
catalysts

Article

Novel Push–Pull Dyes Derived from
1H-cyclopenta[b]naphthalene-1,3(2H)-dione as
Versatile Photoinitiators for Photopolymerization and
Their Related Applications: 3D Printing and
Fabrication of Photocomposites

Ke Sun 1,2, Shaohui Liu 1,2, Corentin Pigot 3 , Damien Brunel 3 , Bernadette Graff 1,2,
Malek Nechab 3 , Didier Gigmes 3 , Fabrice Morlet-Savary 1,2, Yijun Zhang 1,2, Pu Xiao 4,*,
Frédéric Dumur 3,* and Jacques Lalevée 1,2,*

1 Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; ke.sun@uha.fr (K.S.);
shaohui.liu@uha.fr (S.L.); bernadette.graff@uha.fr (B.G.); fabrice.morlet-savary@uha.fr (F.M.-S.);
yijun.zhang@uha.fr (Y.Z.)

2 Université de Strasbourg, F-67081 Strasbourg, France
3 Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France; pigotcorentin2@gmail.com (C.P.);

damien.brunel@univ-amu.fr (D.B.); malek.nechab@univ-amu.fr (M.N.); didier.gigmes@univ-amu.fr (D.G.)
4 Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
* Correspondence: pu.xiao@anu.edu.au (P.X.); frederic.dumur@univ-amu.fr (F.D.);

jacques.lalevee@uha.fr (J.L.)

Received: 19 September 2020; Accepted: 5 October 2020; Published: 15 October 2020
����������
�������

Abstract: A series of eleven push–pull chromophores with specific structures have been designed
for the free radical polymerization of acrylates, but also for the fabrication of photocomposites
and 3D-printed structures. New photoinitiating systems comprising the different push–pull dyes
showed excellent photochemical reactivities at 405 nm. Notably, polymerization reactions could
be initiated with light-emitting diodes (LEDs) which constitute a unique opportunity to promote
the free radical polymerization under mild conditions, i.e., low light intensity (e.g., sunlight) and
under air. Photopolymerization is an active research field, and push–pull dyes have already
been investigated for this purpose. Besides, it remains of crucial interest to investigate new
reactive structures capable of efficiently initiating photopolymerization reactions. The plausible
potential of these structures to act as efficient photoinitiators in vat photopolymerization (or 3D
printing) and fabrication of photocomposites prompts us to select eleven new push–pull dyes
to design multi-component photoinitiating systems activable with LEDs emitting at 405 nm.
Precisely, a tertiary amine, i.e., ethyl dimethylaminobenzoate (EDB) used as an electron/hydrogen
donor and an iodonium salt used as an electron acceptor were selected to behave as powerful
co-initiators to construct three-component photoinitiating systems (PISs) with the different push–pull
dyes. Among these new PISs, dye 8 and 9-based PISs could efficiently promote the free radical
photopolymerization of acrylates upon exposure to a LED emitting at 405 nm also upon sunlight
irradiation, highlighting their huge performance. Photoinitiating abilities could be explained on
the basis of steady state photolysis experiments. Fluorescence measurements and electron spin
resonance (ESR) spin-trapping experiments were also performed to obtain a deeper insight into the
chemical mechanisms supporting the polymerization reaction and determine the way the initiating
species, i.e., the radicals, are observed. Finally, two investigated dye-based PISs were applied to the
fabrications of photocomposites. Three-dimensional patterns with excellent spatial resolutions were
generated by the laser writing technique to identify the effects of photopolymerization of acrylates
both in the absence and presence of fillers (silica). Interestingly, comparison between the 3D objects
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fabricated by the PISs/monomer systems and the PISs/monomer/filler photocomposites indicates that
the newly designed photocomposites are suitable for practical applications.

Keywords: push–pull dye; free radical polymerization; three-component system; LED; 3D printing;
naphthalene-1,3-dione

1. Introduction

Push–pull dyes composed of a donor and an acceptor connected by mean of a conjugated spacer
have been the focus of intense research efforts due to the wide range of applications in which these
dyes can find applications [1–5]. Among them, organic electronics, including organic photovoltaics
(OPVs) [6,7], organic light-emitting diodes (OLEDs) [8], organic-field effects transistors (OFETs) [9]
but also nonlinear optics (NLO) [10–16], water waste treatment [17] or the design of organic probes
for diagnostics or bioimaging [18,19], can be cited as a popular research field. By separating the
electron-donating group from the electron-accepting group, a strong electronic delocalization can
be induced, furnishing molecules with high molar extinction coefficients and displaying a strong
absorption band in the visible range corresponding to the intramolecular charge transfer (ICT)
band [20–24]. By finely tuning both the electron-donating and electron-accepting abilities of the
two partners as well as on the length of the spacer, the molar extinction coefficients but also the
position of the ICT band can be carefully controlled [2]. Benefiting from these different advantages
(high molar extinction coefficient, absorption in the visible range), push–pull dyes have thus been
identified as promising candidates for the design of visible light photoinitiators activable under
low-light intensity [25–28].

However, the design of highly reactive dyes capable of initiating photopolymerization processes
under light emitted by 405 nm LEDs are still scarcely available in the literature, and a great
deal of efforts remains to be carried out in order to develop photoinitiators operating under very
low-light intensities [29–33]. Such a goal can only be achieved by chemical engineering. Fortunately,
this obstacle can be easily overcome by extending the polyaromaticity of the electron-accepting
group [2,34]. To illustrate this, the remarkable work conducted on a series of push–pull dyes
comprising indane-1,3-dione or its extended version, i.e., 1H-cyclopentanaphthalene-1,3-dione as the
electron accepting groups, has clearly evidenced the advantage of this strategy, with a redshift of the
absorption spectra as well as an enhancement of the molar extinction coefficient for the 1H-cyclopenta
naphthalene-1,3-dione-based dyes. As a result of this, 1H-cyclopentanaphthalene-1,3-dione-based dyes
showed improved photoinitiating abilities compared to the indane-1,3-dione-based dyes [35]. Aiming at
improving the knowledge of photopolymerization, the fabrication of novel useful photocomposites by
use of push–pull dyes as photoinitiators and in the presence of fillers was considered by our group as
one of the various useful applications which is only scarcely reported in the literature [36].

In the present study, the design of push–pull dyes based three-component photoinitiating systems
both for 3D printing and composites preparation under mild conditions, e.g., room temperature and
405 nm LED irradiation, is reported (See Scheme 1). Eleven dyes have been selected and examined
for the first time as photoinitiators when combined with an iodonium salt (Speedcure 938) and an
amine (EDB) for the free radical polymerization of acrylates (See Figure 1). Interestingly, two dyes
with 3-(dialkyl amino)-1,2-dihydro-9-oxo-9H-indeno [2,1-c]pyridine-4-carbonitrile group showed
high final monomer conversions and impressive photoinitiation abilities, what was investigated by
real-time Fourier transform Infrared spectroscopy (RT-FTIR) upon irradiation at 405 nm with a LED.
Parallel to the polymerization tests carried out with LEDs of well-defined emissions, sunlight-induced
photopolymerization was also investigated, paving the way towards greener polymerization processes.
In order to compare the photoinitiating abilities of the different dyes, their optical properties were
characterized by UV–visible absorption spectroscopy. Photolysis experiments were also carried out
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to compare their photochemical interactions with the different additives. Moreover, the two most
remarkable dyes (i.e., dyes 8 and 9) were selected to perform fluorescence quenching and ESR spin
experiments in order to determine the exact chemical mechanisms supporting the generation of free
radicals. Electrochemical properties as well as the way to produce free radical are also discussed.
Particularly, with such a high photoreactivity, the new proposed systems can be used for sunlight
induced polymerization as an example of green and mild conditions. Finally, 3D printing experiments
were carried out with trimethylolpropane triacrylate (TMPTA) as the acrylate monomer, and making
use of the newly proposed photoinitiating systems, photocomposites (TMPTA/silica) could be prepared.
As expected, 3D patterns with a remarkable resolution were successfully prepared.

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 20 

 

Moreover, the two most remarkable dyes (i.e., dyes 8 and 9) were selected to perform fluorescence 
quenching and ESR spin experiments in order to determine the exact chemical mechanisms 
supporting the generation of free radicals. Electrochemical properties as well as the way to produce 
free radical are also discussed. Particularly, with such a high photoreactivity, the new proposed 
systems can be used for sunlight induced polymerization as an example of green and mild conditions. 
Finally, 3D printing experiments were carried out with trimethylolpropane triacrylate (TMPTA) as 
the acrylate monomer, and making use of the newly proposed photoinitiating systems, 
photocomposites (TMPTA/silica) could be prepared. As expected, 3D patterns with a remarkable 
resolution were successfully prepared. 

 
Figure 1. Chemical structures of dyes 1–11. 

 

Scheme 1. Chemical structures of the iodonium salt, the tertiary amine and the trifunctional acrylate 
monomer. 

2. Results 

2.1. Synthesis of the Different Dyes 

With aim at developing push–pull dyes with high molar extinction coefficients and broad 
absorption spectra extending over the visible range, two synthetic approaches were employed. The 
first one consisted of extending the aromaticity of the electron acceptor by replacing the phenyl group 
of the well-established indane-1,3-dione by a naphthalene group (See Scheme 2, EA1) or by using 

Scheme 1. Chemical structures of the iodonium salt, the tertiary amine and the trifunctional
acrylate monomer.

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 20 

 

Moreover, the two most remarkable dyes (i.e., dyes 8 and 9) were selected to perform fluorescence 
quenching and ESR spin experiments in order to determine the exact chemical mechanisms 
supporting the generation of free radicals. Electrochemical properties as well as the way to produce 
free radical are also discussed. Particularly, with such a high photoreactivity, the new proposed 
systems can be used for sunlight induced polymerization as an example of green and mild conditions. 
Finally, 3D printing experiments were carried out with trimethylolpropane triacrylate (TMPTA) as 
the acrylate monomer, and making use of the newly proposed photoinitiating systems, 
photocomposites (TMPTA/silica) could be prepared. As expected, 3D patterns with a remarkable 
resolution were successfully prepared. 

 
Figure 1. Chemical structures of dyes 1–11. 

 

Scheme 1. Chemical structures of the iodonium salt, the tertiary amine and the trifunctional acrylate 
monomer. 

2. Results 

2.1. Synthesis of the Different Dyes 

With aim at developing push–pull dyes with high molar extinction coefficients and broad 
absorption spectra extending over the visible range, two synthetic approaches were employed. The 
first one consisted of extending the aromaticity of the electron acceptor by replacing the phenyl group 
of the well-established indane-1,3-dione by a naphthalene group (See Scheme 2, EA1) or by using 

Figure 1. Chemical structures of dyes 1–11.

2. Results

2.1. Synthesis of the Different Dyes

With aim at developing push–pull dyes with high molar extinction coefficients and broad
absorption spectra extending over the visible range, two synthetic approaches were employed. The first
one consisted of extending the aromaticity of the electron acceptor by replacing the phenyl group of the
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well-established indane-1,3-dione by a naphthalene group (See Scheme 2, EA1) or by using electron
donors with an elongated π-conjugated system (See Scheme 2, D3/D4). EA1 can be synthesized with
91% yield by a two-step synthesis including a Claisen condensation followed by a decarboxylation of
the intermediary sodium salt (See Scheme 3) [4].
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The second approach consisted of improving the electron accepting properties of the electron
acceptor used in the push–pull molecules. In the case of indane-1,3-dione derivatives, addition of
malononitrile has been identified as one of the most efficient approach to achieve this goal.
Indeed, the Knoevenagel condensation is a convenient strategy to add selectively one or two cyano
groups onto the indane-1,3-dione moiety. This strategy also has the advantage of extending the length
of the π-conjugated system in the electron-accepting moiety (See Figure 1).
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Nevertheless, few examples of introducing malononitrile onto naphthalene-1,3-dione have been
reported. Indeed, we have noticed a much lower reactivity of the molecule compare to the classical
indane-1,3-dione, leading to longer reaction times to prepare for the dicyanovinyl derivative EA2.
To prepare the tetracyano derivative, a change in the solvent used to perform the reaction was even
required in order to reach a higher reaction temperature and introduce a second dicyano group. By use
of 2-ethoxyethanol, EA3 could be prepared in 41% yield. This difference of reactivity is probably
attributable to the high stability of the intermediate EA2 anion in basic medium, adversely affecting
the second Knoevenagel reaction used to introduce the second dicyano group.

The Knoevenagel condensation reaction enables the production of the push–pull dyes in short
reaction times, and being an easy-to-handle reaction, this condensation has been selected as the
appropriate reaction to synthetize the molecules 1–6 and 10–11. Despite the fact that piperidine, a usual
and cheap organocatalyst, was used to perform this reaction, we observed during the synthesis of 3 the
undesired formation of dye 7 by nucleophilic addition of piperidine [5]. Similarly, during the synthesis
of dye 2, we also noticed the undesired intramolecular cyclization (Dye 9) similar to that reported by
Landmesser et al. (See Scheme 4) [37].
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Scheme 4. Synthesis of dye 7 with ED3 acting as the organocatalyst (bottom) and synthesis of the
azafluorenone adducts (dyes 8 and 9) when using EA2, ED2 and a secondary base, such as morpholine
or piperidine.

This cyclization reaction is notably observed when nucleophilic amines such as piperidine are
used. Considering that no formation of azafluorenones by cyclization reaction was reported in the
literature with 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (EA2) as the
electron acceptor, we notably pursued this study by replacing piperidine by morpholine, giving rise to
the same cyclization reaction and furnishing dye 8 in 79% yield. Considering that nucleophilic amines
can add onto the electron accepting moiety of the push–pull dye and initiate a cyclization reaction
(See Scheme 4), piperidine was replaced by the none-nucleophilic base N,N-diisopropylethylamine
(DIPEA) for the synthesis of dyes 1,2,3 and 11, as shown in the Scheme 1. Concerning the ferrocene
adducts 10 and 11, it has to be noticed that a lower reaction yield was obtained for dye 11 (23% yield)
than for dye 10 (88% yield), which can be assigned to the steric hindrance of DIPEA, adversely affecting
its catalyst activity when a bulky electron donor such as ferrocene is used.

2.2. Photopolymerization Kinetics for Newly Push–Pull Dyes in Three-Component Photoinitiating Systems

Photoinitiation abilities of the eleven dyes-based PISs (from dye 1 to 11) were investigated by
infrared spectroscopy (RT-FTIR) while irradiating the resins with a LED@405 nm (I0 = 110 mW cm−2)
for 400 s at room temperature. Typical acrylate function conversions vs. irradiation time profiles are
depicted in Figure 2. In order to evidence their better photoinitiation abilities, the specific curve 0
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was given for photopolymerization of acrylate monomer TMPTA initiated by two-component PIS
(2% Iod: 2% Amine in 1 g TMPTA) without dyes. Obviously, the profiles indicate that the dye-based
three-component PISs are remarkable combinations to initiate the free radical photopolymerization
of acrylates when compared with the Iod/amine two-component system as shown in Figure 2.
However, the polymerization processes initiated by the three-component systems comprising dyes 4,
10 and 11 are less efficient than the Iod/amine system (curve 0). Thus, it is convincing that push–pull
chromophores with ferrocene groups can only hardly work as efficient photoinitiators in free radical
polymerization processes. In the case of dyes 5, 7, 8 and 9, the highest final monomer conversions and
the fastest conversions were obtained with these four dyes, which proved to efficiently promote the
photopolymerization of TMPTA. For instance, the highest final reactive function conversions (FCs)
were attained with dye 8 (beyond 90%), as well as dyes 5, 7, 9, which also furnished high final acrylate
function conversions beyond 80%. The short conversion times within 50 s also evidenced their high
photoinitiation abilities as well. Excellent polymerization profiles could also be determined with the
other dyes, e.g., dyes 1, 2, 3, 6, which showed slightly lower performances (the FCs attained for the free
radical polymerization (FRP) of TMPTA were about 70%~80%) during free radical photopolymerization
processes, except for the four dyes mentioned above.
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Figure 2. Photopolymerization profiles of TMPTA (conversion rate of C=C bonds vs. irradiation
time) initiated by iodonium and amine (ethyl dimethylaminobenzoate, EDB) upon exposure to a
LED@405 nm under air in the presence of dyes 1–11 at the same weight ratio: dye: iodonium salt
(Speedcure 938): Speedcure EDB = 0.1%:2%:2% in 1 g TMPTA. Curve 0 corresponds to the initiating
system (iodonium/amine) without dye.

To investigate the photopolymerization kinetics more precisely and specifically, the highest final
reactive function conversions (FCs) concerning the polymerization of TMPTA in the presence of all
eleven dyes are gathered in Table 1. From the different experiments, a comparison of the FCs obtained
with the eight most reactive dyes could be established, and the following order of reactivity could be
deduced: dye 8 > dye 9 > dye 7 > dye 5 > dye 2 > dye 3 (or dye 1) > dye 6. Interestingly, dyes 8, 9
have similar chemical structures, but their light absorption properties are much lower than those of the
other dyes, e.g., dye 1 and dye 6 (See Figure 1). Light absorption properties of the push–pull dyes will
be discussed in the following part.
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Table 1. Final acrylate function conversions (FCs) obtained upon irradiation at 405 nm for TMPTA
using three-component photoinitiating systems: dyes/iodonium salt/amine (0.1%, 2%/2%, w/w) and the
concentration of the different dyes in resins.

Dye 0 (Blank) a 1 2 3 4 5

FCs 60% 78% 80% 78% 43% 84%
[dye] 0 2.31 × 10−3 2.93 × 10−3 2.74 × 10−3 2.44 × 10−3 1.93 × 10−3

Dye 6 7 8 9 10 11
FCs 76% 85% 91% 88% 51% 56%

[dye] 2.84 × 10−3 3.53 × 10−3 2.38 × 10−3 2.39 × 10−3 2.80 × 10−3 2.50 × 10−3

a: iodonium salt/amine (2%/2%, w/w) without dye.

2.3. Photopolymerization Kinetics upon Exposure to Sunlight for Push–Pull Dye 8

Photoinitiation abilities of dye 8-based PIS were also investigated using Fourier transform
infrared spectroscopy (FT-IR) under sunlight irradiation (Mulhouse, France) as a very good example
of mild irradiation conditions. Moreover, typical acrylate function conversions vs. irradiation time
(in 0, 10, 20, 30 min) were extracted from the decrease in the peak at 6130 cm−1. As shown
in Figure 3, the polymerization profile indicates the acrylate function conversion reached at
~88%, which demonstrates that dye-based three-component PISs can be photoinitiated by sunlight.
Remarkably, the free radical polymerization is promoted to a high level of conversion (~88%)
with sunlight when compared with the photopolymerization obtained at 405 nm (I0 = 110 mW
cm−2) (91% conversion). To conclude, by carefully selecting the push–pull dyes with excellent
performance, high-performance photoinitiating systems activable under mild irradiations, e.g., 405 nm
LED (I0 = 110 mW cm−2), or under sunlight (I0 < 5 mW cm−2 in the 350–500 nm range) have thus been
proposed in this work.
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time (0 min, 10 min, 20 min, 30 min).

3. Discussion

3.1. Light Absorption Properties of the Push–Pull Dyes

Molar extinction coefficients of the different dyes were determined by UV–visible absorption
spectroscopy in acetonitrile (see Figure 4), and the light absorption parameters are gathered in Table 2.
Dyes 1, 2, 3, 5, 6 showed very high molar extinction coefficients, e.g., ε(Dye 1) = 38,580 M−1 cm −1

at λmax = 601 nm, ε(Dye 2) = 24,872 M−1 cm−1 at λmax = 582 nm. ε(Dye 3) = 16,330 M−1 cm−1 at
λmax = 661 nm, ε(Dye 5) = 22,990 M−1 cm−1 at λmax = 727 nm, and ε(Dye 6) = 49,650 M−1 cm−1 at
λmax = 447 nm, in the UV–visible range, which fit well to their relatively high photoinitiation abilities
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mentioned above. Interestingly, dyes 7, 8, 9 showed both low molar extinction coefficients at λmax and
at 405 nm compared to dyes 1, 2, 3, 5, 6. However, their performances on photopolymerization are
much better. As expected, the lower maximum extinction coefficients of dyes 10 and 11 led to poor
photoinitiation abilities as well.Catalysts 2020, 10, x FOR PEER REVIEW 8 of 20 
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Table 2. Photophysical properties of the different push–pull dyes in acetonitrile: maximum absorption
wavelengths λmax; molar extinction coefficients at λmax (εmax); and molar extinction coefficients at
405 nm (ε405 nm).

λmax (nm) εmax (M−1 cm−1) ε@405nm (M−1 cm−1)

Dye 1 601 38,580 8560
Dye 2 582 24,872 6870
Dye 3 661 16,330 3500
Dye 4 537 11,600 16,090
Dye 5 727 22,990 8320
Dye 6 447 49,650 22,910
Dye 7 500 14,220 3880
Dye 8 491 5330 3340
Dye 9 495 9763 4950

Dye 10 591 4550 8630
Dye 11 644 5930 11,348

3.2. Optical Properties of Dyes 8 and 9

To demonstrate the contribution of the 3-(dialkylamino)-1,2-dihydro-9-oxo-9H-indeno[2,1-c]
pyridine-4-carbonitrile group on the photopolymerization process, photolysis experiments were
carried out in acetonitrile at 405 nm with dyes 8 and 9 in the presence of Iod and EDB. The same light
intensity (LED@405 nm, I0 = 110 mW cm−2) than that used for photopolymerization was employed
for the different experiments reported in this section. As shown in the UV–visible absorption spectra
depicted in Figure 5a, a clear photolysis in solution was observed for the dye 8-based three-component
photoinitiating systems. Parallel to this, the two-component dye 8/EDB system also showed an efficient
photolysis (See Figure 5c), which was in agreement with the extinction coefficient of dye 8 at the
emission wavelength of the LED@405 nm (ε@405nm = 3340 M−1 cm−1).
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Figure 5. UV–visible absorption spectra of dye 8 (8.51 × 10−6 M in acetonitrile) with co-initiators:
(a) iodonium salt (Iod) (1.46 × 10−4 M in acetonitrile) and amine (EDB, 4.07 × 10−4 M in acetonitrile);
(b) Iod (Speedcure 938, 1.46 × 10−4 M in acetonitrile); (c) amine (EDB, 4.07 × 10−4 M in acetonitrile) upon
exposure to a LED@405nm under air in acetonitrile as the solvent; (d) Iod (1.46 × 10−4 M in acetonitrile)
and amine (EDB, 4.07 × 10−4 M in acetonitrile), sunlight, air, acetonitrile used as the solvent.

In the case of the dye 8/Iod system, a more complex photolysis process could be evidenced,
with an increase in optical density in first step, indicative of the formation of a colored photoproduct,
followed by a decrease after 8 min (See Figure 5c). Additionally, the dye 8/Iod/amine system exhibited
a shoulder in the visible range (See Figure 5a) which was assigned to the formation of the colored
photoproduct mentioned above.

Conversely, photolysis of dye 8-based three-component PIS was also investigated upon irradiation
with sunlight. As depicted in Figure 5d, a clear decrease in optical density was observed in the
500–550 nm range, together with an increase in optical density in the 350–500 nm range. Although an
excellent photopolymerization of the monomer (TMPTA) under sunlight was observed, the photolysis
speed under sunlight was greatly faster than upon irradiation with a 405 nm LED (compared to
Figure 5a,d). Notably, the curve in the 375–500 nm range decreased after 8 min of irradiation,
indicating the probable conversion of the new photoproducts generated during the first 8 min of
irradiation to other structures and promoted by the broadness of the spectral range of sunlight.

While examining the photolysis of dye 9 in different conditions, dye 9-based PISs also showed
a fast photolysis process compared to that observed for dye 8, which only took 5 min in solution
(See Figure 6). As expected, in three-component systems, dye 9 exhibited a similar photolysis process
to dye 8 resulting from their similarity in structure. However, comparison of the photolysis kinetic of
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the dye 8 and 9-based PISs in acetonitrile revealed the photolysis process to be faster for dye 9 than for
dye 8 (See Figures 5 and 6, respectively). This is attributable to the higher extinction coefficients of
dye 9 at 405 nm (ε@405 = 4950 M−1 cm−1; see Table 2), which could govern the photolysis efficiency.
Indeed, dye 8 exhibits a lower molar extinction coefficient at 405 nm than dye 9 (ε@405 = 3340 M−1 cm−1;
see Table 2).

Catalysts 2020, 10, x FOR PEER REVIEW 10 of 20 

 

for dye 8 (See Figures 5 and 6, respectively). This is attributable to the higher extinction coefficients 
of dye 9 at 405 nm (ε

@405 
= 4950 M−1 cm−1; see Table 2), which could govern the photolysis efficiency. 

Indeed, dye 8 exhibits a lower molar extinction coefficient at 405 nm than dye 9 (ε
@405 

= 3340 M−1 cm−1; 

see Table 2).  

(a) (b) 

(c) (d) 

Figure 6. UV–visible absorption spectra of dye 9 (8.54 × 10−6 M in acetonitrile) with co-initiators: (a) 
Iod (1.46 × 10−4 M in acetonitrile) and amine (EDB, 4.07 × 10−4 M in acetonitrile), (b) Iod (1.46 × 10−4 M 
in acetonitrile) and (c) amine (EDB, 4.07 × 10−4 M in acetonitrile) upon exposure to LED@405nm under 
air in acetonitrile as the solvent. (d) Dye consumption vs. irradiation time @ λ = 405 nm: dye 
9/Iod/amine(●); dye 9/Iod(■); dye 9/amine(). 

Percentage of consumption of dye 9 vs. the irradiation time can also be characterized by the 
changes in their respective UV–visible spectra while establishing a comparison between three-
component PISs (dye/Iod/amine) and two-component PISs (dye/Iod or dye/amine). As illustrated in 
Figure 6d, clearly, consumption of dye 9 in the three-component PIS (dye 9/Iod/amine) is much higher 
than that observed for the two-component PISs (dye 9/Iod and dye 9/amine combinations, e.g., the 
consumption of dye 9 = 38% for dye 9/Iod/amine vs. 30% for dye 9/Iod or 28% for dye 9/amine). It is 
obvious that the two-component PIS interactions (dye 9/Iod or dye 9/amine) are less efficient than 
those observed for the three-component dye 9/Iod/amine system.  

Moreover, photolysis experiments in the presence of dye 5, 6 and 7-based PISs were also carried 
out (See Figure S1). A clear photolysis process can be observed for dyes 5, 6 at 405 nm resulting from 
their high extinction coefficients at 405 nm (dye 5: ε

@405 
= 8320 M−1 cm−1; dye 6: ε

@405 
= 22,910 M−1 cm−1; 

see Table 2). Conversely, dye 7 only showed a slow photolysis process when low concentrations (dye: 
Iod: amine = 1.26 × 10−5 M: 1.46 × 10−4 M: 4.07 × 10−4 M) were used. Increase in the concentrations of 

Figure 6. UV–visible absorption spectra of dye 9 (8.54 × 10−6 M in acetonitrile) with co-initiators: (a) Iod
(1.46 × 10−4 M in acetonitrile) and amine (EDB, 4.07 × 10−4 M in acetonitrile), (b) Iod (1.46 × 10−4 M
in acetonitrile) and (c) amine (EDB, 4.07 × 10−4 M in acetonitrile) upon exposure to LED@405nm
under air in acetonitrile as the solvent. (d) Dye consumption vs. irradiation time @ λ = 405 nm:
dye 9/Iod/amine(•); dye 9/Iod(�); dye 9/amine(N).

Percentage of consumption of dye 9 vs. the irradiation time can also be characterized by the changes
in their respective UV–visible spectra while establishing a comparison between three-component PISs
(dye/Iod/amine) and two-component PISs (dye/Iod or dye/amine). As illustrated in Figure 6d, clearly,
consumption of dye 9 in the three-component PIS (dye 9/Iod/amine) is much higher than that observed
for the two-component PISs (dye 9/Iod and dye 9/amine combinations, e.g., the consumption of dye
9 = 38% for dye 9/Iod/amine vs. 30% for dye 9/Iod or 28% for dye 9/amine). It is obvious that the
two-component PIS interactions (dye 9/Iod or dye 9/amine) are less efficient than those observed for
the three-component dye 9/Iod/amine system.

Moreover, photolysis experiments in the presence of dye 5, 6 and 7-based PISs were also carried out
(See Figure S1). A clear photolysis process can be observed for dyes 5, 6 at 405 nm resulting from their
high extinction coefficients at 405 nm (dye 5: ε@405 = 8320 M−1 cm−1; dye 6: ε@405 = 22,910 M−1 cm−1;



Catalysts 2020, 10, 1196 11 of 20

see Table 2). Conversely, dye 7 only showed a slow photolysis process when low concentrations
(dye: Iod: amine = 1.26× 10−5 M: 1.46× 10−4 M: 4.07× 10−4 M) were used. Increase in the concentrations
of Iod and amine in solution greatly accelerated the photolysis process. Moreover, the discussion
concerning the photolysis of dye 7 can be neglected due to the low molar extinction coefficient of this
dye at 405 nm (ε@405 = 3880 M−1 cm−1; see Figure S1c)

3.3. Laser Writing Experiments with Resins Based on Three-Component Systems and Comprising of Dye 8 or
Dye 9 as Photosensitizers

Some laser writing experiments in the presence of different three-component systems
dye/Iod/amine (0.1%/2%/2% w/w/w) were carried out in TMPTA in order to generate tridimensional
patterns. PISs based on the three-component systems of dye 8/Iod/amine and dye 9/Iod/amine were
selected for their remarkable performances among the eleven dyes examined in this work. The FRP
of TMPTA could be initiated under mild conditions (irradiation at 405 nm), and the 3D patterns
“KES” could be successfully generated (See Figure 7). The 3D patterns were obtained by efficient
photopolymerization processes in a very short time and were then characterized by profilometry using a
numerical optical microscope. The different patterns obtained with the dye 8-based PIS are well-defined
and exhibit 3D profiles with an excellent spatial resolution (See Figure 7a,b). Contrarily, a lower spatial
resolution was observed for the 3D patterns obtained with the dye 9-based PIS when compared to that
obtained with the dye 8-based PISs.
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3.4. Potential Chemical Mechanisms of Push–Pull Dyes in Photolysis Reactions 

Concerning the mechanism involved in the three-component systems, plausible reactions r1, r2 
and r3 presented in Scheme 5 are proposed as the chemical mechanisms occurring in the three-
component dye 9/Iod/amine system and supporting the formation of radicals (see Scheme 5). Two 
types of generated radicals are proposed: (1) dye●+ and Ar● radicals are formed upon irradiation at 
405 nm by electron transfer from the excited *dye to the iodonium salt and marked as reaction r2; (2) 

Figure 7. FRP experiments for laser writing obtained with three-component photoinitiating systems in
TMPTA. Characterization by numerical optical microscopy: (left) top surface morphology (right) 3-D
overall appearance of color pattern of dye/Iod/amine (0.1%/2%/2% w/w/w) in TMPTA: (a,b) for dye
8/Iod/amine; (c,d) for dye 9/Iod/amine.

3.4. Potential Chemical Mechanisms of Push–Pull Dyes in Photolysis Reactions

Concerning the mechanism involved in the three-component systems, plausible reactions r1, r2 and
r3 presented in Scheme 5 are proposed as the chemical mechanisms occurring in the three-component
dye 9/Iod/amine system and supporting the formation of radicals (see Scheme 5). Two types of
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generated radicals are proposed: (1) dye•+ and Ar• radicals are formed upon irradiation at 405 nm
by electron transfer from the excited *dye to the iodonium salt and marked as reaction r2; (2) dye-H•

is generated from *dye in the interaction of EDB and marked as reaction r3. The reactions r2 and r3
are proposed to contribute to the consumption of dyes in three-component systems. Indeed, a similar
consumption is observed for the dye 9/amine or the dye 9/Iod combinations (See Figure 6d).
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Similarly, the chemical mechanisms involved in the three-component dye 8/Iod/amine combination
are identical to those involved in the dye 9/Iod/amine PIS. Conversely, no clear trend could be established
concerning the consumption of dye 8 in the dye 8/Iod two-component PIS during the irradiation
process. As a rational explanation of this, the interactions between dye-H• with Iod can also be
continuously followed by reaction r5, leading to the regeneration of the dye during the aforementioned
photopolymerization process.

3.5. Mechanistic Investigations in Solutions

The singlet excited state energy (ES1) for the investigated dyes was calculated from
the crossing point between the curve of the normalized UV–visible absorption spectra and
the curve of normalized fluorescence spectra in acetonitrile (See Table 3, 2.28 eV for dye
8 and 2.38 eV for dye 9) (See Figure 8). The free energy changes (∆GIod = −1.22 eV,
∆GEDB = 0.07 eV for dye 8; ∆GIod = −1.36 eV, ∆GEDB = −0.03 eV for dye 9; see Table 3) for the electron
transfer reactions were also investigated to examine the potential interactions between dye/Iod
(or dye/amine). Additionally, the results of ∆GIod and ∆GEDB for dyes 8 and 9 were calculated from
the oxidation potential (Eox), the reduction potential (Ered) and the singlet excited state energy (ES1),
and the oxidation potentials (or reduction potentials) of dyes 8, 9 have been reported in the literature [5].
From the data, ∆GIod for dye 8, ∆GIod and ∆GEDB for dye 9 were less than 0, indicating the favorable
interactions in dye 8/Iod, dye 9/Iod and dye 9/amine systems. Thus, the interactions will also be
investigated by fluorescence quenching in the following context.

Table 3. Parameters characterizing the chemical mechanisms associated with dyes 8 and 9
in acetonitrile a.

ES1 (eV) Ered (eV) b Eox (eV) b ∆GS1
Iod

a(eV) d ∆G S1
EDB(eV) d

Dye 8 2.28 −1.35 0.36 −1.22 0.07
Dye 9 2.38 −1.41 0.32 −1.36 −0.03

ET1 (eV) c ∆GetT1
Iod(eV) d ∆GetT1

EDB(eV)
d

Ksv(S1)

EDB(M−1) φet(S1)
EDB

a

Dye 8 1.65 −0.59 0.7 - -
Dye 9 1.65 −0.63 0.76 129 0.937
a: A re-evaluated value of reduction potential of −0.7 V is used according to [38]; b: from the values presented in [5];
c: calculated triplet state energy level at Density Functional Theory (DFT) level; d: from the equation presented in [39].
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Triplet energy levels for dyes 8 and 9 were also calculated, and the results are shown in Table 3.
A mechanism involving the triplet state cannot be excluded for the dye/iodonium interaction (∆G < 0;
Table 3). Conversely, the triplet route can be excluded for the dye/amine combination (∆G > 0;
see Table 3).

The fluorescence quenching experiments were performed in acetonitrile (Figure 9). For the dye
8/EDB system, no fluorescence quenching was observed in acetonitrile. A linear quenching process
was observed for the dye 9/EDB combination, and its Stern–Volmer coefficients (Ksv = 129 M−1 for
dye 9/EDB; Table 3) and the electron transfer quantum yields (φet; Table 3) were also determined.
Interestingly, dye 8 (or dye 9)/Iod interaction showed an increasing tendency, which indicates that
new photoproducts are generated (See Figure S2). These results are in full agreement with the highly
favorable free energy changes (∆Get(Dye/EDB)) for the electron transfer reaction between dyes and
EDB (or Iod).
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(b) Stern−Volmer treatment for the dye 9/amine fluorescence quenching.

3.6. ESR Spin-Trapping Experiments

To demonstrate the chemical mechanisms of the push–pull dye-initiated photopolymerization, ESR
spin trapping experiments were carried out by irradiating at 405 nm with an LED, and some radicals
were detected after mixing of dye 8/Iod and dye 8/amine in tert-butylbenzene under inert atmosphere
in the presence of a spin trap agent (PBN). The PBN/Ar• adduct was detected, and the following
hyperfine coupling constants (hfc) constants could be determined by simulation: aN = 14.38 G and
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aH = 2.15 G for the dye 8/Iod PIS. The PBN/ArNCH3CH2• adduct was also detected, and values of
aN = 14.38 G and aH = 2.14 G for the dye 8/amine PIS (see Figure 10) could be calculated, which fully
match to the literature [40].

Catalysts 2020, 10, x FOR PEER REVIEW 14 of 20 

 

nm with a LED. As expected, the two radical adducts PBN/Ar• and PBN/ArNCH3CH2• were also 
detected and characterized by aN = 14.39 G; aH = 2.14 G and aN = 14.41 G; aH = 2.17 G (dye 9/Iod and 
dye 9/amine PISs, respectively—see Figure S3), which is in agreement with the literature. Therefore, 
it can be concluded that the ESR experiments perfectly fit with the mechanism proposed in the 
Scheme 3 [41].  

 
(a) (b) 

(c) (d) 

Figure 10. Electron spin resonance (ESR) spectra obtained from the ESR spin-trapping experiment 
using presence of a spin trap agent (PBN) = 2 mg/mL (as spin trap agent); iodonium salt = 12.6 mg/mL; 
and dye 8 = 0.8 mg/mL in tert-butylbenzene under N2. (a) Dye 8/Iod photoinitiating system (PIS), 
irradiation time = 20 s (green), = 10 s (red) and = 0 s (black) spectra, respectively; (b) dye 8/Iod PIS, 
irradiation time = 20 s (black) and simulated (red) spectra; (c) dye 8/amine PIS, irradiation time = 210 
s (red) and = 0 s (black) spectra; (d) dye 8/amine PIS, irradiation time = 210 s (black) and simulated 
(red) spectra. 

3.7. Laser Writing Experiments for the Photocomposites Prepared by Push–Pull Dye-Based PISs and Silica 
Fillers 

Photocomposites were prepared with the dye 8 or 9/Iod/amine three-component systems (0.1:2:2 
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Figure 10. Electron spin resonance (ESR) spectra obtained from the ESR spin-trapping experiment using
presence of a spin trap agent (PBN) = 2 mg/mL (as spin trap agent); iodonium salt = 12.6 mg/mL; and
dye 8 = 0.8 mg/mL in tert-butylbenzene under N2. (a) Dye 8/Iod photoinitiating system (PIS), irradiation
time = 20 s (green), = 10 s (red) and = 0 s (black) spectra, respectively; (b) dye 8/Iod PIS, irradiation
time = 20 s (black) and simulated (red) spectra; (c) dye 8/amine PIS, irradiation time = 210 s (red) and
= 0 s (black) spectra; (d) dye 8/amine PIS, irradiation time = 210 s (black) and simulated (red) spectra.

The dye 9/Iod and dye 9/amine solutions in tert-butylbenzene under inert atmosphere and in the
presence of PBN were also characterized by ESR spin-trapping experiments upon irradiation at 405 nm
with a LED. As expected, the two radical adducts PBN/Ar• and PBN/ArNCH3CH2•were also detected
and characterized by aN = 14.39 G; aH = 2.14 G and aN = 14.41 G; aH = 2.17 G (dye 9/Iod and dye
9/amine PISs, respectively—see Figure S3), which is in agreement with the literature. Therefore, it can
be concluded that the ESR experiments perfectly fit with the mechanism proposed in the Scheme 3 [41].
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3.7. Laser Writing Experiments for the Photocomposites Prepared by Push–Pull Dye-Based PISs and
Silica Fillers

Photocomposites were prepared with the dye 8 or 9/Iod/amine three-component systems (0.1:2:2
in monomer, w/w/w), and silica was added as filler (20% in monomer, w/w) for a TMPTA-based
resin. Laser writing experiments were carried out with the prepared photocurable resins. The 3D
patterns obtained after irradiation were examined by profilometry with a numerical optical microscope
(Figure 11). As a result, laser writing experiments carried out on these filled photocomposites
comprising dyes 8 or 9, and a lower spatial resolution was observed for the different 3D patterns when
compared to those obtained with the dye 8 or 9 PISs for resins without fillers. This can be attributed to
a lower light penetration when fillers are incorporated in the photocurable resins. However, dyes 8
or 9 also presented a relatively remarkable reactivity in the presence of fillers. The quality of the
3D structures obtained with and without fillers clearly demonstrates the full potential of the new
photoinitiating systems proposed in this work for the fabrication of photopolymerizable materials in
the future.
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Figure 11. Free radical photopolymerization experiments for laser writing initiated by dye-based
three-component photoinitiating systems in TMPTA. Characterization of the 3D patterns by numerical
optical microscopy: (left) top surface morphology (right), 3D overall appearance of color pattern of
dye/Iod/amine (0.1%/2%/2% w/w/w) in TMPTA (a,b) for dye 8/Iod/amine (0.1%/2%/2% w/w/w) in the
presence of silica (20%, w/w) in TMPTA; (c,d) for dye 9/Iod/amine (0.1%/2%/2% w/w/w) in the presence
of silica (20%, w/w) in TMPTA.

4. Materials and Methods

4.1. Dyes

Dyes 1–11 investigated in this article were synthesized with high purity as reported in
supplementary information. Chemical structures are given in Figure 1.
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4.2. Other Materials

Chemicals including the iodonium salt (Iod; also noted Speedcure 938) and the amine
(ethyl dimethylaminobenzoate (EDB) were purchased from Lambson Ltd. (Wetherby, UK),
and the photopolymerizable monomer (TMPTA) was obtained from Allnex (Frankfurt, Germany)
(See structures in Scheme 2). Particularly, to highlight the potential applications of these dyes in green
chemistry, all photopolymerization processes were performed in solvent-free and mild conditions
e.g., at room temperature.

4.3. Photopolymerization Experiments

Photoinitiating systems used in this work are composed of a dye, iodonium salt (Iod) and the
amine (EDB) and are exposed to an LED@405 nm (I0 = 110 mW cm−2) in ambient conditions and under
air. In detail, their weight contents (kept at 0.1w%/2%/2% w/w/w, respectively) were calculated from
the monomer (TMPTA) content, and the different polymerization experiments were carried out in
laminate (the monomer thickness was controlled).

Monitoring of the reaction was performed as previously reported [42–44]. The conversion of the
acrylate functions at a given time is calculated as

conversion (%) = (A0 − At)/A0 × 100 (1)

where A0 is the initial peak area before irradiation, and At is the peak area after irradiation for a given
time t [45].

4.4. UV–Visible Absorption, Photolysis and Fluorescent Properties

These different experiments were carried out with equipment and experimental conditions
reported in previous works [46,47].

4.5. Redox Potentials

The redox potentials of dyes 8 and 9 (oxidation potential noted Eox and reduction potential noted
Ered) were reported in [5]. The dyes were dispersed in acetonitrile while using tetrabutylammonium
hexafluorophosphate as the supporting electrolyte (potential vs. Saturated Calomel Electrode, SCE).
The excited state energy level noted E*(Es1) was determined from the crossing point of the absorption
and photoluminescence spectra. Thus, the free energy change of the singlet state ∆GS1

Iod or ∆GS1
EDB

for the electron transfer reaction was determined by Eox, Ered, and E*(Es1) which were calculated from
Equations (2) and (3) [48]. Similarly, the free energy change of triplet state ∆Get was calculated by Eox,
Ered, and E*(ET1) from the Equations (4) and (5) (Equations (4) and (5)) [46], where the triplet state
energy level (noted E*(ET1)) was extracted from molecular energy level calculations (Gaussian 03 suite
of programs). The reduction potential of iodonium was −0.7 V, and the oxidation potential of EDB
was +1.0 V [38,39].

∆GS1
Iod = Eox − (−0.7) − E* (ES1) (2)

∆GS1
EDB = 1 − (Ered) − E* (ES1) (3)

∆Get
Iod = Eox − (−0.7) − E* (ET1) (4)

∆Get
EDB = 1 − (Ered) − E* (ET1) (5)

4.6. Preparation of Photocomposites

Photocomposites were prepared from dye/iodonium salts (Iod)/amine (EDB) systems and fillers of
silica. Their weight contents kept at dye/Iod/amine/silica = 0.1%/2%/2%/20%, w/w/w/w were calculated
from the monomer (TMPTA) content at room temperature and under air.
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4.7. 3D Printing Experiments

3D printing experiments were carried out in conditions previously detailed [49,50].

4.8. Electron Spin Resonance (ESR) Spin Trapping (ESR-ST)

Electron spin resonance spin-trapping experiments were carried out in conditions previously
detailed [44,51]. Simulations were carried out using PEST WINSIM software.

4.9. Computational Procedure

The triplet state energies were calculated at the UB3LYP/6-31G* level. Geometries were frequency
checked [52,53].

5. Conclusions

In summary, eleven new dyes based on a push–pull structure were synthesized for the
design of new photoinitiating systems when combined with an iodonium salt and an amine
to initiate the FRP of a highly reactive acrylate (TMPTA) resin. Among the different dyes,
two dyes with 3-(dialkylamino)-1,2-dihydro-9-oxo-9H-indeno [2,1-c] pyridine-4-carbonitrile group
were selected as the most representative photoinitiators. The different complementary experiments
done in order to determine the photochemical mechanism were thus conducted on these two
candidates. Notably, the steady-state photolysis and fluorescence quenching of the dye-based
photoinitiating systems were observed by UV–visible experiments and fluorescence approaches.
Moreover, the proposed chemical mechanisms have been investigated and discussed by free
energy change calculations. The generated free radicals were detected by ESR experiments,
which also confirmed the proposed chemical mechanisms. Interestingly, among the remarkable
light absorption properties, their exceptional photochemical reactivity enabled the design of highly
efficient photoinitiating systems with these dyes. Remarkably, due to their huge performance,
sunlight-induced polymerization is possible.

Finally, 3D patterns were generated by dyes 8 and 9-based three-component photoinitiating
systems, and the photocomposites were fabricated by filling silica. Comparison between these 3D
patterns obtained with and without fillers was also discussed. Overall, this research contributes
to improving the knowledge concerning the use of push–pull chromophores as photoinitiators of
polymerization. Interestingly, if 1H-cyclopentanaphthalene-1,3-dione has only been scarcely used to
elaborate push–pull dyes, the results obtained in this work clearly demonstrate the full potential of
this unusual electron acceptor for the design of push–pull dyes, and its deserves to be more widely
used in the future, not just for the design of photoinitiators but more generally in all research fields
making use of push–pull dyes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1196/s1,
Figure S1: UV–vis absorption spectra of dye 5–7; Figure S2: Fluorescence quenching of dyes 8 and 9 by iodonium
salt; Figure S3: ESR spectra obtained from ESR spin trapping experiment.
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