasurface indicates a superior
(smaller) γ than the ideal, symmetrical case, as predicted by the differences be-
tween Eq. 4.9 and 4.1. In Fig. 4.3(f), we see that the supported |γ| by a symmetrical
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(i.e. non-chiral) transfer matrix for the same anchor state and responsivity is
larger than our experimental values. This is not entirely a surprise, given that
the characterized transfer matrix as seen in Fig. 4.3(b) is asymmetrical, and thus,
the metasurface deviates from the design in a particularly serendipitous manner.
This chirality arises from the near-field coupling between adjacent pixels as well
as asymmetry in the propagation direction arising from the substrate, which is
not well-accounted for by the theoretical binary metasurface structure as shown in
Eq. 2.6.
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Figure 4.3: (a) SEM of metasurface fabricated to implement polar-
ization sensing. The unit cell is indicated using the black, dashed box,
with rotation from the horizontal indicated by θ. (b) Experimentally
characterized transfer matrix values of the metasurface when θ = 51◦.
(c) Precession of the anchor state as a function of the metasurface
rotation angle θ. The anchor state relating to the transfer matrix of
(b) is indicated by the red cross. (d) Predicted power ratios PH/PV

against deviation from anchor state |δ|2. The phase of the deviation
ϕδ, indicated by the colour gradient, results in a relative uncertainty
range 2|γδ| in determining |δ|. (e) Variation of responsivity as the
metasurface is rotated by angle θ. The result corresponding to (b,
d) is indicated by the dashed line. (f) Variation of uncertainty γexp
with rotation of the metasurface, compared to a theoretically con-
structed metasurface with identical anchor state and responsivity,

but of purely symmetrical transfer matrix (γsym).

This enhanced sensitivity was then directly measured. Using the experimental
setup as shown schematically in 4.1, polarization states were prepared and projected
through the metasurface, and then divided using a polarizing beam splitter into its
horizontal and vertical components. The input states were prepared as before using
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linearly polarized laser light in the infrared range (1500 − 1575nm) and focused
onto a spotsize of approximately 40µm on the metasurface. Subsequently, lenses
were used to collect the light and project it through the polarizing beam splitter,
with the outputs measured using two power meters and recorded via a Python
program.

At the optimized rotation angle θ = 64◦, a large number of perturbed states
around the anchor state of [cos(0.353π), sin(0.353π) exp(−i0.388π)]T were prepared.
These states were prepared with the intention of covering a full phase sweep of
ϕδ ∈ (0, π), as well as deviations with magnitudes of up to |δ| = 0.1. These per-
turbed states may be seen in polarization ellipse form in Fig. 4.5(a), with the black
line showing the anchor state and the shaded blue region representing all perturbed
states. For each input state, the output power ratio was measured multiple times
and averaged before plotting at their corresponding position on the Poincaré sphere
in Fig. 4.5(b). In line with the analytical design, we see that the H-V power ratio is
minimized at the anchor state and increases proportionally with the deviation mag-
nitude. From this measurement data, we obtain by fitting a responsivity η = 21.8,
as shown in Fig. 4.5(c) by the red line. As before, the colour of the data points rep-
resents the phase of the input deviation ϕδ. Based on the maximum and minimum
values of |δ| (i.e. the uncertainty of measuring |δ|) for a certain H-V power ratio, we
derive out the experimental |γ| to be 1.33. Although it is larger than the predicted
value from the characterized transfer matrix (|γ| = 0.646), it is still smaller than
the theoretical limit (|γ|sym = 1.826) predicted for a symmetrical transfer matrix as
given in Fig. 4.3(f), confirming the advantage of chiral response applied in this work.

The demonstrated responsivity of η = 21.8 is slightly smaller than the predicted
value from the characterized transfer matrix in Fig. 4.3. This is, most likely, due
to experimental error inherent to the direct measurement of the power ratio. Due
to the extreme sensitivity of this measurement, with its intention of measuring very
small perturbations, the movement of the waveplates is on the order of 0.05◦, on the
same order as the 0.03◦ backlash error of the motors [110]. Furthermore, the physical
rotation of the waveplates causes the beam to shift across the metasurface and power
meter surface due to imperfect alignment; while pains were taken to account for this,
limitations exist in the degree of precision that may be achieved without specialized
equipment. This shift across the metasurface is likely to present problems; due to the
uncorrected proximity effect during the electron beam lithography, it is likely that
the dimensions of the nanopillars is not exactly the same across the entire patterned
area. Given that the polarization transformation is based on these physical sizes,
the transfer matrix varies to a slight degree across the metasurface. Thus, to ensure
that a uniform transfer matrix is measured, a small beam size is necessary, however,
as a beam is focused, it gains an increasing spatial frequency range and a degree
of inherent polarization variation due to the beam divergence [111]. Cumulatively,
these errors account for the difference in responsivity.

Lastly, we further demonstrated the proposed concept for an anchor state close
to the right circular polarization by rotating the same metasurface at a differ-
ent angle θ = −64◦ and operating it at a different wavelength of 1550.5nm.
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Figure 4.4: Experimental measurement of power ratios for an
elliptical anchor state of [cos(0.353π), sin(0.353π) exp(−i0.388π)]T .
(a) The polarization ellipse of the input polarization states used for
the measurement. The precise anchor state is indicated by the black
line, with variations from this state indicated by the blue, shaded
region. (b) Experimentally measured power ratio outputs (PH/PV ),
plotted on a Poincaré sphere with positions corresponding to the cor-
responding input polarization states. The colour shading indicates
the variation of power as the state deviates from the anchor state,
indicated by the cyan marker, with the strong increase demonstrat-
ing that relative ease of measurement of small deviations. (c) The
experimental power ratios as plotted against the deviations from the
anchor states. The experimentally measured |γ| is 1.33, as compared
to the prediction from the experimentally characterized transfer ma-

trix of 0.65.
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The related result is shown in Fig. 4.5. The anchor state has a Jones vector
[cos(0.21π), sin(0.21π) exp(−0.448πi)]T , whose polarization ellipse is indicated by
the black line in Fig. 4.5(a) and position on Poincaré sphere is marked by the cyan
cross in Fig. 4.5(b). For this anchor state, we experimentally demonstrated a re-
sponsivity of η = 3.8. Note that it is more difficult to achieve a high responsivity
for a circular anchor state as compared to an elliptical anchor state as a result of
the more stringent requirement on the chirality of the transformation in Eq. (4.1).
For this near-circular anchor state, the experimentally measured |γ| is 0.815. For a
symmetrical transfer matrix, the theoretical |γ| is 1.224 for the same anchor state
and responsivity.
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Figure 4.5: Experimental measurement of power ratios for a
near-circular anchor state of [cos(0.21π), sin(0.21π) exp(−i0.448π)]T .
(a) The input polarization states used for the measurement. The
precise anchor state is indicated by the black line, with variations
from this state indicated by the blue, shaded region. (b) Experimen-
tally measured output power ratios (PH/PV ), plotted on a Poincaré
sphere with positions corresponding to the corresponding input po-
larization states. The colour shading indicates the variation of power
as the state deviates from the anchor state, indicated by the cyan
marker, with the strong increase demonstrating that relative ease of
measurement of small deviations. (c) The experimental power ratios
as plotted against the deviations from the anchor states. The exper-
imentally measured |γ| is 0.815, as compared to the prediction from

the experimentally characterized transfer matrix of 0.500.

4.4 Chirality in dielectric metasurfaces

It is known that dielectric metasurfaces do not generally exhibit particularly
strong chirality [50], however, the metasurface in this chapter, fabricated as silicon
on glass, demonstrates a non-trivial degree of chirality. While in principle, any
metasurface that exhibits some form of structural symmetry breaking is capable
of causing a chiral transformation in projected light, these are typically weaker
in dielectric metasurfaces as opposed to plasmonic metasurfaces, due to dielectric
metastructures achieving on average lower local field enhancement than their
plasmonic counterparts, outside of sharp resonances. This discrepancy can in cases
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be as much to 20:1, leading to corresponding discrepancies in degrees of chiral
response [112, 113].

Chirality is a relatively broad concept, even in the context of optical experiments
alone. The fundamental physical concept of chirality revolves around physical
asymmetry; an object is said to be chiral if in some way its mirror image cannot be
superimposed on itself. In optical effects, chirality in general refers to the physical
reversal of the direction of propagation of light through some part of the optical
circuit, and that the behaviour in these inverted directions of propagation are
not the same. Even within this relatively narrow definition, however, there are
variations in types of chirality.

In an optical context, chirality revolves primarily around polarized light. There
is no difference between flipping the polarization of incident light as opposed
to inverting the optical component in question, therefore, by simple physical
symmetry, the correlation between the handedness of polarization and physical
inversion leads to what are termed chiral phenomena. As mentioned, chirality is
a relatively broad term, and includes asymmetric circular polarization conversion,
polarization rotation, and dichroism in various forms, whether linear or circular
[114]. Furthermore, chirality can be observed in both reflected and transmitted
modes. The latter will be the focus of this section.

The various forms of chirality each have their own uses, for example, dichroism
of any kind can be used to implement polarization-sensitive filtering or wave
mixing at an interface. In the specific case of this thesis, however, the chirality
requirement arises from the numerical optimization problem, as a consequence of
the transformation as described in Equation 4.1.

Chiral metasurface design is a highly non-trivial challenge, and yet one that
has been sought after for a considerable amount of time. Even before the advent of
metasurfaces in their current form, Fresnel had already speculated, two centuries
ago, that helical structures can interact with similarly helical light (the latter
of which we now term circular polarization) [115], attempts have been made to
fabricate these structures, and inevitably fallen short of simpler structures more
specifically designed with breaking of mirror symmetries in mind [107]. However,
as yet no analytical description of chiral metasurfaces exist, and experiments
in this matter depend largely on numerical optimization and physical testing.
Such implementations of chiral metasurfaces may generally be classified into two
categories, determined by the physical implementation of symmetry breaking:
extrinsic and intrinsic chirality.

Extrinsic chirality, here, refers to some form of asymmetry induced via means
external to the metasurface structure, typically by utilizing oblique incident angles.
A schematic example is shown in Fig. 4.6(a). By angling the beam away from
normal incidence, the profile presented towards the beam becomes asymmetric, thus
yielding the required broken symmetry for a chiral response [116, 117]. Works on
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Figure 4.6: Schematic illustrations of types chiral metasurfaces,
adapted from [107]. The red arrows k show the incident light, while
the insets show single unit cells with their associated electric and
magnetic fields (p, green arrow and m , blue arrow respectively). (a)
shows an extrinsically chiral metasurface with split ring resonators.
Note the oblique angle of incidence use to induce extrinsic chirality.
(b) Optically thick metasurface with tall helical structures inducing
intrinsic chirality. (c) Planar metasurface with gammadion structures

inducing intrinsic chirality.

this matter have typically involved structures such as split-ring resonators utilizing
plasmonic metasurfaces, with the associated losses [107, 118].

Intrinsic chirality, by contrast, refers to some form of structural asymmetry or
chirality inherent to the metasurface even at normal incidence. One example of such
structural asymmetry that has seen recent research efforts is the gammadion in both
dielectric and plasmonic metasurfaces [107, 119, 120]. Similarly, three-dimensional
spirals with their axis oriented normal to the direction of propagation of light offer
structural asymmetry that leads to optical chirality [121, 122, 123]. These structures
are optically thick, extending some significant fraction of a wavelength above the
substrate, and consequently are challenging to fabricate, typically requiring multi-
ple layers of deposition and etching. Schematic examples are shown in Fig. 4.6(b, c).

In general, the chirality of the metasurface pixel may be approximately predicted
by its physical symmetry, with the according forms of classification, in turn leading
to a ready form of prediction of the chirality supported by any given structure.
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Considering, in general, that the standard 2× 2 Jones transfer matrix is defined by:[
tx
ty

]
=

[
A B
C D

]
·
[
ix
iy

]
, (4.13)

where tx, ty and ix, iy are the complex transmitted and incident electric fields in the
x and y direction respectively, which in the backward propagation direction would
yield a transfer matrix of: [

tx
ty

]
=

[
A −C
−B D

]
·
[
ix
iy

]
, (4.14)

using the same notation for the incident and transmitted fields, and accordingly,
we see that the symmetry of the transfer matrix infers the chirality of the relevant
metasurface. In turn, the form of the transfer matrix may be predicted from the
physical symmetry of the metasurface unit cell, with the physical symmetry giving
the expected symmetry of the transfer matrix [51].

The chirality exhibited by the metasurface demonstrated in this chapter may be
classified with its C2,z symmetry, categorized similarly to an L-shaped structure. As
we can see in Fig. 4.3, the achieved transfer matrix is, indeed, highly chiral, with one
linear, and one elliptical eigen state. However, this coupling-mediated asymmetry
was not analytically studied in this thesis, and was arrived at through the opti-
mization process. Nor is the concept of coupling-mediated transfer matrix a topic
well studied as yet, with some few works largely utilizing plasmonic structures [124,
125], however, the singular demonstration of chirality in this work is a promising
avenue of research, both for the general implementation of chiral transformations
with dielectric metasurfaces, as well as to improve the performance of this specific
concept of monitoring small polarization deviations.

4.5 Tunable metasurfaces for polarization moni-

toring

A notable weakness of the technique as outlined in this chapter is that the anchor
state is fixed by the physical parameters of the metasurface, up to the rotation
degree of freedom. Rotational tuning of the metasurface, while allowing for
the variation of the anchor state, has limitations, as can see in Fig. 4.3; both
sensitivity and the uncertainty scaling parameter γ worsen as the angle diverges
from the optimal position (respectively decreasing and increasing). While the
metasurface remains usable within a range of angles near this optimal angle, with
the degree of usability defined by the tolerance of the external systems attached it
is a fundamental and unavoidable tradeoff that must be paid to attain this tunability.

There exists, however, an alternative that was not explored in the course of
this thesis. Tunable metasurfaces have seen recent interest, utilizing optically,
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electrically, mechanically, or thermally actuated layers or media to alter the prop-
erties of the metasurface. In general, the concepts for tunable metasurfaces revolve
around altering the physical parameters of the metasurface in some way, with a
large number of ways in which this is approached. Mechanical tuning, for example,
involves fabricating the metasurface on some form of stretchable substrate, allowing
for mechanical stretching or squashing to alter the distance between metasurface
pixels. Graphene layers have also been proposed as one of the most versatile
approaches; via electrical tuning, it is possible to directly alter the resonance prop-
erties of the metasurface pixels and thus tune the properties over a broad spectral
range. Similarly, the infiltration of birefringent liquid crystals allows for the tuning
of the inter-pixel dielectric properties, allowing for the direct alteration of both
the refractive index of the surrounding media as well as the electromagnetic res-
onances of the pixels themselves via electrical or thermal tuning [126, 127, 128, 129].

Combining the principles of these tunable metasurfaces with the polarization
sensing metasurfaces demonstrated here would allow for the tuning of the metasur-
face properties. Even a relatively simple addition of liquid crystals, would allow for
substantial freedom in enhancing the flexibility that this platform can enable. By
introducing liquid crystals as a dynamically birefringent layer, electrical or thermal
actuation would allow for the dynamic switching of said crystals from an unordered,
isotropic state to a nematic, birefringent state, with the corresponding alteration of
the optical properties will in turn alter the transformation of the binary metasur-
face, potentially paving the way towards a polarization sensing metasurface that is
able to substantially vary its anchor state without losing sensitivity or increasing
the uncertainty. This is, however, not analytically predictable, and is best treated
using numerical simulations as well as practical experimentation in a future work.

4.6 Summary

In conclusion, we reveal that dielectric metasurfaces can provide amplified re-
sponsivity for monitoring small deviations around an arbitrarily chosen anchor
polarization state through a simple readout of output horizontal and vertical com-
ponents. We formulated a metasurface design principle and fabricate metasurfaces
with a specially optimized binary combination of nano-resonators that is capable
of transforming an arbitrarily chosen anchor state to a similarly arbitrary linear
polarization state, where any perturbations are transformed into the orthogonal
state with near-unity transmission. As such, any small deviations from the anchor
states are covnerted into an effectively amplified deviation, in a convenient form
that may be trivially measured as the ratio of the powers between linear polarization
pairs. This may be accomplished, for example, using a single polarizing beam
splitter and two power meters, providing a robust and simple system with which
to monitor polarization perturbations without the use of a polarimeter or more
involved computational processing.
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This metasurface was demonstrated with both characterized results as well as
direct, experimental measurements of perturbed polarization states. The measured
results demonstrate high responsivity and precision in monitoring deviations around
arbitrarily elliptical and near-circular input states, and proves that the concept
may be extended freely to any chosen input state with the appropriate metasurface
design. We anticipate that our work will enable a new class of ultra-compact and
ultra-sensitive flat meta-optical devices for a broad range of applications, including
advanced sensing, imaging (biomedical and otherwise), and metrology in both
classical and quantum photonics.

This work has also demonstrated moderately strong chirality in a dielectric meta-
surfaces without utilizing extrinsic asymmetry. Numerical simulations as well as the
experimental characterization and results verify that the fabricated metasurfaces
display chiral effects that arise through exclusively through near-field coupling of
symmetric metasurface pixels. This form of chirality presents a promising avenue
for future exploration, potentially yielding a more general implementation of chiral,
dielectric metasurfaces with simple design processes.
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Chapter 5

Robust polarization measurements

As discussed in Section 4, polarization is a multiply parametric property of
light, requiring several independent measurements to properly characterize [95].
Typically, this is performed using an instrument called a polarimeter, which applies
through mechanical reconfiguring some known degree of phase shift to the input
polarization, projects the unknown polarization state to be measured into multiple
different basis states, typically the four Stokes parameters, which are in turn used
to reconstruct the original polarization state. The phase shift is accomplished using
some form of tunable phase retarder, such as a waveplate that may be rotated
relative to the beam, and by utilizing sequential reconfigurations of this system, a
full basis of reconstruction may be generated for the measurement.

Here, I develop a novel form of polarimetry by applying concepts from quantum
physics, demonstrating a method of performing polarimetry in a single step that
not only avoids the problems of traditional polarization measurements but also
circumvents the problems faced by contemporary attempts at accomplishing such
polarimetry, and further incorporates design measures to ensure that the resultant
metasurfaces are highly robust against fabrication error while being able to offer
accurate and precise measurements.

Polarimetry in experimental scenarios presents numerous experimental chal-
lenges, namely, the common refrain of the bulk of traditional optical components
and the mechanical imprecision of adjusting such components. Any system is
only as precise as the tolerances allowed by the system, which in the case of
mechanical, reconfigured parts, presents challenges in particular for the precision
required in quantum measurements. In the case of polarimetry, an additional
challenge of requiring that the polarization state be projected to multiple basis
states presents a unique problem of limiting the temporal resolution of any
such measurement; a measurement simply cannot be taken any faster than the
phase retarder can be mechanically reconfigured. These limitations constitute sys-
tematic, mechanical errors that are especially problematic for quantum experiments.

These problems are well understood and recognised, especially in the particular
case of quantum light. Consequently, efforts towards eliminating the systematic
errors arising from these mechanical reconfiguration have seen much interest,
revolving as they do around the obvious path of eliminating the mechanical
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components entirely, and perform the experiment entirely via a static device of
some kind [130]. The key concept to this approach involves the use of a series of
beam-splitting optical components in some manner, each implementing quantum
interference [131, 132]. This thus results in multiple, spatial output ports, each one
with its own detector, with a number of outputs greater than the number of inputs
to the system. These extra inputs correspond, naturally to vacuum input states,
incorporating nonclassical multiphoton interference as an unwanted but inevitable
factor to the measurement. Metasurfaces, however, present a route to circumvent
these problems entirely.

Recent works reveal that metasurfaces are capable of resolving incident,
polarized light into multiple basis states over spatial degrees of freedom as opposed
to temporal [96, 97, 98, 99]. The metasurfaces are tailored to diffract chosen
polarization components of incident light to each diffraction order, thus dividing
the input state into multiple spatial ones, forming a complete set of bases for
accurately and uniquely reconstructing the polarization state using simultaneous
measurements. This technique facilitates measurement of both classical [44] and
quantum states [100, 99].

However, current approaches [133] still exhibit undesirable limitations. While
these limitations were previously believed to be intrinsic to this approach, I have
demonstrated over the course of my thesis that this is not the case. The first,
and primary restriction to prior approaches lies in the design of the metasurface;
until now, it has been believed that it is fundamentally necessary to interleave
multiple metagratings on a metasurface in order to split several distinct pairs of
polarization components. This interleaving imposes restrictions on the utility of
such a metasurface: not only must the incident beam be large enough to fully
illuminate all the interleaved gratings, said interleaving also results in distortion
of the beam transverse to the direction of propagation [134, 99]. Neither of these
are practical, especially in the context of the strict requirements of quantum
experiments.

A recent study has demonstrated polarimetry with a single metagrating [133],
however, an additional linear polarizer is still required under this scheme. This
naturally adds setup complexity and size in addition to attenuating the transmitted
power, and thus, remains less than ideal for applications of the concept. However,
these limitations are not inherent to single-shot polarimetry, and in my thesis, I
explored a new path towards practical, usable implementations.

Existing works on single-shot polarimetry attempt to recreate traditional
polarimetry, resolving the incident polarization into some combination of the tradi-
tional orthogonal Stokes basis states (horizontal, vertical, diagonal, anti-diagonal,
left circular and right-circular), which are then used to reconstruct the unknown
polarization state; the novelty being that the the resolution is performed over
spatial degrees of freedom, typically diffraction orders of the metasurface. However,
this requires that every relevant diffraction order needs to act as a (close to)
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perfect polarizer, which is a largely impractical goal to accomplish in practical
implementations, leading to the afore-mentioned interleaving of metagratings
and the associated problems. However, drawing from the concept of Positive
Operator-Valued Measurements (POVM) formalism from quantum mechanics, I
established that a regime exists in which using partially polarizing basis states we
may accomplish a full reconstruction of the Stokes parameters defining the state.
This eliminates both the need to attain an extremely precise design and fabrication,
and to interleave multiple metagratings. As such, this is a far more practical and
easier to attain single-shot polarimetry.
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Figure 5.1: (a) Conceptual sketch of single-metagrating polarime-
try. Highlighted in yellow is a single 16 resonator unit cell. From the
output diffraction orders, any unknown input state may be recon-
structed by knowing the metasurface instrument matrix. (b) Poincaré

sphere representation of two arbitrarily chosen input states |Ψ(1)
in ⟩,

|Ψ(2)
in ⟩ characterized in Jones formalism by the polarization angles

and phases (1.5, 0.1), (0.1, 1.5) respectively. (c,d) Intensities of out-
put diffraction orders corresponding to the respective input states

|Ψ(1)
in ⟩, |Ψ(2)

in ⟩.

5.1 Theory for single-shot polarimetry

We first establish that each diffraction order, denoted by an index m, may be con-
sidered independently of each other, each transforming the input polarization state
(quantum or otherwise). Furthermore, working under a linear regime, we may ex-
press the transformation of quantum states as follows:

ψ
(m)
out = T(m)ψin, (5.1)

or equivalently under Stokes formalism as:

P
(m)
out = M(m) · Sin, (5.2)
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where ψin and ψ
(m)
out are the input and output polarization states for the respective

diffraction order m, and T(m) and M(m) denote the classical 2 × 2 Jones transfer
matrix and 1×4 instrument matrix respectively. They are related via the expression

M(m) =
1

2


ρ00 + ρ10
ρ00 − ρ10
ρ01 + ρ10

(ρ10 − ρ01)i

 , (5.3)

where ρij are the the elements of the 2× 2 density matrix T(m) ∗ .T(m), indexed by
0, 1. This is equivalent to the first row of the Stokes matrix under Mueller notation.

Considering each individual diffraction order as a polarizer acting on incident
light, we perform a SVD of the transfer matrices, as in 2.5. Knowing that this
decomposition establishes the degree of transmission of the polarization states
(equivalent to the eigenstates of W†), we note that if σ

(m)
2 = 0, the transformation

is that of a perfect polarizer, fully filtering out any orthogonal polarization.
Conversely, if σ

(m)
2 > 0, then some degree of the orthogonal polarization state is

transmitted, establishing the transformation as a partial polarizer, with a power
extinction ratio of (σ

(m)
2 /σ

(m)
1 )2.

We now define the creation and annihilation operators from the input as â†p and
âp, where p = {H,V } is the polarization state, and the respective output operators

at each of the diffraction orders as b̂
(m)†
p and b̂

(m)
p . The transformation imposed by

the metasurface is then expressed with the linear transfer matrix elements as:

b̂(m)
p =

∑
p′=H,V

(
T

(m)
p,p′

)∗
âp , b̂(m)†

p =
∑

p′=H,V

T
(m)
p,p′ â

†
p . (5.4)

The scope of the work is limited to tomography of polarization-entangled states
with a fixed number of input photons (N), which is a measurement that can prove
challenging for practical reasons [135, 136, 137, 138, 139]. Despite this being a
seemingly simple task, it is nevertheless one that is ubiquitous and utterly necessary
to much of quantum optics; so long as an experiment produces output in polariza-
tion, it is necessary to measure, in some way, said output. Limiting the task to
that of fixed input photons is similarly reasonable, with fixed input photon count
experiments ranging from that of entangled biphoton states to those of quantum
computing. The simplest type of click detectors are unable to resolve the number of
incident photons, and nor are they capable of distinguishing the polarization state
of said photons, and as such, a measurement technique such as demonstrated here
can only prove beneficial. It is also known that the state characterization can be
generalized to the regime when the maximum photon number is known using the
approach of Ref. [131]. In the case of no more than one photon arriving at such a
detector, positioned at the diffraction order m, then its response is governed by the
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following POVM operator [140],

Â(m) =
∑

p=H,V

b̂(m)†
p b̂(m)

p =
∑

p,p′=H,V

A
(m)
p,p′ â

†
pâp′ , (5.5)

where using Eqs. (2.5) and (5.4) we can calculate the matrix expression

A(m) =
(
T(m)

)†
T(m)

=
∑
j=1,2

σ
(m)
j

∣∣∣W(m)
j

〉〈
W

(m)
j

∣∣∣
= (σ

(m)
1 − σ

(m)
2 )

∣∣∣W(m)
1

〉〈
W

(m)
1

∣∣∣+ σ
(m)
2 I.

(5.6)

We see that this is a sum of a polarization projection operator and a polarization-
insensitive detection. The presence of the latter term is a consequence of the
partial-polarizer transformation at each of the diffraction orders. Although con-
ventional polarimetry requires near-perfect polarizers (i.e. σ

(m)
2 = 0), we find that

POVM formalism enables unique and accurate quantum state reconstruction in the
regime of σ

(m)
2 > 0.

After determining the detection operators, we find the probabilities of the simul-
taneous detection of N photons by a combination of N detectors at the diffraction
orders m1,m2, . . .mN , when there is exactly one photon at each detector. These are
proportional to the corresponding photon correlations:

Γ(m1,m2, . . . ,mN) = Tr(ρN Âm1Âm2 · · · ÂmN
), (5.7)

where ρN is an input density matrix. Then, we follow an established procedure [99,
141] to enumerate with index q all the possible N combinations of M detectors,
(m1,m2, . . . ,mN) and rewrite Eq. (5.7) in an equivalent form,

Γq =
S∑

s=1

Bp,srs . (5.8)

Here rs are the independent real and imaginary parts of the input density matrix
defined according to the procedure in Ref. [138], S = (N +3)!/(3!N !), q = 1, . . . , Q,
Q = M !/(N !(M − N)!), and M is the total number of detected diffraction orders.
The matrix elements Bp,s depend on the transfer matrix elements, and more specifi-

cally on the vectorsW
(m)
j and singular values σ

(m)
p according to the form of Eq. (5.6).

We can then reconstruct an input state from the correlation measurements by per-
forming a pseudo-inversion of Eq. (5.8), provided the number of different correlations
matches or exceeds the number of unknowns, Q ≥ S,

M ≥ N + 3 . (5.9)



74 Chapter 5. Robust polarization measurements

In addition to the necessary condition as laid out in Eq. (5.9), we impose the
additional design restriction that the reconstruction results are robust in the pres-
ence of experimental errors in the correlation measurements, whether these arise
from fabrication errors in the metasurface, equipment imprecision, or other similar
sources. We may conveniently express this requirement via the condition number
κ of matrix B, defined as the ratio of its largest and smallest singular values [142,
143, 99]. The condition number of an equation characterizes the worst-case error in
output for a given error in the set of input parameters [144, 145]. In particular, we
may contextualize this condition number in terms of the reconstruction of the input
polarization state from the power via the inverse of Eq. 5.2:

Sin = M−1 · Pmeasured, (5.10)

where Pmeasured and Sin are the complete measurement vectors and reconstructed
polarization state, under the Stokes basis. We may also formulate the propagation
of errors based on this as:

∆Sin = M−1 ·∆Pmeasured. (5.11)

From here we may calculate the norm of all quantities, and utilize Cauchy’s Inequal-
ity to find that an upper bound exists as:

||∆Sin|| = ||M−1|| · ||∆Pmeasured||. (5.12)

It then becomes natural to consider the relative error of reconstruction, in the form
of ∆Sin/Sin, and as such, we obtain:

||∆Sin||
||Sin||

≤ ||(M−1)−1||||M−1|| · ||∆Pmeasured||
||Pmeasured||

= ||M||||M−1|| · ||∆Pmeasured||
||Pmeasured

||.
(5.13)

We see here that ||M||||M−1|| essentially defines the worst-case scaling of the rel-
ative error of the measurement as compared to that of the output, and as such,
it characterizes the robustness of the system. This value is the inverse condition
number of the system [146, 147, 139],

κ−1 = ||M||||M−1||. (5.14)

As we can see from Eq. 5.13, in the limit of κ−1 → ∞, reconstruction of Sin becomes
impossible. Conversely, minimization of the inverse condition number results in a
perfect reconstruction, and as such, becomes a straightforward path towards the
practical design of such a the metasurface.
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5.2 Numerical design procedure
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Figure 5.2: (a) Ordinary and extra ordinary phase retardances
(ϕo, ϕe) for a metasurface numerically optimized for polarimetry of a
single incoming photon state. The render shows the metasurface cal-
culated via analytical calculations and Rigorous Coupled Wave Anal-
ysis (RCWA), including the angles to which each element is rotated.
The metasurface was designed as 832nm thick amorphous silicon on
glass, and has an inverse condition number 1/κ = 0.573, close to the
theoretical limit of 1/

√
2. (b) Poincaré sphere representation of par-

tially polarized diffraction orders (±2,±1) used as the basis states to
affect the single-shot polarimetry using the metasurface shown in (a).
(c) Phase retardances and three-dimensional render of a metasurface
designed for polarimetry of an incoming bi-photon state, simulated
for 790nm thick amorphous silicon on glass. This has an inverse con-
dition number of 0.170. (d) Basis states for (±2,±1, 0) single-shot

polarimetry of bi-photon states.

The metasurface was designed and optimized in multiple steps. First, multi-
stage optimization of the metagrating’s phase parameters was performed via a semi-
analytical approach, targeting the most robust polarization reconstruction using
the inverse condition number κ−1. Knowing that each cuboidal resonator defines
a transfer matrix Tsingle as in Eq. 2.17, we may readily define a metagrating as
the action of some number of pixels arranged into a periodic supercell, as shown
in Fig. 5.2(a,c). It is therefore possible to analytically calculate the transformation
matrix of the metasurface using the fourier transform.

T(m) =
N∑
j=1

T
(j)
singlee

− 2πi
N

mn, (5.15)
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where N is the total number of elements in a single unit cell, each of which has
a transfer matrix T

(j)
single. This was implemented numerically using a fast fourier

transform, thus allowing for the calculation of the condition number as the ratios of
the maximum and minimum singular value decomposition values. By minimizing
the condition number, it is thus possible to optimize towards a highly robust design.
This optimization produced a set of phase parameters corresponding to each pixel
of the unit cell, consisting of phase-shifts along the ordinary and extraordinary axes
of each pixel (ϕ

(j)
o , ϕ

(j)
e ) as well as the angle of each pixel (θ(j)), which may be seen

in 5.2(a,c) for one- and two-photon designs respectively. This also allowed us to
calculate the basis states of the diffraction orders to be used for the reconstruction,
demonstrating that they are clearly non-orthogonal.

As implied by Eq. 5.6, the vectors W
(m)
j are the basis states of the projection

measurement. By converting these to a Stokes basis, these may be plotted on a
Poincaré sphere for convenient visualization of the basis states implemented by a
given metasurface design, as shown in Fig. 5.2(b, d), with the lengths normalized as

R = 1− Pmin

Pmax

, (5.16)

where Pmin and Pmax are the minimum and maximum powers transmitted to
the relevant diffraction order, representing the relative best-case powers at each
diffraction order. Furthermore, this provides a convenient conversion between the
Jones transfer matrix formalism (Eq. 5.1) and the instrument matrix formalism

(Eq. 5.2): The vector components of the instrument matrix (In
(m)
1 , In

(m)
2 , In

(m)
3 )

are exactly equivalent to the basis state vector as derived from W
(m)
j .

Similar to the methodology discussed in section 2.3, a physical parameter sweep
of cuboidal pixels was then computed using RCWA, thus producing a phase map
from which suitable designs could be selected analytically. The physical parameters
of the metasurface were then designed by selecting pixels from the sweep that fit de-
sired phase parameters (ϕ

(j)
o , ϕ

(j)
e ), up to an arbitrary global phase, while accounting

for the rotations of the pixels (θ(j)). This thus greatly simplifies the design process,
reducing the parameters considered to just the length and widths of the cuboidal
pixels. The combined metasurface structure thus designed was then simulated using
a commercial electrodynamics solver, CST Studio, as a final optimization pass and
safeguard against second and higher order interactions between adjacent pixels that
are not accounted for in the analytical design.

5.3 Robustness of reconstruction

Based on the POVM formulation of the design, strong robustness against fabrica-
tion errors is both a target and an expected design outcome of the metasurface.
Accordingly, additional analysis was performed to demonstrate this stability,
using the numerical designs from the previous section, for single- and double-
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Figure 5.3: Plots demonstrating the resistance to random fabrica-
tion error ∆ϕ of the single and double photon metasurface designs.
The numerically calculated designs were perturbed by adding ran-
dom errors up to a maximum of ∆ϕ to each of the nanoresonator
elements, and the inverse condition numbers κ−1 and diffraction effi-
ciencies ηmin, defined as the minimum power that is captured within
the diffraction orders used. The errors were randomized 100000 times
for each value of ∆ϕ, and the results normalized at each value to a

total probability of 1.
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photons, random errors were introduced, and the resultant metasurface evalu-
ated for performance. The metrics chosen for this evaluation were the inverse
condition number (κ−1), representative of the precision of a tomography re-
construction with the metasurface, and the diffraction efficiency ηmin, defined
as the minimum power diffracted for each of the chosen diffraction orders and
representative of the power, or number of photons collected at each diffraction order.

Under realistic fabrication scenarios, the most common deviations from the
analytical design pertain to the overall sizes of the nanoresonators. This were
modelled as variance in the phase shifts along the ordinary and extraordinary axes
of the individual nanopixels, corresponding to the decomposition shown in Eq. 2.17,
and thus, random, independent errors up to δϕ were added to each nanopixel,
and the overall transmission of the altered metasurface structure calculated via
superposition of the electric fields and subsequent fourier transformation. From
this result, we computed the overall inverse condition number for the altered
metasurface. By trialing large numbers of errors, we estimated the falloff of
performance with the degree of random error, as shown in 5.3. The errors trialed
range up to an extreme case of ∆ϕ = π/2, which may be considered to be laughably
and unrealistically large by the standards of current fabrication technology.

We find that for realistic levels of error, on the order of 10−1, both the inverse
condition number and the diffraction efficiencies do not drop significantly, as
shown in Fig. 5.3. However, as one might expect, the double-photon design is
more sensitive to error than the single-photon design, owing to the necessary
consideration of additional diffraction orders to fully resolve multiple photons.

For much larger error values ∆ϕ, the average polarization extinction ratio drops
from over 5dB (when metasurface acts as a set of reasonably good polarizers) to
around 2dB (metasurface implements quite poor polarizers) [Fig. 5.3(b)]. Never-
theless, the minimum diffraction efficiency to the four selected spots remains quite
high (over 55%) [Fig. 5.3(c)] and the inverse condition number of a calibrated meta-
surface remains within 30% of the fundamental limit indicated with the dashed line
[Fig. 5.3(d)]. This corresponds to a moderate increase of reconstruction error by a
factor of 3, even under extreme structural deviations that are much worse then the
standard fabrication accuracy.

5.4 Fabrication

The fabrication of this metasurface was performed as a collaborative effort with the
University of Jena in Germany, and as such, varies from previous work. The meta-
surfaces were fabricated from a 832nm-thick amorphous silicon layer prepared at the
ANU node of Australian Nanofabrication Facility (ANFF) using Plasma-Enhanced
Chemical Vapor Deposition (PECVD) on a glass substrate1. It was subsequently

1Deposition was performed by Khosro Zangeneh Kamali using facilities at ANU’s ANFF
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etched at the University of Jena using Electron Beam Lithography (EBL) and In-
ductively Coupled Plasma (ICP) etching. As before, slight variants in the prepared
metasurfaces were prepared by in turn varying the EBL exposure times, accounting
for minor errors due to fabrication error.

5.5 Experimental characterization

Figure 5.4: (a) Schematic of the experimental setup used to classi-
cally characterize the metasurface. Input states were prepared from
a variable-wavelength infrared laser using a fixed polarizer and mo-
torized half- and quarter- waveplates, before being collimated on
the metasurface by lenses. Output diffraction order intensities were
collected using a CCD camera. (b) Scanning Electron Microscope
(SEM) image of the metasurface, fabricated as 832nm amorphous
silicon on glass via electron beam lithography. (c) Representative
reading as taken using the camera, and the processed intensity plot
obtained by slicing across the diffraction orders. Intensities were nor-

malized to 1.

After fabrication, the metasurfaces were characterized using the experimental
setup shown in Fig. 5.4(a). The experiment was performed fully in free-space.
Using a half-waveplate, quarter waveplate and fixed polarizer, polarization states
were prepared from a variable-wavelength laser operating in the 1500 − 1575nm
telecommunications bandwidth. The prepared polarization state was then focused
to a spotsize of approximately 1µm normally incident on the metasurface. The
diffraction orders were then collected using an objective lens with a high numerical
aperture, and further focused onto an infrared CCD camera using a convex
lens. No polarization-dependent modification was performed to the output of
the metasurface. As a separate measurement, the camera was replaced with a
calibrated power meter in order to determine the total power that was transmitted
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through the metasurface.

The intensities of the diffraction orders over varying input polarization orders
were thus captured as images in the camera, as shown in Fig. 5.4(c). The diffraction
order spot locations were determined by hand, and the individual intensities were
extracted by integrating the total intensities around each location. Working in the
Stokes formalism for convenience, each diffraction order was then fitted individually
by minimizing the nLMS parameter according to Eq. 5.2.

The individually fitted instrument matrix vectors were then combined to
recover the full instrument matrix of the metasurface as a 4 × m matrix.
By normalizing this according to the degenerate elements of the density matrix,
we may calculate the N-photon inverse condition number of the reconstruction [148].
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Figure 5.5: (a) Poincaré sphere representation of the basis states as
calculated from the (±2,±1) diffraction orders of the fabricated meta-
surface. These are, as predicted, partially polarized states. (b) The
experimentally characterized inverse condition numbers of the meta-
surface across a wavelength range are plotted using the solid green
line. The blue, dashed line represents the original RCWA design tar-
get, and the orange, dotted line represents the theoretical maximum.
(c) The minimum and maximum power directed to each diffraction
order, as determined by experiment. (d) Poincaré sphere showing a
comparison of input states versus the reconstructed states using the

experimentally characterized metasurface.

In the case of the representative results shown in Fig. 5.5, m was 4, comprising
the chosen diffraction orders (−2,−1, 1, 2), with the maximum nLMS fitting param-
eter of these determined to be no larger than 8.7×10−6. From this characterization,
we compute first the polarization bases of the instrument matrix, as in Eq. 5.16, and
plot these polarization bases in Fig. 5.5(a), calculated at a wavelength of at 1560nm.
Here, we see that the polarization bases have deviated from the original designed
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values as shown in Fig. 5.2(a), which may be ascribed to deviations from the nu-
merical design due to fabrication error. This is both expected and accounted for by
the robustness computations in Section 5.3. Notably, the degree of polarization of
each basis is lower than the original values, up to 12% less in the −2 diffraction order.

Despite these deviations from the original design, the analytical concepts un-
derlying this metasurface concept allow us to determine its usability. Accordingly,
we further computed and plotted the inverse condition number across a wavelength
sweep from 1500 − 1560µm, along with the inverse condition number from the
original numerical design for comparison. These are shown in Fig. 5.5(b), and from
this characterization, we see that the experimentally calibrated inverse condition
number is lower than the design target by up to 15%, with a maximum value
of 0.24 at 1560nm. It is possible that the condition number improves further
at higher wavelengths, however, this was not accessible due to equipment limitations.

From the experimental data as well as the instrument matrix of the metasurface,
a reconstruction was performed. From experimental data, an arbitrary range
of angles for the half- and quarter- waveplates were chosen. From these angles,
and knowing that the first polarizer was positioned vertically, we thus know
the polarization states ψin before incidence on the metasurface, accounting for
experimental angular misalignment of the optical elements. From these input states
and the measured powers as determined from the camera, we also compute the
states reconstructed from the measured intensities Pout and the experimentally
characterized instrument matrix M, as with Eq. 5.10. We then plotted these on the
same Poincaré sphere for comparison, as shown in Fig. 5.5, and thus demonstrate
that the reconstruction is successful up to known error. Notably, as the degree
of imperfection of the polarization measurements is fully described in our POVM
formalism, the metagrating can be calibrated after the fabrication and hence
promises extremely high accuracy.

This reconstruction has a maximum deviation from the original polarization state
of a maximum of 6%, using a phase-sensitive fidelity measure

δ = 1−
Re
(∑

i ψ
∗
i ψ̃i

)2
∑

i ψ
∗
i Ti
∑

i ψ̃
∗
i ψ̃i

, (5.17)

where ψ and ψ̃ are the original and reconstructed polarization states in the Jones
notation. This is derived in the same way as the phase-invariant fidelity in Eq. 2.18.
Note that this 6% does not constitute an exhaustive characterization of the full
polarization space, and serves merely to demonstrate the reconstruction capabilities
of the metasurface.



82 Chapter 5. Robust polarization measurements

5.6 Summary

An important advantage of our approach based on POVM formalism is that it
can facilitate accurate polarization reconstruction even in presence of significant
fabrication errors, by only performing a single post-fabrication device calibration.
We anticipate that our new concept will facilitate diverse applications and lead to
the development of optimal polarization state imaging tailored for computer vision
and quantum state characterization.
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Conclusion

In my thesis, I have explored many key aspects of polarization in its applications
towards endeavours both fundamental and practical, augmenting already-extant
capabilties with concepts that are both novel and firmly grounded in what may be
achieved in experiment. This approach was demonstrated in numerical works and
in experiment, and yet, there remains much room for improvement and exploration.

Firstly, in Chapter 2, I established the concept of complex birefringence using
metasurfaces. While this is not an entirely novel concept, it has, prior to this
point, been confined exclusively to theoretical considerations due to the lack of
feasible fabrication. This original theoretical proposal involved a layered structure
comprising engineered gain and loss media, the former of which is highly impractical
to create in such a manner. Instead, in this thesis a path towards a practical
implementation was developed, beginning with an analytical framework developed
by recognising that a non-Hermitian transfer matrix does not necessarily involve
gain. While gain would in this case be necessary to maintain a unitary transmission,
it was demonstrated in theory that a similar mathematical transformation could
be attained using only loss. This new form of birefringence is capable of rotating
polarization states independently of each other in a polarization-dependent manner,
thus yielding an entirely novel degree of freedom in experimental design.

Also developed in Chapter 2 were general numerical design, fabrication and
experimental techniques that were applied throughout my thesis, namely, that of
binary metasurfaces. Binary metasurfaces are a combination of two types of simple,
cuboidal pixels in a 2× 2 grid to form a supercell that is tiled periodically to create
the overall metasurface structure. These proved to be a simple yet powerful method
for implementing the necessary metasurfaces utilized throughout most of this thesis.
The numerical techniques were accomplished in multiple stages, beginning with a
relatively coarse, gridded numerical approach to determine finer optimization ranges,
allowing for the rapid determination of the desired performance and transformation.

Through fabrication and classical characterization in experiment, I demonstrate
that the concept of complex birefringence via engineered loss is both achievable
and flexible. There is potential for extending to robustness, related to the concepts
later discussed in Chapter 5, but even so, the method proved reliable and usable
even without this utility. With the newly revealed design degree of freedom that it
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offers, complex birefringence as a platform is capable of highly compact polarization
manipulations utilizing only a single metasurface. Not only can this directly replace
analogous operations in bulk optics, thus substantially cutting down on the size and
complexity of optical setups, it also serves as a practical implementation of general
non-Hermiticity in the direct transmission mode of metasurfaces, with applicability
in a vast array of experiments.

Complex birefringence is a flexible principle, and one that was further developed
in Chapter 3 to extend to quantum applications. I demonstrate that complex
birefringence can be utilized for a key aspect of control in quantum optics, namely,
that of the degree of entanglement in polarization-correlated states, which are
an especially ubiquitous form of entanglement, arising as they do from SPDC
sources. This form of control accomplishes a common task that is critical to
many applications of entangled biphotons, and furthermore is an additional tool
to be used in the fields of quantum weak measurements, quantum cryptogra-
phy and computing. In particular, it can be used as a foundational building
block with which to design quantum logic gates, as well as serving as a means
for preparing and modifying qubits. However, due to the tight tolerances re-
quired to operate in quantum regimes, this aspect of complex birefringence remains
one that requires further research, especially in the quality of the metasurfaces used.

In Chapter 4, I develop the concept of sensitive polarization monitoring, based
on similar principles to complex birefringence. By transforming the anchor polariza-
tion state to be monitored to a well-defined state, any perturbations from this state
may be shunted into an orthogonal state to that defined one, providing an easy
means of monitoring these perturbations. With careful design, diffraction-based
attenuation of the anchor state may be implemented while the perturbations
are maximally transmitted, effectively providing an amplified ratio that can be
trivially monitored and measured without the need for a full reconstruction of the
polarization state. This technique is applicable to many practical aspects such as
polarization microscopy, medical imaging, as well as materials manufacture. In
many of these cases, it is sufficient and perhaps desirable to simply monitor the
perturbations while utilizing as little operational overhead as possible to improve
reaction speeds, as opposed to a full polarimetric reconstruction of the polarization
state. This minimal overhead, highly sensitive response is exactly what I outline in
this chapter, and could prove extremely useful in industrial and medical settings.

I also explored in this chapter the concept of chirality with binary metasurfaces.
While dielectric metasurfaces are acknowledged to have notably lower chiral re-
sponses than their plasmonic metasurfaces, their chiral responses are non-negligible.
As such, in keeping with the optimal analytical design goals for the polarization
monitoring, a method of attaining chirality in a binary metasurface through
inverse design was established, utilizing genetic algorithms to perform an inverse
design process via numerical simulation. This established the potential for planar,
binary metasurfaces to attain intrinsic chirality, arising from near-field coupling of
adjacent metapixels. This particular aspect of dielectric metasurfaces bears future



Chapter 6. Conclusion 85

exploration, potentially covering one of the noted weaknesses in dielectric media for
metasurfaces.

Furthermore, the concept of complex birefringence may be enhanced by the
addition of tunablity. A key aspect of complex birefringence is its relatively
simple design approach while offering flexibility in implementation, however, as
a passive metasurface, its properties are fundamentally locked in at the point of
manufacture. While this can be desirable in some applications, providing stability
for long-running experiments and installations, adding tunability can allow for
even greater flexibility in cases such as polarization sensing, allowing for dynamic
adjustment of the sensing parameters.

Finally, in Chapter 5, I explored the concept of single-shot polarimetry with
metasurfaces. While the concept is not new, previous implementations possess
notable weakness, largely revolving around the strict requirement of implementing
near-perfect polarization filtering of incident light into different spatial paths, which
are then captured as power readings on a camera for processing and reconstruction
of the original, incident polarization state. This is not, however, a fundamental
limitation of the principles involved in single-shot polarimetry, and by applying a
concept known as Postive Operator Valued Measurements from quantum mechanics,
we revealed that it is possible to utilize partially polarized spatial separation of
incident polarization to uniquely and accurately perform polarimetry. Accompa-
nying this approach is the concept of the condition number, which allows for the
quantitative characterization of the degree of precision attainable with any given
metasurface instrument matrix. This allows for highly robust implementations both
in the design process as well as in the fabrication step, as any flaws in fabrication
may be numerically estimated and accounted for with a one-time characterization
step. Furthermore, we demonstrate here a metasurface that does not suffer from
issues with beam quality or size, utilizing a minimally-sized periodic grating that
does not require the illumination of a large surface area or cause substantial beam
divergence in the far field.

To conclude, I have, through this thesis, demonstrated the flexibility and some
of the capabilities of complex birefringence in manipulating polarized light, both in
classical and quantum usecases. The application of judiciously engineered loss along
with the high transmissivity of dielectric metasurfaces combine to form a powerful
platform with myriad applications, and through experimental and analytical means,
I have demonstrated that complex birefringence can be the answer to many practical
and theoretical shortfalls in optics. There are still many aspects to explore, and this
concept of complex birefringence, and carefully tailored losses, may prove to be the
answer to myriad experimental problems.
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Appendix A

Experimental characterization of
the metasurface polarization
transfer matrix

We use the experimental scheme presented in Fig. 2.2 of the main manuscript to char-
acterize the metasurface transfer matrix. The power-meter readings are recorded
over varying input states (θin) and the angle of the QWP (θQ), which are related to
the metasurface transfer matrix T as follows:

PDetA = |⟨θPol2|Q(θQ)T|θin⟩|2PDetB , (A.1)

where θPol2 is the orientation angle of the linear polarizer (Pol2), |θin⟩ is the input
linear polarization state at an angle of θin selected by a corresponding rotation of
HWP, Q(θQ) is the transmission matrix of the quarter-waveplate rotated at an angle
θQ, and PDetA,B

are the measured powers at the detectors A and B. Readings were
recorded over varying input states (θin) and the angle of the QWP (θQ). We perform
numerical fitting to reconstruct from the power measurements the transfer matrix
T, up to a global phase.

Here, we prove that this procedure enables accurate and unique reconstruction
of the transfer matrix. Let us first consider an idealized situation in the absence of
noise. Then, according to Eq. (A.1), the detected power dependence on the input
polarization and QWP angles can be represented through the Fourier decomposition
as

Pr(θin, θQ;T) = PDetA/PDetB =
∑

p=0,±2

∑
q=0,±2,±4

[
P̃c,c(p, q) cos(pθin) cos(qθQ)

+ P̃c,s(p, q) cos(pθin) sin(qθQ) + P̃s,c(p, q) sin(pθin) cos(qθQ)

+P̃s,s(p, q) sin(pθin) sin(qθQ)
]
.

(A.2)

To be specific, we consider the last polarizer angle to be fixed at θPol2 = 0. We
find that the measured angular Fourier components can be used to reconstruct the
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transfer matrix

absolute values of the transfer matrix elements as follows:

|T1,1|2 = [P̃c,c(0, 0) + P̃c,c(2, 0)] + [P̃c,c(0, 4) + P̃c,c(2, 4)], (A.3)

|T2,1|2 = [P̃c,c(0, 0) + P̃c,c(2, 0)]− 3 [P̃c,c(0, 4) + P̃c,c(2, 4)], (A.4)

|T1,2|2 = [P̃c,c(0, 0)− P̃c,c(2, 0)] + [P̃c,c(0, 4)− P̃c,c(2, 4)], (A.5)

|T2,2|2 = [P̃c,c(0, 0)− P̃c,c(2, 0)]− 3 [P̃c,c(0, 4)− P̃c,c(2, 4)]. (A.6)

Then, the phases can be found from the following relations, up to a global phase:

T2,1T
∗
1,1 = [i P̃c,s(0, 2) + 2 P̃c,s(0, 4)) + [i P̃c,s(2, 2) + 2 P̃c,s(2, 4)],(A.7)

T2,2T
∗
1,2 = [i P̃c,s(0, 2) + 2 P̃c,s(0, 4))− [i P̃c,s(2, 2) + 2 P̃c,s(2, 4)],(A.8)

Re(T1,2T
∗
1,1) = P̃s,c(2, 0) + P̃s,c(2, 4) (A.9)

Re(T2,2T
∗
2,1) = P̃s,c(2, 0)− 3 P̃s,c(2, 4) (A.10)

T2,2T
∗
1,1 + T2,1T

∗
1,2 = i P̃s,s(2, 2) + 2 P̃s,s(2, 4). (A.11)

This analysis establishes the possibility to reconstruct both the amplitude and phase
of the transfer matrix elements. However, there can be an ambiguity in determining
the phase for a specific case of T2,2T1,1 = T2,1T1,2 as then the equations are invariant
to a simultaneous change of sign in solutions argT1,2 = argT1,1 ± ρ, and argT2,2 =
argT2,1 ± ρ, where ρ is determined from Eq. (A.9). Importantly, since we operate
at normal incidence, the chiral effects are weak and the transfer matrix is close to
symmetric, such that T2,1 ≃ T1,2, and the latter condition makes the reconstruction
unique by removing the phase ambiguity.

In practice, the reconstruction based on experimental data is performed by find-
ing the transfer matrix elements that provide the best fit between the measured pow-
ers at the specific waveplate orientations and the expression according to Eq. (A.1).
The accuracy of reconstruction was monitored by checking the mismatch of the least
means squares fitting,

δP (fit)(T) =

∑N
i

(
P

(fit)
r (θ

(i)
in , θ

(i)
Q ;T)− Pr(θ

(i)
in , θ

(i)
Q )
)2

∑N
i

(
Pr(θ

(i)
in , θ

(i)
Q )
)2 , (A.12)

where N is the total number of measurements, θ
(i)
in and θ

(i)
Q are the angles at the i-th

measurement, and P
(fit)
r is the predicted transmission ratio from Eq. (A.1).
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