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Abstract
The Hamiltonian of the N-state superintegrable chiral Potts (SICP) model is
written in terms of a coupled algebra defined by N − 1 types of Temper-
ley–Lieb generators. This generalises a previous result for N = 3 obtained by
Fjelstad and Månsson (2012 J. Phys. A: Math. Theor. 45 155208). A picto-
rial representation of a related coupled algebra is given for the N = 3 case
which involves a generalisation of the pictorial presentation of the Temper-
ley–Lieb algebra to include a pole around which loops can become entangled.
For the two known representations of this algebra, the N = 3 SICP chain and
the staggered spin-1/2 XX chain, closed (contractible) loops have weight

√
3

and weight 2, respectively. For both representations closed (non-contractible)
loops around the pole have weight zero. The pictorial representation provides
a graphical interpretation of the algebraic relations. A key ingredient in the
resolution of diagrams is a crossing relation for loops encircling a pole which
involves the parameter ρ = e2πi/3 for the SICP chain and ρ = 1 for the staggered
XX chain. These ρ values are derived assuming the Kauffman bracket skein
relation.
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The N-state superintegrable chiral Potts (SICP) model, discovered by von Gehlen and
Rittenberg [1], is defined on a chain of length L by the Hamiltonian [1, 2]

HSICP = −
L∑

j=1

N−1∑
n=1

2
1 − ω−n

[
λ τ n

j + (σ jσ
†
j+1)n

]
. (1)

The parameter λ is a temperature-like coupling and ω = e2πi/N. The operators τ j and σj acting
at site j satisfy the relations

τ †j = τN−1
j , σ†

j = σN−1
j , σ jτ j = ω τ jσ j, (2)

with τN
j = σN

j = 1, where 1 is the identity. In terms of matrices,

τ j = 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ τ ⊗ 1 ⊗ · · · ⊗ 1, (3)

σ j = 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ σ ⊗ 1 ⊗ · · · ⊗ 1, (4)

where 1 is the N × N identity matrix. The N × N shift and clock matrices τ and σ are in position
j, with

τ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

, σ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
0 ω 0 . . . 0 0
0 0 ω2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 ωN−1

⎞
⎟⎟⎟⎟⎟⎠

. (5)

The SICP chain is a special case of the more general chiral Potts model [2, 3]. There has
been a revival of interest in such models in the context of parafermionic edge zero modes
and topological phases [4, 5]. The model defined by Hamiltonian (1) is called superintegrable,
because, beyond an infinite number of commuting conserved charges, it possesses additional
symmetry generated by the Onsager algebra, owing to the Dolan–Grady condition [6] being
satisfied. We remark that the SICP chain has been solved only for periodic boundary conditions,
with the Onsager algebra playing a key role [7]. In the above Hamiltonian, open boundary
conditions are obtained by dropping the terms (σL σ

†
L+1)n, n = 1, 2, . . . , N − 1. Here we will

focus particularly on the case of open boundary conditions.
The other main ingredient for the present work is the Temperley–Lieb (TL) algebra [8], also

known as the Temperley–Lieb–Jones algebra [9], which has enjoyed far reaching applications
in both physics and mathematics. The TL algebra underpins a number of key models in sta-
tistical mechanics [10, 11], notably the spin-1/2 XXZ and N-state Potts chains. Both models
can be written in terms of generators ej satisfying the TL algebra relations, from which their
TL equivalence is established [12]. Beyond the known representations in terms of spin opera-
tors, the TL algebra is arguably at its most powerful in the pictorial representation [11, 13, 14].
Here we give the pictorial representation for an algebra related to the N = 3 SICP chain, which
involves two coupled copies of the TL algebra. The algebraic connection between the three-
state SICP chain and two coupled copies of the TL algebra has been established by Fjelstad and
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Månsson [15]. Various other generalisations of the TL algebra are known, e.g., multi-coloured
TL algebras [16–18].

For arbitrary N, we define generators e(k)
j , k = 1, . . . , N − 1, by

e(k)
2 j−1 =

1√
N

N∑
n=1

(ωkτ j)n, (6)

e(k)
2 j =

1√
N

N∑
n=1

(ωkσ jσ
†
j+1)n. (7)

The relations satisfied by these generators include the coupled TL algebra relations

(e(k)
j )2 = Q e(k)

j (8)

e(k)
j e(l)

j±1e(k)
j = e(k)

j (9)

e(k)
i e(l)

j = e(l)
j e(k)

i , |i − j| > 1 (10)

e(k)
j e(l)

j = e(l)
j e(k)

j = 0, k �= l (11)

with Q =
√

N. This algebra is composed of N − 1 copies of the TL algebra, coupled via the
relations (9). The above algebraic relations reduce to those for a single TL algebra when N = 2,
for which the relations (11) are not applicable.

Noting that the generators e(k)
j satisfy the inverse relations

(τ j)
n = 1 − 1√

N

N−1∑
k=1

(1 − ω−kn)e(k)
2 j−1, (12)

(σ jσ
†
j+1)n = 1 − 1√

N

N−1∑
k=1

(1 − ω−kn)e(k)
2 j , (13)

the SICP Hamiltonian (1) can be written in terms of the generators. In this way, with periodic
boundary conditions imposed,

HSICP = −(N − 1)L(λ+ 1) +
2√
N

L∑
j=1

N−1∑
k=1

(N − k)(λe(k)
2 j−1 + e(k)

2 j ). (14)

In deriving this result we have made use of the relation (result (2.18) of [19])

N−1∑
n=1

2ωkn

1 − ω−n
= N − 2k − 1, 0 � k � N. (15)

Similarly for open boundary conditions

HSICP = −(N − 1)(L(λ+ 1) − 1) +
2√
N

L∑
j=1

N−1∑
k=1

λ(N − k)e(k)
2 j−1

+
2√
N

L−1∑
j=1

N−1∑
k=1

(N − k)e(k)
2 j . (16)
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The generators e(k)
j satisfy additional relations beyond (8)–(11), which have been studied in

the N = 3 case in [15]. Among them are cubic relations, which for e j = e(1)
j and f j = e(2)

j take
the form

f je j±1e j = ± i
(
ω∓1e j±1e j − f j±1e j

)
+ ω±1e j, (17)

= ± i
(
ω∓1 f je j±1 − f j f j±1

)
+ ω±1 f j, (18)

e je j±1 f j = ∓ i
(
ω±1e j±1 f j − f j±1 f j

)
+ ω∓1 f j, (19)

= ∓ i
(
ω±1e je j±1 − e j f j±1

)
+ ω∓1e j, (20)

f j f j±1e j = ω±1 f je j±1e j , e j f j±1 f j = ω∓1e je j±1 f j. (21)

In relations (17)–(20) we have used the identity (ω − ω2)/
√

3 = i. Analogous cubic relations
for general N can be readily obtained by numerical observation, being similar combinations
of one- and two-body terms. For example, for N = 4 with e j = e(1)

j , f j = e(2)
j and g j = e(3)

j , a
typical cubic relation is of the type

f1e2e1 =
1
2

(1 − i)e2e1 −
1
2

(1 + i)g2e1 − i f2e1 + i e1, (22)

with f1f2e1 = if1e2e1. In general, relations of the type (21) involving the triple product
e(k)

j e(l)
j±1e(m)

j obey

e(k)
j e(l)

j±1e(m)
j = ω±(m−k)e(k)

j e(l+1)
j±1 e(m)

j . (23)

These relations imply the result

e(k)
j e(l)

j±1e(m)
j = ω±(m−k)(n−l)e(k)

j e(n)
j±1e(m)

j . (24)

for all allowed values of j, k, l, m, n and N.
Returning to the N = 3 case, the abstract algebra with generators ei and fj for 1 � j � n

and relations (8)–(11) and (17)–(21) was introduced in [15] as the special case of a family of
algebras Ãn(α) at α = e−πi/6.

A pictorial representation of the generators ej and fj for this algebra is given in figure 16.
For a given L, we have odd diagrams e2j−1 and f2j−1 for j = 1, . . . , L and even diagrams e2j

and f2j for j = 1, . . . , L − 1, and thus a total of 4L − 2 ‘cup-caps’, running between 	 = 2L
strands. The key feature of the pictorial representation is a pole around which loops can become
entangled. Here we have chosen the position of the pole to be at one end of the chain. In the
associated loop diagrams, closed (contractible) loops have weight Q, with Q =

√
3 in this

example, while a closed (non-contractible) loop around any pole has weight zero. With these
definitions, each of the defining relations (8)–(11) admits a graphical interpretation in terms
of isotopies of diagrams and local relations. The graphical relations are similar to those for the
single TL algebra [13]. However, there is an interesting subtlety involved with the resolution of
loops entangling a pole. Consider the cubic relations defined by (9). The cubic relations of most

6 A pictorial representation of an analogous algebra for general N, based on [22], will be discussed elsewhere.
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Figure 1. Pictorial representation of the generators e(1)
j and e(2)

j .

Figure 2. Graphical version of the relation f2 f1 f2 = f2. The key ingredient in resolving
the diagram is the crossing relations depicted in figure 3.

Figure 3. Crossing relations for a loop encircling a pole. For the SICP chain, for which
Q =

√
3, the parameter ρ = ω = e2πi/3.

interest are of the type f1f2 f1 = f1 and f2 f1 f2 = f2. The relation f2 f1 f2 = f2 is depicted in figure 2
along with the resolution of the diagram. The key ingredient in the graphical interpretation of
such relations is the identity shown in figure 3. The diagrammatic proof of f1 f2 f1 = f1 follows
in similar fashion. The proof of relations (8) and (10) is straightforward, while the proof of
relations (11) relies on the vanishing of any closed loop encircling a pole.

We point out that the case of one pole is also studied in the context of the ‘blob’ algebra [20],
a variation of the TL algebra which usually comes with two parameters: one corresponding to
parameter Q and one corresponding to the value of a closed loop encircling the pole or its
equivalent (which we have set to zero). The case with Q = −2 and with loops encircling the
pole also zero has been studied recently in the context of extremal weight projectors [21, 22].
Another variant is the one-boundary TL algebra [23].

The value of the parameter ρ appearing in the crossing relations for loops encircling a pole
can be derived if one assumes the Kauffman bracket skein relation between a crossing and its
two planar resolutions [13]. We set

(25)

5
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and by a π/2 rotation, we also have

(26)

The Reidemeister 2 move holds iff Q = −A2 − A−2, where we recall that Q is the weight
or value of a closed, contractible, circle. This choice also ensures that the Reidemeister 3
move holds. Note that, generically there are four solutions A ∈ {±A1,±A2}. In particular, for
the values Q =

√
3 and Q = 2 we have A = e2πik/24 for k ∈ {5, 7, 17, 19} and A ∈ {i,−i},

respectively. Finally, with regard to the Reidemeister 1 move, we have

(27)

(28)

Now suppose that a circle wrapping around a red line is zero. It follows that

(29)

(30)

These diagrams agree up to a factor of A2. For oriented links, the symmetry between the cross-
ing and the inverse of its π/2 rotation is broken. Thus one makes the following definition for
the positive and negative oriented crossings.

(31)

(32)

Here we have simply rescaled the crossing by −A±3 depending on the sign of the oriented
crossing. This makes them Reidemeister 1 invariant. For the oriented crossing, we now have

(33)

(34)

6
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These diagrams agree up to a factor of A8. It follows that the prefactor ρ defined in figure 3
takes the values ρ = ω = e2πi/3 for Q =

√
3 and ρ = 1 for Q = 2.

By using the above diagrammatic interpretation in terms of the Kauffman bracket skein rela-
tion and the wrapping-around-a-pole relation, we have confirmed that each of the additional
cubic relations (17)–(21) are also satisfied diagrammatically. Thus, we obtain a pictorial rep-
resentation of the algebra Ãn(α) at α = e−πi/6. At this point we note that the algebra elements
(6) and (7) satisfy additional relations, some accounted for in the family of algebras An(α)
from [15], which do not hold in the pictorial interpretation without imposing further relations.

Fjelstad and Månsson [15] have also shown that the staggered spin-1/2 XX chain is associ-
ated with a representation of the coupled algebra (8)–(11) with two types of generators ej and
fj and Q = 2. Here we have thus also given a pictorial representation for this model. For the
single pole case with Q = 2, the value ρ = 1 in the crossing relation for loops encircling a pole
applies to the staggered spin-1/2 XX chain. This model was solved long ago via free fermions
[24, 25]. The generators are defined in terms of the Pauli spin matrices by [15]

e j =
1
2

(1 − σz
jσ

z
j+1 + σx

jσ
x
j+1 + σy

jσ
y
j+1), (35)

f j =
1
2

(1 − σz
jσ

z
j+1 − σx

jσ
x
j+1 − σy

jσ
y
j+1). (36)

The Hamiltonian of the staggered XX chain, defined on a chain of L sites with open boundary
conditions, follows as

HsXX =

L−1∑
j=1

λ j(e j − f j), (37)

where the values of the parameter λj are staggered such that, e.g., λj = λ for j odd and λj = 1
for j even. This model is equivalent to the Su–Schrieffer–Heeger model of polyacetylene [26],
recognised as a fundamental model of a topological insulator exhibiting edge states [27, 28].

The cubic relations for the staggered XX chain have a similar structure to those for the SICP
model. We find

f je j±1e j = e j±1e j + f j±1e j − e j, (38)

= f je j±1 + f j f j±1 − f j, (39)

e je j±1 f j = e j±1 f j + f j±1 f j − f j, (40)

= e je j±1 + e j f j±1 − e j, (41)

with the additional relations fj fj±1ej = fjej±1ej and ej fj±1fj = ejej±1 fj. We have also checked
that each of these relations is consistent with the diagrammatic interpretation.

As an illustrative example of the algebraic/pictorial approach applied to the SICP chain
for N = 3, consider the simplest case L = 2 with open boundary conditions. Here HSICP is a
9 × 9 matrix. The eigenvalues in the ground-state sector of the Hamiltonian are constructed
from the words a1 = e1e3e2, a2 = e2a1, a3 = f2a1, a4 = f1a2 and a5 = f3a2. These five basis
states, along with the six generators, are depicted in figure 4. In constructing the loop model
Hamiltonian a crucial point in resolving the related diagrams is to make use of the relations

7
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Figure 4. Generators and basis states for the ground state sector of the N = 3 SICP chain
for L = 2. Note that the crossing in state a4 can be resolved by using the first crossing
relation depicted in figure 3, thereby introducing a factor ω−1.

depicted in figure 3. In this way we have checked that the resulting 5 × 5 matrix recovers
the corresponding five eigenvalues of HSICP, which for this sector, includes the groundstate
eigenvalue. The remaining eigenvalues of HSICP are obtained similarly. We have also performed
similar checks for larger values of L and also for the staggered XX chain. Such calculations are
indeed very instructive, confirming in this way, e.g., the crossing relations depicted in figure 3.

With the form of the staggered Hamiltonian (37) in view, we now reconsider the Hamilto-
nian of the SICP model. It was shown for N = 3 that HSICP can be written [15]

H = − 2√
3

L∑
j=1

[
λ
(
e2 j−1 − f2 j−1

)
+
(
e2 j − f2 j

)]
. (42)

Using the definitions (6) and (7), with again (ω − ω2)/
√

3 = i, gives

e2 j−1 − f2 j−1 = i
(
τ j − τ 2

j

)
, (43)

e2 j − f2 j = i
[
σ jσ

†
j+1 − (σ jσ

†
j+1)2

]
. (44)

The Hamiltonian (42) thus becomes

H = − 2 i√
3

L∑
j=1

[
λ
(
τ j − τ 2

j

)
+ σ jσ

†
j+1 − (σ jσ

†
j+1)2

]
, (45)

where the last terms σLσ
†
L+1 and (σLσ

†
L+1)2 are omitted for open boundary conditions. This

Hamiltonian has precisely the same eigenspectrum as HSICP defined in (1) with open boundary
conditions. We remark that (45) appears to be a new way of writing the N = 3 SICP Hamilto-
nian, originating from the staggered nature of the coupled operators ej and fj between odd and
even sites.

There are a number of immediate questions arising from this work, which we have begun
to at least partially address. For example, it is known that the TL algebra, along with the pic-
torial representation, can be used to derive the full eigenspectrum of the TL Hamiltonian, in
that case via the Bethe ansatz [29–33]. The question then is if the SICP eigenspectrum can be
obtained via the coupled TL algebra and pictorial representation given here, where we partic-
ularly have in mind a solution for open boundary conditions. Similarly one can also consider
the periodic version. A related issue is finding other possible representations of the coupled
algebra (8)–(11). So far we know the SICP representation with Q =

√
N for which there are

N − 1 coupled copies of the TL algebra. The other known representation is for the staggered

8
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spin-1/2 XX chain mentioned above, with Q = 2 and two copies of the TL algebra. It remains
to be seen if this latter representation can be deformed or extended in some way for arbitrary
Q, thereby establishing a TL-type equivalence with the N = 3 SICP chain. In concluding we
also mention that the coupled TL algebra and its pictorial representation should in principle
provide a pathway towards Baxterization [34], the process of adding a spectral parameter to
algebraic relations to construct a solution of the Yang–Baxter equation, as originally achieved
for TL, among other algebras. From the pictorial perspective, the inclusion of poles is expected
to play a key role.
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