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ABSTRACT 

Molecular phylogenetic inference is the process of reconstructing relationships between 

individuals, species, or higher groups from genomic sequence data. The reliability of 

phylogenetic analysis relies on the fit between the substitution models used and the 

evolutionary processes that generated the data. In phylogenetic inference, we commonly use 

substitution models which assume that sequence evolution is stationary, reversible, and 

homogeneous (SRH). Many empirical and simulation studies have shown that assuming SRH 

conditions can lead to significant errors in phylogenetic inference when the data violates these 

assumptions. Yet, the extent of SRH violations and their effects on phylogenetic inference of 

tree topologies are not very well understood. 

In Chapter 1, I introduced and applied the Maximal matched-pairs tests of homogeneity 

(MaxSym tests) to assess the scale and impact of SRH model violations on 3,572 partitions 

from 35 published phylogenetic data sets. I showed that roughly one-quarter of all the partitions 

I analysed reject the SRH assumptions and that for more than one-quarter of data sets, tree 

topologies inferred from all partitions differ significantly from topologies inferred using the 

subset of partitions that do not reject the SRH assumptions.  

In Chapter 2, I simulated datasets under various degrees of non-SRH conditions using 

empirically derived parameters to mimic real data and examine the effects of incorrectly 

assuming SRH conditions on inferring phylogenies. I showed that maximum likelihood 

inference is generally quite robust to a wide range of SRH model violations but is inaccurate 

under extreme convergent evolution. In addition, I tested the power of the MaxSym tests and 

other popular tests to detect model violations due to non-SRH evolution. I showed that 

MaxSym tests performed well under the different schemes of simulations and that of all the 
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tests I studied, the MaxSym tests perform the best at identifying datasets that might mislead 

phylogenetic inference. 

In Chapter 3, I investigated the homogeneity assumption widely used in phylogenetic 

inference. To check for homogeneity in empirical datasets, I introduced a computationally 

feasible test for homogeneity across lineages based on the AIC score. Using empirical datasets 

from three different clades of life I tested the homogeneity assumption by estimating amino-

acid substitution matrices for monophyletic sub-clades within each dataset. I show that forcing 

the models to be homogenous always provides a worse fit to the data than allowing each sub-

clade to have its own model. In addition, for every dataset, I found that a simpler model where 

two or more clades share the same substitution matrix is always better than the fully non-

homogeneous model in terms of AIC score. 

In Chapter 4, I investigated the ability of non-reversible models to estimate the root of a 

phylogeny. In addition, I introduced a new measure of support for the placement of the root in 

a phylogenetic tree, the rootstrap support. I tested the ability of non-reversible models to 

recover the root placement of five clades of mammals for which prior studies give very strong 

evidence of a particular root position. I showed that the non-reversible model correctly inferred 

the root of all the five clades with very high rootstrap support. I then applied the same 

approaches to infer the roots of two clades of mammals for which previous studies have 

repeatedly disagreed on the root position. I show that non-reversible models recover similar 

roots to previous studies, but the rootstrap support is lower than the other five clades. 

Together, these chapters show the impact of model violation due to non-SRH evolution on 

phylogenetic inference and suggest the need to test for model violation prior to phylogenetic 

inference or to develop and apply more complex substitution models to relax some of the 

assumptions associated with the most widely used models in phylogenetics. 
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INTRODUCTION 

Phylogenetics is an essential tool for inferring evolutionary relationships between individuals, 

species, genes, and genomes (Felsenstein 2004; Bromham 2016; Kapli, et al. 2020). 

Understanding evolution is vital for our understanding of biology. Traditionally, morphological 

characters and fossils were used to investigate evolutionary relationships. However, with the 

advancement and the rapidly dropping costs of DNA sequencing, and the huge progress in 

computer software and hardware, using molecular data has become the most popular approach 

in phylogenetic inference. 

1.1 The Statistical Model of Substitutions 

Based on Darwin’s hypothesis of a single origin of life (Darwin 1859), Edwards and Cavalli-

Sforza suggested using statistical methods for phylogenetic inference (Edwards and Cavalli-

Sforza 1963, 1964). They argued that “probabilistic reasoning leads naturally to the Darwin 

principle” (Edwards 1996). In a probabilistic framework, we use parametric models of 

molecular evolution that are designed to approximate the evolutionary process of accumulating 

changes in the data. Figure 1.1 shows a schematic illustration of the full statistical model used 

in phylogenetic inference. 

 

Figure 1.1| schematic illustration of the model underlying statistical inference of phylogenies. 

BP is the branching process modelling speciation with speciation rate λ and extinction rate μ. 

Starting from a single origin, and given the elapsed time t, this process will result in a 

phylogeny T’. S is the process of selection by the taxonomist of the samples to be studied 

among the tips of T’, whose phylogeny is T. M is the Markov process which operates on the 

branches of phylogeny T resulting in the observed data X.  

 

BP S 
λ,μ T’ T 

M 
t, X T 

M 
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The main product of phylogenetic inference is a phylogeny or a phylogenetic tree, which is a 

graph that connects a group of taxa (external nodes or leaves) with their hypothetical ancestors 

(internal nodes) by edges (branches). A phylogenetic tree can either be rooted or unrooted and 

the degree of each node can be determined by the number of branches connected to that node. 

In phylogenetic inference, we are mainly interested in binary trees (or bifurcating trees) in 

which all nodes’ degrees are not larger than 3 and the root’s degree is no larger than 2 (Figure 

1.2). A node with more than 3 branches connected to it (or root node with more than 2 branches 

connected to it) represents a polytomy, phylogenetic trees that contain polytomies are called 

multifurcating trees (Figure 1.2). In phylogenetics, a polytomy indicates a lack of information 

(soft polytomy) or simultaneous divergence event of three or more lineages (hard polytomy) 

which is highly unlikely. 

 

Figure 1.2| Five-taxon (a) unrooted bifurcating tree (b) rooted bifurcating tree (c) unrooted 

multifurcating tree (d) rooted multifurcating tree. 

In order to estimate phylogeny T from data X (Figure 1.1) we first need some observed data. 

Most phylogenetic studies nowadays use DNA or amino acid sequences to infer phylogenies. 
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DNA and amino acid characters undergo many changes over time and the evolutionary 

processes underlying these changes are assumed to be Markovian and independent, implying 

that changing from one state to another depends only on the current state of the character and 

all characters evolve independently from other characters. Since the history of substitutions at 

a site is unknown, yet, the current state is known, it is convenient to assume that the 

evolutionary process satisfies the Markov property.  

For a character X in discrete space ({A, C, G, T} for DNA or {A, R, N, D, C, Q, E, G, H, I, L, 

K, M, F, P, S, T, W, Y, V} for amino acids), the value of X at time t is denoted by 𝑋(𝑡). The 

probability of the character X that currently is in state i to be in state j after a period time of t (t 

> 0) is 𝑃𝑖𝑗(𝑡). Since the state space of characters is finite (4 for DNA, 20 for amino acid), the 

probability distribution can be presented by a transition-probability matrix P(t) with elements 

𝑃𝑖𝑗(𝑡). 

 𝑃𝑖𝑗(𝑡) = 𝑃[𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖],        𝑡 > 0   

 (1.1) 

𝑃𝑖𝑗(𝑡) is the probability of character X to be in state j in time t (𝑃(𝑋(𝑡) = 𝑗)) if it was in state 

i in time 0 (𝑃(𝑋(0) = 𝑖)). 

Given enough time (𝑡 → ∞), the Markov process reaches a stationary distribution 𝜋. Once the 

process reaches its stationary distribution, it will stay in that distribution. Most phylogenetic 

models assume that the substitution process reached its stationary distribution and therefore all 

the sequences have the same base composition (Jukes and Cantor 1969; Dayhoff, et al. 1978; 

Kimura 1980; Felsenstein 1981; Hasegawa, et al. 1985; Tavaré 1986; Tamura and Nei 1993; 

Whelan and Goldman 2001; Le and Gascuel 2008; Minh, et al. 2021). This assumption is 

known as the stationarity assumption and can be represented by equation 1.2: 

𝜋𝑃(𝑡) = 𝜋,           𝑡 > 0     (1.2) 
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Which implies that the base frequencies 𝜋 remains the same through the time. 

In addition, most phylogenetic models assume that the substitution process is time-reversible, 

meaning that the substitution process remains the same in both directions. It is simple to show 

that a reversible process is also a stationary process, yet, a stationary process does not have to 

be reversible (Jermiin, et al. 2017). A time-reversible Markov process should satisfy equation 

1.3: 

𝜋𝑖𝑃𝑖𝑗(𝑡) = 𝑃𝑗𝑖𝜋𝑗 ,        ∀𝑖, 𝑗    (1.3) 

Where 𝜋𝑖 is the proportion of time the Markov process spends in state i, and 𝜋𝑖𝑃𝑖𝑗(𝑡) is the 

amount of flow from state i to j, while 𝑃𝑗𝑖𝜋𝑗  is the flow in the opposite direction. 

This implies that there exists a distribution π that satisfies equation 1.3 and this distribution is 

the stationary distribution of the Markov process. In other words, a Markov process that 

satisfies equation 1.3 is stationary. On the other hand, a Markov process can be stationary and 

yet its stationary distribution does not satisfy this equation.  

Another very common assumption made in phylogenetic inference is that the substitution 

process is time-homogeneous and therefore the instantaneous rate of change from one state to 

another does not change over time. If the process is assumed to be time-homogeneous, the 

transition-probability matrix P(t) can be found by solving the differential equation: 

𝑃(𝑡) 𝑑𝑡⁄ = 𝑃(𝑡)𝑄,        𝑃(0) = 𝐼    (1.4) 

Where I is the identity matrix and Q is the instantaneous substitution rate matrix with elements 

𝑞𝑖𝑗. The solution for this equation is: 

𝑃(𝑡) =  𝑒𝑄𝑡     (1.5) 
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For a fully time-homogeneous non-reversible model, the Q matrix will have 12 parameters for 

DNA (Yang 1994) and 380 parameters for amino acids (Minh, et al. 2020), while in a time-

homogeneous, time-reversible model, the Q matrix will have no more than 6 parameters for 

DNA (Tavaré 1986) and no more than 190 parameters for amino acid (Minh, et al. 2021). The 

instantaneous rate matrix for DNA sequences with 12 parameters can be represented by: 

𝑄 = [

𝑞𝐴𝐴 𝑞𝐴𝐶 𝑞𝐴𝐺 𝑞𝐴𝑇
𝑞𝐶𝐴

𝑞𝐺𝐴

𝑞𝑇𝐴

𝑞𝐶𝐶

𝑞𝐺𝐶

𝑞𝑇𝐶

𝑞𝐶𝐺

𝑞𝐺𝐺

𝑞𝑇𝐺

𝑞𝐶𝑇

𝑞𝐺𝑇

𝑞𝑇𝑇

] = [

− 𝛼𝐴𝐶 𝛼𝐴𝐺 𝛼𝐴𝑇
𝛼𝐶𝐴

𝛼𝐺𝐴

𝛼𝑇𝐴

−
𝛼𝐺𝐶

𝛼𝑇𝐶

𝛼𝐶𝐺

−
𝛼𝑇𝐺

𝛼𝐶𝑇

𝛼𝐺𝑇

−

] [

𝜋𝐴 0 0 0
0
0
0

𝜋𝐶

0
0

0
𝜋𝐺

0

0
0

𝜋𝑇

] 

Where 𝑞𝑖𝑖 = − ∑ 𝑞𝑖𝑗𝑗≠𝑖  and 𝑖, 𝑗 = {𝐴, 𝐶, 𝐺, 𝑇}, the conditional substitution rate from nucleotide 

i to j (𝛼𝑖𝑗) is non-negative value and 𝜋𝑗 is the frequency of nucleotide j. 

From equation 1.3 we can prove that if there exists a stationary distribution 𝜋𝑗, such that  

𝜋𝑖𝑞𝑖𝑗 = 𝜋𝑗𝑞𝑗𝑖      (1.6) 

Then: 

𝛼𝑖𝑗 = 𝛼𝑗𝑖      (1.7) 

And the model is stationary and time-reversible with just 6 rate parameters. The same is 

effective for amino-acid sequences, where 

𝑖, 𝑗 = {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}. 

Most phylogenetic models are stationary, reversible and homogeneous, these assumptions were 

made to simplify the mathematical and computational work necessary to infer phylogenies. 

The main difference between these models is the instantaneous substitution rate matrix (Q). 

For example the Jukes-Cantor model (Jukes and Cantor 1969) assumes that every nucleotide 

has the same substitution rate and therefore 𝑞𝑖𝑗 =  𝜆 for all 𝑖, 𝑗 = {𝐴, 𝐶, 𝐺, 𝑇}. Kimura suggested 
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a more complex model that accounts for different transition and transversion rates (Kimura 

1980). Both Jukes-Cantor and Kimura models assume that in the stationary distribution the 

sequence will have equal proprotions of all nucleotides. As this assumption is not realistic, 

other models such as the TN93 model (Tamura and Nei 1993) and the HKY85 model 

(Hasegawa, et al. 1985) relax this assumption by allowing unequal base composition in the 

stationary distribution. 

 

There is no reason to believe that evolution is Stationary, Reversible, or Homogeneous (SRH). 

In fact, there is huge evidence in the literature that different sequences have different base 

compositions (Galtier and Gouy 1995; Foster, et al. 1997; Galtier and Gouy 1998; Foster and 

Hickey 1999; Tarrío, et al. 2001; Paton, et al. 2002; Goremykin and Hellwig 2005; Murray, et 

al. 2005; Bourlat, et al. 2006; Hyman, et al. 2007; Cox, et al. 2008; Squartini and Arndt 2008; 

Sheffield, et al. 2009; Nesnidal, et al. 2010; Jayaswal, Jermiin, et al. 2011; Nabholz, et al. 2011; 

Groussin, et al. 2013; Martijn, et al. 2018; Naser-Khdour, et al. 2019), and therefore the 

assumption that evolution has reached its stationary distribution is fundamentally wrong.  

Similarly,  there is strong evidence that substitution processes are not reversible (Galtier and 

Gouy 1998; Galtier, et al. 1999; Jayaswal, et al. 2005; Squartini and Arndt 2008; Woodhams, 

et al. 2015; Naser-Khdour, et al. 2021) and are not homogeneous (Galtier and Gouy 1998; 

Galtier, et al. 1999; Herbeck, et al. 2005; Dutheil and Boussau 2008; Jayaswal, Jermiin, et al. 

2011; Groussin, et al. 2013).  

Initially, the assumptions of stationarity, reversibility, and homogeneity were both necessary 

to ensure that models of sequence evolution were tractable on early computers, and sensible 

because early phylogenetic datasets tended to have too little information to estimate 

phylogenetic trees using highly parameterised models (Kumar, et al. 2012). Various studies 
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have shown that phylogenetic inference can be remarkably robust to violation of these 

assumptions e.g. (Stiller, et al. 2020; Branstetter, et al. 2021; Maurin, et al. 2021), supporting 

the often-regurgitated adage that “all models and wrong, but some are useful” (Box 1979). 

However, technological advances over the last few decades are no longer so limited by 

computational power or data availability. Furthermore, many of the ‘easy’ branches of the 

phylogenetic tree of life have been solved, and many modern phylogenetic analyses tend to 

focus on branches that have been difficult to resolve with certainty using existing methods and 

models (Rokas and Chatzimanolis 2008). Indeed, many studies have shown that for some 

branches of the tree of life, small changes to model assumptions or datasets (Delsuc, et al. 

2005) can lead to dramatic changes to phylogenetic conclusions. Thus, it is timely to revisit the 

three fundamental assumptions in phylogenetic analyses, those of stationarity, reversibility, 

and homogeneity, to ask whether relaxing these assumptions could improve phylogenetic 

inference 

1.2 The Maximum-Likelihood Inference 

After obtaining the best-fit Markov model that describes the evolution of the data, there is a 

need to infer the relationships between the taxa using that model. Most probabilistic 

phylogenetic methods use maximum likelihood (ML) to infer those relationships in a form of 

trees (Felsenstein 1981). However, inferring evolutionary trees by ML methods is known to be 

an NP-hard problem (Chor and Tuller 2005) and therefore many heuristic algorithms are 

available for ML phylogenetic inference (Swofford 2001; Lemmon and Milinkovitch 2002; 

Guindon, et al. 2010; Price, et al. 2010; Bazinet, et al. 2014; Stamatakis 2014; Minh, et al. 

2020). Those heuristics traverse the tree and model parameter space to find the tree and model 

with the maximum probability of producing the observed data, yet, they cannot guarantee to 

find the optimal tree. 
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A common assumption in ML inference is that different sites evolve independently of each 

other. Under that assumption, the likelihood of a tree is the product over all sites (Felsenstein 

1981). Equivalently, the log-likelihood is the sum over all sites. Equation 1.8 represents the 

log-likelihood for a dataset with n independent sites 

log (𝐿) = ∑ 𝑙𝑜𝑔{𝑓(𝑥𝑖|𝜃)}𝑛
𝑖=1      (1.8) 

where L is the likelihood of the tree and 𝑓(𝑥𝑖|𝜃) is the frequency distribution with unknown 

parameter 𝜃 over site 𝑥𝑖. Then the ML function estimates 𝜃 by maximizing the log-likelihood 

function.  

For computational convenience, the vast majority of phylogenetic methods assume stationary, 

reversible and homogeneous evolution. Besides reducing the dimensionality of the parameter 

space, assuming time-reversibility, and thus stationarity simplifies the tree search without 

affecting the likelihood of the inference (Felsenstein 1981). Calculating the likelihood of a tree 

under a time-reversible model does not require starting from the root and moving forward in 

time. A time-reversible algorithm can start the computation of the likelihood from any node 

moving forward or backwards in time as desired until the likelihood of the tree is calculated. 

This is known as the “Pulley Principle” (Felsenstein 1981) and it allows moving the root of the 

tree without affecting the likelihood. Moreover, using the pulley principle reduces the tree 

space since the number of unrooted trees for n taxa is always smaller than the number of rooted 

trees for the same number of taxa ( 

 

Table 1). 
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Table 1| The number of rooted and unrooted trees for n taxa. 

n No. unrooted trees No. rooted trees 

3 1 3 

4 3 15 

5 15 105 

10 2,027,025 34,459,425 

20 2.22 × 1020 8.20 × 1021 

50 2.84 × 1074 2.75 × 1076 

 

1.3 Systematic Bias in Phylogenetic Inference 

There are two main types of errors in phylogenetic inference, stochastic (sampling) error and 

systematic error. Contrary to the stochastic error that can be reduced by adding more characters 

to the data, increasing the number of characters in a dataset does not seem to reduce systematic 

bias, and sometimes it might even intensify it (Philippe, et al. 2005; Sullivan and Joyce 2005; 

Kumar, et al. 2012; Brown and Thomson 2017; Duchene, et al. 2017). The statistical inference 

has the probability of consistency if it converges toward the true tree as more characters are 

added to the data (Felsenstein 1978). Thus, the consistency of the ML inference is guaranteed 

as long as there is no violation of the model’s assumptions (Philippe, et al. 2005; Kumar, et al. 

2012; Lemmon and Lemmon 2013). Since all phylogenetic inference methods make some 

assumptions, consistency has become one of the most challenging aspects of phylogenetics. In 

the era of big datasets and genome-scale sequences, this challenge is more evident now than 

ever, since it is much easier to get over-confident in the wrong tree (Philippe, et al. 2005; 

Kumar, et al. 2012).  

In a probabilistic framework, inconsistency can be almost always attributed to the systematic 

error caused by the violation of the model assumptions (Philippe, et al. 2005). The most popular 

assumptions that are often violated in phylogenetic analysis are rate homogeneity across sites, 

rate homogeneity across lineages, compositional homogeneity across lineages and 
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reversibility. If the data violate one or more of these assumptions this can lead to convergence 

towards the wrong tree as more data are added to an analysis, sometimes even with very high 

statistical support for incorrect inferences (Swofford 2001; Felsenstein and Felenstein 2004; 

Ho and Jermiin 2004; Jermiin, et al. 2004; Kumar, et al. 2012).  

Nowadays, in the era of big datasets and genome-scale sequences, it is common to infer 

incorrect trees with very high statistical support. Although using big datasets makes the site-

sampling variance negligible (Kumar, et al. 2012), it increases the probability of systematic 

bias. The more characters that are included in datasets, the higher the chance that those 

characters did not evolve under homogeneous conditions. Generally, small deviations and high 

confidence in the results are desirable features of phylogenetic inference. However, if the 

inference suffers a lack of consistency, this feature becomes very misleading. In fact, a growing 

body of studies presents high confidence in contradicting results (Foster and Hickey 1999; 

Tarrío, et al. 2001; Paton, et al. 2002; Goremykin and Hellwig 2005; Murray, et al. 2005; 

Bourlat, et al. 2006; Hyman, et al. 2007; Sheffield, et al. 2009; Nesnidal, et al. 2010; Nabholz, 

et al. 2011; Martijn, et al. 2018). 

There are two main approaches to deal with systematic bias in phylogenetic inference:  

I)  using complex models with a large number of free parameters: a number of models that 

relax the one or more of the popular assumptions in phylogenetic inference are available 

(Foster 2004; Lartillot and Philippe 2004; Blanquart and Lartillot 2006; Boussau and Gouy 

2006; Knight, et al. 2007; Dutheil and Boussau 2008; Sumner, et al. 2012; Zou, et al. 2012; 

Groussin, et al. 2013; Jayaswal, et al. 2014). Yet, they remain relatively rarely used, as 

searching for optimal phylogenetic trees under these models is computationally demanding 

even with modern computational resources (Betancur-r, et al. 2013) and the 

implementations are often not easy to use. As a result, the vast majority of empirical 
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phylogenetic inferences rely on models which assume that sequences have evolved under 

SRH conditions, such as the general time-reversible (GTR) family of models implemented 

in the most widely-used phylogenetics software packages (Swofford 2001; Drummond and 

Rambaut 2007; Guindon, et al. 2010; Ronquist, et al. 2012; Bazinet, et al. 2014; Bouckaert, 

et al. 2014; Stamatakis 2014; Höhna, et al. 2016; Minh, et al. 2020). 

II) testing for model violation in the data: statistical tests for model violations can be applied 

on the data a priori to the phylogenetic inference, and trees can then be reconstructed 

exclusively from data that do not violate the models. A number of methods have been 

proposed to test for violation of SRH conditions in aligned sequences prior to estimating 

trees (Bowker 1948; Stuart 1955; Rzhetsky and Nei 1995; Kumar and Gadagkar 2001; 

Weiss and von Haeseler 2003; Ababneh, et al. 2006; Ho, et al. 2006), and there are also a 

posteriori tests for absolute model adequacy which are employed after trees have been 

estimated  (Goldman 1993; Foster 2004; Brown and ElDabaje 2009; Brown 2014; 

Duchene, et al. 2017; Brown and Thomson 2018). However, testing for model violation 

either pre- or post-analysis also remains relatively rare in the empirical phylogenetic 

literature.  

1.4 Assessing Model Assumptions in Phylogenetic Inference 

Validating that the data complies with the assumptions of the model is a key to reducing 

systematic bias in phylogenetic inference (Philippe, et al. 2005; Brown 2014; Jermiin, Catullo, 

et al. 2020). As discussed above, the need for methods that assess the evolutionary process 

prior to phylogenetic inference becomes more important as the number of sequences and sites 

per dataset increases (Ho and Jermiin 2004; Jermiin, et al. 2004; Phillips, et al. 2004; Delsuc, 

et al. 2005; Lemmon and Lemmon 2013). In the phylogenetic protocol proposed by Jermiin et 

al. (Jermiin, Catullo, et al. 2020) the authors suggest two new novel steps to the current 
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phylogenetic protocol used by most researchers: 1) assessing phylogenetic assumptions a 

priori to the phylogenetic inference and 2) testing for goodness-of-fit a posteriori to the 

phylogenetic inference (Figure 1.3). 

 

Figure 1.3| schematic illustration of the protocol proposed by Jermiin, Catullo, et al. 2020. 

Solid arrows show the order of actions normally taken during phylogenetic analysis. Dashed 

arrows show feedback loops often employed in phylogenetic research. This image can be 

reused under a CC-BY-NC-4.0 license. 

Allowing the data to reject the model when its assumptions are violated (step 5 in Fig. 1.3) will 

alert us to choose more complex models for phylogeny reconstruction or potentially omit these 

loci from downstream analyses (Kumar and Gadagkar 2001; Jermiin, Catullo, et al. 2020). 

There are several available methods for assessing SRH assumptions a priori to phylogenetic 

inference (Kelly 1994; Rzhetsky and Nei 1995; Kumar and Gadagkar 2001; Weiss and von 
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Haeseler 2003; Ababneh, et al. 2006; Ho, et al. 2006; Squartini and Arndt 2008; Kedzierska, 

et al. 2012; Jermiin, et al. 2017; Naser-Khdour, et al. 2019; Jermiin, Lovell, et al. 2020) 

validating that the data complies with the assumptions of the model in use. Although there are 

other popular assumptions in phylogenetic inference such as; heterotachy (Lopez, et al. 2002), 

tree-likeness and that the evolutionary process is independent and identically distributed (iid), 

in this thesis I will only focus on the SRH assumptions. 

In addition to assessing the phylogenetic assumptions, it is important to assess if the data can 

be properly explained by the inferred phylogeny (step 10, Fig. 1.3). Various methods are 

available to assess the adequacy of the combined model and tree produced by a phylogenetic 

inference (Goldman 1993; Steel, et al. 1993; Bollback 2002; Foster 2004; Brown and ElDabaje 

2009; Brown 2014; Duchene, et al. 2017; Brown and Thomson 2018; Naser-Khdour, et al. 

2021). However, to increase the goodness-of-fit it is still important to test for violations of the 

model assumptions before the phylogenetic analysis. This will allow us to use better data (by 

removing the parts that violate the assumptions) or better models (that relax the violated 

assumptions) before the phylogenetic analysis and therefore improve our chances of inferring 

an accurate phylogeny. 

1.5 Complex Models of Evolution 

Another approach to account for model violation is to use substitution models that relax some 

of the most violated assumptions in phylogenetic inference. As discussed in sections 1.1 and 

1.2, using substitution models that assume SRH evolution is merely a computational 

convenience and relaxing one or more of these assumptions will put in more computational 

burden on the analysis. Moreover, most of these methods are not feasible for large datasets and 

can only be applied to a small number of taxa and sites. 
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Although several substitution models that relax one or more of the SRH assumptions are 

available (Barry and Hartigan 1987; Reeves 1992; Lake 1994; Lockhart, et al. 1994; Galtier 

and Gouy 1995; Yang and Roberts 1995; Galtier and Gouy 1998; Gu and Li 1998; Galtier, et 

al. 1999; Tamura and Kumar 2002; Foster 2004; Lartillot and Philippe 2004; Jayaswal, et al. 

2005; Blanquart and Lartillot 2006; Boussau and Gouy 2006; Jayaswal, et al. 2007; Blanquart 

and Lartillot 2008; Dutheil and Boussau 2008; Jayaswal, Ababneh, et al. 2011; Jayaswal, 

Jermiin, et al. 2011; Dutheil, et al. 2012; Sumner, et al. 2012; Zou, et al. 2012; Groussin, et al. 

2013; Jayaswal, et al. 2014; Woodhams, et al. 2015; Minh, et al. 2020), most of these models 

requires a phylogeny as their input, and then estimate the best-fit non-SRH model for that given 

phylogeny. Most implementations remain computationally intractable for the task of searching 

for the ML tree and the ML model in combination. Indeed, since phylogeny is usually unknown 

and is the target of most phylogenetic analyses, most of these methods remain rarely used in 

phylogenetic inference. 

1.6 Motivation and aims of the thesis 

In this thesis, I aim to reduce the systematic bias associated with model violation by developing 

and applying new methods that test for model violation a priori and a posteriori to the 

phylogenetic analysis. In addition, I will evaluate the potential impact of different types of 

model violations by comparing the adequacy of SRH and non-SRH models on large collections 

of empirical datasets.  

In Chapter 1, I extend the matched-pair test of symmetry (Bowker 1948), the matched-pair test 

of marginal symmetry (Stuart 1955) and the matched-pair test of internal symmetry (Ababneh, 

et al. 2006) to accommodate more than a pair of sequences. These three tests are designed to 

check for symmetry between two homologous sequences without previous knowledge or 
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assumptions regarding their topology or the evolutionary processes operating on them. Thus 

these tests are considered as tests for model violation a priori to phylogenetic inference. Yet, 

these tests are designed for pairs of sequences only. Since most, if not all datasets contain more 

than two sequences, it is vital to propose new tests for multiple-sequence alignments, allowing 

empirical phylogeneticists to ask whether any individual alignment shows evidence of 

violating the SRH assumptions. 

In addition, using the newly proposed tests with various published empirical datasets from 

different clades of life, different types of genomes and a varying number of taxa and sites I 

assess the scale and impact of SRH model violations on phylogenetic inference. Even though 

there is strong evidence that the SRH assumptions are repeatedly violated by real data (Foster 

and Hickey 1999; Tarrío, et al. 2001; Paton, et al. 2002; Goremykin and Hellwig 2005; Murray, 

et al. 2005; Bourlat, et al. 2006; Hyman, et al. 2007; Sheffield, et al. 2009; Nesnidal, et al. 

2010; Nabholz, et al. 2011; Martijn, et al. 2018), there is still little known about the prevalence 

of SRH assumptions’ violation in empirical data and its effect on phylogenetic inference. Thus, 

it is crucial first to understand this phenomenon when addressing the issue of systematic bias 

due to SRH model violation. We need to know not only which assumptions are violated by 

empirical datasets, but also which violations have important impacts on downstream 

inferences. The results of this chapter show that violation of SRH conditions is prevalent across 

all different types of datasets and that it has a substantial influence on the tree topology. 

In Chapter 2, I use simulation to examine the effects of incorrectly assuming SRH conditions 

on inferring phylogenies. To do this, I simulate thousands of alignments with a various number 

of taxa, sites, models, and degrees of non-SRH conditions. Although several studies used 

simulated data to answer this question (Huelsenbeck and Hillis 1993; Hillis, et al. 1994; Galtier 

and Gouy 1998; Ho and Jermiin 2004; Jermiin, et al. 2004; Boussau and Gouy 2006), the 
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majority of these studies used simulations that reflect extreme cases of convergent evolution, 

which are unlikely to represent the majority of empirical datasets. Therefore, in this chapter, I 

derive the parameters for the simulations from tens of thousands of published empirical datasets 

in order to mimic as closely as possible the evolution of a broad range of published datasets. I 

then combine these with a new simulation scheme in which model parameters are inherited 

with modification along a simulated phylogenetic tree. Moreover, I examine the power of the 

tests that I proposed in the previous chapter, along with a number of other existing tests, to 

detect model violations due to non-SRH evolution. Since the data is simulated under various 

degrees of non-SRH evolution, I can estimate type I and type II errors for these tests. The 

results of this chapter show that maximum likelihood inference is generally quite robust to a 

wide range of SRH model violations but is inaccurate under extreme convergent evolution. 

Moreover, I show that the tests I introduced in the previous chapter (namely, the MaxSym tests) 

are successfully able to detect SRH violations in the simulated alignments and even predict the 

accuracy of the tree inference. 

In Chapter 3, I investigate the homogeneity assumption widely used in phylogenetic inference. 

The homogeneity assumption implies that the instantaneous substitution rate matrix is constant 

over the tree (Jermiin, et al. 2017). Therefore, relaxing the homogeneity assumption requires 

assigning different matrices across the branches of the tree. There have been several attempts 

to use non-homogeneous matrices for phylogenetic inference (Barry and Hartigan 1987; 

Roberts and Yang 1995; Galtier and Gouy 1998; Galtier, et al. 1999; Foster 2004; Jayaswal, et 

al. 2005; Blanquart and Lartillot 2006; Jayaswal, et al. 2007; Blanquart and Lartillot 2008; 

Dutheil and Boussau 2008; Jayaswal, Jermiin, et al. 2011; Dutheil, et al. 2012; Zou, et al. 2012; 

Groussin, et al. 2013; Jayaswal, et al. 2014), however, these models did not gain popularity due 

to computational limitations or due to the requirement for assuming the topology in advance. 

As a consequence of the lack of easily-applied non-homogeneous models, the true prevalence 
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and effect of homogeneity assumption on phylogenetic inference are not well understood. In 

this chapter, I will introduce a new algorithm to check for non-homogeneity in large empirical 

datasets, and apply it to large datasets from three different clades of life; birds (Jarvis, et al. 

2015), plants (Ran, et al. 2018), and mammals (Wu, et al. 2018). The results of this chapter 

reveal that the homogeneous model with one matrix for the whole dataset is significantly worse 

than non-homogeneous models that use more than one matrix. Moreover, the results show that 

the fully non-homogeneous model with the maximum possible number of matrices is always 

worse than a simpler non-homogeneous model with a fewer number of matrices. 

In Chapter 4, I assess the ability of non-reversible models to accurately root phylogenetic trees 

without the need for external information (e.g. outgroup taxa) or other assumptions (e.g. 

molecular clocks).  For that purpose, I use non-reversible substitution models for DNA and 

amino acid sequences (Minh, et al. 2020) to infer rooted phylogenies of five clades of 

mammals, (Afrotheria, Bovidae, Carnivora, Primates, and Myomorpha) for which there is 

strong agreement in their root placement from a large range of previous studies. In addition, I 

infer the rooted phylogeny for another two clades of mammals, (Chiroptera and 

Cetartiodactyla) for which there is no consensus regarding their root placements and evaluate 

the precision of the non-reversible models to estimate their root compared to the other five 

clades. I also introduce three new metrics to help researchers assess the statistical support for 

different root placements during phylogenetic analyses regardless of the rooting method. 

Additionally, I use the AU test (Shimodaira 2002) to provide additional information about the 

confidence that we have in a certain root placement. The results of this chapter show that non-

reversible models can infer the root of the phylogeny with very high accuracy. In addition, the 

results show that removing loci that fail the MaxSym test improves the support for the correct 

root placement. 
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In order to compare the goodness-of-fit of the non-reversible and reversible models to the data, 

I will use the BIC score (Schwarz 1978). I expect that non-reversible models will have a better 

fit for the data since they relax one of the major non-realistic assumptions in phylogenetic 

inference, namely, time-reversibility. Yet, the BIC criterion sometimes can be biased (Susko 

and Roger 2020) and therefore it is not sufficient to rely on the BIC score (or equivalently on 

the AIC (Akaike 1974) score) to determine the efficiency of the non-reversible models in 

inferring the root of a phylogeny. Thus, it is important to have a valid measure for the 

robustness of the root placement given the model and the data too. 

In this chapter, I propose new metrics to assess the extent of statistical support that the data 

have for a certain root placement: the rootstrap, and an application of the AU test (Shimodaira 

2002). The rootstrap describes for each branch in a tree the proportion of bootstrap samples in 

which that branch was selected as the root branch. And I use the AU test to generate a 

confidence set of root branches on a single phylogenetic tree. These metrics are not exclusive 

to non-reversible models and can be used in any rooted tree, regardless of the rooting method.  
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Abstract 

In phylogenetic inference, we commonly use models of substitution which assume that 

sequence evolution is stationary, reversible and homogeneous (SRH). Although the use of such 

models is often criticized, the extent of SRH violations and their effects on phylogenetic 

inference of tree topologies and edge lengths are not well understood. Here, we introduce and 

apply the maximal matched-pairs tests of homogeneity to assess the scale and impact of SRH 

model violations on 3,572 partitions from 35 published phylogenetic datasets. We show that 

roughly one-quarter of all the partitions we analysed (23.5%) reject the SRH assumptions and 

that for 25% of datasets, the topologies of trees inferred from all partitions differ significantly 

from those inferred using the subset of partitions that do not reject the SRH assumptions. This 

proportion of significantly different topologies is actually even greater when evaluating trees 

inferred using the subset of partitions that rejects the SRH assumptions, as compared to trees 

inferred from all partitions. These results suggest that the extent and effects of model violation 

in phylogenetics may be substantial. They highlight the importance of testing for model 

violations and possibly excluding partitions that violate models prior to tree reconstruction. 

Our results also suggest that further effort in developing models that do not require SRH 

assumptions could lead to large improvements in the accuracy of phylogenomic inference. The 

scripts necessary to perform the analysis are available in https://github.com/roblanf/SRHtests, 

and the new tests we describe are available as a new option in IQ-TREE 

(http://www.iqtree.org).  

Keywords: model violations, phylogenetic inference, test of symmetry, systematic bias 
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Introduction 

Phylogenetics is an essential tool for inferring evolutionary relationships between individuals, 

species, genes, and genomes. Moreover, phylogenetic trees form the basis of a huge range of 

other inferences in evolutionary biology, from gene function prediction to drug development 

and forensics (Eisen 1998; Farrell, et al. 2000; Mäser, et al. 2001; Gardner, et al. 2002; Yao, 

et al. 2003; Grenfell, et al. 2004; Yao, et al. 2004; Salipante and Horwitz 2006; Gray, et al. 

2009; Brady and Salzberg 2011; Dunn, et al. 2011). 

Most phylogenetic studies use models of sequence evolution which assume that the 

evolutionary process follows stationary, reversible and homogeneous (SRH) conditions. 

Stationarity implies that the marginal frequencies of the nucleotides or amino acids are constant 

over time, reversibility implies that the evolutionary process is stationary and undirected 

(substitution rates between nucleotides or amino acids are equal in both directions), and 

homogeneity implies that the instantaneous substitution rates are constant along the tree or over 

an edge (Felsenstein 2004; Yang and Rannala 2012; Jermiin, et al. 2017). However, these 

simplifying assumptions are often violated by real data (Foster and Hickey 1999; Tarrío, et al. 

2001; Paton, et al. 2002; Goremykin and Hellwig 2005; Murray, et al. 2005; Bourlat, et al. 

2006; Hyman, et al. 2007; Sheffield, et al. 2009; Nesnidal, et al. 2010; Nabholz, et al. 2011; 

Martijn, et al. 2018). Such model violation may lead to systematic error that, unlike stochastic 

error, cannot be remedied simply by increasing the size of a dataset (Felsenstein 2004; Ho and 

Jermiin 2004; Jermiin, et al. 2004; Philippe, et al. 2005; Sullivan and Joyce 2005; Kumar, et 

al. 2012; Brown and Thomson 2017; Duchene, et al. 2017). As phylogenetic datasets are 

steadily growing in terms of taxonomic and site sampling, it is vital that we develop and employ 

methods to measure and understand the extent to which systematic error affects phylogenetic 
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inference (systematic bias), and explore ways of mitigating this systematic bias in empirical 

studies.  

One approach to accommodate data that have evolved under non-SRH conditions is to employ 

models that relax the SRH assumptions. A number of non-SRH models have been implemented 

in a variety of software packages (Foster 2004; Lartillot and Philippe 2004; Blanquart and 

Lartillot 2006; Boussau and Gouy 2006; Jayaswal, et al. 2007; Knight, et al. 2007; Dutheil and 

Boussau 2008; Jayaswal, et al. 2011; Sumner, et al. 2012; Zou, et al. 2012; Groussin, et al. 

2013; Jayaswal, et al. 2014; Nguyen, et al. 2015; Woodhams, et al. 2015). However, such 

models remain infrequently used as searching for optimal phylogenetic trees under these 

models is computationally demanding (Betancur-R, et al. 2013) and the implementations are 

often not easy to use.  As a result, the vast majority of empirical phylogenetic inferences rely 

on models that assume sequences have evolved under SRH conditions, such as the general 

time-reversible (GTR) family of models implemented in many of the most widely-used 

phylogenetics software packages (Swofford 2001; Drummond and Rambaut 2007; Guindon, 

et al. 2010; Ronquist, et al. 2012; Bazinet, et al. 2014; Bouckaert, et al. 2014; Stamatakis 2014; 

Nguyen, et al. 2015; Höhna, et al. 2016). 

Another approach to account for data that may have evolved under non-SRH conditions is to 

test for model violations prior to tree reconstruction. Here, one first screens datasets or parts of 

datasets, and reconstructs trees exclusively from data that do not reject SRH conditions. A 

number of methods have been proposed to test for violation of SRH conditions in aligned 

sequences prior to estimating trees (Bowker 1948; Stuart 1955; Rzhetsky and Nei 1995; Kumar 

and Gadagkar 2001; Weiss and von Haeseler 2003; Ababneh, et al. 2006; Ho, et al. 2006), and 

there are also a posteriori tests for absolute model adequacy which are employed after trees 
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have been estimated (Goldman 1993; Bollback 2002; Brown and ElDabaje 2009; Brown 2014; 

Duchene, et al. 2017; Brown and Thomson 2018). 

Allowing the data to reject the model when the assumptions of the model are violated is an 

important approach to reducing systematic bias in phylogenetic inference (Philippe, et al. 2005; 

Brown 2014). Knowing in advance which sequences and loci are inconsistent with the SRH 

assumptions will allow us to choose more complex models or to omit some of these sequences 

and loci from downstream analyses (Kumar and Gadagkar 2001). The need for methods that 

assess the evolutionary process prior to phylogenetic inference becomes more important as the 

number of sequences and sites per dataset increases because systematic bias has an increasing 

effect on inferences from larger phylogenetic datasets (Ho and Jermiin 2004; Jermiin, et al. 

2004; Phillips, et al. 2004; Delsuc, et al. 2005). 

In this paper, we evaluate the extent and effect of model violation due to non-SRH evolution 

using 35 empirical datasets with a total of 3,572 partitions. We determine if the SRH 

assumptions are violated by extending and applying the matched-pairs tests of homogeneity 

(Jermiin, et al. 2017) to each partition. We then compare the phylogenetic trees for each dataset 

estimated from all of the partitions, the partitions that reject the SRH assumptions, and the 

partitions that do not reject the SRH assumptions, in order to evaluate the effect of violating 

SRH conditions on phylogenetic inference. Our results suggest that violating SRH assumptions 

can have substantial impacts on phylogenetic inference. 
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Materials and Methods 

Empirical datasets 

In order to assess the impact of model violation in phylogenetics, we first gathered a 

representative sample of 35 partitioned empirical datasets that had been used for phylogenetic 

analysis in recent studies (Table 1). Within the constraints of selecting data that were publicly 

available and suitably annotated, i.e. such that all loci and all codon positions within protein-

coding loci could be identified, we selected the datasets to provide as representative a sample 

as possible of the data types, taxa, and genomic regions most commonly used to infer 

bifurcating phylogenetic trees from concatenated alignments. These datasets include nucleotide 

sequences from nuclear, mitochondrial, plastid and virus genomes, and include protein-coding 

DNA, introns, intergenic spacers, tRNA, rRNA and ultra-conserved elements. The number of 

taxa and sites in these datasets range from 27 to 355 and from 699 to 1,079,052 respectively. 

The clades represented in these datasets include animals, plants and viruses. We partitioned all 

datasets to the maximum possible extent based on the biological properties of the data, i.e. we 

divided every locus and every codon position within each protein-coding locus into a separate 

partition. All partitioning information is available at the github repository 

https://github.com/roblanf/SRHtests/tree/master/datasets, and the full details of every dataset 

are provided in Table 1 and in extended Table 5. 

Table 1| Number of taxa, number of sites, clade and study reference for each dataset that 

has been used in this study 

Dataset Study Reference  Dataset Reference Clade Taxa Sites 

Anderson_2013 (Anderson, et al. 2014) (Anderson, et al. 2013) loliginids 145 3037 

Bergsten_2013 (Bergsten, et al. 2013a) (Bergsten, et al. 2013b) Dytiscidae 38 2111 

Broughton_2013 (Broughton, et al. 2013b) (Broughton, et al. 2013a) Osteichthyes 61 19997 

Brown_2012 (Brown, et al. 2012b) (Brown, et al. 2012a) Ptychozoon 41 1665 

Cannon_2016a (Cannon, et al. 2016a) (Cannon, et al. 2016b) Metazoa 78 89792 

Cognato_2001 
(Cognato and Vogler 

2001b) 

(Cognato and Vogler 

2001a) 

Coleoptera: 

Scolytinae 
44 1897 

https://github.com/roblanf/SRHtests/tree/master/datasets
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Day_2013 
(Day, Peart, Brown, Friel, 

et al. 2013) 

(Day, Peart, Brown, 

Bills, et al. 2013) 
Synodontis 152 3586 

Devitt_2013 
(Devitt, Devitt, et al. 

2013) 

(Devitt, Cameron Devitt, 

et al. 2013) 

Ensatina 

eschscholtzii 

klauberi 

69 823 

Dornburg_2012 (Dornburg, et al. 2012b) (Dornburg, et al. 2012a) 

Teleostei: 

Beryciformes: 

Holocentridae 

44 5919 

Faircloth_2013 (Faircloth, et al. 2013b) (Faircloth, et al. 2013a) Actinopterygii 27 149366 

Fong_2012 (Fong, et al. 2012b) (Fong, et al. 2012a) Vertebrata   110 25919 

Horn_2014 (Horn, et al. 2014b) (Horn, et al. 2014a) Euphorbia 197 11587 

Kawahara_2013 
(Kawahara and Rubinoff 

2013a) 

(Kawahara and Rubinoff 

2013b) 
Hyposmocoma 70 2238 

Lartillot_2012 
(Lartillot and Delsuc 

2012b) 

(Lartillot and Delsuc 

2012a) 
Eutheria 78 15117 

McCormack_2013 
(McCormack, et al. 

2013b) 

(McCormack, et al. 

2013a) 
Neoaves 33 1079052 

Moyle_2016 (Moyle, et al. 2016b) (Moyle, et al. 2016a) Oscines 106 375172 

Murray_2013 (Murray, et al. 2013a) (Murray, et al. 2013b) Eucharitidae 237 3111 

Oaks_2011 (Oaks 2011b) (Oaks 2011a) Crocodylia 79 7282 

Rightmyer_2013 (Rightmyer, et al. 2013b) (Rightmyer, et al. 2013a) 
Hymenoptera: 

Megachilidae 
94 3692 

Sauquet_2011 (Sauquet, et al. 2012) (Sauquet, et al. 2011) Nothofagus 51 5444 

Seago_2011 (Seago, et al. 2011b) (Seago, et al. 2011a) Coccinellidae 97 2253 

Sharanowski_2011 
(Sharanowski, et al. 

2011b) 

(Sharanowski, et al. 

2011a) 
Braconidae 139 3982 

Siler_2013 
(Siler, Oliveros, et al. 

2013) 

(Siler, Brown, et al. 

2013) 
Lycodon 61 2697 

Tolley_2013 (Tolley, et al. 2013b) (Tolley, et al. 2013a) Chamaeleonidae 203 5054 

Unmack_2013 (Unmack, et al. 2013b) (Unmack, et al. 2013a) Melanotaeniidae 139 6827 

Wainwright_2012 

Wainwright, Smith, Price, 

Tang, Sparks, Ferry, 

Kuhn, Eytan, et al. (2012) 

(Wainwright, Smith, 

Price, Tang, Sparks, 

Ferry, Kuhn and Near 

2012) 

Acanthomorpha 188 8439 

Wood_2012 (Wood, et al. 2013) (Wood, et al. 2012) Archaeidae 37 5185 

Worobey_2014a (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 146 3432 

Worobey_2014b (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 327 759 

Worobey_2014c (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 92 1416 

Worobey_2014d (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 355 1497 

Worobey_2014e (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 340 699 

Worobey_2014f (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 332 2151 

Worobey_2014g (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 326 2274 

Worobey_2014h (Worobey, et al. 2014b) (Worobey, et al. 2014a) Influenzavirus A 351 2280 

 

Workflow summary 

Figure 1 outlines the workflow. For each partition in each dataset, we used a new approach 

based on the three matched-pairs tests of homogeneity to ask whether the evolution of the 

aligned sequences in the partition rejects the SRH assumptions. The three matched-pairs tests 
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of homogeneity, described in more detail below, test three slightly different assumptions about 

the historical process that generated each aligned pair of sequences in a given partition. A 

significant result from any test suggests that the nature of the evolutionary process required to 

explain the aligned sequences violates at least one of the three SRH conditions (Jermiin, et al. 

2017). For each test, we classify each partition as pass if the result of the test is non-significant 

or fail if the result of the test is significant. We then denote the original dataset as Dall, while 

the concatenation of pass partitions is denoted Dpass and the concatenation of fail partitions as 

Dfail (fig. 1). 

To investigate the impact of model violation on phylogenetic inference, we infer and compare 

three phylogenetic trees, Tall, Tpass and Tfail, estimated from Dall, Dpass and Dfail, respectively. 

 

Fig. 1| Flow chart of methodology. For each partition in the alignment, we choose the pair of 

sequences with the maximum divergence and apply the matched-pairs tests of homogeneity on 

that pair. 
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Matched-pairs tests of homogeneity 

The three matched-pairs tests of homogeneity that are applied to pairs of sequences are: the 

MPTS (matched-pairs test of symmetry), MPTMS (matched-pairs test of marginal symmetry), 

and MPTIS (matched-pairs test of internal symmetry).  The statistics are computed on an m-

by-m (m is 4 for nucleotides and 20 for amino acids) divergence matrix 𝐷 with elements 𝑑𝑖𝑗, 

where 𝑑𝑖𝑗  is the number of alignment sites having nucleotide (or amino acid) 𝑖 in the first 

sequence and nucleotide (or amino acid) 𝑗 in the second sequence.  

The MPTS tests the symmetry of 𝐷 by computing the Bowker’s (Bowker 1948) test statistic as 

the chi-square distance between 𝐷 and its transpose: 

𝑆𝐵
2 = ∑

(𝑑𝑖𝑗  − 𝑑𝑗𝑖)
2

(𝑑𝑖𝑗  + 𝑑𝑗𝑖)
1≤𝑖< 𝑗≤𝑚

 

Where 𝑑𝑖𝑗 + 𝑑𝑗𝑖 > 0 . A p-value is then obtained by a chi-square test with 𝑓  degrees of 

freedom, where 𝑓 is the number of (𝑖, 𝑗) pairs for which 𝑑𝑖𝑗 + 𝑑𝑗𝑖 > 0. A small p-value (e.g. 

<0.05) indicates that the assumption of symmetry is rejected at that significance level, 

suggesting that evolution is non-stationary, non-homogeneous or both (Jermiin, et al. 2017). 

The MPTMS tests the equality of nucleotide or amino acid composition between two 

sequences. To do so, MPTMS computes the Stuart’s test statistic 𝑆𝑆
2 =  𝑢𝑇𝑉−1𝑢 using the 

difference between nucleotide or amino acid frequencies of two sequences, 𝑢, and its variance-

covariance matrix, 𝑉 . In detail, 𝑢  is given by 𝑢𝑇 = (𝑑1• − 𝑑•1, 𝑑2• − 𝑑•2, … , 𝑑𝑘• − 𝑑•𝑘)  

where 𝑑𝑖• is the sum of 𝑑𝑖𝑗 over j, 𝑑•𝑗 is the sum of 𝑑𝑖𝑗 over i, and, k = m -1. 𝑉, the estimated 

variance-covariance matrix of u under the assumption of marginal symmetry, is defined 

elementwise by 
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𝑣𝑖𝑗 = {
𝑑𝑖• +  𝑑•𝑖 − 2𝑑𝑖𝑖,           i = j   

−(𝑑𝑖𝑗 + 𝑑𝑗𝑖),                i ≠ j  
 

A p-value is obtained by a chi-square test with m – 1 degrees of freedom. A small p-value 

(<0.05) indicates that the stationarity assumption is rejected. Note that when 𝑉 is not invertible, 

the Stuart’s statistic 𝑆𝑆
2 is ill-defined and the MPTMS is not applicable. 

The MPTIS uses the test statistic as the difference between Bowker’s and Stuart’s statistic:  

𝑆𝐼
2 =  𝑆𝐵

2 − 𝑆𝑆
2. 𝑆𝐼

2 is chi-square distributed with 𝑓 − 𝑚 + 1 degrees of freedom. A small p-

value (<0.05) indicates that the homogeneity assumption is rejected. 

The MPTS, MPTMS and MPTIS test different aspects of the symmetry with which differences 

accumulate between pairs of sequences due to the substitution process. The MPTS is a 

comprehensive and sufficient test to determine whether the data complies with the SRH 

assumptions (Jermiin, et al. 2017), but it cannot provide any information about the source of 

this violation. Some information on the underlying source of model violation may be obtained 

by performing the other two tests of symmetry: the MPTMS and the MPTIS. If the violation 

of the SRH assumptions stems from differences in base composition between the sequences, 

this should affect the marginal symmetry of the sequence pair, which can in principle be 

detected by the MPTMS. If the violation of the SRH assumptions stems from changes in the 

relative substitution rates over time, this should affect the internal symmetry of the sequence 

pair, which can in principle be detected by the MPTIS. However, even after performing all 

three tests, it is difficult to ascertain which of the three SRH assumptions is violated during the 

evolutionary process because the relationships between the SRH conditions and the three 

matched-pair tests is neither bijective nor injective, i.e. there is not a one-to-one 

correspondence between the three tests and violation of the three SRH conditions (Jermiin, et 

al. 2017).  
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The three matched-pairs tests of homogeneity are appropriate to test for SRH assumptions as 

they consider the alignment on a site-by-site basis. The basic intuition that underlies these tests 

is that two sequences diverging under SRH conditions should accumulate differences 

symmetrically (e.g. both sequences are equally likely to accumulate at a C to T change at a site 

in which both originally shared a C). This symmetry of accumulation is reflected by symmetries 

in the resulting difference matrix, violations of which can be assessed statistically. However, 

these tests were designed to ask whether any single pair of sequences rejects the SRH 

conditions (Jermiin, et al. 2017). To ask whether a given partition rejects SRH conditions, we 

developed an approach to extend the matched-pairs tests of homogeneity to accommodate 

datasets with more than two sequences. 

Maximum Symmetry Test 

In order to determine whether a given multiple sequence alignment rejects SRH conditions, we 

consider only the pair of taxa with the maximum divergence. In order to find the maximum 

divergent pair, we sum the off-diagonal elements of the divergence matrix and divide by the 

sum of all elements. We then randomly choose one pair from all the pairs with the maximum 

divergence score (if there are more than one pair). By using the most divergent sequence pair, 

we maximise our power to detect model violations without a priori knowledge of the 

underlying tree topology and the dependencies that it induces in the data. For the maximum 

divergent pair, we then apply the matched-pair tests of homogeneity and calculate their chi-

squared p-values. If the obtained p-value is less than 0.05, then we consider that the null 

hypothesis of SRH evolution is rejected for the corresponding partition and we add it to the 

Dfail dataset. Otherwise, we add it to the Dpass dataset. We denote our applications of the MPTS, 

MPTMS, and MPTIS based on the 𝑑𝑚𝑎𝑥 𝑃𝑎𝑖𝑟  as MaxSymTest, MaxSymTestmar, and 

MaxSymTestint, respectively. 
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Phylogenetic inference 

We used IQ-TREE (Nguyen, et al. 2015) to infer up to seven phylogenetic trees for every 

dataset: Tall (all partitions from the original dataset; Dall); and Tpass and Tfail based on the Dpass 

and Dfail datasets from each of the three tests (MaxSymTest, MaxSymTestmar, MaxSymTestint), 

provided that there was at least one partition in each category. We ran IQ-TREE using the 

default settings with the best-fit fully-partitioned model (Chernomor, et al. 2016), which allows 

each partition to have its own evolutionary model and edge-linked rate determined by 

ModelFinder (Kalyaanamoorthy, et al. 2017) followed 1000 ultrafast bootstrap replicates 

(Hoang, et al. 2018).  

Distance between trees 

For each of the three tests (MPTS, MPTMS, MPTIS) we calculated the Normalised Path-

Difference (NPD) and quartet distance (QD) (Steel and Penny 1993; Sand, et al. 2014) between 

all three possible pairs of trees (Tall vs. Tpass; Tall vs. Tfail; and Tpass vs. Tfail), as long as Dpass and 

Dfail were non-empty and so Tpass and Tfail had been estimated. The path-difference metric (PD) 

is defined as the Euclidean distance between pairs of taxa (Steel and Penny 1993; Mir and 

Russello 2010). In this study, because we are interested only in differences between topologies, 

we use the variant of the PD metric that ignores branch lengths. In order to compare path 

distances between trees with different number of taxa, we normalised PD (to obtain NPD) by 

the mean of a null distribution of PDs generated from 10K random pairs of trees with the same 

number of taxa (Bogdanowicz, et al. 2012). Thus, an NPD of zero indicates an identical pair 

of trees, an NPD of 1 indicates that a pair of trees is as similar as a pair of randomly-selected 

trees with the same number of taxa; and an NPD greater than 1 indicates a pair of trees that are 

less similar than a randomly-selected pair of trees with the same number of taxa. Since path 

differences are always non-negative, the NPD is also guaranteed to be non-negative.  
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The QD metric is defined as the fraction of quartets (subsets of four taxa) that induce different 

subtrees between the two trees being compared. QD ranges between 0 and 1, where 0 means 

that two trees are identical and 1 means that they do not share any quartet subtrees. Compared 

with PD, QD has the advantage that its distribution is less sensitive to the underlying 

distribution of tree topologies (Steel and Penny 1993).  

Tree topology tests 

The NPD and the QD give us measures of the differences between pairs of trees, but they do 

not tell us whether the differences are phylogenetically significant in the three datasets (Dpass, 

Dall, and Dfail) derived from a given test. For example, trees that differ due to stochastic error 

associated with small datasets may be very different, but such differences may not be 

statistically significant. To assess the significance of the differences between Tpass, Tall and Tfail, 

we used the weighted Shimodaira-Hasegawa (wSH) test (Shimodaira and Hasegawa 1999; 

Shimodaira 2002) implemented in IQ-TREE with 1000 RELL replicates (Kishino, et al. 1990). 

Given the alignment (Dpass), the wSH test computes a p-value for each tree, where a small p-

value (<0.05) implies that the corresponding tree has a significantly worse likelihood than the 

best tree in the set of Tpass, Tall and Tfail. We use Dpass for these tests because it is, by definition, 

the only dataset that does not reject the underlying assumptions of the SH test. As such, we 

only compute sWH p-values when Dpass is non-empty. Thus, we performed a wSH test for each 

of the three MaxSymTest variants: each of which asks whether Tall and/or Tfail can be rejected 

in favour of Tpass.  

Correlation between number of substitutions and model violation 

We hypothesised that partitions with more substitutions may be more likely to violate the SRH 

assumptions since substitutions form the raw data for the matched-pairs tests of homogeneity. 

To assess this, we fitted a linear mixed-effects model for each of the three tests using the glmer 
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function from the lme4 package in R (Bates, et al. 2015). In this model, we treat each partition 

as a datapoint, the number of substitutions measured for that partition as a fixed effect, and the 

dataset from which that partition was taken as a random effect. This allows us to estimate the 

extent to which the number of substitutions in a partition associate with whether a partition 

fails a given test of symmetry, after accounting for differences between the datasets. To 

calculate the R-squared value we use the r.squaredGLMM function from the MuMIn package 

in R (Barton 2009; Nakagawa and Schielzeth 2013).  

Software implementation 

We implemented a new option --symtest in IQ-TREE to perform the three MaxSymTest 

matched pairs tests of symmetry. In addition, the option --symtest-remove-bad allows users to 

remove from the final analysis partitions that fail the MaxSymTest. One can change the 

removal criterion to MaxSymTestmar or MaxSymTestint via the --symtest-type MAR|INT 

option. In addition, the cut-off p-value can be changed using the --symtest-pval NUM option, 

where the default value is 0.05. 

Reproducibility 

The GitHub repository https://github.com/roblanf/SRHtests contains the raw data and Python 

and R scripts necessary to perform all analyses reported in this study. 

Results 

Violation of SRH conditions is common across 35 empirical datasets 

Across all 3,572 partitions analysed, 573 (16.0%) failed the MaxSymTest, 728 (20.4%) failed 

the MaxSymTestmar, and 312 (2.8%) failed the MaxSymTestint. In total, 840 (23.5%) of the 

partitions failed at least one test. 

https://github.com/roblanf/SRHtests
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The proportion of partitions failing each test varied substantially among datasets (fig. 2), but 

on average 21.8% of the partitions in each dataset failed the MaxSymTest, 27.5% failed the 

MaxSymTestmar, and 5.1% failed the MaxSymTestint.  

 

Fig. 2| The proportion of partitions that reject the null hypothesis of the MaxSymTest, 

MaxSymTestmar and MaxSymTestint (p-value < 0.05) in each dataset. 

The fraction of failing partitions also varied with the genome type (e.g. mitochondrial, 

chloroplast, or nuclear) and context (e.g. protein-coding, UCE, tRNA) from which the partition 

was sequenced (Table 2) although we note that a substantial proportion of the partitions from 

almost every category failed at least one of the tests (Table 2). 
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There were no clear differences in the substitution models that were selected for the partitions 

that pass or fail the tests (see Extended Tables 1-3). However, we note that the two most 

frequently selected substitution models (for 35% of the partitions) were relatively simple: K80 

(Kimura 1980) and HKY (Hasegawa, et al. 1985).  

Table 2| The proportion of partitions that failed at least one of the three tests - 

MaxSymTest, MaxSymTestmar, MaxSymTestint 

Type / genome nuclear mitochondrial plastid virus 

1st codon positions 20.2% 27.6% 33.3% 25.0% 

2nd codon positions 21.0% 7.4% 0.0% 25.0% 

3rd codon positions 76.6% 44.8% 0.0% 75.0% 

Other (e.g. intron) 27.8% 100.0% 0.0%  

rRNA 30.0% 25.0%   

UCE 22.5%    

tRNA  0.0%   

 

Model violation has a large influence on tree topologies 

Using both MaxSymTest and MaxSymTestmar, we compared each tree inferred from each 

dataset (Tall) to the corresponding trees estimated from the failed (Tfail) and passed (Tpass) 

partitions. Disturbingly, for each of the two tree distance metrics that we considered (NPD and 

QD), we find that the tree inferred from the original dataset tended to be more similar to the 

tree estimated from the failed partitions (Table 3, Extended Table 4). Furthermore, the mean 

NPD distance between Tpass and Tfail across all 35 datasets for the MaxSymTest was 0.69, i.e., 

the two trees are 69% as dissimilar as random pairs of trees. This suggests that violations of 

SRH assumptions drive large changes in tree topologies. 
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Table 3| The proportion of datasets that have the highest NPD metric (and QD metric) 

between the three comparisons (all-fail, all-pass, pass-fail) for MaxSymTest, 

MaxSymTestmar, and MaxSymTestint. 

M
a

x
S

y
m

T
es

t  Tfail Tpass 

Tall 14.3% (4.8%) 4.8% (4.8%) 

Tpass 80.9% (90.4%)  

    

M
a

x
S

y
m

T
es

t m
a

r
 Tall 8.3% (0.0%) 8.3% (4.2%) 

Tpass 83.4% (95.8%)  

    

M
a

x
S

y
m

T
es

t i
n

t Tall 28.6% (28.6%) 0.0% (0.0%) 

Tpass 71.4% (71.4%)  

 

The results of the wSH tests (Table 4) confirm that the differences between trees that we 

observe tend to be statistically significant. For example, when using the MaxSymTestmar, Tpass 

is a significantly better description of the Dpass data than Tall in ~37% of the datasets, and better 

than Tfail in ~89% of the datasets. 

Table 4| The proportion of datasets that have a significant p-value in the weighted SH test 

when using Dpass as the input alignment for the test. 

 Tall Tfail 
   

MaxSymTest 25% 79% 
   

MaxSymTestmar 37% 89% 
   

MaxSymTestint 4% 28% 

 

The number of substitutions explains less than one-third of the variance in 

passing or failing the tests of symmetry 

The number of substitutions in a partition explained 27.5% of the variation in whether or not a 

partition passed or failed the MaxSymTest (Extended Fig. 7). This proportion is very similar 
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for MaxSymTestmar (24.4%) (Extended Fig. 8) but is dramatically lower for the MaxSymTestint 

(1.8%) (Extended Fig. 9). Thus, although the number of substitutions in a partition is a highly 

significant (p<2e-16) predictor of passing or failing any of the tests, that it explains only about 

a quarter of the variation suggests that other factors, such as underlying differences in the extent 

to which partitions violate the SRH assumptions, are driving the remaining ~75% of the 

variation. 

Model violation due to non-SRH evolution affects the inferred relationship 

between even-toed and odd-toed ungulates in the tree of mammals  

To examine the effects of model violation in more detail, we selected two datasets for more 

detailed consideration. Conflicting support for the placement of Xenacoelomorpha, the clade 

that contains Xenoturbella and Acoelomorpha, in the tree of life across different analyses has 

led to various hypotheses about the evolution of Bilateria (Cannon, et al. 2016a). In addition, 

the interordinal relationships in Laurasiatheria, especially the relationships between 

Fereuungulata (Perissodactyla, Cetartiodactyla, Carnivora, and Pholidota), in the tree of 

placental mammals is controversial ( Cao, et al. 1998; Zhou, et al. 2012). It has been suggested 

that such inferences might be strongly affected by model violation and systematic error (Cao, 

et al. 1998; Delsuc, et al. 2005; Philippe, et al. 2011; Tsagkogeorga, et al. 2013). To assess 

whether data that pass or fail the MaxSymTestmar show different signals regarding the evolution 

of the Bilateria and the superorder Laurasiatheria, we examined in more detail the Tall Tpass , 

and Tfail trees from recent studies that explored the tree of placental mammals (Lartillot and 

Delsuc 2012b) and the tree of all animals (Cannon, et al. 2016a). The mammals’ dataset 

comprises 78 mammalian taxa, including 73 placental mammals with 5 partitions representing 

the first, second, and third codon positions of the 17 genes (Lartillot and Delsuc 2012a). The 

tree reconstructed from all of the partitions (Tall) and the tree reconstructed from the partitions 
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that pass the MaxSymTest (Tpass, 29 partitions) both show Perissodactyla (odd-toed ungulates) 

as a sister group to Cetartiodactyla (even-toed ungulates) (fig. 3a, Extended figs. 4-5).  Even 

so, the bootstrap support for this branch is not high: 73% for Tall and 34% for Tpass. On the other 

hand, the tree reconstructed from the data that fail the MaxSymTest (Tfail, 22 partitions) shows 

Perissodactyla as the sister group to the clade that contains Carnivora + Pholidota with 49% 

bootstrap support (fig. 3b, Extended Fig. 6).  

 

Fig. 3| Maximum likelihood trees of mammalian relationships based on analysis of 

Lartillot 2012 dataset. a) the tree inferred from all 51 partitions and from the 29 

partitions that passed the MaxSymTest. b) the tree inferred from 22 partitions that failed 

the MaxSymTest. Red numbers at the internal branches indicate the bootstrap support values 

that are less than 100% under the best fitting model. Numbers in curly brackets show the GC 

content (in panel a, %GC and bootstrap support values are for Tall and Tpass respectively).  

 

The animal dataset comprises 76 metazoan taxa, 2 choanoflagellate outgroups, 212 genes and 

424 partitions representing first and second codon positions (Cannon, et al. 2016b). The tree 

reconstructed from all of the partitions (Tall) is identical to the trees reconstructed from the 381 

partitions that pass the MaxSymTest (Tpass), the partitions that fail the MaxSymTest (Tpass, 43 

partitions), and the tree shown in the original paper from both DNA and amino acid data 



Chapter 1 

 

48 

 

(Canon, et al. 2016a), which places Xenacoelomorpha as the sister group of Nephrozoa 

(Deuterostomia and Protostomia) with 100% bootstrap support (Extended figs. 1-3).  

Discussion 

In this paper, we show that model violation is prevalent and has a strong impact on tree 

reconstruction in many phylogenetic datasets. This impact varies substantially between 

different datasets and different types of partitions. The trees inferred from different groups of 

partitions from the same dataset often have topologies that are biologically and statistically 

significantly different. 

Our results show great heterogeneity in the extent of model violation among different datasets 

and partitions. This is demonstrated by the varying proportion of partitions that failed the 

matched-pairs tests of homogeneity in each dataset and in each genomic context (codon 

position, rRNA, tRNA, UCE or other) and type of genome (nuclear, mitochondrial, plastid and 

virus). Model violations are most frequently observed in the third codon positions for viral, 

mitochondrial and nuclear genomes and intergenic spacers in plastid sequences. Yet, our results 

affirm that non-SRH evolution is far from constrained to these genomic regions. For example, 

in a dataset of placental mammals, of the 22 partitions that failed the MaxSymTest, only 11 are 

third codon positions. The tree inferred from the partitions that show a significant violation of 

the SRH conditions (Tfail) differs in its topology from the tree inferred from the partitions that 

do not show a significant violation of the SRH conditions (Tpass) with respect to the interordinal 

relationships in Laurasiatheria (fig. 3). The tree inferred from partitions that violate the SRH 

conditions (Tfail) is consistent with the results from the original paper in that it places 

Perissodactyla as a sister group to Carnivora + Pholidota (Lartillot and Delsuc 2012b). 

However, other studies using ML analysis show Perissodactyla to be a sister group to 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/perissodactyla
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/perissodactyla
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Cetartiodactyla (Graur, et al. 1997; Murphy, et al. 2001; Tsagkogeorga; et al. 2013, Liu, et al. 

2017), which is also the relationship we find in this study with the tree inferred from partitions 

that do not show a significant violation of the SRH assumptions.  

Examining the results of the two other tests (MaxSymTestmar and MaxSymTestint) we noticed 

that all the partitions that failed the MaxSymTest also failed the MaxSymTestmar, suggesting 

that those partitions are violating the models mainly due to non-stationarity. Based on this 

observation, GC content may drive the differences between the trees inferred from all partitions 

and those inferred from partitions that failed neither MaxSymTest nor MaxSymTestmar. Trees 

with partitions that violate the models tend to group together clades with similar GC content 

(e.g. as in Betancur-R, et al. 2013). However, it is hard to discern any clear evidence for this 

from examining the GC content of the clades (Figure 3). Yet, our results show that all the clades 

in the partitions that failed the MaxSymTest have on average a higher GC content (Figure 3).  

The results of our study also provide some insight into the likely cause of model violation in 

the datasets we examined. Figure 2 shows that violation of marginal symmetry (assessed with 

MaxSymTestmar) was much more common than violation of internal symmetry (assessed with 

MaxSymTestint). This suggests that non-stationarity, which is associated with marginal 

symmetry, is likely a more common cause of systematic bias than non-homogeneity in the 

datasets that we examined (see also Jayaswal, et al. 2005; Ababneh, et al. 2006; Song, et al. 

2010). Yet, the difference between the proportion of partitions that failed the MaxSymTestmar 

and the proportion of partitions that failed the MaxSymTestint could also be due to the higher 

power of the MaxSymTestmar. Either way, this result hints that the development and application 

of non-stationary models (e.g. Yang 1994; Roberts and Yang 1995; Yap and Speed 2005) may 

be an important avenue towards reducing systematic bias in future analyses. Moreover, our 

results show a clear preference for simple substitution models with a single 
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transition/transversion ratio over more complex models such as GTR. This suggests that 

developing non-stationary models with a single parameter for the transition/transversion ratio 

might be sufficient to reduce systematic bias in phylogenetic analysis. 

One limitation of using the tests that we propose in this paper is that their power will be limited 

if there are few differences between the sequences being examined. Indeed, our analyses show 

that in our representative sample of more than 3500 partitions from published datasets, roughly 

~25% of the variance in whether a partition passes or fails a given test can be attributed to the 

number of observed differences between the sequences. Nevertheless, this implies that the 

remaining ~75% of the variance in whether a partition passes or fails a test could be attributable 

to other processes, such as variation in the extent of model violation among partitions. This 

suggests that we should be cautiously optimistic: although a lack of power on small or slowly-

evolving partitions may induce some false negatives (i.e. failures to identify partitions that have 

evolved under non-SRH conditions), the tests we propose still have significant power to 

identify partitions that show the evidence of model violation. It is possible that removing such 

partitions from phylogenetic analyses may improve the accuracy of results by reducing the 

overall burden of model violation on the inference of the tree topology. We hope that our 

implementation of these tests in the user-friendly software IQ-TREE will allow empirical 

phylogeneticists to continue to explore whether this is the case. 
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Supplementary Data 

Extended Table 1| best-fitting model by ModelFinder and number of partitions that got 

each model as the best-fit model. Finding the best-fitting model (which minimize BIC 

score) for each one of the partitions. 

Substitution 

model 

#partitions 

with best-fit 

model 

Nucleotide 

frequencies 

K80 667 Equal 

HKY 563 Unequal 

TPM2u 297 Unequal 

TPM3u 291 Unequal 

GTR 272 Unequal 

TVM 234 Unequal 

TIM3 164 Unequal 

TIM2 124 Unequal 

TN 110 Unequal 

TVMe 106 Equal 

TNe 98 Equal 

TIM3e 84 Equal 

K81 83 Equal 

K81u 82 Unequal 

TIM2e 80 Equal 

TPM3 60 Equal 

TPM2 54 Equal 

SYM 53 Equal 

TIM 41 Unequal 

JC 32 Equal 

F81 21 Unequal 

TIMe 16 Equal 
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Extended Table 2| best-fitting model by ModelFinder for the partitions that passed each 

one of the three max-value tests. 

 

MaxSymTest  MaxSymTestmar  MaxSymTestint 

model #partitions  model #partitions  model #partitions 

K80 548  K80 503  K80 622 

HKY 514  HKY 489  HKY 522 

GTR 256  GTR 238  TPM3u 287 

TPM2u 243  TPM3u 236  TPM2u 287 

TPM3u 239  TPM2u 232  GTR 266 

TVM 177  TVM 163  TVM 224 

TIM3 135  TIM3 138  TIM3 151 

TIM2 102  TIM2 90  TIM2 123 

TN 95  TN 84  TVMe 100 

TNe 76  TNe 76  TN 96 

K81u 66  K81 63  TNe 91 

TPM3 65  TIM3e 61  K81 81 

TVMe 65  TVMe 59  TIM3e 77 

TIM3e 64  TPM3 56  K81u 75 

K81 64  K81u 55  TIM2e 74 

TIM2e 56  TIM2e 51  TPM3 57 

TPM2 49  TPM2 42  SYM 51 

TIM 34  SYM 33  TPM2 51 

JC 34  TIM 32  TIM 39 

SYM 33  JC 29  JC 28 

F81 20  F81 18  TIMe 17 

TIMe 12  TIMe 13  F81 15 
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Extended Table 3| best-fitting model by ModelFinder for the partitions that failed each 

one of the three max-value tests. 

 

MaxSymTest  MaxSymTestmar  MaxSymTestint 

model #partitions  model #partitions  model #partitions 

K80 128  K80 157  HKY 22 

HKY 59  HKY 74  K80 14 

TVM 48  TVM 68  TVM 9 

TPM2u 46  TPM2u 52  GTR 8 

TPM3u 38  TPM3u 51  TIM3 8 

TVMe 33  GTR 41  TN 7 

GTR 27  TVMe 36  TPM3u 5 

TIM2e 25  TIM2 33  TPM2 4 

TNe 21  TIM2e 27  TVMe 4 

TIM3 21  TNe 23  TIM2 4 

TIM2 21  TIM3e 21  SYM 3 

K81 20  TN 21  JC 3 

TN 18  TIM3 21  TIM2e 3 

TIM3e 14  K81u 21  TPM3 2 

SYM 13  K81 21  TIM 1 

K81u 12  SYM 17  TIM3e 1 

TIM 7  TPM3 15  K81u 1 

TPM2 7  TPM2 10  TPM2u 1 

TIMe 6  TIM 8  K81 1 

F81 2  TIMe 6  SYM 0 

JC 0  JC 3  F81 0 

TIMe 0  F81 2  TIMe 0 
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Extended Table 4| The quartet distances between the three trees (Tall, Tpass, Tfail) in 

MaxSymTest, MaxSymTestmar, and MaxSymTestint. 

  
Dataset Tall-fail Tall-pass Tfail-pass 

M
a
x
S

y
m

T
es

t 
Anderson_2013 81372 4440183 4505628 

Bergsten_2013 25492 3902 27430 

Broughton_2013 35360 3738 39098 

Cannon_2016a 20809 5746 26555 

Dornburg_2012 2373 6992 9365 

Faircloth_2013 442 0 442 

Horn_2014 1180177 975250 1823719 

Kawahara_2013 95727 38539 132150 

Lartillot_2012 303589 18326 297248 

McCormack_2013 10195 1243 10749 

Moyle_2016 78998 3031 82029 

Oaks_2011 68452 4142 72582 

Rightmyer_2013 441077 183468 568615 

Siler_2013 29961 11064 32949 

Wainwright_2012 3897669 1546897 5368384 

Wood_2012 539 13135 13076 

Worobey_2014a 2699881 336202 2823981 

Worobey_2014c 627673 8616 631824 

Worobey_2014e 12707531 145471345 148579172 

Worobey_2014f 160855578 4754274 162732984 

Worobey_2014g 428217 22909429 23329085 

Worobey_2014h 248010 43931488 44066427 
 

 
 

  

M
a
x
S

y
m

T
es

t m
a

r 

Anderson_2013 130354 2284760 2294028 

Bergsten_2013 25492 8061 28962 

Broughton_2013 35360 3680 39040 

Cannon_2016a 24582 3163 27745 

Day_2013 1458532 3555949 4668546 

Dornburg_2012 4052 16758 18728 

Faircloth_2013 442 0 442 

Horn_2014 1337822 364531 1365852 

Kawahara_2013 123280 15164 129332 

Lartillot_2012 21740 24730 43494 

McCormack_2013 6156 2674 7154 

Moyle_2016 90698 3031 93729 

Oaks_2011 83990 4004 87402 

Rightmyer_2013 426883 355486 595726 

Siler_2013 30018 10778 32835 
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Wainwright_2012 4291174 2964931 5995967 

Wood_2012 58 11167 11223 

Worobey_2014a 2688767 336156 2796992 

Worobey_2014b 4846696 178703912 179250141 

Worobey_2014c 268995 8583 275550 

Worobey_2014d 21784654 92744994 78398319 

Worobey_2014e 22662896 159964092 170213975 

Worobey_2014f 3293336 14028740 17125648 

Worobey_2014g 428217 22806396 23226052 

Worobey_2014h 7666956 24536879 31423451 
 

 
 

  

M
a
x
S

y
m

T
es

t i
n

t 

Cannon_2016a 221942 1323 223265 

Cognato_2001 1769 1728 41 

Faircloth_2013 412 0 412 

McCormack_2013 14090 687 14063 

Moyle_2016 75966 26979 102426 

Wood_2012 5867 3831 8679 

Worobey_2014f 134222118 2786430 135193257 

Worobey_2014h 7401114 22606490 27833436 

 

 

 

 

 

 

 

 

 

 

Extended Table 5| Number datasets that contain loci from the different types of 

genomes and the number of partitions from each type of genome. 

 

Genome type #datasets #genes # partitions 

Mitochondria 18 30 105 

Nuclear 25 352 3419 

Plastid 2 6 24 

Virus 8 8 24 
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Extended Figure 1| ML topology of Cannon_2016 dataset inferred from all 424 partitions.  
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Extended Figure 2| ML topology of Cannon_2016 dataset inferred from all 281 partitions 

that passed the MaxSymTest.  
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Extended Figure 3| ML topology of Cannon_2016 dataset inferred from all 143 partitions 

that failed the MaxSymTest. 
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Extended Figure 4| ML topology of Lartillot_2012 dataset inferred from all 51 partitions.  
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Extended Figure 5| ML topology of Lartillot_2012 dataset inferred from all 29 partitions 

that passed the MaxSymTest.  
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Extended Figure 6| ML topology of Lartillot_2012 dataset inferred from all 22 partitions 

that failed the MaxSymTest.  
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Extended Figure 7| The number of substitutions in partitions that failed or passed the 

MaxSymTest for each dataset.  
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Extended Figure 8| The number of substitutions in partitions that failed or passed the 

MaxSymTestmar for each dataset. 
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Extended Figure 9| The number of substitutions in partitions that failed or passed the 

MaxSymTestint for each dataset. 
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Abstract 

Phylogenetic inference typically assumes that the data has evolved under Stationary, 

Reversible and Homogeneous (SRH) conditions. Many empirical and simulation studies have 

shown that assuming SRH conditions can lead to significant errors in phylogenetic inference 

when the data violates these assumptions. Yet, many simulation studies focused on extreme 

non-SRH conditions that represent worst-case scenarios and not the average empirical dataset. 

In this study, we simulate datasets under various degrees of non-SRH conditions using 

empirically derived parameters to mimic real data and examine the effects of incorrectly 

assuming SRH conditions on inferring phylogenies. Our results show that maximum likelihood 

inference is generally quite robust to a wide range of SRH model violations but is inaccurate 

under extreme convergent evolution.  

[Phylogenetic inference, model violations, systematic bias, simulations, evolution under non-

SRH conditions, test of symmetry]  
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Main Text 

Markov processes are commonly used in model-based phylogenetic analyses such as maximum 

likelihood (ML) and Bayesian inference (Felsenstein 2004; Yang 2006). A Markov model is 

represented by an instantaneous rate matrix Q of size 4-by-4 for DNA or 20-by-20 for protein 

sequences, that describes the substitution rates between nucleotides or amino acids (henceforth 

denoted as states), respectively.  The Markovian propriety is convenient because the 

probabilities of the next states only depend on the current states, independently of how the 

current states had evolved (Felsenstein 1981; Felsenstein 1983; Yang 1994; Swofford, et al. 

1996; Yang 2006). For mathematical simplicity and computational tractability, most studies 

assume that the Markov model is stationary, reversible, and homogeneous (SRH) (Kimura 

1980; Felsenstein 1981; Hasegawa, et al. 1985; Tavaré 1986; Tamura and Nei 1993; Yang 

1994). Homogeneity means that a single Q matrix operates along all edges of the tree, i.e., all 

substitution rates stay constant through time. Stationarity means that the state frequencies also 

remain constant along all edges of the tree. Reversibility means that the rate of change from 

state A to another state B is the same as the backward substitution rate from B to A. 

The assumptions of homogeneity, stationarity, and reversibility come at the cost of complying 

with biological reality (Roberts and Yang 1995; Foster and Hickey 1999; Foster 2004; 

Ababneh, et al. 2006). For example, the reversibility assumption implies that the likelihood of 

a tree topology will be the same regardless of the placement of the root (Felsenstein 1981). 

Moreover, a reversible substitution model has up to 8 free rate parameters for nucleotides and 

208 for amino acids, while a non-reversible substitution model has up to 11 free rate parameters 

for nucleotides and 379 for amino acids, provided that the model is still stationary and 

homogeneous (Yang 1994). These degrees of freedom can increase dramatically if the model 

is non-stationary or/and non-homogeneous (Barry and Hartigan 1987; Boussau and Gouy 
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2006): at the limit there can be an independent model of evolution on every branch of a tree, 

meaning that the total number of parameters is the product of the number of parameters in the 

substitution model and the number of branches in the tree. 

Using stationary, reversible, and homogeneous substitution models to infer a phylogeny from 

data that has evolved under more complex conditions compromises the consistency of the ML 

estimation (Felsenstein 2004). Ideally, we would like to use data that comply with the 

assumptions of the models we apply, or alternatively, use models that are not violated by the 

data in hand. However, the use of non-SRH models is computationally demanding and is often 

not practical in large datasets. On the other hand, removing data that do not comply with the 

SRH assumption will come at a cost of losing phylogenetic information. Both simulation 

(Huelsenbeck and Hillis 1993; Hillis, et al. 1994; Galtier and Gouy 1998; Ho and Jermiin 2004; 

Jermiin, et al. 2004; Boussau and Gouy 2006) and empirical (Phillips, et al. 2004; Collins, et 

al. 2005; Nguyen, et al. 2012; Betancur, et al. 2013; Naser-Khdour, et al. 2019) studies have 

shown that applying SRH models to data that have evolved under more complex conditions 

can lead to significant errors in phylogenetic inference. However, most of these simulation 

studies have used parameters that do not reflect most empirical datasets, and sometimes 

represent extreme conditions such as the independent convergence of distantly-related taxa to 

a GC content that differs substantially from the rest of the taxa in the tree. While these 

simulations are based on biological observations such as the evolution of extreme GC content 

differences among closely related bacteria (Mooers and Holmes 2000), they do not represent 

the degree of violation of SRH conditions typical of most datasets. Indeed, apart from extreme 

cases it remains relatively poorly understood to what extent different types and degrees of 

violations of the SRH conditions affect phylogenetic inference. 



Chapter 2 

 

82 

 

In this study, we examine the influence of violating the SRH assumptions on phylogenetic 

inference with SRH models using parameters that are derived from thousands of empirical 

datasets. We simulate nucleotide alignments under various non-stationary (and thus non-

reversible) or/and non-homogeneous conditions and examine the effects of incorrectly 

assuming SRH conditions on inferring phylogenies from these data. Moreover, we examine the 

ability of different methods to detect non-SRH evolution across multiple sequence alignments. 

Several tests for detecting non-SRH evolution in nucleotide and amino acid alignments have 

been introduced (Lanave, et al. 1984; Lanave, et al. 1986; von Haeseler, et al. 1993; Lockhart, 

et al. 1994; Kumar and Gadagkar 2001; Phillips and Penny 2003; Weiss and von Haeseler 

2003; Foster 2004; Ababneh, et al. 2006; Ho, et al. 2006; Jermiin, et al. 2019; Naser-Khdour, 

et al. 2019). However, these tests are rarely used in phylogenetic analysis (Jermiin, et al. 2004; 

Jermiin, et al. 2009), likely because many of them are difficult to apply in practice. In this 

study, we focussed on three tests for detecting non-SRH evolution that are implemented in the 

widely-used IQ-TREE software (Minh, et al. 2020): the MaxSymTests (Naser-Khdour, et al. 

2019), the compositional chi-square test (Preparata and Saccone 1987) as implemented in IQ-

TREE (Nguyen, et al. 2015), and the test of non-stationarity proposed by Weiss and von 

Haeseler (Weiss and von Haeseler 2003). The MaxSymTests ask whether there is evidence in 

a single alignment that evolutionary symmetry imposed by SRH evolution is violated, and is a 

relatively new extension of similar tests designed for pairs of sequences (Jermiin, et al. 2019). 

The Weiss and von Haeseler (WH) test checks the homogeneity of the substitution model 

across the tree based on the pairwise sequence comparisons and performs a parametric 

bootstrap to assess the statistical significance (Weiss and von Haeseler 2003). The 

compositional chi-square test checks if the state composition of each sequence in the alignment 

is similar to the average state composition of the whole alignment, and is commonly-used to 

detect and sometimes remove sequences that clearly violate the SRH conditions (e.g. Aouad, 
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et al. 2018; Liu, et al. 2018; Martijn, et al. 2018; Puttick, et al. 2018; Song, et al. 2018; Fan, et 

al. 2020). The Chi-square test gives researchers a way of understanding whether each sequence 

in an alignment has state frequencies that are plausible given the overall state frequencies of 

the alignment. We know of no existing test which combines individual chi-square tests to assess 

whether the state frequencies across all sequences of an alignment is plausible under an SRH 

model. It is possible to do this with model adequacy tests, but this requires one to first fit a full 

model and a tree (Foster 2004; Brown and ElDabaje 2009; Duchene, et al. 2017), while our 

current work focusses on tests that can be performed quickly and efficiently on very large 

datasets prior to tree inference. We therefore use two different approaches in this study to 

leverage the information in from individual chi-square tests.  

The two approaches we take to using information from chi-square tests reflect different ways 

of balancing false-positive and false-negative outcomes, and so may be thought of as 

appropriate for different situations. Our first approach to using the chi-square tests is to take 

the most conservative possible approach and score an alignment as violating SRH assumptions 

if at least one sequence fails the test. Using the Chi-square frequencies in this way is very 

conservative, and liable to have a high false-positive rate that increases with the number of 

sequences in an alignment. However, in some practical cases when many loci are available but 

only a small number can be used for analyses, e.g. selecting ~50 loci for a Bayesian analysis 

out of many thousands available from whole genomes, a conservative approach such as this 

with a high false-positive rate may be warranted. Our second approach is less conservative. In 

this approach, we record the proportion of sequences in an alignment that fail the Chi-square 

test and ask whether this proportion is correlated with the degree of non-stationarity in the 

simulations. This approach may be more useful in practical cases where researchers wish to 

rank a set of loci with respect to the severity of model violations.  
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Materials and Methods 

Simulations 

In order to investigate the ability of SRH models to correctly infer topologies and branch 

lengths from non-SRH data, we devised a new approach that allows us to simulate alignments 

gradually ranging from true SRH conditions (with identical base frequencies and identical 

reversible substitution processes on every branch of the topology) to the most extreme violation 

with completely unrelated base frequencies and non-reversible substitution processes on every 

branch of the topology. For an alignment of m taxa and n sites, we will denote the set of all 

branches in the rooted tree τ as Φ = {1, … , 𝑙}.  

We simulate data under two different simulation schemes as follows: 

1. An inheritance scheme designed to reflect the evolutionary process, in which each node 

in the tree inherits its substitution processes from its parent with a constant strength of 

inheritance modified by the branch length connecting the two nodes. The scheme reflects 

the continuity of evolutionary processes that are changing through time along a 

phylogenetic tree. 

2. A two-matrix scheme designed to reflect previous approaches to simulating non-SRH 

evolution, where two independent subtrees (that are not sisters nor descendants of each 

other) have an identical substitution process and that is distinct from the substitution 

process that operates on the rest of the tree. This scheme resembles convergent evolution. 

Applying these two schemes allows us to ask how evolutionarily-inspired non-SRH 

simulations are affected by SRH assumptions (scheme 1) and then to directly compare these to 

the more extreme forms of non-SRH evolution that are more often simulated (scheme 2). We 
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will describe both simulation approaches in more detail below. But we start by describing how 

we choose model parameters for our simulations.  

Estimating Empirical Parameter Distributions and Tree Topologies for 

Simulations 

Both of our simulation approaches require us to choose base frequency vectors and rate 

matrices with which to simulate alignments. Generating these at random could limit the 

applicability of our results because it is unlikely that randomly-generated base frequency 

vectors or rate matrices would reflect reality. To address this, we instead estimated base 

frequency vectors and rate matrices from a large collection of empirical alignments, and then 

used these parameters for our simulations. 

In order to estimate the distributions of the empirical base frequencies (Π) and the substitution 

rates ( 𝑋 ) we used 32,666 partitions from 49 nucleotide datasets (Appendix Table A.1). 

Consisting of different types of partitions (codon positions, rRNA, tRNA, introns, intergenic 

spacers and UCEs) and genomes (nuclear, mitochondria, virus, plastid). Since different 

partitions of the genome evolve differently, for each partition, we ran IQ-TREE with a GTR 

model and free rate heterogeneity across sites (Yang 1995) with 4 categories + invariant sites. 

This gave us the distributions of 32,666 estimates of each parameter in the GTR matrix (A↔C, 

A↔G, A↔T, C↔G, C↔T, G↔T) and the distribution of each base frequency (𝜋𝐴, 𝜋𝐶, 𝜋𝐺 , 

𝜋𝑇). 

We use a similar approach to estimate the distribution of branch lengths. Estimating branch 

lengths from each partition separately could be misleading because there tends to be a high 

stochastic error in branch lengths estimated from short single-partition alignments (Kumar, et 

al. 2012). Therefore, in order to estimate the empirical distribution of the branch lengths, we 

instead estimated a single set of branch lengths from each of our 49 nucleotide datasets and 
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complemented these with an additional 18 amino-acid datasets. For each dataset, we ran IQ-

TREE with the best-fit fully-partitioned model (Chernomor, et al. 2016), which allows each 

partition to have its own evolutionary model and edge-linked rates determined by ModelFinder 

(Kalyaanamoorthy, et al. 2017). We then rooted the tree with the outgroup taxa (if provided) 

and extracted the empirical branch lengths of the ingroup (T) for each of the 33,178 partitions 

from 67 nucleotide and amino acid datasets. 

Finally, for each parameter in 𝑋 (5 parameters - G↔T equals to 1) and Π (4 parameters), and 

for each distribution in T (67 distributions - each dataset is an independent distribution) we find 

the best-fit distribution from 36 common probability distributions using the Kolmogorov-

Smirnov test using SciPy (Virtanen, et al. 2020). We then sampled parameters for our 

simulations from these best-fit distributions. Since the parameters of Π are not independent, to 

sample a base-frequency vector we randomly sampled a parameter from each of the four base 

frequency’s best-fit distribution and then normalized these parameters to sum to 1.  

The tree topology τ is derived from birth-death simulations with speciation rate λ, extinction 

rate μ and the fraction of sampled taxa 𝑓using TreeSim package with a fixed number of extant 

species (Stadler 2011). In principle, it is possible to estimate the speciation and extinction rates 

from empirical data (Nee, et al. 1994; Rannala and Yang 1996; Magallon and Sanderson 2001). 

However, not knowing the fraction of sampled taxa a priori will tend to bias such estimates 

(Stadler 2013; Hua and Lanfear 2018). Because of the challenges of reliably estimating 

empirical speciation and extinction rates, we instead randomly sampled the speciation rate, the 

extinction rate and the fraction of sampled taxa from uniform distributions, to attempt to cover 

all the realistic regions of the parameter space. 

𝜆~𝑈(0,1),     𝜇~𝑈(0, 𝜆),     𝑓~𝑈(0,1) 

Note that under these conditions λ is always greater than μ. 
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We simulated datasets with 20, 40, 60, 80 and 100 taxa. For each number of taxa (m), we 

simulated 3960 topologies with random speciation rate (λ), random extinction rate (μ) and 

random fraction of sampled taxa (f). For each of these topologies, we then randomly choose a 

distribution from set T and sampled the branch lengths from this distribution (2m–2 branch 

lengths in total). 

Other Python libraries that we used for the simulations are NumPy (Walt, et al. 2011), pandas 

(McKinney 2010) and ETE3 (Huerta-Cepas, et al. 2016). The python scripts for all simulations 

can be found on Github (https://github.com/suhanaser/empiricalGTRdist). 

Inheritance Evolution: Inheritance Scheme Simulations 

An evolutionary scenario would, ideally, have each lineage inheriting the parameters of its 

molecular evolutionary process from its parent lineage. At one extreme – where inheritance is 

perfect and the original evolutionary process is SRH, such a process would define a molecular 

evolutionary process that is SRH across the entire topology by simply defining a single SRH 

model at the root node. At the other extreme, where the association between parent and 

offspring lineages is no better than random and the original process is not SRH, there is no 

association between parent and offspring lineages and the process is maximally non-SRH. To 

mimic this situation, we designed a simulation approach that allows us to vary the homogeneity 

and stationarity assumptions both independently and together. 

Our inheritance scheme allows us to vary the degree to which a single alignment has evolved 

under SRH conditions by simply adjusting the strength of inheritance of the substitution 

process and the base frequencies either jointly via a parameter we call 𝜌, or independently via 

parameters 𝑣 and 𝜔 respectively. When the inheritance parameters are set to 1 and the model 

at the root of the tree is reversible, the model will conform to SRH conditions. We can simulate 

increasing violation of SRH conditions simply by decreasing the inheritance parameters 

https://github.com/suhanaser/empiricalGTRdist
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towards zero. When the relevant inheritance parameter is less than one, each branch inherits 

some proportion of its substitution model from the parent branch, while the remaining 

proportion of the model is selected at random from the empirical parameter distributions. In 

practice, the parameter in a descendant branch is calculated as the weighted sum of the 

parameter in the parent branch (where the weight is the inheritance parameter) and a randomly-

generated parameter from the appropriate empirical distribution (where the weight is one minus 

the inheritance parameter). 

We simulated data under five different categories of conditions using this scheme, in order to 

examine independently and together the effects of relaxing the stationarity and homogeneity 

assumptions.  

1) SRH conditions (Fig. 1a).—In the simplest case for a model that conforms to the SRH 

assumptions, where model parameters are generated from the empirical distributions. 

This describes a model in which all branches inherit this reversible model from their 

parent branch without variation, such that all branches on the tree have the same 

reversible substitution model, conforming to the SRH assumptions. 

2) Relaxing the stationarity assumption (Fig. 1b).—In order to hold the homogeneity 

assumption but relax the stationarity assumption, we introduce a parameter called 𝜈 

(0 ≤ 𝜈 ≤ 1) that allows to vary the state frequency at the root while still keeping the 

same rate matrix for all branches of the tree. Mathematically, this can be described as:  

{
𝑄𝑖 = 𝑄0 = 𝜋0𝑆0                       𝑖 ∈ {Φ}                      

𝜋𝑟𝑜𝑜𝑡 = 𝜈𝑑𝑟𝑜𝑜𝑡𝜋0 + (1 − 𝜈𝑑𝑟𝑜𝑜𝑡)𝜋        {𝜈 ∈ ℝ: 0 ≤ 𝜈 < 1} 
 

Where 𝑄𝑖 is the substitution rate matrix operating on branch i, and 𝑑𝑟𝑜𝑜𝑡 is the branch 

length of the root branch. 
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When ν = 1 , 𝜋𝑟𝑜𝑜𝑡  is equal to 𝜋0  and this scheme boils down to the first SRH 

condition. When ν = 0 , 𝜋𝑟𝑜𝑜𝑡  is equal to 𝜋 , meaning that the root frequency is 

generated separately from 𝜋0. 𝜋𝑟𝑜𝑜𝑡 will vary between these two extremes when ν is 

between 0 and 1, with lower ν reflecting a larger deviation from stationary conditions. 

3) Relaxing the homogeneity assumption (Fig. 1c).—In order to hold the stationarity 

assumption but relax the homogeneity assumption we need to simulate data in which 𝜈 

is set to 1 (such that all branches have the same base frequencies as the root node), but 

we introduce a parameter 𝜔 that varies between zero and one (such that the inheritance 

of the parameters of the 𝑄 matrix ranges from completely random to near-perfect). We 

can describe this mathematically as follows:  

{
𝑄𝑖 =  𝜔𝑑𝑖𝜋0𝑆𝑗 + (1 − 𝜔𝑑𝑖)𝜋0𝑆           𝑖, 𝑗 ∈ {Φ},   {𝜔 ∈ ℝ: 0 ≤ 𝜔 < 1}                 

𝜋𝑟𝑜𝑜𝑡 = 𝜋0                                                                                                                 
 

Where 𝑄𝑖 is the process operating on branch i, 𝑆𝑗 are the substitution rates on the parent 

branch of branch i, and 𝑑𝑖 is the branch length of the branch i. 

4) Relaxing the stationarity and homogeneity assumptions simultaneously but 

independently (Fig. 1d).—We can simulate non-stationary and non-homogeneous data 

by setting both 𝜈 and 𝜔 to values less than one. When we relax both assumptions, we 

will allow 𝑄𝑖 and 𝜋𝑟𝑜𝑜𝑡 to vary simultaneously but independently: 

{
𝑄𝑖 =  𝜔𝑑𝑖𝜋0𝑆𝑗 + (1 − 𝜔𝑑𝑖)𝜋0𝑆           𝑖 ∈ {Φ},   {𝜔 ∈ ℝ: 0 ≤ 𝜔 < 1}                       

𝜋𝑟𝑜𝑜𝑡 = 𝜈𝑑𝑟𝑜𝑜𝑡𝜋0 + (1 − 𝜈𝑑𝑟𝑜𝑜𝑡)𝜋              {𝜈 ∈ ℝ: 0 ≤ 𝜈 < 1}                                           
 

5) Relaxing the stationarity and homogeneity assumptions jointly (Fig. 1e).—While the 

4th set of simulation conditions, above, allows us to vary homogeneity and stationarity 

jointly but independently, it suffers from the limitation that we have a maximum of two 

base frequency vectors in the tree (𝜋𝑟𝑜𝑜𝑡and 𝜋0). To relax this assumption further, we 
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will allow 𝑄𝑖 to vary while 𝜋𝑟𝑜𝑜𝑡 stays fixed. In those settings, both homogeneity and 

stationarity will increase with 𝜌. 

{
𝑄𝑖 =  𝜌𝜋0𝑆0 + (1 − 𝜌)𝜋𝑆     𝑖 ∈ {Φ},   {𝜌 ∈ ℝ: 0 ≤ 𝜌 ≤ 1}                      
𝜋𝑟𝑜𝑜𝑡 = 𝜋0                                                                                                            

 

 

 

FIGURE 1. An example of 5 taxon tree with different degrees for homogeneity and 

stationarity. (a) stationary and homogeneous, (b) stationarity but not homogeneous, (c) non-

stationary but homogeneous, (d) non-stationary and non-homogeneous where the stationarity 

and homogeneity assumptions are relaxed simultaneously but independently, (e) non-stationary 

and non-homogeneous where the stationarity and homogeneity assumptions are relaxed jointly. 

Convergent Evolution: The Two-Matrix Scheme Simulations 

Previous studies for simulating non-SRH evolution on phylogenies have used an approach in 

which two distantly related branches undergo severe but correlated changes in the molecular 

evolutionary process. To compare this approach to the more evolutionarily-motivated approach 

described above, we randomly chose two nodes that are not sisters and not descendants of each 

other and assigned a different rate matrix (denoted by 𝑆1𝜋1) from the rest of the tree to all their 

descendant branches (Fig. 2). 
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FIGURE 2. Non-stationary and non-homogeneous process with two different rate 

matrices 𝐐𝟎 and 𝐐𝟏. 

 

Simulation Parameters 

The simulation parameters that we use in this study are the strength of inheritance of the 

substitution process (𝜔 ), strength of inheritance of the base frequencies (𝜈 ), strength of 

inheritance of the substitution process and base frequencies (𝜌), number of sites (n), and 

number of taxa (m) where the parameter space is: 

𝜔, 𝜈, 𝜌 ∈ {0, 10−25, 10−20, 10−15, 10−10, 10−5, 10−4, 10−3, 10−2, 0.1,1.0} 

𝑛 ∈ {100, 1000, 10000}  

𝑚 ∈ {20, 40, 60, 80, 100} 

The inheritance weight parameters (ω , 𝜈, 𝜌 ) were chosen to represent an even spread of 

corrected inheritance weights (i.e., the inheritance weights raised to the power of d, where d is 

the branch length) between zero and one. The number of taxa and number of sites are chosen 

to reflect the typical sizes of empirical datasets. For simulation under the inheritance scheme, 

we simulated 10 alignments of each combination of 𝑛, 𝑚, 𝜈, and 𝜔 or 𝑛, 𝑚, and 𝜌 for a total 

of 19,800 simulations. For simulation under the two-matrix scheme, we simulated 1000 

alignments of each combination of 𝑛 and 𝑚 for a total of 15,000 simulations. 



Chapter 2 

 

92 

 

 

Tree Inference 

Our first goal is to understand how the incorrect use of SRH models on data that have evolved 

under non-SRH processes can affect phylogenetic inference. To do this, we compare the tree 

topologies and branch lengths estimated with SRH models in IQ-TREE to the topologies and 

branch lengths used to simulate each dataset. For each simulated alignment, we ran IQ-TREE 

with ModelFinder (Kalyaanamoorthy, et al. 2017) and 1000 ultrafast bootstrap replicates 

(Hoang, et al. 2018). In order to assess the ability of SRH models to infer the correct tree 

topology we then compared the simulated tree topology to the estimated tree topology using 

three different metrics – normalized Robinson-Foulds distance (Robinson and Foulds 1981), 

Quartet distance (Estabrook, et al. 1985), and the Path-difference distance (Steel and Penny 

1993). The normalized Robinson-Foulds distance between two trees is the fraction of internal 

branches that appear in one tree but not the other. It ranges from 0 to 1, where 0 means that the 

two trees are topologically identical and 1 means that the two trees have no branches in 

common. In order to assess the accuracy of branch length estimates, we tested whether the 

estimated branch lengths and the original branch lengths are drawn from the same distribution 

using the two-sample Kolmogorov-Smirnov test.  

Detecting non-SRH Processes 

We, therefore, tested the ability of three tests implemented in IQ-TREE to detect violation of 

the SRH assumptions: the MaxSymTests (Naser-Khdour, et al. 2019), the compositional Chi-

square test, and the WvH test (Weiss and von Haeseler 2003). These three tests only need the 

composition of the alignment and therefore can be used with any analysis in IQ-TREE by 

adding the appropriate options to the command line, except for the Chi-square test that runs 

automatically for each alignment (Table 1). 
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Table 1.  IQ-TREE option for each test 

test IQ-TREE  option 

MaxSym --symtest 

WvH -m WHTEST 

Chi-square No option is needed 

 

Since the Chi-square test tells us whether each sequence in the alignment fails the 

compositional homogeneity assumption, we use two different approaches that leverage the 

results of the Chi-square test (see also the Introduction): 

1) A very conservative approach that we denote as 𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2 . In this approach, we 

consider the alignment to fail the Chi-square test if one or more of the sequences 

in the alignment fails the test. 

2) A less conservative ranking approach that we denote as  𝐶ℎ𝑖𝑟𝑎𝑛𝑘
2 . We record for 

each alignment what proportion of sequences that fail Chi-square test. 

In the first case, we ask whether the proportion of replicate simulated alignments with one or 

more sequences failing the Chi-square test increases with the degree of violation of SRH 

conditions in the simulations. In the second case, we ask whether the proportion of sequences 

that fail the Chi-square test increases with the degree of violation of the SRH conditions in the 

simulations. 

Results 

Empirical Distributions 

We derived the empirical distributions of the substitution model parameters, the nucleotide 

frequencies, and the proportion of invariant sites from 32,666 nucleotide alignments (Appendix 
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Table A.2). The empirical distribution of branch lengths we derived from 67 nucleotide and 

amino acid alignments consist of 33,178 partitions (Appendix Table A.1).  

Using Kolmogorov-Smirnov test, we found the best-fit probability distribution for each one of 

these empirical distributions (Table 2, Appendix Table A.2, Appendix Figs. A.1-3).  

TABLE 2.  The best-fit probability distribution by Kolmogorov-Smirnov test  

Parameter Best-fit distribution Shape (α) Scale (β) Location (𝑥0) 

A↔C Log-Laplace 1.695 1.636 -0.152 

A↔G Log-Laplace 1.465 4.930 -0.140 

A↔T Inverse-Weibull 3.015 1.841 -1.154 

C↔G Inverse-Weibull 1.793 1.651 -0.741 

C↔T Log-Laplace 1.551 5.182 -0.175 

𝜋𝐴 Generalized-logistic 0.557 0.026 0.313 

𝜋𝑇 Exponential-Weibull 0.843, 4.872 0.294 -0.001 

𝜋𝐶 Exponential-normal 1.769 0.027 0.173 

𝜋𝐺  Power-log-normal 0.090, 0.039 0.614 -0.471 

%I Beta 0.577, 4.707 2.162 -5.437 

Branch length Power-log-normal 1.208, 1.443 0.017 -7.1 e-05 

 

Phylogenetic Inference is Unaffected by Violation of SRH Conditions in an 

inheritance Framework 

Surprisingly, our results for the inheritance simulation scheme show that there is no detectable 

relationship between the severity with which SRH conditions were violated during the 

simulations and the accuracy of the tree topology or the tree length inferred from the simulated 

data. Specifically, we saw no relationship between the inheritance weight and the normalized 

RF (Robinson-Foulds), QD (Quartet Distance), or NPD (Normalized Path Difference) metrics 

in any of our inheritance simulations (Fig. 3, Appendix Figs. A.4-7). These metrics measure 

the difference between the inferred tree and the tree from which the alignment was simulated. 

If stronger violation of the SRH conditions affects phylogenetic inference we should expect to 

see that the distances are higher when the inheritance weight is lower, because a lower 
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inheritance weight implies stronger model violation through less homogeneity (for the rate 

matrix) and less stationarity (for the base frequencies). In addition, our results show that the 

proportion of simulated datasets for which the simulated tree is recovered from the simulated 

alignment is constant at around 0.25 in the inheritance scheme simulations regardless of the 

inheritance weight (Fig. 3, Appendix Fig. A.4). Finally, we see no correlation between the 

inheritance weights and the proportion of datasets that fail a Kolmogorov-Smirnov test 

comparing the true and estimated branch lengths, suggesting that violation of SRH assumptions 

in our evolutionary framework has no detectable effect on the estimation of branch lengths 

(Fig. 4, Appendix Fig. A.19). 

Tree Topologies, but not Branch Lengths, are Affected by Severe and 

Convergent Violation of SRH Conditions 

Our results show that convergent violation of SRH assumptions by allowing two distantly 

related branches to have identical substitution models has increasingly severe effects on 

phylogenetic inference as the severity of the changes in the substitution models increases. 

Under the two-matrix scheme, we expect to see higher distances between the true tree and the 

estimated tree when there are larger Euclidian distances between the original matrix and the 

matrix under which the divergent clades evolve. In two out of the three metrics (Robison-

Foulds and Path-Difference) we found a weak but significant correlation between the distance 

between the matrices and the distance between the topologies (Fig. 3, Appendix Fig. A.4, 

Appendix Figs. A.8-10). However, in the third metric (Quartet Distance) we found no 

correlation. Notably, the distance between the true tree and the estimated tree increases only 

when the Euclidean distance between the two matrices is very high. Nevertheless, the 

proportion of simulated datasets for which the simulated tree is recovered from the simulated 
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alignment declines exponentially as the difference between the matrices in the two-matrix 

scheme increases (Fig. 3).  

 
FIGURE 3.  Normalized Robinson-Foulds distance between the estimated tree topology and 

the original tree topology as a function of the inheritance weight (ν, ω ,ρ) in the first simulation 

scheme, and the distance between the two matrices (delta(Q)) in the second simulation scheme. 

The small plots show the proportion of datasets in which the distance between the estimated 

topology and the original topology equals zero as a function of the inheritance weight and the 

distance between the two matrices. If violation of SRH model assumptions increases 

topological error, we expect the nRF distance to increase towards the right of each plot. The 

figure shows that for the first simulation scheme, which mimics a stochastic evolutionary 

process, there is no detectable association between violation of SRH conditions and topological 
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error. For the second simulation scheme, which mimics an extreme convergent situation, 

topological error increases with increasing violation of SRH conditions. 

 

The proportion of analyses in which the simulated tree is recovered positively declines from 

around 0.20 when there is no model violation to zero when the Euclidean distance between the 

matrices is around 2000, confirming that even the lowest levels of SRH violation have 

detectable negative effects on phylogenetic inference under the two-matrix scheme.  

Finally, we see no correlation between the Euclidean distance between the two matrices and 

the proportion of datasets that fail a Kolmogorov-Smirnov test comparing the distributions of 

the true and estimated branch lengths, suggesting that violation of SRH assumptions in the 

convergent framework has limited effects on the estimation of branch lengths (Fig. 4, Appendix 

Fig. A.22). 

 
FIGURE 4. The percentage of datasets that pass the KS test (a dataset passes when there is 

no evidence to suggest that the inferred branch length distributions differ) as a function of the 

inheritance weights (ν,ρ,ω) (left-hand panel) and maximum Euclidian distance between the two 

matrices used to simulate the data (right-hand panel). 
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Tests for Detecting non-SRH Processes are Successful but have High False-

Negative Rates 

As expected, the ability of all three MaxSym tests to reject the null hypothesis of stationarity 

and homogeneity improves as the inheritance weight in the evolutionary simulations decreases 

(i.e. as the violation of SRH conditions increases), the distance between the two matrices in the 

convergent simulations increases, and the number of sites in the alignment increases (Fig. 5, 

Appendix Figs. A.11-13). Moreover, the three MaxSym tests have a reasonable false positive 

rate of approximately 4.5% (Appendix Table A.4). However, they also have very high false-

negative rates of 50-90%, depending on the test and the particular simulation conditions (Fig. 

5, Appendix Table A.3, Appendix Figs. A.14-16). In the two-matrix scheme simulations, the 

false-negative rates of MaxSym, MaxSymmar, and MaxSymint tests are 67%, 66%, and 87%, 

respectively. Thus, across all simulation conditions, a significant result from a MaxSymTest 

can be reliably interpreted as indicating that an alignment violates the SRH conditions, but the 

test will fail to identify many such alignments. 

Similarly to the MaxSym tests results, the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  and 𝐶ℎ𝑖𝑅𝑎𝑛𝑘

2  tests show an increase in the 

proportion of alignments and/or sequences that fail the test in each dataset as the inheritance 

weight decreases, and the number of sites increases (Fig. 5a, Appendix Fig. A.17). The false-

positive rates of the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  test is 6% (Appendix Table A.6). The false-negative rate of 

the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  test in the inheritance-scheme simulations is 57% (Appendix Table A.5). 

Moreover, similar to the MaxSym tests, in the two-matrix scheme simulation, the percentage 

of datasets that pass the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  decreases logarithmically the higher the distance between the 

two matrices (Fig. 5b, Appendix Fig. A.18). The false-negative rate of the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  test under 

extreme convergent evolution is the smallest of all the tests considered here under these 

conditions, and it is around 44%  (Appendix Table A.5). 
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In the inheritance-scheme simulations, similarly to the MaxSym tests, the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  and 

𝐶ℎ𝑖𝑅𝑎𝑛𝑘
2 , the WvH test shows an increase in the proportion of alignments that fail the test as 

the inheritance weight (ω and ρ) decreases. However, ν has no effect on the proportion of 

alignments that fail the WvH test. The false-positive rate of the WvH test is 3.5% (Appendix 

Table A.8), which is lower than any of the MaxSym tests or the 𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  test. In addition, the 

false-negative rate of the WvH test (Appendix Table A.7) in the inheritance-scheme 

simulations is lower than all the other tests (~30%) but it is still high under the two-matrix 

scheme simulations (~67%). Yet, due to numerical instability, the WvH test could be only 

applied to half of the datasets in the two simulation schemes. 

 
(a) 
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(b) 

FIGURE 5.  The mean percentage of datasets that pass each of the MaxSym tests, the WvH 

test, and the Chi-square test as a function of (a) the inheritance weights (ν,ρ,ω) (b) maximum 

Euclidian distance between the two matrices. We define datasets that pass the Chi2Cons test 

as datasets where all the sequences pass the Chi-square test. On the other hand, Chi2Rank 

shows the proportion of sequences that pass the Chi-square test in each dataset. 

 

MaxSymTestint is a good predictor of correct tree inference 

A key question for empiricists is whether tests of model adequacy are likely to improve 

phylogenetic inference. To explore this in our simulation framework, we asked whether 

datasets that are rejected by the tests we evaluated tended to be associated with more 

phylogenetic tree error than those that were not rejected. To do this, we used three different 

metrics of tree distance (the normalized Robison-Foulds (RF), Path-Difference, and Quartet 

distance) and asked whether datasets that fail the test (i.e. have detectable non-SRH processes) 

tended to result in trees that were further from the true tree (i.e. had higher nRF distances) when 
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analysed using SRH models. All three showed very similar results, so we show the normalized 

Robinson-Foulds results here (Fig. 6) and the other metrics in the supplementary information 

(Appendix Fig. A.23a, Appendix Fig. A.24a). 

For the inheritance scheme simulations, we found as expected that datasets that failed the 

MaxSym tests were associated with trees much further from the true tree than those that passed 

the tests, although there was substantial variation within each category (Fig. 6a, Appendix Fig. 

A.23a, Appendix Fig. A.24a). Surprisingly, this pattern was reversed for the  𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  test, and 

there was a very small difference in tree distances with the WvH test (Fig. 6a). Welch’s t-test 

results suggest all of the differences are statistically significant (p<<0.05, Fig. 6a). 

For the two-matrix simulations, the only test for which datasets that failed were associated with 

trees further from the true tree was the MaxSymint test (Fig. 6b, Appendix Fig. A.23b, Appendix 

Fig. A.24b). For all other tests, datasets that failed the test were associated with trees that were 

markedly closer to the true tree than datasets that passed the tests (Fig. 6b, Appendix Fig. 

A.23b, Appendix Fig. A.24b). Again, Welch’s t-test results suggest all of the differences are 

statistically significant (p<<0.05, Fig. 6b). 

 
(a) 
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(b) 

FIGURE 6. The normalized Robison-Foulds distance as a function of passing/failing the 

tests in (a) the inheritance scheme simulations and (b) the two-matrix scheme simulations. The 

p-value in each sub-figure is calculated from the Welch’s t-test statistics. 

 

Discussion 

Using two different simulation schemes, we explored the impact of violating the assumption 

of evolution under stationary, reversible, and homogeneous (SRH) conditions on ML 

phylogenetic tree inference. Our study extends the simulations in many previous studies by 

simulating data under an evolutionary scenario in which molecular evolutionary models evolve 

along a phylogeny. Our results show that the inference of phylogenetic tree topologies and 

branch lengths are surprisingly robust to violations of SRH assumptions under an evolutionary 

scheme. But similarly to previous studies, we show that in extreme cases of convergent 

molecular evolution the incorrect assumption of SRH conditions can severely mislead 

phylogenetic inference. 

The first simulation scheme we introduced in this paper, which we called the inheritance 

scheme, allows tree branches to inherit their substitution process from their ancestor.  The 

second simulation scheme, which we called the two-matrix scheme, is similar to previous 
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studies and allows two distantly related monophyletic sub-trees to evolve with a different 

evolutionary process from the rest of the tree (Galtier and Gouy 1995; Jermiin, et al. 2004; 

Jayaswal, et al. 2011; Duchene, et al. 2017).  

Surprisingly, our results show no correlation between errors in the topology or branch length 

inference and any of the inheritance scheme parameters, even in extreme cases where the 

evolutionary process is completely heterogeneous and non-stationary. These results indicate 

that ML tree inference with SRH models is surprisingly robust to even quite extreme violations 

of the SRH conditions. 

Under the two-matrix simulation scheme, we found a small but significant increase in 

topological inference error and the extent of the violation of the SRH assumptions. Specifically, 

the more extreme the evolutionary convergence, the larger the errors in the topological 

inference that assumes SRH conditions. Despite this, we found no correlation between branch 

length inference and the distance between the two matrices. These results emphasize the 

limitations of ML inference to operate under certain model violations, especially when these 

violations are highly imbalanced along the tree, as in the case of the two-matrix scheme 

simulations. These results indicate that the inference of the substitution model is more 

influenced by the imbalance of the model violation distribution along the tree than by the model 

violation itself. This conclusion agrees well with all previous simulation studies of similar 

simulation conditions (e.g. Jermiin, et al. 2004; Duchene, et al. 2017; Jermiin, et al. 2019). 

In this study, we also tested the power of the MaxSym tests, WvH test and two variations of 

the Chi-squared test to detect model violation due to non-SRH evolution. Our results show that 

those tests were able to detect some model violations in both simulation schemes. As expected, 

the power of all tests to detect model violation due to non-SRH evolution improves 

dramatically as alignment length increases, reflecting simply the larger amount of information 
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available in longer alignments. However, the power of most of the tests we looked at was 

somewhat limited – even in the best-case scenario when violation of the SRH conditions was 

severe, most tests were able to detect this violation in less than 50% of the simulated datasets 

(Fig. 5). The two exceptions were the WvH test, which was able to detect the vast majority of 

datasets simulated with model violation under the inheritance scheme simulations (Fig. 6a) and 

the conservative Chi-Square test, which was able to detect the majority of datasets simulated 

with model violation under the convergent evolution scheme. However, the WvH test could 

not be applied to half of the datasets in our simulations due to numerical instability, suggesting 

that it may be less useful for detecting violations of SRH conditions in practice than the other 

tests.  

The high false-negative rates of the MaxSym tests also suggest that some of the partitions that 

violate the SRH assumption are not detected by those tests which means that the impact of the 

model violation on the phylogenetic inference is actually higher than it seems. The implications 

are big also for the empirical datasets from Chapter 1; if the tests were more powerful I would 

expect to see more extreme results. 

The utility of any test of model adequacy in practice is likely to be tied to the amount of 

phylogenetic error that a test helps empiricists avoid. All models used in phylogenetic analyses 

are gross oversimplifications of highly complex molecular evolutionary processes, and so 

merely detecting violations of models is necessary but not sufficient for a model adequacy test 

to be useful. Because of this, we asked for each test whether the datasets that fail the test were 

associated with more or less topological inference error than the datasets that passed the test. 

Surprisingly, the only test that performed consistently well in this regard was the 

MaxSymTestint. Under the inheritance scheme simulations, all three MaxSym tests are good 

predictors of phylogenetic accuracy; trees that pass any of those tests are closer to the true tree 
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than trees that fail. The WvH and 𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  tests on the other hand are bad predictors of 

phylogenetic accuracy; trees that fail the 𝐶ℎ𝑖𝑐𝑜𝑛𝑠
2  test are usually closer to the true tree, while 

there is only a small difference between trees that fail and trees that pass the WvH test. 

Surprisingly, under the convergent simulation scheme, the MaxSymTestint is the only test for 

which datasets that pass the test are closer to the true tree than datasets that fail the test (Fig. 

6). For all other tests, the datasets that pass the test were substantially further from the true tree 

than those that fail the test. 

It is challenging to disentangle why some tests of the SRH assumptions tend to detect datasets 

that are associated with more topological error, while others show the opposite tendency (Fig. 

6), although we suspect this is often driven by the interplay of the power of the tests, 

phylogenetic signal, and stochastic error in tree estimation. Across all simulation conditions, 

the only test which consistently showed the desirable behaviour from an empirical standpoint 

(i.e. where datasets that fail the test are associated with more topological error) was the 

MaxSymTestint. All other tests showed evidence of having the opposite tendency (Fig. 6) in at 

least some simulation conditions. In the case of the WvH test, for which alignments that fail 

the test were consistently associated with less topological inference error when analysed under 

SRH models, we suspect that the underlying reason may be the reliance of the test on a 

parametric bootstrap. The WvH test depends fundamentally on a tree estimated with an SRH 

model to estimate the null distribution of the test statistic. If this tree is wrong, as we show 

occurs under model violation, then the null distribution may be incorrect and the test misled. 

For the other tests we suspect that the tendency is driven largely by the fact that datasets with 

few informative sites will tend to both pass the tests and be associated with high topological 

error, with both caused by the limited information in the data, although further work is needed 

to understand these relationships in more detail. Nevertheless, the observation that across all 

simulation conditions, datasets that fail the MaxSymTestint are associated with higher 



Chapter 2 

 

106 

 

topological error do suggest that violations of the homogeneity assumption might be the most 

important when it comes to phylogenetic inference with SRH models, since the MaxSymTestint 

tests primarily for violations of homogeneity.  

These results combined with the results from the inheritance scheme simulations, emphasize 

the need to use different methods and tests for model violation in phylogenetic analyses since 

each test can capture a different aspect of model violation. A new phylogenetic protocol 

(Jermiin, et al. 2020) stresses the need to validate the assumptions of the models in advance. If 

the data in hand violates the model’s assumptions then different models or methods should be 

considered. A surprising result from this work is that the MaxSymTestint is a good predictor for 

phylogenetic accuracy. Yet, one should bear in mind that this test has the highest false-negative 

rate among all of the tests examined in this study. 

It is noteworthy that our results from the different simulation schemes agree with the results 

from empirical data (Naser-Khdour, et al. 2019). They emphasize the impact of model violation 

due to non-SRH evolution on phylogenetic inference and suggest that reducing model violation 

in phylogenetic analysis by using the protocol of phylogenetic inference (Jermiin, et al. 2020) 

or using more complex substitution models e.g.(Galtier and Gouy 1998; Tamura and Kumar 

2002; Blanquart and Lartillot 2008; Dutheil, et al. 2012; Zou, et al. 2012; Groussin, et al. 2013; 

Jayaswal, et al. 2014) has the potential to improve phylogenetic accuracy. 

For the purpose of this study, in order to simulate data that mimic as closely as possible 

empirical alignments, we extracted the empirical distributions of base frequencies, substitution 

rates, proportion of invariable sites, and branch lengths from tens of thousands of empirical 

datasets. In addition to their use in this paper, these empirical distributions, along with their 

best-fit distributions may be useful for a wide variety of simulation studies, or for specifying 

prior distributions for Bayesian phylogenetic methods. 



Chapter 2 

 

107 

 

 

Funding 

This work was supported by an Australian Research Council (Grant No. DP200103151 to R.L., 

B.Q.M.) and by a Chan-Zuckerberg Initiative grant to B.Q.M and R.L. 

References 

Ababneh F, Jermiin LS, Ma C, Robinson J. 2006. Matched-pairs tests of 

homogeneity with applications to homologous nucleotide sequences. 

Bioinformatics 22:1225-1231. 

Anderson FE, Bergman A, Cheng SH, Pankey MS, Valinassab T. 2013. Data from: 

Lights out: the evolution of bacterial bioluminescence in Loliginidae. In: 

Dryad Data Repository. 

Anderson FE, Bergman A, Cheng SH, Pankey MS, Valinassab T. 2014. Lights out: 

the evolution of bacterial bioluminescence in Loliginidae. Hydrobi ologia 

725:189-203. 

Aouad M, Taib N, Oudart A, Lecocq M, Gouy M, Brochier -Armanet C. 2018. 

Extreme halophilic archaea derive from two distinct methanogen Class II 

lineages. Mol Phylogenet Evol 127:46-54. 

Ballesteros JA, Sharma PP. 2019a. A Critical Appraisal of the Placement of 

Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic 

Error. Syst. Biol. 

Ballesteros JA, Sharma PP. 2019b. Data from: A critical appraisal of the placement 

of Xiphosura (Chelicerata) with account of known sources of phylogenetic 

error. In: Dryad. 

Barry D, Hartigan JA. 1987. Statistical Analysis of Hominoid Molecular Evolution. 

Statistical Science 2:191-207. 

Becker EA, Yao AI, Seitzer PM, Kind T, Wang T, Eigenheer R, Shao KS, Yarov -

Yarovoy V, Facciotti MT. 2016. A Large and Phylogenetically Diverse Class 



Chapter 2 

 

108 

 

of Type 1 Opsins Lacking a Canonical Retinal Binding Site. PLoS One 

11:e0156543. 

Becker EA, Yao AI, Seitzer PM, Kind T, Wang T, Eigenheer R, Shao KSY, Yarov -

Yarovoy V, Facciotti MT. 2017. Data from: A large and phylogene tically 

diverse class of type 1 opsins lacking a canonical retinal binding site. In: 

Dryad. 

Bergsten J, Nilsson AN, Ronquist F. 2013a. Bayesian tests of topology hypotheses 

with an example from diving beetles. Syst. Biol. 62:660-673. 

Bergsten J, Nilsson AN, Ronquist F. 2013b. Data from: Bayesian tests of topology 

hypotheses with an example from diving beetles. In: Dryad Data Repository.  

Betancur RR, Li C, Munroe TA, Ballesteros JA, Orti G. 2013. Addressing gene 

tree discordance and non-stationarity to resolve a multi-locus phylogeny of 

the flatfishes (Teleostei: Pleuronectiformes). Syst. Biol. 62:763 -785. 

Blanquart S, Lartillot N. 2008. A site- and time-heterogeneous model of amino 

acid replacement. Mol. Biol. Evol. 25:842-858. 

Borowiec ML, Lee EK, Chiu JC, Plachetzki DC. 2016. Data from: Extracting 

phylogenetic signal and accounting for bias in whole-genome data sets 

supports the Ctenophora as sister to remaining Metazoa. In: Dryad Digital 

Repository. 

Borowiec ML, Lee EK, Chiu JC, Plachetzki DC. 2015. Extracting phylogenetic 

signal and accounting for bias in whole-genome data sets supports the 

Ctenophora as sister to remaining Metazoa. BMC Genomics 16:987.  

Boussau B, Gouy M. 2006. Efficient likelihood computations with nonreversible 

models of evolution. Syst. Biol. 55:756-768. 

Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, 

Gates MW, Kula RR, Brady SG. 2017a. Data from: Phylogenomic insights 

into the evolution of stinging wasps and the origins of ants and bees. In: 

Dryad Digital Repository. 

Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, 

Gates MW, Kula RR, Brady SG. 2017b. Phylogenomic Insights into the 

Evolution of Stinging Wasps and the Origins of Ants and Bees. Curr. Biol. 

27:1019-1025. 



Chapter 2 

 

109 

 

Broughton RE, Betancur RR, Li C, Arratia G, Orti G. 2013a. Data from: Multi -

locus phylogenetic analysis reveals the pattern and tempo of bony fish 

evolution. In: Dryad Data Repository.  

Broughton RE, Betancur RR, Li C, Arratia G, Orti G. 2013b. Multi -locus 

phylogenetic analysis reveals the pattern and tempo of bony fish evolution. 

PLoS Curr 5. 

Brown JM, ElDabaje R. 2009. PuMA: Bayesian analysis of partitioned (and 

unpartitioned) model adequacy. Bioinformatics 25:537-538. 

Brown RM, Siler CD, Das I, Min PY. 2012a. Data from: Testing the phylogenetic 

affinities of Southeast Asia’s rarest geckos: Flap-legged geckos 

(Luperosaurus), Flying geckos (Ptychozoon) and their relationship to the 

pan-Asian genus Gekko. In: Dryad Data Repository.  

Brown RM, Siler CD, Das I, Min Y. 2012b. Testing the phylogenetic affinities of 

Southeast Asia's rarest geckos: Flap-legged geckos (Luperosaurus), Flying 

geckos (Ptychozoon) and their relationship to the pan-Asian genus Gekko. 

Mol Phylogenet Evol 63:915-921. 

Cannon JT, Vellutini BC, Smith J, 3rd, Ronquist F, Jondelius U, Hejnol A. 2016a. 

Xenacoelomorpha is the sister group to Nephrozoa. Nature 530:89 -93. 

Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. 2016b. Data 

from: Xenacoelomorpha is the sister group to Nephrozoa. In: Dryad Data 

Repository. 

Chen M-Y, Liang D, Zhang P. 2015a. Data from: Selecting question -specific genes 

to reduce incongruence in phylogenomics: a case study of jawed vertebrate 

backbone phylogeny. In: Dryad. 

Chen MY, Liang D, Zhang P. 2015b. Selecting Question-Specific Genes to Reduce 

Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate 

Backbone Phylogeny. Syst. Biol. 64:1104-1120. 

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace Aware Data Structure for 

Phylogenomic Inference from Supermatrices . Syst. Biol. 65:997-1008. 

Cognato AI, Vogler AP. 2001a. Data from: Exploring data interaction and 

nucleotide alignment in a multiple gene analysis of Ips (Coleoptera: 

Scolytinae). In: Dryad Data Repository.  



Chapter 2 

 

110 

 

Cognato AI, Vogler AP. 2001b. Exploring data interaction and nucleotide 

alignment in a multiple gene analysis of Ips (Coleoptera: Scolytinae). Syst. 

Biol. 50:758-780. 

Collins TM, Fedrigo O, Naylor GJ. 2005. Choosing the best genes for the job: the 

case for stationary genes in genome-scale phylogenetics. Syst. Biol. 54:493-

500. 

Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. 

2012a. Data from: More than 1000 ultraconserved elements provide 

evidence that turtles are the sister group of archosaurs. In: Dryad Digital 

Repository. 

Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. 

2012b. More than 1000 ultraconserved elements provide evidence that 

turtles are the sister group of archosaurs. Biol. Lett. 8:783 -786. 

Day JJ, Peart CR, Brown KJ, Friel JP, Bills R, Moritz T. 2013a. Continental 

diversification of an African catfish radiation (Mochokidae: Synodontis). 

Syst. Biol. 62:351-365. 

Day JJ, Peart CR, Brown KJ, Friel JP, Bills R, Moritz T. 2013b. Data from: 

Continental diversification of an African catfish radiat ion (Mochokidae: 

Synodontis). In: Dryad Data Repository.  

Devitt TJ, Cameron Devitt SE, Hollingsworth BD, McGuire JA, Moritz C. 2013. 

Data from: Montane refugia predict population genetic structure in the 

Large-blotched Ensatina salamander. In: Dryad Data Repository. 

Devitt TJ, Devitt SE, Hollingsworth BD, McGuire JA, Moritz C. 2013. Montane 

refugia predict population genetic structure in the Large-blotched Ensatina 

salamander. Mol. Ecol. 22:1650-1665. 

Dornburg A, Moore JA, Webster R, Warren DL, Brandley MC,  Iglesias TL, 

Wainwright PC, Near TJ. 2012a. Data from: Molecular phylogenetics of 

squirrelfishes and soldierfishes (Teleostei:Beryciformes: Holocentridae): 

reconciling more than 100 years of taxonomic confusion. In: Dryad Data 

Repository. 

Dornburg A, Moore JA, Webster R, Warren DL, Brandley MC, Iglesias TL, 

Wainwright PC, Near TJ. 2012b. Molecular phylogenetics of squirrelfishes 

and soldierfishes (Teleostei: Beryciformes: Holocentridae): reconciling 



Chapter 2 

 

111 

 

more than 100 years of taxonomic confusion. Mol Phylogene t Evol 65:727-

738. 

Duchene DA, Duchene S, Ho SYW. 2017. New Statistical Criteria Detect 

Phylogenetic Bias Caused by Compositional Heterogeneity. Mol. Biol. Evol. 

34:1529-1534. 

Dutheil JY, Galtier N, Romiguier J, Douzery EJ, Ranwez V, Boussau B. 2012. 

Efficient selection of branch-specific models of sequence evolution. Mol. 

Biol. Evol. 29:1861-1874. 

Estabrook GF, McMorris F, Meacham CA. 1985. Comparison of undirected 

phylogenetic trees based on subtrees of four evolutionary units. Systematic 

Zoology 34:193-200. 

Faircloth BC, Sorenson L, Santini F, Alfaro ME. 2013a. Data from: A 

phylogenomic perspective on the radiation of ray-finned fishes based upon 

targeted sequencing of ultraconserved elements (UCEs). In: Dryad Data 

Repository. 

Faircloth BC, Sorenson L, Santini F, Alfaro ME. 2013b. A Phylogenomic 

Perspective on the Radiation of Ray-Finned Fishes Based upon Targeted 

Sequencing of Ultraconserved Elements (UCEs). PLoS One 8:e65923.  

Fan L, Wu D, Goremykin V, Xiao J, Xu Y, Garg S, Zhang C, Martin WF, Zhu R.  

2020. Phylogenetic analyses with systematic taxon sampling show that 

mitochondria branch within Alphaproteobacteria. Nat Ecol Evol 4:1213 -

1219. 

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum 

likelihood approach. J. Mol. Evol. 17:368-376. 

Felsenstein J. 2004. Inferring Phylogenies. Sunderland, Massachusetts: Sinauer 

Associates, Inc. 

Felsenstein J. 1983. Statistical inference of phylogenies. Journal of the Royal 

Statistical Society: Series A (General) 146:246-262. 

Fong JJ, Brown JM, Fujita MK, Boussau B. 2012a. Data from: A phylogenomic 

approach to vertebrate phylogeny supports a turtle -archosaur affinity and a 

possible paraphyletic Lissamphibia. In: Dryad Data Repository.  

Fong JJ, Brown JM, Fujita MK, Boussau B. 2012b. A phylogenomic a pproach to 

vertebrate phylogeny supports a turtle-archosaur affinity and a possible 

paraphyletic lissamphibia. PLoS One 7:e48990.  



Chapter 2 

 

112 

 

Foster PG. 2004. Modeling compositional heterogeneity. Syst. Biol. 53:485 -495. 

Foster PG, Hickey DA. 1999. Compositional bias may affect both DNA-based and 

protein-based phylogenetic reconstructions. J. Mol. Evol. 48:284-290. 

Galtier N, Gouy M. 1998. Inferring pattern and process: maximum -likelihood 

implementation of a nonhomogeneous model of DNA sequence evolution for 

phylogenetic analysis. Mol. Biol. Evol. 15:871-879. 

Galtier N, Gouy M. 1995. Inferring phylogenies from DNA sequences of unequal 

base compositions. Proc Natl Acad Sci U S A 92:11317-11321. 

Groussin M, Boussau B, Gouy M. 2013. A branch-heterogeneous model of protein 

evolution for efficient inference of ancestral sequences. Syst. Biol. 62:523 -

538. 

Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a 

molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160-174. 

Hillis DM, Huelsenbeck JP, Cunningham CW. 1994. Application and accuracy of 

molecular phylogenies. Science 264:671-677. 

Ho JW, Adams CE, Lew JB, Matthews TJ, Ng CC, Shahabi -Sirjani A, Tan LH, 

Zhao Y, Easteal S, Wilson SR, et al. 2006. SeqVis: visualization of 

compositional heterogeneity in large alignments of nucleotides. 

Bioinformatics 22:2162-2163. 

Ho SY, Jermiin L. 2004. Tracing the decay of the historical signal in biological 

sequence data. Syst. Biol. 53:623-637. 

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: 

Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35:518 -

522. 

Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, Davis CC, 

Wurdack KJ. 2014a. Data from: Evolutionary bursts in Euphorbia 

(Euphorbiaceae) are linked with photosynthetic pathway. In: Dryad Data 

Repository. 

Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, Davis CC, 

Wurdack KJ. 2014b. Evolutionary bursts in Euphorbia (Euphorbiaceae) are 

linked with photosynthetic pathway. Evolution 68:3485-3504. 

Hua X, Lanfear R. 2018. The influence of non-random species sampling on 

macroevolutionary and macroecological inference from phylogenies. 

Methods in Ecology and Evolution 9:1353-1362. 



Chapter 2 

 

113 

 

Huelsenbeck JP, Hillis DM. 1993. Success of Phylogenetic Methods in the Four -

Taxon Case. Syst. Biol. 42:247-264. 

Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: Reconstruction, Analysis, and 

Visualization of Phylogenomic Data. Mol. Biol. Evol. 33:1635-1638. 

Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J, Kupfer A, Petersen J, Jar ek 

M, Meyer A, Vences M, et al. 2017a. Data from: Phylotranscriptomic 

consolidation of the jawed vertebrate timetree. In: Dryad Digital Repository.  

Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire JY, Kupfer A, Petersen J, Jarek 

M, Meyer A, Vences M, et al. 2017b. Phylotranscriptomic consolidation of 

the jawed vertebrate timetree. Nat Ecol Evol 1:1370-1378. 

Jarvis ED, Mirarab S, Aberer A, Houde P, Li C, Ho S, Faircloth BC, Nabholz B, 

Howard JT, Suh A, et al. 2014. Data from: Phylogenomic analyses data of 

the avian phylogenomics project. In: GigaScience Database.  

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, 

Nabholz B, Howard JT, et al. 2015. Phylogenomic analyses data of the avian 

phylogenomics project. Gigascience 4:4.  

Jayaswal V, Ababneh F, Jermiin LS, Robinson J. 2011. Reducing model complexity 

of the general Markov model of evolution. Mol. Biol. Evol. 28:3045 -3059. 

Jayaswal V, Wong TK, Robinson J, Poladian L, Jermiin LS. 2014. Mixture models 

of nucleotide sequence evolution that account for heterogeneity in the 

substitution process across sites and across lineages. Syst. Biol. 63:726 -742. 

Jermiin L, Ho SY, Ababneh F, Robinson J, Larkum AW. 2004. The biasing effect 

of compositional heterogeneity on phylogenetic estimates may be 

underestimated. Syst. Biol. 53:638-643. 

Jermiin LS, Catullo RA, Holland BR. 2020. A new phylogenetic protocol: dealing 

with model misspecification and confirmation bias in molecular 

phylogenetics. NAR Genom Bioinform 2:lqaa041.  

Jermiin LS, Ho JWK, Lau KW, Jayaswal V. 2009. SeqVis: a tool for detecting 

compositional heterogeneity among aligned nucleotide sequences. In. 

Bioinformatics for DNA sequence analysis: Springer. p. 65 -91. 

Jermiin LS, Lovell DR, Misof B, Foster PG, Robinson J. 2019. Software for 

Detecting Heterogeneous Evolutionary Processes across Aligned Sequence 

Data. bioRxiv:828996. 



Chapter 2 

 

114 

 

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. 

ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. 

Methods 14:587-589. 

Kawahara AY, Rubinoff D. 2013a. Convergent evolution of morphology and 

habitat use in the explosive Hawaiian fancy case caterpillar radiation. J. 

Evol. Biol. 26:1763-1773. 

Kawahara AY, Rubinoff D. 2013b. Data from: Convergent evolution in the 

explosive Hawaiian Fancy Cased caterpillar radiation. In: Dryad Data 

Repository. 

Kimura M. 1980. A Simple Method for Estimating Evolutionary Rates of Base 

Substitutions through Comparative Studies of Nucleotide -Sequences. J. 

Mol. Evol. 16:111-120. 

Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. 2012. 

Statistics and truth in phylogenomics. Mol. Biol. Evol. 29:457 -472. 

Kumar S, Gadagkar SR. 2001. Disparity index: a simple statistic to measure and 

test the homogeneity of substitution patterns between molecular sequences. 

Genetics 158:1321-1327. 

Lanave C, Preparata G, Saccone C, Serio G. 1984. A new method for calculating 

evolutionary substitution rates. J. Mol. Evol. 20:86-93. 

Lanave C, Tommasi S, Preparata G, Saccone C. 1986. Transition and tra nsversion 

rate in the evolution of animal mitochondrial DNA. BioSyst. 19:273 -283. 

Lartillot N, Delsuc F. 2012a. Data from: Joint reconstruction of divergence times 

and life-history evolution in placental mammals using a phylogenetic 

covariance model. In: Dryad Data Repository. 

Lartillot N, Delsuc F. 2012b. Joint reconstruction of divergence times and life -

history evolution in placental mammals using a phylogenetic covariance 

model. Evolution 66:1773-1787. 

Leache AD, Chavez AS, Jones LN, Grummer JA, Gottscho  AD, Linkem CW. 2015. 

Phylogenomics of phrynosomatid lizards: conflicting signals from sequence 

capture versus restriction site associated DNA sequencing. Genome Biol 

Evol 7:706-719. 

Leaché AD, Chavez AS, Jones LN, Grummer JA, Gottscho AD, Linkem CW. 2015.  

Data from: Phylogenomics of phrynosomatid lizards: conflicting signals 



Chapter 2 

 

115 

 

from sequence capture versus restriction site associated DNA sequencing. 

In: Dryad. 

Liu ZQ, Liu YF, Kuermanali N, Wang DF, Chen SJ, Guo HL, Zhao L, Wang JW, 

Han T, Wang YZ, et al. 2018. Sequencing of complete mitochondrial 

genomes confirms synonymization of Hyalomma asiaticum asiaticum and 

kozlovi, and advances phylogenetic hypotheses for the Ixodidae. PLoS One 

13:e0197524. 

Lockhart PJ, Steel MA, Hendy MD, Penny D. 1994. Recovering evol utionary trees 

under a more realistic model of sequence evolution. Mol. Biol. Evol. 11:605 -

612. 

Looney BP, Ryberg M, Hampe F, Sanchez-Garcia M, Matheny PB. 2016. Into and 

out of the tropics: global diversification patterns in a hyperdiverse clade of 

ectomycorrhizal fungi. Mol. Ecol. 25:630-647. 

Looney BP, Ryberg M, Hampe F, Sánchez-García M, Matheny PB. 2015. Data 

from: Into and out of the tropics: global diversification patterns in a hyper -

diverse clade of ectomycorrhizal fungi. In: Dryad.  

Magallon S, Sanderson MJ. 2001. Absolute diversification rates in angiosperm 

clades. Evolution 55:1762-1780. 

Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJ. 2018. Deep mitochondrial 

origin outside the sampled alphaproteobacteria. Nature.  

McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield 

RT. 2013a. Data from: A phylogeny of birds based on over 1,500 loci 

collected by target enrichment and high-throughput sequencing. In: Dryad 

Data Repository. 

McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn  TC, Brumfield 

RT. 2013b. A phylogeny of birds based on over 1,500 loci collected by target 

enrichment and high-throughput sequencing. PLoS One 8:e54848.  

McKinney W. 2010. Data Structures for Statistical Computing in Python.  

Meiklejohn KA, Faircloth BC, Glenn TC, Kimball RT, Braun EL. 2016a. Analysis 

of a Rapid Evolutionary Radiation Using Ultraconserved Elements: 

Evidence for a Bias in Some Multispecies Coalescent Methods. Syst. Biol. 

65:612-627. 

Meiklejohn KA, Faircloth BC, Glenn TC, Kimball RT, Braun EL. 2016b. Data 

from: Analysis of a rapid evolutionary radiation using ultraconserved 



Chapter 2 

 

116 

 

elements (UCEs): Evidence for a bias in some multi -species coalescent 

methods. In: Dryad. 

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler 

A, Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for 

Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37:1530 -1534. 

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frands en PB, Ware 

J, Flouri T, Beutel RG, et al. 2014a. Data from: Phylogenomics resolves the 

timing and pattern of insect evolution. In: Dryad Digital Repository.  

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware 

J, Flouri T, Beutel RG, et al. 2014b. Phylogenomics resolves the timing and 

pattern of insect evolution. Science 346:763-767. 

Mooers AO, Holmes EC. 2000. The evolution of base composition and 

phylogenetic inference. Trends Ecol. Evol. 15:365-369. 

Moyle RG, Oliveros CH, Andersen MJ, Hosner PA, Benz BW, Manthey JD, Travers 

SL, Brown RM, Faircloth BC. 2016a. Data from: Tectonic collision and 

uplift of Wallacea triggered the global songbird radiation. In: Dryad Data 

Repository. 

Moyle RG, Oliveros CH, Andersen MJ, Hosner PA, Benz BW, Manthey JD, Travers 

SL, Brown RM, Faircloth BC. 2016b. Tectonic collision and uplift of 

Wallacea triggered the global songbird radiation. Nat Commun 7:12709.  

Murray EA, Carmichael AE, Heraty JM. 2013a. Ancient host shifts followed by 

host conservatism in a group of ant parasitoids. Proc Biol Sci 280:20130495.  

Murray EA, Carmichael AE, Heraty JM. 2013b. Data from: Ancient host shifts 

followed by host conservatism in a group of ant parasitoids. In: Dryad Data 

Repository. 

Naser-Khdour S, Minh BQ, Zhang W, Stone EA, Lanfear R. 2019. The Prevalence 

and Impact of Model Violations in Phylogenetic Analysis. Genome Biol 

Evol. 

Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price 

SA, Burbrink FT, Friedman M, et al. 2013a. Data from: Phylogeny an d 

tempo of diversification in the superradiation of spiny-rayed fishes. In: 

Dryad. 

Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price 

SA, Burbrink FT, Friedman M, et al. 2013b. Phylogeny and tempo of 



Chapter 2 

 

117 

 

diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad 

Sci U S A 110:12738-12743. 

Nee S, May RM, Harvey PH. 1994. The reconstructed evolutionary process. Philos 

Trans R Soc Lond B Biol Sci 344:305-311. 

Nguyen AD, Gotelli NJ, Cahan SH. 2016a. Data from: The evolution of heat shock 

protein sequences, cis-regulatory elements, and expression profiles in the 

eusocial Hymenoptera. In: Dryad.  

Nguyen AD, Gotelli NJ, Cahan SH. 2016b. The evolution of heat shock protein 

sequences, cis-regulatory elements, and expression profiles in the eusocial 

Hymenoptera. BMC Evol. Biol. 16:15.  

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and 

effective stochastic algorithm for estimating maximum-likelihood 

phylogenies. Mol. Biol. Evol. 32:268-274. 

Oaks JR. 2011a. Data from: A time-calibrated species tree of Crocodylia reveals a 

recent radiation of the true crocodiles. In: Dryad Data Repository.  

Oaks JR. 2011b. A time-calibrated species tree of Crocodylia reveals a recent 

radiation of the true crocodiles. Evolution 65:3285-3297. 

Phillips MJ, Delsuc F, Penny D. 2004. Genome-scale phylogeny and the detection 

of systematic biases. Mol. Biol. Evol. 21:1455-1458. 

Phillips MJ, Penny D. 2003. The root of the mammalian tree inferred from whole 

mitochondrial genomes. Mol Phylogenet Evol 28:171-185. 

Prebus M. 2017a. Data from: Insights into the evolution, biogeography and natural 

history of the acorn ants, genus Temnothorax Mayr (Hymenoptera: 

Formicidae). In: Dryad. 

Prebus M. 2017b. Insights into the evolution, biogeography and natural history of 

the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC 

Evol. Biol. 17:250. 

Preparata G, Saccone C. 1987. A simple quantitative model of the molecular clock. 

J. Mol. Evol. 26:7-15. 

Puttick MN, Morris JL, Williams TA, Cox CJ , Edwards D, Kenrick P, Pressel S, 

Wellman CH, Schneider H, Pisani D, et al. 2018. The Interrelationships of 

Land Plants and the Nature of the Ancestral Embryophyte. Curr. Biol. 

28:733-745 e732. 



Chapter 2 

 

118 

 

Pyron RA, Wiens JJ. 2011. A large-scale phylogeny of Amphibia including over 

2800 species, and a revised classification of extant frogs, salamanders, and 

caecilians. Mol Phylogenet Evol 61:543-583. 

Pyron RA, Wiens JJ, Alexander Pyron R. 2011. Data from: A large -scale phylogeny 

of Amphibia including over 2800 species , and a revised classification of 

extant frogs, salamanders, and caecilians. In: Dryad.  

Ran JH, Shen TT, Wang MM, Wang XQ. 2018a. Data from: Phylogenomics 

resolves the deep phylogeny of seed plants and indicates partial convergent 

or homoplastic evolution between Gnetales and angiosperms. In: Dryad 

Digital Repository. 

Ran JH, Shen TT, Wang MM, Wang XQ. 2018b. Phylogenomics resolves the deep 

phylogeny of seed plants and indicates partial convergent or homoplastic 

evolution between Gnetales and angiosperms. Proc Biol Sci 285:20181012. 

Rannala B, Yang Z. 1996. Probability distribution of molecular evolutionary trees: 

A new method of phylogenetic inference. J. Mol. Evol. 43:304 -311. 

Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, Han K, 

Harshman J, Huddleston CJ, Kingston S, et al. 2017a. Data from: Why do 

phylogenomic data sets yield conflicting trees? Data type influences the 

avian tree of life more than taxon sampling. In: Dryad Digital Repository.  

Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, Han KL, 

Harshman J, Huddleston CJ, Kingston S, et al. 2017b. Why Do 

Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the 

Avian Tree of Life more than Taxon Sampling. Syst. Biol. 66:857 -879. 

Richart CH, Hayashi CY, Hedin M. 2016a. Data from: Phylogenomic analyses 

resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, 

Opiliones) despite high levels of gene tree conflict and unequal minority 

resolution frequencies. In: Dryad.  

Richart CH, Hayashi CY, Hedin M. 2016b. Phylogenomic analyses resolve an 

ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) 

despite high levels of gene tree conflict and unequal minority resolution 

frequencies. Mol Phylogenet Evol 95:171-182. 

Rightmyer MG, Griswold T, Brady SG. 2013a. Data from: Phylogeny and 

systematics of the bee genus Osmia (Hymenoptera: Megachilidae) with 



Chapter 2 

 

119 

 

emphasis on North American Melanosmia: subgenera, synonymies, and 

nesting biology revisited. In: Dryad Data Repository.  

Rightmyer MG, Griswold T, Brady SG. 2013b. Phylogeny and systematics of the 

bee genus Osmia (Hymenoptera: Megachilidae) with emphasis on North 

American Melanosmia: subgenera, synonymies and nesting biology 

revisited. Syst. Entomol. 38:561-576. 

Roberts D, Yang Z. 1995. On the use of nucleic acid sequences to infer early 

branchings in the tree of life. Mol. Biol. Evol. 12:451-458. 

Robinson DF, Foulds LR. 1981. Comparison of Phylogenetic Trees. Math. Biosci. 

53:131-147. 

Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P, Cant rill DJ, Bayly MJ, 

Bromham L, Brown GK, Carpenter RJ, et al. 2012. Testing the impact of 

calibration on molecular divergence times using a fossil -rich group: the case 

of Nothofagus (Fagales). Syst. Biol. 61:289-313. 

Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, 

Bromham L, Brown GK, Carpenter RJ, et al. 2011. Data from: Testing the 

impact of calibration on molecular divergence times using a fossil -rich 

group: the case of Nothofagus (Fagales). In: Dryad Data Repository.  

Seago AE, Giorgi JA, Li J, Ślipiński A. 2011a. Data from: Phylogeny, 

classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) 

based on simultaneous analysis of molecular and morphological data. In: 

Dryad Data Repository. 

Seago AE, Giorgi JA, Li J,  Ślipiński A. 2011b. Phylogeny, classification and 

evolution of ladybird beetles (Coleoptera: Coccinellidae) based on 

simultaneous analysis of molecular and morphological data. Mol. Phylogen. 

Evol. 60:137-151. 

Sharanowski BJ, Dowling APG, Sharkey MJ. 2011a. Data from: Molecular 

phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea) based on 

multiple nuclear genes and implications for classification. In: Dryad Data 

Repository. 

Sharanowski BJ, Dowling APG, Sharkey MJ. 2011b. Molecular phylogenetics of 

Braconidae (Hymenoptera: Ichneumonoidea), based on multiple nuclear 

genes, and implications for classification. Syst. Entomol. 36:549 -572. 



Chapter 2 

 

120 

 

Shen X-X. 2018. Data from: Tempo and mode of genome evolution in the budding 

yeast subphylum. In: Figshare.  

Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, 

Wisecaver JH, Wang M, Doering DT, et al. 2018. Tempo and Mode of 

Genome Evolution in the Budding Yeast Subphylum. Cell 175:1533 -1545 

e1520. 

Siler C, Brown RM, Oliveros CH, Santanen A. 2013. Data f rom: Multilocus 

phylogeny reveals unexpected diversification patterns in Asian Wolf Snakes 

(genus Lycodon). In: Dryad Data Repository.  

Siler CD, Oliveros CH, Santanen A, Brown RM. 2013. Multilocus phylogeny 

reveals unexpected diversification patterns in As ian wolf snakes (genus 

Lycodon). Zool. Scr. 42:262-277. 

Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. 2014a. Data from: 

Target capture and massively parallel sequencing of ultraconserved elements 

for comparative studies at shallow evolutionary time scales. In: Dryad 

Digital Repository. 

Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. 2014b. Target 

capture and massively parallel sequencing of ultraconserved elements for 

comparative studies at shallow evolutionary time scales. Syst. Bio l. 63:83-

95. 

Song N, Lin A, Zhao X. 2018. Insight into higher-level phylogeny of Neuropterida: 

Evidence from secondary structures of mitochondrial rRNA genes and 

mitogenomic data. PLoS One 13:e0191826.  

Stadler T. 2013. How can we improve accuracy of macroevolutionary rate 

estimates? Syst. Biol. 62:321-329. 

Stadler T. 2011. Simulating Trees with a Fixed Number of Extant Species. Syst. 

Biol. 60:676-684. 

Steel MA, Penny D. 1993. Distributions of Tree Comparison Metrics - Some New 

Results. Syst. Biol. 42:126-141. 

Swofford DL, Olsen GJ, Waddell PJ, Hillis DM. 1996. Phylogenetic Inference. In. 

Molecular systematics: Sunderland, Mass.: Sinauer Associates. p. 407 -514. 

Tamura K, Kumar S. 2002. Evolutionary distance estimation under heterogeneous 

substitution pattern among lineages. Mol. Biol. Evol. 19:1727-1736. 



Chapter 2 

 

121 

 

Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in 

the control region of mitochondrial DNA in humans and chimpanzees. Mol. 

Biol. Evol. 10:512-526. 

Tavaré S. 1986. Some probabilistic and statistical probles in the analysis of DNA 

sequences. Lectures on Mathematics in the Life Sciences 17.  

Nguyen MAT, Gesell T, von Haeseler A. 2012. ImOSM: intermittent evolution and 

robustness of phylogenetic methods. Mol. Biol. Evol. 29:663-673. 

Tolley KA, Townsend TM, Vences M. 2013a. Data from: Large -scale phylogeny 

of chameleons suggests African origins and Eocene diversification. In: 

Dryad Data Repository. 

Tolley KA, Townsend TM, Vences M. 2013b. Large-scale phylogeny of 

chameleons suggests African origins and Eocene diversification. Proc Biol 

Sci 280:20130184. 

Unmack PJ, Allen GR, Johnson JB. 2013a. Data from: Phylogeny and biogeography 

of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. In: 

Dryad Data Repository. 

Unmack PJ, Allen GR, Johnson JB. 2013b. Phylogeny and biogeography of 

rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Mol 

Phylogenet Evol 67:15-27. 

Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, 

Szöllősi GJ, Szarkándi JG, Papp V, Albert L, et al. 2019a. Data from: 

Megaphylogeny resolves global patterns of mushroom evolution. In: Dryad.  

Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, 

Szöllősi GJ, Szarkándi JG, Papp V, Albert L, et al. 2019b. Megaphylogeny 

resolves global patterns of mushroom evolution. Nat Ecol Evol 3:668 -678. 

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, 

Burovski E, Peterson P, Weckesser W, Bright J, et al. 2020. SciPy 1.0: 

fundamental algorithms for scientific computing in Python. Nat. Methods 

17:261-272. 

von Haeseler A, Janke A, Pääbo S. 1993. Molecular phylogenetics. Verhandlungen 

der Deutschen Zoologischen Gesellschaft= Proceedings of the German 

Zoological Society 86:119-129. 

Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS, Ferry LA, Kuhn KL, 

Near TJ. 2012. Data from: The evolution of pharyngognathy: a phylogenetic 



Chapter 2 

 

122 

 

and functional appraisal of the pharyngeal jaw key innovation in labroid 

fishes and beyond. In: Dryad Data Repository.  

Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS, Ferry LA, Kuhn KL, 

Near TJ, Eytan RI. 2012. The evolution of pharyngognathy: a phylogenetic 

and functional appraisal of the pharyngeal jaw key innovation in labroid 

fishes and beyond. Syst. Biol. 61:1001-1027. 

Walt Svd, Colbert SC, Varoquaux G. 2011. The NumPy Array: A Structure for 

Efficient Numerical Computation. Computing in Science & Engineering 

13:22-30. 

Weiss G, von Haeseler A. 2003. Testing Substitution Models Within a Phylogenetic 

Tree. Mol. Biol. Evol. 20:572-578. 

Welch BL. 1947. The generalization of ‘STUDENT'S’problem when several 

different population varlances are involved. Biometrika 34:28 -35. 

Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz 

LL, Halanych KM. 2017a. Author Correction: Ctenophore relationships and 

their placement as the sister group to all other animals. Nat Ecol Evol 

1:1783. 

Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz 

LL, Halanych KM. 2017b. Data from: Ctenophora Phylogeny Datasets and 

Core Orthologs. In: Figshare. 

Wood HM, Matzke NJ, Gillespie RG, Griswold CE. 2012. Data from: Treating 

fossils as terminal taxa in divergence time estimation reveals ancient 

vicariance patterns in the palpimanoid spiders. In: Dryad Data Repository.  

Wood HM, Matzke NJ, Gillespie RG, Griswold CE. 2013. Treating fossils as 

terminal taxa in divergence time estimation reveals ancient vicariance 

patterns in the palpimanoid spiders. Syst. Biol. 62:264-284. 

Worobey M, Han G, Rambaut A. 2014a. Data from: A synchronized global swe ep 

of the internal genes of modern avian influenza virus. In: Dryad Data 

Repository. 

Worobey M, Han GZ, Rambaut A. 2014b. A synchronized global sweep of the 

internal genes of modern avian influenza virus. Nature 508:254 -257. 

Wu S, Edwards S, Liu L. 2019. Data from: Genome-scale DNA sequence data and 

the evolutionary history of placental mammals. In: Figshare.  



Chapter 2 

 

123 

 

Wu S, Edwards S, Liu L. 2018. Genome-scale DNA sequence data and the 

evolutionary history of placental mammals. Data Brief 18:1972 -1975. 

Yang Z. 2006. Computational Molecular Evolution. Oxford, UNITED KINGDOM: 

Oxford University Press USA - OSO. 

Yang Z. 1994. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 

39:105-111. 

Yang Z. 1995. A space-time process model for the evolution of DNA sequences. 

Genetics 139:993. 

Zou L, Susko E, Field C, Roger AJ. 2012. Fitting nonstationary general -time-

reversible models to obtain edge-lengths and frequencies for the Barry–

Hartigan model. Syst. Biol. 61:927-940. 

 

  



Chapter 2 

 

124 

 

Appendix 

TABLE A.1. Number of Taxa, Number of Sites, Type, Clade, and Study Reference for each 

dataset that has been used in this study 

 Dataset 
Study 

Reference 

Dataset 

Reference 
Type Clade Taxa Sites Partitions 

1 Anderson_2013 
(Anderson, et al. 

2014) 

(Anderson, et al. 

2013) 

DNA Loliginidae 145 3037 4 

2 Ballesteros_2019 
(Ballesteros and 

Sharma 2019a) 

(Ballesteros and 

Sharma 2019b) 

AA Chelicerata 53 1484206 3534 

3 Becker_2016 
(Becker, et al. 

2016) 

(Becker, et al. 

2017) 

AA Halobacteriacea 170 217 1 

4 Bergsten _2013 
(Bergsten, et al. 

2013a) 

(Bergsten, et al. 

2013b) 

DNA Dytiscidae 38 2111 8 

5 Borowiec_2015 
(Borowiec, et al. 

2015) 

(Borowiec, et al. 

2016) 

AA Metazoa 36 384981 1080 

6 Branstetter_2017 
(Branstetter, et 

al. 2017b) 

(Branstetter, et 

al. 2017a) 

DNA Aculeata 187 183747 807 

7 Broughton_2013 
(Broughton, et 

al. 2013b) 

(Broughton, et 

al. 2013a) 

DNA Osteichthyes 61 19997 61 

8 Brown_2012 
(Brown, et al. 

2012b) 

(Brown, et al. 

2012a) 

DNA Ptychozoon 41 1665 7 

9 Cannon_2016a 
(Cannon, et al. 

2016a) 

(Cannon, et al. 

2016b) 

AA Metazoa 78 44896 212 

10 Cannon_2016b 
(Cannon, et al. 

2016a) 

(Cannon, et al. 

2016b) 

DNA Metazoa 78 89792 424 

11 Chen_2015 
(Chen, et al. 

2015b) 

(Chen, et al. 

2015a) 

AA Gnathostomata 58 1806035 4682 

12 Cognato_2001 
(Cognato and 

Vogler 2001b) 

(Cognato and 

Vogler 2001a) 

DNA Coleoptera: 

Scolytinae 

44 1897 7 

13 Crawford_2012 
(Crawford, et al. 

2012b) 

(Crawford, et al. 

2012a) 

DNA Sauria 10 465241 1145 

14 Day_2013 
Day, et al. 

(2013a) 

(Day, et al. 

2013b) 

DNA Synodontis 152 3586 11 

15 Devitt_2013 

(Devitt, Devitt, 

et al. 2013) 

(Devitt, 

Cameron Devitt, 

et al. 2013) 

DNA Ensatina 

eschscholtzii 

klauberi 

69 823 4 

16 Dornburg_2012 

(Dornburg, et al. 

2012b) 

(Dornburg, et al. 

2012a) 

DNA Teleostei: 

Beryciformes: 

Holocentridae 

44 5919 21 

17 Faircloth_2013 
(Faircloth, et al. 

2013b) 

(Faircloth, et al. 

2013a) 

DNA Actinopterygii 27 149366 491 

18 Fong_2012 
(Fong, et al. 

2012b) 

(Fong, et al. 

2012a) 

DNA Vertebrata 110 25919 168 

19 Horn_2014 
(Horn, et al. 

2014b) 

(Horn, et al. 

2014a) 

DNA Euphorbia 197 11587 28 

20 Irisarri_2017 
(Irisarri, et al. 

2017b) 

(Irisarri, et al. 

2017a) 

AA Gnathostomata 100 1964439 4593 

21 Jarvis_2015 
(Jarvis, et al. 

2015) 

(Jarvis, et al. 

2014) 

AA Aves 52 4519041 8295 
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22 Kawahara_2013 
(Kawahara and 

Rubinoff 2013a) 

(Kawahara and 

Rubinoff 2013b) 

DNA Hyposmocoma 70 2238 9 

23 Lartillot_2012 
(Lartillot and 

Delsuc 2012b) 

(Lartillot and 

Delsuc 2012a) 

DNA Eutheria 78 15117 51 

24 Leache_2015 
(Leache, et al. 

2015) 

(Leaché, et al. 

2015) 

DNA Phrynosomatinae 11 358363 583 

25 Looney_2016 
(Looney, et al. 

2016) 

(Looney, et al. 

2015) 

DNA Russula 1171 3927 4 

26 McCormack_2013 
(McCormack, et 

al. 2013b) 

(McCormack, et 

al. 2013a) 

DNA Neoaves 33 539526 1541 

27 Meiklejohn_2016 
(Meiklejohn, et 

al. 2016a) 

(Meiklejohn, et 

al. 2016b) 

DNA Phasianidae 18 614159 1501 

28 Misof_2014 
(Misof, et al. 

2014b) 

(Misof, et al. 

2014a) 

AA Insecta 144 595033 2868 

29 Moyle_2016 
(Moyle, et al. 

2016b) 

(Moyle, et al. 

2016a) 

DNA Oscines 106 375172 515 

30 Murray_2013 
(Murray, et al. 

2013a) 

(Murray, et al. 

2013b) 

DNA Eucharitidae 237 3111 9 

31 Near_2013 
(Near, et al. 

2013b) 

(Near, et al. 

2013a) 

DNA Acanthomorpha 608 8577 30 

32 Nguyen_2016a 
(Nguyen, et al. 

2016b) 

(Nguyen, et al. 

2016a) 

AA Hymenoptera 17 688 1 

33 Nguyen_2016b 
(Nguyen, et al. 

2016b) 

(Nguyen, et al. 

2016a) 

AA Hymenoptera 31 680 1 

34 Nguyen_2016c 
(Nguyen, et al. 

2016b) 

(Nguyen, et al. 

2016a) 

AA Hymenoptera 25 811 1 

35 Nguyen_2016d 
(Nguyen, et al. 

2016b) 

(Nguyen, et al. 

2016a) 

AA Hymenoptera 17 704 1 

36 Nguyen_2016e 
(Nguyen, et al. 

2016b) 

(Nguyen, et al. 

2016a) 

AA Hymenoptera 17 385 1 

37 Nguyen_2016f 
(Nguyen, et al. 

2016b) 

(Nguyen, et al. 

2016a) 

AA Hymenoptera 17 583 1 

38 Oaks_2011 (Oaks 2011b) (Oaks 2011a) DNA Crocodylia 79 7282 50 

39 Prebus_2017 (Prebus 2017b) (Prebus 2017a) DNA Temnothorax 50 1561581 2098 

40 Pyron_2011 
(Pyron and 

Wiens 2011) 

(Pyron, et al. 

2011) 

DNA Amphibia 2872 12712 34 

41 Ran_2018a 
(Ran, et al. 

2018b) 

(Ran, et al. 

2018a) 

AA Spermatophyta 38 432014 1308 

42 Ran_2018b 
(Ran, et al. 

2018b) 

(Ran, et al. 

2018a) 

DNA Spermatophyta 38 1296042 3924 

43 Reddy_2017 
(Reddy, et al. 

2017b) 

(Reddy, et al. 

2017a) 

DNA Aves 235 137324 88 

44 Richart_2015 
(Richart, et al. 

2016b) 

(Richart, et al. 

2016a) 

DNA Ischyropsalidoidea 6 536124 2016 

45 Rightmyer_2013 
(Rightmyer, et 

al. 2013b) 

(Rightmyer, et 

al. 2013a) 

DNA Hymenoptera: 

Megachilidae 

94 3692 25 

46 Sauquet_2011 
(Sauquet, et al. 

2012) 

(Sauquet, et al. 

2011) 

DNA Nothofagus 51 5444 10 

47 Seago_2011 
(Seago, et al. 

2011b) 

(Seago, et al. 

2011a) 

DNA Coccinellidae 97 2253 7 

48 Sharanowski_2011 
(Sharanowski, et 

al. 2011b) 

(Sharanowski, et 

al. 2011a) 

DNA Braconidae 139 3982 11 

49 Shen_2018 
(Shen, et al. 

2018) 

(Shen 2018) AA Saccharomycotina 343 1162805 2407 
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50 Siler_2013 
(Siler, Oliveros, 

et al. 2013) 

(Siler, Brown, et 

al. 2013) 

DNA Lycodon 61 2697 7 

51 Smith_2014 
(Smith, et al. 

2014b) 

(Smith, et al. 

2014a) 

DNA Xenops minutus 8 825804 1366 

52 Tolley_2013 
(Tolley, et al. 

2013b) 

(Tolley, et al. 

2013a) 

DNA Chamaeleonidae 203 5054 16 

53 Unmack_2013 
(Unmack, et al. 

2013b) 

(Unmack, et al. 

2013a) 

DNA Melanotaeniidae 139 6827 25 

54 Varga_2019 
(Varga, et al. 

2019b) 

(Varga, et al. 

2019a) 

DNA Basidiomycota 5285 5737 3 

55 Wainwright_2012 
(Wainwright, et 

al. 2012a) 

(Wainwright, et 

al. 2012b) 

DNA Acanthomorpha 188 8439 30 

56 Whelan_2017 
(Whelan, et al. 

2017a) 

(Whelan, et al. 

2017b) 

AA Metazoa 76 49388 127 

57 Wood_2012 
(Wood, et al. 

2013) 

(Wood, et al. 

2012) 

DNA Archaeidae 37 5185 8 

58 Worobey_2014a 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 146 1716 3 

59 Worobey_2014b 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 327 759 3 

60 Worobey_2014c 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 92 1416 3 

61 Worobey_2014d 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 355 1497 3 

62 Worobey_2014e 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 340 699 3 

63 Worobey_2014f 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 332 2151 3 

64 Worobey_2014g 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 326 2274 3 

65 Worobey_2014h 
(Worobey, et al. 

2014b) 

(Worobey, et al. 

2014a) 

DNA Influenzavirus A 351 2280 3 

66 Wu_2018a (Wu, et al. 2018) (Wu, et al. 2019) AA mammalia 90 3050199 5162 

67 Wu_2018b (Wu, et al. 2018) (Wu, et al. 2019) DNA mammalia 90 9150597 15486 
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TABLE A.2. The probability distributions and their probability density function that we used 

for the Kolmogorov-Smirnov test.  

distribution PDF notes 

Alpha 
1

𝑥2Φ(𝛼)√2𝜋
𝑒−

1
2

(𝛼−
1
𝑥

)2

 
Φ is the normal CDF 

α is the shape parameter 

Beta 
Γ(𝛼 + 𝛽)𝑥𝛼−1(1 − 𝑥)𝛽−1

Γ(𝛼)Γ(𝛽)
 

α and β are the shape parameters 

Γ is the gamma function 

Bradford 
𝛼

log (1 + 𝛼)(1 + 𝛼𝑥)
 α is the shape parameter 

Chi 
1

2𝛼/2−1Γ(
𝛼
2)

𝑥𝛼−1𝑒−
𝑥2

2  α is the degrees of freedom 

Γ is the gamma function 

Chi-squared 
1

2𝛼/2Γ(
𝛼
2)

𝑥𝛼/2−1𝑒−
𝑥
2 α is the degrees of freedom 

Γ is the gamma function 

Double gamma 
𝛼

2Γ(𝛼)
|𝑥|𝛼−1𝑒−|𝑥| 

α is the shape parameter 

Γ is the gamma function 

Double Weibull 
𝛼

2
|𝑥|𝛼−1𝑒−|𝑥|𝛼

 α is the shape parameter 

Exponential normal 1

2𝛼
𝑒

1
2𝛼2−

𝑥
𝛼𝑒𝑟𝑓𝑐(−

𝑥 −
1
𝛼

√2
) α is the shape parameter 

Exponential Weibull 𝛼𝛽(1 − 𝑒−𝑥𝛽
)𝛼−1𝑒−𝑥𝛽

𝑥𝛽−1 α and β are the shape parameters 

Exponential power 𝛼𝑥𝛼−1𝑒1+𝑥𝛼−𝑒𝑥𝛼

 α is the shape parameter 

Gamma   

Generalized logistic 𝛼
𝑒−𝑥

(1 + 𝑒−𝑥)𝛼+1
 α is the shape parameter 

Generalized Pareto (1 + 𝛼𝑥)−1−
1
𝛼 α is the shape parameter 

Generalized normal 
𝛼

2Γ(1 𝛼⁄ )
𝑒−|𝑥|𝛼

 
α is the shape parameter 

Γ is the gamma function 

Generalized 

exponential 

(𝛼 + 𝛽(1

− 𝑒𝛾𝑥))𝑒
−𝛼𝑥−𝛽𝑥+

𝛽
𝛾

(1−𝑒−𝛾𝑥)
 

α, β, γ are the shape parameters 

Generalized gamma 
|𝛽|𝑥𝛼𝛽−1

Γ(𝛼)
𝑒−𝑥𝛽

 α and β are the shape parameters 

Half-logistic 
2𝑒−𝑥

(1 + 𝑒−𝑥)2
  

Half-normal √2/𝜋𝑒
−𝑥2

2   

Upped half of the 

generalized normal 

𝛼

Γ(1 𝛼⁄ )
𝑒−|𝑥|𝛼

 α is the shape parameter 

Inverse-gamma 
𝑥−𝛼−1

Γ(𝛼)
𝑒−

1
𝑥 α is the shape parameter 
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Inverse-normal 
1

√2𝜋𝑥3
𝑒

−
(𝑥−𝛼)2

2𝑥𝛼2  α is the shape parameter 

Inverse-Weibull 𝛼𝑥−𝛼−1𝑒−𝑥−𝛼
 α is the shape parameter 

Laplace 
1

2
𝑒−|𝑥|  

Log-gamma 
𝑒𝛼𝑥−𝑒𝑥

Γ(𝛼)
 

α is the shape parameter 

Γ is the gamma function 

Logistic 
𝑒−𝑥

(1 + 𝑒−𝑥)2
  

Log-Laplace 

𝛼

2
𝑥𝛼−1       0 < 𝑥 < 1 

𝛼

2
𝑥−𝛼−1       𝑥 ≥ 1 

α is the shape parameter 

Log-normal 
1

𝛼𝑥√2𝜋
𝑒

−
(log 𝑥)2

2𝛼2  α is the shape parameter 

Maxwell √2/𝜋𝑥2𝑒
−𝑥2

2   

Normal 
1

√2𝜋
𝑒−

𝑥2

2   

Pareto 
𝛼

𝑥𝛼+1
 α is the shape parameter 

Power-law 𝛼𝑥𝛼−1 α is the shape parameter 

Power Log-normal 
𝛼

𝑥𝛽
𝜙(

log 𝑥

𝛽
)(Φ (−

log 𝑥

𝛽
))𝛼−1 

α and β are the shape parameters 

𝜙 is the normal PDF 

Φ is the normal CDF 

Power normal 𝛼𝜙(x)(Φ(−x))𝛼−1 

α is the shape parameter 

𝜙 is the normal PDF 

Φ is the normal CDF 

Uniform 1  

Weibull maximum 𝛼(−𝑥)𝛼−1𝑒−(−𝑥)𝛼
 α is the shape parameter 

Weibull minimum 𝛼𝑥𝛼−1𝑒−𝑥𝛼
 α is the shape parameter 

Gamma function: Γ(𝛼) =  ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥 = (𝛼 − 1)!
∞

0
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TABLE A.3. False-negative rates for each of the MaxSym tests. The false-negative rates 

present the proportion of datasets that passed each MaxSym test when the parameter value is 

less than one.  

   m=20 m=40 m=60 m=80 m=100 Mean ± SE 

M
ax

S
y

m
T

es
t 

n=100 

ρ 94.0 92.0 94.0 93.0 85.0 91.6 

ν 96.0 96.4 96.0 96.1 96.1 96.1 

ω 95.9 96.4 96.2 96.2 96.1 96.2 

ν + ω 95.9 96.4 95.9 96 95.9 96.0 

Δ 95.0 91.9 93.6 91.1 92.5 92.8 

n=1,000 

ρ 71.0 49.0 49.0 37.0 43.0 49.8 

ν 85.5 83.9 85.7 83.4 82.5 84.2 

ω 86.4 84.9 85.9 83.2 82.1 84.5 

ν + ω 85.6 84.1 85.1 82.5 81.2 83.7 

Δ 62.9 62.2 64.3 64.4 70.2 64.8 

n=10,000 

ρ 19.0 12.0 6.0 2.0 2.0 83.2 

ν 50.3 46 41.9 43.4 43.6 45.0 

ω 49.4 45.2 40.8 42.5 42.1 44.0 

ν + ω 47.9 43.2 38.3 40.1 40.4 42.0 

Δ 31.2 37.6 44.8 48.5 51.0 42.6 

Mean ± SE 

ρ 61.3 51.0 49. 7 44.0 43.3 49.9±9.3 

ν 77.3 75.4 74.5 74.3 74.1 75.1±5.8 

ω 77.2 75.5 74.3 74.0 73.4 74.9±6.0 

ν + ω 76.5 74.6 73.1 72.9 72.5 73.9±6.2 

Δ 63.0 63.9 67.6 68.0 71.2 66.7±5.6 

M
ax

S
y

m
T

es
t m

ar
 

n=100 

ρ 96.0 93.0 89.0 89.0 89.0 91.2 

ν 94.4 95.4 95.2 94.5 95.3 95.0 

ω 93.7 95.4 95.6 94.5 95.4 94.9 

ν + ω 94.0 95.7 95.2 94.3 95.1 94.9 

Δ 92.4 88.7 91.3 90.4 91.6 90.9 

n=1,000 

ρ 62.0 51.0 47.0 40.0 46.0 49.2 

ν 86.8 85.9 87.5 87.1 87.4 86.9 

ω 87.9 86.6 88.4 87.4 87.8 87.6 

ν + ω 87.0 85.6 87.5 86.7 87.1 86.8 

Δ 60.4 62.2 64.2 64.2 69.5 64.1 

n=10,000 

ρ 20.0 19.0 8.0 4.0 3.0 10.8 

ν 58.2 60.5 62.0 63.6 63.4 61.5 

ω 60.0 62.7 63.7 65.5 65.6 63.5 

ν + ω 57.0 59.5 60.6 62.4 62.5 60.4 

Δ 31.9 37.8 44.9 48.2 51.2 42.8 
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Mean ± SE 

ρ 59.3 54.3 48.0 44.3 46.0 50.4±8.9 

ν 79.8 80.6 81.6 81.7 82.0 81.1±3.8 

ω 80.5 81.6 82.6 82.5 82.9 82.0±3.6 

ν + ω 79.3 80.3 81.1 81.1 81.6 80.7±3.9 

Δ 61.6 62.9 66.8 67.6 70.8 65.9±5.4 

M
ax

S
y

m
T

es
t i

n
t 

n=100 

ρ 95.0 94.0 97.0 99.0 93.0 95.6 

ν 95.9 95.6 96.0 96.3 95.5 95.9 

ω 95.9 96.0 95.8 96.1 95.4 95.8 

ν + ω 95.8 95.8 95.9 96.1 95.2 95.8 

Δ 97.0 96.4 96.6 94.2 95.2 95.9 

n=1,000 

ρ 89.0 87.0 92.0 88.0 87.0 88.6 

ν 90.8 91.0 90.2 88.5 87.7 89.6 

ω 91.0 90.9 90.0 88.0 87.2 89.4 

ν + ω 90.7 91.1 89.7 87.8 87.1 89.3 

Δ 91.8 89.9 91.8 91.8 92.4 91.5 

n=10,000 

ρ 58.0 55.0 52.0 51.0 52.0 53.6 

ν 68.3 62.1 57.4 56.0 58.3 60.4 

ω 65.0 58.2 54.6 53.1 54.5 57.1 

ν + ω 65.6 58.4 53.8 52.5 54.8 57.0 

Δ 72.8 69.1 73.3 75.7 79.3 74.0 

Mean ± SE 

ρ 80.7 78.7 80.3 79.3 77.3 79.3±4.9 

ν 85.0 82.9 81.2 80.3 80.5 82.0±4.2 

ω 84.0 81.7 80.1 79.1 79.0 80.8±4.6 

ν + ω 84.0 81.8 79.8 78.8 79.0 80.7±4.6 

Δ 87.2 85.1 87.2 87.2 89.0 87.2±2.6 
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TABLE A.4. False-positive rates for each of the MaxSym tests. The false-positive rates 

present the proportion of datasets that failed each MaxSym test when the parameter value 

equals to one. 

   m=20 m=40 m=60 m=80 m=100 Mean ± SE 

M
ax

S
y

m
T

es
t 

n=100 

ρ 0.0 0.0 0.0 0.0 20.0 4.0 

ν 3.6 3.6 0.9 1.8 2.7 2.5 

ω 2.7 4.5 2.7 2.7 2.7 3.1 

ν + ω 0.0 10.0 0.0 0.0 10.0 4.0 

n=1,000 

ρ 10.0 0.0 10.0 0.0 0.0 4.0 

ν 5.5 6.4 7.3 9.1 11.8 8.0 

ω 14.5 16.4 9.1 7.3 8.2 11.1 

ν + ω 10.0 0.0 20.0 0.0 10.0 8.0 

n=10,000 

ρ 10.0 0.0 0.0 0.0 10.0 4.0 

ν 32.7 31.8 31.8 30.0 37.3 32.7 

ω 23.6 23.6 20.9 21.8 21.8 22.3 

ν + ω 0.0 0.0 10.0 0.0 0.0 2.0 

Mean ± SE 

ρ 6. 7 0.0 3.3 0.0 10.0 4.0±1.6 

ν 13.9 13.9 13.3 13.6 17.3 14.4±3.6 

ω 13.6 14.8 10.9 10.6 10.9 12.2±2.2 

ν + ω 3.3 3.3 10.0 0.0 6.7 4.7±0.9 

M
ax

S
y

m
T

es
t m

ar
 

n=100 

ρ 0.0 0.0 10.0 0.0 10.0 4.0 

ν 8.2 8.2 0.9 3.6 1.8 4.5 

ω 0.9 8.2 5.5 3.6 2.7 4.2 

ν + ω 0.0 10.0 10.0 10.0 0.0 6.0 

n=1,000 

ρ 0.0 0.0 20.0 0.0 0.0 4.0 

ν 2.7 2.7 3.6 6.4 6.4 4.4 

ω 13.6 10.0 12.7 9.1 10.9 11.3 

ν + ω 0.0 0.0 20.0 10.0 20.0 10.0 

n=10,000 

ρ 0.0 10.0 0.0 0.0 0.0 2.0 

ν 10.0 4.5 4.5 3.6 2.7 5.1 

ω 28.2 26.4 21.8 21.8 25.5 24.7 

ν + ω 10.0 0.0 0.0 0.0 0.0 2.0 

Mean ± SE 

ρ 0.0 3.3 10.0 0.0 3.3 3.3±1.6 

ν 7.0 5.1 3.0 4.5 3.6 4.7±0.7 

ω 14.2 14.9 13.3 11.5 13.0 13.4±2.4 

ν + ω 3.3 3.3 10.0 6.7 6.7 6.0±1.9 

M
ax

S
y

m
T

es
t i

n

t n=100 

ρ 0.0 10.0 20.0 0.0 20.0 10.0 

ν 2.7 1.8 4.5 5.5 3.6 3.6 

ω 2.7 5.5 2.7 3.6 2.7 3.4 
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ν + ω 0.0 0.0 0.0 20.0 10.0 6.0 

n=1,000 

ρ 0.0 10.0 0.0 10.0 0.0 4.0 

ν 6.4 10.0 6.4 9.1 11.8 8.7 

ω 8.2 9.1 3.6 4.5 6.4 6.4 

ν + ω 10.0 0.0 0.0 0.0 10.0 4.0 

n=10,000 

ρ 0.0 0.0 0.0 10.0 10.0 4.0 

ν 37.3 39.1 34.5 37.3 43.6 38.4 

ω 4.5 0.9 6.4 8.2 6.4 5.3 

ν + ω 0.0 0.0 10.0 0.0 0.0 2.0 

Mean ± SE 

ρ 0.0 6. 7 6. 7 6. 7 10.0 6.0±1.9 

ν 15.5 17.0 15.1 17.3 19. 7 16.9±4.1 

ω 5.1 5.2 4.2 5.4 5.2 5.0±0.6 

ν + ω 3.3 0.0 3.3 6.7 6.7 4.0±1.6 
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TABLE A.5. False-negative rates for Chi-square test. The false-negative rates present the 

proportion of sequences that passed the chi-square test when the parameter value is less than 

one in the inheritance scheme simulations, and the difference between the two matrices is more 

than zero in the two-matrix scheme simulations. 

 

   m=20 m=40 m=60 m=80 m=100 Mean ± SE 

C
h

i-
sq

u
ar

e 
T

es
t 

n=100 

ρ 97.0 88.0 81.0 61.0 63.0 78.0 

ν 98.4 95.1 89.4 86.4 80.4 89.9 

ω 98.5 95.3 89.6 87.1 80.9 90.3 

ν + ω 98.5 95.2 89.3 86.3 80.1 89.9 

Δ 92.7 82.4 76.1 68.9 62.8 76.6 

n=1,000 

ρ 62.0 32.0 14.0 12.0 6.0 25.2 

ν 84.1 72.7 62.9 59 52.4 66.2 

ω 85.6 75.1 65.7 61.7 55.3 68.7 

ν + ω 84.5 72.6 62.6 58.7 52.1 66.1 

Δ 58.7 45.6 40.0 34.9 33.7 42.6 

n=10,000 

ρ 16.0 5.0 0.0 1.0 0.0 4.4 

ν 47.6 37.2 29.7 24.9 21.9 32.3 

ω 51.7 41.7 34.9 30.9 28.6 37.6 

ν + ω 47.0 36.1 29.1 24.9 22.3 31.9 

Δ 21.1 11.5 10.7 9.5 8.5 12.3 

Mean ± SE 

ρ 58.3 41. 7 31. 7 24. 7 23.0 35.9±9.2 

ν 76.7 68.3 60. 7 56.8 51.6 62.8±6.8 

ω 78.6 70.7 63.4 59.9 54.9 65.5±6.2 

ν + ω 76.7 68.0 60.3 56.6 51.5 62.6±6.8 

Δ 57.5 46.5 42.3 37.8 35.0 43.8±7.4 
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TABLE A.6.  False-positive rates for Chi2Cons test. The false-positive rates present the 

proportion of sequences that failed the chi-square test when the parameter value equals to one. 

   m=20 m=40 m=60 m=80 m=100 Mean ± SE 

C
h

i-
sq

u
ar

e 
T

es
t 

n=100 

ρ 0.0 0.0 0.0 0.0 10.0 2.0 

ν 0.9 5.5 7.3 6.4 10.0 6.0 

ω 2.7 7.3 9.1 13.6 15.5 9.6 

ν + ω 0.0 20.0 10.0 20.0 0.0 10.0 

n=1,000 

ρ 0.0 0.0 10.0 20.0 30.0 12.0 

ν 2.7 0.9 2.7 8.2 13.6 5.6 

ω 17.3 24.5 30.9 35.5 42.7 30.2 

ν + ω 0.0 10.0 0.0 10.0 20.0 8.0 

n=10,000 

ρ 0.0 0.0 0.0 0.0 20.0 4.0 

ν 0.9 2.7 6.4 8.2 9.1 5.5 

ω 41.8 47.3 58.2 68.2 76.4 58.4 

ν + ω 0.0 0.0 0.0 0.0 20.0 4.0 

Mean ± SE 

ρ 0.0 0.0 3.3 6. 7 20.0 6.0 ± 2.5 

ν 1.5 3.0 5.5 7.6 10.9 5.7 ± 1.0 

ω 20.6 26.4 32.7 39.1 44.9 32.7 ± 5.9 

ν + ω 0.0 10.0 3.3 10.0 13.3 6.5 ± 2.0 
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TABLE A.7. False-negative rates for WH test. The false-negative rates present the 

proportion of datasets that passed the WH test when the parameter value is less than one. 

   m=20 m=40 m=60 m=80 m=100 Mean ± SE 

W
H

 T
es

t 

n=100 

ρ 100.0 100.0 100.0 100.0 NaN 100.0 

ν 79.4 84.0 66.7 88.9 100.0 83.8 

ω 77.4 83.3 66.7 88.9 87.5 80.8 

ν + 

ω 

74.1 82.6 61.5 87.5 100.0 81.1 

  Δ 99.9 99.9 99.7 99.7 99.8 99.8 

 

n=1,000 

ρ 8.7 1.9 2.0 0.0 0.0 2.5 

 ν 16.9 13.0 10.7 10.3 10.7 12.3 

 ω 8.2 2.3 0.7 0.7 0.4 2.5 

 ν + 

ω 

8.0 2.3 0.6 0.8 0.3 2.4 

 Δ 62.1 60.6 60.3 61.9 65.8 62.1 

 
n=10,000 

ρ 1.5 0.0 0.0 0.0 0.0 0.3 

 ν 8.7 7.7 7.5 8.8 8.0 8.1 

  ω 0.2 0.0 0.0 0.0 0.0 0.0 

  ν + 

ω 

0.2 0.0 0.0 0.0 0.0 0.0 

  Δ 37.4 39.1 40.8 40.1 39.5 39.4 

 

Mean ± 

SE 

ρ 36.7 34.0 34.0 33.3 0.0 29.5±12.4 

 ν 35.0 34.9 28.3 36.0 39.6 34.8±9.4 

 ω 27.4 28.3 20.7 29.4 33.4 27.6±10.1 

 ν + 

ω 

27.4 28.3 20.7 29.4 33.4 27.9±10.3 

 Δ 66.5 66.5 66.9 67.2 68.4 67.1±6.7 
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TABLE A.8.  False-positive rates for WH test. The false-positive rates present the 

proportion of datasets that failed the WH test when the parameter value equals to one. 

   m=20 m=40 m=60 m=80 m=100 Mean ± SE 

W H
 

T e s t n=100 ρ NaN NaN NaN NaN 0.0 0.0 

  ν 0.0 0.0 0.0 0.0 50 10.0 

  ω 0.0 0.0 0.0 0.0 0.0 0.0 

  ν + 

ω 

NaN 0.0 NaN NaN NaN 0.0 

 n=1,000 ρ 12.5 0.0 0.0 0.0 0.0 2.5 

  ν 79.5 87.8 90.6 89.7 91.8 87.9 

  ω 2.3 2.2 2.3 7.0 1.1 3.0 

  ν + 

ω 

0.0 0.0 0.0 0.0 0.0 0.0 

 n=10,000 ρ 20.0 0.0 0.0 10.0 0.0 6.0 

  ν 93.6 90.9 90.9 91.8 90.9 91.6 

  ω 13.7 21.2 21.6 14.2 19.2 18.0 

  ν + 

ω 

30.0 0.0 0.0 10.0 0.0 8.0 

 
Mean ± 

SE 

ρ 16.3 0.0 0.0 5.0 0.0 3.9 ± 2.1 

  ν 57.7 59.6 60.5 60.5 77.6 63.2 ± 10.5 

  ω 5.3 7.8 8.0 7.1 6.8 6.8 ± 2.2 

  ν + 

ω 

15.0 0.0 0.0 5.0 0.0 3.6 ± 2.8 
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FIGURE A.1. distribution of the nucleotide frequencies. The empirical nucleotide 

frequencies for each single partition were estimated using IQ-TREE (orange) and the Fitted 

distribution (blue) were sampled from the best-fit distribution with the same number of 

partitions. 
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FIGURE A.2. distribution of the GTR parameters. The best-fit substitution rate matrix for 

each single partition was estimated using IQ-TREE (orange) and the Fitted distribution (blue) 

were sampled from the best-fit distribution with the same number of partitions. 
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FIGURE A.3. The distribution of branch lengths and proportion of invariant sites 

 

 

 

FIGURE A.4. Normalized Path-difference and Quartet metrics between the estimated 

tree topology and the original tree topology as a function of the inheritance weight (ν, ω 

,ρ) and the distance between the two matrices. The small plots show the proportion of 

datasets in which the distance between the estimated topology and the original topology equals 

to zero as a function of the inheritance weight and the distance between the two matrices. 
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FIGURE A.5. The Robinson-Foulds metric as a function of the inheritance weight for 

each number of taxa (m) and number of site (n). 

 

 

 

FIGURE A.6. The Quartet distance as a function of the inheritance weight for each 

number of taxa (m) and number of site (n). 
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FIGURE A.7. The Path-Difference distance as a function of the inheritance weight for 

each number of taxa (m) and number of site (n). 

 

 

 

 

FIGURE A.8. The Robinson-Foulds metric as a function of the maximum Euclidian 

distance between the two matrices for each number of taxa (m) and number of site (n). 
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FIGURE A.9. The Quartet distance as a function of the maximum Euclidian distance 

between the two matrices for each number of taxa (m) and number of site (n). 

 

 

 

FIGURE A.10. The Path-Difference distance as a function of the maximum Euclidian 

distance between the two matrices for each number of taxa (m) and number of site (n). 
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FIGURE A.11. The percentage of datasets that pass MaxSymTest as a function of the 

inheritance weight of the base frequencies (ν), the substitution model (ρ), the inheritance 

weight of the substitution rates (ω) for each number of taxa (m) and number of sites (n). 

 

 

 

FIGURE A.12. The percentage of datasets that pass MaxSymTestmar as a function of the 

inheritance weight of the base frequencies (ν), the substitution model (ρ), the inheritance 

weight of the substitution rates (ω) for each number of taxa (m) and number of sites (n). 
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FIGURE A.13. The percentage of datasets that pass MaxSymTestint as a function of the 

inheritance weight of the base frequencies (ν), the substitution model (ρ), the inheritance 

weight of the substitution rates (ω) for each number of taxa (m) and number of sites (n). 

 

 

 

FIGURE A.14. The percentage of datasets that pass MaxSymTest as a function of the 

maximum Euclidian distance between the two matrices for each number of taxa (m) and 

number of site (n). 
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FIGURE A.15. The percentage of datasets that pass MaxSymTestmar as a function of the 

maximum Euclidian distance between the two matrices for each number of taxa (m) and 

number of site (n). 

 

 

 

FIGURE A.16. The percentage of datasets that pass MaxSymTestint as a function of the 

maximum Euclidian distance between the two matrices for each number of taxa (m) and 

number of site (n). 
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FIGURE A.17. The percentage of sequences that fail the  𝑪𝒉𝒊𝑹𝒂𝒏𝒌
𝟐  test in each dataset as a 

function of the inheritance weight of the base frequencies (ν), the substitution model (ρ), 

the inheritance weight of the substitution rates (ω) for each number of taxa (m) and 

number of sites (n). 

 

 

 

FIGURE A.18. The percentage of sequences that fail the  𝑪𝒉𝒊𝑹𝒂𝒏𝒌
𝟐  test in each dataset as a 

function of the Euclidian distance between the two matrices for each number of taxa (m) 

and number of site (n). 
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FIGURE A.19. The percentage of datasets that pass the WH test as a function of the 

inheritance weight of the base frequencies (ν), the substitution model (ρ), the inheritance 

weight of the substitution rates (ω) for each number of taxa (m) and number of sites (n). 

 

 

 

FIGURE A.20. The percentage of sequences that fail the WH test in each dataset as a 

function of the Euclidian distance between the two matrices for each number of taxa (m) 

and number of site (n). 
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FIGURE A.21. Two-sample Kolmogorov-Smirnov test statistic as a function of the 

inheritance weight of the base frequencies (ν), the substitution model (ρ), the inheritance 

weight of the substitution rates (ω) for each number of taxa (m) and number of site (n). 

 

 

 

FIGURE A.22. Two-sample Kolmogorov-Smirnov test statistic as a function of the 

inheritance weight of the Euclidian distance between the two matrices for each number 

of taxa (m) and number of site (n).  
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Abstract 

It is widely accepted that different genes and loci evolve under different substitution processes. 

Yet, most phylogenetic analyses still use homogeneous-time-reversible substitution models to 

infer evolutionary relationships. Several non-homogeneous and non-stationary models of 

nucleotide and amino acid evolution have been developed, but they are not widely popular 

mainly due to their high computational requirements. Here, we introduce a simple new user-

friendly algorithm to find the best-fit non-homogeneous model in a Maximum Likelihood 

framework and apply that algorithm to three big empirical published datasets. Our results show 

that non-homogeneous models always outperform homogeneous models. In addition, we show 

that even a simple non-homogeneous model with only three matrices operating along the tree 

can significantly improve the goodness-of-fit in terms of AIC score. The algorithm is available 

in https://github.com/suhanaser/Non-Homogeneous-Model. 

Keywords: phylogenetic inference, nonhomogeneous model, systematic bias, phylogeny 
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Introduction 

It is widely accepted that most evolutionary processes operating along phylogenetic trees are 

neither stationary nor homogeneous. For example, simple distance-based approaches recently 

confirmed that this is the case across a wide variety of empirical phylogenetic datasets (Naser-

Khdour, et al. 2019). Nonetheless, the ease of using stationary, reversible and homogeneous 

(SRH) models of evolution, and their robustness for topology inference in simulated datasets 

(Yang 2006; Naser-Khdour, et al. 2021), combined with their computational tractability, make 

them the most popular models in phylogenetic inference (Swofford 2001; Drummond and 

Rambaut 2007; Guindon, et al. 2010; Ronquist, et al. 2012; Bazinet, et al. 2014; Bouckaert, et 

al. 2014; Stamatakis 2014; Nguyen, et al. 2015; Höhna, et al. 2016).   

The homogeneity assumption implies that the same evolutionary process operates along all the 

lineages in the phylogeny, in other words, it implies that one substitution matrix is used across 

the whole dataset. In order to relax this assumption, the evolutionary model should allow for 

different substitution processes to operate along the tree.  

A growing body of evidence shows that most empirical datasets are not homogeneous. Several 

non-homogeneous substitution models have been introduced in the literature (Yang and 

Roberts 1995; Galtier and Gouy 1998; Galtier, et al. 1999; Foster 2004; Jayaswal, et al. 2005; 

Blanquart and Lartillot 2006; Jayaswal, et al. 2007; Blanquart and Lartillot 2008; Dutheil and 

Boussau 2008; Jayaswal, Jermiin, et al. 2011; Dutheil, et al. 2012; Zou, et al. 2012; Groussin, 

et al. 2013; Jayaswal, et al. 2014) but they are rarely used in empirical studies. The vast majority 

of these nonhomogeneous models focus on fitting different substitution matrices to different 

pre-defined groups of branches on a phylogenetic tree, but this approach suffers from requiring 

the user to specify appropriate groups of branches a-priori. On the other hand, some approaches 

use algorithms to find optimal groupings of branches; such as Bio++ (Dutheil and Boussau 
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2008), BppML (Groussin, et al. 2013), and HAL-HAS (Jayaswal, et al. 2014); these software 

are rarely used, mainly because of their relatively long run time. Yet, these approaches remain 

computationally intractable for large datasets. Due to these limitations, these models are rarely 

applied in empirical phylogenetic studies.  Because of this, the extent and consequences of non-

homogeneity in phylogenetic inference remain relatively unknown. 

In this study, we use a greedy algorithm to examine how many Q matrices form the best fit for 

each dataset. Unlike other studies that focus on compositional heterogeneity across sites (e.g. 

Lartillot and Philippe 2004), our focus in this study is on compositional heterogeneity across 

lineages. Existing methods to ask this question (Dutheil and Boussau 2008; Groussin, et al. 

2013; Jayaswal, et al. 2014), were not computationally feasible to run on datasets of the size 

used in this study. Thus, we instead designed a new approach that leverages the recently-

released QMaker software. We introduce an approach to test for homogeneity among related 

clades based on the AIC score (Akaike 1974). This approach relies on first fitting independent 

standard stationary, reversible, and homogeneous (SRH) substitution models to pre-defined 

clades of taxa, and then using the AIC score to determine whether models with fewer Q 

matrices (where a single matrix is estimated from more than one pre-defined clade) are a better 

fit to the data. Applying this approach to our three empirical datasets reveals substantial 

evidence for non-homogeneity even among closely-related clades, but also shows that 

accounting for this non-homogeneity makes no appreciable difference to phylogenetic 

inference in this framework. 
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Material and Methods 

Empirical dataset selection and clade definition 

We used three publicly available empirical datasets of mammals, birds, and plants. These 

datasets were selected because of the high quality of their alignments, their size, and their 

taxonomic breadth.  All of these factors contribute to the accuracy, power, and generality of 

any test of the homogeneity assumption in phylogenetics. For each dataset, we selected as many 

monophyletic sub-clades as possible, providing that the monophyly of each sub-clade has been 

well supported and non-controversial in previous studies, received 100% bootstrap support in 

our analyses, and contained at least 3 taxa (the minimum required to estimate a Q matrix; 

further details in Appendix Figs A.1-5).  

a. The mammals’ dataset (Wu, et al. 2018, 2019) comprises data from 82 species and 

over 3 million amino acid sites. For the purpose of this study, we considered 54 taxa 

that form 10 different clades: – Apes (6 taxa), Old World monkeys (4 taxa), 

Hystricomorpha (4 taxa), Myomorpha (7 taxa), Yinpterochiroptera (5 taxa), 

Yangochiroptera (4 taxa), Cetacea (5 taxa), Artiodactyla (5 taxa), Carnivora (7 taxa) 

and Afrotheria (7 taxa).  

b. The birds’ dataset (Jarvis, et al. 2014; Jarvis, et al. 2015) comprises data from 48 

species and over 4 million amino acid sites. For the purpose of this study, we 

considered 32 taxa in 8 different clades – Galloanserae(3 taxa), Caprimulgiformes (3 

taxa), Columbimorphae (3 taxa), Pelecaniformes (4 taxa), Procellariiformes (3 taxa), 

Coraciiformes (6 taxa), Passeriformes (7 taxa) and Accipitriformes (3 taxa).  

c. The plants’ dataset (Ran, et al. 2018b, a) comprises data from 35 species and over 

400K amino acid sites. For the purpose of this study, we used all the 35 taxa grouped 
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into 5 clades – Angiosperms (13 taxa), Cycadales (3 taxa), Conifer II (13 taxa), 

Gnetales (3 taxa) and Pinaceae (3 taxa).  

For the mammals and the birds' datasets, we randomly subsample 10% of the sites to decrease 

the computational burden. 

 

Defining clades for each dataset 

In this study, we sought to test the null hypothesis that molecular evolution is homogeneous 

for each of the three datasets. That is, we ask whether the data are best fit by a single model of 

molecular evolution applied to all branches, as compared to having more than one model, with 

each applied to a subset of the branches in the tree.  

To do this, we first made the necessary assumption that each of the pre-defined clades 

mentioned in the previous section would have at most one Q matrix applied to it. Then for each 

dataset, we set “MaxQ” to be the number of clades in that dataset.  

Inferring the SRH model 

For each dataset, we first estimated a fully homogeneous model which assumes that all of the 

branches represented in every sub-clade evolved under the same process. To do this, we used 

IQ-TREE 2 (Minh, et al. 2020) and ModelFinder (Kalyaanamoorthy, et al. 2017) with the best-

fit fully partitioned model (Chernomor, et al. 2016) and edge-linked substitution rates 

(Duchene, et al. 2020). See commandline 1 in the Appendix. 

We then used QMaker (Minh, et al. 2021) to estimate the empirical Q matrix and stationary 

frequencies for the homogeneous model using commandline 2 (Appendix). 
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Inferring the non-homogeneous model with MaxQ different matrices 

For each dataset we then infer the best SRH model for each clade separately using 

commandline 3 (Appendix). 

We then use QMaker (Minh, et al. 2021) to estimate the empirical Q matrix and stationary 

frequencies vector for each clade using commandline 4 (Appendix). 

Next, we calculate the AIC score for the joint model that consists of all the clades’ matrices 

according to equation 1: 

1) 2 ∑ 𝑘𝑗 − 2 ∑ ln (𝐿)𝑗  

Where k is the number of free parameters and L is the maximum value of the likelihood function 

for each clade j. 

The greedy algorithm 

Given the high computational costs of inferring Q matrices, it was computationally infeasible 

to evaluate all groupings of clades, and thus every possible combination of clades into fewer 

than MaxQ matrices. Therefore, in order to search for the best model in the space between the 

fully homogeneous model with one matrix and the fully non-homogeneous model with MaxQ 

matrices, we use a greedy algorithm.  This algorithm starts with a model Q assigned to each 

clade (from the previous step) and iteratively merges the single pair of clades together which 

maximises the improvement in the AIC score. I.e. in the first step, we evaluate all the different 

combinations of two clades, then we merge the two clades which give the largest improvement 

in the AIC value. We repeat this merging process until we have one clade that represents all 

the taxa. Figure 1 shows an example of the process for MaxQ = 6 models. We continue merging 

clades even if the best merging makes the AIC score worse because we wish to evaluate the 

AIC score at every step of the algorithm. 
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Figure 1| Schematic overview of the greedy algorithm with MaxQ = 6 matrices. 

The algorithm: 

1. Let S be the set of all clades in dataset D. For each clade in S, infer the best SRH 

model using command lines 3 and 4, and calculate AICnon-SRH for the joint model 

according to equation 1. 

2. Run over all the possible combinations of two clades in S and calculate the AIC score 

for each pair.  

3. Let v and w be the two merged clades from the previous step with the best AIC score 

(AICmerge) into one single clade M. If AICmerge < AICnon-SRH, then update AICnon-SRH = 

AICmerge and S = S ‒ v – w + M. Otherwise, go to step 5. 

4. If S > 2, go to step 2. Otherwise, go to step 5. 

5. For dataset D infer the homogeneous model using command lines 1 and 2. 

Clade clustering 

Using a two-dimensional Principal Component Analysis (PCA) with all matrices from all 

datasets, we check the divergence within and between datasets. For each dataset, we perform a 

two-dimensional PCA with the homogeneous model, the relevant Q matrix (i.e. Q.Birds, 
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Q.Mammals, Q.Plants) from IQ-TREE2 (Minh, et al. 2020) and all the clades’ matrices. In 

addition, we performed another two-dimensional PCA with all the clades’ matrices from all 

three datasets in order to check if clades from the same datasets cluster together or not. 

Results 

The fully homogeneous model always has a higher AICscore than non-

homogeneous models 

In the three datasets, the homogeneous model with one matrix for all clades has a notably higher 

AIC score than the other non-homogeneous model with at least two different matrices (Figure 

2). In the mammals’ dataset, the AIC value of the homogeneous model is more than 3600 scores 

higher than the best 2-matrices model where Afrotheria and Rodentia have one matrix and all 

the other clades have another matrix. In addition, the AIC value of the homogeneous model is 

more than 5600 scores higher than the best-fit model with 7 matrices. Yet, the differences 

between the best 5-matrices model, 6-matrices model, the best 8-matrices model, the best 9-

matrices model and the best-fit model are small; 120, 27, 19, and 84 scores, respectively. 

In the plants’ dataset, the AIC value of the homogeneous model is more than 1600 scores higher 

than the best 2-matrices models where Angiosperms and Gnetales have one matrix and all other 

clades have a separate matrix. Furthermore, the AIC value of the homogeneous model is more 

than 18,300 scores higher than the best-fit model with 4 different matrices. In contrast to the 

mammals’ dataset where the differences between the best-fit model and other close models are 

small, in the plants’ dataset, these differences are much higher; the difference between the best-

fit model and the best 3-matrices and the best 5-matrices models are 900 and 330, respectively. 

In the birds’ dataset, the AIC value of the homogeneous model is more than 1890 scores higher 

than the best 2-matrices models where Galloanserae, Caprimulgiformes and Passeriformes 
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have one matrix and all other clades have another matrix. Moreover, the AIC value of the 

homogeneous model is more than 3500 scores higher than the best-fit model with 3 different 

matrices. Like the plants’ dataset, in the bird’s dataset, the differences between the best-fit 

model and the best 2-matrices and the best 4-matrices models are much higher than in the 

mammals’ dataset and are 800 and 400, respectively. 

 
Figure 2| AIC score for each dataset as a function of the number of matrices in the model. 

The fully non-homogeneous model is always worse than a simpler model 

In all the datasets, there is at least one model that outperforms the fully non-homogeneous 

model with MinQ matrices. In the plants' datasets, the model with MaxQ ‒ 1 matrices 

outperform the fully non-homogeneous model with MaxQ matrices. In the mammals’ dataset, 

the model with MaxQ – 3 matrices was the best fit model and in the birds' dataset, the model 

with MaxQ ‒ 5 matrices is the best model (Figure 2). The differences between the best-fit 

model and the fully non-homogeneous model with MaxQ matrices are 275, 327, and 985 for 

mammals, plants and birds, respectively. The differences are much higher when we compare 

the fully non-homogeneous model and the homogeneous model; 5400, 18,000 and 1700 for 

mammals, plants and birds, respectively. 

Clades’ matrices from the same dataset clusters together 

 A two-dimensional Principal Component Analysis (PCA) of all the matrices and the stationary 

frequencies vectors in the best-fit models shows defined clusters of clades, especially in terms 
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of stationary frequencies (Figure). Yet, some datasets are more divergent than others. E.g. in 

terms of substitution rates, some of the clades in the mammals dataset are closer to clades from 

the birds and plants datasets than other mammalian clades. 

 

Figure 3| 2-D PCA for all the matrices and stationary frequencies vectors in the best 

model for each dataset. 

Adding the matrix of all clades from the homogeneous model (i.e Q.Homogeneous) and the 

relevant Q matrix from IQ-TREE2 (i.e Q.Birds, Q.Mammals and Q.Plants) to the 2-D PCA we 

see a difference between the All matrix and the relevant Q Matrix (Figure 3). 

 

Figure 3| 2-D PCA for each dataset with the homogeneous model (substitution matrix + 

stationary frequencies vector). 
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Phylogenetic inference is unaffected by using different matrices 

For each clade in each dataset, we inferred the phylogeny using the homogeneous model and 

the specific non-homogeneous model for that clade. Our results show that both phylogenies 

were identical; Robinson-Foulds distance is zero for all clades in all datasets. Moreover, using 

the Kolmogorov-Smirnov (KS) test we see that there is no significant difference between the 

two distributions of branch lengths (Figure 4). 

 

Figure 4| Branch lengths distribution of each phylogeny. The numbers on top of the boxes 

are the p-value from the KS test when we compare the two distributions of branch lengths.  

Discussion 

In this article, we tested for homogeneity of the molecular evolutionary processes among 

closely-related clades of birds, mammals, and plants using large multiple-sequence alignments. 

Our results suggest that while substantial and statistically significant heterogeneity exists, even 

between closely related clades, this heterogeneity has a little detectable effect on phylogenetic 

reconstructions of tree topologies or branch lengths. 

Our results are consistent with previous studies that show that non-homogeneous models can 

capture the evolutionary signals better than homogeneous models. Using Maximum 
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Parsimony, Maximum Likelihood, Bayesian inference, and Neighbour-Joining methods to 

estimate candidates starting trees for the γ-Proteobacteria phylogeny, Herbeck et al. (Herbeck, 

et al. 2005) calculated the likelihood value for each tree under the non-homogeneous model of 

(Galtier and Gouy 1995). Their results show that the likelihood ratio of the non-homogeneous 

model was the best fit for all datasets. In addition, the results show that the phylogeny inferred 

under the ML method was very similar to the phylogeny inferred under the non-homogeneous 

model. Emphasizing our conclusion that ML inference methods can be very robust to non-

homogeneous evolution, even when using SRH substitution models.  

Similar to Herbeck et al., other studies that compared homogeneous and non-homogeneous 

models e.g. (Blanquart and Lartillot 2006; Boussau and Gouy 2006; Blanquart and Lartillot 

2008; Boussau, et al. 2008; Dutheil and Boussau 2008; Jayaswal, Jermiin, et al. 2011; Zhang, 

et al. 2011; Dutheil, et al. 2012; Groussin, et al. 2013; Jayaswal, et al. 2014) showed a better 

fit of the non-homogeneous models over the homogeneous model. Looking at a two-

dimensional PCA of all the matrices and the stationary frequencies vectors reveals that the 

differences between stationary frequencies are more pronounced between rather than within 

major clades, while the opposite seems to be true for the Q matrices. This conclusion agrees 

with previous studies that showed that non-stationarity is the major cause of systematic bias 

due to non-SRH evolution in phylogenetics (Galtier and Gouy 1998; Galtier, et al. 1999; Foster 

2004; Jermiin, et al. 2004; Jayaswal, et al. 2005; Ababneh, et al. 2006; Blanquart and Lartillot 

2008; Boussau, et al. 2008; Song, et al. 2010; Naser-Khdour, et al. 2019). Our results add to 

these, and demonstrate in addition that the Q matrices can differ substantially, even between 

closely-related groups of taxa 

Most previous studies used nucleotide or codon models to investigate the non-homogeneity 

assumption in empirical data. Groussin, et al. (Groussin, et al. 2013) introduced a non-
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homogeneous model for amino acid datasets that reduces the dimensionality of the observed 

model using the 𝜒2  distance between the amino acid frequencies. In this study, we used 

QMaker to estimate the full empirical amino-acid model with 210 free parameters for each 

clade. This is a non-homogeneous and non-stationary model since each clade will have its 

substitution rate matrix and base frequencies. Moreover, since the datasets we used for this 

study are concatenated data, the ML inference could suffer inconsistency issues due to the 

discordance between the evolution of the different loci (Bryant and Hahn 2020). To account 

for some of this heterogeneity in the substitution processes, we used a fully partitioned model 

with edge-linked substitution rates.  However, we acknowledge that our analyses rely on the 

assumption common to all concatenated analyses, that all loci share a common bifurcating 

phylogenetic tree. We do not think that this assumption would have any major effects on our 

conclusions though.  

Algorithms for clustering branches according to their substitution processes such as (Jayaswal, 

Ababneh, et al. 2011; Zhang, et al. 2011; Dutheil, et al. 2012) show that there is always a better-

fit model than the most complex model with the maximum number of matrices. Those results 

are consistent with our results in this study. Although, in contrast to those algorithms which 

allow each branch in the tree to have its own matrix, our algorithm is less general insofar as it 

starts frompre-defined clades which we assume that all branches in that clade have the same 

substitution matrix. This assumption is proved to be reasonable as even with this constraint we 

still get a simpler model with fewer matrices than the number of pre-defined clades to be the 

best-fit model for all three datasets. These results hint that when previous knowledge about the 

evolutionary processes on certain clades is available, using pre-defined clades might be enough 

to significantly improve model estimations. 
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Yet, using pre-defined clades which we assume that each of them is homogeneous, one would 

expect that the fully non-homogeneous models with the maximum number of models will 

outperform simpler models. But as our results show, this is not the case. One limitation of the 

current approach that could lead to such results is using SRH models for inferring the different 

matrices. While the overall model is non-homogeneous and non-stationary (except for the case 

of the homogeneous model), it is still a time-reversible model. Using non-reversible models to 

estimate the matrices might tell a different story. Another limitation is that the current algorithm 

estimates one tree for all clades and not a separate tree for each clade as we would ideally want. 

This causes the deep branches connecting the clades to be included in the calculation of the 

joint matrix and therefore in the AIC score. 

In a molecular evolution framework, the results of this study confirm that different clades in 

the tree of life have different evolutionary processes. Moreover, they validate that clades from 

the same kingdom, phylum or class tend to cluster together. For example, our results from the 

mammals’ class show that in the best-fit model the suborders Yinpterochiroptera and 

Yangochiroptera have a very similar evolutionary process and therefore can be represented by 

one homogeneous model for the order Chiroptera. The same goes for the two orders 

Artiodactyla and Cetacea, they have a very similar evolutionary process and can be represented 

with a single model which ratifies the theory that there is a strong relationship between these 

two orders and can be represented under the superorder Cetartiodactyla (Millinkovitch and 

Thewissen 1997; Montgelard, et al. 1997; Shimamura, et al. 1997; Naylor and Adams 2001; 

Thewissen, et al. 2001; Theodor and Foss 2005; Agnarsson and May-Collado 2008; Hassanin, 

et al. 2012). 

In conclusion, our study emphasizes the importance of using non-homogeneous models to 

investigate evolutionary processes. Several non-homogeneous models are available for 
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phylogenetic analysis, yet, they are still rarely used in empirical studies. As our results show, 

it is worthwhile to invest more in making those methods more accessible and user-friendly and 

to develop new methods that can be non-stationary, non-homogeneous and non-reversible.  

Appendix 

The Greedy Algorithm commandlines 

1) iqtree2 –s ALIGNMENT_FILE –p PARTITION_FILE --prefix SRH 

Where ALIGNMENT_FILE is the alignment file with all the taxa used in this study, and 

PARTITION_FILE is the partition file. 

2) iqtree2 –s ALIGNMENT_FILE –p SRH.best_model.nex –te SRH.treefile 

--model-joint GTR20+FO --min-freq 0.001 --prefix SRH_Q -nparam 10 

–optfromgiven 

Where SRH.best_model.nex is the best model output from command line 1 and 

SRH.treefile is the ML tree output from command line 1. 

--model-joint GTR20+FO --min-freq 0.001 means use QMaker to estimate the 

general time-reversible model with 20-state data (GTR20) with ML estimate of the state 

frequencies (FO) and set the minimum state frequencies to 0.001. –optfromgiven means 

that we do not fix the model parameters and allow IQ-TREE to optimize them further, and -

nparam 10 means that we use 10 iterations to estimate the Q matrix and stationary frequencies 

vector. 

3) iqtree2 –s CLADE_ALIGNMENT_FILE –p PARTITION_FILE --prefix 

CLADE_SRH 
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Where CLADE_ALIGNMENT_FILE is the alignment file with all the taxa in a specific clade, 

PARTITION_FILE is the partition file. 

4) iqtree2 –s CLADE_ALIGNMENT_FILE –p CLADE_SRH.best_model.nex –te 

CLADE_SRH.treefile --model-joint GTR20+FO --min-freq 0.001 --

prefix CLADE_Q -nparam 10 –optfromgiven 

Where CLADE_SRH.best_model.nex is the best model output from command line 3 and 

CLADE_SRH.treefile is the ML tree output from command line 3. 

  



Chapter 3 

 

177 

 

References 

Ababneh F, Jermiin LS, Ma C, Robinson J. 2006. Matched-pairs tests of 

homogeneity with applications to homologous nucleotide sequences. 

Bioinformatics 22:1225-1231. 

Agnarsson I, May-Collado LJ. 2008. The phylogeny of Cetartiodactyla: the 

importance of dense taxon sampling, missing data, and the remarkable 

promise of cytochrome b to provide reliable species -level phylogenies. Mol 

Phylogenet Evol 48:964-985. 

Akaike H. 1974. A new look at the statistical model identification. IEEE 

transactions on automatic control 19:716-723. 

Bazinet AL, Zwickl DJ, Cummings MP. 2014. A gateway for phylogenetic analysis 

powered by grid computing featuring GARLI 2.0. Syst. Biol. 63:812 -818. 

Blanquart S, Lartillot N. 2006. A Bayesian compound stochastic process for 

modeling nonstationary and nonhomogeneous sequence evolution. Mol. 

Biol. Evol. 23:2058-2071. 

Blanquart S, Lartillot N. 2008. A site- and time-heterogeneous model of amino 

acid replacement. Mol. Biol. Evol. 25:842-858. 

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, 

Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for 

Bayesian evolutionary analysis. PLoS Comp. Biol. 10:e1003537.  

Boussau B, Blanquart S, Necsulea A,  Lartillot N, Gouy M. 2008. Parallel 

adaptations to high temperatures in the Archaean eon. Nature 456:942 -945. 

Boussau B, Gouy M. 2006. Efficient likelihood computations with nonreversible 

models of evolution. Syst. Biol. 55:756-768. 

Bryant D, Hahn MW. 2020. The Concatenation Question. In:  Scornavacca C, 

Delsuc F, Galtier N, editors. Phylogenetics in the Genomic Era: No 

commercial publisher | Authors open access book. p. 3.4:1 --3.4:23. 

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by 

sampling trees. BMC Evol. Biol. 7:214.  

Dutheil J, Boussau B. 2008. Non-homogeneous models of sequence evolution in 

the Bio++ suite of libraries and programs. BMC Evol. Biol. 8:255.  



Chapter 3 

 

178 

 

Dutheil JY, Galtier N, Romiguier J, Douzery EJ, Ranwez V, Boussau B. 2012. 

Efficient selection of branch-specific models of sequence evolution. Mol. 

Biol. Evol. 29:1861-1874. 

Foster PG. 2004. Modeling compositional heterogeneity. Syst. Biol. 53:485 -495. 

Galtier N, Gouy M. 1998. Inferring pattern and process: maximum -likelihood 

implementation of a nonhomogeneous model of DNA sequence evolution for 

phylogenetic analysis. Mol. Biol. Evol. 15:871-879. 

Galtier N, Gouy M. 1995. Inferring phylogenies from DNA sequences of unequal 

base compositions. Proc Natl Acad Sci U S A 92:11317-11321. 

Galtier N, Tourasse N, Gouy M. 1999. A nonhyperthermophilic common ancestor 

to extant life forms. Science 283:220-221. 

Groussin M, Boussau B, Gouy M. 2013. A branch-heterogeneous model of protein 

evolution for efficient inference of ancestral sequences. Syst. Biol. 62:523-

538. 

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. 

New algorithms and methods to estimate maximum-likelihood phylogenies: 

assessing the performance of PhyML 3.0. Syst. Biol. 59:307-321. 

Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, 

Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, et al. 2012. Pattern 

and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), 

as revealed by a comprehensive analysis of mitochondrial genomes. C. R. 

Biol. 335:32-50. 

Herbeck JT, Degnan PH, Wernegreen JJ. 2005. Nonhomogeneous model of 

sequence evolution indicates independent origins of primary endosymbionts 

within the enterobacteriales (gamma-Proteobacteria). Mol. Biol. Evol. 

22:520-532. 

Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, Huelsenbeck 

JP, Ronquist F. 2016. RevBayes: Bayesian phylogenetic inference using 

graphical models and an interactive model-specification language. Syst. 

Biol. 65:726-736. 

Jarvis ED, Mirarab S, Aberer A, Houde P, Li C, Ho S, Faircloth BC, Nabholz B, 

Howard JT, Suh A, et al. 2014. Data from: Phylogenomic analyses data of 

the avian phylogenomics project. In: GigaScience Database.  



Chapter 3 

 

179 

 

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, 

Nabholz B, Howard JT, et al. 2015. Phylogenomic analyses data of the avian 

phylogenomics project. Gigascience 4:4.  

Jayaswal V, Ababneh F, Jermiin LS, Robinson J. 2011. Reducing model complexity 

of the general Markov model of evolution. Mol . Biol. Evol. 28:3045-3059. 

Jayaswal V, Jermiin LS, Poladian L, Robinson J. 2011. Two stationary 

nonhomogeneous Markov models of nucleotide sequence evolution. Syst. 

Biol. 60:74-86. 

Jayaswal V, Jermiin LS, Robinson J. 2005. Estimation of Phylogeny Using a 

General Markov Model. Evol Bioinform 1:62-80. 

Jayaswal V, Robinson J, Jermiin L. 2007. Estimation of phylogeny and invariant 

sites under the general Markov model of nucleotide sequence evolution. 

Syst. Biol. 56:155-162. 

Jayaswal V, Wong TK, Robinson J, Poladian L, Jermiin LS. 2014. Mixture models 

of nucleotide sequence evolution that account for heterogeneity in the 

substitution process across sites and across lineages. Syst. Biol. 63:726 -742. 

Jermiin L, Ho SY, Ababneh F, Robinson J, Larkum AW. 2004. The bi asing effect 

of compositional heterogeneity on phylogenetic estimates may be 

underestimated. Syst. Biol. 53:638-643. 

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. 

ModelFinder: fast model selection for accurate phylogenetic estimat es. Nat. 

Methods 14:587-589. 

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across -site 

heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 

21:1095-1109. 

Millinkovitch MC, Thewissen JG. 1997. Evolutionary biology. Even -toed 

fingerprints on whale ancestry. Nature 388:622-624. 

Minh BQ, Dang CC, Vinh LS, Lanfear R. 2021. QMaker: Fast and Accurate Method 

to Estimate Empirical Models of Protein Evolution. Syst. Biol. 70:1046 -

1060. 

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler 

A, Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for 

Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37:1530 -1534. 



Chapter 3 

 

180 

 

Montgelard C, Catzeflis FM, Douzery E. 1997. Phylogenetic relationships of 

artiodactyls and cetaceans as deduced from the comparison of cytochrome b 

and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14:550 -559. 

Naser-Khdour S, Lanfear R, Minh BQ. 2021. The Influence of Model Violation on 

Phylogenetic Inference: A Simulation Study. 

bioRxiv:2021.2009.2022.461455. 

Naser-Khdour S, Minh BQ, Zhang W, Stone EA, Lanfear R. 2019. The Prevalence 

and Impact of Model Violations in Phylogenetic Analysis. Genome Biol 

Evol 11:3341–3352. 

Naylor GJ, Adams DC. 2001. Are the fossil data really at odds with the  molecular 

data/morphological evidence for Cetartiodactyla phylogeny reexamined. 

Syst. Biol. 50:444-453. 

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and 

effective stochastic algorithm for estimating maximum-likelihood 

phylogenies. Mol. Biol. Evol. 32:268-274. 

Ran JH, Shen TT, Wang MM, Wang XQ. 2018a. Data from: Phylogenomics 

resolves the deep phylogeny of seed plants and indicates partial convergent 

or homoplastic evolution between Gnetales and angiosperms. In: Dryad 

Digital Repository. 

Ran JH, Shen TT, Wang MM, Wang XQ. 2018b. Phylogenomics resolves the deep 

phylogeny of seed plants and indicates partial convergent or homoplastic 

evolution between Gnetales and angiosperms. Proc Biol Sci 285:20181012.  

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget 

B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient 

Bayesian phylogenetic inference and model choice across a large model 

space. Syst. Biol. 61:539-542. 

Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, 

Munechika I, Okada N. 1997. Molecular evidence from retroposons that 

whales form a clade within even-toed ungulates. Nature 388:666-670. 

Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF. 2010. When 

phylogenetic assumptions are violated: base compositional heterogeneity 

and among‐site rate variation in beetle mitochondrial phylogenomics. Syst. 

Entomol. 35:429-448. 



Chapter 3 

 

181 

 

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post -

analysis of large phylogenies. Bioinformatics 30:1312-1313. 

Swofford DL. 2001. Paup*: Phylogenetic analysis using parsimony (and other 

methods) 4.0. B5. 

Theodor JM, Foss SE. 2005. Deciduous dentitions of Eocene cebochoerid 

artiodactyls and cetartiodactyl relationships. J. Mamm. Evol. 12:161 -181. 

Thewissen JG, Williams EM, Roe LJ, Hussain ST. 2001. Skeletons of terrestrial 

cetaceans and the relationship of whales to artiodactyls. Nature 413:277 -

281. 

Wu S, Edwards S, Liu L. 2019. Data from: Genome-scale DNA sequence data and 

the evolutionary history of placental mammals. In: Figshare.  

Wu S, Edwards S, Liu L. 2018. Genome-scale DNA sequence data and the 

evolutionary history of placental mammals. Data Brief 18:1972 -1975. 

Yang Z. 2006. Computational Molecular Evolution. Oxford, UNITED KINGDOM: 

Oxford University Press USA - OSO. 

Yang ZH, Roberts D. 1995. On the Use of Nucleic-Acid Sequences to Infer Early 

Branchings in the Tree of Life. Mol. Biol. Evol. 12:451-458. 

Zhang C, Wang J, Xie W, Zhou G, Long M, Zhang Q. 2011. Dynamic programming 

procedure for searching optimal models to estimate substitution rates based 

on the maximum-likelihood method. Proc Natl Acad Sci U S A 108:7860 -

7865. 

Zou L, Susko E, Field C, Roger AJ. 2012. Fitting nonstationary general -time-

reversible models to obtain edge-lengths and frequencies for the Barry–

Hartigan model. Syst. Biol. 61:927-940. 

 

 



Chapter 4 

 

182 

 

CHAPTER 4 

ASSESSING CONFIDENCE IN ROOT PLACEMENT ON 

PHYLOGENIES: AN EMPIRICAL STUDY USING NON-

REVERSIBLE MODELS FOR MAMMALS 

Suha Naser-Khdour*1, Bui Quang Minh1,2, and Robert Lanfear1 

(7) Department of Ecology and Evolution, Research School of Biology, Australian National 

University, Canberra, Australian Capital Territory, Australia 

(8)  Research School of Computer Science, Australian National University, Canberra, 

Australian Capital Territory, Australia 

*Author for Correspondence: E-mail: suha.naser@anu.edu.au 

 

Contributions: 

SNK wrote the python script, performed the analysis, analysed and interpreted the results, 

drafted the manuscript, and submitted the article for publication. MB contributed to the 

research design, conceptual development, editorial comments and implemented the metrics in 

IQ-TREE. RL contributed to the research design, conceptual development and editorial 

comments. 

 

  

mailto:suha.naser@anu.edu.au


Chapter 4 

 

183 

 

Abstract 

Using time-reversible Markov models is a very common practice in phylogenetic analysis, 

because although we expect many of their assumptions to be violated by empirical data, they 

provide high computational efficiency. However, these models lack the ability to infer the root 

placement of the estimated phylogeny. In order to compensate for the inability of these models 

to root the tree, many researchers use external information such as using outgroup taxa or 

additional assumptions such as molecular-clocks. In this study, we investigate the utility of 

non-reversible models to root empirical phylogenies and introduce a new bootstrap measure, 

the rootstrap, which provides information on the statistical support for any given root position. 

Availability and implementation: rootstrap support is implemented in IQ-TREE 2 and a tutorial 

is available at the iqtree webpage http://www.iqtree.org/doc/Rootstrap. In addition, a python 

script is available at https://github.com/suhanaser/Rootstrap. 

[phylogenetic inference, root estimation, bootstrap, non-reversible models] 
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Main Text 

The most widely used method for rooting trees in phylogenetics is the outgroup method. 

Although the use of an outgroup to root an unrooted phylogeny usually outperforms other 

rooting methods (Huelsenbeck, et al. 2002), the main challenge with this method is to find an 

appropriate outgroup (Watrous and Wheeler 1981; Maddison, et al. 1984; Smith 1994; 

Swofford, et al. 1996; Lyons-Weiler, et al. 1998; Milinkovitch and Lyons-Weiler 1998). 

Outgroups that are too distantly-related to the ingroup may have substantially different 

molecular evolution than the ingroup, which can compromise accuracy. And outgroups that are 

too closely related to the ingroup may not be valid outgroups at all.  

It is possible to infer the root of a tree without an outgroup using molecular clocks 

(Huelsenbeck, et al. 2002; Drummond, et al. 2006). A strict molecular-clock assumes that the 

substitution rate is constant along all lineages, a problematic assumption especially when the 

ingroup taxa are distantly related such that their rates of molecular evolution may vary.  

Relaxed molecular-clocks are more robust to deviations from the clock-like behaviour 

(Drummond, et al. 2006), although previous studies have shown that they can perform poorly 

in estimating the root of a phylogeny when those deviations are considerable (Tria, et al. 2017). 

  Other rooting methods rely on the distribution of branch lengths, including Midpoint 

Rooting (MPR) (Farris 1972), Minimal Ancestor Deviation (MAD) (Tria, et al. 2017), and 

Minimum Variance Rooting (MVR) (Mai, et al. 2017). Such methods also assume a clock-like 

behaviour; however, they are less dependent on this assumption as the unrooted tree is 

estimated without it. Similar to inferring a root directly from molecular-clock methods, the 

accuracy of those rooting methods decreases with higher deviations from the molecular-clock 

assumption (Mai, et al. 2017). 
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Other less common rooting methods that can be used in the absence of outgroup are: rooting 

by gene duplication (Dayhoff and Schwartz 1980; Gogarten, et al. 1989; Iwabe, et al. 1989), 

indel-based rooting (Rivera and Lake 1992; Baldauf and Palmer 1993; Lake, et al. 2007), 

rooting the species tree from the distribution of unrooted gene trees (Allman, et al. 2011; Yu, 

et al. 2011), and probabilistic co-estimation of gene trees and species tree (Boussau, et al. 

2013). 

All the methods mentioned above, apart from the molecular-clock, infer the root position 

independently of the ML tree inference. The only existing approach to include root placement 

in the ML inference is the application of non-reversible models. Using non-reversible 

substitution models relaxes the fundamental assumption of time-reversibility that exists in the 

most widely used models in phylogenetic inference (Jukes and Cantor 1969; Kimura 1980; 

Hasegawa, et al. 1985; Tavaré 1986; Dayhoff 1987; Jones, et al. 1992; Tamura and Nei 1993; 

Whelan and Goldman 2001; Le and Gascuel 2008). This in itself is a potentially useful 

improvement in the fit between models of sequence evolution and empirical data. In addition, 

since non-reversible models naturally incorporate a notion of time, the position of the root on 

the tree is a parameter that is estimated as part of the ML tree inference. Since the incorporation 

of non-reversible models in efficient ML tree inference software is relatively new (Minh, et al. 

2020), we still understand relatively little about the ability of non-reversible models to infer 

the root of a phylogenetic tree, although a recent simulation study has shown some encouraging 

results (Bettisworth and Stamatakis 2020). 

Regardless of the rooting method and the underlying assumptions, it is crucial that we are able 

to estimate the statistical confidence we have in any particular placement of the root on a 

phylogeny. A number of previous studies have sensibly used ratio likelihood tests such as the 

Shimodaira-Hasegawa (SH) test (Shimodaira and Hasegawa 1999) and the Approximately 
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Unbiased (AU) test (Shimodaira 2002) to compare a small set of potential root placements, 

rejecting some alternative root placements in favour of the ML root placement e.g.(Nardi, et 

al. 2003; Steenkamp, et al. 2006; Jansen, et al. 2007; Moore, et al. 2007; Williams, et al. 2010; 

Kocot, et al. 2011; Zhou, et al. 2011; Whelan, et al. 2015; Zhang, et al. 2018), these tests are 

still somewhat limited in that they do not provide the level of support the data have for a certain 

root position.   

There is strong empirical evidence that molecular evolutionary processes are rarely reversible 

(Squartini and Arndt 2008; Naser-Khdour, et al. 2019), but few studies have explored the 

accuracy of non-reversible substitution models to root phylogenetic trees (Huelsenbeck, et al. 

2002; Yap and Speed 2005; Williams, et al. 2015; Cherlin, et al. 2018; Bettisworth and 

Stamatakis 2020). Most studies that have looked at this question in the past have focused on 

either simulated datasets (Huelsenbeck, et al. 2002; Jayaswal, et al. 2011; Cherlin, et al. 2018) 

or relatively small empirical datasets (Yang and Roberts 1995; Yap and Speed 2005; Jayaswal, 

et al. 2011; Heaps, et al. 2014; Williams, et al. 2015; Cherlin, et al. 2018). In both cases, the 

addressed substitution models were nucleotide models, and to our knowledge, no study has yet 

investigated the potential of amino acid substitution models in inferring the root placement of 

phylogenetic trees.  

In this paper, we focus on evaluating the utility of non-reversible amino acid and nucleotide 

substitution models to root the trees, and we introduce a new metric, the rootstrap support 

value, which estimates the extent to which the data support every possible branch as the 

placement of a root in a phylogenetic tree.  Unlike previous studies that used Bayesian methods 

with non-reversible substitution models to infer rooted ML trees (Heaps, et al. 2014; Cherlin, 

et al. 2018), we will conduct our study in a Maximum likelihood framework using IQ-TREE 

(Minh, et al. 2020). A clear advantage of Maximum likelihood over the Bayesian analysis is 
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that there is no need for a prior on the parameter distributions, which sometimes can affect tree 

inference (Huelsenbeck, et al. 2002; Cherlin, et al. 2018). Even though estimating the non-

reversible model’s parameters by maximizing the likelihood function seems more 

computationally intensive than calculating posterior probabilities (Huelsenbeck, et al. 2002), 

the IQ-TREE algorithm is sufficiently fast to allow us to estimate root placements, with 

rootstrap support for very large datasets. 

A recent study investigated the ability of non-reversible nucleotide models to infer the root 

placement of phylogenetic trees (Bettisworth and Stamatakis 2020). This study showed that 

IQ-TREE performs competitively with a new rooting tool, RootDigger. In most simulated 

datasets, IQ-TREE slightly outperformed RootDigger in terms of root placements, but no 

comparisons were made between RootDigger and IQ-TREE on empirical datasets. Although 

RootDigger is significantly faster than IQ-TREE (Bettisworth and Stamatakis 2020), the 

former is limited to nucleotide substitution models. Since we are interested in both nucleotide 

and amino acid non-reversible models, we used IQ-TREE for tree and root inference in this 

study. 

Material and Methods 

The “Rootstrap” Support, and measurements of error in root placement 

To compute rootstrap supports, we conduct a bootstrap analysis, i.e., resampling alignment 

sites with replacement, to obtain a number of bootstrap trees. We define the rootstrap support 

for each branch in the ML tree, as the proportion of bootstrap trees that have the root on that 

branch. Since the root can be on any branch in a rooted tree, the rootstrap support values are 

computed for all the branches including external branches. The sum of the rootstrap support 

values along the tree is always smaller than or equal to one. A sum that is smaller than one can 
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occur when one or more bootstrap replicates are rooted on a branch that does not occur in the 

ML tree (Fig. 1).  

 
FIGURE 1. Illustration of the rootstrap concept. (a) The bootstrap replicates trees. (b) 

The ML tree with the rootstrap support values for each branch. Note that the sum of the 

rootstrap support values is less than 100% due to 100 bootstrap replicates trees (green) that 

have their root at a branch that does not exist in the ML tree. 

 

By definition, the rootstrap support values for internal branches are bounded by the bootstrap 

support values at those branches. On the other hand, the rootstrap support values for tips (leaf 

branches) are bounded by 100%, as tips always appear in all the bootstrap trees. 

If the true position of the root is known (e.g. in simulation studies) or assumed (e.g. in the 

empirical cases we present below), we can calculate additional measurements of the error of 

the root placement. We introduce two such measurements here: root branchlength error 

distance (rBED) and root split error distance (rSED). Since the non-reversible model infers 

the exact position of the root on a branch, we define the root branchlength error distance 

(rBED) as the range between the minimum and maximum distance between the inferred root 

position and the “true root” branch. If the true root is on the same branch as the ML tree root, 

then rBED will be between 0 and the distance between the ML tree root and the farthest point 
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on that branch (Fig. 2). Since rBED is based on branch lengths only, it ignores the absolute 

number of splits between the ML tree root and the true root; and therefore, the rBED for the 

true root being on the same ML root branch can be bigger than the rBED for the true root being 

on a different branch (e.g. Fig. 2). In order to account for the number of splits (nodes) between 

the ML tree root and the true root, we define root split error distance (rSED) as the number of 

splits between the ML root branch and the branch that is believed to contain the true root (Fig. 

2).  

 

FIGURE 2.  An example to illustrate the root error distance. (a) the ML rooted tree, (b) 

the root branch-length error distance (rBED) if the true root is believed to be on the same ML 

root branch (rSED = 0), (c) the rBED if the true root is believed to be on the branch between 

D and the clade of C + B (rSED = 3). 

 

The rootstrap, rBED, and rSED assess different aspects of the root placement. While the 

rootstrap offers an indication of the support that the data have for a certain branch to be the 

root branch, rBED and rSED provide an estimation of the accuracy of the method in estimating 

the exact root position if the root position is known or assumed in advance. In other words, the 

rootstrap value is a measure for the robustness of the root placement given the model and the 

data and can be used on any dataset regardless of whether the true root position is known, while 
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rBED and rSED are measures of the accuracy of the non-reversible model to find the root 

placement given the data, and require the root position to be known or assumed in advance. 

Empirical Datasets 

Because non-reversible amino acid models require the estimation of a large number of 

parameters, and because we suspected that the information in any such analysis on the 

placement of the root branch of a tree might be rather limited, we searched for empirical 

datasets that met a number of stringent criteria:  

1) Existence of both DNA and amino acid multiple sequences alignments (MSA) for the 

same loci. 

2) Genome-scale MSAs to ensure that the MSAs have as much information as possible 

with which to estimate the non-reversible models’ free parameters and the root position. 

Since we do not know the number of sites required to correctly infer the rooted ML 

tree, we define 100,000 sites as the minimum number of required sites. This also allows 

us to subsample the dataset to explore the ability of smaller datasets to infer root 

positions. 

3) Highly-curated alignments: since the quality of the inferred phylogeny is highly 

dependent on the quality of the MSA (Philippe, et al. 2011), we focussed on datasets 

that were highly-curated for misalignment, contamination, and paralogy. 

4) Existence of several clades for which there is a very strong consensus regarding their 

root placement. Since we are interested in evaluating the performance of non-reversible 

models to infer root placements in an empirical rather than a simulation context, we 

need to identify monophyletic sub-clades for which we can be almost certain about their 

root position. This enables us to divide the dataset into non-overlapping sub-clades for 
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which we are willing to assume we know the root positions. Furthermore, we define the 

minimum number of taxa in each sub-dataset as five. 

We initially identified a number of genome-scale datasets that contained large numbers of 

nucleotide and amino acid MSAs. In many cases, it was difficult to determine whether these 

alignments had been rigorously curated, and even more challenging to find datasets for which 

the root position of a number of subclades could be assumed with confidence. The only dataset 

that met all of our criteria was a dataset of placental mammals with 78 ingroup taxa and 

3,050,199 amino acids (Wu, et al. 2019). This dataset was originally published as an MSA 

(Liu, et al. 2017) based on very high-quality sequences from Ensembl, NCBI, and GenBank 

databases. After receiving detailed critiques for potential alignment errors (Gatesy and Springer 

2017), the dataset was further processed to remove potential sources of bias and error, and an 

updated version of the dataset was recently published (Wu, et al. 2018). The fact that this 

alignment comes from one of the most well-studied clades on the planet, has been 

independently curated and critiqued by multiple groups of researchers and includes truly 

genome-scale data, makes it ideally suited for our study. The curated alignments can be found 

on figshare (https://figshare.com/s/622e9e0a156e5233944b) under the name “Wu_2018_aa” 

and “Wu_2018_dna” for the amino-acid and nucleotide alignments respectively.  

Selecting Clades with a Well-Defined Root 

Since our main objective in this study is to evaluate the effectiveness of non-reversible models 

and the rootstrap value in estimating and measuring the support for a given root placement on 

empirical datasets, we must identify a collection of sub-clades of the larger mammal dataset 

for which it is reasonable to assume a root position. We acknowledge, of course, that outside a 

simulation framework it is not possible to be certain of the root position of a clade. 

Nevertheless, it is possible to identify clades for which the position of the root is well supported 

https://figshare.com/s/622e9e0a156e5233944b
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and non-controversial, thus minimising the chances that the assumption of a particular root 

position is incorrect. To achieve this, we analysed the root position of each order and superorder 

in the dataset, and defined “well-defined clades” that fulfilled all of the following criteria:  

(1)  It contains at least five taxa. This ensures that the probability of obtaining a random ML 

rooted tree to be at most 0.95%. For clades with four taxa, there are 15 different rooted 

topologies, and therefore a 6.7% probability to get any particular root position by chance. 

On the other hand, for clades with at least five taxa, there are at least 105 different rooted 

topologies and maximum probability of 0.95% to randomly get a particular root position 

by chance.  

(2)  The bootstrap support for the branch leading to that clade in the phylogenetic tree calculated 

from the whole dataset is 100%: since the bootstrap value indicates the support the data 

have for a certain branch, we also require 100% support for the first direct descendants in 

the clade (Appendix Fig. A.1). This requirement ensures that there is strong support in the 

dataset for the root position of the clade when the entire dataset is rooted with an outgroup. 

(3)  The site concordance factor (sCF) for the first direct descendants in the clade is 

significantly greater than 33%. The site Concordance Factor (sCF) is calculated by 

comparing the support of each site in the alignment for the different arrangements of 

quartet around a certain branch. In other words, an sCF of 33% means equal support for 

any of the possible arrangements. Therefore, we require that the sCF of the deepest two 

levels of branches leading to that clade is significantly greater than 33%. Moreover, we 

require that the gene Concordance Factor (gCF) for the first direct descendants in the clade 

to be significantly greater than 33% of the sum of the gene concordance factor and the two 

Discordance Factors (gDF1 and gDF2). The gCF of a branch is calculated as the proportion 

of gene trees containing that branch, and gDFs are calculated as the proportion of gene 
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trees containing one of the two other resolutions of that branch. Since for each branch in a 

bifurcating tree there are three possible arrangements of clades around that branch, we 

ignore all gene trees that do not contain one of these arrangements (e.g. gene trees that 

contribute to neither the gCF nor the gDFs). Although there is no threshold regarding the 

required proportion of genes concordant with a certain branch, for convenience, we define 

branches with gCF significantly greater than 33% of the sum gCF+gDF1+gCF2 as 

branches that are concordant with enough genes in the alignment (Minh, et al. 2020). To 

test whether the sCF and the gCF are significantly greater than 33%, we use a simple 

binomial test with a success probability of 0.33. The gCF,gDF1,gCF2 and sCF values are 

based on the tree estimated from the amino acid dataset. 

(4)  At least 95% of the studies that have been published in the last decade support this clade: 

we searched google scholar for all published papers since 2009 that determine the root of 

the addressed clade. We then checked if at least 95% of those papers agree that the root 

position of the clade matches that in the ML tree we estimate from the whole dataset (see 

supplementary material). 

Estimating unrooted Phylogenies 

For the whole nucleotide and amino-acid datasets with ingroup and outgroup taxa, we inferred 

the unrooted phylogeny using IQ-TREE2 (Minh, et al. 2020) with the best-fit fully partitioned 

model (Chernomor, et al. 2016) and edge-linked substitution rates (Duchene, et al. 2020). We 

then determined the best-fit reversible model for each partition using ModelFinder 

(Kalyaanamoorthy, et al. 2017). See the algorithm for finding well-defined clades in Appendix 

Algorithm A.1. 
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Estimating Rooted phylogenies  

For each well-defined clade, we first removed all other taxa from the tree and then sought to 

infer the root of the well-defined clade using non-reversible models without outgroups. Using 

the best partitioning scheme from the reversible analysis, we inferred the rooted tree for each 

well-defined clade with the non-reversible models for amino acid (NR-AA) and nucleotide 

(NR-DNA) sequences (Minh, et al. 2020). This approach fits a 12-parameter non-reversible 

model for DNA sequences, and a 380-parameter non-reversible model for amino acids. Details 

of the command lines used are provided in the supplementary material section “Algorithm 

A.2”. Each analysis returns a rooted tree. We performed 1000 non-parametric bootstraps of 

every analysis to measure the rootstrap support.  

To assess the performance of the rootstrap and the ability of non-reversible models to estimate 

the root of the trees on smaller datasets, we also repeated every analysis on subsamples of the 

complete dataset. For each well-defined clade, we performed analysis on the complete dataset 

(100%) as well as datasets with 10%, 1% and 0.1% of randomly-selected loci from the original 

alignment.  

The confidence set of root branches using the Approximately Unbiased test  

In addition to the rootstrap support, we calculate the confidence set of all the branches that may 

contain the root of the ML tree using the Approximately Unbiased (AU) test (Shimodaira 

2002). To do this, we re-root the ML tree with all possible placements of the root (one 

placement for each branch) and calculate the likelihood of each tree. Using the AU test, we 

then ask which root placements can be rejected in favour of the ML root, using an alpha value 

of 5%. We define the root branches confidence set as the set of root branches that are not 

rejected in favour of the ML root placement. An important difference between the AU test and 

the rootstrap support is that the AU test is conditioned on a single ML tree topology, but the 
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rootstrap support is not. Because of this, they provide quite different information about the 

position of the root. The AU test assumes that the ML tree topology is true and then seeks to 

determine the confidence set of root placements conditioned on that topology. The confidence 

set for the AU test will always, therefore, contain at least the ML root branch. The rootstrap 

does not assume any particular topology and instead asks how many times a particular root 

position appears across a set of bootstrap replicates. Because of this, it is possible for every 

branch in the ML topology to receive 0% rootstrap support. This can occur if none of the 

branches in the ML topology appears as the root branch in any of the bootstrap topologies. 

Reducing systematic bias by removing third codon positions and loci that fail the 

MaxSym test 

As it is common in many phylogenetic analyses to remove third codon positions from the 

alignment (Swofford, et al. 1996), we wanted to assess the effect of removing third codon 

positions on the root inference and the rootstrap values in nucleotide datasets. For that purpose, 

we remove all the third codon positions from the nucleotide alignments and re-ran the analysis 

using the NR-DNA model. 

Moreover, although the NR-AA and NR-DNA models relax the reversibility assumption, they 

still assume stationarity and homogeneity. To reduce the systematic bias produced by violating 

these assumptions, we used the MaxSym test (Naser-Khdour, et al. 2019) to remove loci that 

violate those assumptions in the nucleotide and amino acid datasets, and then re-ran all analyses 

as above.  
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Applying the methods to two clades whose root position is uncertain  

In addition to the well-defined clades, we used the methods we propose here to infer the root 

of two clades of mammals whose root position is controversial; Chiroptera and the 

Cetartiodactyla.  

There is a controversy around the root of the Chiroptera (bats) in literature. The two most 

popular hypotheses are: 1) the Microchiroptera-Megachiroptera hypothesis; where the root is 

placed between the Megachiroptera, which contains the family Pteropodidae, and the 

Microchiroptera, which contains all the remaining Chiroptera families. This hypothesis is well 

supported in the literature (Agnarsson, et al. 2011; Meredith, et al. 2011). However, more 

recent studies seem to provide less support for this hypothesis; 2) the Yinpterochiroptera-

Yangochiroptera hypothesis, in which the Yangochiroptera clade includes most of 

Microchiroptera and the Yinpterochiroptera clade includes the rest of Microchiroptera and all 

of Megachiroptera. There is growing support for this hypothesis in the literature (Meganathan, 

et al. 2012; Tsagkogeorga, et al. 2013; Ren, et al. 2018; Reyes-Amaya and Flores 2019). 

Similar to Chiroptera, the root of Cetartiodactyla remains contentious in the literature. The 

three main hypotheses regarding the root of Cetartiodactyla are: 1) Tylopoda as the sister group 

for all other cetartiodactylans; 2) Suina as the sister group for all other cetartiodactylans; 3) the 

monophyletic clade containing Tylopoda and Suina as the sister group for all other 

cetartiodactylans.  

To ascertain whether certain sites or loci had very strong effects on the placement of the root 

we follow the approach of Shen et. al. (Shen, et al. 2017) and calculate the difference in site-

wise log-likelihood scores (ΔSLS) and gene-wise log-likelihood scores (ΔGLS) between the 

supported root positions for each clade. Moreover, we analysed subsamples of each dataset to 

test the limits of using non-reversible models to root trees with smaller datasets.  
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Results 

Inference of the mammal tree and selection of well-defined clades 

The trees inferred from the whole datasets with the nucleotide-reversible model and the amino-

acid-reversible model (Appendix Fig. A.2, Appendix Fig. A.3, Appendix Table A.2) are 

consistent with the published tree (Liu, et al. 2017). Five clades met all the criteria of well-

defined clades, namely, Afrotheria, Bovidae, Carnivora, Myomorpha, and Primates in both 

amino acid and nucleotide datasets (see Appendix Table A.1 and Appendix Table A.2). Trees 

in Newick format can be found on github: 

https://github.com/suhanaser/Rootstrap/tree/master/trees 

High accuracy of the AA non-reversible model in inferring the root 

Using NR-AA, we inferred the correct root with very high rootstrap support for all five well-

defined clades when all loci were used (Appendix Table A.3). Moreover, for all the five clades, 

the true root was the only root placement in the confidence set of the AU test. The average 

running time of the NR-AA model (model estimation + tree search + bootstrap + root inference) 

is 929 hrs on one core 2.6GHz CPU. However, using the optimal number of cores for each 

dataset reduced the average running time to 43.5 hrs per dataset.  

Our results show that using only 10% of the sites in the amino acid alignments (around 300,000 

alignment columns) still gave very high rootstrap support values (> 98%) for four of the five 

well-defined clades (Fig. 3) with no correlation between rSED and rBED and the size of the 

dataset (Table A.3). Moreover, in three of five well-defined clades, 1% of the sites (around 

30,000 alignment columns) was enough to give a very high rootstrap support value for the 

assumed correct root placement. Using only 0.1% of the sites (around 3000 alignment columns) 

decreased the rootstrap support value noticeably in all datasets (Appendix Table A.3). These 

https://github.com/suhanaser/Rootstrap/tree/master/trees
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values are shown for each dataset in Figure 3, where the X-axis is plotted in terms of 

parsimony-informative sites to allow for a more direct comparison between datasets, and to 

assist those applying these methods in deciding whether to use them on their own data. 

Although the rootstrap support for the true root improves as the number of parsimony-

informative sites increase, in some datasets (e.g. Afrotheria nucleotide dataset) this is not the 

case (Fig. 3). 

 

FIGURE 3.  The rootstrap support value for each clade as a function of the number of 

parsimony-informative sites. 

 

The non-reversible amino acid models were strongly preferred to the reversible models on the 

complete datasets (BIC values were 93943 to 235958 units better for the non-reversible 

models), and for the datasets with 10% of loci subsampled (BIC values were 3577 to 15082 

units better for the non-reversible models), but the opposite was true for the datasets 1% and 

0.1% of the loci subsampled (e.g. BIC values were between 2102 and 2712 units worse for the 

non-reversible models for the 0.1% subsampled datasets; see Table A.7 for full results).   
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Poor performance of the DNA non-reversible model in inferring the root 

We correctly inferred the root for four out of the five nucleotide datasets with the NR-DNA 

model, when all loci were used. However, the rootstrap support was generally lower than in 

the amino-acid datasets (Fig. 3, Appendix Tables A.3 and A.4). Similar to amino-acid datasets, 

there is no correlation between rSED and rBED and the size of the dataset (Table A.4). The 

average running time of the NR-DNA model (model estimation + tree search + bootstrap + 

root inference) is 35.7 hrs on one core 2.6GHz CPU and 4 hours when the optimal number of  

In contrast to the NR-AA model, there is no conclusive preference for the NR-DNA model 

over the reversible DNA model for the datasets we analysed (Table A.8). In fact, the BIC values 

of the NR-DNA models are always worse than reversible models regardless of the size of the 

nucleotide dataset except for three clades when all loci were included (Table A.8). In two of 

the datasets (Myomorpha and Primates) where the NR-DNA model was better than the 

reversible model, the root placement was inferred correctly with high rootstrap support (>95%). 

In fact, the Afrotheria nucleotide dataset is the only dataset in which the non-reversible model 

was better than the reversible model but the root placement was inferred incorrectly. 

cores for each dataset were used. 

TABLE 1.  Rootstrap support and rSED values in whole nucleotide datasets and 

nucleotide datasets without third codon positions. 

Clades 
All loci Without 3rd 

rootstrap rSED rootstrap rSED 

Afrotheria 0.0% 2 0.0% 2 

Primates 99.7% 0 90.1% 0 

Myomorpha 73.2% 0 15.8% 1 

Carnivora 100.0% 0 100.0% 0 

Bovidae 100.0% 0 82.5% 0 

Removing loci that violate the stationarity and homogeneity assumptions improves 
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Our results show that removing the third codon positions does not improve the rootstrap 

support value. In contrast, in some datasets removing third codon positions decreased the 

rootstrap support value and increased the rSED (Table 1).  

the rootstrap support 

As expected, our results show that removing loci that fail the MaxSym test improves the 

rootstrap support values when the rootstrap support value was less than 100% and/or the root 

placement was inferred incorrectly, as the case in some nucleotide datasets (Table 2).  

TABLE 2.  Rootstrap support values in whole datasets and datasets with loci that 

passed the MaxSym test only. 

Clade 

Amino Acid Nucleotide 

all loci 

Passed 

MaxSym all loci 

Passed 

MaxSym 

Afrotheria 100.0% 100.0% 0.0% 8.4% 

Primates 100.0% 100.0% 99.7% 99.9% 

Myomorpha 100.0% 100.0% 73.2% 88.3% 

Carnivora 100.0% 100.0% 100.0% 100.0% 

Bovidae 100.0% 100.0% 100.0% 100.0% 

 

Microchiroptera-Megachiroptera or Yinpterochiroptera-Yangochiroptera? 

Using the whole amino acid dataset, our results show 65.5% rootstrap support for the 

Yinpterochiroptera-Yangochiroptera hypothesis and 23.2% for the Microchiroptera -

Megachiroptera hypothesis. The remaining11.3% of the rootstrap support goes to supporting 

the branch leading to Rhinolophoidea as the root branch of the bats (Fig. 4). Removing amino 

acid loci that fail the MaxSym test (110 loci) gives similar results, with 65.9% rootstrap support 

for the Yinptero-Yango hypothesis and 25.6% rootstrap support for the Micro-Mega 

hypothesis. In both cases, the AU test could not reject any of the three root positions that 

received non-zero rootstrap support (Appendix Table A.5). 
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Using the NR-DNA model gives 100% rootstrap support for the Yinptero-Yango hypothesis, 

and we can confidently reject the Micro-Mega hypothesis in favour of the Yinptero-Yango 

hypothesis using the AU test (Appendix Fig. A.4). Yet, removing nucleotide loci that fail the 

MaxSym test (~25% of the loci) decreases the support for the Yinptero-Yango hypothesis to 

90.1%, although we can still confidently reject the Micro-Mega hypothesis using the AU test 

(Appendix Table A.5).  

 

FIGURE 4.  The ML rooted tree as inferred from the whole Chiroptera amino acid 

dataset. Bold branches are branches in the AU confidence set. Blue values under each branch 

are the rootstrap support values. 

 

Interestingly, when we randomly subsample 10%, 1%, and 0.1% of the loci in the nucleotide 

dataset, we consistently get the Yinptero-Yango hypothesis as the ML tree and the solely rooted 

topology in the AU confidence set (Appendix Table A.5). Moreover, the rootstrap support 

value for the Yinptero-Yango hypothesis increases and the rootstrap support value for the 

Micro-Mega hypothesis decreases as more parsimony-informative sites are added to the 
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alignment, for both nucleotide and amino acid datasets (Fig. 5, Appendix Table A.5). These 

results are consistent with previous studies that used smaller datasets (Appendix Figure A.10). 

 

FIGURE 5.  Rootstrap support value as a function of the number of parsimony-informative 

characters in the Chiroptera nucleotide and amino acid datasets using the Non-Reversible DNA 

model (NR-DNA) and the Non-Reversible Amino Acid model (NR-AA). 

 

The ΔGLS and ΔSLS values (Shen, et al. 2017) reveal that approximately half of the nucleotide 

and amino acid loci prefer the Yinptero-Yango hypothesis while the other half prefers Micro-

Mega hypothesis. Furthermore, slightly less than half of the nucleotide sites prefer the 

Yinptero-Yango hypothesis. However, more than two-thirds of the amino acid sites prefer the 

Yinptero-Yango hypothesis (Appendix Fig. A.5). The distributions of ΔGLS and ΔSLS 

(Appendix Fig. A.6) show that a small proportion of the amino acid loci (~1%) have very strong 

support for the Micro-Mega hypothesis, and removing those loci from the alignment increased 

the rootstrap support for the Yinptero-Yango hypothesis to 76.6%. Nonetheless, both root 

placements are still in the confidence set of the AU test (Appendix Table A.5) with the amino 

acid dataset. On the other hand, removing nucleotide loci with the highest absolute ΔGLS value 

still gives the Yinptero-Yango hypothesis as the ML tree and the sole topology in the AU 
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confidence set.  Although the nucleotide data show a clear preference to the Yinptero-Yango 

hypothesis, in terms of BIC scores, the NR-DNA model performs worse than reversible models 

in all datasets except for the dataset where we removed loci that failed the MaxSym test (Table 

A.5). On the other hand, the NR-AA performs better than reversible models in big datasets 

(Table A.5). Yet, the amino acid data do not allow us to distinguish between the two leading 

hypotheses for the placement of the root of the Chiroptera based on rooting with non-reversible 

models (Table A.5). 

The ambiguous root of Cetartiodactyla  

The ML tree inferred with the whole amino acid dataset places the clade containing Tylopoda 

(represented by its only extant family; Camelidae) and Suina as the sister group to all other 

cetartiodactylans with 71.8% rootstrap support (Fig. 6). Yet, The AU test did not reject 

Tylopoda alone as the sister group to all other cetartiodactylans. On the other hand, the ML 

tree inferred with the whole nucleotide dataset places Tylopoda as the only sister group to all 

other cetartiodactylans with 71.0% rootstrap support, and we can confidently reject the 

Tylopoda + Suina hypothesis using the AU test (Appendix Fig. A.7). 

Removing the amino acid loci that failed the MaxSym test (~1%) still places Tylopoda + Suina 

as the sister group to all other cetartiodactylans, yet, it decreases the rootstrap support for the 

Tylopoda + Suina hypothesis to 63.3% and increases the rootstrap support for the Tylopoda 

hypothesis to 28.5%. However, we still cannot reject either of the hypotheses using the AU test 

(Appendix Table A.6).  

Removing the nucleotide loci that failed the MaxSym test (~1%) still places Tylopoda as the 

only sister group to all other cetartiodactylans and the only rooted topology in the AU 

confidence set. However, it decreases the rootstrap support for the Tylopoda hypothesis to 
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68.7% and increases the rootstrap support for the Tylopoda + Suina hypothesis to 20.1% 

(Appendix Table A.6). 

 

FIGURE 6.  The ML rooted tree of as inferred from the whole Cetartiodactyla amino 

acid dataset. Bold branches are branches in the AU confidence set. Blue values under each 

branch are the rootstrap support values. 

 

The results from the subsample datasets are mixed (Fig. 7). Analyses on smaller datasets show 

no clear pattern in the placement of the root (Appendix Table A.6), leading us to conclude only 

that the analyses of the whole dataset is likely to provide the most accurate result, but that it is 

plausible that adding more data may lead to different conclusions in the future. 
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FIGURE 7.  rootstrap support value as a function of the number of parsimony-informative 

characters in the Cetartiodactyla nucleotide and amino acid datasets using the Non-Reversible 

DNA model (NR-DNA) and the Non-Reversible Amino Acid model (NR-AA). 

 

ΔGLS analyses reveal that approximately, half of the amino acid and nucleotide loci favour the 

Tylopoda+Suina hypothesis, while the other half of loci favour the Tylopoda hypothesis 

(Appendix Figs. A.8-9). On the other hand, two-thirds of the amino acid sites and more than 

80% of the nucleotide sites favour the Tylopoda+Suina hypothesis. Removing 1% of the amino 

acid loci with the highest absolute ΔGLS values still places Tylopoda + Suina as the sister 

group to all other cetartiodactylans. However, the rootstrap support of the Tylopoda + Suina 

decreased to 63.2% and the rootstrap support for the Tylopoda hypothesis remains 

approximately the same (~14.5%), while the rootstrap support for the Suina hypothesis 

increases from 13.7% to 22.4%. Yet, both the Tylopoda + Suina hypothesis and the Tylopoda 

hypothesis are in the confidence set of the AU test, while the Suina hypothesis is rejected by 

the AU test (Appendix Table A.6). 
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Removing 1% of the nucleotide loci with the highest absolute ΔGLS values gives the 

Tylopoda+Suina as the sister group to all other cetartiodactylans with 39.7% rootstrap support. 

However, the solely rooted topology in the AU confidence set is the topology in which the root 

is placed on the branch leading to Suina (Appendix Table A.6). Similar to Chiroptera and the 

well-defined clades, the NR-AA model performs better in terms of the BIC score than 

reversible models in big amino-acid datasets, while the NR-DNA performs worse than 

reversible models in all datasets (Table A.6). We conclude that neither the nucleotide nor the 

amino acid data are adequate to confidently infer the root placement of Cetartiodactyla with 

non-reversible models. 

Discussion  

In this paper, we introduced a new measure of support for the placement of the root in a 

phylogenetic tree, the rootstrap support value, and applied it to empirical amino acid and 

nucleotide datasets inferred using non-reversible models implemented in IQ-TREE (Minh, et 

al. 2020). The rootstrap is a useful measure because it can be used to assess the statistical 

support for the placement of the root in any rooted tree, regardless of the rooting method. In a 

Maximum Likelihood setting, the interpretation of the rootstrap support is similar to the 

interpretation of the classic nonparametric bootstrap. In a Bayesian setting, the same procedure 

could be used to calculate the posterior probability of the root placement given a posterior 

distribution of trees. It is noteworthy that the rootstrap support value is not a measure of the 

accuracy of the root placement and therefore should not be interpreted as such. However, it 

provides information about the robustness of the root inference with regard to resampling the 

data. This interpretation is consistent with the interpretation of the nonparametric bootstrap 

(Holmes 2003) but with regard to the root placement instead of the whole tree topology. 
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In addition to the rootstrap support value, we introduced another two metrics; the root branch-

length error distance (rBED), and the root split error distance rSED. Similar to the rootstrap 

metric, these additional metrics can be used with any approach that generates rooted 

phylogenetic trees. We note that both metrics require the true position of the root to be known 

(or assumed) and that the rBED requires the rooting method to be able to accurately place the 

root in a specific position of the root branch. 

In this study, we used these and other methods to assess the utility of non-reversible models to 

root phylogenetic trees in a Maximum Likelihood framework. We focussed on applying these 

methods to a large and very well curated phylogenomic dataset of mammals, as the mammal 

phylogeny provides perhaps the best opportunity to find clades for which the root position is 

known with some confidence. As expected, our results show an exponential increase in the 

rootstrap support for the true root as we add more information to the MSA. Yet, in some 

datasets, the rootstrap support drops as more sites are added to the alignment. A careful look 

into those cases shows that the root inferred by the NR model is in the wrong placement which 

suggests that the ML inference is inconsistent and therefore unreliable. The inconsistency of 

the ML could be due to other assumptions (e.g. stationarity or homogeneity) that are severely 

violated in those datasets. 

Our results suggest that non-reversible amino-acid models are more useful for inferring root 

positions than non-reversible DNA models. One explanation for this difference between the 

NR-DNA and the NR-AA models is the bigger character-state space of the NR-AA models. 

These models have 400 parameters (380 rate parameters and 20 amino acid frequencies) 

whereas NR-DNA models have only 16 parameters (12 rate parameters and 4 nucleotide 

frequencies). This could allow the NR-AA model to capture the evolutionary process better 

than the NR-DNA model, potentially providing more information on the root position of the 
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phylogeny. This hypothesis requires some further exploration though, and we note that the 

actual character-space of amino acids is much smaller than accommodated in NR-DNA models 

due to functional constraints on protein structure (Dayhoff, et al. 1978). 

Another explanation for the difference in performance between the NR-AA and NR-DNA 

models is that higher compositional heterogeneity in nucleotide datasets may bias tree 

inference. The fact that each amino acid can be specified by more than one codon, and that 

synonymous substitutions are more frequent than non-synonymous substitutions, makes amino 

acid datasets less compositionally heterogeneous than nucleotide datasets. In principle, this 

bias can be alleviated by removing loci that violate the stationarity and homogeneity 

assumptions (Naser-Khdour, et al. 2019). Our results suggest that this may be the case for the 

datasets we analysed: we show that removing loci that violate the stationarity and homogeneity 

assumptions improves the accuracy and statistical support for the placement of the root. This 

is not surprising since the robustness of the rootstrap, similar to the bootstrap, relies on the 

consistency of the inference method, so removing systematic bias should improve its 

performance.  

We used the non-reversible approach to rooting trees along with the rootstrap support to assess 

the evidence for different root placements in the Chiroptera and Cetartiodactyla. Using the 

amino acid datasets we found that in both cases, although there tended to be higher rootstrap 

support for one hypothesis, neither of the current hypotheses for either dataset could be 

rejected. These results emphasize the importance of the rootstrap support value as a measure 

of the robustness of the root estimate given the data. In both the Chiroptera and Cetartiodactyla 

datasets the root placement varied among subsamples of the dataset, and the rootstrap support 

reflects this uncertainty. However, checking the stability of root placement estimate by 

randomly subsampling from the whole Chiroptera dataset show an obvious trend towards the 
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Yinpterochiroptera-Yangochiroptera hypothesis as the dataset increases in size. This trend is 

consistent with a small number of influential sites or loci having their signal progressively 

drowned out in favour of the Yinpterochiroptera-Yangochiroptera hypothesis as more data are 

added to the alignment. In both the Chiroptera and Cetartiodactyla cases, the amino acid data 

is inadequate to distinguish between certain root placements. On the other hand, in both the 

Chiroptera and Cetartiodactyla, the nucleotide datasets appear to show stronger support for a 

single root placement.  

Comparing BIC scores of reversible and non-reversible models show that in most of the 

nucleotide datasets the reversible model was a much better fit to the data than the NR-DNA 

model. This is likely due to the limitations of the method we used to infer the NR-DNA model. 

Specifically, when inferring the trees with reversible DNA models, we used a partitioned model 

such that each partition was able to have an independent DNA substitution model. On the other 

hand, when we inferred the NR-DNA model we estimated a single model for the entire 

alignment. Thus, the NR-DNA model we inferred was unable to account for heterogeneity in 

the evolutionary process among partitions, possibly leading to its worse fit to the data when 

assessed using BIC scores. This suggests that using either mixture models or partitioned models 

may improve the fit of non-reversible DNA models to the data. The DNA results are consistent 

with results from a previous study using the NR-DNA model and RootDigger (Bettisworth and 

Stamatakis 2020), although that study did not compare the performance of IQ-TREE and 

RootDigger on empirical datasets. Its results indicate that the NR-DNA model in IQ-TREE 

could not infer the correct root placement for any of the three tested datasets. 

Our results demonstrate that the amino-acid non-reversible model can often be surprisingly 

accurate for inferring the root placement of phylogenies in the absence of additional 

information (such as outgroups) or assumptions (such as molecular clocks). In all of the well-
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defined clades that we examined, the non-reversible amino-acid model successfully identified 

the root that we identified a-priori as correct, and with very high rootstrap support. Importantly, 

the non-reversible amino-acid models also tended to fit the data far better than their reversible 

counterparts did. Indeed, we show that root placements appear to be accurate even with datasets 

as small as 50 well-curated loci between fairly closely-related taxa such as orders of mammals. 

Nevertheless, the application of the non-reversible amino acid models to two clades where the 

root position has previously been contentious failed to shed much additional light on the true 

root placement. Thus, while we show that the use of non-reversible models certainly has 

promise, we also show that it is no silver bullet. Yet, as accounting for stationarity and 

homogeneity would improve the ML inference, using non-reversible models that are also non-

stationary and/or non-homogneeous could improve the root placement. However, there is no 

effective way to do so with the current technology. Some software such as Bio++ (Dutheil and 

Boussau 2008), BppML (Groussin, et al. 2013), and HAL-HAS (Jayaswal, et al. 2014) relax 

more than one of the SRH assumptions; but they are rarely used, mainly because of their 

relatively long run time. 

Where a reliable outgroup taxon can be found, without the issues that can confound the 

inference of root placements using outgroups (Dalevi, et al. 2001; Braun and Kimball 2002; 

Graham, et al. 2002; Brady, et al. 2006), we suggest relying on the use of outgroups. 

Nevertheless, where no reliable outgroups can be found, or where there is some reason to 

question the position of a root inferred using an outgroup (e.g. Bergsten 2005), our study 

suggests that using non-reversible models can provide a useful additional line of evidence for 

the position of the root of a phylogeny. We note also that the rootstrap value and the AU test 

could be used to provide estimates of the uncertainty of root placement using an outgroup taxon 
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Our work suggests a practical approach to inferring the root of a phylogenetic tree using non-

reversible models. First, estimate an unrooted tree topology using the best reversible models 

available, excluding outgroup sequences. Next, fix the tree topology and use the best non-

reversible models available to infer the Maximum Likelihood (ML) root position of that tree. 

Finally, determine to what extent the ML root position should be trusted. The degree of trust 

that researchers should put in an inferred ML root position should be influenced by three factors 

(noting of course that all phylogenetic inferences are susceptible to being misled by model 

misspecification). First, the fit of the non-reversible model to the data should be better than the 

fit of the reversible model. This can be assessed using common criteria like AICc or BIC scores. 

A better fit of the non-reversible model provides some assurance that the data contain sufficient 

signal that using a non-reversible model is advisable in the first place. Our results show that 

the root placement was inferred correctly with high rootstrap support in 12 out of the 13 datasets 

in which the non-reversible model was preferable. In the absence of a better fit for a non-

reversible model, we do not think any inferred ML root position should be trusted. Second, 

root positions with higher rootstrap support should be trusted more, because a higher rootstrap 

support indicates less variance among sites in the signal for the placement of the root. Third, 

ML root positions should be trusted more when the number of root placements included in the 

confidence set of an AU test is small because a smaller confidence set indicates that there is 

less uncertainty in the root placement when the analysis is conditioned on the full alignment 

and the unrooted ML tree topology. A conservative approach to inferring root placements with 

non-reversible models would be to consider any root placement that has a substantial fraction 

of the rootstrap support and/or is included in the set of possible root placements identified by 

the AU test as a possible root placement given the assumptions of the model.  

We hope that the combination of non-reversible models, rootstrap support, and AU tests will 

add another tool to the phylogeneticist’s arsenal when it comes to inferring rooted phylogenies.  
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Appendix 

Algorithm A.1. 

Since we want to define the well-defined clades for the non-reversible analysis based on the 

bootstrap support values and the concordance factors values we will use the following 

algorithm to find well-defined clades in the whole MSA: 

(1)  First, estimate the unrooted topology and the bootstrap  support values using the ultrafast 

bootstrap (UFBoot) with 1000 replicates (Hoang, et al. 2018) 

iqtree2 –s ALIGNMENT_FILE –p PARTITION_FILE –B 1000 --prefix REV 

Where ALIGNMENT_FILE is the MSA file, PARTITION_FILE is the partition file (it can be 

the same as the MSA file), -p is the option for edge-linked substitution rates,–B is option for 

UFBoot with 1000 replicates, and --prefix so all the output files will be named REV.*.  

(2)  Infer the single-locus trees 

iqtree2 –s ALIGNMENT_FILE –S PARTITION_FILE --prefix LOCI 

Like –p option, the –S option performs model selection for each loci separately. However, 

unlike –p option, the –S option infer a separate tree for each loci. All output files are of the 

form LOCI.*. 

(3)  calculate the gCF and sCF (Minh, et al. 2018) for every branch of the ML species tree 

Iqtree2 –t REV.treefile --gcf LOCI.treefile –s ALIGNMENT_FILE --scf 

100 --prefix CONCORD 

Where REV.treefile is the unrooted species tree, and LOCI.treefile is file with all the unrooted 

loci trees.  
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Algorithm A.2. 

For each sub-dataset that we want to infer the root placement using the non-reversible model. 

However, as the non-reversible model is computationally expensive, we first find the best 

partitioning scheme using the reversible model and then use this scheme to find the non-

reversible model parameters and infer the rooted tree.  

(1) Find the best partitioning scheme using the best-fit reversible model  

iqtree2 –s ALIGNMENT_FILE –p PARTITION_FILE --prefix REV 

(2) Estimate the non-reversible models’ parameters using the best partitioning scheme from 

the previous step and unrooted tree as the initial tree 

For NR-AA: 

iqtree2 –s ALIGNMENT_FILE –p REV.best_scheme.nex –t REV.treefile  

--model-joint NONREV –B 1000 --prefix AA_NONREV 

For NR-DNA: 

iqtree2 –s ALIGNMENT_FILE –p REV.best_scheme.nex –t REV.treefile  

--model-joint 12.12 –B 1000 --prefix DNA_NONREV 

Where NONREV and 12.12 are the substitution models for NR-AA and NR-DNA as defined 

in IQ-TREE, respectively. 

(3) Compare the BIC scores of the reversible and non-reversible models.  

If BICNONREV > BICREV, then using non-reversible models to infer the rooted topology is not 

advised due to over-parameterization of the data. In this case, an alternative rooting method 

is recommended if possible. 
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Algorithm A.3. 

We apply the AU test (Shimodaira 2002) to all the possible rooting placements using the 

following command-line: 

For NR-AA: 

iqtree2 –s ALIGNMENT_FILE –p REV.best_scheme.nex –model-joint NONREV 

--root-test –zb 1000 –au –te NONREV.treefile --prefix TOP 

For NR-DNA: 

iqtree2 –s ALIGNMENT_FILE –p REV.best_scheme.nex –model-joint 12.12 -

-root-test –zb 1000 –au –te NONREV.treefile --prefix TOP 

Where --root-test will re-root the tree on every branch, -zb option for specifying the number of 

RELL replicates (Kishino, et al. 1990), and -au option to perform the AU test. 
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TABLE A.1.  Last decade’s relevant literature of the well-defined clades that we used in this 

study for estimating the root.  

Clade Study Reference Root placement 

A
fr

o
th

er
ia

 

(Elliot and Crespi 2009) {Afroinsectiphilia, Paenungulata} 

(Asher, et al. 2009) {Afroinsectiphilia, Paenungulata} 

(Poulakakis and Stamatakis 2010) {Afroinsectiphilia, Paenungulata} 

(Phillips and Penny 2010) {Afroinsectiphilia, Paenungulata} 

(Romiguier, et al. 2010) {Afroinsectiphilia, Paenungulata} 

(Kuntner, et al. 2011) {Afroinsectiphilia, Paenungulata} 

(Meredith, et al. 2011) {Afroinsectiphilia, Paenungulata} 

(Svartman and Stanyon 2012) {Afroinsectiphilia, Paenungulata} 

(Lartillot and Delsuc 2012) {Afroinsectiphilia, Paenungulata} 

(dos Reis, et al. 2012) {Afroinsectiphilia, Paenungulata} 

(Benoit, et al. 2013) {Afroinsectiphilia, Paenungulata} 

(Wu, et al. 2014) {Afroinsectiphilia, Paenungulata} 

(Gheerbrant, et al. 2014) {Afroinsectiphilia, Paenungulata} 

(Halliday, et al. 2015) {Afroinsectiphilia, Paenungulata} 

(Puttick and Thomas 2015) 
{Afrosoricida },{Afroinsectiphilia, 

Paenungulata} 

(Foley, et al. 2016) {Afroinsectiphilia, Paenungulata} 

(Liu, et al. 2017) {Afroinsectiphilia, Paenungulata} 

(Wu, et al. 2017) {Afroinsectiphilia, Paenungulata} 

P
ri

m
at

es
 

(Fabre, et al. 2009) {Strepsirrhini, Haplorrhini} 

(Chatterjee, et al. 2009) {Strepsirrhini, Haplorrhini} 

(Matsui, et al. 2009) {Trasiiformes},{Strepsirrhini, Haplorrhini} 

(Romiguier, et al. 2010) {Strepsirrhini, Haplorrhini} 

(Perelman, et al. 2011) {Strepsirrhini, Haplorrhini} 

(Meredith, et al. 2011) {Strepsirrhini, Haplorrhini} 

(Jameson, et al. 2011) {Strepsirrhini, Haplorrhini} 

(Diogo and Wood 2011) {Strepsirrhini, Haplorrhini} 

(Springer, et al. 2012) {Strepsirrhini, Haplorrhini} 

(dos Reis, et al. 2012) {Strepsirrhini, Haplorrhini} 

(Steiper and Seiffert 2012) {Strepsirrhini, Haplorrhini} 

(Lartillot and Delsuc 2012) {Strepsirrhini, Haplorrhini} 

(Finstermeier, et al. 2013) {Strepsirrhini, Haplorrhini} 

(Hartig, et al. 2013) {Strepsirrhini, Haplorrhini} 

(Kumar, et al. 2013) {Strepsirrhini, Haplorrhini} 

(Pozzi, et al. 2014) {Strepsirrhini, Haplorrhini} 

(Wu, et al. 2014) {Strepsirrhini, Haplorrhini} 

(Pattinson, et al. 2015) {Strepsirrhini, Haplorrhini} 

(Kari, et al. 2015) {Strepsirrhini, Haplorrhini} 

(Herrera and Davalos 2016) {Strepsirrhini, Haplorrhini} 
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(Liu, et al. 2017) {Strepsirrhini, Haplorrhini} 

(Wu, et al. 2017) {Strepsirrhini, Haplorrhini} 

(Monson and Hlusko 2018) {Strepsirrhini, Haplorrhini} 

(Reis, et al. 2018) {Strepsirrhini, Haplorrhini} 

(Zhang, et al. 2019) {Strepsirrhini, Haplorrhini} 

M
y
o
m

o
rp

h
a 

(Blanga-Kanfi, et al. 2009) {Muroidea, Dipodoidea} 

(Churakov, et al. 2010) {Muroidea, Dipodoidea} 

(Hao, et al. 2011) {Muroidea, Dipodoidea} 

(Meredith, et al. 2011) {Muroidea, Dipodoidea} 

(Horn, et al. 2011) {Muroidea, Dipodoidea} 

(Fabre, et al. 2012) {Muroidea, Dipodoidea} 

(Wu, et al. 2012) {Muroidea, Dipodoidea} 

(Schenk, et al. 2013) {Muroidea, Dipodoidea} 

(Wu, et al. 2014) {Muroidea, Dipodoidea} 

(Yue, et al. 2015) {Muroidea, Dipodoidea} 

(Liu, et al. 2017) {Muroidea, Dipodoidea} 

(Wu, et al. 2017) {Muroidea, Dipodoidea} 

(Tavares and Seuanez 2018) {Muroidea, Dipodoidea} 

(Swanson, et al. 2019) {Muroidea, Dipodoidea} 

(Hedrick, et al. 2020) {Muroidea, Dipodoidea} 

C
ar

n
iv

o
ra

 

(Finarelli and Flynn 2009) {Feliformia,Caniformia} 

(Agnarsson, et al. 2010) {Feliformia,Caniformia} 

(Eizirik, et al. 2010) {Feliformia,Caniformia} 

(Stankowich, et al. 2011) {Feliformia,Caniformia} 

(Nyakatura and Bininda-Emonds 2012) {Feliformia,Caniformia} 

(Lartillot and Delsuc 2012) {Feliformia,Caniformia} 

(dos Reis, et al. 2012) {Feliformia,Caniformia} 

(Wu, et al. 2014) {Feliformia,Caniformia} 

(Tomiya and Tseng 2016) {Feliformia,Caniformia} 

(Panciroli, et al. 2017) {Feliformia,Caniformia} 

(Liu, et al. 2017) {Feliformia,Caniformia} 

(Wu, et al. 2017) {Feliformia,Caniformia} 

(Polly, et al. 2017) {Feliformia,Caniformia} 

(Machado, et al. 2018) {Feliformia,Caniformia} 

B
o
v
id

ae
 

(Bibi, et al. 2009) {Bovinae} 

(Hassanin, et al. 2012) {Bovinae} 

(Yang, et al. 2013) {Bovinae} 

(Wu, et al. 2014) {Bovinae} 

(Bibi 2013) {Bovinae} 

(Liu, et al. 2017) {Bovinae} 

(Wu, et al. 2017) {Bovinae} 

(Chen, et al. 2019) {Bovinae} 
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TABLE A.2. The well-defined clades that we used in this study for estimating the root. 

Clade 
No. 

taxa 
Dataset branch %BS gCF gDF1 gDF2 sCF 

A
fr

o
th

er
ia

 

7 

AA 

leading 100.0 55.18 0.32 0.66 55.34 

descen.1 100.0 24.68 5.38 8.30 35.64 

descen.2 100.0 55.43 1.41 1.01 55.12 

DNA 

leading 100.0 52.72 0.18 0.42 50.56 

descen.1 100.0 17.97 6.23 8.07 32.87 

descen.2 100.0 50.95 0.96 1.41 51.22 

P
ri

m
at

es
 

16 

AA 

leading 100.0 25.10 2.14 2.67 41.22 

descen.1 100.0 25.77 8.82 7.91 37.91 

descen.2 100.0 45.10 1.25 1.75 55.00 

DNA 

leading 100.0 28.04 2.19 2.79 38.79 

descen.1 100.0 27.29 9.29 7.63 35.82 

descen.2 100.0 47.64 1.42 1.67 50.39 

M
y
o
m

o
rp

h
a 7 

AA 
leading 100.0 58.10 5.94 5.9 48.09 

descen.1 100.0 84.47 0.79 0.61 73.88 

DNA 
leading 100.0 57.47 5.36 5.74 43.32 

descen.1 100.0 83.95 0.62 0.50 65.66 

C
ar

n
iv

o
ra

 

9 

AA 

leading 100.0 60.22 1.01 1.51 64.41 

descen.1 100.0 82.06 0.53 0.76 94.15 

descen.2 100.0 49.80 5.62 7.87 50.53 

DNA 

leading 100.0 53.63 6.11 6.51 45.8 

descen.1 100.0 84.23 0.50 0.62 92.34 

descen.2 100.0 51.18 3.88 6.2 50.73 

B
o
v
id

ae
 

5 

AA 

leading 100.0 85.66 0.18 0.16 89.47 

descen.1 100.0 81.28 3.9 2.38 93.25 

descen.2 100.0 71.83 5.71 5.28 79.17 

DNA 

leading 100.0 85.53  0.28 0.21 85.37 

descen.1 100.0 81.78 3.64 2.27 90.19 

descen.2 100.0 72.21 5.38 4.97 70.74 

Note: The bootstrap, gCF, gDF1, gDF2, and sCF values are for the branch leading to that clade 

and the first direct descendants of the clade, respectively. 
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Table A.3.  Rootstrap support value, number of alternative root placements in the AU test 

confidence set, rBED, and rSED for the amino-acid rooted trees of each clade.  

Clade #loci #sites 

%RS 

support 

for true 

root 

Is true root 

in CS? 

root 

placem

ents in 

CS rBED rSED 

C
ar

n
iv

o
ra

 5,162 3,050,199 100% Yes 0 0.0000 – 0.0273 0 

516 295,962 99.8% Yes 0 0.0000 – 0.0274 0 

52 33,404 99.1% Yes 0 0.0000 – 0.0242 0 

5 2,789 4.6% No 1 0.0074 – 0.0740 1 

B
o
v
id

ae
 5,162 3,050,199 100% Yes 0 0.0000 – 0.0128 0 

516 310,353 100% Yes 0 0.0000 – 0.0130 0 

52 28,729 99.9% Yes 0 0.0000 – 0.0092 0 

5 3,222 41.9% Yes 0 0.0000 – 0.0210 0 

M
y
o
m

o
rp

h
a 5,162 3,050,199 100.0% Yes 0 0.0000 – 0.0842 0 

516 309,459 100.0% Yes 0 0.0000 – 0.0886 0 

52 35,494 100.0% Yes 0 0.0000 – 0.0679 0 

5 4,438 36.6% Yes 0 0.0000 – 0.1135 0 

P
ri

m
at

es
 5,162 3,050,199 100.0% Yes 0 0.0000 – 0.0092 0 

516 302,781 87.9% Yes 0 0.0000 – 0.0090 0 

52 30,225 59.8% Yes 0 0.0000 – 0.0106 0 

5 4,426 66.1% Yes 0 0.0000 – 0.0076 0 

A
fr

o
th

er
ia

 5,162 3,050,199 100.0% Yes 0 0.0000 – 0.0077 0 

516 292,632 98.5% Yes 0 0.0000 – 0.0066 0 

52 28,904 29.2% No 1 0.0004 – 0.0127 1 

5 3,265 62.1% Yes 0 0.0000 – 0.0120 0 
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Table A.4.  Rootstrap support value, number of alternative root placements in the AU test 

confidence set, rBED, and rSED for the nucleotide rooted trees of each clade.  

Clade #loci #sites 

%RS 

support 

for true 

root 

Is true 

root in 

CS? 

root 

placements 

in CS rBED rSED 

C
ar

n
iv

o
ra

 15,486 9,150,597 100% Yes 0 0.0000 – 0.0229 0 

1,548 917,265 100% Yes 1 0.0000 – 0.0273 0 

154 99,334 99.1% Yes 0 0.0000 – 0.0238 0 

15 11,197 17.5% No 1 0.0199 – 0.0420 1 

B
o
v
id

ae
 

15,486 9,150,597 100.0% Yes 0 0.0000 – 0.0269 0 

1,548 910,022 100.0% Yes 0 0.0000 – 0.0269 0 

154 91,674 40.8% Yes 0 0.0000 – 0.0196 0 

15 5,560 1.4% No 2 0.0036 – 0.0198 2 

M
y
o
m

o
rp

h
a 15,485 9,149,793 73.2% Yes 1 0.0000 – 0.1292 0 

1,548 898,643 25.9% Yes 1 0.0048 – 0.0150 1 

154 87,033 5.4% Yes 1 0.0159 – 0.0253 1 

15 9,433 15.7% No 1 0.0352 – 0.0431 2 

P
ri

m
at

es
 

15,486 9,150,597 99.7% Yes 0 0.0000 – 0.0096 0 

1,548 912,110 87.0% Yes 0 0.0000 – 0.0087 0 

154 93,830 31.1% Yes 0 0.0132 – 0.0300 1 

15 8,242 3.0% Yes 1 0.0176 – 0.0221 4 

A
fr

o
th

er
ia

 15,486 9,150,597 0.0% No 1 0.0157 – 0.0268 2 

1,548 924,981 21.0% No 1 0.0133 – 0.0251 2 

154 92,545 44.4% No 1 0.0000 – 0.0073 0 

15 6,697 4.7% No 1 0.0268 – 0.0428 2 

 

  



Chapter 4 

 

227 

 

Table A.5.  Number of sites, root placement, RS support for the ML root placement, better 

BIC score (between R and NR models), and root placements in the AU confidence set for 

Chiroptera. 

 dataset #sites 

Root 

placement 

RS% ML 

root 

Better 

BIC AU CS 

D
N

A
-N

R
 

Whole dataset 9,149,793 Y-Y 100.0% R {Y-Y} 

Subsampled 10% 921,910 Y-Y 99.9% R {Y-Y} 

Subsampled 1% 85,437 Y-Y 41.6% R {Y-Y} 

Subsampled 0.1% 7,804 Y-Y 9.6% R {Y-Y} 

MaxSym test 6,854,459 Y-Y 90.1% NR {Y-Y} 

Highest GLS 8,769,211 Y-Y 100.0% R {Y-Y} 

A
A

-N
R

 

Whole dataset 3,050,199 Y-Y 65.5% NR {Y-Y, M-M, R, P} 

Subsampled 10% 309,745 Y-Y 51.0% NR {Y-Y, M-M} 

Subsampled 1% 33,365 R 38.1% R {Y-Y, R, P} 

Subsampled 0.1% 3,955 M-M 70.2% R {Y-Y, M-M} 

MaxSym test 2,934,731 Y-Y 65.9% NR {Y-Y, M-M, R } 

Highest GLS 3,027,379 Y-Y 76.6% NR {Y-Y, M-M} 

Note: Y-Y refers to Yinptero-Yango hypothesis, M-M refers to Micro-Mega hypothesis, R 

refers to Rhinolophoidea and P refers to Pteropus (Flying foxes). Highest GLS refers to dataset 

where the top 1% loci with the highest ΔGLS removed. 
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Table A.6.  Number of sites, root placement, RS support for the ML root placement, better 

BIC score (between R and NR models, and root placements in the AU confidence set for 

Cetartiodactyla. 

 dataset #sites 

Root 

placement 

RS% ML 

root 

Better 

AICc AU CS 

D
N

A
-N

R
 

Whole dataset 9,149,793 T 71.0% R {T} 

Subsampled 10% 915,274 T 84.5% R {T} 

Subsampled 1% 90,371 T+S 38.9% R {S} 

Subsampled 0.1% 6,003 T 41.6% R {T} 

MaxSym test 7,565,809 T 68.7% R {T} 

Highest GLS 8,557,372 T+S 39.7% R {S} 

A
A

-N
R

 

Whole dataset 3,050,199 T+S 71.8% NR {T+S, T, S} 

Subsampled 10% 293,123 T 62.9% NR {T+S} 

Subsampled 1% 31,253 T+S 50.2% R {T+S, T} 

Subsampled 0.1% 1,480 B 40.7% R {T+S, T} 

MaxSym test 2,997,304 T+S 63.6% NR {T+S, T} 

Highest GLS 3,024,886 T+S 63.2% NR {T+S, T} 

Note: T refers to Tylopoda, S refers to Suina, and B refers to Bovidae. Highest GLS refers to 

dataset where the top 1% loci with the highest ΔGLS removed. 
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Table A.7.  Likelihood, number of free parameters, and BIC score of the amino-acid 

reversible and non-reversible models. 

Clade #loci 

Rev-AA NR-AA 

logL #FP BIC logL #FP BIC 

A
fr

o
th

er
ia

 

5,162 
-14330208.59 21172 28976530 -14297752.78 9716 28740572 

516 
-1357177.681 2117 2741001 -1354652.159 1320 2725919 

52 
-136982.9062 220 276226 -136452.7464 487 277908 

5 
-19001.63 58 38473 -18665.2888 401 40575 

B
o
v
id

ae
 

5,162 
-9495698.792 16456 19237097 -9526590.714 6026 19143154 

516 
-969922.7367 1716 1961545 -972933.315 957 1957968 

52 
-90113.4964 100 181254 -90307.5227 443 185163 

5 
-10558.2498 11 21205 -10429.3843 392 24025 

C
ar

n
iv

o
ra

 

5,162 
-11771808.39 19563 23835706 -11783521.78 8525 23694328 

516 
-1159792.644 1907 2343610 -1160442.419 1205 2336065 

52 
-133619.2048 288 270238 -133736.2131 479 272462 

5 
-12401.6075 37 25097 -12212.3584 399 27590 

M
y
o
m

o
rp

h
a 

5,162 
-13717877.69 21337 27754332 -13704191.03 9710 27553359 

516 
-1410118.562 2041 2846041 -1407094.056 1320 2830876 

52 
-159843.2064 219 321981 -159218.9652 486 323530 

5 
-19717.5842 38 39754 -19553.1957 400 42466 

P
ri

m
at

es
 

5,162 
-14060075.69 19597 28412749 -14035582.5 9433 28212006 

516 
-1409968.454 1965 2844737 -1406902.357 1320 2830464 

52 
-135178.7103 209 272514 -134377.0976 495 273861 

5 
-18618.1041 74 37857 -18440.361 417 40382 
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Table A.8.  Likelihood, number of free parameters, and BIC score of nucleotide reversible 

and non-reversible models. 

Clade #loci 

Rev-DNA NR-DNA 

logL #FP BIC logL #FP BIC 

A
fr

o
th

er
ia

 

15,486 -25649218.58 83714 52640316 -26103942.35 26592 52634137 

1,548 -2592184.776 8317 5298625 -2638008.645 2681 5312848 

154 -269601.7756 822 548603 -274501.0773 290 552318 

15 -19264.4287 71 39154 -19465.3026 50 39371 

B
o
v
id

ae
 

15,486 -14276063.64 60132 29516003 -14675053.78 16919 29621308 

1,548 -1419112.739 5975 2920210 -1458435.435 1711 2940348 

154 -144047.1052 562 294516 -147514.636 185 297143 

15 -8365.8073 64 17284 -8579.0994 35 17460 

C
ar

n
iv

o
ra

 

15,485 -20189220.63 73591 41558056 -20634927.77 22881 41636623 

1,548 -2042901.629 7358 4186822 -2088967.935 2306 4209595 

154 -223544.4981 766 455903 -228291.2125 252 459482 

15 -20813.3401 72 42298 -21110.0594 42 42612 

M
y
o
m

o
rp

h
a 

15,486 -25576581.35 82612 52477370 -25988907.4 26527 52403022 

1,548 -2479841.109 8281 5073203 -2521869.523 2692 5080643 

154 -232786.927 841 475139 -236472.9178 284 476176 

15 -25439.8935 97 51768 -25802.2226 49 52053 

P
ri

m
at

es
 

15,486 -25127036.02 79361 51526169 -25556510.21 25658 51524299 

1,548 -2531565.112 8046 5173550 -2575829.296 2631 5187765 

154 -256432.8736 841 522495 -261055.6783 306 525615 

15 -17934.338 109 36852 -18205.7104 65 36998 
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Figure A.1.  ML tree with the bootstrap support values for each branch. The only clade 

that contains at least five taxa and has 100% bootstrap support at the branch leading to that 

clade and at the first direct descendants in the clade is the green tree (F-K). The red branch is 

the branch leading to the clade, the blue and the yellow branches are the descendant branches. 

Note, since the yellow branch is a tip, the bootstrap support is 100%. 
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Figure A.2.  The ML tree inferred from the whole concatenated AA alignment from 

(Wu, et al. 2018) and rooted on non-mammalian outgroup taxa. Bold branches present the 

well-defined clades we use in this study. 

 



Chapter 4 

 

233 

 

 

Figure A.3.  The ML tree inferred from the whole concatenated DNA alignment from 

(Wu, et al. 2018) and rooted on non-mammalian outgroup taxa. 
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Figure A.4.  The ML rooted tree of as inferred from the whole Chiroptera nucleotide 

dataset. Bold branches are branches in the AU confidence set. Blue values under each branch 

are the rootstrap support values. 

 

 



Chapter 4 

 

235 

 

 

Figure A.5.  The normalized difference in the gene-wise log-likelihood score (ΔGLS) 

and the difference in the site-wise log-likelihood score (ΔSLS) in the Chiroptera amino 

acid and nucleotide datasets. Positive values (green) present genes/sites that favour the 

Yinptero-Yango hypothesis and negative values present genes/sites that favour the Micro-

Mega hypothesis. 
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Figure A.6.  The distribution of the normalized ΔGLS and ΔSLS in the Chiroptera 

amino acid and nucleotide datasets where green presents genes that support the Yinptero-

Yango hypothesis and orange presents genes that support the Micro-Mega hypothesis. 
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Figure A.7.  The ML rooted tree of as inferred from the whole Cetartiodactyla 

nucleotide dataset. Bold branches are branches in the AU confidence set. Blue values under 

each branch are the rootstrap support values. 
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Figure A.8.  The normalized difference in the gene-wise log-likelihood score (ΔGLS) 

and the difference in the site-wise log-likelihood score (ΔSLS) between the 

Tylopoda+Suina hypothesis and the Tylopoda hypothesis. Positive values (green) present 

genes/sites that favour the Tylopoda+Suina hypothesis and negative values (orange) present 

genes/sites that favour the Tylopoda hypothesis. 
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Figure A.9.  The distribution of the normalized ΔGLS and ΔSLS in in the 

Cetartiodactyla amino acid and nucleotide dataset where green presents genes that 

support the Tylopoda+Suina hypothesis and orange presents genes that support the 

Tylopoda hypothesis. 
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Figure A.10.  The support value (bootstrap or posterior probability) for a root 

placement against the number of nucleotide sites used in each study. Orange dot is for 

Micro-Mega hypothesis (Agnarsson, et al. 2010) and green dots are for the Yinpterochiroptera-

Yangochiroptera hypothesis (Teeling, et al. 2005; Tsagkogeorga, et al. 2013). 
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DISCUSSION 

This thesis aims to investigate the prevalence and the effect of model violation due to non-

stationary, non-reversible, and non-homogeneous (SRH) evolution on phylogenetic inference 

and to propose new methods to detect and reduce the bias caused by this model violation. Using 

mathematical, statistical and bioinformatic tools allowed me to exploit the massive amount of 

published phylogenetic datasets in order to explore the extent of model violation in empirical 

data and to develop new tests to address this issue. 

Based on Bowker (Bowker 1948), Stuart (Stuart 1955), and Ababneh’s (Ababneh, et al. 2006) 

test statistics; i.e. the matched-pairs tests of homogeneity (Jermiin, et al. 2017), I developed the 

MaxSym tests to accommodate multiple-sequence alignments to check for model violation due 

to non-SRH evolution in a representative sample of 35 published datasets with more than 3500 

genome partitions. I found that model violation is more widespread than had been previously 

believed and it has an enormous impact on the phylogenetic inference. The model violation is 

mainly prevalent in the third codon positions of most types of genomes (nuclear, mitochondrial, 

and viral) and intergenic spacers in plastids. Yet, the results confirm that all types of genomes 

and genomic regions are prone to SRH violation. 

A number of studies have used these new tests since their publication. For example, using the 

MaxSym tests to remove loci that have a high potential to introduce systematic bias and 

compromise the consistency of the phylogenetic inference facilitated the resolution of 

problematic phylogenies such as Terebelliformia (Stiller, et al. 2020), Hyaenidae (Westbury, 

et al. 2021), bioluminescent Elateroids (Kusy, et al. 2021), Gracillariidae (Li, et al. 2021), 

Pteropodidae (Nesi, et al. 2021), Fungiidae (Grinblat, et al. 2021) and provided new insights to 

the current knowledge regarding their evolution. 
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A deeper look into the results of the three MaxSym tests from the empirical dataset in Chapter 

1 reveals that most of the model violations in these datasets are due to non-stationary evolution. 

Although non-homogeneous evolution is common in phylogenetics, apparently it is not the 

main source of systematic bias due to model violation in phylogenetic inference (Jayaswal, et 

al. 2005; Ababneh, et al. 2006; Song, et al. 2010). These results suggest that developing non-

stationary substitution models that are efficient and user-friendly could significantly improve 

phylogenetic inference by reducing systematic bias due to non-SRH evolution. 

To investigate further the impact of systematic bias due to the use of SRH models on data that 

has not evolved under such conditions, I simulated data under various settings and different 

sizes. In the convergent scheme simulations where two distantly related branches undergo 

correlated and extreme changes in the substitution models, the phylogenetic inference was 

rigorously biased when SRH models were used for the phylogenetic analysis. However, under 

the inheritance scheme where branches inherit their substitution models from their ancestors, 

the phylogenetic inference was robust to model violations.  

Although it is tempting to conclude from these results that phylogenetic inference is robust to 

model violation when these violations are not severe, such a conclusion should be drawn with 

lots of caution. Even though I attempted to simulate data under realistic conditions, those 

simulations still have many limitations that make them far from realistic. To name some, the 

empirical distributions of base frequencies, substitution rates and branch lengths were all 

derived using SRH models, specifically, GTR models, that constrain the estimation of the 

evolutionary process of the empirical datasets. While these empirical distributions are more 

realistic than distributions that are commonly used in simulations in phylogenetics, they 

oversimplify the real evolutionary processes.  
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Another limitation is that the branch lengths distribution was derived from trees that were 

inferred using SRH models and without distinguishing between internal and leaf branches. 

Moreover, by definition branches reach their stationary distribution when time approaches 

infinity. However, in my simulated data, I used branch lengths drawn from the empirical 

distribution of branch lengths. In other words, as long as I do not have infinite branch lengths, 

the simulated alignments could be much less non-stationary than anticipated.  

Despite not being perfectly realistic, the empirical distributions derived from real datasets, 

along with their best-fit probability distributions can be are very useful for numerous purposes, 

such as simulations or prior distributions for Bayesian analysis. These distributions are 

available in the new simulator, AliSim (Ly-Trong, et al. 2021), and can be used to generate 

biologically realistic alignments.  

Testing the power of the MaxSym tests using these simulations reveals that their power is rather 

limited. This is not surprising since these tests consider only the most divergent pair of 

sequences while ignoring all the other sequences in the alignment. Regardless, the false-

positive rates of those tests are somewhat reasonable which makes them suitable as an 

elimination method for loci that violates the SRH assumption. One alternative for the MaxSym 

tests is using all the possible pairs of sequences instead of just the pair with the maximum 

divergence. This will significantly increase the power of the test to detect partitions that violate 

the SRH assumptions. The only downside with this approach is the dependencies between the 

pairs of sequences, which makes it statistically improper. 

In an empirical framework, the dependencies between the pairs of sequences have little effect 

on the desired result. Accounting for these dependencies may increase type I error due to over-

estimation of model violation, which could lead to rejecting parts of the data that do not violate 

the SRH assumption. However, in the era of big data where the size of datasets are on a 
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genome-scale, using only a little part of the data for the phylogenetic analysis is completely 

acceptable and sometimes even desired (Philippe, et al. 2011; Kumar, et al. 2012; Yang and 

Zhu 2018). In fact, methods that use partial datasets, such as cross-validation, is currently very 

common in phylogenetic studies (Susko and Roger 2020) although they can also suffer from 

dependency issues (Wong and Yang 2017). 

One suggestion as a new extension for the three matched-pairs tests of symmetry (Jermiin, et 

al. 2017) to accommodate multiple sequence alignments with high power would be a binomial 

test for all the pairwise p-values in the alignment. Applying the matched-pair tests of symmetry 

to every pair of the sequences would result in(n¦2)  chi-squared p-values, where n is the number 

of sequences in the alignment. Then using a binomial distribution with (n¦2) trials and 5% 

success probability we can assess if the alignment passes or rejects the null hypothesis of SRH 

evolution. Indeed, this is the approach that I first proposed when working on this problem but 

it was rejected by reviewers during the review process as it is impossible to account for the 

non-independence between the pairs of sequences without a priori knowledge of the phylogeny. 

While this approach ignores the dependencies among the pairwise p-values, it is much more 

powerful than the MaxSym test in detecting model violations due to non-SRH evolution in 

multiple sequence alignments. 

Assessing the model assumptions a priori to the phylogenetic inference is a very important step 

and therefore it is part of the phylogenetic protocol proposed by (Jermiin, et al. 2020). In this 

thesis, I addressed this step by introducing the MaxSym tests that can be used on multiple 

sequence alignments to exclude partitions that violates the SRH assumptions. Another 

important step that was suggested by (Jermiin, et al. 2020) is using tests for goodness-of-fit a 

posterior to the phylogenetic inference. To address this step, I developed a new algorithm that 
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checks the optimal number of substitution models operating along the phylogenetic tree given 

pre-defined clades for that phylogeny. 

The results of using this new algorithm on three big datasets indicate that the homogeneous 

model with one base stationary distribution and one substitution matrix operating along the 

whole tree always has the worst fit for the data. These results are congruent with results from 

previous studies that compared homogeneous and non-homogeneous models such as (Herbeck, 

et al. 2005; Blanquart and Lartillot 2006; Boussau and Gouy 2006; Blanquart and Lartillot 

2008; Boussau, et al. 2008; Dutheil and Boussau 2008; Jayaswal, et al. 2011; Zhang, et al. 

2011; Dutheil, et al. 2012; Groussin, et al. 2013; Jayaswal, et al. 2014) and showed that non-

homogeneous models always outperform homogeneous models according to statistical criteria 

such as AIC and BIC.   

The major limitation of using non-homogeneous models in phylogenetic studies is efficiency, 

especially in amino acid datasets. The large number of parameters and the risk of over-

parameterization makes the use of these models impractical in empirical datasets. By utilizing 

the efficiency of QMaker (Minh, et al. 2021) to estimate amino acid substitution models and 

using pre-defined homogeneous clades, I introduced a user-friendly algorithm for non-

homogeneous model inference. Although this approach is far from perfect, it provided 

statistically improved models of evolution than the commonly used SRH models with datasets 

that are tens of folds larger than have been previously used with non-homogeneous amino acid 

models (Groussin, et al. 2013). 

Using a non-homogeneous and non-stationary model showed that the differences between 

stationary frequencies are more pronounced than differences between Q matrices within major 

clades, which confirms what I found using the MaxSym tests on various empirical datasets in 

Chapter 1. Although varying the stationary distribution across the tree could be enough to 
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significantly improve the model fitness without varying the substitution processes, in my 

approach I did not have this option. Though, in another study by (Groussin, et al. 2013), they 

tried three different types of models – homogeneous and stationary, homogeneous and non-

stationary, and non-homogeneous and non-stationary on four empirical datasets and found that 

in one of the datasets the homogeneous and non-stationary model was the best-fit model while 

in the remaining three datasets the non-homogeneous and non-stationary model was the best-

fit model in terms of BIC score. These results suggest that while in some cases the non-

stationary model is indeed the best-fit model, in most cases the non-homogeneous and non-

stationary model will outperform it. 

In addition to the stationarity and homogeneity assumptions that I extensively explored in the 

first three chapters, the third assumption of SRH evolution, namely; reversibility, was not 

addressed. Hence, in the fourth chapter of this thesis, I focused on investigating non-reversible 

models of nucleotide and amino acid substitutions and comparing them to the commonly used 

time-reversible models. In terms of BIC score, the results demonstrate a clear preference for 

the non-reversible models of amino acids as the number of sites increases in the dataset. Yet, 

in the non-reversible models of nucleotides, this trend was not there. On the contrary, in most 

datasets, the reversible model had the best fit for the data regardless of the number of sites. 

This is likely due to the fact that I used partitioned models in the reversible analysis but not in 

the non-reversible analysis. 

Since the “Pulley Principle” (Felsenstein 1981) that allows moving the root of the tree without 

affecting its likelihood does not hold for non-reversible models, inferring rooted trees without 

additional assumptions or information is a powerful feature of those models. The results in 

Chapter 4 present the ability of the non-reversible models of nucleotides and amino acids to 

correctly infer the root placement of most trees. Furthermore, in order to assess the confidence 
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in the root placement, I developed the rootstrap support value which is a statistical measure of 

the support that the data have for the placement of the root in rooted trees. Applying that 

measure for the inferred rooted trees shows very high support for the correct root placement in 

whole datasets. As expected, due to a large number of parameters in the non-reversible models, 

the rootstrap support value decreases with decreasing the number of sites in the alignment. 

In Chapter 3 I found that the two clades; Chiroptera and Cetartiodactyla are homogeneous, 

meaning that the subclades in each clade have similar evolutionary processes. Yet, an 

interesting fact about those two clades is that their root placements are still controversial. 

Therefore, I used the non-reversible models of nucleotides and amino acids to shed more light 

on that problem. The results show that for the Chiroptera clade, both the nucleotide and the 

amino acid models place the root on the branch connecting between Yinpterochiroptera and 

Yangochiroptera and with very high rootstrap support in the nucleotide dataset. This result 

reinforces the Yango-Yinptero hypothesis that is gaining more and more support in recent 

studies (e.g. Meganathan, et al. 2012; Tsagkogeorga, et al. 2013; Ren, et al. 2018; Reyes-

Amaya and Flores 2019). For Cetartiodactyla, the nucleotide’s model inferred Tylopoda as the 

most-basal clade while the amino acid model inferred the clade that contains Tylopoda and 

Suina as the most basal clade of Cetartiodactyla. In both cases, the rootstrap support was not 

very high (~71%) but very similar. 

The use of non-reversible models is proved to be very useful, especially when no additional 

information or assumptions are available or desired for rooting the tree. The computational 

load of these models is reasonable even with very large datasets like the ones I used in this 

study. The amino acid non-reversible models, in particular, seem to always outperform the 

traditional time-reversible models in terms of BIC scores when the number of sites is large 
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enough, suggesting that the use of these models is recommended for large datasets, even when 

rooting the inferred tree is not a primary goal of the analysis. 

The work presented in this thesis highlights the complex nature of phylogenetic inference and 

emphasize the need for appropriate methods and tools to accommodate this complexity. 

Relying on traditional stationary, reversible, and homogeneous substitution models to explore 

evolutionary relationships in the era of genomic-scale datasets might be convenient but it is 

very misleading. The literature is crammed with examples of controversies caused by the 

inconsistency of phylogenetic inference due to bias introduced by model violations. The 

mutational process is known to occur heterogeneously along genomes. For example, the rate 

of C to T in mammalian genomes is much higher for CpG dinucleotides than for other 

dinucleotides due to the higher DA methylation level in these sites (Ehrlich and Wang 1981). 

Another example is the antiviral activities of the members of APOBEC cytidine deaminases. 

Those proteins induce the hypermutation G to A in the HIV genome, as well as the 

hypermutation C to U in the SARS-CoV-2 genome (Simmonds 2020; Wang, et al. 2020) and 

the hypermutations G to A and C to T in the latest monkeypox virus outbreak (Gomes, et al. 

2022). 

Since “essentially, all models are wrong, but some are useful” (Box 1979), verifying that the 

model assumptions are not violated by the data is an important step forward in minimizing bias 

in the phylogenetic analysis. I believe that there is still more to be done in that regard. 

Another avenue that is worth investing in, is the development of more complex models that on 

one hand can contain the complexity of the real data and on the other hand be efficient and 

user-friendly to gain popularity among researchers. The non-reversible models that I 

investigated in this thesis demonstrate the ability of such models to improve phylogenetic 

inference without extra hurdles for the user. Another one that I also explored, is the non-
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stationary and non-homogeneous model. An inclusive model that allows for non-stationary, 

non-reversible, and non-homogeneous substitution processes should be the logical next step in 

phylogenetic inference. 

In this thesis, I focused on the SRH assumptions, their prevalence in biological datasets, the 

impact that their violation has on the phylogenetic inference and introduced new methods to 

deal with the implications. However, some of the most fundamental assumptions in 

phylogenetics were not addressed in this work. One of the basic assumptions that almost all 

phylogenetic analysis starts with is that the substitution processes operating along phylogenies 

are Markovian. It is so natural to assume the Markovian property for evolutionary processes, 

that a very small number of studies even tried to investigate the violation of this assumption 

(Tuller and Mossel 2010; Vera-Ruiz, et al. 2014; Vera-Ruiz, et al. 2021).  

Another assumption that seems very natural, is the assumption that the sites of the alignments 

evolve independently from each other and with identical distribution (i.i.d.). Despite the 

growing body of evidence that substitution processes are context-dependent and affected by 

neighbouring sites, substitution models that account for dependencies between sites are still 

rarely used in phylogenetic analysis (Pedersen and Jensen 2001; Arndt, et al. 2003; Lunter and 

Hein 2004; Siepel and Haussler 2004; Arndt and Hwa 2005; Christensen 2006; Shapiro, et al. 

2006; Baele, et al. 2008; Bérard, et al. 2008; Hobolth 2008; Baele, et al. 2010; Nasrallah, et al. 

2011; Bérard and Guéguen 2012).   

Following the phylogenetic protocol proposed by (Jermiin, et al. 2020) is an important step 

towards reducing systematic bias in phylogenetic inference. In my thesis I tried to address the 

two new steps suggested in this protocol, namely, assessing phylogenetic assumptions a priori 

to the phylogenetic inference and testing for goodness-of-fit a posteriori to the phylogenetic 

inference. Moreover, I demonstrated the advantages of using more complex models of 
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evolution to relax some of the common assumptions in phylogenetics. While this protocol is a 

good starting point for a more robust phylogenetic inference, more work is needed to develop 

better methods that can keep in line with the rapid advancement in DNA sequencing and data 

collecting. 
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