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Abstract
Metagenomics studies have provided key insights into the composition and structure of microbial
communities found in different environments. Among the techniques used to analyze metagenomics
data, binning is considered a crucial step to characterize the different species of microorganisms
present. Metagenomics binning can be extended further towards determination of plasmids and
chromosomes to study environmental adaptations. The field of metagenomics binning is mostly done
on contigs from genome assemblies. Metagenomics studies are mostly performed with short read
sequencing. Direct binning of short reads suffers from insufficient species-specific signal, thus they
are usually assembled into longer contigs before binning. Therefore, the emergence of long-read
sequencing technologies gives us the opportunity to study the binning of long reads directly, where
such studies have been carried out in limited numbers.

Firstly, this thesis presents the challenges in binning long reads compared to contigs assembled
from short reads. One key challenge in binning long reads is the absence of coverage information,
which is typically obtained from assembly. Moreover, the scale of long reads compared to contigs
demands more computationally efficient methods for binning. Therefore, we develop MetaBCC-LR
to address these challenges and perform metagenomics binning of long reads. We introduce the
concept of k-mer coverage histogram to estimate the coverage of long reads without alignments
and use a sampling strategy to handle the immense number of long reads. Since MetaBCC-LR is
limited by the use of coverage and composition information in a stepwise manner, we further develop
LRBinner to combine the coverage and composition information. This enables LRBinner to effectively
combine coverage and composition features and use them simultaneously for binning. LRBinner also
implemented a novel clustering algorithm that performs better on binning long-read datasets from
species with varying abundances. Moreover, we propose OBLR to improve the coverage estimation of
long reads via a read-overlap graph instead of k-mers. The read-overlap graph also enables OBLR
to perform probabilistic sampling to better recover low-abundant species. Secondly, we investigate
opportunities to improve plasmid detection which is considered as a binary plasmid-chromosome
classification problem. We introduce PlasLR that enables adaptation of plasmid prediction tools
designed for contigs to classify long and error-prone reads. We also develop GraphPlas that uses the
assembly graph to improve plasmid classification results for assembled contigs. In summary, this
thesis presents the progressive development of models and algorithms for metagenomics binning and
plasmid classification.

Keywords: metagenomics, binning, clustering, algorithms, classification
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Chapter 1

Introduction

In this chapter, I present a high level introduction to the background and motivation of my research.
Contents of this chapter are specialized to introduce the thesis’ research field, metagenomics analysis
and plasmid recovery. Firstly, I discuss different sequencing technologies and their implications.
Secondly, I discuss the area of research metagenomics binning and approaches. Finally, I discuss the
area of plasmid recovery and its importance.

1.1 Background

1.1.1 Genome sequencing

A huge leap in science was made when the DNA was discovered for the first time in the late twenti-
eth century. Followed by this, genome sequencing arose giving us the capability to read the DNA
molecule chain which would later evolve to characterize functions of living tissues from different
origins. Genome sequencing has evolved passing several generations, in each, improving the existing
state of the art. These advancements have enabled the exploration of the environment and applic-
ations of genomics facilitating the study of genes, microbiomes, and supporting disease diagnosis.
Recent emerging studies include gene editing, targeted medicine, energy/biofuels and sustainable
agriculture.

Shotgun sequencing

Shotgun sequencing was an early technique of sequencing where chunks of DNA material were
extracted, hence the term “Shotgun”. Traditionally, the exploration of the microbial content of a
sample was performed using culture based methods. Culturing a given microbial sample imposes
amplification biases due to various stressors and competing factors between different microorganisms
present in the samples. This often means the resulting culture hardly depict the actual composition
of microorganisms that originally existed. Shotgun sequencing facilitates the discovery of what
microorganisms are there and what metabolic processes they carry out in the community (Segata
et al., 2013). Culturing was often a necessity in order to yield sufficient amount of genetic material
for scientists to work with. This was a laborious task that was expensive and ineffective. Later high
throughput sequencing was invented to address these limitations.

High throughput sequencing

High throughput sequencing facilitates the scientists to sequence a large amount of genetic material
in a single run from a given sample. Moreover, labor-intensive and time-consuming tasks such as
lab culturing was rendered obsolete. This mode of sequencing could produce numerous sequencing
reads by performing the genome sequencing in massively parallel setups (Poinar et al., 2006). Illumina
is the most popular high throughput sequencing technology and produces genomic reads of length
100-300 base pairs. Since lab culturing was totally eliminated, scientists are able to explore the true
nature of a given environment. Hence, the field of metagenomics was originated.
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1.1.2 Metagenomics

What is metagenomics analysis?

Metagenomics is the study of microbial genetic material obtained directly from the environment (Chen
and Pachter, 2005). Metagenomics analysis could be performed on various environments including
human gut, animal gut, soil, atmosphere, biofilms, skin, etc. Metagenomics has expanded significantly
resulting in massive projects such as the Human Microbiome Project (HMP) which explored the
human microbiome (The Human Microbiome Project Consortium, 2012). Such broad-spread studies
have made metagenomics popular while providing novel insights into different environments.

What is metagenomics binning?

Metagenomics analyses intend to answer the basic questions; “Who is there?”, “What are they doing?”
and “What is new?” (Nealson, 1997). “Who is there?” questions the composition of a given microbial
sample and tries to quantify the sample in terms of number of taxonomic groups present and the
relative abundance of each taxa (genetic material). “What are they doing?” questions the functional
aspects of the microbial content such as host interactions, environmental adaptations, symbiotic
relationships, etc. Finally, the question“What is new?” tries to decipher the characteristics unique to a
given sample in that particular host environment.

The first and foremost question; “Who is there?” is answered computationally using the process
Metagenomics binning. Metagenomics binning quantifies the number of taxonomic groups in a given
microbial sample. Metagenomics binning facilitates the separation of genetic material into different
groups where separate analysis can be carried out deeper into the genes, etc. This is an important
analysis as it facilitates the study of microbial interaction, study of relative abundance, time-series
analysis of a sample, etc.

Motivation

Metagenomics study is important in various fields of study including fighting and understanding
implications of climate change (Long et al., 2016), designing of biofuels (Pabbathi et al., 2021), study
food products and understanding their impact of human gut (De Filippis et al., 2017), healthcare in
drug design and personalized medicine (Virgin and Todd, 2011).

1.1.3 Plasmid Recovery

What are plasmids?

Plasmids are extra-chromosomal genetic elements which allow their hosts to rapidly adapt and survive
under changing environmental conditions (Smalla et al., 2015; Thomas and Nielsen, 2005). These
small and widespread genetic elements can be commonly found in bacterial cells (Rodriguez-Beltran
et al., 2018). Plasmids are responsible for a significant amount of genetic variation within populations
which ensures persistence towards changes in the environment and various selective pressures.
Plasmids also play an important role in horizontal gene transfer among unrelated bacterial species
to spread genes related to virulence, resistance to different classes of antibiotics and heavy metal
resistance (Carattoli, 2013; Li, Li et al., 2015; Smalla et al., 2015). Hence, it is important to identify and
study plasmids present in the environmental samples (Li, Li et al., 2015). High-throughput sequencing
such as next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies have
allowed us to sequence and analyze bacterial genomes including their plasmids (Forster et al., 2019;
Margos et al., 2017).

What is plasmid recovery?

Plasmid recovery addresses the problem of detecting the available plasmid sequences in a given
dataset. This is a challenging task as composition of plasmids and the chromosomes of a given
species follows a very close pattern. Furthermore, plasmids are significantly shorter compared to
other genomic sequences. Hence, plasmids contribute to a minute quantity of relative genetic material.
Hence, the recovery of plasmids is a challenging task in the study of different microorganisms.
Moreover, genome assembly can be negatively affected by the plasmid sequences making it difficult
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to obtain complete genomes. Hence, plasmid recovery has become an area of attention among the
assembly researchers.

Motivation

Plasmid recovery is an important area of study in metagenomics. Despite the low relative genetic
content in plasmids, they support environmental adaptations of microorganisms, especially in bacteria,
where antibiotic resistance plays a key role in modern society (Levy et al., 1976). Hence, accurate
determination of functional aspects of plasmids is AN important area of research. Plasmids are also
of interest, among researchers in design of drugs and gene therapy as a method of DNA delivery
in different treatments (Gill et al., 2009). Furthermore, plasmids are of interest among gene editing
researchers due to the functional importance of plasmids among microorganisms.

1.2 Thesis outline

This section outlines the chapters in the rest of the thesis.

Chapter 1

This chapter provides an overview into the subject areas discussed in this thesis; metagenomics
binning and plasmid recovery.

Chapter 2

This chapter presents the relevant literature in the fields of metagenomics binning and plasmid
recovery.

Chapter 3

This chapter presents the development of MetaBCC-LR, which was the first standalone tool to utilize
both coverage and composition to support binning of long reads.

Chapter 4

This chapter presents the development of LRBinner, which brings in deep learning techniques and a
novel clustering algorithm to support binning of long reads by addressing challenges and limitations
of MetaBCC-LR.

Chapter 5

This chapter introduces the concept of read-overlap graph with graph representation learning tech-
niques to support binning of long reads.

Chapter 6

This chapter presents the development of PlasLR which facilitates plasmid recovery at reads level,
thus providing capabilities for improved genome assemblies.

Chapter 7

This chapter presents the development of GraphPlas which facilitates improvements in plasmid
recovery by incorporating assembly graph and coverage information to existing reference based
plasmid recovery tools.

Chapter 8

This chapter outlines the conclusions and future work of the research presented in this thesis.
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Chapter 2

Literature Review

This chapter discusses the relevant literature in genome sequencing, metagenomics binning and
plasmid recovery. More specifically, this chapter elaborates on the evolution of genome sequencing
technologies followed by the advancements in metagenomics binning and plasmid recovery. Genome
sequencing and genome assembly has played a key role in facilitating the study of microbiome of
environments skipping the traditional culturing techniques, resulting in the field of metagenomics.
Starting from Sanger sequencing, the technologies have gone through two major milestones providing
short reads followed by the era of long reads. Both short read sequencing and long read sequencing
are equally popular and have supported developments in metagenomics analysis. Please refer to
paper titled “Sequencing technologies and genome sequencing” (Pareek et al., 2011) for an in-depth
literature review on genome sequencing technologies. Please refer to paper titled “Comparison of
long-read sequencing technologies” (De Maio et al., 2019) for comparison of different assemblers
and their performance in long reads assembly. Furthermore, please refer to papers from CAMI
challenge (Meyer, Lesker et al., 2021; Yue et al., 2020) for an in-depth literature in metagenomics
binners in general and their performance.

2.1 Genome Sequencing and Assembly

Genome sequencing is the process where genetic material is captured in machine-readable characters,
i.e., ASCII coded DNA characters. DNA is captured in a highly fragmented form of strings called
reads which need to go through a process called genome assembly. The genome assembly process
attempts to generate a complete and continuous sequence that represents the origin of the fragmented
DNA strings.

2.1.1 First Generation Sequencing

Genome sequencing started in 1977 with the introduction of Sanger sequencing by Frederick Sanger
and colleagues. This approach involved a lot of manual labor and was very expensive. However,
the technique is still in prevalence where verification of sequencing results is needed for precision
and/or to obtain more accurate genome assemblies (DiGuistini et al., 2009). Further advancements in
sequencing resulted in the short read sequencing which produces genomic reads of lengths in range
100 - 300 base pairs, resulting in the Next Generation Sequencing era.

2.1.2 Next Generation Sequencing

Next Generation Sequencing technologies include mainly 454 pyrosequencing (Hyman, 1988) and
Illumina (Solexa) sequencing (Canard and Sarfati, 1994a; Canard and Sarfati, 1994b) where Illumina
has been the most popular sequencing method in metagenomics studies. These technologies produce
read lengths that vary from 100 to 300 base pairs and has a very low error rate. More specifically,
Illumina technology has been used in the Human Microbiome Project (HMP) by United States National
Institute of Health (NIH) (The Human Microbiome Project Consortium, 2012; Turnbaugh et al., 2007).
Illumina reads are highly accurate with error rates from 0.1%-1% (Stoler and Nekrutenko, 2021). They
were also capable in producing millions of short reads on a single run and was relatively cheaper. This
technology has been extensively applied in the study of microbial datasets (Kang, Froula et al., 2015;
Mallawaarachchi and Lin, 2022; Mallawaarachchi, Wickramarachchi et al., 2020a; Mallawaarachchi,
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Wickramarachchi et al., 2020b; Nissen et al., 2021; Wu, Tang et al., 2014) and in plasmid related
studies (Antipov, Hartwick et al., 2016; Krawczyk et al., 2018; Lanza et al., 2014; Pellow, Mizrahi et al.,
2020).

2.1.3 Third Generation Sequencing

Third Generation Sequencing (TGS) which is also known as long read sequencing is the successor
of short read sequencing (Bleidorn, 2016). Pacific BioSciences and Oxford Nanopore are the most
prominent figures in the manufacturing of long read sequencing machines. These sequencers are
capable of producing reads from 1000 base pairs to several hundred kilo base pairs in length, at
a greater error rate compared to short read sequencing (Gupta, 2008). Thanks to the longer read
length, these technologies have been massively helpful in the resolution of complex structures and
variants in genome assemblies (Tham et al., 2020). Furthermore, long read sequencing has been used
in metagenomics studies due to its ability to provide more complete assemblies and being able to
accurately classify in to taxonomic groups (Albrecht et al., 2020; Ekim et al., 2021; Feng et al., 2021;
Huson, Albrecht et al., 2018; Menzel et al., 2016; Wood, Lu et al., 2019). In general, the error rates can
vary from 1%-20% depending on the sequencing length and the specific technology used (i.e., CCS,
HiFi, R10, etc).

2.1.4 Genome Assembly

Genome assembly is the following process to genome sequencing. The genome assembly collapse
sequencing reads to form longer sequences that has a higher base accuracy (i.e., low error rate
compared to input reads). These longer and accurate sequences are called contigs. Contigs have the
coverage attribute, which can be identified as the average number of read bases that support the contig.
This is obtained computationally by total overlap length

contig length . Abundance is a similar metric, defined as the
total contig length of a species

total contig length of the dataset . Understandable, abundance is more relevant in metagenomics, where studies
are carried out in samples of many species. Hence, abundance is a relative measure of genetic content.
This is affected by genome length, but coverage has the ability to discriminate species despite their
genome lengths. The process of genome assembly uses data structures such as overlap-graphs (Koren
et al., 2017; Simpson and Durbin, 2012) (read overlaps are created followed by collapsing paths in the
overlap graph) and de Bruijn graphs (Bankevich et al., 2012; Kolmogorov, Yuan et al., 2019) (k-mers
are used to build a graph and non-branching paths are resolved to form contigs.).

2.2 Metagenomics Binning

Approaches for metagenomics binning has changed over time with the advancements in sequencing.
In early metagenomics studies, short reads were assembled using a genome assembler prior to the
binning process (e.g., Spades (Bankevich et al., 2012) and SGA (Simpson and Durbin, 2012)). However,
metagenomics specific assembly started to arise with the popularity of metagenomics studies. Such
assemblers include metaSPAdes (Nurk et al., 2017) and MEGAHIT (Li, Liu et al., 2015) for short read
metagenomics assembly and metaFlye (Kolmogorov, Rayko et al., 2019), hifiasm-meta (Feng et al.,
2021) and rust-mdbg (Ekim et al., 2021) for long read metagenomic assembly. Such assemblers are
capable of producing more complete assemblies by considering uneven coverage that arise due to
varying coverages of species in metagenomics samples.

Assembly of TGS reads from metagenomic datasets produces longer contigs that are accurate to per-
form multiple downstream analyses. Followed by assembly of the metagenomics datasets clustering
operations are performed to discover distinct species in the sample. In some cases, reference based
approaches (i.e., classification based on taxonomy) are used to discover the species present. This is
because, shorter contigs can have greater ambiguity due to having shared regions between species
(affecting reference based approaches) and poor genomic signals to extract features (reference free
methods require genomic signatures such as oligonucleotide frequencies to perform binning). The
overall process of binning contigs is illustrated in Figure 2.1.
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Figure 2.1: The process of binning contigs using the short reads as input followed by genome assembly. The
resulting contigs are used to perform the actual binning operation.

Figure 2.2: Illustration of reference based binning (top) and reference free binning (bottom).
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2.2.1 Existing Approaches for Metagenomics Binning

There are two main approaches for metagenomics binning of sequences (contigs or reads), (1) reference
based approach and (2) reference free approach as illustrated in Figure 2.2.

Reference Based Binning

In reference based binning, the sequences are classified using a database or an index that contains the
reference sequence information. Table 2.1 presents details of most popular reference based binning
tools from both contig binning and read binning paradigms.

Table 2.1: Comparison of reference based binning tools.

Tool Application Database Method

MEGAN
(Huson, Auch et al., 2007)

Contigs,
Short reads Nucleotide Database Search using BLAST/BLASTX

followed by LCA filtering

Kraken
(Wood and Salzberg, 2014)

Contigs,
Short reads,
Long reads

k-mer index Exact alignment of
k-mers

CLARK
(Ounit et al., 2015) Short reads k-mer index

for target sequences
Clasasify using target
specific k-mers

Centrifuge
(Kim et al., 2016)

Contigs,
Short reads

Index of non shared
regions in references

BWT and FM index
based search

Kaiju
(Menzel et al., 2016)

Contigs,
Short reads

Protein-coding gene
database

Protein-level matches with
BWT

MEGAN-LR
(Huson, Albrecht et al., 2018) Long reads NCBI-nr protein

reference database
Perform LAST search
followed by LCA filtering

Kraken2
(Wood, Lu et al., 2019)

Contigs,
Short reads,
Long reads

k-mer index Minimizer matches
for k-mers

Almost all the tools are designed to handle short reads and their assembled contigs except for MEGAN-
LR (Huson, Albrecht et al., 2018) which is the long read version of MEGAN (Huson, Auch et al., 2007).
These tools are capable of performing in a competitive manner in the classification of metagenomic
reads and contigs. MEGAN, MEGAN-LR and Kaiju (Menzel et al., 2016) perform reference search in
indexes in the protein space while Kraken (Wood and Salzberg, 2014), Kraken2 (Wood, Lu et al., 2019),
Centrifuge (Kim et al., 2016) and CLARK (Ounit et al., 2015) perform reference based binning using
the nucleotide references.

Reference based tools are still challenged by the error rate in long reads, but can be expected to
improve as the sequencing technologies tend to produce more accurate long reads with time. The
key limitation in the reference based approach is the need to have a complete database of references
for effective application in analysis. For example, Kraken2 (Wood, Lu et al., 2019), a very popular
reference based binning tool, has multiple databases hosted by different researchers which makes the
choice of database a significant challenge.

Reference free metagenomics binning approaches are often the first choice in metagenomics analysis
due to the capability of de-novo metagenomics binning without having to know the underlying
composition. Such tools often consume far less computational resources, especially in terms of peak
memory and CPU time (Kim et al., 2016).

Reference Free Binning

Reference free binning aims to perform metagenomics binning without the knowledge of pre-existing
reference genomes. Features such as coverage, composition and single-copy marker genes are often
considered. Coverage is defined as the average times a given genomic region is represented by the
sequencing reads. Typically, coverage can help metagenomics binning using the relative population of
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species in a sample. Composition is often computed using genomic signatures such as oligonucleotide
frequencies. This is achieved via representing a given genomic sequence as a vector representing the
normalized counts of all the possible short substrings of a given length (i.e., k-mers or sub-strings
of length k), usually of size 3, 4 or 5 (3-mers, 4-mers or 5-mers). Single-copy marker genes are the
genes that appear just once and at least once in all the bacteria, archaea or fungi signifying important
common functionality in the species. Note that, marker genes are obtained from a tool such as
Prodigal (Hyatt et al., 2010) where the input sequences are scanned for genes that are known to appear
only once, in all bacterial, archaeal or fungal genomes (Wu, Simmons et al., 2015). Thus, the number of
occurrences of a given marker gene in an assembly indicates the number of species which the marker
gene belongs, (i.e., bacterial, archaeal or fungal). Table 2.2 tabulate information relevant to popular
reference free binning tools.

Table 2.2: Comparison of reference free binning tools.

Tool Application Features Method

MetaWATT
(Strous et al., 2012) Contigs Coverage,

Composition
Splitting contigs into bins
starting from the longest

Maxbin 2.0
(Wu, Simmons et al., 2015) Contigs

Coverage,
Composition,
Marker genes

Detect bins using marker genes,
cluster using coverage and composition

MetaBAT
(Kang, Froula et al., 2015) Contigs Coverage,

Composition
Bin using pairwise distances
and precomputed probabilistic models

VizBin
(Laczny, Sternal et al., 2015) Contigs Coverage,

Composition
Dimension reduction using BH-SNE and
human augmented binning

MetaProb
(Girotto et al., 2016)

Short reads,
Long reads Compositions Read grouping and clustering

using k-mer frequency probabilities

BusyBeeWeb
(Laczny, Kiefer et al., 2017)

Contigs,
Long reads Composition Dimension reduction using

BH-tSNE (Web App)

SolidBin
(Wang, Wang, Lu et al., 2019) Contigs

Coverage,
Composition,
Marker genes

Normalized cut on marker gene-
constraints and feature similarity

VAMB
(Nissen et al., 2021) Contigs Coverage,

Composition
Dimensionality reduction by auto-encoder,
clustering using an iterative method

SemiBin
(Pan et al., 2021) Contigs

Coverage,
Composition,
Marker genes

Dimensionality reduction by auto-encoder,
clustering the affinity graph
and marker gene constraints

RepBin
(Xue et al., 2021) Contigs Marker genes,

Assembly Graph
Graph representation learning
based on marker gene constraints.

MetaCoAG
(Mallawaarachchi and Lin, 2022) Contigs

Coverage,
Composition,
Marker genes,
Assembly graph

Graph partitioning using features

Coverage and composition are among the most common features used for reference free binning
(MetaWATT (Strous et al., 2012), VAMB (Nissen et al., 2021), VizBin (Laczny, Sternal et al., 2015),
BusyBeeWeb (Laczny, Kiefer et al., 2017), MetaProb (Girotto et al., 2016), AbundanceBin (Wu and
Ye, 2011)). However, marker genes have also been used in some tools to build constraints between
contigs and to detect the total number of bins (MaxBin 2.0 (Wu, Simmons et al., 2015), SolidBin (Wang,
Wang, Lu et al., 2019) and SemiBin (Pan et al., 2021)). Assembly graph was considered in RepBin (Xue
et al., 2021) and MetaCoAG (Mallawaarachchi and Lin, 2022) on top of all other features available to
perform binning.

All above tools require contigs as the input data source except for BusyBeeWeb and MetaProb. This is
because, no coverage information is available for long reads, thus fits the criterion of composition
based binning. Moreover, short reads binning is not available in the reference free form except in
MetaProb and AbundanceBin because consistent genomic signatures require longer sequences, 1000
base pairs or more (Wu, Simmons et al., 2015). Note that MetaProb groups short reads to obtain
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more accurate genomic signature. Out of the tools above, only MetaProb and BusyBeeWeb were
capable of handling long reads. MetaProb can only handle small long-read datasets and do not scale
reasonably well for millions of long reads (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a).
Furthermore, due to the web implementation of BusyBeeWeb and the use of t-SNE (Van der Maaten
and Hinton, 2008) dimension reduction, it has limited input size and do not scale for millions of long
reads (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a).

2.2.2 Metagenomics Binning of Long Reads

Metagenomics binning of long reads facilitates the analysis of long reads as soon as they become
available from the sequencers. Furthermore, binning prior to assembly or other evaluation has the
potential to improve downstream analysis by providing insightful information into datasets such
as number of species, separation of reads into bins and individual bin assembly for a more isolated
genome analysis.

Although approaches has been studied to perform metagenomics binning of long reads, such efforts
are either supported through reference based methods (METGAN-LR, Kraken and Kraken2) or
provided as an additional feature apart from contig binning (MetaProb, BusyBeeWeb). Furthermore,
the existing de-novo long read binners do not consider coverage information due to the unavailability
of coverage information for any kind of raw reads. Hence all the de-novo long read binning methods
rely totally on composition information. This makes it difficult to distinguish reads originating from
similar but distinct species, whereas, using coverage could help separate such reads due to varying
underlying coverage of their species.

This thesis explores models and algorithms to design efficient and effective metagenomics binning
tools targeting long reads. Refer to chapters 3, 4 and 5.

2.3 Plasmid Recovery

Plasmids are important genetic material that govern environmental adaptations of microorganisms.
There have been several studies aiming to develop methods and algorithms that perform plasmid
recovery using both the existing knowledge of reference genomes (Zhou and Xu, 2010a) and de-novo
methods (Rozov et al., 2017).

2.3.1 Existing Approaches for Plasmid Recovery

Reference Based Approaches

Reference based methods search the input sequences against a database containing plasmid informa-
tion to discover plasmids. Hence, all the reference based binning approaches in Table 2.1 can be used
for this task, given that the database used consists of plasmid-chromosome level taxonomic informa-
tion (Gomi et al., 2021). However, plasmid recovery often takes a unique approach where features
of known plasmids and chromosomes are used in conjunction with machine learning techniques to
model the situation as a binary classification problem.

Table 2.3 summarizes popular plasmid recovery tools. cBar (Zhou and Xu, 2010b), mlplasmids (Arredondo-
Alonso et al., 2018), PlasFlow (Krawczyk et al., 2018) and PlasClass (Pellow, Mizrahi et al., 2020) use
oligonucleotide frequencies from reference plasmids and chromosomes to train machine learning
models to classify unseen sequences. PlaScope (Royer et al., 2018), PlasmidFinder (Carattoli et al.,
2014) and Platon (Schwengers et al., 2020) uses databases and BLAST search to perform plasmid
discovery. A key similarity in all these approaches is that they can only use composition information.
This is because, reference databases can only offer composition information. However, plasmids
typically occur in multiples of their chromosomes called copy numbers (Friehs, 2004). This gives a
significant variation of coverage between chromosomes and associated plasmids. However, such
information cannot be used in machine learning models or BLAST databases as this information is
dataset specific.
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Table 2.3: Reference based plasmid recovery tools.

Tool Application Coverage Composition Method

cBar
(Zhou and Xu, 2010b) Contigs 7 3

Decision tree, Bayes network,
SVM, SMO, nearest neighbor

PlasmidFinder
(Carattoli et al., 2014) Contigs 7 3

Similarity comparison with a
database of replicon sequences

mlplasmids
(Arredondo-Alonso et al., 2018) Contigs 7 3

Logistic regression, Bayesian
classifier, decision trees, RF, SVM

PlasFlow
(Krawczyk et al., 2018) Contigs 7 3 Neural networks

PlaScope
(Royer et al., 2018) Contigs 7 3

Classification on top of
Centrifuge (Kim et al., 2016)

PlasClass
(Pellow, Mizrahi et al., 2020) Contigs 7 3 Logistic regression

Platon
(Schwengers et al., 2020) Contigs 7 3

BLAST search for plasmid-
borne genes

Assembly Based Approaches

Assembly based approaches try to separate plasmids and chromosomes by observing plasmid specific
structures in genomes assembly graphs. Table 2.4 summarizes the popular assembly based plasmid
recovery tools. All the tools either perform on top of assembly graph or perform plasmid resolution
during the assembly process. However, in this approach only circular contigs can be extracted given
sufficient connectivity exists. Moreover, when plasmids are non-circular, other means of classification
is necessary to extract plasmids (Casali and Preston, 2003). Interestingly, the only features used in
these approaches are the coverage, calculated in assembly and the overlap information. Genomics
signatures such as oligonucleotide frequencies are not considered.

Table 2.4: Assembly based plasmid recovery tools.

Tool Method

Recycler
(Rozov et al., 2016) Extracting circular contigs using assembly graph

metaplasmidSPAdes
(Antipov, Hartwick et al. (2016),
Antipov, Raiko et al. (2019))

SPAdes assembler process with circular contig resolution

SCAPP
(Pellow, Zorea et al., 2021) Uniform coverage cycle peeling from assembly graph

2.3.2 Limitations in Plasmid Recovery

Plasmid recovery is often performed using information that is either available on reference genomes
(i.e., composition information such as oligonucleotide frequencies or genes) or that is solely available
through the data (i.e., assembly graph and coverage). There has been little effort in discovery of
methods that exploit both forms of information to improve the classifications. For example, reference
based methods can be used to classify plasmids and chromosomes, followed by refinement through
dataset specific information such as coverage. Furthermore, assembly graph can be used to determine
the class of contigs (plasmid or chromosome) in cases where the reference based predictions are
poor. Moreover, such combination of methods can further expand the scope of existing methods
by removing the limitations while incorporating more useful information otherwise overlooked.
In chapters 6 and 7 we explore such avenues of improvements by incorporating dataset specific
information into reference based plasmid recovery methods.
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Chapter 3

Metagenomics Binning of Long Reads

The work presented in this chapter was published as

A. Wickramarachchi, V. Mallawaarachchi, V. Rajan et al. (2020a). ‘MetaBCC-LR: Metagenomics
Binning by Coverage and Composition for Long Leads’. Bioinformatics, 36(Supplement_1),
pp. i3–i11

This piece of work was presented at the annual International Conference on Intelligent Systems for
Molecular Biology (ISMB) 2020.
https://www.iscb.org/cms_addon/conferences/ismb2020/tracks/microbiomecosi

The software is freely available at https://github.com/anuradhawick/MetaBCC-LR.

3.1 Overview and Motivation

Metagenomics binning is benefitted by the use of both coverage and composition over complete
reliance on composition information. In this chapter we identify the challenges exist in binning
long reads right away and address them accordingly to develop MetaBCC-LR, a standalone tool for
metagenomics binning of long reads using coverage and composition.

3.1.1 Binning contigs vs binning long reads

There are several challenges in binning long reads compared to contigs. Binning long reads requires us
to handle unprocessed sequencing reads in contrast to contigs binning. Contigs are obtained from the
assembly process, where the reads are collapsed based on overlaps to form more accurate consensus
sequences. Hence, more information is available for contigs compared to sequencing reads. Table 3.1
summarizes the major differences between binning contigs and long reads.

Table 3.1: Differences between contigs binning and long read binning

Contigs binning Long read binning

Availability of accurate coverage information No coverage information is available by default

Relatively low in error rate Higher error rate

Manageable number of contigs from assembly Millions of sequencing reads

Many existing tools and analyses are feasible Limited number of operations are possible

3.1.2 Challenges in Binning Long Reads

Absence of coverage information for long reads

One key piece of information used for binning contigs is the coverage information. Coverage in-
formation is available from the assembly process, or can be obtained by aligning sequencing reads

https://www.iscb.org/cms_addon/conferences/ismb2020/tracks/microbiomecosi
https://github.com/anuradhawick/MetaBCC-LR
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to the contigs produced. As expected, the long sequencing reads possess no coverage information
unlike contigs. A naïve approach to estimate coverage is the all-vs-all alignment of sequencing reads.
However, such alignment is computationally expensive and results in massive alignment files for
processing (Balvert et al., 2021).

Noise in long reads compared to contigs

A major distinction between contigs and the raw reads is the error rate. While sequencing reads
possess error, the majority of errors are corrected in the process of genome assembly (Antipov,
Hartwick et al., 2016; Bankevich et al., 2012; Kolmogorov, Bickhart, Behsaz, Gurevich, Rayko, Shin,
Kuhn, Yuan, Polevikov, Smith et al., 2020; Nurk et al., 2017). Hence, more insightful explorations such
as single copy marker genes (Wu, Simmons et al., 2015; Wu, Tang et al., 2014) or unique k-mers (Wood,
Lu et al., 2019) can be studied to support binning.

Scale of long reads compared to contigs

Due to the nature of genome assembly, a contig may represent thousands of sequencing reads. Because
of this, contigs are typically in the range of 1,000-100,000 base pairs in length. However, reads are in
the range of millions. This demands, the long read binning to be scalable enough to handle massive
scales of data.

Limited availability of analytical tools

The accuracy and length of contigs are far greater compared to sequencing reads of any form (long
or short). Hence, complex analyses such as k-mer based binning are feasible (Wood, Lu et al., 2019).
Furthermore, the assembly process ensures that duplicate sequences that may mislead marker gene
analyses are minimized. For example, contigs can be studied for their marker genes to perform
analyses (Hyatt et al., 2010; Rho et al., 2010; Zhu, Lomsadze et al., 2010). However, the premise does
not hold true for long reads. Usually, we are required to assemble the reads before any analysis could
be performed accurately, especially due to higher error rates.

In this chapter, we design and implement MetaBCC-LR, a scalable reference-free binning tool to bin
metagenomic long reads. MetaBCC-LR uses discriminatory features, that capture differential species
coverage and composition information to perform binning. In MetaBCC-LR we investigate the main
three challenges that we have identified; (1) absence of coverage information for long reads, (2) higher
error rate in long reads compared to contigs and (3) massive number of sequences that we need to
handle.

3.2 Methods

The MetaBCC-LR pipeline takes the raw long reads as the input and outputs the bin annotations
for each input read. The following sections describe how we address the identified challenges to
implement the complete binning pipeline. Firstly, we propose a k-mer based coverage estimation
technique. Secondly, we evaluate the impact of error, on long reads’ composition information. Lastly,
we implement a sampling strategy to manage the shear number of reads in the input datasets.

3.2.1 k-mer based estimation of coverage of a read’s underlying species

Species found in metagenomic samples generally have varying abundances which would result in
different sequencing coverages for the corresponding genomes. This is an important discriminatory
factor in cases where species exist with similar composition but varies in terms of their coverage.
Hence, a sophisticated technique to estimate coverage for a given long read is required as all-vs-all
pairwise alignment approaches could be resource intensive.

In order to address this challenge we propose the “k-mer coverage histogram”. We estimate the
coverage of each read by breaking down the reads into long substrings called k-mers. k-mer stands for
a substring of length k. We achieve this by (1) computing k-mer counts for the entire dataset followed
by (2) obtaining k-mer count histograms for reads, using each read’s k-mers and the counts from (1).
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k-mer counts for an entire dataset

k-mers are of two kinds, “genomic” and “non-genomic”. A k-mer is considered as genomic if it appears
in at least one genome in the metagenomic dataset, otherwise it is considered as non-genomic. Given a
metagenomic dataset, the coverage of a k-mer is defined as the number of times this k-mer appears
in the entire dataset. Naturally, it is expected that the number of genomic k-mers is greater than the
number of non-genomic ones.

Typically, k-mer counting can be performed using a tool such as DSK efficiently (Rizk et al., 2013).
However, such computations carry the burden of heavy disk I/O where k-mer counts output file
needs to be parsed and re-indexed in-memory for the next step. Hence, we implement a simple and
effective k-mer counter similar to previous studies (Kolmogorov, Yuan et al., 2019; Lin, Yuan et al.,
2016), In MetaBCC-LR we use k=15. We borrow the idea of “compare and swap” atomic instruction
from Jellyfish (Marcais and Kingsford, 2012) counter. Initially, DNA alphabet “A, C, G and T” are
encoded in to 2 bit digits where the length 15 can be encoded in 30 bits without overflow in a 64 bit
machine. Here, the DNA alphabet is individually encoded as A=00, C=01, T=10 and G=11. Instead of
using an actual hash table, we initialize an array of size 415 unsigned 32-bit integers. This ensures
that our bit encoded 15-mers are accessed with O(1) complexity. Moreover, the entire hash table is
guaranteed to consume no more than 4 GB of memory. The choice k for coverage estimation is further
elaborated in Appendix A.

Building k-mer coverage histogram for a single read

The k-mer coverage histogram represents the coverage of a given read. In order to compute the
coverage histogram for a single read, we obtain all 15-mers for the selected read. Now the counts for
each of these 15-mers are obtained from the hash table we generated for the entire dataset. Naturally,
this histogram represents the prominence of 15-mers from a given read in the whole dataset. Based
on the varying length of reads, the 15-mers counts can deviate even within the same species. Hence,
we normalize the histograms using the total number of 15-mers in the read. In order to formalize the
representation, we denote this feature vector by Vcoverage. Furthermore, in our experiments, we set the
histogram properties as bin_width=10 and bin_count=32.

Although the set of genomic 15-mers in a metagenomic dataset is unknown, the coverage of a genomic
15-mers correlates to the coverage of the unknown genome which it belongs to. It has been shown
that a high-coverage peak in the 15-mers coverage histogram mainly consists of genomic 15-mers (for
sufficiently long k, e.g., k=13, 15, 17, 19 refer to Appendix A) while a low-coverage peak in the same
histogram typically corresponds to non-genomic k-mers due to sequencing errors (Kolmogorov, Yuan
et al., 2019; Lin, Yuan et al., 2016).

This can be understood using the Figures 3.1 and 3.2 that illustrates various k-mer coverage histograms
for simulated long reads samples (C. neoformans (10×), S. cerevisiae (15×), P. aeruginosa (550×), E.
faecalis (450×) and S. aureus (600×)). Please note that this dataset is referred to as 2Y3B. For example,
the k-mer coverage histograms of long reads in Figure 3.2 (a) consists of long reads sampled from
genomes of species with low-coverage (15×) whereas Figure 3.2 (b) contains high-coverage (450× –
600×). In high abundant species, the corresponding genomic 15-mers are in the second peak. However,
genomic 15-mers from low-coverage genomes get mixed with non-genomic 15-mers due to their
low-coverages.

Conclusively, we can say that 15-mer coverage histograms captures discriminatory coverage informa-
tion that is effectively used in clustering in our next step.

3.2.2 Perform Dimension Reduction and Clustering based on k-mer Coverage
Histograms

Before clustering of histogram features, dimension reduction is performed to aid visualization. Such
visualization has been previously used to aid manual resolution of metagenomic data in order to
determine the number of bins present (Laczny, Pinel et al., 2014). We use the popular Barnes-Hut
t-distributed Stochastic Neighbor Embedding (BH-tSNE) (Van Der Maaten, 2014). BH-tSNE is an
efficient dimension reduction technique and has been used in previous studies to bin contigs (Kouchaki
et al., 2019). Each histogram vector is reduced to two dimensions whose original neighborhood
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(a) 15-mer coverage histogram for a single read from a low abundant species.
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(b) 15-mer coverage histogram for a single read from a high abundant species.

Figure 3.1: Visualization of 15-mer coverage histogram of an individual (a) from a low coverage species and
a (b) high coverage species.

information in the low dimensions are preserved enabling effective clustering of data (Kouchaki et al.,
2019).

MetaBCC-LR employs the popular density-based clustering algorithm, DBSCAN (Ester et al., 1996),
to cluster the two-dimensional data points. We utilize the variation of nearest neighbor distance
to estimate the ε parameter in DBSCAN (Rahmah and Sitanggang, 2016). The advantage of using
DBSCAN is that it enables clustering based on local density and thereby discards outlier points that
arise due to sequencing errors. Moreover, it automatically detects the number of clusters.

Figure 3.3(b) demonstrates the plot of 15-mer coverage histogram and its variances within a given
species. As indicated in colors, we can clearly see the segregation of band peaks to represent varying
levels of coverage of the underlying species. Note that they correspond well to genomes with low,
medium and high coverages. The two-dimensional projections of this sampled set of reads (10,000
reads) datasets is demonstrated in Figure 3.4 (a).

Once the clustering is performed using DBSCAN we observe three major clusters as demonstrated
in Figure 3.4 (b). Note that, all the clusters observed in the two-dimensional plots are not preserved
in the clustering result due to the noise. In such scenarios, we rely on the separation by coverage to
cluster the data points even further.

3.2.3 Obtain Trinucleotide Composition Profiles for Reads

In this section, we investigate the impact of noise in long reads in composition computations and
design an appropriate composition feature to support binning of long reads.

Composition for accurate short reads

Genomic signatures of microbes display patterns which are unique to each species (Abe et al., 2003;
Deschavanne et al., 1999). Hence, these genomic signatures have been used in metagenomics binning.
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(a) 15-mer coverage histogram for multiple low abundant species.
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(b) 15-mer coverage histogram for multiple high abundant species.

Figure 3.2: Visualization of 15-mer coverage histograms under varying coverages of underlying species. (a)
Reads from multiple low coverage species. (a) Reads from multiple high coverage species.
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Figure 3.3: Bands of 15-mer coverage histograms for the simulated dataset 2Y3B.

One of the widely used genomic signatures is the oligonucleotide (k-mer for relatively small k e.g..
k=3,4,5) composition where studies have shown that oligonucleotide frequencies are conserved within
a species and vary between species (Wu, Simmons et al., 2015). Oligonucleotide frequencies are
defined as the normalized frequency of k-mers for a given size. These frequencies are treated as a
feature vector in metagenomics binning. Similar to the contigs (assembled from short reads), long
reads have sufficient length to inherit oligonucleotide composition information of the underlying
genomes despite their high error rates. Note that this is not true for short but accurate NGS reads.
Please refer to Figure 3.5 for the visualization of oligonucleotide composition for short reads. It clearly
evident that the deviation from the reference genome is significant. Hence, the confidence of such
vectors from short reads cannot be used for useful application in metagenomics binning. This is
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(a) Two dimensional projection of k-mer
coverage histograms using BH-tSNE.
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(b) Clustering of the two-dimensional projection
of k-mer coverage histograms.

Figure 3.4: (a) Dimension reduction of k-mer coverage histograms. The different colors correspond to the
underlying species. (b) Clustering using DBSCAN. Illustrated colors corresponds to the different clusters
obtained from DBSCAN.

evidently the reason for most traditional metagenomics binners to rely on assembled contigs whilst
discarding shorted contigs (Wu, Simmons et al., 2015). In conclusion, despite the favorable error rates
in short reads, they cannot be directly used in metagenomics binning.
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Figure 3.5: Trinucleotide composition of 100 non-overlapping short reads (150bp) for species, P. aeruginosa.

Composition for noisy long reads

Figure 3.6 shows the violin plots of trinucleotide composition features for 100 non-overlapping long
reads (10kbp-15kbp) simulated from the reference genome of P. aeruginosa. From Figure 3.6 we can see
that the trinucleotide frequencies of short reads show significant deviations from that of their reference
genomes due to their short lengths. On the other hand, Figure 3.6 shows that the trinucleotide
frequencies of long reads follow a close pattern to that of the reference genome despite their high error
rates. Long reads follow similar trinucleotide composition patterns as that of their reference genomes
and show less deviation than short reads.

For each long read, MetaBCC-LR builds a profile vector Vcomposition consisting of trinucleotide (3-mer or
trimer) occurrences. Since there are 32 unique trinucleotides (combining reverse complements as well),
the resulting vectors will have 32 dimensions. The vector coordinates are then normalized by the total
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Figure 3.6: Trinucleotide composition 100 non-overlapping long reads (10kbp-15kbp) simulated from the
reference genome of P. aeruginosa.

number of trinucleotides in the long read to avoid any read-length bias. Such discriminatory patterns
are utilized to further subdivide the clusters obtained from Step 2. Hence, despite the higher error
rate in long reads, such reads can still produce useful composition profiles for binning purposes.
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Figure 3.7: (a) The trinucleotide composition of reads in the high-abundance cluster of Zymo-1Y3B dataset
and (b) the binning result after performing dimension reduction. Please note that colors in (a) are for
illustration purposes which MetaBCC-LR is not aware of. Colors (clustering result) are inferred in (b) from
the mixed signals in (a).

The toy example demonstrated in Figure 3.7 (a) illustrates the mean and standard deviation of
composition vectors of two species from the 2Y3B dataset for simplicity. As illustrated in the following
figure, Figure 3.7 (b), two clear clusters can thus be inferred via dimension reduction and clustering
using DBSCAN.

3.2.4 Perform Dimension Reduction and Binning based on Trinucleotide Com-
position

Similar to Step 2, MetaBCC-LR first uses BH-tSNE (Van Der Maaten, 2014) to map the trinucleotide
composition profiles to two-dimensional vectors. Clusters of long reads derived from Step 2 are further
divided into bins according to their trinucleotide composition profiles using DBSCAN. For example,
Figure 3.7 (b) shows the two-dimensional plot of reads in the high-abundance cluster of Zymo-1Y3B
dataset after dimension reduction using BH-tSNE and the two clusters inferred by DBSCAN that
correspond to two genomes with distinct trinucleotide composition in Figure 3.7 (b) (a). At this stage,
MetaBCC-LR has developed features to represent coverage and composition.
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3.2.5 Binning large metagenomics long reads datasets using data sampling and
statistical models

Recall that our third challenge in metagenomics binning is the existence of numerous data points
for clustering. In MetaBCC-LR, we employ a sampling strategy where we sample 10% of reads to
identify the bins (i.e., cluster detection). This is mainly adopted since, non-linear dimension reduction
techniques such as BH-tSNE is computationally intensive at large scales (time complexity O(N2)
for exact algorithm (Van Der Maaten, 2014; Van der Maaten and Hinton, 2008)). MetaBCC-LR first
computes 15-mer coverage histograms and trinucleotide composition profiles for the entire dataset.
Next a subset of reads is sampled and clustered (1) first using coverage histograms and then (2) using
composition profiles. Now we have discovered B bins for the sampled reads.

For the ith bin Bi, MetaBCC-LR builds a statistical model by calculating the mean µcoverage(i) and
standard deviation σcoverage(i) for the vectors Vcoverage (i.e., k-mer coverage histograms) and the mean
µcomposition(i) and standard deviation σcomposition(i) for the vector Vcomposition (i.e., trinucleotide com-
position profile). For each read vector v̄, MetaBCC-LR computes the multivariate probability that it
belongs to a bin with mean vector µ̄ and standard deviation vector σ̄ using the following Gaussian
distribution:

PDF(v̄, µ̄, σ̄) =
|v̄|

∏
j

1√
2πσj

e
−

(xj−µj)
2

2σ2
j (3.1)

Here, |v̄| stands for the size of each vector that we compare (i.e., 32). More specifically, a long read
r, with a k-mer coverage histogram Vcoverage(r) and trinucleotide frequency vector Vcomposition(r), is
assigned into a bin in a maximum likelihood framework demonstrated in equation 3.2. Finally, after
assigning all the reads to the identified bins, MetaBCC-LR will output a bin identifier for each read.

Bi = argmaxi

{
PDF(Vcoverage(r), µcoverage(i), σcoverage(i))× PDF(Vcomposition(r), µcomposition(i), σcomposition(i))

}
(3.2)

The complete MetaBCC-LR pipeline is shown in Figure 3.8. Firstly, MetaBCC-LR samples a subset of
reads and computes coverage histograms for long reads followed by clustering using these features
(steps 1 and 2). Secondly, composition profiles are computed, and the already clustered reads are
re-clustered (steps 3 and 4). Finally, the unsampled reads are assigned to the identified clusters; known
as bins (step 5).

3.3 Experimental Setup

We evaluated our approach using several simulated and publicly available real datasets. In order
to compare our approach we also used several baseline tools that support long reads data as direct
inputs. It must be noted that, de-novo long read binning is a novel concept, although there are several
reference based attempts have been made. In our evaluation, we narrow down our comparison to
reference free methods to show a fair comparison.

3.3.1 Datasets

We used the following long-read datasets for our evaluation.

1. Oxford Nanopore GridION mock community dataset from the ZymoBIOMICS EVEN Mi-
crobial Community Standards (Nicholls et al., 2019) (denoted by ZymoEVEN). The original
ZymoEVEN dataset containing ONT reads and five additional PacBio datasets (denoted by
Zymo-1Y2B, Zymo-1Y3B, Zymo-2Y2B, Zymo-2Y3B and Zymo-2Y4B) are simulated using the
species found in the ZymoEVEN dataset.

Similar to experiments conducted by researchers at Loman Lab (LomanLab, 2019), we only
considered the reads that matched to a specific reference genome in the mock community
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Figure 3.8: The Workflow of MetaBCC-LR

standard. Note that, Loman Lab (LomanLab, 2019) performed taxonomic binning of reads
and performed assembly possibly filtering away the noisy ONT reads and/or eukaryotic/host
sequences.

2. Artificial Skin Microbiome datasets (NCBI BioProject number PRJNA533970) consisting of four
different mixes of five common skin bacteria with various noise levels (denoted by ASM-0,
ASM-5, ASM-10 and ASM-15). This dataset was released by Leiden University Medical Center
on 21-Apr-2019.

3. The Preborn infant gut metagenome (NCBI Accession No. SRA052203) (Sharon et al., 2013).
A PacBio dataset is simulated using the five most abundant species with their corresponding
coverages (denoted by Sharon).

4. Simulated metagenome with 100 species (Wu, Tang et al., 2014). A PacBio dataset is simulated
using the 100 species found (denoted as 100-genomes).

Note that simulated datasets were generated by the long-read simulator SimLoRD using default
parameters for PacBio reads (Stöcker et al., 2016). Further details about each simulated dataset can be
found in Appendix Table B.1 and B.2. The composition of the real datasets are available in Appendix
Table B.6.
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3.3.2 Tools Compared

We compared MetaBCC-LR with two recent reference-free binning tools which support long reads,
MetaProb (Girotto et al., 2016) and BusyBee Web (Laczny, Kiefer et al., 2017). BusyBee Web is a web
based tool where users have restricted access to how much data can be uploaded. The website has a
limit of 200MB for the upload. Hence, we input 10,000 sampled reads from each of our datasets in the
comparison. MetaProb is limited by the input size due to its memory limitations in the implementation.
Therefore, we provide the same sampled 10,000 reads to MetaProb as well.

3.3.3 Evaluation Criteria

Since the reference genomes for ZymoEVEN and ASM datasets are available, we mapped the reads
to these reference genomes using Minimap2.1 (Li, 2018a). The reads which had over 90% of the
bases mapped to a reference genome were considered for evaluation. For the simulated datasets
from known reference genomes, we used their ground-truth label to evaluate the binning result. We
determined the precision, recall, F1 score and Adjusted Rand Index (ARI) for the binning results of
each dataset.

The binning result is represented as an M× N matrix where M refers to the number of bins and N
refers to the number of species. In this matrix, the element Rij denotes the number of reads in bin i
belonging to species j. Let T be the total number of reads binned. The precision, recall, F1 score and
Adjusted Rand Index (ARI) are calculated as follows (Girotto et al., 2016; Wang, Leung et al., 2012;
Wang, Wang, Lu and Sun, 2017).

Precision(%) =
∑M

i=1 maxj{Rij}
∑M

i=1 ∑N
j=1{Rij}

× 100 (3.3)

Recall(%) =
∑N

j=1 maxi{Rij}

∑M
i=1 ∑N

j=1{Rij}+ Number of unclassified reads
× 100 (3.4)

F1 score(%) = 2× Precision× Recall
Precision + Recall

× 100 (3.5)

ARI(%) =
∑M

i=1 ∑N
j=1 (

Rij
2 )− t3

1
2 (t1 + t2)− t3

× 100 (3.6)

where t1 =
M

∑
i=1

(
∑N

j=1 Rij

2

)
, t2 =

N

∑
j=1

(
∑M

i=1 Rij
2

)
, and t3 =

t1t2

(T
2)

3.4 Results and discussion

3.4.1 Binning Results

We recorded the number of bins identified by each tool for all the datasets and the values can be found
in Table 3.2.

Number of bins estimated

It was observed that MetaProb and BusyBee Web tend to produce more bins than the actual number
of species present. In comparison, MetaBCC-LR was able to identify a number closer to the actual
number of species present in all the datasets.

Accuracy of binning

Figure 3.9 compares the precision of the binning results of all the datasets obtained from MetaBCC-LR
with MetaProb and BusyBee Web. It is clearly evident that MetaBCC-LR has resolved bins with a
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Table 3.2: Comparison of the actual number of species present and the number of bins identified by the
tools for different datasets.

Dataset Actual no. of
species present

No. of bins identified
by MetaProb

No. of bins identified
by BusyBee Web

No. of bins identified
by MetaBCC-LR

Zymo-1Y2B 3 6 23 3

Zymo-1Y3B 4 7 16 4

Zymo-2Y2B 4 8 21 4

Zymo-2Y3B 5 8 18 5

Zymo-2Y4B 6 9 18 6

ZymoEVEN 10 13 26 8

Sharon 5 8 123 4

ASM-0 5 11 10 5

ASM-5 5 13 8 4

ASM-10 5 14 14 4

ASM-15 5 22 10 5

100-genomes 100 22 74 70

greater precision compared to the baselines. BusyBee Web maintains reasonable precision values
for Zymo datasets except for the real dataset. This is mainly because BusyBee Web relies on 5-mers,
which are too long to handle the noise in ONT long reads. For Zymo simulated datasets MetaProb has
a competitive precision while for ZymoEVEN dataset the tool performs rather poorly. This is mainly
because, MetaProb is a short reads specialized binner where read overlaps are considered to identify
bins. However, due to the higher error rate in the real dataset (ZymoEVEN), MetaProb has failed to
properly capture such overlaps to perform accurate binning. Note that MetaProb and BusyBee Web
perform poorly on the ASM datasets. This is because BusyBee Web utilizes a pre-trained model based
on a selected set of reference genomes, whereas MetaProb requires overlapping k-mers to form read
groups which are used for clustering reads into bins. Moreover, ASM datasets are much smaller with
possibly very few overlaps between reads to perform clustering.

Although BusyBee Web has comparable recalls as presented in Figure 3.10, this is computed using
the set of sampled reads provided for the tool. Hence, the recall values do not indicate a straight
comparison with MetaBCC-LR. Due to lower coverage in ASM datasets, MetaProb has poor recall
producing fragmented bins with poor recall.

Figure 3.11 illustrates the F1-scores of the binning results. It is clearly evident that performance of
MetaBCC-LR is superior in handling the novel problem of binning metagenomics long reads.

Table 3.3 compares the mean and standard deviation of each evaluation metric averaged over all the
datasets for each tool. MetaBCC-LR outperforms the other tools in all the metrics. The increase in F1
score and ARI is∼13% and∼30% respectively over the best baseline method, MetaProb. MetaBCC-LR
also has the most consistent performance with the lowest standard deviation values (less than 10%) in
all metrics.

3.4.2 Metagenome Assembly Results

One major advantage in metagenomics binning of reads is the ability to influence the downstream
assembly process. Typically, assembly is conducted using a genome assembly software where the
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Figure 3.9: Binning precision of datasets.
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Figure 3.10: Binning recall of datasets.
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Figure 3.11: Binning F1-score of datasets.

contigs are produced based on overlapping reads. Unless the assembler is metagenomic specialized
the process of assembly can be very challenging. This is because, typical assemblers are based
on uniform coverage and has tendency to discard low coverage regions. This results in missing
assemblies or highly fragmented assemblies of low abundant species in a sample. However, the
scientific importance of such low abundant species is not negligible, hence, complete recovery of all
the available genomes is the utmost priority.

Assemblers used

To demonstrate the effect of MetaBCC-LR on metagenomics assembly, we assembled all the Zymo data-
sets (simulated and real) individually using two popular long-read assemblers metaFlye (Kolmogorov,
Rayko et al., 2019) (available in Flye v2.4.2) and Canu v1.8 (Koren et al., 2017) (denoted as complete
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Table 3.3: Comparison of mean and standard deviation (STD) of each evaluation metric averaged over all
the datasets for each tool.

Tool
Precision (%) Recall (%) F1 score (%) ARI (%)

Mean STD Mean STD Mean STD Mean STD

MetaProb 78.77 19.77 87.35 27.11 81.42 22.19 62.13 34.42

BusyBee Web 58.46 31.52 65.75 35.58 61.27 32.64 36.24 43.15

MetaBCC-LR 96.66 2.40 94.12 8.08 95.27 5.35 92.28 9.61

assembly) and also assembled the partitioned reads of the individual bins from MetaBCC-LR using
metaFlye and Canu (denoted as partitioned assembly). We selected the Zymo dataset (Nicholls et al.,
2019) because it has been used to evaluate the metagenomic assembler metaFlye (Kolmogorov, Rayko
et al., 2019). We evaluated all the assemblies using MetaQUAST (Mikheenko et al., 2015a). Please note
that binning results from other tools were not assembled as MetaProb and BusyBee Web were not able
to bin the entire dataset at once.

Table 3.4: Comparison of the assembled genome fraction of the different assemblies for different datasets.

Dataset
metaFlye assembly Canu assembly

Complete Partitioned Complete Partitioned

Zymo-1Y2B 93.12% 99.60% 78.74% 98.69%

Zymo-1Y3B 93.97% 99.65% 78.20% 98.79%

Zymo-2Y2B 93.90% 97.78% 57.28% 97.18%

Zymo-2Y3B 97.35% 93.44% 63.53% 95.66%

Zymo-2Y4B 94.55% 97.59% 71.35% 86.69%

ZymoEVEN 86.47% 88.68% 68.79% 85.42%

Quality of assemblies

Genome fraction is a key indicator of assembly quality. It is defined as the ratio of total number of
aligned bases in the reference to the genome size in base pairs. In other words, genome fraction speaks
out for the content of the genome recovered through the process of assembly.

Table 3.4 shows the comparison between genome fraction of complete and partitioned assemblies.
Applying MetaBCC-LR to bin long reads prior to assembly (i.e., partitioned assemblies) improves the
genome fraction over the complete assemblies. One possible reason for such improvement is that
partitioned assemblies allow assemblers to estimate more appropriate parameters for reads in each
bin rather than applying the same parameters to the entire dataset. This may help to recover more
genomic sequences, especially for low-abundant species.

Resource usage for assemblies

Tables 3.5 and 3.6 shows the comparison of resource usage (assembly time and peak memory) for
complete assembly and partitioned assembly. Assembly time of partitioned assemblies includes the
CPU time elapsed for binning using MetaBCC-LR (refer to Table 3.8) and metagenome assembly.
As expected, partitioned assemblies have consumed lesser time and memory than the complete
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Table 3.5: Comparison of resource usage between complete assembly and partitioned assembly for different
datasets using metaFlye assembler. Assembly time for partitioned assemblies includes the CPU time elapsed
for binning using MetaBCC-LR and metagenome assembly.

Dataset Performance metric
metaFlye assembly

Complete assembly Partitioned assembly

Zymo-1Y2B
Assembly Time (h) 12.15 9.25

Memory usage (GB) 35.34 24.21

Zymo-1Y3B
Assembly Time (h) 15.40 11.96

Memory usage (GB) 36.53 22.16

Zymo-2Y2B
Assembly Time (h) 13.41 10.43

Memory usage (GB) 35.41 23.42

Zymo-2Y3B
Assembly Time (h) 16.51 13.49

Memory usage (GB) 35.81 23.81

Zymo-2Y4B
Assembly Time (h) 20.74 15.63

Memory usage (GB) 54.84 21.65

ZymoEVEN
Assembly Time (h) 45.95 36.45

Memory usage (GB) 129.36 16.19

assemblies. The reduction in resource usage is more significant in Canu assemblies than in metaFlye
assemblies because Canu is a generic assembler whereas metaFlye is a dedicated metagenomics
assembler.

Table 3.7 shows the average improvements of the partitioned assemblies after using MetaBCC-LR,
compared to the complete assemblies. We observed improvements in genome fraction with significant
reduction in time and memory usage. These results show that MetaBCC-LR can be used to improve
metagenomic assembly by binning long reads before assembly.

3.4.3 Running Times of MetaBCC-LR

Table 3.8 shows the times taken by MetaBCC-LR to bin the datasets Zymo-1Y2B, Zymo-1Y3B, Zymo-
2Y2B, Zymo-2Y3B, Zymo-2Y4B and ZymoEVEN. Please note that the running times for MetaProb and
BusyBee Web were not recorded. They were not able to bin the entire dataset at once and running
times for BusyBee Web could not be measured since it is a web application. These factors make it
challenging to conduct a fair running time comparison.

Our approach, MetaBCC-LR, is a two-phased binning approach to bin noisy long reads without the
use of reference databases. The first phase uses k-mer coverage histograms and the second phase
uses trinucleotide composition to separate reads. The two phases are executed sequentially. The two
phases of MetaBCC-LR and the final step of building a statistical model for each bin, use a sample of
the input dataset. Finally, a bin is assigned to all the reads in the input data.

We conducted experiments to see how alternative approaches and read assignment would affect
the final binning results. Moreover, we conducted experiments to see how sampling improves the
scalability of MetaBCC-LR without compromising the binning quality. Furthermore, we conducted
experiments to show the importance of MetaBCC-LR in solving real-world metagenomics binning
problems.
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Table 3.6: Comparison of resource usage between complete assembly and partitioned assembly for different
datasets using Canu assembler. Assembly time for partitioned assemblies includes the CPU time elapsed for
binning using MetaBCC-LR and metagenome assembly.

Dataset Performance metric
Canu assembly

Complete assembly Partitioned assembly

Zymo-1Y2B
Assembly Time (h) 74.61 58.01

Memory usage (GB) 13.18 8.01

Zymo-1Y3B
Assembly Time (h) 86.51 78.33

Memory usage (GB) 18.43 7.85

Zymo-2Y2B
Assembly Time (h) 75.20 61.12

Memory usage (GB) 19.45 11.46

Zymo-2Y3B
Assembly Time (h) 87.22 82.93

Memory usage (GB) 22.15 7.94

Zymo-2Y4B
Assembly Time (h) 102.13 101.16

Memory usage (GB) 25.78 12.44

ZymoEVEN
Assembly Time (h) 437.99 258.00

Memory usage (GB) 108.50 21.76

Table 3.7: Average improvement in Genome Fraction (GF) due to MetaBCC-LR.

Assembly
Complete Partitioned: with MetaBCC-LR

GF GF Memory Saved Time Saved

metaFlye 93.23% 96.12% 87.48% 24.64%

Canu 69.65% 93.74% 79.94% 41.09%

Table 3.8: Time taken by MetaBCC-LR to bin different datasets.

Dataset Size (GB) Running time (CPU hours)

Zymo-1Y2B 4.2 0.91

Zymo-1Y3B 5.45 1.19

Zymo-2Y2B 4.35 0.95

Zymo-2Y3B 5.65 1.24

Zymo-2Y4B 7.15 1.60

ZymoEVEN 14.24 3.12
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3.4.4 Alternative Approaches for Binning Long Reads

We conducted experiments on two alternative approaches; (1) separate long reads first by their
trinucleotide composition and then by their coverage (Composition first) and (2) combining the k-mer
coverage histograms and trinucleotide composition profiles and apply dimension reduction to bin
reads (k-mer Coverage + Composition). Table 3.9 shows the comparison of results obtained for the
Zymo-2Y4B dataset using each of these methods with MetaBCC-LR.

Table 3.9: Comparison of alternative approaches with MetaBCC-LR using the Zymo-2Y4B dataset.

Method No. of bins identified Precision Recall F1 score ARI

Composition first 5 92.71% 90.14% 91.41% 79.78%

k-mer Coverage + Composition 2 99.59% 47.80% 64.60% 0.43%

Coverage first (MetaBCC-LR) 6 98.46% 98.46% 98.64% 97.21%

We observed that even though we obtained very high precision values with the combined approach
(k-mer Coverage + Composition), it resulted in poor recall and ARI values. Overall, MetaBCC-LR has
outperformed other alternative methods and produced better scores for the evaluation metrics.

3.4.5 Read Assignment

We conducted experiments to compare the performance of doing dimension reduction and binning on
the entire dataset with our method where we assign reads based on the models obtained from doing
dimension reduction and binning on the sample of reads from a dataset. Our method took 1 minute
and 19 seconds of wall time (on a Linux system with Ubuntu 18.04.1 LTS, 16G memory and Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz with 4 CPU cores and 8 threads) to bin and assign the reads of the
Zymo-2Y4B dataset (with a sample of 8,620 reads) whereas when we performed dimension reduction
and binning on the entire dataset at once, the process did not finish even after 3 hours of wall time
had elapsed.

Table 3.10: Comparison of the precision and recall of sampled reads and after assigning all the reads.

Dataset Sampled reads Precision of
sampled reads

Recall of
sampled reads Total reads Final precision after Final recall

Zymo-1Y2B 5,028 99.42% 99.42% 502,890 99.47% 99.47%

Zymo-1Y3B 6,576 98.97% 98.97% 657,610 99.27% 99.27%

Zymo-2Y2B 5,259 99.13% 99.13% 525,922 99.51% 99.51%

Zymo-2Y3B 6,806 98.81% 98.81% 680,642 99.24% 99.24%

Zymo-2Y4B 8,620 98.46% 98.46% 862,021 98.46% 98.46%

ZymoEVEN 34,910 97.64% 71.92% 3,491,078 93.09% 73.84%

We observed that the precision values of clustering of sampled reads and read assignment afterwards
remain similar. Initial uniform sampling was done in order to obtain a smaller representation of
the dataset considering the computational complexity of BH-tSNE. Read assignment is labelling the
unsampled reads to the bins identified from the sampled set of reads. Table 3.10 shows the precision
and recall of the initial sampled binning and final binning after read assignment for the Zymo-1Y2B,
Zymo-1Y3B, Zymo-2Y2B, Zymo-2Y3B, Zymo-2Y4B and ZymoEVEN datasets. Even though the
precision has reduced slightly after read assignment, we obtained a significant performance gain by
using this method over doing dimension reduction for the entire dataset.
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3.4.6 Effect of Initial Sample Size

We conducted experiments to check the effect of varying initial sample sizes on the final binning
results. We selected sample sizes 0.5%, 1% and 1.5% of reads from each of the complete simulated
Zymo datasets to determine the number of bins and build their corresponding statistical profiles. The
average results obtained for the simulated Zymo datasets for 0.5% and 1% are shown in Table 3.11 as
we observed the most significant gain in performance when the sampling size was increased from
0.5% to 1%.

Table 3.11: Comparison of average evaluation metrics for varying sample sizes of the simulated Zymo
datasets.

Sample size Precision Recall F1 score ARI

0.5% 98.49% 98.49% 98.49% 97.03%

1% 99.19% 99.19% 99.19% 98.14%

We observed that the final binning precision and recall after performing read assignment remains very
similar for each sample size. Finally, 1% was chosen in order to retain reads of very low abundant
species during the clustering process.

3.4.7 MetaBCC-LR to Separate Coral Genome from Its Symbiont Genomes

Many adult reef-building corals are known to be supplied through a mutually-beneficial relationship
with its microbial symbionts that live inside the coral cells. However, this symbiotic relationship
makes it very challenging to separate adult coral from its microbial symbionts as they live inside
the coral cells ((Ying et al., 2018) and personal communications). In order to evaluate the utility of
MetaBCC-LR in coral studies, we simulated a PacBio dataset using the Coral P. lutea and its microbial
symbiont Cladocopium C15 found from the Coral and its microbial symbiont communities from the
Orpheus Island, Australia (Robbins et al., 2019) (denoted by Coral+Symbio). Details about the dataset
can be found in Appendix Table B.6. We used MetaBCC-LR to separate the reads of coral from its
microbial symbiont, to show the importance of our tool in solving real-world metagenomics binning
problems.

Figure 3.12 denotes the two-dimensional plot of the read clusters obtained from the sample of the
Coral+Symbio dataset, (a) after separating by coverage and (b) after separating by composition. Ac-
cording to Figure 3.12(a) it can be seen that separating using coverage (k-mer coverage histograms) has
resulted in a single cluster since P. lutea and Cladocopium C15 are equally abundant in the Coral+Symbio
dataset. However, after separating using composition (trinucleotide composition), we can see that
there are two clearly separated clusters corresponding to P. lutea and Cladocopium C15 (Figure 3.12(b)).
Moreover, MetaBCC-LR resulted in precision, recall, F1 score and ARI of 98.21%, 98.21%, 98.21% and
92.97% respectively for the final binning of the entire Coral+Symbio dataset. Hence, it can be seen
that MetaBCC-LR can be used to solve real-world metagenomic binning problems.

3.5 Discussion

3.5.1 Summary

With the increased popularity of long-read sequencing technologies, the field of metagenomics has
shown a rising interest in using long reads for analyses. In metagenomics binning studies, most of the
available reference-free binning tools are designed for and tested on short reads and cannot handle
large datasets of long reads due to the higher error rate and shear volume compared to assembled
contigs. In this chapter, we designed and evaluated MetaBCC-LR, a scalable reference-free binning tool
to cluster large long-read datasets. MetaBCC-LR uses k-mer coverage histograms and oligonucleotide
composition of the reads in a carefully designed pipeline of steps to estimate the number of bins
and classify the input reads to the bins. Our extensive experimental results, on several datasets with
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Figure 3.12: Read clusters obtained from simulated PacBio reads from the Coral P. lutea and its microbial
symbiont Cladocopium C15 found from the Coral and its microbial symbiont communities from the Orpheus
Island, Australia (Robbins et al., 2019) (denoted by Coral+Symbio). MetaBCC-LR achieved the final binning
precision, recall, F1 score and ARI as 98.21%, 98.21%, 98.21% and 92.97%, respectively.

varying coverage and error rates, show that MetaBCC-LR outperforms state-of-the-art reference-free
binning tools by a substantial margin.

Typically, assemblers erroneously assume uniform coverages and low abundant species tend to be
ignored – that can be ameliorated by binning reads before assembly. We indeed observe that binning
long reads using MetaBCC-LR prior to assembly improves assembled genome fractions. Further, this
is achieved along with considerable reduction in time and memory usage. Binning is a crucial step in
many metagenomics studies and the efficiency and accuracy of MetaBCC-LR can potentially lead to
improved characterization of microbial communities to provide valuable biological insights.

3.5.2 Room for improvements

Step wise clustering approach

So far, we could only utilize coverage and composition in a step wise manner. This means, the errors
in cluster due to noise in features would be carried forward to the second clustering step. Hence, the
chance for errors getting amplified is rather high. Hence, room for improvement exists in terms of
feature aggregation for coverage and composition information. This could in a way eliminate the
amplification of error as discussed.

Sampling strategy

Since MetaBCC-LR uses a sampling strategy, the chance of low abundant species being discarded is
higher. This is because, sampling data uniformly and treating all the data points equally can result
in disappearance of clusters having very small number of data points, i.e., low abundant species.
Furthermore, this effect can have a negative impact on the composition based clustering which
follows the coverage based clustering step. Therefore, there exists room for improvement in terms of
eliminating sampling step, where more robust dimension reduction and clustering techniques will be
required.
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Chapter 4

Efficient Feature Combination for
Metagenomics Binning

The work presented in this chapter was published as

A. Wickramarachchi and Y. Lin (2021a). ‘LRBinner: Binning Long Reads in Metagenomics Datasets’.
In: 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik

A. Wickramarachchi and Y. Lin (2022a). ‘Binning long reads in metagenomics datasets using compos-
ition and coverage information’. Algorithms for Molecular Biology, 17(1), pp. 1–15

This piece of work was presented at The Workshop on Algorithms in Bioinformatics (WABI) 2021
(https://acm-bcb.org/WABI/2021/).

The software is freely available at https://github.com/anuradhawick/LRBinner.

4.1 Overview and Motivation

In this chapter, we present LRBinner to bin long reads without using any reference databases. In
LRBinner we address the limitations that exist in MetaBCC-LR to create an improved long read
binning tool. Furthermore, we evaluate LRBinner on more recent and challenging datasets compared
to the datasets used for the evaluation of MetaBCC-LR.

In LRBinner we combine the coverage and composition features using the deep learning techniques
of variational auto-encoders. This addresses the first limitation of MetaBCC-LR where we had to
cluster in a step-wise manner. Indirectly, this approach eliminates the need to sub-sample large
datasets. More specifically, LRBinner uses a variational auto-encoder to obtain lower dimensional
representations by incorporating both composition and coverage information of the complete dataset.
Given that the approach relies on deep learning, the larger scale directly contributes towards better
performance of the tool.

In order to perform clustering of the entire dataset at once, LRBinner further uses a distance-histogram-
based clustering algorithm. We design the algorithm such that clusters of varying sizes can be extracted
efficiently. LRBinner finally assigns unclustered reads to identified clusters using their statistical
profiles similar to that in MetaBCC-LR. The experimental results of LRBinner compared against other
baselines show that LRBinner achieves better binning results on both simulated and real datasets.
Moreover, we show that binning long reads by LRBinner prior to assembly helps to improve genome
fraction of assemblies while reducing the memory consumption for metagenomics assembly.

4.2 Methods

LRBinner pipeline primarily addresses the limitations of MetaBCC-LR; (1) combining coverage and
composition to eliminate the step wise clustering pipeline, (2) eliminating the need to sample reads
which negatively affected low abundant species and (3) perform clustering of the entire dataset at

https://acm-bcb.org/WABI/2021/
https://github.com/anuradhawick/LRBinner
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once by implementing a scalable clustering algorithm. LRBinner consists of three main steps; (1)
learning lower dimensional latent representations of composition and coverage, (2) clustering the
latent representations and (3) obtaining complete clusters.

The complete workflow for LRBinner is illustrated in Figure 4.1. In the following sections, we will
explain these three steps in detail.

4.2.1 Feature combination and dimensionality reduction using variational auto-
encoders

LRBinner uses two typical binning features of metagenomic sequences, composition and coverage.
The composition and coverage of each long read is represented as trimer frequency vectors and k-mer
coverage histograms (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a), respectively.

Computing Composition Vectors

Similar to MetaBCC-LR we use oligonucleotide frequency vectors as composition profiles for binning
long reads in LRBinner. Trinucleotide and tetranucleotide frequencies have been used in the past
to discriminate assembled contigs of different origins (Alneberg et al., 2014; Kang, Li et al., 2019;
Laczny, Kiefer et al., 2017; Pellow, Mizrahi et al., 2020; Wu, Simmons et al., 2015) and Trinucleotide
frequencies have been used in metagenomics binning of error-prone long reads (Wickramarachchi,
Mallawaarachchi, Rajan et al., 2020a) which shows that trinucleotide frequency vectors provide stable
binning despite the noise level that exist in TGS reads. LRBinner utilizes trinucleotide composition
vectors. In contrast with MetaBCC-LR, we provide users with the flexibility to use different oligo-
nucleotides for composition profiles in our implementation. This has been mainly motivated by the
advent of PacBio HiFi reads which yield sequencing reads with higher base accuracies. We refer to
this frequency vector as Vcomposition.

Computing Coverage Vectors

From MetaBCC-LR (Section 3.2.1) we adopt the same 15-mer coverage histograms to represent
coverage of reads in LRBinner, formally denoted as Vcoverage. We perform our experiments with
the same bin_width for the histogram and obtain a vector of bin_count dimensions where we set
bin_width=10 and bins=32.

4.2.2 Obtaining Latent Representations

For each long read, its coverage (Vcoverage) and composition (Vcomposition) vectors are concatenated
to form a single vector V of 64 dimensions. We borrow the idea of variational auto-encoders from
the recent literature; VAMB (Nissen et al., 2021) to combining these two features. Please note that,
VAMB cannot be directly applied for long reads because (1) it is designed for contigs, where the
clustering algorithm is not designed to handle large and noisy long read clusters, and (2) requires
coverage information by aligning contigs with sequencing reads. However, the ideology of using
a variational auto-encoder can be re-used in our problem domain following other applications in
machine learning (Pu et al., 2016).

Therefore, we use a variational auto-encoder to obtain lower dimensional latent representations. The
key motivation for using a variational auto-encoder is to combine coverage and composition features
effectively. In MetaBCC-LR we showed that a simple concatenation of coverage and composition
vectors made BH-tSNE less effective. This is mainly because BH-tSNE does not attempt to learn how
to effectively combine composition and coverage features, but rather sticks with the spatial distances
on concatenated features. However, the variational auto-encoder is able to learn lower dimensional
representations by combining both composition and coverage features through a deep neural network.

Implementation of the variational auto encoder

Our implementation of the variational auto-encoder consists of two hidden-layers in the encoder
and decoder. Each layer uses batch normalization and dropout with p=0.1 during the training
phase. For each input vector V, the auto-encoder learns a latent representation Vlatent(i), where
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Figure 4.1: Overall workflow of LRBinner. (Step 1) The feature vectors of composition and coverage
information are computed from long reads. The feature vectors are fed into a variational auto-encoder
to obtain low-dimensional latent representations. (Step 2) Sample a seed point (read) in the latent space
and derive a confident cluster (bin) that contains this seed point. Step 2 is iterated until there is no seed
point. (Step 3) The unclustered points are assigned to the clusters using a statistical model. Note that the
2-dimensional representation of points is only for the illustration purpose.

Vlatent(i) ∼ N (µi, σi). The latent representation consists of 8 dimensions. Each layer in the encoder
and decoder contains 128 neurons. Similar to previous studies (Nissen et al., 2021), we use LeakyRELU
(leaky rectified linear unit function) for µ and softplus function for σ layers. Note that µ and σ represent
neural network layers intended to learn the lower dimensional means and standard deviations of
each read’s distribution. We use the weighted sum of reconstruction error E (equation 4.1) and
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Kullback–Leibler divergence (Kullback and Leibler, 1951; Nissen et al., 2021) DKL (equation 4.2) as the
loss function. Ecov and Ecom represent reconstruction errors of coverage and composition respectively.
Equation 4.3 demonstrates the complete loss function used.

E = ∑(Vin −Vout)
2 (4.1)

DKL(latent|prior) = −∑
1
2
(1 + ln(σ)− µ2 − σ) (4.2)

Total Loss = wcovEcov + wcomEcom + wkldDKL (4.3)

Here we set wcov=0.1, wcom=1 and wkld=1/500 as determined empirically using simulated data.
The decoder output was obtained through LeakyRELU activation in order to reconstruct the scaled
positive inputs. We train the auto-encoder with read batches of size 10,240 for 200 epochs. Finally, we
obtain the predicted latent means of the input data from the encoder for clustering. Each point in the
latent mean corresponds to the relevant read in the original input.

4.2.3 Clustering using distance histograms

Distance metric for clustering

In this step, we perform clustering of the latent means learned by the variational auto-encoder.
The complete clustering algorithm of LRBinner is illustrated in Figure 4.3. Similar to previous
studies (Nissen et al., 2021), we use the cosine distance as the distance measure for clustering. Note
that cosine distance, d(a, b) between point a and b in latent space Vlatent is defined according to the
equation 4.4. The key importance in using cosine distance as the metric is that 0 <= d(a, b) <= 1 is
guaranteed. This simplified the distance search space in the distance histograms in the next step.

d(a, b) =
Vlatent(a) ·Vlatent(b)

||Vlatent(a)||||Vlatent(b)||
(4.4)

Distance histogram as the point density metric

Distance

# 
Po

in
ts

Figure 4.2: Distance histogram for a point

For a point a, we generate a distance histogram Ha by computing the pairwise distances between a
and all other points. Note that, for this histogram we term bin_width as ∆, where ∆=0.005 for clarity.
The resulting histogram is illustrated in the Figure 4.2. In the histogram shown in the right-hand side
demonstrates the density around the given point. Note that the origin is hard coded at the 0 density
to avoid numerical overflows.

Clustering algorithm

We define peak as the index of the first maxima of the distance histogram Ha. Similarly, the valley is
defined as the index of the first minima after the peak in the distance histogram Ha. Refer to the top
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Figure 4.3: Illustration of the clustering algorithm. First select a seed point, generate its distance histogram
and derive a candidate cluster. Sample from the candidate cluster points and choose a point with the minimum
valley-to-peak ratio. Extract points before the valley to form a confident cluster. Note that the 2D representation
of points is only for the illustration purposes.
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right figure in Figure 4.3 for an example of the peak and valley in a distance histogram. The shaded
region in this diagram is the area of interest here onwards. This is because, this region corresponds to
the likely cluster that point a belongs.

Intuitively, a point with smaller valley-to-peak ratio H[valley]/H[peak] is more likely to be the medoid
of a cluster (Nissen et al., 2021), where H[valley] and H[peak] are the number of points corresponding
to the valley and peak in the distance histogram H, respectively. In the recent contig binning tool
VAMB (Nissen et al., 2021), it randomly samples points, searches within a distance of 0.05 (up to 25
neighboring points) and moves to another point if H[valley]/H[peak] can be further reduced. This
step is iterated until a local minimal point of H[valley]/H[peak] is inferred as a proper cluster medoid
and then the corresponding cluster is extracted by removing points within a distance ∆× valley of the
distance histogram. Typically, clusters of contigs or contig bins are of several megabases at maximum
leaving with less than few dozens of contigs per bin. Hence, the iterative search for a medoid for the
cluster shows promising results at acceptable speeds.

However, clusters of long reads are orders of magnitude larger than clusters of contigs (1, 000−100, 000
or more), thus mere local search of a cluster medoid could be inefficient and time consuming. Fur-
thermore, while most contig clusters consist of hundreds of points per species(Lin and Liao, 2016),
the long-read clusters vary in size drastically (from hundreds of points to millions of points), which
demand for a more flexible search strategy rather than sampling points within a fixed radius and
up to a fixed number of neighbors. Hence, we design the following strategy to dynamically extract
clusters of varying sizes. Our algorithm consists of two steps; (1) from a seed point to a candidate
cluster and (2) from a candidate cluster to a confident cluster.

(1) From a Seed Point to a Candidate Cluster

A point s is called a seed point if its valley-to-peak ratio Hs[valley]/Hs[peak] < 0.5 in its distance
histogram Hs. Initially, LRBinner randomly picks a seed point s from the entire dataset and obtains its
distance histogram Hs. Note that a distance histogram demonstrates a candidate cluster. This candidate
cluster consists of the points within the distance ∆× valley in Hs, referred to as candidate cluster points.
Compared to the seed point, some candidate cluster points may have lower valley-to-peak ratio
that result in more confident clusters. However, the number of candidate cluster points may vary
significantly depending on the size of the ground-truth clusters. In the next section, we will show
how to use sampling strategies to find a confident cluster from a candidate cluster.

(2) From a Candidate Cluster to a Confident Cluster

Given a candidate cluster, we sample 10% of candidate cluster points (up to 1,000 points) to compare
their corresponding distance histograms. For each point p in candidate cluster points, we compute
the valley-to-peak ratio Hp[valley]/Hp[peak] in its corresponding distance histogram Hp. We chose a
point x from the sample with the minimum H[valley]/H[peak] value and extract a confident cluster
which consists of points within a distance ∆× valley of the distance histogram Hx. In contrast with
the iterative medoid search in VAMB (Nissen et al., 2021), this approach takes advantage of the rough
estimation of the candidate cluster from a seed point and thus allows us to dynamically and efficiently
discover clusters with varying sizes. This process is iterated until no further candidate clusters or seed
points are observed. Please refer to Section 4.5 for detailed information. The resulting clusters are
depicted as detected clusters in Figure 4.1. Note that few reads still remain unclustered due to the
noise present in composition and coverage vectors of error-prone long reads and we will show how to
assign them to existing bins in the next section.

Iterative Cluster Discovery

Following the establishment of the clustering algorithm where a cluster center is estimated followed
by the cluster extraction, we repeat the two steps until it can no longer be repeated. This process is
further illustrated in the Figure 4.4. The number of clusters at the end of the algorithm indicate the
number of final bins detected by the LRBinner clustering algorithm. Note that in each iteration, there
are few reads left that are further away from the confident cluster region. Such points are illustrated
in grey color in the diagram. In the next step, these reads are binned to the identified bins.
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Figure 4.4: Illustration of the iterative clustering algorithm. Steps (1) and (2) are repeated until no more
clusters are discovered by the algorithm

4.2.4 Obtaining Final Bins

Once all the clusters have been yielded, the points that are sparsely located are left aside. However,
such points could have the potential to improve the downstream assembly processes. Hence, we assign
such points to the detected clusters using a statistical model similar to MetaBCC-LR (Wickramarachchi,
Mallawaarachchi, Rajan et al., 2020a).

PDF(v̄, µ̄, σ̄) =
|v̄|

∏
j

1√
2πσj

e
−

(xj−µj)
2

2σ2
j (4.5)

Finally the unclustered reads are assigned to the bin Bi using a maximum likelihood computed using
equation 4.5. The assignment of reads is performed such that equation 4.6 is maximized.

Bi = argmaxi

{
PDF(Vcoverage(r), µcoverage(i), σcoverage(i))× PDF(Vcomposition(r), µcomposition(i), σcomposition(i))

}
(4.6)

4.3 Experimental Setup

4.3.1 Datasets

We evaluated LRBinner using several simulated and real datasets containing long reads. Detailed
information about the simulated datasets and constituent species are tabulated in the Appendix
Tables B.2-B.4. Information about real datasets are available in Appendix Tables B.7.

Simulated Datasets

We simulated four datasets using SimLoRD (Stöcker et al., 2016) to evaluate the performance of
our method. The datasets consist of 8, 20, 50 and 100 species. These datasets are named as Sim-8,
Sim-20, Sim-50 and Sim-100 respectively. We set the average read length to be 5,000bp with default
error model of SimLoRD (insertion probability=0.11, deletion probability=0.04 and substitution
probability=0.01).

Real Datasets

In order to evaluate LRBinner, we used several real datasets with known ground-truth references. To
determine the origins of the reads in these datasets, the reads were mapped to the respective reference
species using Minimap2(Li, 2018a). The information about the datasets are as follows.

• Reads from ATCC SRR9202034 Mock Microbial Community with PacBio CCS reads from NCBI
BioProject number PRJNA546278 (SRR9202034). For the evaluation we used the top 10 species
which have more than 1% abundance.
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• PacBio-HiFi reads obtained from NCBI BioProject number PRJNA680590. There are 3 read
samples (NCBI BioSample number SAMN16885726) and each sample consists of 21 strains for
17 species as follows;

– SRX9569057: Standard input library

– SRX9569058: Low input library

– SRX9569059: Ultra low input library (PCR amplified sample)

4.3.2 Tools for Benchmarking

There is a limited number of tools that support binning of long reads. Remind that most contig-
binning tools cannot be directly applied to bin long reads (even for highly accurate PacBio HiFi reads)
because there is no coverage information available for each long read. Hence, in our evaluation we
use BusyBeeWeb (Laczny, Kiefer et al., 2017) and MetaBCC-LR (Wickramarachchi, Mallawaarachchi,
Rajan et al., 2020a) which support error-prone long-reads as the baseline. However, BusyBeeWeb
only supports up to 200MB of FASTA formatted data. Hence, in our evaluation we have to provide
BusyBeeWeb with a sub-sampled set of reads and evaluated the binning precision and recall on this
sub-sampled set.

4.3.3 Evaluation Criteria

In our evaluation we report precision, recall and F1-score (refer to Section 3.3.3) of binning. In
order to evaluate the quality of binning, we used AMBER (Meyer, Hofmann et al., 2018a) to ob-
tain the completeness (defined as true positivesb

true positivesb+false negativesb
for each bin b) and contamination (defined

as 1− true positivesb
true positivesb+false positivesb

for each bin b). Please note that we only compare AMBER results of
MetaBCC-LR and LRBinner as BusyBeeWeb does not bin the entire datasets due to limited input size.
Furthermore, we assemble the reads before and after binning using LRBinner. Metagenomics assem-
blies were performed using wtdbg2 (Ruan and Li, 2020a) and metaFlye (Kolmogorov, Bickhart, Behsaz,
Gurevich, Rayko, Shin, Kuhn, Yuan, Polevikov, Smith and Pevzner, 2020). We compare genome
fractions, CPU-time and memory usage in assembly evaluation. We used MetaQUAST (Mikheenko
et al., 2015a) to obtain the genome fraction (average percentage of bases aligned per reference genome)
for the qualitative evaluation of assembled contigs.

4.4 Results and Discussion

We first compare precision, recall, F1 score and the estimated number of bins for binning performance.
We further present the completeness and contamination results of bins produced by different binners.
Furthermore, we evaluate assembly results using genome fraction and recorded the resource utilization
for the chosen assembly tools.

4.4.1 Binning Results

We benchmarked the binning performance for BusyBeeWeb, MetaBCC-LR and LRBinner. Table 4.1
demonstrates the binning results in terms of precision, recall, F1-score and the number of inferred
bins. While BusyBeeWeb, MetaBCC-LR and LRBinner perform comparably on simulated datasets,
LRBinner achieves the best estimation on the number of bins with respect to the ground truth for
most of the datasets. As BusyBeeWeb has a limitation of input data size (200Mb), its binning accuracy
deteriorates on the large real datasets due to its limited access to the complete dataset. Although
BusyBeeWeb demonstrates good performance in simulated datasets the performance degrades rapidly
in real datasets. This is especially true when Sim-50 and Sim-100 where the coverage variation is
low compared to real datasets with large variation in abundances. This results in uniform clusters of
reads when sampled for BusyBeeWeb input which is not the case for real datasets. Note that LRBinner
improves binning results for all the real datasets as indicated by the higher F1 scores.

Figures 4.5 and 4.6 illustrates the completeness of bins produced by MetaBCC-LR and LRBinner, for
simulated and real datasets respectively. Note that BusyBeeWeb is not included in this comparison
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Table 4.1: Comparison of binning results of BusyBeeWeb, MetaBCC-LR and LRBinner.

Dataset Actual No. of Bins Evaluation Criteria BusyBeeWeb † MetaBCC-LR LRBinner

Sim-8 8

Precision 90.41% 90.78% 99.14%

Recall 99.80% 96.18% 99.14%

F1 score 94.87% 93.40 % 99.14%

Bins Detected 50 13 8

Sim-20 20

Precision 95.88% 82.97% 90.53%

Recall 97.99% 81.95% 88.23%

F1 score 96.92% 82.46% 89.36%

Bins Detected 30 29 18

Sim-50 50

Precision 94.15% 82.23% 91.92%

Recall 94.34% 70.56% 77.03%

F1 score 94.24% 75.95% 83.82%

Bins Detected 59 32 31

Sim-100 100

Precision 95.48% 90.50% 82.60%

Recall 87.85% 84.54% 92.78%

F1 score 91.50% 88.54% 87.39%

Bins Detected 75 89 63

SRR9202034γ 10

Precision 68.30% 93.69% 95.30%

Recall 81.96% 95.50% 95.99%

F1 score 74.51% 94.59% 95.64%

Bins Detected 87 14 10

SRX9569057 17

Precision 48.63% 80.94% 80.47%

Recall 72.68% 85.82% 90.68%

F1 score 58.27% 83.31% 85.27%

Bins Detected 111 23 16

SRX9569058 17

Precision 23.01% 70.18% 73.72%

Recall 32.64% 86.63% 91.03%

F1 score 26.99% 77.54% 81.46%

Bins Detected 117 37 22

SRX9569059 17

Precision 65.70% 66.69% 79.70%

Recall 95.36% 73.76% 91.25%

F1 score 77.80% 70.05% 85.08%

Bins Detected 124 16 20

† BusyBeeWeb is only evaluated on the sampled reads due to the input size limitation of the tool.
γ Only the top 10 abundant species are considered (More than 1% of abundance).

as it cannot handle the entire dataset in most cases which makes it incompatible for the AMBER
evaluation. LRBinner has been able to produce bins with better average completeness over MetaBCC-
LR. Figure 4.7 and 4.8 also illustrates the contamination levels of bins produced by MetaBCC-LR and
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Figure 4.5: Comparison of bin completeness between MetaBCC-LR and LRBinner for the simulated datasets.

LRBinner, for simulated and real datasets respectively. From the plots it is evident that LRBinner
produces bins with lower contamination in all datasets except for SRX9569059. Note that the dataset
SRX9569059 has been generated from a PCR amplified sample leading to a significant deviation from
the original sample abundances in contrast with SRX9569057 and SRX9569058 datasets. For example,
in SRX9569059, the abundance of Faecalibacterium prausnitzii drops from ∼ 16% to ∼ 8% whereas the
abundance of Fusobacterium nucleatum surges from ∼ 4% to ∼ 7%, which may result in contamination
of long reads in binning results.

4.4.2 Assembly Results

We assembled the reads binned by LRBinner to evaluate the potential assembly quality changes.
For the assembly, we chose the two state-of-the-art long-read assemblers wtdbg2 (Ruan and Li,
2020a), version 2.5 and metaFlye (Kolmogorov, Bickhart, Behsaz, Gurevich, Rayko, Shin, Kuhn, Yuan,
Polevikov, Smith and Pevzner, 2020), available in Flye v2.4.2. Table 4.2, demonstrates that binning
long reads prior to assembly by LRBinner improves the genome fraction for all wtdbg2 assemblies (up
to 40%) and maintains comparable genome fractions for metaFlye assemblies. This is not surprising
as metaFlye is a metagenomics specialized assembler in contrast with wtdbg2. For example, in
the datasets SRX9569057, SRX9569058 and SRX9569059, binning via LRBinner enabled wtdbg2 to
recover low-abundance species which were ignored in the assembly of the entire raw dataset, e.g.,
Methanobrevibacter smithii (from 0 to 96%), Saccharomyces cerevisiae (from 0 to 75%) and Candida albican
(from 0 to 70%). This is because LRBinner allows wtdbg2 to estimate more appropriate parameters in
each bin rather than applying the same parameters across the entire dataset.

Another advantage of binning prior to assembly is the reduction of the computing resources for
assembly. As demonstrated in Table 4.2, the peak-memory usage has been drastically reduced in both
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Figure 4.6: Comparison of bin completeness between MetaBCC-LR and LRBinner for the real datasets.

wtdbg2 (up to 10×) and metaFlye (up to 4×) assemblies. Note that the CPU time is comparable as
binning long reads may not lead to significant reduction of k-mer indexing cost and the construction
and simplification of assembly graphs.

4.4.3 Effect of chosen oligonucleotide composition on binning

We conducted experiments to evaluate the effect of varying oligonucleotide frequency vector size
in composition vectors to see the impact on the binning performance. We tested tri-, tetra- and
penta-nucleotide frequencies where the composition vectors took size 32, 136 and 512 dimensions. The
results are tabulated in the Table 4.3. It is reasonably evident that increased vector size produced false
bin numbers compared to smaller ones. This is because, increase in vector size makes the composition
vectors more amenable to errors due to erroneous k-mers. Moreover, increased size of the composition
vectors can lead biases in the auto-encoder training phase and require rigorous parameter tuning to
compensate such biases.

4.4.4 Effect of changes in choice of k-mer on resource utilization

Table 4.3 also tabulates the change in performance requirements for different k values chosen for the
composition vectors. Intuitively, we see an increasing trend in the resource usage. In datasets Sim-100
and SRX9569058 the memory consumption is closer to 40 GB which renders LRBinner non-functional
in desktop class computers. Although not severely affected, the CPU hours consumed follows a
similar trend.
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Figure 4.7: Comparison of bin contamination between MetaBCC-LR and LRBinner for the simulated
datasets.

4.5 Implementation

In order to restrict the iterative search for clusters, we use early termination parameters in our
algorithm. We stop drawing seed points when the remaining number of reads reaches below
min_cluster_size (=5000 by default) or the number of iterations has passed max_iterations (=1000). We
evaluated the performance of LRBinner with varying size of the composition vectors. The related
resource utilization and binning accuracy are tabulated in Table 4.3. The GPU utilization was below
4GB during all the experiments due to fixed batch size of 1024 reads. Coverage vectors were fixed at
bins=32 and bin_width=10.

LRBinner was implemented using C++ and Python version 3.7. The deep learning component is
implemented using PyTorch (Paszke et al., 2019) and Numpy (Harris et al., 2020). We conducted our
assemblies on NCI Australia with 2 x 28-core Intel Xeon Platinum 8274 (Cascade Lake) 3.2 GHz CPUs
192 GB RAM and binning on Ubuntu 20.04.3 LTS system running on AMD Ryzen 9 5950X with 16-core
processor with 32 threads and 128 GB of RAM with NVIDIA RTX 3090 GPU with 24 GB VRAM. We
used 56 threads for assembly and 32 threads for binning with GPU acceleration.
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Figure 4.8: Comparison of bin contamination between MetaBCC-LR and LRBinner for the real datasets.

4.6 Discussion

4.6.1 Summary

We presented LRBinner, a long read binner capable of binning error-prone long reads using both
coverage and composition information. Our work extends the use of variational auto-encoders to
combine raw features and learn a better latent representation for long-read binning. Furthermore, we
presented a novel clustering strategy that can perform clustering on large datasets with varying cluster
sizes. Performance of LRBinner was evaluated against existing long-read binners using simulated and
real datasets. Our experimental results show that LRBinner outperforms state-of-the-art long-read
binning tools and also improves resource usage of downstream assembly.

4.6.2 Room for improvements

LRBinner possess several limitations. (1) Although, the use of entire dataset at once can provide better
clustering of long reads, this imposes a major challenge. Since metagenomic datasets are imbalanced
in nature, i.e., species have varying genome sizes and abundances. This means there could be large
clusters that can present peaks in distance histograms that overthrow low abundant clusters. This
is because, in the distance histograms, small clusters could be seen as noise or their peaks could be
hidden. Hence, an approach that would somehow balance the clusters in metagenomic datasets could
improve the binning performance. (2) Estimation of coverage using k-mer coverage histograms can be
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Table 4.2: Comparison of assembled genome fractions, CPU time consumed for assembly and peak memory
usage of assembly before and after binning the reads.

Dataset Assembly Tool
Genome Fraction CPU Hours Peak Memory (GB)

Raw Binned Raw Binned Raw Binned

Sim-8
wtdbg2 98.80% 98.90% 0.26 0.84 9.28 0.96

metaFlye 99.90% 99.85% 16.13 11.64 44.12 10.65

Sim-20
wtdbg2 97.84% 99.19% 0.16 2.28 10.60 0.92

metaFlye 99.80% 99.75% 19.44 20.28 44.70 11.23

Sim-50
wtdbg2 97.83% 98.06% 6.03 5.98 15.7 2.68

metaFlye 99.35% 98.43% 23.03 20.01 64.21 14.58

Sim-100
wtdbg2 91.70% 93.67% 9.2 9.1 36.16 10.84

metaFlye 97.68% 98.01% 69.79 59.89 116.11 27.48

SRR9202034 †
wtdbg2 67.45% 82.50% 0.31 1.05 23.43 19.61

metaFlye 91.40% 91.74% 155.96 158.59 62.28 45.38

SRX9569057
wtdbg2 40.40% 73.02% 0.26 1.56 21.72 3.88

metaFlye 77.73% 73.68% 122.00 116.20 57.91 26.31

SRX9569058
wtdbg2 37.51% 80.65% 0.30 1.98 30.79 3.86

metaFlye 79.16% 79.63% 211.61 212.58 87.62 41.37

SRX9569059
wtdbg2 41.00% 80.38% 0.26 1.82 25.63 3.80

metaFlye 79.69% 77.46% 152.64 129.41 62.62 30.56

† Genome fraction computed using the top 10 species with at least 1% abundance.

inaccurate due to the presence of shared k-mers and erroneous k-mers. Moreover, the binning could
benefit from a more accurate estimation of coverage beyond a pure k-mer driven approach. Because
of these limitations LRBinner cannot fully recovery the low abundant species.
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Table 4.3: Performance of LRBinner with varying k-sizes for composition vectors.

Dataset k-size No. of Bins Precision Recall F1 score CPU Hours Peak Memory (GB)

Sim-8

3 8 99.14% 99.14% 99.14% 0.72 4.52

4 10 97.22% 96.25% 96.73% 0.79 5.51

5 10 97.18% 98.47% 97.82% 0.79 9.29

Sim-20

3 18 90.53% 88.23% 89.36% 1.06 4.83

4 20 91.58% 91.58% 91.58% 1.11 6.34

5 21 93.11% 95.96% 94.51% 1.14 12.16

Sim-50

3 31 82.60% 92.78% 87.39% 1.70 5.46

4 42 92.78% 87.00% 89.79% 1.77 7.96

5 45 93.72% 88.63% 91.11% 1.82 19.06

Sim-100

3 63 82.60% 92.78% 87.39% 4.12 7.95

4 57 92.87% 82.13% 87.17% 4.39 14.59

5 55 93.22% 81.05% 86.71% 4.37 42.27

SRR9202034

3 10 95.30% 95.99% 95.64% 3.31 7.09

4 23 91.71% 96.66% 94.12% 3.38 12.35

5 33 94.84% 97.72% 96.26% 3.49 33.70

SRX9569057

3 16 80.47% 90.68% 85.27% 2.98 6.59

4 30 82.07% 90.92% 86.27% 3.03 11.00

5 38 80.18% 95.07% 86.99% 3.14 28.56

SRX9569058

3 22 73.72% 91.03% 81.46% 1.65 7.66

4 30 81.88% 90.80% 86.11% 2.34 13.81

5 42 80.44% 95.80% 87.45% 4.41 39.28

SRX9569059

3 20 79.70% 91.25% 85.08% 1.62 7.25

4 29 83.18% 89.42% 86.19% 2.46 12.76

5 56 77.94% 96.02% 86.04% 3.90 35.32
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Chapter 5

Read-Overlap Graph for Binning Long
Reads

The work presented in this chapter was published as

A. Wickramarachchi and Y. Lin (2022b). ‘Metagenomics Binning of Long Reads Using Read-Overlap
Graphs’. In: RECOMB International Workshop on Comparative Genomics. Springer, pp. 260–278

This piece of work was presented at the The 19th Annual Satellite Conference of RECOMB on
Comparative Genomics (RECOMB-CG) conference 2022.
https://recombcg2022.usask.ca/pages/program/

The software is freely available at https://github.com/anuradhawick/OBLR.

5.1 Overview and Motivation

In this chapter, we propose a novel binning approach named OBLR to bin long reads using the
read-overlap graph. This approach intends to address the two main limitations of LRBinner (1)
imbalanced clusters and (2) inaccurate estimation of coverage. In order to address these limitations
we introduce the idea of read-overlap graph. In OBLR, we compute the read-overlap graph using
an efficient mapping tool such as kbm2. We use the read-overlap graph obtained to estimate the
coverage of reads based on the degree in the graph. Furthermore, using the degree as a probabilistic
measure, we down sample the datasets to obtain a version that has more balanced clusters.

Using a simulated sample dataset we show that the degree of the read-overlap graph has a correlation
with the underlying coverage of the reads’ species. Moreover, we show that when the dataset is
down-sampled using the degree of the nodes as a probabilistic metric, we can obtain a balanced
version of the dataset. Following the sampling, we detect the number of clusters dynamically by
observing the clustering of several sample sizes scored using the Silhouette score. We use UMAP for
dimension reduction and HDBSCAN as the clustering algorithm to detect the clusters. At the end, we
use GraphSAGE to label the entire read-overlap graph using the identified clusters in the dataset.

We conduct several experiments using simulated and real datasets to evaluate the performance of
OBLR. We show that OBLR not only performs well in binning but also enables to improve the genome
fractions of assembled metagenomic datasets following the binning process. The implementation of
OBLR enables the efficient computation of the read-overlap graph using a read blocking strategy and
the rest of the pipeline is implemented using GPU accelerated implementations of algorithms.

5.2 Methods

Our pipeline consists of 5 steps performing the tasks, (1) building the read-overlap graph, (2) obtaining
read features, (3) performing probabilistic sampling, (4) detecting clusters for sampled reads and (5)
binning remaining reads by inductive learning. Figure 5.1 illustrates the overall pipeline of OBLR.
The following sections explain each step in detail.

https://recombcg2022.usask.ca/pages/program/
https://github.com/anuradhawick/OBLR
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Figure 5.1: An overview of the workflow of the proposed pipeline OBLR.

5.2.1 Constructing Read-Overlap Graph

The read-overlap graph is introduced to demonstrate the overlapping information between raw reads.
Two raw reads are overlapping (connected by an edge in the read-overlap graph) iff their overlapping
length is at least Loverlap and the overhang length is at most Loverhang (computed according to (Li,
2016)). In our pipeline, we use k-mer bin map (kbm2) program to compute the approximate overlaps
between reads and set Loverlap = 2560 and Loverhang = 512 in the default setting. Note that kbm2 is a
sub-routine of the recent assembler wtdbg2 and is extremely fast to detect overlapping reads using
k-mer bins without performing pairwise alignment (Ruan and Li, 2020b). In the read-overlap graph,
each node Ri represents a read while each edge (Ri, Rj) indicates that Ri and Rj are overlapping. We
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also define D(Ri) as the degree of Ri in this read-overlap graph.

5.2.2 Obtaining Read Features

In our pipeline, we intend to derive read features that incorporate both composition and coverage
information of long reads.

The composition information of long reads can be computed as their oligonucleotide frequencies
which are shown to be conserved within a given species while being reasonably distinct between
species (Strous et al., 2012; Wu, Simmons et al., 2015). More specifically, we compute a tetra-nucleotide
frequency vector for each long read Ri, i.e., X(Ri) ∈ R136 as there are 136 distinct tetra-mers when
combining reverse complements.

The coverage information of long reads usually refers to the coverage of underlying genomes from
which the long reads are drawn. This is also important in metagenomics binning as long reads from the
same species tend to have similar coverages (Nissen et al., 2021; Wickramarachchi, Mallawaarachchi,
Rajan et al., 2020a). While such coverage information is usually available for contigs assembled from
short reads (as a byproduct of assembly), long reads do not come with their coverage information.
However, a read from a high-coverage genome is likely to have more overlaps compared to that from
a low-coverage genome. Therefore, it is a natural choice to use the node degree in the read-overlap
graph to estimate the coverage of the corresponding read. This choice is supported by Figure 5.2
which shows a clear correlation between the node degree in the read-overlap graph and the coverage
information of the corresponding read.
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Figure 5.2: The correlation between the node degree in read-overlap graph and the coverage information of
the corresponding read for Sim-8 and Sim-20 datasets.

In summary, we combine both tetra-nucleotide frequency vector X(Ri) (for composition) and the
node-degree information D(Ri) (for coverage) to derive the read feature vector as XD(Ri) = X(Ri)×
max(1, lg(D(Ri))) for each long read Ri. Note that the max( ) and lg( ) are introduced to dampen
rigorous fluctuations in coverage, especially for low-coverage genomes. Henceforth, XD(Ri) refers to
the read features using degree and composition for read Ri.

5.2.3 Performing Probabilistic Sampling

While it is now possible to bin all long reads using their read feature vectors, such a clustering
will suffer from the well-known class-imbalance problem (Japkowicz and Stephen, 2002) because
metagenomic samples consist of species with varying coverages resulting in a significant variation of
the cluster sizes. It has been shown that probabilistic sampling of data can effectively address this
problem by generating datasets of similar cluster sizes (Liu et al., 2009). The remaining challenge is
how to perform probabilistic sampling on long-read datasets and derive more uniform clusters of
long reads across species of varying abundances, i.e. low probabilities to sample long reads from high-
coverage genomes and vice versa. We recall the degree information of nodes and use the equation 5.1
to compute the relative probability of sampling Ri.
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Figure 5.3: Comparison of uniform sampling and probabilistic sampling of long reads in Sim-8 dataset.
Different colors corresponds to reads that belong to a unique species.

P(Ri) =

 1
D(Ri)

if D(Ri) 6= 0

0 if D(Ri) = 0
(5.1)

Note that D(Ri) = 0 when Ri is an isolated node in the read-overlap graph and this is very helpful
for OBLR to distinguish reads of low-abundance species from noisy or chimeric reads. Figure 5.3
clearly demonstrates that the probabilistic sampling can derive more balanced clusters of long reads
compared to uniform sampling, and thus results in better cluster separations.

5.2.4 Detecting Clusters for Sampled Reads

UMAP (McInnes, Healy and Melville, 2020) is used to project the sampled reads into lower dimensions
followed by clustering using HDBSCAN (McInnes, Healy and Astels, 2017). To accommodate long-
read datasets with different relative species abundances, the sample size is set to be 25, 000, 50, 000
and 100, 000 and the Silhouette score (Rousseeuw, 1987) is used to determine the best clustering result
in an unsupervised manner. Afterwards, sampled reads are binned into clusters followed by binning
the remaining reads into the identified clusters.

5.2.5 Binning Remaining Reads by Inductive Learning

OBLR employs GraphSAGE (Hamilton et al., 2017) to bin the remaining reads into the identified
clusters in the previous step. GraphSAGE is a Graph Neural Network (GNN) architecture and has been
designed to perform inductive learning using large-scale graphs (Hamilton et al., 2017). GraphSAGE
can be represented as a layer in a GNN that aggregates the neighborhood features to represent the
features of a node itself. Formally, the l-th layer can be formulated according to equations 5.2 and
5.3 (Xu et al., 2018).

a(l)i = Mean(h(l−1)
j : j ∈ N (Ri)) (5.2)

h(l)v = Concatenation(h(l−1)
v , a(l)v ) (5.3)
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where h(l)i is the feature vector of node Ri at layer l. Note that h(0)v =XD(Ri) and N (Ri) repres-
ent neighbors of node Ri. While GraphSAGE supports arbitrary aggregate functions, we choose
the Mean( ) as the aggregation operator to be tolerant towards noise and false connections in the
read-overlap graph due to repeats. Furthermore, we use Concatenation( ) as the layer-wise feature
combination strategy to retain features from both the node itself and its neighborhood.

We use two GraphSAGE layers followed by a fully-connected layer with K outputs, where K is the
number of bins estimated in Step (4). Two GraphSAGE layers use LeakyRELU activation while the
final layer uses log softmax activation resulting in the output probabilities for K bins. We train the
GNN using 200 epochs using sampled reads binned in Step (4) and use negative log-likelihood (cross-
entropy) as the loss function. During the training phase, we use a neighbor sampler that samples
up to 20 neighbors in GraphSAGE layers. We use Adam optimizer for gradient descent. The trained
GNN on sampled reads provides assignment probabilities for remaining reads to the bins derived in
Step (4). The remaining reads are thus assigned to the bins with the highest probabilities.

5.3 Experimental Setup

We evaluate our pipeline using four simulated and two real datasets. Detailed dataset information
for simulations are available in Appendix Tables B.3, B.4 and B.2. Information about real datasets are
available in Appendix Table B.7.

5.3.1 Simulated Datasets

We simulate four PacBio datasets using SimLoRD (Stöcker et al., 2016) containing 8, 20, 50 and
100 (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a; Wu, Tang et al., 2014) species with
average read length 5,000base pairsand the default PacBio error profiles in SimLoRD (insertion=0.11,
deletion=0.04 and substitution=0.01). These datasets are named as Sim-8, Sim-20, Sim-50 and Sim-
100 respectively.

5.3.2 Real Datasets

Two real datasets with known reference genomes are also used to evaluate read-level binning per-
formance. Long reads from these datasets were aligned references using Minimap2 (Li, 2018b) to
obtain the ground truth.

• ZymoEVEN: Oxford Nanopore reads sequenced from GridION device from NCBI Accession
Number ERR3152364(Nicholls et al., 2019). The dataset consists of 10 species with average read
length 4,119.

• SRR9202034: PacBio CCS reads of the ATCC MSA-1003 Mock Microbial Community from
NCBI BioProject number PRJNA546278 Accession Number SRR9202034. The dataset contains 15
species with more than 0.1% relative abundance and average read length 8,263.

• SRX9569057: PacBio-HiFi reads of the NCBI BioSample SAMN16885726 Accession Number
SRX9569057. This dataset contains 13 species (18 strains) with more than 0.1% relative abundance
and average read length 9,093.

Table 5.1 summarizes the information about the datasets including the number of species, dataset
sizes and the number of nodes (reads) and edges of the read-overlap graphs.

5.3.3 Baselines and Evaluation Criteria

We benchmark our approach against two recent long-read binners, MetaBCC-LR (Wickramarachchi,
Mallawaarachchi, Rajan et al., 2020a) and LRBiner (Wickramarachchi and Lin, 2021a). The binning
results are evaluated using precision, recall and F1-score (refer to Section 3.3.3). We also used
AMBER (Meyer, Hofmann et al., 2018b) to compute completeness and purity for derived bins. Long-
read metagenomics assemblies before and after binning are performed using metaFlye (Kolmogorov,
Bickhart, Behsaz, Gurevich, Rayko, Shin, Kuhn, Yuan, Polevikov, Smith et al., 2020) version 2.9-b1774.
The genome fractions (computed by MetaQUAST (Mikheenko et al., 2016)), CPU-time and memory
usage are used to evaluate assembly performance before and after binning.
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Table 5.1: Summary of the datasets

Dataset No. of species Dataset size (GB) No. of nodes No. of edges

Sim-8 8 3.5 432,333 47,984,545

Sim-20 20 5.3 666,735 42,642,457

Sim-50 50 9.5 1,119,439 86,245,400

Sim-100 100 24.6 2,991,815 1,198,753,181

ZymoEVEN 10 8.2 1,688,672 611,447,694

SRR9202034 15 19.5 2,358,257 2,105,962,083

SRX9569057 13 18.0 1,978,852 1,421,138,836

0.0 0.5 1.0

MetaBCC-LR

LRBinner

OBLR

Sim-8

0.0 0.5 1.0

Sim-20

0.0 0.5 1.0
F1-score per bins

MetaBCC-LR

LRBinner

OBLR

Sim-50

0.0 0.5 1.0
F1-score per bins

Sim-100

Figure 5.4: Per bin F1-score comparison between MetaBCC-LR, LRBinner and OBLR computed by AM-
BER (Meyer, Hofmann et al., 2018b) for simulated datasets.

5.4 Results and discussion

We evaluate binning results at the read-level using precision, recall, F1 score and the number of bins
produced as well as per-bin F1-scores of read bins using AMBER (Meyer, Hofmann et al., 2018b).
Moreover, we conducted a quantitative evaluation of assemblies using MetaQuast (Mikheenko et al.,
2016) before and after binning, especially on recovering low-abundance species.
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5.4.1 Binning Results

We benchmark OBLR against MetaBCC-LR (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a)
and LRBiner (Wickramarachchi and Lin, 2021a) which are two recent long-read binning tools as
presented in Table 5.2. We observed that OBLR results in the highest F1-scores across all the datasets
with the overall best performance. OBLR also produces more accurate estimates of the number of
bins in most datasets. These observations are further supported by the AMBER (Meyer, Hofmann
et al., 2018b) evaluation in Figures 5.4 and 5.5 where OBLR produces best per bin F1-scores (2×
purity×completeness
purity+completeness ) among three long-read binners. Please refer to Appendix D for a detailed discussion
on AMBER evaluation and the reason for it to penalize the results from tools producing inaccurate
number of bins.

0.0 0.5 1.0
F1-score per bins

MetaBCC-LR

LRBinner

OBLR

ZymoEVEN

0.25 0.50 0.75 1.00
F1-score per bins
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F1-score per bins
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Figure 5.5: Per bin F1-score comparison between MetaBCC-LR, LRBinner and OBLR computed by AM-
BER (Meyer, Hofmann et al., 2018b) for real datasets.

5.4.2 Assembly Results

We perform assembly using the long-read metagenomics assembler metaFlye (Kolmogorov, Bickhart,
Behsaz, Gurevich, Rayko, Shin, Kuhn, Yuan, Polevikov, Smith et al., 2020). Table 5.3 demonstrates
the genome fraction and resource usage for assembling raw reads (termed raw) and assembling
reads binned by OBLR (termed Binned), respectively. Binning long reads before assembly in general
improves (85.11% to 89.53% on SRX9569057) or maintains (86.51% 86.67% in ZymoEVEN and 90.30%
to 90.39% in SRR9202034) the genome fraction while significantly saving on the resources. The saving
on peak memory varies from 40% to 80%.

5.5 Implementation

In our implementation, we use several approaches to improve performance of OBLR. In step 1, we
filter the stdout from kbm2 to simplify the graph while recording total node degrees. We chunk the
reads in to blocks of 250, 000 reads, and each block of reads is mapped with entire dataset resulting in
several mapping files. Finally, the mapping files are merged into a single file containing edges between
reads and degree. For step 2 we use seq2vec (Wickramarachchi, 2021) to compute the tetra-nucleotide
frequency vectors for long reads. In steps 3 and 4 we use Rapids.AI (RAPIDS Development Team,
2018) GPU libraries (Nolet et al., 2020) (on NVIDIA RTX 3090 with 24 GB VRAM) for UMAP and
HDBSCAN. Finally, we use PyTorch Geometric(Fey and Lenssen, 2019) in step 5 for the GraphSAGE.
Performance wise, for Sim-50 dataset, kbm2 consumes 2 CPU hours while the rest of the OBLR steps
consume 0.34 CPU hours. We conducted our experiments on an Ubuntu 20.04.3 LTS system running
on AMD Ryzen 9 5950X with 16-core Processor with 32 threads and 128 GB of RAM. Detailed system
resource usages are presented in Table 5.4.
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Table 5.2: Comparison of binning results of MetaBCC-LR, LRBinner and OBLR.

Dataset No. of Bins Evaluation Criteria MetaBCC-LR LRBinner OBLR

Sim-8 8

Precision 90.78% 99.14% 99.33%

Recall 96.18% 99.14% 99.33%

F1 score 93.40 % 99.14% 99.33%

Bins Detected 13 8 8

Sim-20 20

Precision 82.97% 90.53% 97.88%

Recall 81.95% 88.23% 97.88%

F1 score 82.46% 89.36% 97.88%

Bins Detected 29 18 20

Sim-50 50

Precision 82.23% 91.92% 92.94%

Recall 70.56% 77.03% 97.81%

F1 score 75.95% 83.82% 95.32%

Bins Detected 32 31 45

Sim-100 100

Precision 90.50% 82.60% 87.61%

Recall 84.54% 92.78% 95.00%

F1 score 88.54% 87.39% 91.16%

Bins Detected 89 63 74

ZymoEVEN 10

Precision 93.09% 72.41% 75.44%

Recall 73.84% 92.97% 95.33%

F1 score 82.36% 81.41% 84.23%

Bins Detected 8 9 8

SRR9202034 15†

Precision 91.30% 93.16% 98.48%

Recall 69.59% 91.94% 98.52%

F1 score 78.98% 92.55% 98.50%

Bins Detected 11 10 15

SRX9569057 13†

Precision 80.94% 80.47% 95.03%

Recall 85.82% 90.68% 97.70%

F1 score 83.31% 85.27% 96.35%

Bins Detected 23 16 14

† Species with at least 0.1% abundance.
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Table 5.3: Comparison of genome fraction, memory usage and CPU time consumed for assemblies conducted
using metaFlye (Kolmogorov, Bickhart, Behsaz, Gurevich, Rayko, Shin, Kuhn, Yuan, Polevikov, Smith et al.,
2020) before and after binning.

Dataset Genome Fraction
Raw

Genone Fraction
OBLR

Peak Memory
(GB)

CPU Time
(Hours)

Raw Binned Raw Binned

Sim-8 99.90% 99.90% 44.12 9.14 7.98 7.76

Sim-20 99.80% 99.85% 71.70 8.52 14.75 12.84

Sim-50 99.25% 99.32% 58.12 14.36 22.95 20.09

Sim-100 97.70% 97.77% 51.95 25.91 76.62 43.78

ZymoEVEN 86.51% 86.67% 31.67 14.82 15.17 13.22

SRR9202034† 90.30% 90.39% 52.80 28.48 173.20 140.60

SRX9569057† 94.13% 94.27% 49.43 25.84 112.32 98.82

† Genome fraction computed from species with at least 0.1% abundance..

5.6 Discussion

5.6.1 Summary

We presented a novel long-read binner, OBLR, which utilizes the read-overlap graph to bin long reads
in metagenomic samples. Recent advances such as the k-mer bins mapping (kbm2) (Ruan and Li,
2020b) enable extremely fast detection of overlapping reads and construction of the read-overlap
graph before assembly. OBLR thus makes use of the read-overlap graph to improve the state-of-the-art
long-read binning approaches. The read-overlap graph not only helps to estimate the coverage of
a single long read, but also allow us to sample the long-reads more uniformly across species of
varying abundances. The connectivity information in the read-overlap graph further incorporates
the overlapping information between reads into the binning process as overlapped reads are more
likely to be in the same species. As a result, OBLR demonstrated promising results in producing more
accurate bins for long-read datasets and has the potential to improve on metagenomic assemblies
in terms of computing resources and genome fraction, especially for low-abundance species. In the
future, we plan to investigate how OBLR can be adapted to take the advantage of the high-accuracy
long reads including PacBio HiFi (Wenger et al., 2019) and Nanopore Q20+ (New nanopore sequencing
chemistry in developers’ hands; set to deliver Q20 (99%) "raw read" accuracy 2021) and how to incorporate
the binning process into long-read metagenomic assemblies (Feng et al., 2021; Kolmogorov, Bickhart,
Behsaz, Gurevich, Rayko, Shin, Kuhn, Yuan, Polevikov, Smith et al., 2020).

5.6.2 Room for improvements

OBLR performed binning of long reads, assigning each read to a single bin. However, in metagenomic
datasets, there can be regions shared by multiple species. Although such regions can be relatively
smaller for microbial genomes, absence of such regions from bins can result in fragmentation in
assembly. An area of improvement would be to assign reads to top N bins having probability beyond
the threshold t. Implementation of such a multi-label classifier requires modifications to the step where
the reads are classified to identified bins using the GraphSAGE framework. Moreover, activation
function should be adjusted supporting multi label classification capabilities which is not currently
supported by log softmax function. Additionally, post assembly refinements can also be considered.
This is because, the assembled bins can either be merged or further separated using information such
as marker genes. This could further improve and complete the binning pipeline by producing more
accurate bins with high quality genomes. More solid future improvements are discussed in Chapter 8.
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Table 5.4: Resource usage of each step in the OBLR pipeline.

Dataset OBLR step Peak Memory
(GB)

CPU Time
(H)

Peak GPU
Memory (GB)

Sim-8

Building read-overlap graph 7.15 0.93 -

Detecting optimum clustering 5.39 0.06
18.70

Binning all reads 6.38 0.01

Sim-20

Building read-overlap graph 7.26 1.27 -

Detecting optimum clustering 5.94 0.05
11.56

Binning all reads 7.15 0.06

Sim-50

Building read-overlap graph 7.36 2.68 -

Detecting optimum clustering 7.08 0.06
18.75

Binning all reads 8.80 0.16

Sim-100

Building read-overlap graph 19.23 26.62 -

Detecting optimum clustering 14.43 0.13
18.73

Binning all reads 19.03 0.65

ZymoEVEN

Building read-overlap graph 4.78 4.8 -

Detecting optimum clustering 22.4 0.22
11.57

Binning all reads 28.98 0.11

SRR9202034

Building read-overlap graph 36.54 118.73 -

Detecting optimum clustering 15.09 0.15
18.89

Binning all reads 18.48 0.08

SRX9569057

Building read-overlap graph 4.97 82.81 -

Detecting optimum clustering 30.20 0.29
18.96

Binning all reads 38.75 0.15
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Chapter 6

Plasmid Recovery from Long Reads
Datasets

The work presented in this chapter was published as

A. Wickramarachchi, V. Mallawaarachchi, L. Pu et al. (2021b). ‘PlasLR Enables Adaptation of Plasmid
Prediction for Error-Prone Long Reads’. bioRxiv

This piece of work was presented at the 14th Great Lakes Bioinformatics (GLBIO) conference 2021.
http://iscb.org/cms_addon/conferences/glbio2021/tracks/General

6.1 Overview and Motivation

So far we have been developing methods and algorithms to support metagenomics binning of long
reads. However, plasmids, a variant of microbial genetic materials is an interesting element that has
many biological implications. Recovery of plasmids is the separation of microbial genetic material into
the two classes Plasmid and Chromosome. In contrast with metagenomics binning, plasmids recovery is
usually studied as a binary classification problem, mainly targeting assembled contigs.

In this chapter, we study the potential of existing plasmids classification tools to be used for the
recovery of plasmid contigs from long reads. We develop the tool PlasLR, a tool that adapts existing
contig-classification tools for plasmids to directly classify long and error-prone long reads. PlasLR
makes use of both the composition information and k-mer coverage information of long reads.
PlasLR leverages the k-mer coverage histograms introduced in MetaBCC-LR (Wickramarachchi,
Mallawaarachchi, Rajan et al., 2020a) of Chapter 3 as the coverage metric and tetranucleotide frequency
vectors as the composition component.

We evaluate the utility of PlasLR via experimentation which shows that PlasLR achieves high accuracy
of plasmid detection on top of state-of-the-art plasmid classification tools. Furthermore, we show
that using PlasLR before long-read assembly facilitates enhancements to the assembly quality while
recovering more complete plasmids and chromosomes.

6.2 Methods

The contig-classification tools for plasmids have been successfully applied to classify contigs as-
sembled from NGS reads. However, they are not robust on direct classification of all long reads (by
treating long reads as contigs) because (1) long reads are more error-prone than contigs assembled
from short reads leading to a higher deviation in oligonucleotide frequency vectors and (2) study of
plasmid specific genes cannot be conducted on long reads due to the large number of reads available
and possible errors on the reads. However, these tools are capable of producing a subset of confident
classification at higher confident thresholds, i.e. chromosomes closer to probability 0 and plasmids
closer to probability 1 in the binary classification setting. Hence, there exists a significant compromise
between precision and recall depending on the chosen threshold. This limitation provides PlasLR
with the opportunity to employ high confident classifications as initial results. Introduction of dataset

http://iscb.org/cms_addon/conferences/glbio2021/tracks/General
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specific features alongside facilitates PlasLR to apply semi-supervised machine learning techniques to
improve classifications.

PlasLR takes long reads (either PacBio or ONT) as the input. The minimum read length accepted by
PlasLR is 1000bp. If we directly apply an existing contig-classification tool to classify all the long reads,
unlike contigs classification, the reads get classified into incorrect class (plasmid or chromosome). The
intuition is to select and retain the most confident labels (plasmid or chromosome) from a subset of
long reads and propagate these labels to other long reads originating from the same chromosome or
plasmid.

Previous studies have shown that plasmids and chromosomes have different oligonucleotide com-
positions which have been used in plasmid classification (Davis and Olsen, 2009; Wong et al., 2002;
Zhou, Olman et al., 2008; Zhou and Xu, 2010b). The oligonucleotide composition is thus a potential
feature for long reads because long reads from the same chromosome or plasmid tend to have similar
oligonucleotide composition. Plasmids may also have different coverages compared to chromosomes
and such coverage variations have been used in plasmid reconstruction (Antipov, Hartwick et al.,
2016). Although it is challenging to estimate the coverage of a chromosome or plasmid that a long
read belongs to, the k-mer coverage histogram of a long read has been shown to approximate such
coverage and has been used in clustering long reads (Wickramarachchi, Mallawaarachchi, Rajan et al.,
2020a). Therefore, PlasLR extracts both oligonucleotide composition and k-mer coverage histogram as
features of a long read and propagates reliable labels from a subset of long reads to others based on
these features.

The complete workflow is presented in Figure 6.1. In Step 1, the k-mer coverage histograms and the
trinucleotide frequency vectors are computed respectively and concatenated together for each read to
form a single feature vector. In Step 2 the concatenated vectors are subjected to dimension reduction
using UAMP (the default choice) (McInnes, Healy and Melville, 2020). In Step 3, reads are classified
using an existing tool and only the high-confident labels (plasmid or chromosome) are retained. In
Step 4, nearest neighbors in the UMAP projections are used to detect and remove ambiguous labels,
and a K-Nearest Neighbor (KNN) classifier (Mitchell, 1997) is initialized on the remaining labelled
reads. Finally, in Step 5, all the unlabelled reads are labelled using the KNN classifier. Details of each
step are explained in the following sections.

6.2.1 Obtain a Feature Vector for Each Read

In real-world genomic samples, the species (chromosomes and plasmids) are of varying abundances
but contigs from the same chromosome or plasmid are likely to have similar coverages. In other
words, the reads should overlap and stack on each other to reflect the actual coverages. Intuitively,
this can be achieved using an all-vs-all alignment approach. However, such a naïve approach would
be computationally expensive as the number of reads can be very large. Therefore, the k-mer based
approach is used MetaBCC-LR (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a) is reused for
coverage estimation in PlasLR.

Microbial genomes carry signatures of oligonucleotide frequencies that are unique to each species (Abe
et al., 2003). These signatures are preserved within a species across its genome and varies between dif-
ferent species (Wu, Simmons et al., 2015). Moreover, previous studies have shown that chromosomes
and plasmids have different oligonucleotide compositions (Davis and Olsen, 2009; Wong et al., 2002;
Zhou, Olman et al., 2008). Given the longer lengths of reads, despite their error prone nature, the reads
carry closely similar oligonucleotide frequencies to that of their underlying chromosomes/plasmids.
While PlasFlow and PlasClass use the composition information from 3-mers to 7-mers in contigs,
PlasLR only uses 3-mers (trinucleotides or trimers) to compute frequency vectors for the long reads
because higher error rates in long reads affect more k-mers as k increases. 3-mer frequency vectors
have been successfully utilized in metagenomics binning of long reads (Wickramarachchi and Lin,
2021a; Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a). Now, we concatenate the coverage
histograms and trinucleotide frequency vectors to derive a vector with 64 dimensions for each long
read as shown in Figure 6.1 Step 1. Note that, in contrast with LRBinner and MetaBCC-LR, PlasLR
uses concatenated features as they are only required for approximate neighborhood analysis.
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Input: TGS reads

Step 1: Obtain a Feature Vector for Each
TGS Read

Step 2: Dimension Reduction

Step 4: Remove Ambiguous Labels and
Initialise a KNN Classifier
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Initialised KNN Classifier
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Figure 6.1: Long reads are provided as inputs for PlasLR. In Step 1, the k-mer coverage histograms and the
trinucleotide frequency vectors are computed respectively and concatenated together for each read. In Step
2 the concatenated vectors are subjected to dimension reduction using UMAP. In Step 3, reads are classified
using an existing tool and only the high-confident labels (plasmid or chromosome) are retained. In Step 4,
nearest neighbors in the UMAP plot are used to detect and remove some ambiguous labels, and a KNN
classifier is initialized on the remaining labelled reads. Finally, in Step 5, all the unlabelled reads are labelled
using the KNN classifier.
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6.2.2 Dimension Reduction

UMAP (Uniform Manifold Approximation and Projection) (McInnes, Healy and Melville, 2020) is used
to project the concatenated vectors of Step 1 into the two-dimensional space. UMAP is a technique
that is used to reduce the dimensionality of the data while preserving most of the variation among
data points in the dataset. UMAP tries to embed data in lower dimensions such that the fuzzy
topological structure is conserved (McInnes, Healy and Melville, 2020). Hence, PlasLR uses two
UMAP components to visualize (refer to Step 2 of Figure 6.1) and classify long reads into the two
classes.

Figure 6.2 denotes the UMAP plots of 64-dimension vectors of simulated PacBio reads originating
from the Aquifex aeolicus chromosome (NCBI accession number NC_000918, 20x coverage) and the
Lactococcus lactis plasmid (NCBI accession number NC_000906, 200x coverage) and Sim-2C5P dataset.
We include the ground-truth information as colored points in Figure 6.2 to demonstrate a locality of
the chromosomal and plasmid sequences in the UMAP plot. Note that PlasLR provides users with the
ability to select dimensionality reduction algorithm (PCA, UMAP, OpenTSNE (Poličar et al., 2019)).
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Figure 6.2: The UMAP decomposition plot of concatenated coverage histograms and 3-mer frequency
vectors of a set of simulated PacBio reads originating from one Aquifex aeolicus chromosome (20X coverage)
and one Lactococcus lactis plasmid (200X coverage) is shown on left. In the right, a Sim-2C5P dataset which
is more complicated is demonstrated.

6.2.3 Classification Using an Existing Plasmid Classification Tool

As discussed above, PlasLR makes use of plasmid classification results from existing contig classifica-
tion tools. We have selected two of the latest plasmid detection tools, PlasFlow (Krawczyk et al., 2018)
and PlasClass (Pellow, Mizrahi et al., 2020) to obtain the initial classifications. PlasFlow and PlasClass
are shown to outperform earlier tools in recent benchmarks (Krawczyk et al., 2018; Pellow, Mizrahi
et al., 2020) and provide confidence levels for the output labels predicted. This facilitates PlasLR to
perform downstream tasks by filtering classifications based on these confidence levels. Note that, for
a fair comparison, we have not considered reference based tools such as Platon (Schwengers et al.,
2020) or Kraken2 (Wood, Lu et al., 2019).

Note that the initial classification results of either PlasFlow or PlasClass consist of the three classes; (1)
plasmid, (2) chromosome and (3) unclassified. Most (>50%) reads will be in the unclassified class as
only high-confident assignments of plasmids and chromosomes are selected. PlasFlow and PlasClass
output formats are as follows.
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PlasFlow Output

The output of PlasFlow (Krawczyk et al., 2018) consists of a tabular file containing all the predictions
of contigs consisting of several columns including contig_id, contig_name, contig_length, id and label.
Additional columns showing probabilities of assignment to 26 genus classes were also included.

PlasClass Output

In the output of PlasClass (Pellow, Mizrahi et al., 2020), each line represents the probability of the
sequence being a plasmid.

The Step 3 of Figure 6.1 demonstrates the labels of plasmids and chromosomes incorporated into the
two dimensional UMAP plot, and will be used in subsequent refinement and propagation.

6.2.4 Remove Ambiguous Labels and Initialize a KNN Classifier

Using the set of labelled reads from Step 3, nearest neighbors (50 neighbors by default) are computed
for each read using the lower dimensional representation. The label of a read (plasmid or chromosome)
is defined to be ambiguous if more than 20% of its labelled nearest neighbors have a different label.
PlasLR removes those ambiguous labels and set them to be unclassified. Then, a K-Nearest Neighbor
(KNN) classifier (Mitchell, 1997) is initialized on the remaining labelled points (refer to Step 4 of
Figure 6.1). In this step, the KNN indexes the labelled points thus enabling predictions on unseen
points using the K (K=50) closest labelled data points.

6.2.5 Classifying all Reads using the Initialized KNN Classifier

The initialized KNN classifier is used to predict the probability that a read is a plasmid. We label the
reads exceeding 0.5 probability threshold as plasmids and vice versa. Step 5 of Figure 6.1 demonstrates
the visualization of assigning unclassified reads to the two classes using the KNN classifier. PlasLR
finally classifies all the input reads into two classes (plasmid and chromosome)

6.3 Experimental Setup

6.3.1 Datasets

We used the following datasets in our experiments.

1. We simulated several datasets with genomic abundances obtained from a log normal distribution
following the model in (Pellow, Mizrahi et al., 2020). The plasmid copy numbers were taken
from a geometric distribution where the probability of success is min(1, log(L)/10) and L is the
length of the plasmid. This was performed to amplify the abundance of short plasmids (Pellow,
Mizrahi et al., 2020). The following three datasets are simulated using SimLoRD (Stöcker
et al., 2016). The error rate was set to 10% and the minimum read length was set to 1000bp.
The detailed information about species (chromosomes and plasmids) is available in Appendix
Table B.5.

• Sim-2C5P: Contains 1 species with a total of 2 chromosomes and 5 plasmids.

• Sim-4C11P: Contains 2 species with a total of 4 chromosomes and 11 plasmids.

• Sim-10C16P: Contains 5 species with a total of 10 chromosomes and 16 plasmids.

2. Zymo GridION dataset (Zymo-GridION-EVEN-BB-SN) from the ZymoBIOMICS Microbial Com-
munity Standards (Nicholls et al., 2019) was used, which consists of real Oxford Nanopore (ONT)
reads. In order to obtain datasets with a considerable portion of plasmid content, we subsample
reads from each of the three species Escherichia coli, Staphylococcus aureus and Salmonella enterica.
We refer to the three datasets as Zymo-EC, Zymo-SA and Zymo-SE respectively. We randomly
subsampled up to 10,000 reads from each plasmid and chromosome class.
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Table 6.1: Information about the datasets in the experiments.

Dataset Read type Total number
of reads

Average read
length (bp)

Number of
plasmid reads

Number of
chromosomal reads

Sim-2C5P PacBio 20250 8246 6720 13530

Sim-4C11P PacBio 119957 8200 35110 84847

Sim-10C16P PacBio 199983 8200 32223 168760

Zymo-EC ONT 207442 6836 6437 10000

Zymo-SA ONT 375654 4058 10000 10000

Zymo-SE ONT 199974 6785 2850 10000

6.3.2 Tools Used for Initial Classification

We choose PlasFlow and PlasClass as initial classifiers for plasmids and chromosomes since they
have outperformed other tools in recent evaluations (Krawczyk et al., 2018; Pellow, Mizrahi et al.,
2020). PlasFlow outputs probabilities for 26 different classes under the phylum of each chromosome
and plasmid. Furthermore, the results contain a single field labelling the classification in the form
Class.phylum.

PlasClass outputs single-valued probabilities to indicate how probable a sequence belongs to a
plasmid. PlasLR chooses the thresholds such that 5% of reads are plasmids if such an amount of
reads exists above 70% confidence. Similarly up to 20% reads are chosen to be plasmids below 50%
confidence.

6.3.3 Evaluation Criteria

Different classification tools (PlasFlow, PlasClass and PlasLR) are evaluated based on the precision,
recall and F1 score of plasmid and chromosome classifications separately. For this purpose, we define
the following terms.

• TPp: the number of actual plasmid sequences that were classified as plasmid (true positives for
plasmids)

• TPc: the number of actual chromosomal sequences that were classified as chromosomal (true
positives for chromosomes)

• FPp: the number of non-plasmid sequences that were classified as plasmid (false positives for
plasmids)

• FPc: the number of non-chromosomal sequences that were classified as chromosomal (false
positives for chromosomes)

• FNp: the number of plasmid sequences that were not classified as plasmid (false negatives for
plasmids)

• FNc: the number of chromosomal sequences that were not classified as chromosomal (false
negatives for chromosomes)

The micro-averaged precision, recall and F1 score are calculated as follows. Note that FNp and FNc
include the number of unclassified chromosomal and plasmid sequences, respectively. We use the
following equations to evaluate the classification of chromosomes.

For the evaluation of plasmids the following equations were used;



Chapter 6. Plasmid Recovery from Long Reads Datasets 60

Plasmid Precision (%) =
TPp

TPp + FPp
(6.1)

Plasmid Recall (%) =
TPp

TPp + FNp
(6.2)

For both the classes we compute the F1-score using the following equation;

F1 score (%) = 2× Precision× Recall
Precision + Recall

(6.3)

For the reads in the real dataset (with unknown ground truth), the reads are mapped to the known
reference genomes using Minimap 2 (Li, 2018a) and the chromosome or plasmid that results in the
best alignment is considered as the origin of the read.

6.4 Results and Discussion

6.4.1 Classification Results on Long Reads

We executed PlasFlow (Krawczyk et al., 2018) and PlasClass (Pellow, Mizrahi et al., 2020) and plotted
precision-vs-recall curves to examine the performance of each tool as the decision boundary changes.
The resulting trade-offs between precision and recall are demonstrated in Figure 6.3 for the Zymo-SA
dataset (details about this dataset can be found in Section 3.1). As expected, the higher the recall
PlasFlow and PlasClass achieve (i.e., classify more reads), the lower the precision their classification
results have. Hence, it is evident that mere parameter setting of a decision threshold is insufficient
to improve the overall classification of results (Note that both PlasFlow and PlasClass provide a
probability to assign each input sequence to either plasmids or chromosomes). When we select higher
thresholds on such probabilities, both PlasFlow and PlasClass are able to generate relatively accurate
classification results for a small subset of input sequences. In Figure 6.3, we demonstrate the PlasLR
precision-vs-recall curves which show a significant shift of precision and recall from the initial results.

We present the results of PlasLR on classification of long reads into two classes (plasmid and chro-
mosome). Table 6.2 and 6.3 denotes the comparison of results of PlasFlow (Krawczyk et al., 2018),
PlasClass (Pellow, Mizrahi et al., 2020) and PlasLR (on top of PlasFlow and PlasClass) respectively.
Note that the probabilities given by PlasClass, PlasFlow and PlasLR are converted into respective
classes by considering the decision boundary of 0.5.

According to the F1-scores highlighted in Table 6.2 and 6.3, we can see that PlasLR has improved
the classification results based on the initial results obtained from PlasFlow and PlasClass. Similar
to Figure 6.3, PlasLR has shown significant improvements over the recall while maintaining a high
precision (similar to or even better than the precision of the high-confident subset of reads initially
classified by PlasFlow or PlasClass). The improvement on precision in PlasLR is gained by removing
ambiguous labels while the improvement on recall of PlasLR is achieved by applying the initialized
KNN classifier to unclassified reads on the UMAP plot. Although the precision drops in a few cases,
PlasLR improves on the recall, F1 score and percentage of plasmid reads recovered on the datasets.
Note that in dataset Sim-10C5P PlasLR has compromised a bit of plasmid F1-score in improving that
of chromosomes. The initial results of dataset are relatively poor due to the mere complexity of the
composition. However, the improvements on the Zymo datasets are significant due to the relative
simplicity of the datasets.

6.4.2 Improved Assemblies on Long Reads

After classification of reads into the two classes, we assembled the classified chromosomal and plasmid
reads separately using metaFlye (Kolmogorov, Rayko et al., 2019) (available in Flye v2.4.2). metaFlye



Chapter 6. Plasmid Recovery from Long Reads Datasets 61

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Plasmid (PlasFlow)
Chromosome (PlasFlow)
Plasmid (PlasLR with PlasFlow)
Chromosome (PlasLR with PlasFlow)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Plasmid (PlasClass)
Chromosome (PlasClass)
Plasmid (PlasLR with PlasClass)
Chromosome (PlasLR with PlasClass)

(b)

Figure 6.3: The trade-off between precision and recall for (a) PlasFlow results and for (b) PlasClass results
on the Zymo-SA dataset. The precision-recall curve is generated by varying the probability threshold in
PlasFlow and PlasClass, respectively. The classification results of PlasLR on top of PlasFlow and PlasClass
achieve high precision and recall. Precision and recall are computed separately for plasmid and chromosomal
sequences using TP/(TP + FP) and TP/(TP + FN) respectively. Unclassified reads are considered under
FN for recall.

is a popular metagenomic long-read assembler which has shown best performance in assembling
plasmids in a recent benchmark (Wick and Holt, 2019). Moreover, we also assemble the complete set
of reads (without classification) using metaFlye as the baseline for comparison.

Table 6.4 demonstrates the assembly results for metaFlye, for all possible assembly approaches along
with PlasLR results on top of both PlasFlow and PlasClass. The results show that PlasLR classification
can improve the genome fraction (computed by MetaQUAST (Mikheenko et al., 2015b)) and the
number of plasmids recovered by metaFlye. The chromosomal assemblies are significantly improved
over the non-PlasLR approaches. Note that assembly performance gain is significant wherever there
is a higher number of plasmids. Furthermore, poor chromosomal assembly in non-PlasLR approaches
indicates the classification of chromosomal reads into plasmid class. This may result in plasmid
assemblies whose contig set contain partial chromosomal assemblies. PlasLR mitigate this situation
by pushing chromosomal and plasmid reads into appropriate bins facilitating proper assembly. This
is evident in dataset Sim-10C5P where PlasLR with PlasFlow demonstrates the most number of
sequences assembled (5 chromosomes and 13 plasmids). Note that, although genome fractions are
comparable in some PlasLR results (especially in Zymo-EC, Zymo-SA and Zymo-SE datasets), each
assembled class may contain multiple contigs that corresponds to the opposite class which might
result in misleading downstream analysis. PlasLR supports the mitigation of such false positive
plasmid/chromosome assemblies by accurate classification of long reads as indicated in Table 6.3
(refer to Zymo-EC, Zymo-SA and Zymo-SE datasets).

These improvements were achieved by classifying reads before assembly, where metaFlye can as-
semble plasmids and chromosomes independently. The independent assembly of chromosomes
and plasmids allows metaFlye to estimate more appropriate assembly parameters for plasmids and
chromosomes, respectively.

6.5 Implementation

PlasLR uses the same optimization techniques introduced in MetaBCC-LR for the computation of
coverager and composition features. All steps of PlasLR are performed using multi threading (8
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Table 6.2: Comparison of classification performance of PlasLR and PlasFlow

Dataset Evaluation Criteria
PlasFlow PlasLR with PlasFlow result

Chromosome Plasmid Chromosome Plasmid

Sim-2C5P

Precision 87.75% 73.50% 94.25% 75.28%

Recall 26.84% 47.31% 85.40% 89.51%

F1-Score 41.10% 57.56% 89.61% 81.78%

Sim-4C11P

Precision 93.94% 65.81% 94.62% 63.16%

Recall 27.27% 54.71% 78.45% 89.22%

F1-Score 42.28% 59.75% 85.78% 73.97%

Sim-10C16P

Precision 96.64% 24.45% 94.42% 33.73%

Recall 23.28% 30.22% 72.01% 77.01%

F1-Score 37.52% 27.03% 81.71% 46.92%

Zymo-EC

Precision 95.15% 80.79% 93.68% 81.22%

Recall 32.95% 33.65% 86.46% 90.94%

F1-Score 48.95% 47.51% 89.93% 85.80%

Zymo-SA

Precision 72.59% 79.82% 73.04% 88.50%

Recall 31.23% 24.29% 90.25% 69.25%

F1-Score 43.67% 37.25% 80.74% 77.70%

Zymo-SE

Precision 98.67% 70.80% 98.03% 69.71%

Recall 26.79% 42.46% 88.39% 93.75%

F1-Score 42.14% 53.08% 92.96% 79.96%

threads by default). Our PlasLR implementation uses the python scikit-learn library implementation
of the KNN classifier (known as KNeighborsClassifier) and PCA (Pedregosa et al., 2011). Furthermore,
UMAP-learn (McInnes, Healy and Melville, 2020) (used as the default dimensionality reducer) and
OpenTSNE (Poličar et al., 2019) were obtained from the repositories of respective authors of work.
Users are provided with the parameter �-dimension-reduction which accepts values pca, tsne or
umap should they wish to use a different dimensionality reduction technique.

6.6 Discussion

6.6.1 Summary

In this chapter, we designed and evaluated PlasLR, a tool that adapts contig-classification tools for
plasmids to long reads. While existing contig-classification tools are able to accurately classify a
subset of long reads (by treating them as contigs), the use of PlasLR refines existing labels and extends
them to all reads. Moreover, we showed that the classification of long reads (into chromosomal and
plasmid classes) before assembly improves the recovery of plasmids from both simulated and real
metagenomic datasets.

The classification improvements are prevailing due to the combination of coverage and composi-
tion information, along with a set of initial classifications in a semi-supervised manner. Coverage



Chapter 6. Plasmid Recovery from Long Reads Datasets 63

Table 6.3: Comparison of classification performance of PlasLR and PlasClass

Dataset Evaluation Criteria
PlasClass PlasLR with PlasClass result

Chromosome Plasmid Chromosome Plasmid

Sim-2C5P

Precision 82.40% 56.76% 90.93% 61.30%

Recall 24.75% 45.34% 73.25% 85.30%

F1-Score 38.06% 50.41% 81.14% 71.33%

Sim-4C11P

Precision 94.66% 50.91% 94.17% 43.51%

Recall 26.80% 61.58% 50.27% 92.48%

F1-Score 41.77% 55.74% 65.55% 59.18%

Sim-10C16P

Precision 96.62% 31.49% 97.25% 24.77%

Recall 23.66% 53.73% 47.91% 92.68%

F1-Score 38.02% 39.71% 64.20% 39.09%

Zymo-EC

Precision 98.29% 89.26% 92.35% 91.30%

Recall 34.59% 11.50% 94.61% 87.82%

F1-Score 51.17% 20.37% 93.47% 89.52%

Zymo-SA

Precision 89.74% 94.96% 76.43% 98.96%

Recall 39.38% 14.28% 99.18% 71.77%

F1-Score 54.74% 24.82% 86.33% 83.20%

Zymo-SE

Precision 99.80% 94.78% 95.71% 91.72%

Recall 29.21% 22.95% 97.59% 85.90%

F1-Score 45.19% 36.95% 96.64% 88.72%

information facilitates the discrimination of plasmids and chromosomes based on the copy number.
Composition information predominantly enables the discrimination of sequences based on their origin
species. The lower dimensional projection provides a spatial representation where the sequences with
similar coverage and composition are closer, enabling the expansion of initial classification labels.

6.6.2 Room for improvements

Inevitably, the final results are influenced by the quality of the initial classifications. Therefore, the
selection of high confident initial classification is vital for PlasLR to perform accurately. Similar to
contig-based classifiers, PlasLR also faces challenges when classifying long reads from similar regions
of plasmids and chromosomes. In such situations, the coverage information estimated by PlasLR may
be misleading and thus result in possible misclassifications.

As a matter of fact, PlasLR, like other tools evaluated, performs binary classification (i.e., plasmids
v.s. chromosomes). A fine-grained classification is needed to provide distinctions between different
plasmids and chromosomes and has the potential to be incorporated in the assembly process. In such
scenarios, PlasLR could benefit from reference database-based approaches such as Kraken2 (Wood,
Lu et al., 2019), where predictions can be made at species level followed by plasmid detection.
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Table 6.4: Comparison of metaFlye assemblies using MetaQUAST (Mikheenko et al., 2015b). The number of
plasmids recovered is the number of plasmids which have a genome fraction greater than 85%. Genome
fractions are computed separately on the assemblies of plasmid and chromosome classes. Where genome
fraction is defined as the total number of aligned bases as a percentage of genome size.

Dataset Classification

metaFlye assembly

Genome fraction Sequences recovered

Chromosome Plasmid Chromosome Plasmid

Sim-2C5P

Raw reads 82.19% 96.21% 0 4

PlasFlow 88.30% 97.81% 2 5

PlasClass 65.64% 99.46% 0 5

PlasLR with PlasFlow result 95.99% 99.63% 2 5

PlasLR with PlasClass result 94.13% 99.40% 2 5

Sim-4C11P

Raw reads 99.10% 88.34% 4 8

PlasFlow 73.83% 85.91% 1 9

PlasClass 79.26% 85.56% 2 8

PlasLR with PlasFlow result 93.20% 91.00% 3 10

PlasLR with PlasClass result 96.19% 92.08% 4 9

Sim-10C16P

Raw reads 47.47% 39.63% 4 3

PlasFlow 57.30% 96.00% 3 13

PlasClass 64.04% 95.70% 3 13

PlasLR with PlasFlow result 68.35% 95.88% 5 13

PlasLR with PlasClass result 86.41% 75.50% 6 10

Zymo-EC

Raw reads 89.95% 100.00% 1 1

PlasFlow 94.57% 100.00% 1 1

PlasClass 98.82% 100.00% 1 1

PlasLR with PlasFlow result 94.46% 100.00% 1 1

PlasLR with PlasClass result 99.00% 100.00% 1 1

Zymo-SA

Raw reads 95.66% 66.63% 1 2

PlasFlow 95.49% 99.96% 1 3

PlasClass 97.51% 99.99% 1 3

PlasLR with PlasFlow result 98.52% 100.00% 1 3

PlasLR with PlasClass result 98.39% 99.93% 1 3

Zymo-SE

Raw reads 96.60% 100.00% 1 1

PlasFlow 94.93% 100.00% 1 1

PlasClass 99.58% 100.00% 1 1

PlasLR with PlasFlow result 97.23% 100.00% 1 1

PlasLR with PlasClass result 99.70% 100.00% 1 1
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Chapter 7

Improving Plasmid Classification
using Assembly Graphs

The work presented in this chapter was published as

A. Wickramarachchi and Y. Lin (2021). ‘GraphPlas: Refined Classification of Plasmid Sequences
using Assembly Graphs’. IEEE/ACM Transactions on Computational Biology and Bioinformatics

This piece of work was presented at the 19th Asia Pacific Bioinformatics Conference (APBC) 2021.
http://www.binfo.ncku.edu.tw/APBC2021/accepted_papers.html

The software is freely available at https://github.com/anuradhawick/GraphPlas.

7.1 Overview and Motivation

In this chapter, we propose an assembly graph assisted approach of improving plasmid recovery by
harnessing information such as composition, coverage and connectivity in the assembly graph. So far
we have been working on improving plasmid classification using the combination of dataset specific
features on top of existing plasmid classification tools. Here we develop GraphPlas which extends
plasmid classification of contigs by introducing dataset specific information such as composition,
coverage and assembly graph to improve the classification of existing methods. The proposed
methodology significantly improves the precision and recall of the plasmid classification on top of
popular tools in the field. To the best of our knowledge, this is the first time that composition, coverage
and graph topology information of assembled contigs have been utilized together to address the
problem of plasmid sequence classification.

7.2 Methods

The complete workflow of GraphPlas is demonstrated in Figure 7.1. GraphPlas takes assembled
contigs and the relevant assembly graph as the input. Then the contigs are classified using an existing
plasmid detection program that predicts the plasmid probability of contigs. Then the contigs are
labelled as chromosomes, plasmids or unclassified depending on the probability values. Note that the
unclassified class contains contigs that are either shorter than 1,000 base pairs or ones with probabilities
that are in-between the probability boundaries of plasmids and chromosomes.

For the initial prediction, we chose the approaches presented by PlasClass (Pellow, Mizrahi et al., 2020)
and PlasFlow (Krawczyk et al., 2018). This is because PlasClass and PlasFlow outputs probability
values on which a confidence level can be applied. Also, the classifications at higher confidence
regions are reliable. We varied the probability threshold for PlasClass in order to investigate if the
classification can be improved just by parameter tuning. However, from Figure 7.2 and Figure 7.3, it
is clearly evident that means beyond parameter tuning are required for better results. Furthermore,
it is evident that at high confidence thresholds, the precision of classification is reasonably high for
GraphPlas to improve the results.

http://www.binfo.ncku.edu.tw/APBC2021/accepted_papers.html
https://github.com/anuradhawick/GraphPlas
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Short read assembly

Metagenomic reads

Contigs

Classified

contigs

Assembly graph
Contig

coverages

Contig

Compositions

Classified

contigs

Classified

contigs

Output: Labelled Contigs

Input: Assembly graph + Contigs

Step 2

Processing Labelled Components

Step 3

Processing Unlabelled Components

Step 1

Initial Classification

Step 4: Refining the Labels

Figure 7.1: The workflow of GraphPlas. The inputs for the workflow are the contigs and the assembly graph
output from the assembler. The contigs are initially classified and the most confident set of contigs are used
as seeds. Contig labels are propagated to other contigs using graph topology, composition and coverage
information. Finally, the contig labels are refined again and IDs are output with the assigned label.

7.2.1 Computation of contig similarity metrics

For the steps 2 and 3 in Figure 7.1, distances between contigs are required to label the assembly graph
in a semi-supervised manner. These distances are derived from summing up negative log values of
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(a) Performance on
Sim-2C5P dataset.

(b) Performance on
Sim-2C9P dataset.

(c) Performance on
Sim-10C25P dataset.
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Figure 7.2: Precision-recall curves for PlasClass and GraphPlas. Plots obtained by varying the probability
threshold for classification from 0 to 1. For GraphPlas we have a single point for each class as we pick the
best starting threshold for each tool.

similarities obtained from three different methods. The computation of each similarity measure is
explained in the following subsections.

Computing similarity of contigs using the topology of assembly graph

Consider the assembly graph G where V is the set of vertices that represents the contigs in the graph.
Let L be the set of labelled vertices and U be the set of unlabelled vertices. Topological similarity
St(Vi, Vj), where Vi∈U and Vj∈L, is computed using the random walk probabilities. In GraphPlas we
use a variant of label propagation algorithm proposed in (Zhu and Ghahramani, 2002). The detailed
algorithm is as follows.

First we obtain the degree matrix D and adjacency matrix A using the assembly graph. Each contig
is considered as a vertex whereas connections in the assembly graph are denoted as edges in the
adjacency matrix. A is ordered such that All , Alu, Aul and Auu respectively represent the labelled to
labelled, labelled to unlabelled, unlabelled to labelled and unlabelled to unlabelled edge connections
between vertices as demonstrated in equation 7.1.

A =

All Alu

Aul Auu

 (7.1)

The same order is followed in the degree matrix D, where the degrees associated with labelled vertices
are arranged on top in the same order of A. We adopt the methodology of (Zhu and Ghahramani,
2002) for the estimation of similarity of contigs using the graph topology. The transition probabilities
are computed using equation 7.2.
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(c) Performance on
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Figure 7.3: Precision-recall curves for PlasFlow and GraphPlas. Plots obtained by varying the probability
threshold for classification from 0 to 1. For GraphPlas we have a single point for each class as we pick the
best starting threshold for each tool.

Pt = D−1 × A (7.2)

Pl = (Pt)
n ×Yl (7.3)

In order to obtain the final probability of random walk from unlabelled vertices to labelled vertices,
we use equation 7.3 where n is the number of iterations until the convergence. Yl is the initial label
probabilities of vertices. In contrast with (Zhu and Ghahramani, 2002), we assume separate labels for
each labelled vertex despite them being from the two classes, plasmid and chromosome. This enables us
to compute probability of random walk from each unlabelled vertex to each of the labelled vertices. In
GraphPlas, we terminate the operation at either 1000 iterations or when the difference is smaller than
ε(=0.00001). Resulting matrix Pl consists of required random walk probabilities from a given node to
another.-

Computing similarity of contigs using composition

The composition similarity Sk is computed using equation 7.4 (Wu, Simmons et al., 2015).

Sk =
N (De(Vi, Vj)|µintra, σ2

intra)

N (De(Vi, Vj)|µintra, σ2
intra) +N (De(Vi, Vj)|µinter, σ2

inter)
(7.4)

Here De(Vi, Vj) represents Euclidean distance between 4-mer (tetramer) vectors of vertices Vi and
Vj respectively. For this formula we use the approach presented by (Wu, Simmons et al., 2015). The
mean and standard deviation are computed for each of the tetramer frequency vector distances within
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(b) Inter sequence distances.
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(d) Probability vs distance.

Figure 7.4: Distance histograms for intra and inter sequence distances for normalized tetranucleotide
distances. (a) and (b) demonstrate the histograms for Euclidean distances of tetramer vectors for sequences
within a given species and between different species respectively. (c) demonstrates the resulting normal
distributions plotted using means and standard deviations obtained from (a) and (b). (d) demonstrates the
probability vs distance curve computed using equation 7.4.

and between different microbial species. µintra and µinter represents mean distances and, σintra and
σinter represents standard deviations of distances within and between species respectively. In order
to estimate µintra, σintra, µinter and σinter, we consider the set of all the reference chromosomes and
plasmid assemblies from NCBI RefSeq database. First we seed 50 subsequences of length 10,000 base
pairs from each of the reference sequences and compute their normalized tetranucleotide frequency
vectors. The resulting histograms are presented in Figure 7.4. From these histograms we compute
that µintra = 0.02, σintra = 0.010/2, µinter = 0.069 and σinter = 0.034. However, for probability
computations in equation 7.4, we use µintra = 0 to ensure that nearly identical sequences will have
high similarity similar to (Wu, Simmons et al., 2015).
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Computing similarity of contigs using coverage

The similarity of two coverages is computed as Sc = Poisson(Cov(Vi)|Cov(Vj)), where Cov(Vi) and
Cov(Vi) demonstrate the coverage of contigs corresponding to vertices Vi and Vj respectively similar
to work done by (Wu, Simmons et al., 2015).

7.2.2 Initial Classification

GraphPlas is capable of obtaining the seed classifications from either PlasClass or PlasFlow. The
composition profiles tend to deviate significantly as the length becomes shorter. Hence, we chose
1,000 base pairs as the cutoff for the initial classification, similar to the default settings of many other
binning tools in metagenomics (Wang, Wang, Lu et al., 2019; Wickramarachchi, Mallawaarachchi,
Rajan et al., 2020a; Wu, Simmons et al., 2015). Therefore, we consider contigs that are longer than
1,000 base pairs for the initial results of PlasClass and PlasFlow.

We chose the most confident set of classifications from the classification result provided by the selected
tool. First we order the contigs based on the predicted probability in the decreasing order. We label
50% of the contigs below 0.5 probability threshold as chromosomes in both tools. We label the top 10%
above 0.5 probability threshold as plasmids for PlasClass. We chose 20% for PlasFlow as it tends to
predict plasmids with a slightly lower tendency. The contigs that are neither classified as plasmids
nor chromosomes are labelled as unclassified.

We introduce labelled components and unlabelled components to support the next step. A labelled component
is defined as a component in the assembly graph with at least one contig with a label other than
unclassified. Conversely, an unlabelled component is a component who’s all contigs are labelled as
unclassified. Refer to Figure 7.5(a) for the classification result of dataset Sim-2C9P using PlasClass. The
initial classification result that is chosen by GraphPlas is demonstrated in Figure 7.5(b), and unlabelled
components are circled in red color.

7.2.3 Processing labelled components

In this step, we consider components of the assembly graph that have at least one labelled contig
from first step. Using the assembly graph and its labelled vertices from first step, we label the rest
of the unclassified contigs. We first consider the contigs that are either 1,000 base pairs or longer for
labelling.

We propagate the labels from labelled contigs to the other contigs based on the distance computed
under all three topological, composition and coverage similarities. Equation 7.5 is used to compute
the combined distance D(Vi, Vj) between an unlabelled and a labelled vertex.

D(Vi, Vj) = −log(St × Sk × Sc) (7.5)

Next we use equation 7.6 to compute the distance Dshort(Vi, Vj) for the contigs that are shorter than
1,000 base pairs. Composition of shorter contigs is not considered because composition information
can be unreliable for shorter contigs (Wickramarachchi, Mallawaarachchi, Rajan et al., 2020a). Hence,
the distance computation is limited only to topological and coverage similarities.

Dshort(Vi, Vj) = −log(St × Sc) (7.6)

We use the above equations as the distance metric for a KNN (K-Nearest Neighbors) classifier with
up to 5 nearest neighbors. The contigs are then labelled using the majority vote. This classification is
done in a step wise fashion for long and short contigs (shorter than 1,000 base pairs) in order. Refer to
Figure 7.5(c) for the classification result of dataset Sim-2C9P after processing labelled components.

7.2.4 Processing unlabelled components

In this step we label the contigs from assembly graph components that do not contain any labelled
contigs. Therefore, we rely on the labelled set of contigs in the entire assembly graph in this step.
In order to label such isolated components in the graph, we use a KNN classifier using only the
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(a) Classification by PlasClass. (b) Confident labels from PlasClass.

(c) Labelling using topology. (d) Labelling unlabelled components.

(e) GraphPlas result after refinement. (f) Ground truth.

Figure 7.5: Assembly graph with contig labels for the dataset Sim-2C9P at different stages of GraphPlas.
Chromosomes and plasmids are represented in orange and green colors respectively. Unlabelled components
are circled in (b). Contigs that need to be refined are circled in (d). The contigs without a unique mapping to
a single class are indicated in white.
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composition and coverage information. We use equations 7.7 and 7.8 to compute the distances
Disolated(Vi, Vj) and Disolated_short(Vi, Vj) respectively. Disolated(Vi, Vj) is computed for vertices that are
1,000base pairs or longer and Disolated_short(Vi, Vj) is computed for contigs that are shorter than 1,000
base pairs.

Disolated(Vi, Vj) = −log(Sk × Sc) (7.7)

Disolated_short(Vi, Vj) = −log(Sc) (7.8)

Similar to previous steps, we use equations 7.7 and 7.8 as the distance metric for a KNN classifier to
classify the vertices in the isolated components. The KNN classifier is initiated on contigs longer than
1,000 base pairs with only two neighboring vertices. This is because the longer contigs in the assembly
graph tend to have better coverage and composition representations. Furthermore, contigs at the
repeat points have multiple edges and elevated coverage values. Hence, such contigs are avoided
by limiting the number of neighbors to a maximum of 2. Majority voting of up to 5 neighbors is
used for the labelling process. Refer to Figure 7.5(d) for the classification result of dataset Sim-2C9P
after processing labelled components. Note that there are still unsupported labels from the initial
classification, circled in red. There are no neighboring contigs that support the labels of such contigs.

7.2.5 Refining the labels

We define contigs that are connected to other contigs from a different label without any support of its
own label as ambiguously labelled contigs. In this step, we utilize the assembly graph to correct the
labels of such ambiguously labelled contigs. Majority voting is used in order to correct such labels.
We start the label correction from non-leaf vertices (i.e. vertices with more than 1 neighbor) since they
are more informative in terms of neighbors. Finally, the labels of the leaf vertices (i.e. vertices with
only one neighbor) are corrected to match the neighboring vertex. Figure 7.5(e) demonstrates the
assembly graph once GraphPlas refines the final result from previous steps.

7.3 Experimental Setup

7.3.1 Datasets

We evaluated GraphPlas using four simulated datasets and one real dataset with varying complexities
and plasmid copy numbers. The information on the datasets considered are as follows. Please refer to
Appendix Table B.8 for the detailed information of the simulation.

Table 7.1: Information on the datasets used for the experiments.

Dataset Read length (base pairs) Number of reads Number of contigs Edges in the graph

Sim-2C5P 300 239425 128 471

Sim-2C9P 300 368632 187 921

Sim-10C25P 300 1359961 636 2913

Sim-14C38P 300 3371230 1881 3977

Wastewater-Plas† 125 8757400 32510 3215

†We only considered contigs with length 1,000 base pairs or longer. A unique ground truth was discovered only for 436
contigs. However, the complete graph was utilized in the program.

1. We simulated four datasets using InSilicoSeq simulator (Gourlé et al., 2018) with MiSeq config-
uration that produces reads of length 300 base pairs. Similar to the work done by Pellow et al.,
(Pellow, Mizrahi et al., 2020) we used the equation 5×min(1, log(L)/10), where L is the length
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of the plasmid reference, to compute probability of success for a geometric distribution to obtain
the plasmid copy numbers. These copy numbers were used to calculate the simulation coverage
of each plasmid. This was performed to amplify the plasmid copy numbers of shorter plasmids.

• Sim-2C5P: Contains 1 species with a total of 2 chromosomes and 5 plasmids.

• Sim-2C9P: Contains 1 species with a total of 2 chromosomes and 9 plasmids.

• Sim-10C25P: Contains 5 species with a total of 10 chromosomes and 25 plasmids.

• Sim-14C38P: Contains 7 species with a total of 14 chromosomes and 38 plasmids.

2. We used the wastewater plasmidome sample ERR1538272 (referred as Wastewater-Plas) (Shi
et al., 2018) in order to evaluate the performance of GraphPlas on real datasets. The dataset was
assembled using metaSPAdes (Nurk et al., 2017). The dataset consists of Illumina HiSeq 2500
paired end reads with a read length of 125 base pairs.

Table 7.1 indicates the number of reads, contigs and the read length of each of the datasets assembled.

7.3.2 Evaluation Criteria

We evaluated GraphPlas using macro-averaged precision, recall and F1-score using the following
standard equations where;

• TPp: the number of actual plasmid sequences that were classified as plasmids (true positives for
plasmids)

• TPc: the number of actual chromosomal sequences that were classified as chromosomes (true
positives for chromosomes)

• FPp: the number of non-plasmid sequences that were classified as plasmid (false positives for
plasmids)

• FPc: the number of non-chromosomal sequences that were classified as chromosomes (false
positives for chromosomes)

• FNp: the number of plasmid sequences that were not classified as plasmids (false negatives for
plasmids)

• FNc: the number of chromosomal sequences that were not classified as chromosomes (false
negatives for chromosomes)

Precision(%) =
1
2
×

TPp

TPp + FPp
+

1
2
× TPc

TPc + FPc
(7.9)

Recall(%) =
1
2
×

TPp

TPp + FNp
+

1
2
× TPc

TPc + FNc
(7.10)

F1 score(%) = 2× Precision× Recall
Precision + Recall

(7.11)

The metrics for each class is averaged in order to obtain values with fair representation on each
imbalanced class. Similar to previous evaluations in plasmid studies (Pellow, Mizrahi et al., 2020), the
fraction of plasmid contigs recovered, TPp/(TPp + FNp), is also considered in our comparison. For
the set of simulated datasets, the ground truth label was assigned by mapping the assembled contigs
to the respective set of reference genomes. The mapping was performed using Minimap 2.1 (Li, 2018a).
Only the contigs with a unique mapping to either plasmids or chromosomes were considered in the
evaluation. Furthermore, the assembled contigs from the real dataset, with unknown ground truth
were aligned to the NCBI assemblies. The contigs that had a unique mapping to either plasmids or
chromosomes were considered in the evaluation. Moreover, we only considered the contigs that are
either 1,000 base pairs or longer with an alignment beyond 50% of the query length.
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7.4 Results and Discussion

Table 7.2: Comparison of macro-averaged classification results of PlasClass (Pellow, Mizrahi et al., 2020)
and GraphPlas with PlasClass as the initial classifier.

Datase Tool used Precision (%) Recall (%) F1 score (%) Percentage of
plasmids recovered (%)

Sim-2C5P
PlasClass 58.70 56.01 57.33 86.00

GraphPlas 99.02 99.32 99.17 100.00

Sim-2C9P
PlasClass 58.92 64.48 61.58 92.59

GraphPlas 93.55 98.60 96.01 100.00

Sim-10C25P
PlasClass 60.82 64.06 62.40 84.06

GraphPlas 85.20 93.51 89.17 100.00

Sim-14C38P
PlasClass 53.88 58.81 56.23 80.00

GraphPlas 66.66 81.82 73.47 82.44

Wastewater-Plas
PlasClass 79.18 77.97 78.57 69.04

GraphPlas 80.98 80.35 80.67 74.39

Table 7.3: Comparison of macro averaged classification results of PlasFlow (Krawczyk et al., 2018) and
GraphPlas with PlasFlow as the initial classifier.

Dataset Tool used Precision (%) Recall (%) F1 score (%) Percentage of
plasmids recovered (%)

Sim-2C5P
PlasFlow 65.90 59.33 62.44 94.00

GraphPlas 100.00 100.00 100.00 100.00

Sim-2C9P
PlasFlow 59.05 64.83 61.80 92.59

GraphPlas 60.98 66.43 63.59 100.00

Sim-10C25P
PlasFlow 62.53 65.82 64.13 89.13

GraphPlas 73.11 81.97 77.28 96.38

Sim-14C38P
PlasFlow 57.14 65.88 61.02 94.15

GraphPlas 60.66 76.37 67.61 95.12

Wastewater-Plas
PlasFlow 71.47 70.95 71.21 80.40

GraphPlas 83.36 83.40 83.38 83.07

7.4.1 Recovery of Plasmids from Metagenomics Assemblies

In this section, we present the results of GraphPlas on several assembled datasets including a real
dataset. All the datasets were assembled using metaSPAdes (Nurk et al., 2017) assembler. Table 7.2
and Table 7.3 show the comparison results with PlasClass and PlasFlow respectively. In Figure 7.6
the performance values are summarized for GraphPlas, PlasClass and PlasFlow. Furthermore, we
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Figure 7.6: Mean binning results of GraphPlas with original PlasFlow (Krawczyk et al., 2018) and Plas-
Class (Pellow, Mizrahi et al., 2020) results for all the datasets.

Table 7.4: Contig classification by GraphPlas with PlasFlow as Initial Classifier.

Classification Dataset Total Number
of Contigs

Plasmids
Classified as

Plasmids

Chromosomes
Classified as

Chromosomes

Plasmids
Classified as

Chromosomes

Chromosomes
Classified as

Plasmids

GraphPlas with
PlasClass

Sim-2C5P 123 50 72 0 1

Sim-2C9P 170 27 139 0 4

Sim-10C25P 585 138 389 0 4

Sim-14C38P 1800 169 1295 36 300

Wastewater-Plas 953 334 435 115 69

GraphPlas with
PlasFlow

Sim-2C5P 123 50 73 0 0

Sim-2C9P 170 27 47 0 96

Sim-10C25P 585 133 302 5 145

Sim-14C38P 1800 195 919 10 676

Wastewater-Plas 953 373 422 76 82

show the results graphically in Figure 7.2 and Figure 7.3, where we indicate the starting points
for GraphPlas, which are essentially high confidence points on the PlasClass result. Starting from
those points GraphPlas pushes towards increasing direction on both recall and precision. In more
challenging scenarios with relatively lower precision values, GraphPlas improves the recall while
maintaining the same precision.

According to Table 7.2 and Table 7.3, it is evident that the utilization of assembly graph with composi-
tion and coverage information improves the results of plasmid detection over conventional machine
learning approaches. Furthermore, the significant compromise on recall to achieve higher precision is
also mitigated in GraphPlas leading to better F1-scores.

The demonstrated improvements in GraphPlas prevail due to two main reasons. Firstly, we utilize the
most confident classifications provided by the initialization tools. Hence, at the starting point, the
bootstrapping labels are more accurate. Secondly we employ the initial set of labels to train other
contigs based on the composition, coverage and topology of the assembly graph. Note that it is highly
likely for contigs of the same species to demonstrate a link in the assembly graph since there exists a
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Table 7.5: Running time and memory consumed by GraphPlas (using PlasClass as the initial classifier).

Classification Dataset Running time (s) Peak Memory Usage (MB)

GraphPlas with PlasClass

Sim-2C5P 4 112

Sim-2C9P 6 114

Sim-10C25P 21 140

Sim-14C38P 79 158

Wastewater-Plas 77 196

GraphPlas with PlasFlow

Sim-2C5P 3 112

Sim-2C9P 4 114

Sim-10C25P 21 140

Sim-14C38P 79 158

Wastewater-Plas 80 200

path in the de Bruijn graph that completes the reference genome (Compeau et al., 2011). Therefore,
GraphPlas is always capable of classifying contigs more confidently and reliably. Moreover, the
shorter lengths of contigs do not affect the results significantly because of the connected contigs that
are long and confidently classifiable. This is further evident through Figure 7.5 where the labelling of
contigs in each step are demonstrated. Finally, the actual number of contigs classified into each class
are tabulated in Table 7.4. Note that the improvements over the real dataset is not significant since we
have limited the ground truth computations only for contigs longer than 1,000 base pairs. Hence, the
classification of contigs shorter than the threshold are not considered.

7.5 Implementation

GraphPlas consists of two main components as the initial classifier and the graph classifier. We have
integrated the PlasClass classifier as the initial classifier. The entire program is implemented using
python 3.6.7 and tested on an Intel Core i7-7700 CPU @ 3.60GHz×8 machine with 16 GB of RAM. The
host operating system was Ubuntu 18.04.3 LTS. Multithreading capabilities are used for computing
the tetramer frequency vectors and in the KNN classifier. The summary of resource utilization is
tabulated under Table 7.5. GraphPlas only considers the longer contigs for computation of plasmid
probabilities. Hence, the memory utilization for all the experiments were below 300 MB. Furthermore,
the GraphPlas algorithm completes within 4 minutes for all the datasets considered.

7.6 Discussion

7.6.1 Summary

GraphPlas proposes the ideology of incorporating the assembly graph in plasmid classification.
We designed and evaluated GraphPlas which combines conventional machine learning tools with
topological information from the assembly graph for the detection of plasmids. We also highlighted
the importance of assembly graph and its potential to support in bootstrapping a dataset-specific
model to address the problem of plasmid detection.

7.6.2 Room for improvements

The inclusion of assembly graph information to improve performance of the plasmid classification has
room for further improvements. The erroneous classifications in the initial seed contigs could mislead



Chapter 7. Improving Plasmid Classification using Assembly Graphs 77

the label propagation, degrading the overall performance. Furthermore, the coverage of contigs could
be inaccurate, leading to misclassifications and hinder the label refinement. Hence, use of novel
coverage computation techniques apart from what the assemblers report could be considered as future
improvements (e.g., CoverM from https://github.com/wwood/CoverM). In the future, we intend
to investigate the viability of using third-generation sequencing (TGS) assemblies for the recovery
of plasmid sequences. Moreover, graph representation learning approaches can potentially lead to
improvements in the classification of plasmids due to their applicability in much larger graphs and
graphs with noise.

https://github.com/wwood/CoverM
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Chapter 8

Conclusion and Future Work

The thesis presented tools that progressively improves metagenomics binning and novel techniques
for plasmids recovery. First, we presented MetaBCC-LR which clustered long reads using coverage
and composition in a stepwise manner. MetaBCC-LR introduces the k-mer coverage histogram
as a feature for coverage based binning of long reads. We improved MetaBCC-LR’s approach by
introducing LRBinner which uses an auto-encoder to combine features meaningfully. This eliminated
the necessity of stepwise clustering of reads which has the tendency of false bin fragmentation in
certain scenarios. Moreover, we implemented an algorithm to extract clusters efficiently using the
density of bins. However, the issue of imbalanced classes and approximate coverage estimation
remained to be a limitation as we were using the same input features for binning. This means, smaller
bins and noisy clusters were indistinguishable, resulting in difficulties of clustering. Moreover, the
coverage estimate was rather an approximation which was limited to k-mer coverage. We addressed
these issues using OBLR which introduced the idea of read-overlap graph. Read-overlap graph was
able to produce more information including read coverage, read connectivity and a sampling measure
to obtain a balanced dataset for clustering. Hence, we were able to perform binning more effectively
and accurately in OBLR compared to its predecessors.

Another area of study in this thesis was the recovery of plasmids. This is a similar problem to
metagenomics binning which is studied as a binary classification problem. We introduced the idea of
combining reference based methods with dataset features to improve plasmid recovery in PlasLR and
GraphPlas. Both PlasLR and GraphPlas were of semi-supervised nature where existing classifiers were
used alongside dataset specific information to arrive at better results. Most importantly, we were able
to expand the agility of existing tools, that were trained machine learning classifiers, to use dataset
specific information that were not available during the design of those classifiers. This technique can
potentially improve not only plasmid classifications, but also can be applied in metagenomics binning.
Such semi-supervised approaches are discussed in the following sections under future work.

Improvements to models and algorithms I have implemented can be investigated to explore the
possibility pushing the limits of metagenomics analysis even further. Mainly, the scope of the
thesis was limited to reference-free metagenomics binning. Furthermore, plasmid discovery was
discussed based on data-driven methods rather than direct reference based methods such as k-mer
index (e.g., Kraken2 (Wood, Lu et al., 2019)) and gene based (e.g, Platon (Schwengers et al., 2020))
methods. Moreover, presented methodologies are standalone tools, implemented as preprocessors
for metagenomics assembly. This is mainly because, the literature explores metagenomics binning
as a separate problem since contigs binning is the preferred approach in NGS based metagenomics
analyses.

8.1 Metagenomics Binning and Assembly of Long Reads

As a part of future microbiome exploration, I plan to expand on several aspects of metagenomics
analysis.

8.1.1 Simultaneous Binning and Assembly

The binning tools developed and presented in the thesis focussed on performing metagenomic
binning as a pre-processor for metagenomic assembly. Hence, the process of assembly is unaware of



Chapter 8. Conclusion and Future Work 79

the binning process and vice-versa. This can, not often though, lead to poor separation of reads in
shared regions. Moreover, metagenomic assemblers are sensitive towards variations in coverage and
can perform assembly of low coverage regions. It is possible to have fragmented assemblies if regions
of the same genome have significantly different coverages. Therefore, it is important to couple binning
and assembly to avoid duplicate and fragmented assemblies that may arise due to false binning of
certain regions in the genomes. Moreover, having an assembly pipeline that is aware of the binning
process can improve the speed of assemblies by performing parallel assembly.

8.1.2 Reads from Similar Regions Across Different Species

Species in metagenomics datasets can have common genomic regions, resulting in highly similar
reads across such species from those regions. However, the developed binning approaches bin a
read only to a particular cluster and never consider the possibility of a read belonging to multiple
bins. This is not a commonly studied phenomenon in metagenomics binning. However, limited
studies have been conducted related to contigs binning (Mallawaarachchi, Wickramarachchi et al.,
2020b) by assigning contigs to multiple bins. Therefore, it is evident that shared regions can exist
in metagenomic datasets and assemblies can indeed be improved by duplicating such reads across
bins. Hence, improvements in binning algorithms to handle such shared regions, ideally outside the
initial clustering phase can improve the binning performance. Moreover, such an approach can be
thought to reduce the fragmentation that may otherwise arise. Figure 8.1 illustrates a generic binning
pipeline for binning shared reads extending the latest binning tool of the thesis, OBLR. Note that
the key difference is the multi-label GNN model which facilitates the assignment of a given read to
multiple bins.
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Figure 8.1: Binning shared reads by assigning shared reads into all the potential bins.
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8.1.3 Semi-supervised Binning and Plasmid Recovery

The scope of the thesis was limited to reference free approaches and data driven plasmid recovery
techniques (i.e., oligonucleotide frequency based analysis). They are mostly effective in scenarios
where the environment is either novel or the references used are incomplete. However, there is
potential to use reference based methods to improve the accuracy binning. This is because, reference
based methods are capable of providing viable annotations at a higher taxonomic level if the particular
species cannot be annotated with greater confidence (Huson, Albrecht et al., 2018; Wood, Lu et al.,
2019).

Reference based methods can still provide reasonable binning results by observing the unique regions
in genomes of different species. Labels of such unique regions can be combined with read overlap
graph along with the resulting cluster sizes (with some threshold size) to improve binning. An inter-
esting study would be to perform binning at different taxonomic levels based on the classifications
produced by reference based methods such as Kraken2. In this case, Figure 8.1 will have an aforemen-
tioned semi-supervised pipeline tool in place of Cluster Detection to complete the binning pipeline.
Please refer to Figure 8.2 for an example pipeline for semi-supervised binning. Note that taxonomy
aware label propagation will only propagate species labels into other reads having a suitable genus.
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Figure 8.2: Binning reads using semi-supervised annotations.

The above approach can be extended to plasmid classifications using an appropriate database, e.g.,
Kraken2 plasmid database (Wood, Lu et al., 2019) because, currently plasmids are studied as a single
entity in a given dataset. However, plasmids often associate a bacterial origin which can be isolated in
the binning process. This would not only improve the resolution of plasmid study but also enable
better application of reference based studied. For example, bins can be studied under different levels
of taxa followed by a plasmid study. Moreover, we can further annotate plasmids based on the species
level classification because not all bacteria carry plasmids. This could help us analyze and isolate the
exact plasmid present, and its role in the environment.
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Appendix A

k-mer Coverage Histograms and k size

This section discusses the impact of varying size of k on k-mer coverage histograms. Use of smaller
k (less than 7 base pairs) results in k-mers that are too common across genomes hence does not
support our aim of computing coverage. This is because, we rely on rare genomic k-mers that does
not occur across different species to estimate coverage. For example, PlasFlow (Krawczyk et al.,
2018) and PlasClass (Pellow, Mizrahi et al., 2020) utilize 7-mers in the detection of plasmids, which
implies that 7-mers are expected to share common patterns within plasmids and chromosomes while
discriminating between plasmids and chromosome.
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Figure A.1: TSNE plots for varying k-mer coverage histogram under varying k-mer lengths.

Therefore, we start our analysis at 9-mers and go up to 17-mers to evaluate the impact of k-mer length
on coverage histograms. Figure A.1 illustrates the TSNE embeddings for a sample of 10,000 k-mer
coverage histograms of the dataset 2Y4B from Chapter 3. It is clearly evident that k=9 and k=11
perform poorly. This is because, these shorter k-mers are shared across multiple species in the sample
distorting the k-mer coverage. However, k=13 and k=15 demonstrates good coverage based separation
of species. However, k=17 has poor performance due to k-mers being overly unique, thus, failing to
capture genomic k-mers of species across different reads. This is mainly because, longer the k-mer, the
chance of that being erroneous is higher. Hence, k-mer size 13 and 15 could be considered as optimum
values for coverage estimation.
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Appendix B

Datasets Information

B.1 Simulated Long Reads Datasets

This section tabulates information of the simulated datasets presented in this thesis. All the simulations
have been conducted using SimLoRD (Stöcker et al., 2016).

Table B.1: Information about the simulated PacBio datasets

Dataset Read type Species present Genome size (Mb) Coverage Abundance Dataset size (GB) Average read
length (kb)

Zymo-1Y2B PacBio

S. cerevisiae 13.163 15x 4.4%

4.2 8.298P. aeruginosa 6.792 550x 82.9%

L. fermentum 1.905 300x 12.7%

Zymo-1Y3B PacBio

S. cerevisiae 13.163 15x 3.4%

5.45 8.297
P. aeruginosa 6.792 550x 64.6%

L. fermentum 1.905 300x 9.9%

E. faecalis 2.845 450x 22.1%

Zymo-2Y2B PacBio

S. cerevisiae 13.163 15x 4.2%

4.35 8.299
C. neoformans 19.325 10x 4.1%

P. aeruginosa 6.792 550x 79.5%

L. fermentum 1.905 300x 12.2%

Zymo-2Y3B PacBio

S. cerevisiae 13.163 15x 3.3%

5.65 8.298

C. neoformans 19.325 10x 3.2%

P. aeruginosa 6.792 550x 62.5%

L. fermentum 1.905 300x 9.6%

E. faecalis 2.845 450x 21.4%

Zymo-2Y4B PacBio

S. cerevisiae 13.163 15x 2.6%

7.15 8.294

C. neoformans 19.325 10x 2.5%

P. aeruginosa 6.792 550x 49.0%

L. fermentum 1.905 300x 7.5%

E. faecalis 2.845 450x 16.8%

S. aureus 2.730 600x 21.5%

Sharon PacBio

E. faecalis 3.069 2370x 72.6%

9.8 8.281

S. aureus 2.913 677x 19.7%

P. rhinitidis 2.562 148x 3.8%

C. avidum 2.562 136x 3.5%

S. epidermidis 2.536 17x 0.4%
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Table B.2: Information about the 100-genomes dataset. Relative abundance ratios were used according to
the simMC+ dataset (Wu, Tang et al., 2014)

.

NCBI Genbank ID Species present Relative abundance ratios

256653503 Acetobacter pasteurianus 14.5%

330827700 Aeromonas veronii 14.5%

398314590 Amycolatopsis mediterranei 11.6%

308175814 Arthrobacter arilaitensis 7.0%

158421624 Azorhizobium caulinodans 4.7%

217957581 Bacillus cereus 4.3%

296500838 Bacillus thuringiensis 1.2%

42521650 Bdellovibrio bacteriovorus 0.6%

119025018 Bifidobacterium adolescentis 0.6%

295793053 Bifidobacterium animalis 0.6%

343385146 Brachyspira intermedia 0.5%

15791399 Campylobacter jejuni 0.5%

71082709 Candidatus Pelagibacter ubique 0.5%

194246403 Candidatus Phytoplasma mali 0.5%

256370581 Candidatus Sulcia muelleri 0.5%

297749010 Chlamydia trachomatis 0.5%

334694771 Chlamydophila psittaci 0.5%

325507407 Clostridium acetobutylicum 0.5%

331268188 Clostridium botulinum 0.5%

28209834 Clostridium tetani 0.5%

125972525 Clostridium thermocellum 0.5%

376247367 Corynebacterium diphtheriae 0.5%

385806437 Corynebacterium pseudotuberculosis 0.5%

334695745 Corynebacterium ulcerans 0.5%

284928601 Cyanobacterium UCYN 0.5%

307149945 Cyanothece sp 0.5%

46562128 Desulfovibrio vulgaris 0.5%

58616727 Ehrlichia ruminantium 0.5%

378937014 Enterococcus faecium 0.5%

336065242 Erysipelothrix rhusiopathiae 0.5%

209917191 Escherichia coli 0.5%

385805051 Fervidicoccus fontis 0.5%

302325342 Fibrobacter succinogenes 0.5%

Continued to next page
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NCBI Genbank ID Species present Relative abundance ratios

347534971 Flavobacterium branchiophilum 0.5%

118496615 Francisella novicida 0.5%

156501369 Francisella tularensis 0.5%

19703352 Fusobacterium nucleatum 0.5%

333392846 Gardnerella vaginalis 0.5%

322433659 Granulicella tundricola 0.5%

148826757 Haemophilus influenzae 0.5%

301154649 Haemophilus parainfluenzae 0.5%

170717206 Haemophilus somnus 0.5%

12057215 Halobacterium sp 0.5%

261854630 Halothiobacillus neapolitanus 0.5%

261838873 Helicobacter pylori 0.5%

338736863 Hyphomicrobium sp 0.5%

385808586 Ignavibacterium album 0.5%

375256816 Klebsiella oxytoca 0.5%

332290650 Krokinobacter sp 0.5%

116332681 Lactobacillus brevis 0.5%

327384027 Lactobacillus casei 0.5%

104773257 Lactobacillus delbrueckii 0.5%

94986445 Lawsonia intracellularis 0.5%

296105497 Legionella pneumophila 0.5%

330833867 Metallosphaera cuprina 0.5%

124484829 Methanocorpusculum labreanum 0.5%

19918815 Methanosarcina acetivorans 0.5%

73667559 Methanosarcina barkeri 0.5%

239916571 Micrococcus luteus 0.5%

356592064 Mycobacterium bovis 0.5%

108796981 Mycobacterium sp 0.5%

330723203 Mycoplasma hyorhinis 0.5%

308388224 Neisseria meningitidis 0.5%

300112745 Nitrosococcus watsonii 0.5%

325980881 Nitrosomonas sp 0.5%

54021964 Nocardia farcinica 0.5%

325278757 Odoribacter splanchnicus 0.5%

Continued to next page
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NCBI Genbank ID Species present Relative abundance ratios

386720569 Paenibacillus mucilaginosus 0.5%

261403876 Paenibacillus sp 0.5%

54307237 Photobacterium profundum 0.5%

126695337 Prochlorococcus marinus 0.5%

347537839 Pseudogulbenkiania sp 0.5%

313496345 Pseudomonas putida 0.5%

116249766 Rhizobium leguminosarum 0.5%

111017022 Rhodococcus jostii 0.5%

380760311 Rickettsia prowazekii 0.5%

378722019 Rickettsia rickettsii 0.5%

374318767 Rickettsia slovaca 0.5%

99079841 Ruegeria sp 0.5%

194447306 Salmonella enterica 0.5%

269118642 Sebaldella termitidis 0.5%

114045513 Shewanella sp 0.5%

30061571 Shigella flexneri 0.5%

85057978 Sodalis glossinidius 0.5%

311222926 Staphylococcus aureus 0.5%

182682970 Streptococcus pneumoniae 0.5%

28894912 Streptococcus pyogenes 0.5%

354984442 Streptococcus suis 0.5%

116626972 Streptococcus thermophilus 0.5%

290954631 Streptomyces scabiei 0.5%

51891138 Symbiobacterium thermophilum 0.5%

320114857 Thermoanaerobacter brockii 0.5%

307723218 Thermoanaerobacter sp 0.5%

242397997 Thermococcus sibiricus 0.5%

239819985 Variovorax paradoxus 0.5%

323436265 Weeksella virosa 0.5%

225629872 Wolbachia sp 0.5%

154243958 Xanthobacter autotrophicus 0.5%

162418099 Yersinia pestis 0.5%
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Table B.3: Information of simulated datasets.

Dataset Number of Reads Total Size Species Coverage

Sim-8 432,333 3.5Gb

Acetobacter pasteurianus 25

Bacillus cereus 50

Chlamydophila psittaci 80

Escherichia coli 125

Haemophilus parainfluenzae 350

Lactobacillus casei 200

Thermococcus sibiricus 150

Streptomyces scabiei 100

Sim-20 666,735 5.3Gb

Amycolatopsis mediterranei 25

Arthrobacter arilaitensis 65

Brachyspira intermedia 20

Corynebacterium ulcerans 40

Erysipelothrix rhusiopathiae 55

Enterococcus faecium 50

Mycobacterium bovis 80

Photobacterium profundum 85

Streptococcus pyogenes 100

Xanthobacter autotrophicus 150

Rhizobium leguminosarum 100

Francisella novicida 150

Candidatus Pelagibacter ubique 67

Halobacterium sp 65

Lactobacillus delbrueckii 60

Paenibacillus mucilaginosus 90

Rickettsia prowazekii 100

Thermoanaerobacter brockii 110

Yersinia pestis 105

Nitrosococcus watsonii 95
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Table B.4: Information of simulated dataset containing 50 species.

Dataset Number of Reads Total Size Species Coverage

Sim-50 1,119,439 9.5GB

Azorhizobium caulinodans 25

Bacillus cereus 35

Bdellovibrio bacteriovorus 21

Bifidobacterium adolescentis 44

Bifidobacterium animalis 31

Campylobacter jejuni 11

Clostridium tetani 36

Clostridium thermocellum 31

Corynebacterium diphtheriae 42

Corynebacterium ulcerans 33

Ehrlichia ruminantium 26

Enterococcus faecium 24

Erysipelothrix rhusiopathiae 44

Escherichia coli 20

Fervidicoccus fontis 49

Francisella novicida 42

Francisella tularensis 49

Fusobacterium nucleatum 39

Haemophilus influenzae 12

Haemophilus parainfluenzae 11

Haemophilus somnus 44

Helicobacter pylori 47

Hyphomicrobium sp 44

Lawsonia intracellularis 46

Metallosphaera cuprina 33

Methanosarcina barkeri 44

Micrococcus luteus 46

Mycobacterium bovis 42

Mycoplasma gallisepticum 29

Neisseria meningitidis 38

Nitrosococcus watsonii 42

Paenibacillus mucilaginosus 14

Paenibacillus sp 31

Photobacterium profundum 45

Pseudogulbenkiania sp 25

Pseudomonas putida 10

Rhizobium leguminosarum 20

Rickettsia prowazekii 38

Rickettsia rickettsii 100

Ruegeria sp 200

Shewanella sp 90

Sodalis glossinidius 120

Staphylococcus aureus 220

Streptococcus pyogenes 110

Streptococcus suis 100

Streptomyces scabiei 110

Symbiobacterium thermophilum 250

Thermoanaerobacter sp 220

Thermococcus sibiricus 210

Variovorax paradoxus 100
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Table B.5: Information about the long reads simulated datasets containing plasmids.

Dataset Read type Tax ID Plasmid/Chromosome Accession Number Length (bp) Plasmid/Chromosome
copy number Number of reads

Sim-2C5P PacBio

311402 plasmid NC_011981 631775 2 3410

311402 Plasmid NC_011982 258824 1 690

311402 Plasmid NC_011984 211620 3 1710

311402 Plasmid NC_011986 78730 1 210

311402 Plasmid NC_011991 130435 2 700

311402 Chromosome NC_011988 1283187 1 3460

311402 Chromosome NC_011989 3726375 1 10070

Sim-4C11P PacBio

243230 plasmid NC_000958 177466 1 1923

243230 Plasmid NC_000959 45704 1 495

243230 Plasmid NZ_CP015083 203183 1 2201

243230 Plasmid NZ_CP015084 61707 3 2005

243230 Chromosome NZ_CP015081 2646742 1 28680

243230 Chromosome NZ_CP015082 433133 1 4693

358 Plasmid NC_002147 206479 2 3876

358 Plasmid NC_002377 194140 1 1822

358 Plasmid NC_006277 44420 2 834

358 Plasmid NC_010929 244978 2 4600

358 Plasmid NC_019555 176574 3 4974

358 Plasmid NZ_CP011248 544752 1 5114

358 Plasmid NZ_CP011249 194264 4 7296

358 Chromosome NZ_CP014259 2497934 1 23456

358 Chromosome NZ_CP014260 2983661 1 28018

Sim-10C16P PacBio

243230 Plasmid NC_000958 177466 1 3759

243230 Plasmid NC_000959 45704 1 968

243230 Plasmid NZ_CP015083 203183 2 8608

243230 Plasmid NZ_CP015084 61707 5 6536

243230 Chromosome NZ_CP015081 2646742 1 56071

243230 Chromosome NZ_CP015082 433133 1 9175

1492 Plasmid NC_012760 8060 1 79

1492 Plasmid NZ_CP013354 8060 2 159

1492 Plasmid NZ_CP014706 8061 4 318

1492 Chromosome NZ_CP014704 3794139 1 37535

1492 Chromosome NZ_CP014705 795002 1 7865

529 Plasmid NC_010917 4227 3 11

529 Plasmid NZ_CP008817 155838 2 294

529 Plasmid NZ_CP008818 106739 1 100

529 Chromosome NZ_CP008819 1930134 1 1824

529 Chromosome NZ_CP008820 2708454 1 2560

176299 Plasmid NC_003064 542868 3 5192

176299 Plasmid NC_003065 214233 2 1366

176299 Plasmid NC_004972 8288 2 52

176299 Chromosome NC_003062 2841580 1 9059

176299 Chromosome NC_003063 2075577 1 6617

311403 Plasmid NC_011987 388169 1 2219

311403 Plasmid NC_011990 184668 1 1055

311403 Plasmid NC_011994 44420 2 507

311403 Chromosome NC_011983 2650913 1 15156

311403 Chromosome NC_011985 4005130 1 22898
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B.2 Publicly Available Datasets

This section tabulates information of the real datasets presented in this thesis. All the presented
datasets are publicly available, and they can be obtained from NCBI database at NIH freely using
respective accession numbers.

Table B.6: Information about the publicly available datasets. †The coverage values for the Zymo-All dataset
were obtained from (Kolmogorov, Rayko et al., 2019). *The coverage values for the ASM datasets were
obtained from the NCBI SRA taxonomy analysis.

Dataset Read type Species present Genome
size (Mb) Coverage Abundance Dataset size (GB) Average read

length (kb)

ZymoEVEN† ONT

P. aeruginosa 6.792 155x 9.7%

14.24 4.079

E. coli 4.875 220x 9.9%

S. enterica 4.760 227x 10.0%

L. fermentum 1.905 528x 9.3%

E. faecalis 2.845 464x 12.2%

S. aureus 2.730 445x 11.2%

L. monocytogenes 2.992 525x 14.5%

B. subtilis 4.045 516x 19.3%

S. cerevisiae 13.163 17x 2.1%

C. neoformans 19.325 10x 1.8%

ASM-0* PacBio

P. aeruginosa 6.631 5.8x 36.0%

0.10 10.601

A. pittii 3.917 5.9x 21.6%

S. epidermidis 2.535 6.1x 14.5%

C. acnes 2.524 6.1x 14.4%

S. mitis 2.177 6.6x 13.5%

ASM-5* PacBio

P. aeruginosa 6.631 5.4x 36.1%

0.10 10.313

A. pittii 3.917 5.5x 21.7%

S. epidermidis 2.535 5.6x 14.3%

C. acnes 2.524 5.7x 14.5%

S. mitis 2.177 6.1x 13.4%

ASM-10* PacBio

P. aeruginosa 6.631 5.1x 36.0%

0.10 10.322

A. pittii 3.917 5.2x 21.7%

S. epidermidis 2.535 5.3x 14.3%

C. acnes 2.524 5.4x 14.5%

S. mitis 2.177 5.8x 13.4%

ASM-15* PacBio

P. aeruginosa 6.631 4.8x 35.9%

0.10 10.330

A. pittii 3.917 4.9x 21.7%

S. epidermidis 2.535 5.0x 14.3%

C. acnes 2.524 5.1x 14.5%

S. mitis 2.177 5.5x 13.5%

Coral+Symbio PacBio
P. lutea 561.222 20x 47.2%

27.65 8.865
Cladocopium C15 628.606 20x 52.8%
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Table B.7: Information of publicly available real datasets SRR9202034 , SRX9569057, SRX9569058 and
SRX9569059.

Dataset Number of Reads Total Size Species Abundance

SRR9202034 2,358,257 19Gb

Acinetobacter baumannii 0.18%

Bacillus pacificus 1.80%

Bacteroides vulgatus 0.02%

Bifidobacterium adolescentis 0.02%

Clostridium beijerinckii 1.80%

Cutibacterium acnes 0.18%

Deinococcus radiodurans 0.02%

Enterococcus faecalis 0.02%

Escherichia coli 18.0%

Helicobacter pylori 0.18%

Lactobacillus gasseri 0.18%

Neisseria meningitidis 0.18%

Porphyromonas gingivalis 18.0%

Pseudomonas aeruginosa 1.80%

Rhodobacter sphaeroides 18.0%

Schaalia odontolytica 0.02%

Staphylococcus aureus 1.80%

Staphylococcus epidermidis 18.0%

Streptococcus agalactiae 1.80%

Streptococcus mutans 18.0%

SRX9569057

SRX9569058

SRX9569059

1,978,852

2,770,833

2,480,208

17Gb

25Gb

20Gb

Faecalibacterium prausnitzii 14.82%

Veillonella rogosae 20.01%

Roseburia hominis 12.47%

Bacteroides fragilis 8.36%

Prevotella corporis 6.28%

Bifidobacterium adolescentis 8.86%

Fusobacterium nucleatum 7.56%

Lactobacillus fermentum 9.71%

Clostridioides difficile 1.10%

Akkermansia muciniphila 1.62%

Methanobrevibacter smithii 0.17%

Salmonella enterica 0.0065%

Enterococcus faecalis 0.0011%

Clostridium perfringens 0.00009%

Escherichia coli (JM109) 1.83%

Escherichia coli (B-3008) 1.82%

Escherichia coli (B-2207) 1.65%

Escherichia coli (B-766) 1.66%

Escherichia coli (B-1109) 1.77%

Candida albicans 0.16%

Saccharomyces cerevisiae 0.16%
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B.3 Simulated Short Read datasets

This section tabulates details about the simulated datasets for short read datasets including the species,
chromosomes, plasmids, genome lengths, coverage values, abundance and copy numbers. This data
has been simulated using InSilicoSeq (Gourlé et al., 2018).

Table B.8: Information on the short read simulated datasets.

Dataset Accession number Type Length (bp) Simulation
Coverage (×) Abundance (%) Copy

number

Sim-2C5P

NZ_CP015287.1 chromosome 3188516 10 68.57 1

NZ_CP015288.1 chromosome 942922 10 20.28 1

NZ_CP015289.1 plasmid 152958 350 3.29 35

NZ_CP015290.1 plasmid 124313 100 2.67 10

NZ_CP015291.1 plasmid 114172 100 2.46 10

NZ_CP015292.1 plasmid 105299 200 2.26 20

NZ_CP015293.1 plasmid 21883 200 0.47 20

Sim-2C9P

NZ_CP005083.1 chromosome 4249857 10 68.23 1

NZ_CP005084.1 chromosome 989120 10 15.88 1

NZ_CP005085.1 plasmid 520614 150 8.36 15

NZ_CP005086.1 plasmid 195308 300 3.14 30

NZ_CP005087.1 plasmid 87635 100 1.41 10

NZ_CP005088.1 plasmid 75938 150 1.22 15

NZ_CP005090.1 plasmid 34300 100 0.55 10

NZ_CP005091.1 plasmid 9585 150 0.15 15

NZ_CP005092.1 plasmid 7223 150 0.12 15

NZ_CP005093.1 plasmid 5391 250 0.09 25

NZ_CP005089.1 plasmid 53908 100 0.87 10
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Dataset Accession number Type Length (bp) Simulation
Coverage (×) Abundance (%) Copy

number

Sim-10C25P

NZ_CP015287.1 chromosome 3188516 10 12.51 1

NZ_CP015288.1 chromosome 942922 10 3.70 1

NZ_CP015289.1 plasmid 152958 100 0.60 10

NZ_CP015290.1 plasmid 124313 100 0.49 10

NZ_CP015291.1 plasmid 114172 100 0.45 10

NZ_CP015292.1 plasmid 105299 150 0.41 15

NZ_CP015293.1 plasmid 21883 200 0.09 20

NZ_CP022745.1 chromosome 3058963 10 12.00 1

NZ_CP022746.1 chromosome 711561 10 2.79 1

NZ_CP022747.1 plasmid 270473 100 1.06 10

NZ_CP022748.1 plasmid 247521 250 0.97 25

NZ_CP022749.1 plasmid 171560 100 0.67 10

NZ_CP022750.1 plasmid 79937 300 0.31 30

NZ_CP022751.1 plasmid 62622 100 0.25 10

NZ_CP034183.1 chromosome 2784072 10 10.92 1

NZ_CP034184.1 chromosome 515055 10 2.02 1

NZ_CP034185.1 plasmid 427730 100 1.68 10

NZ_CP034186.1 plasmid 406291 100 1.59 10

NZ_CP034187.1 plasmid 164279 100 0.64 10

NZ_CP034188.1 plasmid 63735 150 0.25 15

NZ_CP034189.1 plasmid 36543 200 0.14 20

NZ_CP014595.1 chromosome 2902170 10 11.38 1

NZ_CP014596.1 chromosome 1472180 10 5.77 1

NZ_CP014597.1 plasmid 315806 150 1.24 15

NZ_CP014598.1 plasmid 274486 100 1.08 10

NZ_CP014599.1 plasmid 280527 100 1.10 10

NZ_CP014600.1 plasmid 222528 150 0.87 15

NZ_CP014601.1 plasmid 54364 100 0.21 10

NC_011989.1 chromosome 3726375 10 14.62 1

NC_011988.1 chromosome 1283187 10 5.03 1

NC_011986.1 plasmid 78730 100 0.31 10

NC_011991.1 plasmid 130435 150 0.51 15

NC_011984.1 plasmid 211620 200 0.83 20

NC_011981.1 plasmid 631775 100 2.48 10

NC_011982.1 plasmid 258824 100 1.02 10
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Dataset Accession number Type Length (bp) Simulation
Coverage (×) Abundance (%) Copy

number

Sim-14C38P

NZ_CP015287.1 chromosome 3188516 10 8.31 1

NZ_CP015288.1 chromosome 942922 10 2.46 1

NZ_CP015289.1 plasmid 152958 150 0.40 15

NZ_CP015290.1 plasmid 124313 150 0.32 15

NZ_CP015291.1 plasmid 114172 100 0.30 10

NZ_CP015292.1 plasmid 105299 150 0.27 15

NZ_CP015293.1 plasmid 21883 150 0.06 15

NZ_CP029352.1 chromosome 1351902 20 3.52 1

NZ_CP029353.1 chromosome 2538983 20 6.62 1

NZ_CP029354.1 chromosome 605262 20 1.58 1

NZ_CP029355.1 chromosome 77812 20 0.20 1

NZ_CP029356.1 plasmid 882608 200 2.30 10

NZ_CP029357.1 plasmid 672413 200 1.75 10

NZ_CP029358.1 plasmid 405625 400 1.06 20

NZ_CP029359.1 plasmid 186821 300 0.49 15

NZ_CP029360.1 plasmid 54887 300 0.14 15

NZ_CP014505.1 chromosome 3260450 50 8.50 1

NZ_CP014508.1 plasmid 286935 750 0.75 15

NZ_CP014506.1 chromosome 1696029 50 4.42 1

NZ_CP014509.1 plasmid 62715 500 0.16 10

NZ_CP014507.1 chromosome 1495500 50 3.90 1

NZ_CP014510.1 plasmid 52585 500 0.14 10

NZ_CP014511.1 plasmid 20973 500 0.05 10

NZ_CP014512.1 plasmid 6086 750 0.02 15

NC_017486.1 chromosome 2399458 20 6.26 1

NC_017483.1 plasmid 44098 200 0.11 10

NC_017487.1 plasmid 35934 300 0.09 15

NC_017484.1 plasmid 31442 300 0.08 15

NC_017485.1 plasmid 5543 400 0.01 20

NC_017488.1 plasmid 2262 300 0.01 15

NZ_CP005083.1 chromosome 4249857 5 11.08 1

NZ_CP005084.1 chromosome 989120 5 2.58 1

NZ_CP005085.1 plasmid 520614 50 1.36 10

NZ_CP005086.1 plasmid 195308 75 0.51 15

NZ_CP005087.1 plasmid 87635 100 0.23 20

NZ_CP005088.1 plasmid 75938 50 0.20 10

NZ_CP005090.1 plasmid 34300 150 0.09 30

NZ_CP005091.1 plasmid 9585 75 0.02 15

NZ_CP005092.1 plasmid 7223 75 0.02 15

NZ_CP005093.1 plasmid 5391 50 0.01 10

NZ_CP005089.1 plasmid 53908 100 0.14 20

NZ_CP028797.1 chromosome 5360164 3 13.97 1

NZ_CP028794.1 plasmid 54847 60 0.14 20

NZ_CP028795.1 plasmid 5596 60 0.01 20

NZ_CP028796.1 plasmid 112467 30 0.29 10

NZ_CP024528.1 chromosome 5297108 30 13.81 1

NZ_CP024529.1 plasmid 221606 600 0.58 20

NZ_CP024530.1 plasmid 147932 900 0.39 30

NZ_CP024531.1 plasmid 89345 450 0.23 15

NZ_CP024532.1 plasmid 4660 900 0.01 30

NZ_CP024533.1 plasmid 4510 600 0.01 20

NZ_CP024534.1 plasmid 3825 450 0.01 15
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Appendix C

Evaluation Against Reference Based
Binning

In this section we perform reference based binning of datasets from Chapter 5 using the popular
reference based binning tool Kraken2 (Wood, Lu et al., 2019). Kraken2 perform taxonomic annotation
of sequences at different taxonomic levels using minimizers and a minimizer index built using known
genomes. In our evaluation we use the kraken2 database MiniKraken2_v1_8GB from https://

ccb.jhu.edu/software/kraken2/downloads.shtml. Note that this database is built from the refseq
bacteria, archaea, and viral libraries making it a strong candidate to perform metagenomics binning.

We evaluated kraken2 performance with two setups; (1) the default mode and (2) high confidence
mode. Kraken2 defines confidence as the C/Q, where C is the number of k-mers mapped to the
assigned label, and Q is the number of k-mers in the sequence that are also observed in the database.
By default, kraken2 reports all labels that have positive confidence values. In our high confidence
mode, we slightly harden the confidence by specifying 0.1 for --confidence parameters of kraken2.

C.1 Binning performance

Table C.1: Performance of Kraken2 reference based binning tool with default parameters

Dataset No. of species Bins Detected Precision Recall F1-Score

Sim-8 8 525 99.99% 89.18% 94.28%

Sim-20 20 428 100.00% 84.83% 91.79%

Sim-50 50 1243 99.79% 91.16% 95.28%

Sim-100 100 1550 99.21% 92.80% 95.90%

ZymoEVEN 10 1477 98.53% 81.37% 89.13%

SRR9202034 20 602 99.96% 90.66% 95.08%

SRX9569057 21 1134 94.91% 70.09% 80.63%

It is evident from Table C.1 that under default operating confidence, kraken2 over-estimates the
number of bins, thus reducing the recall of bins. This is mainly due to erroneous k-mers that mislead
kraken2 to assign false labels to sequences. This renders kraken2 as a non-viable binning tool to
perform binning of long reads for assembly. We try to mitigate the over estimation of number of
bins by restricting the classification confidence to be above 0.1. Note that, we cannot further increase
this as genomic k-mers are in scarcity within long reads. As expected, Table C.2 demonstrates that

https://ccb.jhu.edu/software/kraken2/downloads.shtml
https://ccb.jhu.edu/software/kraken2/downloads.shtml
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higher confidence mode yield a lower number of bins, however, still over estimating the species count
significantly.

Table C.2: Performance of Kraken2 reference based binning tool with higher confidence

Dataset No. of species Bins Detected Precision Recall F1-Score

Sim-8 8 47 39.55% 83.00% 53.57%

Sim-20 20 97 27.93% 83.26% 41.83%

Sim-50 50 181 25.82% 83.20% 39.41%

Sim-100 100 315 42.00% 77.72% 54.53%

ZymoEVEN 10 37 21.66% 99.82% 35.59%

SRR9202034 15 74 99.79% 92.64% 96.08%

SRX9569057 13 80 67.04% 88.18% 76.17%

C.2 AMBER evaluation of binning results

Evaluation of binning using AMBER (Meyer, Hofmann et al., 2018a) shows that Kraken2 produces
bins that are lower in completeness compared to our long read binning tools. This is because, the
erroneous k-mers in long reads confuse Kraken2 to predict different species. This reduces the number
of reads in a given bin affecting the overall completeness of the bins as demonstrated in Figures C.1
and C.2. Similarly, the contamination is affected by confusion between different species and the
unclassified bins which is created by Kraken2 that contains the reads that did not classify under the
criterion it operates (Please refer to Figures C.3 and C.4). The same adverse effects persists in the
mode (2) as demonstrated in Figures C.5-C.8.

C.3 Discussion

It is evident that reference based binning tools alone may face challenging inputs when faced with
erroneous long reads. Reference free binning tools have the tendency of under-estimating the number
of bins when presented with complex datasets. This emphasizes the requirement of more sophisticated
techniques of combining reference based and reference free binning tools as discussed in Chapter 8.1.3.
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Figure C.1: Comparison of bin completeness between simulated datasets with default kraken2 parameters.
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Figure C.2: Comparison of bin completeness between real datasets with default kraken2 parameters.
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Figure C.3: Comparison of bin completeness between simulated datasets with default kraken2 parameters.
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Figure C.4: Comparison of bin contamination between real datasets with default kraken2 parameters.
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Figure C.5: Comparison of bin completeness between simulated datasets with kraken2 higher confidence.
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Figure C.6: Comparison of bin completeness between real datasets with kraken2 higher confidence.
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Figure C.7: Comparison of bin completeness between simulated datasets with kraken2 higher confidence.
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Figure C.8: Comparison of bin contamination between real datasets with kraken2 higher confidence.
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Appendix D

Discussion on Binning Evaluation
Metrics

The binning evaluations are presented using Precision, Recall and F1 score as indicated in Section 3.3.3.
Furthermore, stricter evaluations are presented using AMBER (Meyer, Hofmann et al., 2018a) for
LRBinner and OBLR. This section explains the evaluation metrics in detail and discusses as to why
AMBER evaluations are poor in some cases where the number of bins predicted is further away from
the actual number of species in the dataset. Note that the bin assignment matrix a can be presented as
M× N, illustrated in Table D.1. Note that N = 5 and M = 7.

Table D.1: Binning matrix

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 5 Bin 7

Species 1 a11 = 99 a12 = 0 a13 = 0 a14 = 0 a15 = 0 a16 = 1 a17 = 0

Species 2 a21 = 0 a22 = 100 a23 = 0 a24 = 0 a25 = 0 a26 = 0 a27 = 0

Species 3 a31 = 0 a32 = 20 a33 = 0 a34 = 0 a35 = 0 a36 = 0 a37 = 0

Species 4 a41 = 0 a42 = 0 a43 = 1000 a44 = 50 a45 = 0 a46 = 0 a47 = 0

Species 5 a51 = 0 a52 = 0 a53 = 0 a54 = 0 a55 = 200 a56 = 0 a57 = 300

Recall the equations Precision and Recall.

Precision(%) =
∑M

i=1 maxj{Rij}
∑M

i=1 ∑N
j=1{Rij}

× 100 (D.1)

Recall(%) =
∑N

j=1 maxi{Rij}

∑M
i=1 ∑N

j=1{Rij}+ Number of unclassified reads
× 100 (D.2)

Recall is computed for each species, by taking the largest assignment to a bin. Precision is computed
per bin taking the largest assignment of the bin to a given species. In contrast, AMBER uses purity
and completeness to compute the per-bin F1 score using the following equations, for each bin b.

Purity =
true positivesb

true positivesb + false positivesb
(D.3)

Completeness =
true positivesb

true positivesb + false negativesb
(D.4)
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The true positives are computed using the majority species in a given bin. Because of this, if a bin
appears as a result of a false bin split (1% reads), the completeness of the smaller bin will be very
low (approximately 1%) according to AMBER evaluation. In comparison, the recall of the species
using equation D.2 will report 99% since 99% of the reads are in a single bin despite having the false
bin split. Similarly, the false split of the bin will report a greater precision as long as the bin has no
other species mixed according to equation D.1. Such precision and recalls are appropriate in the
read binning context, given the fact that a proper assembly can be reached with 99% reads due to
the larger number. This is not the case in AMBER which is designed to mostly evaluate contig bins
where wrong splits can significantly misinterpret the biological environment. Consider the following
running example.

Example 1

Suppose Species 1 has a11 = 99 and a16 = 1 with rest of the row having no reads and Bin 1 and
6 has no reads from another species. Purity in this case will be 100% for both bins 1 and 6 while
completeness will be 99% and 1% respectively. F1-score will be 99.5% and 1.98% with average being
very low at 50.7%. Recall will be 99% for Species 1 with 100% precision on both bins 1 and 6 since
there are no impurities in each bin, thus, F1-score is 99.5% for each bin.

Example 2

Suppose Bin 2 has a22 = 100 and a32 = 20, with two species 2 and 3, with no other contaminants and
species 2 and 3 are fully contained in the bin. Now, the purity of the bin is 83.33% and completeness
is 83.33%, hence, F1-score is 83.33%. Recall for species 2 and 3 will be 100% since it is not split into
multiple bins. However, the precision for Bin 2 will be 83.33%, hence a F1 score of 90.91%.

This means, AMBER penalizes whenever a species is split into many bins while not significantly
penalizing bin mergers between large bins and smaller bins. This is because, dominant species in the
bin will determine the purity and completeness.

In conclusion, the disparity of results in AMBER evaluation is largely due to the computation of
per-bin F1 score using per-bin purity and completeness. However, such comparison is essential to
show the importance of accurate binning.
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