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Abstract
Diamond quantum processors consisting of a nitrogen-vacancy centre and surrounding nuclear
spins have been the key to significant advancements in room-temperature quantum computing,
quantum sensing and microscopy. The optimisation of these processors is crucial for the
development of large-scale diamond quantum computers and the next generation of enhanced
quantum sensors and microscopes. Here, we present a full model of multi-qubit diamond
quantum processors and develop a semi-analytical method for designing gate pulses. This method
optimises gate speed and fidelity in the presence of random control errors and is readily
compatible with feedback optimisation routines. We theoretically demonstrate infidelities
approaching ∼ 10−5 for single-qubit gates and established evidence that this can also be achieved
for a two-qubit CZ gate. Consequently, our method reduces the effects of control errors below the
errors introduced by hyperfine field misalignment and the unavoidable decoherence that is
intrinsic to the processors. Having developed this optimal control, we simulated the performance
of a diamond quantum processor by computing quantum Fourier transforms. We find that the
simulated diamond quantum processor is able to achieve fast operations with low error
probability.

1. Introduction

Diamond is a promising architecture for quantum information processing [1–8] and quantum
sensing/microscopy [9–12] at both cryogenic and room temperatures. Optimised diamond quantum
processors are crucial building blocks for large-scale diamond quantum computers and the next generation
of quantum sensors and microscopes that are enhanced by embedded quantum memories and signal
processing [13–15]. To date, diamond quantum processors have been used to implement quantum error
correction codes [3, 4, 16], quantum algorithms [17, 18], detection of metallo-protein molecules [19] as
well as quantum simulation of the helium hydride cation [5] and topological phase transition of a quantum
wire [6]. For technology applications, diamond quantum processors are distinguished from other quantum
architectures due to their ability to operate in ambient conditions and with relatively simple microwave,
radio-frequency and off-resonant optical control systems [20]. The resulting improvements in complexity,
robustness and cost make diamond one of the most flexible and widely applicable quantum technology
platforms.

Diamond quantum processors consist of a nitrogen-vacancy (NV) centre with a local cluster of
hyperfine-coupled nuclear spins. These coupled nuclear spins include the intrinsic N nuclear spin of the NV
centre and isotopic 13C lattice impurities. Quantum computations are realised by using the electron spin of
the NV centre as a quantum bus that initialises, mediates interactions between, and reads-out the coupled
nuclear spins, which act as the physical qubits. Scaling of the diamond quantum architecture requires a
mechanism to couple multiple NV centres and their qubit clusters. Coupling of separate NV centres has
been demonstrated at cryogenic temperatures using photons [21–23], and at room temperature using
magnetic dipole coupling between proximate NV centres [2, 24]. Spin chains [54] and coherent spin
transport [25] have also been proposed as coupling mechanisms.
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Previous work in optimising the quantum control of either the NV centre’s electron spin or coupled
nuclear spin qubits has already demonstrated excellent control fidelities, using techniques including
dynamical decoupling [7, 8, 26–37] as well as numerical gate pulse-shaping techniques, such as the chopped
random basis (CRAB) quantum optimisation algorithm [38, 39] and the gradient ascent pulse
engineering (GRAPE) algorithm [40]. Experimental application of the CRAB algorithm to the NV electron
spin has yielded ultra-fast single-qubit gates (i.e. beyond the rotating wave approximation) with fidelities of
0.95 ± 0.01 and 0.99 ± 0.016 for π/2 and π pulses, respectively [41]. The GRAPE algorithm has
been used to demonstrate single electron spin operations with fidelity F ≈ 0.99 [2] and generate entangled
states of three nuclear spins with fidelities exceeding 85% [4]. Moreover, an average single-qubit gate fidelity
of 0.999 952 and two-qubit gate fidelity of 0.992 has been reported using composite pulses and a
modified GRAPE algorithm, respectively [42]. While some of the demonstrated gate fidelities are
impressive, even with a gate fidelity of 0.999, for a fault-tolerant logical qubit to achieve logical error rates
comparable to classical computers, effective surface code error correction is anticipated to require up to 104

physical qubits [43, 44]. Therefore, there is a strong motivation to push for further reduction in gate
errors.

There are two different optimisation problems to address to improve the performance of diamond
quantum processors: improvement of initialisation/readout fidelities and improvement of gate fidelities and
speeds. The initialisation/readout fidelities are optimised by selecting the 13C nuclear spin lattice
sites that have the longest nuclear spin relaxation time during the projective single-shot optical readout
process employed in diamond quantum processors [4]. Broadly speaking, the best lattice sites are those
whose hyperfine field is well aligned to NV centre’s axis. As will be discussed later, overcoming the effects of
hyperfine field misalignment and decoherence are crucial to achieve high gate fidelities. As such,
there is some correlation between the choices made to optimise initialisation/readout fidelities and gate
fidelities. Consequently, for simplicity, in the following we will not discuss the optimisation of
initialisation/readout fidelities. Instead, we assume a particular selection of nuclear spin qubits with
well-aligned hyperfine fields, and focus on the problem of optimising the gate fidelities due to control errors
and speeds.

Optimisation of the processor gate operations requires simultaneous maximisation of gate speed and
minimisation of: (1) spurious effects of control fields on qubits other than the target qubit(s) (i.e.
cross-talk), (2) the effects of random control field errors (i.e. those caused by fluctuations in amplitude,
frequency and phase), (3) the effects of decoherence, and (4) the effects of hyperfine field misalignment.
Additional practical requirements are that the gate design: (A) complies with the physical constraints of the
control systems, (B) is readily incorporated into a feedback-based optimisation routine that uses
measurements to optimise the actual physical processor (and not just models of the processor) and supports
updating of the optimisation during operation to adjust for system drifts, and (C) is parameterised so that
the degree of convergence to optimisation limits can be deterministically and systematically assessed (in
order to support design decisions concerning the costs and benefits of further optimisation) and the
dominant error modes can be diagnosed (to improve processor design). As GRAPE involves direct
numerical solving of pulses using model systems, it does not readily achieve the practical requirements (B)
and (C) and relies heavily on the accuracy of its models [45]. On the other hand, the nature of CRAB allows
the integration of (B) but not (C) directly due to its inherent reliance on random numbers, and the number
of free parameters required to optimise the control field [39].

We propose a different approach to this optimisation problem. Our approach has three steps. The first
step is to generate a complete semi-analytical basis of pulses that comply with (A) and minimises (1) in the
approximation where time-ordering is neglected in the simulated quantum evolution. The second step is to
find the linear combination of these basis functions that minimise (2). The final step is to further optimise
the pulses to account for the effects of time-ordering in the quantum evolution via closed-loop
optimisations. We have neglected time-ordering in the quantum evolution to efficiently estimate the initial
coefficients of the linear combinations of basis functions required for closed-loop optimisations. Without
an initial estimate, optimising the linear combinations of basis functions via closed-loop optimisations is
computationally time consuming. This linear minimisation is fast and can include measurements of the
processor and therefore readily complies with (B). Furthermore, since the basis is complete, the dimension
of the non-trivial basis functions provides a clear parameter to analyse convergence to optimisation limits
and interpretation of different error modes, and thus also complies with (C). The principal strategy for both
minimising the effects of decoherence (3) and the effects of hyperfine field misalignment (4) is to maximise
the gate speed. This minimises the time over which decoherence accumulates and the time under which the
nuclear spin experience the hyperfine misalignment during two-qubit gates, while ensuring that the
infidelity introduced by control errors is less than that introduced by decoherence and hyperfine field
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misalignment. We have adopted this strategy to minimise the errors due to decoherence rather than directly
targeting the primary source of qubit decoherence (e.g. via dynamical decoupling) because the primary
source is the NV centre’s electron spin, whose strong interaction with the nuclear spins is required for the
implementation of both one- and two-qubit gates. Indeed, owing to the strong interaction, the qubit
coherence time 1/T2,n is limited by the electron spin relaxation time 1/T1,e [46, 47], which is approximately
2.4 ms at room temperature [49]. Note that our discussion here, and the results of this paper, are in the
context of room-temperature operation of diamond quantum processors. At cryogenic temperatures,
weakly coupled nuclear spins can instead be employed as qubits and as a result, their decoherence is
influenced by other mechanisms [50], at the cost of slower gate speeds.

In this paper, we report (i) a demonstration and analysis of our optimal design approach and
(ii) simulation of an optimised diamond quantum processor. In section 2, we first discuss the operating
principles of a diamond quantum processor before presenting a complete model of the processor, its gate
operations and control system errors. Section 3 demonstrates the generation of gate basis functions, while
section 4 demonstrates the optimisation of gate fidelities in the presence of control errors. In section 5, the
effects of decoherence on a diamond quantum computer are investigated via master equation simulations
and in section 6, we simulated the performance of 3 and 5 qubit quantum Fourier transforms (QFTs) on a
diamond quantum processor. Fidelities of QFTs were chosen as a simple performance metric because QFTs
are the foundation of many quantum algorithms. Thus, the fidelities of QFTs are basic indicators for the
system’s performance with more sophisticated algorithms.

2. Quantum control model of diamond quantum processors

2.1. Operating principles of diamond quantum processors
The NV centre is a point defect in diamond consisting of a substitutional nitrogen and an adjacent carbon
vacancy [51]. Its electronic structure consists of a ground state spin triplet (3A2) and an excited state spin
triplet (3E) with two intermediate singlet levels (1E and 1A1). There exist spin-selective non-radiative
intersystem crossings between the triplet and singlet levels, which lead to initialisation of the electronic spin
state upon optical excitation of the centre’s 3A2 → 3E transition as well as read out via the differing
fluorescence intensities of the spin states (see reference [51] for further details). In addition to high fidelity
optical spin initialisation and readout, the NV centre also has the longest electron spin coherence time of
any solid state spin at room temperature (T2 ≈ 2.4 ms) [49].

Each NV centre is coupled to a register of one or more nuclear spins, which we use as qubits [3, 4]. The
quantum register consists of the NV centre’s intrinsic nitrogen nuclear spin and nearby 13C nuclear spins.
Hyperfine coupling between the NV electron spin and the nuclear spins results in a splitting of the
electronic and nuclear energy levels. This splitting depends on the particular hyperfine coupling strength
between each nucleus and the NV electron spin, and also on the respective electron and nuclear spin states
[52, 53] (see figure 1(b)). We choose a register with non-overlapping hyperfine couplings, allowing the use
of frequency selectivity to individually address each nuclear spin qubit in the register.

Key requirements for universal quantum computation are the initialisation and readout of the qubits, as
well as the ability to apply single and two-qubit gate operations. In diamond quantum computing, each of
these processes relies on high-fidelity quantum gates on the electron and nuclear spins. Initialisation and
readout of a diamond quantum register is performed via a projective, single-shot readout of the nuclear
spin qubits. This measurement scheme involves initialising the electron spin, entangling the nuclear spin
qubits with the electron spin using a CnNOTe gate and then readout of the electron spin [58]. Single-qubit
gate operations are realised using radiofrequency (RF) pulses. These pulses correspond to the Rx and Ry

gates where they are the rotations about the x and y axes respectively. Other single-qubit gates can be
constructed from combinations of these rotations. The intrinsic properties of the NV-nuclear spins system
allows direct application of a CZ gate via microwave (MW) pulses. This CZ gate is achieved by performing a
selective 2π pulse conditional on the nuclear spin register being in a particular state [4, 56, 57]. The CZ gate
can be combined with single-qubit gates to realise any other two-qubit gate.

The splitting in the 3A2 triplet ground state results in two types of subspaces which we identify as
computational subspace and auxiliary subspace (figure 1(b)). The natural computational subspace is either
of the ms = ±1 states as they have non-zero hyperfine interactions, thus allowing the nuclear spin
qubits to be individually addressed through frequency selectivity [59]. While the choice of either the
ms = ±1 state as the computational subspace is arbitrary, the ms = −1 state is more often selected as it
requires lower microwave frequencies for qubit gate operations. Single-qubit gates are realised in the
computational subspace while a two-qubit CZ gate utilises, but does not occupy, the auxiliary subspace
[4, 56, 57].
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Figure 1. (a) Conceptual design of a diamond quantum computer (Adapted with permission from [20]. © Australian Institute of
Physics). At the device scale (top), the quantum computer contains a diamond chip with an array of quantum processing nodes.
Each node is formed by magnetically coupling a surrounding cluster of 13C nuclear spin qubits to the NV centre. Optical
initialisations and readout of these quantum processing nodes via their NV centres are done using an optical system placed below
the diamond chip. At the scale of a single node (middle), surface microwave structures are used to realise single and two qubit
gate operations. Internode two-qubit gate operation is mediated using spin quantum buses which are realised through chains of
substitutional N defects. At the cluster scale (bottom), the NV centre consists of a substitutional N defect (blue) adjacent to a
carbon vacancy (transparent). The nuclear spins of the N defect and cluster of nearby 13C atoms are depicted in blue and orange
respectively, while the NV centre’s electronic spin is depicted in red. (b) The hyperfine structure of the NV centre which arises
from the interaction of two nearby 13C nuclear spin qubits. Optical initialisation and readout of the NV centre’s electron spin are
realised via a combination of spin-conserving optical transitions and spin-selective radiationless decay [51]. Using microwave
pulses, this capability can be extended to the nuclear spin qubits by selectively swapping the electronic and nuclear spin states [4,
56, 57]. The computational and auxiliary subspaces are defined to be the |−1〉 and |0〉 electronic spin projections, respectively.
Single qubit gate operations are realised in the computational subspace using spectrally-selective microwave pulses. A
conditional-z (CZ) two-qubit gate operation is realised via selective 2π microwave pulses that involves, but does not occupy, the
auxiliary subspace [4, 56, 57].

2.2. Model Hamiltonian
The Hamiltonian HI of the nuclear spins coupled to the NV centre is

HI =
∑

i

�S · Ai ·�Ii −
∑

i

γi

[
Ii,zB0 + Ii,xB1(t)

]
(2.1)

where γi is the gyromagnetic ratio of the ith nucleus, B0 is the background static magnetic field aligned with
the NV axis, B1(t) is the applied radio frequency field, Ai is the hyperfine tensor of the ith nucleus with �S
being the dimensionless electron spin operator and�Ii is the dimensionless nuclear spin operator of the ith
nucleus. For this model, we apply the secular approximation as a very strong magnetic field is applied along
the z-axis during the operation of this quantum computer. Therefore, the nuclear spin Hamiltonian in the
computational subspace simplifies to

HI,ms=−1 = −
∑

i

�Ai,z ·�Ii −
∑

i

γi

[
Ii,zB0 + Ii,xB1(t)

]
(2.2)

�Ai,z is now a vector instead of a tensor where

�Ai,z = Ai,xzx̂ + Ai,yzŷ + Ai,zzẑ (2.3)

We simplify the expression by diagonalising the nuclear spin Hamiltonian in the computational subspace
via a rotation of the spin operators about the angles defined by their hyperfine interactions. Assuming that
only nuclei with hyperfine fields nearly aligned with the NV axis are chosen, we perform small angle
approximations and by undoing a rotation about z-axis for further simplifications, this yields

HI,ms=−1 = −
∑

i

ωiIi,z −
∑

i

Ii,xγiB1(t) (2.4)

where ωi is the transition frequency of the ith nucleus. We also transform the Hamiltonian into the
interaction picture using the following transformation operator

Hsingle = T HI,ms=−1T −1 − 𝕚T d

dt
T −1 (2.5)
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where

T = exp

[
−𝕚t
∑

i

ωiIi,z

]
(2.6)

Thus, for single-qubit gate operations, the Hamiltonian for the computational subspace in the interaction
picture is given by

Hsingle = −
∑

i

[
Ii,x cos ωit + Ii,y sin ωit

]
γiB1(t) (2.7)

The auxiliary subspace is involved to perform a CZ gate and this is enabled via the NV electron spin.
The effective Hamiltonian for two-qubit gate operations is given by

H′ =
Δ

2
σz +

Ω

2
σxB1(t) +

∑
i

(αi + βiσz) Ii,z (2.8)

with Δ = D − γeB0 where D denotes the zero-field splitting, Ω =
√

2γe, αi = −γiB0/2 − ωi/2 and
βi = −γiB0/2 + ωi/2. When defining the Hamiltonian above, we ignore the interactions with the ms = +1
state of the electron spin and the direct interaction between the nuclear spins and the microwave field B1(t).
It is possible to do this because the microwaves are far detuned from these transitions. We have also ignored
the interactions of the static magnetic field acting on the nuclear spin when the electron spin is in ms = 0
state. This interaction term arises from the hyperfine field misalignment and is discussed further in
appendix B.2. Likewise to the Hamiltonian for single-qubit gate operations, we transform H′ into the
interaction picture with the transformation operator T ′ is given by

T ′ = exp

[
𝕚t

(
Δ

2
σz +

∑
i

(αi + βiσz) Ii,z

)]
(2.9)

The transformed Hamiltonian for two-qubit gate operations is then given by

Hmulti =
Ω

2
B1(t)

[
σx ⊗

(
|11〉 〈11| cos ([Δ+ β1 + β2] t) + |10〉 〈10| cos ([Δ+ β1 − β2] t)

+ |01〉 〈01| cos ([Δ− β1 + β2] t)
)
+ |00〉 〈00| cos ([Δ− β1 − β2] t)

)
− σy ⊗

(
|11〉 〈11| sin ([Δ+ β1 + β2] t) + |10〉 〈10| sin ([Δ+ β1 − β2] t)

+ |01〉 〈01| sin ([Δ− β1 + β2] t) + |00〉 〈00| sin ([Δ− β1 − β2] t)
)]

(2.10)

where 0 and 1 are the mI = −1/2 and +1/2 nuclear spin projections, respectively. We use the notation
where the most left entry of a tensor product corresponds to the first qubit, i.e. |q1, q2, . . . 〉

2.3. Control pulses and gate operations
Focusing on single-qubit gate operations within the computational subspace, the applied radio frequency
field B1(t) can be parametrised as a linear combination of oscillating components where

γiB1(t) = a(t) cos ωt + b(t) sin ωt (2.11)

By neglecting the time-ordering in the quantum evolution, we can write the evolution operator for the ith
nucleus as

Ui = e−𝕚Ii,xXi or Ui = e−𝕚Ii,yYi (2.12)

with

Xi = −
∫ τ/2

−τ/2
a(t) cos ωit cos ωt + b(t) cos ωit sin ωt dt (2.13)

Yi = −
∫ τ/2

−τ/2
a(t) sin ωit cos ωt + b(t) sin ωit sin ωt dt (2.14)

where τ denotes the gate time while Xi and Yi parametrises the rotations about the x and y axes respectively,
which realises the gate operation. We have neglected time-ordering in the quantum evolution to efficiently
estimate the initial coefficients of the linear combinations of basis functions required for closed-loop
optimisations. The effects due to time-ordering in the quantum evolution is discussed further in appendix
A.
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If the jth nucleus is the intended target, then the operations on all other nuclei (i 
= j) are simply identity
operations. Thus we have: for i 
= j,

Xi = −
∫ τ/2

−τ/2
a(t) cos ωit cos ωjt + b(t) cos ωit sin ωjt dt = 0 (2.15)

Yi = −
∫ τ/2

−τ/2
a(t) sin ωit cos ωjt + b(t) sin ωit sin ωjt dt = 0 (2.16)

and for i = j

Xj = −
∫ τ/2

−τ/2
a(t) cos ωjt cos ωjt + b(t) cos ωjt sin ωjt dt = XT (2.17)

Yj = −
∫ τ/2

−τ/2
a(t) sin ωjt cos ωjt + b(t) sin ωjt sin ωjt dt = YT (2.18)

We impose the restriction that ω = ωj where ωj is the transition frequency of the targeted qubit. Using these
gate parametrisations, we introduce the following inverse Fourier transforms, where

a(t) =
1√
2π

∫ ∞

−∞
a(ω)e𝕚ωt dω (2.19)

b(t) =
1√
2π

∫ ∞

−∞
b(ω)e𝕚ωt dω (2.20)

As the signal is finite in time domain, we can enforce that a(t) and b(t) are zero outside
t ∈
[
−τ/2, τ/2

]
. This enables us to change the limits of the time integral to ±∞ and pass the time integral

through the frequency integral. We also use the following identity

1√
2π

∫ ∞

−∞
e−𝕚ωt dt =

√
2πδ (ω) (2.21)

for further simplifications. For a(t) and b(t) to be real functions with well defined phases, we enforce

a∗(ω) = a(ω) = a(−ω) (2.22)

b∗(ω) = b(ω) = b(−ω) (2.23)

Using the above conditions, we arrived at the expressions where: for i 
= j

Xi = −
√

2π

2

[
a
(
ωi + ωj

)
+ a
(
ωi − ωj

)]
= 0 (2.24)

Yi =

√
2π

2

[
b
(
ωi + ωj

)
− b
(
ωi − ωj

)]
= 0 (2.25)

and for i = j

Xj = −
√

2π

2

[
a
(
2ωj

)
+ a (0)

]
= XT (2.26)

Yj =

√
2π

2

[
b
(
2ωj

)
− b (0)

]
= YT (2.27)

where XT and YT are the intended angles of rotation on the x-axis and y-axis respectively.

2.4. Statistical model of gate errors
In reality, the control fields have noises and the frequencies of the qubits fluctuate slowly between the
computational shots. Thus, the real control field can be written as

γiB1(t) = (1 + ε)

[
a(t) cos ((ω + δ) t + φ) + b(t) sin ((ω + δ) t + φ)

]
(2.28)

where ε,φ and δ are free parameters representing the amplitude, phase and frequency noises respectively.
Let the target evolution operator for a single qubit gate on the jth nucleus within an N qubit cluster to be

GT,x = I1 ⊗ · · · ⊗ Ij−1 ⊗ e−𝕚(Ij,x XT) ⊗ Ij+1 ⊗ · · · ⊗ IN (2.29)
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GT,y = I1 ⊗ · · · ⊗ Ij−1 ⊗ e−𝕚(Ij,y YT) ⊗ Ij+1 ⊗ · · · ⊗ IN (2.30)

The actual evolution operator is defined as

GA,x =

N⊗
i=1

e−𝕚(Ii,xXi) or GA,y =

N⊗
i=1

e−𝕚(Ii,yYi) (2.31)

The analytical expression for infidelity can be written as

I = 1 −
Tr
[

G†
TGA

]
Tr
[

G†
TGT

] (2.32)

This expression for infidelity compares an ideal gate to an experimental gate [60]. It is used as it requires
minimal computation when compared to other figures of merit, and is equivalent to the usual performance
function implemented in the GRAPE algorithm [40]. Assuming the gates are rotating about the x-axis, the
infidelity expression can be written as

I = 1 − 1

2N

⎡⎣ N∏
i
=j

Tr
(

e−𝕚(Ii,xXi)
)⎤⎦Tr

[(
e−𝕚(Ij,x XT)

)†
e−𝕚(Ij,xXj)

]

= 1 −

⎡⎣ N∏
i
=j

cos

(
1

2
Xi

)⎤⎦[cos

(
Xj − XT

2

)]
(2.33)

Assuming small errors in the regime where Xi � 1 for i 
= j and
(
Xj − XT

)
� 1, we can then expand the

above expression, and keep only the terms up to second order, which gives

I ≈ 1

8

N∑
i
=j

X2
i +

1

8
δ2

X (2.34)

Repeating the same procedure for the rotations about the y-axis gives

I ≈ 1

8

N∑
i
=j

Y2
i +

1

8
δ2

Y (2.35)

where δX = Xj − XT and δY = Yj − YT

The control signal has a general form of

a(ω) =
∑

n

cna(n)(ω) (2.36)

b(ω) =
∑

n

dnb(n)(ω) (2.37)

As such, the set of linear coefficients cn and dn that minimise the infidelity caused by the amplitude, phase
and frequency noises can be solved.

We assumed the noise in the qubit frequencies δ, pulse amplitudes (1 + ε) where ε is the fractional error
of the pulse amplitudes and phase φ are described by Gaussian distributions centred at zero with their
respective standard deviations of σδ ,σε and σφ. The Gaussian distribution for frequency error is justified by
experiments [42, 48]. While there is no clear evidence of either Gaussian or Lorentzian distribution for the
amplitude error, we assumed Gaussian distribution and noting that reference [42] observed a Lorentzian
distribution for the convolution of power fluctuations and pulse shape errors. The analytical expression for
the average infidelity can be written as

〈I〉 =
∫ ∞

−∞
P(δ;σδ)

∫ ∞

−∞
P(ε;σε)

∫ ∞

−∞
P(φ;σφ)I(ω1, . . . ,ωN)dδ dε dφ

=
1

8

⎡⎣∫ ∞

−∞
p(δ;σδ)

∫ ∞

−∞
p(ε;σε)

∫ ∞

−∞
p(φ;σφ)δ2

X dδ dε dφ+

N∑
i
=j

∫ ∞

−∞
p(δ;σδ)

∫ ∞

−∞
p(ε;σε)

×
∫ ∞

−∞
p(φ;σφ)X2

i dδ dε dφ

⎤⎦ (2.38)

7



New J. Phys. 22 (2020) 093068 Y Chen et al

A similar infidelity expression can be obtained for rotations about the y-axis. The minimum average gate
infidelity is found when

∂ 〈I〉
∂cn

= 0 (2.39)

∂ 〈I〉
∂dn

= 0 (2.40)

are satisfied for each function in the expansion.

3. Generation of basis functions

In this paper, we use frequency-shifted sinc functions as an ansatz for our control pulses in the frequency
domain. Sinc functions were chosen as they represent pulses of finite duration in the time domain. As
previously demonstrated in equations (2.36) and (2.37), the key property is the amplitude at very specific
frequencies

(
ωi,ωj

)
. The interference of frequency-shifted sinc functions allow us to cancel the pulse

amplitude at certain frequencies while at the same time amplifying other frequencies. The parametrisation
of a(ω) and b(ω) is given by

a(n) (ω) = f (n)τ
[

sinc
(τ

2

(
ω − μ(n)

))
+ sinc

(τ
2

(
ω + μ(n)

))]
(3.1)

b(n) (ω) = g(n)τ
[

sinc
(τ

2

(
ω − ν(n)

))
+ sinc

(τ
2

(
ω + ν(n)

))]
(3.2)

where f (n), g(n) are the pulse amplitudes in the frequency domain, τ is the gate time, μ(n) and ν(n) are the
frequency shifts and (n + 1) is the total number of basis functions used in the optimisation procedure.

If the frequency shifts for the nth solution are defined as

μ(n) = n

(
2π

τ

)
(3.3)

ν(n) = n

(
2π

τ

)
(3.4)

Then the above simply becomes a Fourier series, which is known to be a complete basis function. However,
as seen in equations (3.1) and (3.2), the a(n)(0) and b(n)(0) terms would then be

a(n)(0) = 2f (n) sinc (nπ) (3.5)

b(n)(0) = 2g(n) sinc (nπ) (3.6)

where for n � 1, a(n)(0) and b(n)(0) terms will always be 0. Hence, without any contributions from the
a(n)(0) and b(n)(0) terms, generating an optimal pulse from only the a(n)

(
2ωj

)
and b(n)

(
2ωj

)
terms would

require extremely large amplitudes.
One possible method to overcome this complication is to use Kadec’s 1/4 theorem, where an additional

small frequency shift is introduced to the Fourier series while retaining the completeness of the Fourier
series. It was shown that when the additional frequency shift is bounded by a maximum value of
0.25

(
2π/τ

)
, the inequality will still be able to generate a continuous set of sinc basis functions [61]. In this

paper, we have chosen the upper bound to be 0.2
(
2π/τ

)
as it enables us to resolve better solutions for the

pulse amplitudes (see figure 2).
The frequency shifts are then redefined as

μ(n) =

(
n +

1

5

)(
2π

τ

)
(3.7)

ν(n) =

(
n +

1

5

)(
2π

τ

)
(3.8)

As a result, there are many solutions in a(n) (ω) and b(n) (ω) that we can consider and these solutions form a
linear basis for the construction of optimal pulse functions. These optimal pulse functions are found by
determining the linear coefficients that minimise the effects of the pulse errors on average.

As an example, consider a two-qubit system which consists of 15N and 13C nuclear spins. Their
respective hyperfine interactions are given by AN ≈ 3 MHz [52] and AC ≈ 0.413 MHz [4]. The background
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Figure 2. Plots of infidelity (equation (2.33)) versus pulse amplitude
(

f (1)
)

for a π rotation about the x-axis with τ = 1μs and
n = 1. This is the first step of the optimisation procedure where we generate optimal solutions for the pulse amplitudes in the
absence of control errors. Due to the experimental hardware constraints, the maximum pulse amplitude in the time domain is set
to be approximately 25 Mrad s−1. We arbitrarily set the corresponding search range for f (n) and g(n) to be f (n), g(n) ∈ [−5, 5] and
noting that the amplitude in the time domain has an additional factor of 2

√
2π from the inverse Fourier transform of the basis

functions. An additional shift of 0.2 (2π) allows us to resolve better solutions with lower infidelity compared to no additional
shift and a 0.1(2π) shift within a bounded search range for the amplitudes. See text for more discussions regarding the
optimisation procedures.

static magnetic field is chosen to be B0 = 0.62 T [4]. Using these parameters, we demonstrate the
optimisation procedure for an X gate targeted at the 13C nuclear spin (X2). Since we are performing
rotations only in the x-axis/y-axis, we assumed there are no mixed signals in the pulse and thus, there are no
contributions from the b(ω)/a(ω) components. Hence, the equations that are satisfied by the solutions are
given by

X1 = −
√

2π

2
[a (ωN + ωC) + a (ωN − ωC)] = 0 (3.9)

X2 = −
√

2π

2
[a (2ωC) + a (0)] = π (3.10)

where ωN = AN + γNB0 and ωC = AC + γCB0. The first step of the optimisation routine is to generate a set
of basis functions that minimise the infidelity landscape in the absence of control errors against the pulse
amplitude, f (n) and g(n) in the frequency domain as described by equation (2.33). This step minimises
crosstalk between the qubits.

The search range for the pulse amplitudes is constrained by the design of our MW/RF system and this
corresponds to the shortest gate time that we can perform for our qubit gate operations. In the time
domain, the pulse amplitude, a(t) is determined by γ iB1(t) where γ i is the gyromagnetic ratio of the nuclear
spin qubits and B1(t) is the maximum amplitude of the oscillating MW/RF magnetic field. Implementing
the typical values used in an experiment, the pulse amplitude a(t) is thus limited to a maximum value of
approximately 25 Mrad s−1. The corresponding search range for f (n) and g(n) is then arbitrarily set to
f (n), g(n) ∈ [−5, 5] and noting that the amplitude in the time domain has an additional factor of 2

√
2π from

the inverse Fourier transform of the sinc basis functions.
Similarly, the set of basis functions for a two-qubit CZ gate is generated using the same procedure. In

this case, the pulse amplitude is limited to approximately 80 Mrad s−1. The search range for f (n) is bounded
in the region of f (n) ∈ [0.5, 15] as the intrinsic infidelity expression used to describe two-qubit gate
operations, equation (D.1) is symmetrical. Using f (n) = 0, the optimisation will be stuck in a local
minimum and clearly, f (n) = 0 corresponds to no physical pulse. Thus, in order to find sensible solutions,
we shifted the initial search boundary by 0.5 to stimulate the optimisation to find another local minimum.
The equations that are satisfied by the solutions are given by equations (C.9)–(C.12).

As seen in table E1, the pulse amplitudes are dependent on the angle of rotations and gate time. This is
consistent with the formulation of our sinc basis functions where larger amplitudes are expected to generate
greater angle of rotations for a given frequency shift and gate time. We are also able to resolve solutions with
lower infidelity for smaller angle of rotations at shorter gate times as the pulse amplitudes are smaller. We
observed a trend, shown in tables E1 and E2, where at short gate times, higher order basis functions have
solutions which correspond to the lower or upper bound of the allowed values. These pulse amplitudes
minimise the infidelities within the search range imposed on them as set by physics. While some of the
pulse amplitudes correspond to the maximum or minimum allowed values, the critical factor in this
optimisation routine is the linear combinations of these generated basis functions as discussed in the
following section.
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Figure 3. Calculated infidelities of various gates for different gate times. (a) The performance of an X gate, (b) a π/2 rotation
about the y-axis and (c), a Hadamard gate in the presence of frequency, amplitude and phase noises. The infidelities are plotted as
a function of total number of basis functions, M and gate time, τ . Gate infidelities of ∼ 10−6 can be achieved by using linear
combinations of two or more basis functions. The infidelities are decreasing with an increasing number of basis functions used in
the optimisation procedure (not shown on scale). In general, 3 basis functions are needed for the infidelities to converge to the
optimisation limits. For a system with two qubits, using more than 3 basis functions does not have significant improvements on
achieving lower infidelities.

4. Optimal gates for non-ideal control system

Applying this optimal control method, we optimise the infidelities of an X gate, Hadamard gate and a CZ
gate due to the control errors. We approximated the standard deviations of the Gaussian phase, amplitude
and frequency noises to be σφ = 1/2π kHz, σε = 10−3, σδ = 1 kHz for nuclear spins and σδ = 27.5 kHz
for the electron spin [48]. Phase noises are excluded from the calculation of average infidelities for a CZ gate
as we are performing a 2π pulse. The first order effects due to the phase errors are negligible.

As shown in figure 3, the average infidelities for an X gate, a π/2 rotation about the y-axis and a
Hadamard gate fluctuate with a single basis function, since the function parameters depend on the local
infidelity landscape during the initial basis function computation. However, the optimised linear
combinations of two or more basis functions yield infidelities of approximately 10−6 for an X gate and a
Hadamard gate. Infidelities up to 10−7 can be achieved for a π/2 rotation about the y-axis. The infidelities
are monotonically decreasing with increasing number of basis functions and only 3 basis functions are
required for the infidelities to converge to the optimisation limits. Thus, this demonstrates the capability of
this optimal control method, and allow us to systematically assess the degree of convergence to the
optimisation limits. For a system with two qubits, using more than 3 basis functions does not significantly
lower the infidelities. In general, we expect to achieve infidelities on this order (of 10−6) for any single-qubit
operation.

Given that this method can achieve low infidelities, the main objective is to shorten the gate time
without significantly affect the infidelity, in order to minimise the effects due to decoherence. We analyse
the overall amplitudes of the respective linear combinations of the sinc basis functions in order to find the
minimum gate time for which the pulse amplitude can still be practically generated. Using estimated
constraints described in the previous section, the maximum threshold for the amplitude is set to be
log10(25) ≈ 1.40.

Figure 4 depicts the overall amplitudes of the basis functions in the linear combinations for different
basis size and gate times. At some gate times, the linear combinations have larger amplitudes when more
basis functions are used. Since the optimal control method optimises the linear combinations of the basis
functions such that the infidelities are monotonically decreasing, therefore, if the amplitude in the initial
basis function is large, then it may result in larger amplitudes for the subsequent basis functions when the
basis size is increased. Based on the generated data, we determined that a 0.5μs X gate with an infidelity of
∼ 10−6 can be achieved with just two basis functions (figure 4(b)). Despite being able to perform a 0.5μs X
gate, we need to take into account various gate times required for different types of rotations where slower
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Figure 4. Plots of the overall amplitudes, A, which realises an X gate with the minimum average infidelity ranging from 1 basis
function (a), to 6 basis functions (f). At certain gate times, the overall amplitudes become very large when the number of basis
functions are increased. The overall amplitudes are dependent on the initial solutions generated in the minimisation of the
infidelity expression (equation (2.33)). These amplitudes are optimised to generate lower infidelities with an increasing number
of basis functions. Thus, a large amplitude in the first basis function may result in linear combinations with larger amplitudes
when the basis size is increased.

Figure 5. The performance of a two-qubit CZ gate in the presence of frequency and amplitude noise. The infidelities are plotted
as a function of total number of basis functions M and gate time τ . On average, gate infidelities of 10−4 ∼ 10−6 can be achieved
by using linear combinations of at least 4 basis functions for gate times τ � 1μs. Monotonicity was not fully demonstrated for
τ < 1μs due to numerical integration errors. This is caused by many linear combinations of basis functions with extremely large
amplitudes which results in a high oscillatory integrand. We observed convergence of these infidelities to their respective
optimisation limits and it requires at least 8 basis functions on average.

gates are required for bigger angle of rotations. Thus, on average, a conservative estimate for the fastest
single-qubit gate that we are able to perform with ∼ 10−6 infidelity is approximately 1μs.

Applying our method now to two-qubit gates, the maximum threshold for the amplitude of a two-qubit
CZ gate is set to be log10(80) ≈ 1.9. From figure 5, on average, gate infidelities of 10−4 ∼ 10−6 can be
achieved with 4 or more basis functions for gate times τ � 1μs. The calculated infidelities are
monotonically decreasing with increasing basis size for τ � 1μs. Monotonicity was not fully demonstrated
for τ < 1μs due to numerical integration errors. These errors are exacerbated for τ < 1μs because of many
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Figure 6. Plots of the overall amplitudes, A, which generate the minimum averaged infidelity of a CZ gate ranging from 1 basis
function (a), to 12 basis functions (l). Similar to an X gate, at certain gate times, the overall amplitudes are much larger when the
number of basis functions are increased to generate monotonically decreasing infidelities and they are dependent on the initial
solutions generated in the minimisation of the intrinsic infidelity expression (equation (D.1)).

linear combinations of basis functions with extremely large amplitudes at short gate times, resulting in a
high oscillatory integrand. On average, more than 8 basis functions are required for the convergence of
these infidelities to their respective optimisation limits. Based on the optimisations shown in figures 5 and
6, the fastest two-qubit CZ gate that we can perform with an infidelity of ∼ 10−6 is 1μs and it requires 6
linear combinations of basis functions.

Additionally, we have analysed the infidelities of a CZ gate for a range of electron spin linewidths that
may occur in materials with different densities of 13C. Figures 7(a) and (b) depicts the CZ gate infidelities
with σδ = 2 × 27.5 kHz and 4 × 27.5 kHz, respectively. Meanwhile, figure 7(c) demonstrates convergence
of CZ gate infidelities with τ = 2.25μs occurring at different number of basis functions for different
electron spin linewidths, with larger linewidths requiring larger number of basis functions. Overall, we are
still able to obtain infidelities less than 10−4 across the range of linewidths, but at a cost of longer gate time
and larger number of basis functions.

We now turn our attention to the final step of the optimisation process, which is to incorporate
time-ordering in the quantum evolution into our optimisation routine. As a proof of principle
demonstration, we have performed this optimisation process on an X gate (see appendix A). Through
further optimisations where the quantum evolution is evaluated numerically using a finite-difference
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Figure 7. CZ gate infidelities for electron spin linewidth (σδ) of (a) 2 × 27.5 kHz and (b) 4 × 27.5 kHz. (c) Shows the
convergence of CZ gate infidelities for different electron spin linewidths with τ = 2.25 μs. Convergence of infidelities occurs at
approximately 5 and 11 basis functions for σδ = 27.5 kHz and 2 × 27.5 kHz, respectively. Convergence of infidelities was not
observed for σδ = 4 × 27.5 kHz, implying that we would require more basis functions for convergence to occur. While increasing
the linewidths would amount to increasing the gate infidelities, we are still able to obtain infidelities of less than 10−4, but at the
cost of longer gate times and larger number of basis functions.

method, we found that an X gate can theoretically achieve infidelities of 10−5 or lower. We believe that with
the addition of more advanced numerical optimisation techniques, then higher number of basis functions
can be included as well as the treatment of two-qubit gates. Thus, we are confident that we can reduce the
control errors to the order of 10−5 or better for all gates. However, it is not necessary to involve the
numerical optimisation techniques if we are performing experiments on the diamond quantum processors
as the same feedback-based optimisation routine will occur.

Now, we must assess the implications for neglecting the hyperfine field misalignments when attaining
these infidelities. From appendix B.2, the hyperfine field misalignment only affects the two-qubit gate.
While we are able to minimise the gate infidelities due to control errors to the order of 10−5 or 10−6, the
inclusion of the correction terms from the hyperfine field misalignment introduced an additional infidelity
on the order of 10−3. This additional infidelity arises from the projection of the applied magnetic field due
to the rotation of the nuclear spin coordinates in the computational subspace. One way to overcome this
effective field is to include radiowave pulses which are resonant with the nuclear spins in the ms = 0 state in
conjunction with the microwave pulses which drive the electron spin transitions. This dual application of
radio and microwave pulses is beyond the scope of this work and should be pursued in future work. There
is no physical reason why these errors due to hyperfine field misalignment cannot be reduced to the level of
our control errors.

5. Gate performances in presence of decoherence

As mentioned in section 1, the nuclear spin qubits undergo pure dephasing due to the relaxation of the
electron spin. Thus, the coherence time of the qubits is bounded by the relaxation time of the electron spin.
Here, we introduce the master equation which is also known as the Lindblad equation [62, 63]

ρ̇(t) = L(ρ) ≡ − i

�
[H, ρ(t)] +

N∑
m=1

(
Lmρ(t)L†

m − 1

2
L†

mLmρ(t) − 1

2
ρ(t)L†

mLm

)
(5.1)

where the sum over m is the summation of the decoherence mechanism over the individual nuclear spins.
Instead of solving the differential equations, we can express the Lindblad equation as a vectorized density
matrix [64]

ρ̇ = (H + G) ρ (5.2)
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Figure 8. Effects of decoherence on two different different initial states by applying a perfect X gate. The fidelity is simulated
with respective of multiples of the fastest single-qubit gate time of 1μs. The errors are found to be on the scale of 10−3 ∼ 10−4.

where G is the decoherent part of the Lindblad equation with the form of

G =

N∑
m=1

(
Lm ⊗ Lm − 1

2
I⊗
(
L†

mLm

)
− 1

2

(
L†

mLm

)
⊗ I

)
(5.3)

and

H = − i

�

(
H ⊗ I− I⊗ H

)
(5.4)

The overline denotes the complex conjugate, † is the adjoint, H is the Hamiltonian of the qubit system and I

is the 2N × 2N identity matrix where N is the number of qubits in the system. For a time dependent
Hamiltonian, the Linblad equation is given by

ρ(t) = exp

[∫ τ/2

−τ/2
H dt + Gt

]
ρ(0) (5.5)

The Lindblad operator L describing the dephasing of the nuclear spin qubits induced by a random electron
spin flip can be written as

Lm =

√
1

2T2
σz,m (5.6)

where the nuclear spin T2 is defined by the relaxation time T1 of the electron spin (1.8 ms) [48] and σz,m is
the Pauli matrix for the z component of each nuclear spin.

To assess the effects of decoherence due to dephasing, we consider an example with a perfect X gate. The
aim now is to solve for ρ(t) and calculate its state fidelity defined as

F =
Tr
[
ρ†Iρ
]

Tr
[
ρ†IρI

] (5.7)

where ρI is the ideal density matrix without the effects of decoherence and ρ is the simulated density matrix
of the system.

As shown in figure 8, the errors in both cases have magnitudes of approximately 10−3 ∼ 10−4. These
errors are much larger than the errors caused by the effects of frequency, phase and amplitude noises as
demonstrated in section 4 and the decoherence errors increase with longer gate times. The decoherence
errors also have the same order of magnitude

(
∼10−3

)
as the errors introduced by hyperfine field

misalignment on CZ gates (see appendix B.2). Since we cannot remove the electron-nuclear spin coupling
as it is required for the selective operations, this leads to the conclusion that for a given electron relaxation
time T1,e, the only solution to improve the gate fidelity is to make the gate operations faster.

6. Simulation of QFT on a diamond quantum processor

In this section, we set a benchmark for the optimal performance of a diamond quantum processor by
simulating quantum algorithms. The benchmark will provide us with insights into the limits of the
processor, which can be used to aid the design and comparison of the device in the near future.

Owing to our expectations that with modifications to the control system, errors due to the hyperfine
field misalignment can be reduced to the level of control errors, which are small compared to the effects of
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Figure 9. The full circuit used for the simulations of 5 qubit quantum Fourier transform. U (θ) denotes the phase gate of θ. The
2 dots joined with a line denotes a controlled-phase gate with their respective phases written in the circuit. We can write the
controlled-phase gate in this notation as the matrix representation for this operation is the same regardless of which qubit is the
control/target qubit, i.e. C1PHASE2 = C2PHASE1. For a 3 qubit quantum Fourier transform, gate operations are performed on
the first three qubits only (starting from the top).

decoherence. Hence, building on the results from section 5 and appendix B.2, we can simulate quantum
algorithms on the diamond quantum computer by only considering the effects of decoherence. The key
metrics for simulation will be the error probability and the total computational time (ignoring initial
loading time of the computational control systems). These two metrics are chosen since computational time
is the primary resource and the error rate is the key quality of a quantum computer. We have chosen to
compute QFTs for simulation as QFT is widely used in quantum algorithms [65]. A further motivation is
the similarity to the algorithms used for enhanced quantum sensing using a register of nuclear spin qubits.
The initial state was chosen in a way such that an output state of |001〉 (3 qubit QFT) and |00 001〉 (5 qubit
QFT) will be the only outcome with a probability of 1 (figure 9).

The simulations of QFT on the diamond quantum computer are done using equation (5.5) with
electron relaxation time of T1,e ≈ 1.8 ms. These simulations will be iteratively solved for multiples of the
fastest single and two-qubit gate times by only considering the effects of decoherence as the effects due to
hyperfine field misalignments have the same order of magnitude and only affect CZ gates. The total number
of pulses required for 3 qubits (QFT3) and 5 qubits (QFT5) QFTs after the decomposition into rotations
about the x and y axis and CZ gate are 75 and 195 for QFT3 and QFT5 respectively (appendix F).

The total computation time on a diamond quantum computer can be broken down into shot time and
initialisation/readout time. Shot time can be regarded as the total duration of the pulses required for an
experiment. Assuming single-qubit gate times of 1 μs and CZ gate time of 1μs, the optimal pulse duration
for QFT3 and QFT5 are approximately 75μs and 195μs, respectively. For the initialisation/readout time
(single-shot readout), we are going to apply M number of readout cycles per qubit. Thus, the total time for
initialisation/readout is given by

Initialisation/Readout Time = n × M × tc (6.1)

where n is the number of qubits, M is the number of readout cycles applied per qubit and tc is the time per
cycle. Time per cycle is based on the time of the optical pulse required for readout (topt) and the time of the
microwave pulse (tmw) required to perform the CNOT gate for repetitive measurements. These two time
quantities are approximately 1 μs each. M is chosen to be 500 as it has the same magnitude as other
numbers of repetition which achieve an initialisation fidelity of 0.99 given a specific relative shift of the
initialisation threshold [4]. The time required for a single-shot readout is given by

TQFT3 = 75 × 10−6 + 3 × 500 × 2 × 10−6 ≈ 0.0031 s (6.2)

TQFT5 = 195 × 10−6 + 5 × 500 × 2 × 10−6 ≈ 0.0052 s (6.3)

As depicted in figure 10(a), simulation of QFT3 is able to achieve higher fidelity (≈ 0.964) than
QFT5 (≈ 0.855) when they are simulated using the optimal gate time of 1μs for single-qubit gates and 1μs
for CZ gate as QFT3 has smaller circuit size. Implementing a lesser number of gates will introduce less
errors during the evolution of the quantum states, thus an algorithm with a smaller circuit size will achieve
greater output state fidelity. The larger decay constant in the fitted model of QFT5 indicates that it is
important to perform optimal control on the pulses to obtain the fastest gate possible with the lowest
infidelity, as well as optimising our circuit size. Consequently, this will give us the best result when an
experiment is performed using an actual diamond quantum computer.

To simulate the performance of a diamond quantum computer over time, we first create a binomial
distribution of probabilities with the respective optimal values for QFT3 and QFT5 simulated on a diamond
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Figure 10. (a) Single-shot simulated fidelity of 3 qubits and 5 qubits quantum Fourier transform. We assumed perfect
initialisation/readout fidelity. (b) Simulated total computation time of QFT3 and QFT5 assuming optimal gate time of 1 μs and
1μs for single-qubit gates and CZ gate, respectively.

Figure 11. Total computation time and the fidelity of performing QFT3 and QFT5 on a simulated diamond quantum computer.
The simulation on a diamond quantum computer assumed perfect initialisation/readout fidelity.

quantum computer. Then, we simulate the probability distribution for a range of shots using Markov chain
Monte Carlo method. Markov chain Monte Carlo allows us to approximate the probability distribution of
the fidelities through random sampling. With short computation time per shot for QFT3 and QFT5, the
simulations of QFT3 and QFT5 on a diamond quantum computer are able to converge to their respective
optimal values of 0.964 and 0.855 in less than 10 s (figure 11). These results can be used as a benchmark for
comparison with other quantum computing architectures in the future.

7. Conclusion

In summary, we have presented a complete model of a diamond quantum processor, the gate operations
and their implementations. We have developed a semi-analytical optimal control method which
theoretically produces fast, high fidelity gates with control errors that are less than those introduced by
decoherence and hyperfine field misalignment. This optimal control method has three steps. First, we
generate a complete semi-analytical basis of pulses that minimises cross-talk between qubits in absence of
time-ordering in the quantum evolution. Second, we generate linear combination of these basis functions to
minimise the control field errors. Third, we further optimise the pulses to account for the effects of
time-ordering in the quantum evolution. We used frequency-shifted sinc functions as an ansatz for the
control pulses. We have demonstrated the first two steps of this optimal control method on a Hadamard
gate and a CZ gate with an additional third step on an X gate. The simulated performance of a diamond
quantum computer shows promising results where it can perform fast computations with low error
probability. Our results will aid the design and the development of diamond quantum computers and
enhanced quantum sensors.

A future extension should include more advanced numerical optimisation techniques to optimise the
pulses in the presence of time-ordering in the quantum evolution. However, if the optimisation is being
performed experimentally, this step may not be required. Instead, we can implement a feedback control
system as an optimal control method which tunes the pulse parameters based upon the output of a physical
diamond quantum computer. Subsequent work should also include the introduction of a more complex
optimal control technique to mitigate the errors of the hyperfine field misalignment through the application
of simultaneous radiofrequency and microwave pulses.
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Appendix A. Time-ordering in the quantum evolution

In section 2.3, we ignored the time-ordering in the quantum evolution to simplify the unitary operators in
terms of rotation about the x-axis or y-axis. In this appendix, we examine the effects due to time-ordering
in the quantum evolution on the gate fidelity.

We consider the case where b(t) of equation (2.11) is zero. The nuclear spin Hamiltonian parameterised
with the control error parameters δ, ε and φ as described in section 4 is given by

Hsingle = −
∑

i

a(t)(1 + ε)
[
Ii,x cos (ωit) cos ([ω + δ] t + φ) + Ii,y sin (ωit) cos ([ω + δ] t + φ)

]
(A.1)

This Hamiltonian is the same as the Hamiltonian described in section 2.2. Using a finite-difference method,
we approximate the Hamiltonian as being time-independent over the short period of Δt. The quantum
evolution of the Hamiltonian can be written as

Ufd(τ , δ, ε,φ) ≈
N−1∏
m=0

e−iH(tm)Δt (A.2)

in which the product is a time-ordered product, tn = nΔt and Δt = τ/N where N is the number of time
steps and τ is the gate time.

We use the pulse, a(t) generated from section 4. The functional form of a(t) can be obtained by
performing an inverse Fourier transform on a(ω). It is given by

a(t) =
∑
n=1

2
√

2πcn cos

(
2πt [(n − 1)μ]

τ

)
(A.3)

where cn is the overall amplitudes of the linear combinations for the nth basis functions as estimated by
optimising over the control errors and μ = 0.2 is the shift of the basis functions. We further optimise a(t) to
account the effects of time-ordering by introducing a change dn to the coefficients where

a(t) =
∑
n=1

2
√

2π(cn + dn) cos

(
2πt [(n − 1)μ]

τ

)
(A.4)

The best parameters for dn are obtained by minimising the average infidelity as given by

〈I〉 =
∫ ∞

−∞
P(δ;σδ)

∫ ∞

−∞
P(ε;σε)

∫ ∞

−∞
P(φ;σφ)

⎡⎣1 −
Tr
(

U†
fd · Uperfect

)
Tr
(

U†
fd · Ufd

)
⎤⎦ dδ dε dφ (A.5)

where the probability distributions P for all control parameters are of Gaussian.
Applying this method to an X gate of 1μs with 2 basis functions where c1 ≈ −1.20 and c2 ≈ 0.79, we

found that the infidelities have converged for N > 4000. For the further optimisation of a(t), we performed
a simple grid search to obtain the best parameters for dn. The parameters of d1 ≈ −0.20 and d2 ≈ −1.17
resulted in an averaged infidelity of approximately 2.90 × 10−5, which is comparable to the infidelities
obtained in section 4 and is still below the errors introduced by decoherence (figure A1).

Calculations for a two-qubit CZ gate are not demonstrated here due to sheer size of the search space
considering it requires at least 6 basis functions to achieve an infidelity of approximately 10−6. It is
computationally expensive to perform these calculations without implementing more advanced algorithms
for closed-loop optimisations. These calculations will be considered in future extensions.

Since we are able to optimise an X gate with two linear combinations with infidelities below the
decoherence limit, there is no reason why we could not achieve comparable infidelities for more linear
combinations. Thus, while the time-ordering in the quantum evolution introduces additional infidelities to
the gate operations, they can still be optimised to a level below the errors introduced by decoherence.
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Figure A1. Optimisation of an X gate against the effects of time-ordering in the quantum evolution. We use a simple grid search
to obtain the optimal parameters for d1 and d2 which are found by minimising equation (A.5).

Appendix B. Approximations of model Hamiltonian

In section 2.2, we applied the secular approximation and ignored the hyperfine field misalignment to
simplify the nuclear spin Hamiltonian of the quantum processor. In this appendix, we examine the validity
of these two approximations, identified their leading order corrections and their effects on gate fidelity.

B.1. Secular approximation
In this subsection, we examine the validity of the secular approximation. The full electron–nuclear
Hamiltonian can be divided into two terms

H = H(a) + H(b) (B.1)

where

H(a) = DS2
z + γeB0Sz + Sz

(
AzzIz + AxzIx + AyzIy

)
− γnB0Iz

H(b) = Sx

(
AxxIx + AyxIy + AzxIz

)
+ Sy

(
AxyIx + AyyIy + AzyIz

)
(B.2)

H(a) is the secular component that contains terms with Sz whereas H(b) is the non-secular component,
containing Sx and Sy. For large magnetic fields aligned with the NV axis, the non-secular terms are small
compared to the secular terms. In this Hamiltonian, the nuclear spin coordinates are co-aligned with the
NV coordinates.

Treating the non-secular terms as a perturbation, we can apply perturbation theory to collapse the full
Hamiltonian into effective nuclear spin Hamiltonians corresponding to the different electron spin
projections. The nuclear spin Hamiltonian of the ms = n electron spin projection, correct to second order
in the non-secular terms can be written as

Hn =
〈

n
∣∣H(a)

∣∣ n〉+∑
m 
=n

〈
n
∣∣H(b)

∣∣m〉 〈m ∣∣H(b)
∣∣ n〉

En − Em
(B.3)

It follows that

HI,ms=0 = −γnB0Iz −
γeB0

D2 − γ2
e B2

0

[(
AyyAzx − AyxAzy

)
Ix +

(
AxxAzy − AxyAzx

)
Iy +

(
A2

xy − AxxAyy

)
Iz

]
(B.4)

and

HI,ms=−1 = D − γeB0 −
(
AzzIz + AxzIx + AyzIy

)
− γnB0Iz −

1

2 (D − γeB0)

×
[(

AyyAzx − AyxAzy

)
Ix +

(
AxxAzy − AxyAzx

)
Iy +

(
A2

xy − AxxAyy

)
Iz

]
(B.5)

In equation (B.5), the scalar terms D − γeB0 do not affect the nuclear spin so they can be neglected from
the nuclear spin Hamiltonian. However, they do perturb the electron spin transition frequencies. The terms
in the square brackets of equations (B.4) and (B.5) are the lowest order corrections to the nuclear spin
Hamiltonians. For ms = −1, the above can be rewritten in terms of �A′ ·�I where �A′ is the corrected
hyperfine field. Thus, the correction terms add a quantitative difference to the values of �Ai,z, but not a
functional difference that affects the validity of our model. However, the corrections do represent a change
for the ms = 0 level as there is no equivalent terms used in the model. They are equivalent to an effective
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magnetic field misaligned with the NV axis that introduces error to our model. The error introduced by the
neglect of these terms will be examined in the next subsection alongside with the analysis of hyperfine field
misalignments.

B.2. Effects of hyperfine field misalignment
In this subsection, we examine the effects due to the hyperfine field misalignment. After applying the
secular approximation, the nuclear spin Hamiltonian (equation (2.1)) in the auxiliary and computational
subspace are

HI,ms=0 = −
∑

i

γi

[
Ii,zB0 + Ii,xB1(t)

]
(B.6)

HI,ms=−1 = −
∑

i

�Ai,z ·�Ii − γi

[
Ii,zB0 + Ii,xB1(t)

]
(B.7)

To diagonalise the nuclear spin Hamiltonian of the computational subspace (i.e. for ms = −1), we
performed a coordinate transform of the nuclear spin operators. We did this by a rotation defined by the
angles

tan φi =
Ai,xz

Ai,yz
(B.8)

tan θi =

(
A2

i,xz + A2
i,yz

)1/2

Ai,zz + γiB0
(B.9)

The transformed Hamiltonians for the auxiliary ms = 0 and computational ms = −1 subspaces are then

HI,ms=0 = −
∑

i

γiB0

(
I′i,z cos θi − I′i,y sin θi

)
−
∑

i

γiB1(t)
[(

I′i,x cosφi

+ I′i,y sinφi cos θi + I′i,z sin θi sinφi

)]
(B.10)

HI,ms=−1 = −
∑

i

ωiI
′
i,z −

∑
i

γiB1(t)
[(

I′i,x cos φi + I′i,y sin φi cos θi + I′i,z sin θi sin φi

)]
(B.11)

where ωi =
([

Ai,zz + γiB0

]2
+ A2

i,xz + A2
i,yz

)1/2
is the transition frequency of the ith nucleus in the ms = −1

subspace. We assume that only nuclei with hyperfine fields nearly aligned to the NV axis are chosen. We
then perform small angle approximations on θi and simplify the expressions by only including the terms
which are zero-order in θi. Finally, undoing rotations about the z-axis gives us the zero-order nuclear spin
Hamiltonians

H(0)
I,ms=0 ≈ −

∑
i

γiB0I′′i,z −
∑

i

I′′i,xγiB1(t) (B.12)

H(0)
I,ms=−1 ≈ −

∑
i

ωiI
′′
i,z −

∑
i

I′′i,xγiB1(t) (B.13)

In the main text, we have dropped the ′′ signs for the spin operators. The first-order corrections to
equations (B.12) and (B.13) are obtained by considering the terms that are first-order in θi in
equations (B.10) and (B.11). They are given by

H(1)
I,ms=0 =

∑
i

γiB0θi

(
I′i,y
)
=
∑

i

γiB0θi

(
I′′i,x sin φi + I′′i,y cos φi

)
(B.14)

H(1)
I,ms=−1 = 0 (B.15)

In both ms = 0 and −1 states, we have ignored the correction term due to the oscillating component of
γiB1(t)I′i,z sinθi sinφi. While the correction term is of first order, within rotating wave approximation, the
introduced errors have effects of order greater than one. Therefore, we find that the hyperfine field
misalignments only influence the two-qubit gates and the first-order correction for the auxiliary subspace is
effectively a static magnetic field in the x and y direction.

Including this leading order correction and the leading order correction from the secular approximation,
the new two-qubit gate Hamiltonian is
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H′ =
Δ

2
σz +

Ω

2
σxB1(t) +

∑
i

(αi + βiσz) Ii,z +
∑

i

[
(γiB0θi sin φi − χi + ξiθi sin φi) Ii,x

+ (γiB0θi cos φi − ηi + ξiθi cos φi) Ii,y − (χiθi sin φi + ηiθi cos φi + ξi) Ii,z

]
(B.16)

where

χi =
γeB0

D2 − γ2
e B2

0

(
Ai,yyAi,zx − Ai,yxAi,zy

)
(B.17)

ηi =
γeB0

D2 − γ2
e B2

0

(
Ai,xxAi,zy − Ai,xyAi,zx

)
(B.18)

ξi =
γeB0

D2 − γ2
e B2

0

(
A2

i,xy − Ai,xxAi,yy

)
(B.19)

We can estimate the effect of these corrections by considering the rotations that they generate over time
when the auxiliary subspace is populated during the implementation of a CZ gate. Taking into account the
evolution of electron spin and nuclear spins explicitly, we adopt a simple model as follows to estimate the
infidelity introduced by these correction terms. For an ideal unitary operator UT, we consider a perfect 2π
rotation on the electron spin, conditional on the nuclear spin. The unitary operator with the presence of
correction terms as described equation (B.16) are given by UA. None of these corrections are applied to the
15N nuclear spin as it is perfectly aligned with the NV quantisation axis. Thus, the additional infidelity due
to these first-order corrections is given by

Infidelity = 1 −
Tr
[

U†
TUA

]
Tr
[

U†
TUT

] (B.20)

where

UT = exp

[
− 𝕚

2

[
2π
(
σe,xσn

)]]
(B.21)

UA = exp

[
− 𝕚

2

[
2π
(
σe,xσn

)
+ τ (γnB0θ sin φ− χ+ ξθ sin φ) (σnσx)

+ τ (γnB0θ cos φ− η + ξθ cos φ)
(
σnσy

)
− τ (χθ sin φ+ ηθ cos φ+ ξ) (σnσz)

]
σn =

(
0 0
0 1

)
(B.22)

σx,y,z are the Pauli matrices, σe and σn are the matrices operating on the electron spin and 13C nuclear spin,
respectively.

For a distant nuclei, we can approximate the hyperfine terms to be Ai,xx = Ai,yy = Ai,zz and they are the
leading order terms. We can also approximate Ai,zx = Ai,zy = Ai,nd where A2

i,nd = A2
i,zx + A2

i,zy. The 13C that
we have chosen with AC ≈ 0.413 MHz closely represent a 13C lattice site in the S family with their hyperfine
parameters given by Azz = 0.412 MHz and And = 0.060 MHz [66]. The calculated hyperfine field
misalignment using B0 = 0.62 T is approximately 0.0085 rad. We also surveyed a few lattice sites which has
similar hyperfine parameters obtained via ab initio method from [66]. Approximating φ = π/2 rad and
τ = 1μs to be the gate duration when the auxiliary subspace is populated during the implementation of a
CZ gate, the additional infidelities due to hyperfine field misalignments are on the order of 10−2 ∼ 10−3.
These additional infidelities are dominated by the hyperfine field misalignments over the secular
approximation. The correction terms from the secular approximation χ, η and ξ scale with a factor of
approximately 10−5 rad s−1, compared to the correction terms from the hyperfine field misalignment γnB0,
which has a magnitude of 107 rad s−1.

Appendix C. Control pulse for two-qubit gate operations

Given that the time evolution operator has the form of

U = exp

(
−i

∫ τ/2

−τ/2
Hmulti dt

)
(C.1)
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Assuming there are no mixed signals in a single pulse, the Y components will go to zero. The expression for
the evolution operator can be further simplified where

U = exp

(
−i

∫ τ/2

−τ/2
H11 dt

)
⊗ |11〉 〈11|+ exp

(
−i

∫ τ/2

−τ/2
H10 dt

)
⊗ |10〉 〈10|

+ exp

(
−i

∫ τ/2

−τ/2
H01 dt

)
⊗ |01〉 〈01|+ exp

(
−i

∫ τ/2

−τ/2
H00 dt

)
⊗ |00〉 〈00| (C.2)

where

H11 =
Ω

2
B1(t) [σx cos ([Δ+ β1 + β2] t)] (C.3)

H10 =
Ω

2
B1(t) [σx cos ([Δ+ β1 − β2] t)] (C.4)

H01 =
Ω

2
B1(t) [σx cos ([Δ− β1 + β2] t)] (C.5)

H00 =
Ω

2
B1(t) [σx cos ([Δ− β1 − β2] t)] (C.6)

To get a selective 2π pulse on the |11〉 state, we need to enforce

X1 = Ω

∫ τ/2

−τ/2
B1(t) cos [(Δ+ β1 + β2) t] dt = 2π (C.7)

and other 3 integrals to be zero. As per the single-qubit gate case, we make the substitution

ΩB1(t) = a(t) cos (λt) + b(t) sin (λt) (C.8)

where λ = Δ+ β1 + β2. Thus, we have

X1 =

√
2π

2
[a (ω11 + λ) + a (ω11 − λ)] = 2π (C.9)

X2 =

√
2π

2
[a (ω10 + λ) + a (ω10 − λ)] = 0 (C.10)

X3 =

√
2π

2
[a (ω01 + λ) + a (ω01 − λ)] = 0 (C.11)

X4 =

√
2π

2
[a (ω00 + λ) + a (ω00 − λ)] = 0 (C.12)

Appendix D. Infidelity of two-qubit gate operations

In accordance with the derivation of infidelity of single-qubit gates, the intrinsic infidelity expression that
we used to describe two-qubit gate operations is given by

I = 1 − 1

8

⎡⎣−2 cos

(√
X2

1

2

)
+ 2 cos

(√
X2

2

2

)
+ 2 cos

⎛⎝
√

X2
3

2

⎞⎠+ 2 cos

(√
X2

4

2

)⎤⎦ (D.1)

Keeping terms up to the second order, the final expression for the infidelity of the CZ gate is

I =
1

32

(
δX2

1 + X2
2 + X2

3 + X2
4

)
(D.2)

where δX1 = X1 − 2π. The average infidelity is given by

〈I〉 = 1

32

∫ ∞

−∞
p (δ;σδ)

∫ ∞

−∞
p (ε;σε) δX2

1 dε dδ +
1

32

∫ ∞

−∞
p (δ;σδ)

∫ ∞

−∞
p (ε;σε) X2

2 dε dδ

+
1

32

∫ ∞

−∞
p (δ;σδ)

∫ ∞

−∞
p (ε;σε) X2

3 dε dδ +
1

32

∫ ∞

−∞
p (δ;σδ)

∫ ∞

−∞
p (ε;σε) X2

4 dε dδ (D.3)
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Table E1. Tables of the pulse amplitudes in the frequency domain
for (a) an X gate, (b) a π/4 rotation about the x-axis, (c) a 7π/4
rotation about the x-axis and (d) a π/2 rotation about the y-axis
targeted at the13C nuclear spin qubits as a function of gate time τ .
These amplitudes corresponds to the solutions for the n ∈ [0, 5]
sinc basis functions which minimises equation (2.33). The pulse
amplitudes are dependent on the angle of rotations and gate time,
which is consistent with the formulation of our sinc basis
functions. Larger amplitudes are expected to generate bigger angle
of rotations for a given frequency shift and gate time. Better
solutions with lower infidelity can also be resolved for smaller angle
of rotations at shorter gate times as the pulse amplitudes are
smaller.

(a) π rotation about the x-axis

f (n) (Mrad s−1)

τ (μs) f (0) f (1) f (2) f (3) f (4) f (5)

0.25 −5.000 4.839 3.937 −5.000 −5.000 5.000
0.50 −2.643 5.000 −5.000 −5.000 −3.664 5.000
0.75 −1.737 5.000 −5.000 5.000 −5.000 −3.991
1.00 −1.332 5.000 −5.000 5.000 5.000 5.000
1.25 −1.088 5.000 −5.000 5.000 −5.000 5.000
1.50 −4.491 5.000 −5.000 5.000 −5.000 5.000
1.75 −3.791 4.318 −5.000 5.000 −5.000 5.000
2.00 −0.666 3.893 −5.000 5.000 −5.000 5.000
2.25 −0.600 3.711 −5.000 5.000 −5.000 5.000
2.50 −2.692 3.233 −5.000 5.000 −5.000 5.000
2.75 −0.485 2.776 −4.730 5.000 −5.000 5.000
3.00 1.333 2.593 −4.616 5.000 −5.000 5.000

(b) π/4 rotation about the x-axis

f (n) (Mrad s−1)

τ (μs) f (0) f (1) f (2) f (3) f (4) f (5)

0.25 −1.369 0.291 0.104 −2.575 −4.332 5.000
0.50 −0.661 2.167 −1.102 0.063 −0.277 2.204
0.75 −0.434 2.714 −3.264 3.895 −4.693 0.037
1.00 4.997 1.956 −3.517 4.857 −5.000 2.518
1.25 −4.622 1.753 −3.420 5.000 −5.000 4.801
1.50 −0.225 1.382 −2.591 3.842 −5.000 5.000
1.75 −0.190 1.080 −1.871 2.559 −3.139 3.595
2.00 −0.167 0.973 −1.740 2.475 −3.184 3.873
2.25 −4.946 0.928 −1.739 2.540 −3.241 3.703
2.50 −2.288 0.809 −1.423 1.893 −2.156 2.205
2.75 1.817 0.694 −1.186 1.578 −1.867 2.060
3.00 5.000 0.648 −1.154 1.630 −2.081 2.510

(c) 7π/4 rotation about the x-axis

f (n) (Mrad s−1)

τ (μs) f (0) f (1) f (2) f (3) f (4) f (5)

0.25 −5.000 5.000 5.000 −5.000 −5.000 5.000
0.50 −4.622 5.000 −5.000 −5.000 −5.000 5.000
0.75 3.908 5.000 −5.000 5.000 −5.000 −3.680
1.00 2.998 5.000 −5.000 5.000 −5.000 5.000
1.25 2.447 5.000 −5.000 5.000 −5.000 5.000
1.50 −5.000 5.000 −5.000 5.000 −5.000 5.000
1.75 1.706 5.000 −5.000 5.000 −5.000 5.000
2.00 −1.166 5.000 −5.000 5.000 −5.000 5.000
2.25 −1.049 5.000 −5.000 5.000 −5.000 5.000
2.50 1.211 5.000 −5.000 5.000 −5.000 5.000
2.75 −2.786 4.854 −5.000 5.000 −5.000 5.000
3.00 0.100 4.537 −5.000 5.000 −5.000 5.000

(d) π/2 rotation about the y-axis

g(n) (Mrad s−1)

τ (μs) g(0) g(1) g(2) g(3) g(4) g(5)

0.25 −2.475 5.000 −5.000 5.000 5.000 −5.000
0.50 −1.333 5.000 −5.000 2.298 −0.7861 1.399
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Table E1. Continued.

(d) π/2 rotation about the y-axis

g(n) (Mrad s−1)

τ (μs) g(0) g(1) g(2) g(3) g(4) g(5)

0.75 −0.915 5.000 −5.000 2.622 −0.3857 0.527
1.00 −0.671 3.460 −4.263 3.536 −2.249 0.990
1.25 −0.527 2.756 −4.190 4.924 −5.000 4.697
1.50 −3.997 2.595 −4.661 5.000 −5.000 5.000
1.75 2.704 2.381 −4.226 5.000 −5.000 4.461
2.00 −0.336 1.989 −3.350 4.159 −4.373 4.134
2.25 −5.000 1.690 −2.907 3.925 −4.743 5.000
2.50 −4.531 −1.559 −2.791 3.970 −5.000 5.000
2.75 1.714 1.506 −2.832 4.224 −5.000 5.000
3.00 1.571 1.381 −2.596 3.873 −5.000 5.000

Table E2. Table of the pulse amplitudes in the frequency domain
for a CZ gate. We observed that at shorter gate times, higher order
basis functions have solutions which correspond to the minimum
amplitude of f (n) = 0.500. As the difference between the transition
frequencies of some of the qubit states are relatively small
compared to the frequency shifts, the sinc basis functions are
unable to resolve possible solutions for these transition frequencies
with lower infidelity within the search region for f (n) ∈ [0.5, 15].
This results in the amplitudes for the higher order basis functions
to be f (n) = 0.500, which at the same time also minimises
equation (D.1).

f (n) (Mrad s−1)

τ (μs) f (0) f (1) f (2) f (3) f (4) f (5)

0.25 0.500 0.500 0.500 0.500 0.500 0.500
0.50 2.494 0.500 0.500 0.500 0.500 0.500
0.75 9.595 0.500 0.500 0.500 0.500 0.500
1.00 7.669 12.460 0.500 10.420 0.500 0.500
1.25 6.498 5.023 0.500 0.500 0.500 0.500
1.50 1.489 13.170 0.500 0.500 15.000 0.500
1.75 7.722 9.092 0.500 0.500 0.500 0.500
2.00 12.010 6.481 0.500 0.500 0.500 0.500
2.25 1.173 4.894 0.500 0.500 0.500 0.500
2.50 1.069 3.960 0.500 0.500 0.500 0.500
2.75 0.968 6.488 5.023 3.349 0.500 0.500
3.00 0.877 5.893 8.822 11.480 13.170 11.900

f (n) (Mrad s−1)

τ (μs) f (6) f (7) f (8) f (9) f (10) f (11)

0.25 0.500 0.500 0.500 0.500 0.500 0.500
0.50 0.500 0.500 0.500 0.500 0.500 0.500
0.75 0.500 0.500 15.000 15.000 15.000 15.000
1.00 0.500 0.500 0.500 0.500 0.500 0.500
1.25 0.500 0.500 0.500 0.500 0.500 0.500
1.50 0.500 0.500 0.500 0.500 0.500 0.500
1.75 6.161 0.500 0.500 0.500 0.500 0.500
2.00 0.500 0.500 0.500 0.500 0.500 0.500
2.25 0.500 0.500 0.500 0.500 0.500 0.500
2.50 0.500 0.500 0.500 0.500 0.500 0.500
2.75 0.500 0.500 0.500 3.792 0.500 0.500
3.00 0.500 0.500 0.500 3.527 0.500 0.500

Appendix E. Pulse amplitudes for various single-qubit gates and CZ gate

See (tables E1 and E2).
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Appendix F. Gate decompositions on a diamond quantum computer

In general, there are 3 types of gate operations in quantum Fourier transform [65]. They are Hadamard
gate, swap gate, and controlled-phase gate. Ignoring the global phase factors, we have

H = Rx (π) · Ry

(π
2

)
(F.1)

A swap gate can be constructed from 3 CNOT gates. They can be written as

Swapa,b = CaNOTb · CbNOTa · CaNOTb (F.2)

where CaNOTb is
CaNOTb = Hb · CaZb · Hb (F.3)

Here, a and b denotes any two qubits in the system. Phase gate can be written as

PHASE (θ) = Ry

(
−π

2

)
· Rx

(
θ

2

)
· Ry

(π
2

)
(F.4)

For a controlled-phase gate, one way to construct them is as follows

CaPHASEb (θ) = Ry,a

(
−π

2

)
Rx,a

(
θ

2

)
Ry,a

(π
2

)
Rx,b

(
−π

2

)
Ry,b

(
−θ − π

4

)
CaZbRy,b

(
θ + π

4

)
× Rx,b

(π
2

)
Ry,b

(
−π

2

)
Rx,b

(
−θ − π

4

)
CaZbRx,b

(
θ + π

4

)
Ry,b

(π
2

)
(F.5)

where θ is the intended phase. Note that the operations for these gate decompositions are performed from
the right to the left. Using these decompositions, the total number of pulses required for QFT3 and QFT5 is
75 and 195 respectively.
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