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EXTENDED ABSTRACT 

Computer based modelling methods are being used 
increasingly to replicate natural systems in order to 
review both large and small scale policy measures 
prior to their implementation. Integrated 
Assessment Modelling (IAM) incorporates 
knowledge from several different disciplines into 
one model in order to provide an overarching 
assessment of the impact of different management 
decisions. The importance of IAM is that the 
environmental, social and economic impacts of 
management choices can be assessed within a 
single model, further allowing assessment in 
relation to sustainability criteria.  

The considerable detail facilitated by these models 
often requires the inclusion of a large number of 
parameters and model inputs, many of whose 
values may not be known with certainty. For this 
reason and because models do not always behave 
intuitively (in particular when there are non-
linearities involved), sensitivity analysis (SA) of 
the model to changes in its parameters and inputs 
is an important stage of model development.  

Current SA methods have not kept pace with rapid 
increases in computing power and availability and 
more importantly the resultant increases in model 
size and complexity. Also related to the 
complexity is increased difficulty in finding and 
fitting distributions to all parameters. Further, the 
complex nature of integrated models requires SA 
that is flexible and can be implemented regardless 
of model structure. 

This research aims to establish new criteria for SA 
used in the context of integrated models for 
environmental management and decision-making. 
These criteria are believed to reflect the current 
requirements specific to this type of modelling. 
Desirable criteria are identified as: high 
computational efficiency; ability to take into 
account higher order parameter interactions; ability 
to account for model non-linearities; not requiring 

knowledge of parameter probability distributions; 
and use in decision making.  

SA of an integrated model of the Namoi River 
catchment is performed using the Fourier 
Amplitude Sensitivity Testing (FAST) method, 
Morris method, method of Sobol’, and regression 
and correlation coefficients. The results from these 
analyses are used as a basis for comparing the SA 
methods by the new criteria outlined above. The 
Namoi model is a combination of a flow model 
with a non-linear component, a policy model, an 
economic model and an extraction model. It can be 
used for assessing management options for the 
river. SA of two different potential management 
options for the catchment is undertaken to 
facilitate comparison of sensitivity between two 
slightly different models.  

Comparison of the different SA methods shows 
that none of the methods meet all of the  criteria 
and, in particular, there are no methods that are 
effective for use when comparing management 
options. This lack of an adequate SA method for 
integrated models indicates that development of a 
new method of SA specifically for integrated 
models for environmental management is 
desirable. 

The FAST method is shown to meet the criteria 
most effectively, being able to account for model 
non-linearity and non-monotonicity, requiring only 
parameter ranges (not distributions), and being 
relatively computationally efficient (although this 
does come at a loss of some resolution). Results 
from the FAST SA of the Namoi model show the 
model to be sensitive to several parameters within 
the non-linear loss module. Further, one 
management option shows sensitivity to the 
decision variables within the model while the other 
does not. This means that the first management 
option clearly corresponds to the more controllable 
form of the model.   
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1. INTRODUCTION 

Computer-based modelling methods provide an 
important means to review policy choices prior to 
their implementation. Integrated Assessment 
Modelling (IAM) incorporates knowledge from 
several different disciplines into one model in 
order to provide an overarching assessment of the 
impact of different management decisions. The 
importance of IAM is that the environmental, 
social and economic impacts of management 
choices can be assessed within a single model, 
further allowing assessment in relation to 
sustainability criteria.  

Such modelling methods allow for the inclusion of 
considerable detail and require the input of 
numerous parameters from varying sources, many 
of which may not be known with certainty. 
Further, environmental and integrated modelling 
has to contend with poorly understood sources of 
uncertainty, as well as the inability to take large 
samples or repeat experiments (Norton, 1996). For 
these reasons, and because model outputs do not 
always behave in an intuitive manner, an important 
stage of model development is sensitivity analysis 
of the model to changes in parameter values.  

Sensitivity analysis (SA) methods have not kept up 
with the rapid increase in available computational 
power and, more importantly, the resultant 
increase in model size and complexity. An 
important objective of IAM is to increase the 
understanding of the directions and magnitudes of 
change under different management options, in 
order to allow differentiation between outcomes 
with confidence. SA plays a large role in 
developing this confidence.  

Another consequence of the complexity of IAM is 
difficulty in finding and fitting probability 
distributions of all uncertain model parameters and 
inputs, a feature commonly required in SA (e.g 
Sobol’ (Sobol', 1993)). Further, the complex nature 
of integrated models requires a SA approach that is 
flexible and can be implemented regardless of 
model structure.  

When used as a decision-making tool to identify 
the strengths and weaknesses of management 
options, a model gives outcomes which can be 
ranked effectively according to given criteria. The 
necessity for rankings of model outputs to be 
robust and accurate makes it vital that any 
sensitivity of these rankings to changes in 
parameter values is known. This requires the use 
of SA that is easily understood, as well as simple 
to perform. 

Given the rapid changes in the use, size and 
complexity of integrated models for environmental 

management, it is necessary to establish new 
requirements for SA and to assess the current 
methods of SA against these requirements.  

The following research establishes criteria that are 
believed to reflect the current requirements for SA 
in the context of integrated models as decision-
making tools. Based on these criteria, an 
assessment of commonly used SA methods is 
conducted, thereby highlighting both their 
advantages and deficiencies. This assessment is 
important in identifying areas where SA methods 
should be improved to keep pace with current 
advances in modelling techniques. 

In order to complete this assessment, an integrated 
model of the Namoi River catchment (NSW) is 
used. The model combines a flow model with a 
non-linear component, policy model, economic 
model and extraction model in order to represent 
the operation of the entire system, including 
human activity. The non-linear component of the 
model and the interactions between different parts 
of the model make it an ideal case study for 
assessing SA methods against their requirements. 

2. SENSITIVITY ANALYSIS CRITERIA 

When comparing different methods of SA it is 
important to define criteria by which the different 
methodologies can be assessed. Five key criteria 
have been identified for use in comparing 
commonly used SA techniques. The following 
criteria form the basis for the comparison between 
SA methods undertaken in this research. 

Criterion 1. Computational Efficiency  

The importance of computational efficiency is 
apparent when considering the necessarily large 
and complex nature of integrated models, which 
can have in excess of 100 parameters with varying 
ranges, (Saltelli et al., 2000).  

Criterion 2. Parameter Interactions 

The nature of integrated modeling is such that 
parameters may be used in several different 
processes, with their effects often being larger than 
anticipated due to interactions with other 
parameters. This gives rise to the need for SA 
methods to be able to account for interactions 
between parameters, preferably with the ability to 
evaluate all parameter interactions, not just 
pairwise or third-order effects.  

Criterion 3: Data Requirements 

It is desirable that SA methods used for integrated 
models do not require knowledge of parameter 
probability distributions in order to accurately 
assess the sensitivity of the model to variations in 
the parameters, as often knowledge of the system 
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being modeled is incomplete and determining 
accurate parameter distributions can require more 
data than are available.  

Criterion 4: Model Non-Linearities 

Environmental systems rarely behave in a linear 
fashion, nor are they generally monotonic. Often 
the behaviour of a system can change from one 
mode to another, significantly different, mode 
given different combinations of parameter values. 
This property of models used for environmental 
management requires that SA methods are able to 
handle both the non-linearities and non-
monotonicity present in these models.  

Criterion 5: Use in Decision-Making 

For SA outputs to be useful in decision-making, 
they must be in a format that is easily understood 
and applied by decision-makers. SA is ineffectual 
if it cannot be interpreted. SA model output is in 
this case considered to be easily understood if 
there is some physical meaning to the outputs 
given. While ranking parameters by those that 
outputs are most sensitive to can be useful, this 
type of SA output does not give the modeller any 
information on the values that parameters may 
take, and can be deceptive when differences 
between the sensitivity to various model 
parameters are small.  

3. SENSITIVITY ANALYSIS METHODS 

Several global SA methods have been compared in 
this study to investigate their ability to meet the 
desired SA criteria as outlined above. These are 
described in the following sections. 

3.1. Morris Method 

The Morris method (Morris, 1991) is a one-factor-
at-a-time (OAT) method using randomized 
sampling matrices, which allow direct observation 
of elementary effects. This guarantees that 
meaningful information can be extracted from each 
parameter, without mistakenly attributing effects to 
that parameter. Sensitivity estimates of the total 
effects due to a single parameter are produced, 
with a final output of the mean and standard 
deviation of the SA estimates produced in each 
model run.  

3.2. Regression Analysis and Correlation 
Measures 

There are several regression analysis and 
correlation measures that can be used for SA. The 
Pearson Product Moment Correlation Coefficient 
(PEAR), the most commonly used linear 
correlation coefficient, gives a measure of how 
strongly correlated each individual parameter is 

with the output and, as such, an assessment of how 
sensitive the output is to each model parameter. 
Standard Regression Coefficients (SRC) quantify 
the effects caused by changing a model parameter 
from its mean by a fraction of its variance, while 
all others are kept at their mean values. This 
measure relates directly to the sensitivity of the 
model outputs to the model parameters. Partial 
Correlation Coefficients (PCC) provide a measure 
of the linear relationship between any given model 
parameter and the model output. If a model is non-
linear, the regression models used by these three 
methods are not particularly effective at 
approximating the model. To redress this, a rank 
transformation of the model outputs and 
parameters is used, replacing the model parameters 
and outputs with their respective rankings and then 
performing the same analysis. While this can then 
be effective in replicating the model, it should be 
noted that SA is now actually occurring on a 
model different from the one under scrutiny. 
Further, the rank transformations become less 
effective when models are non-monotonic, as they 
are less able to approximate the output through 
linear regression methods. 

3.3. FAST and Extended FAST 

Fourier Amplitude Sensitivity Testing (FAST) 
(Cukier et al., 1978) and its successor, Extended 
FAST (Saltelli et al., 1999), are variance-based 
global SA methods, which compute the Total 
Sensitivity Indices (TSIs) of the model inputs. The 
TSIs measure the main (first order) effect of each 
individual or group of inputs on the model output, 
as well as all higher order effects that can be 
attributed to that parameter. Both the FAST and 
Extended FAST methods use a transformation 
function to sample the parameter space, and hence 
approximate the variance of the model output, with 
the main difference between the two methods 
being the choice of transformation function. FAST 
provides independence from model structure, 
while having the ability to capture the influence of 
the full range of variation and interaction effects, 
as well as the ability to group factors in order to 
assess their sensitivity collectively. However, 
estimating the total sensitivity of each factor by 
using the partial variance of the complementary set 
of factors tends towards lumping of results. FAST 
assumes a uniform parameter probability 
distributions which is advantageous when 
distributions are unknown, however can be a 
disadvantage when it is known that distributions 
are not uniform.  

3.4. Sobol’ method 

The method of Sobol’ (Sobol', 1993) computes 
TSIs similarly to the FAST and Extended FAST 
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methods. However, rather than using Fourier 
methods, the Sobol’ method uses a unique 
decomposition of the model into summands of 
increasing dimensionality. All terms within the 
decomposition can then be calculated using 
multiple integrals. 

While the TSIs obtained using the Sobol’ method 
measure the same property of the model 
parameters as in the FAST method, the Sobol’ 
method does not use the transformation function 
employed to generate parameter combinations as 
part of the FAST method, and as a result is less 
computationally efficient. Due to the sampling 
method used, the Sobol’ method requires the 
distributions of the various parameters in order to 
compute the TSIs, while FAST only requires 
knowledge of the parameter ranges.  

4. CASE STUDY: NAMOI RIVER MODEL 

To investigate the efficiency and accuracy of the 
SA methods outlined in Section 3, they have been 
applied to a case study of the Namoi River 
catchment.  

The model used is a simplified version of the 
integrated water-use policy model presented by 
(Letcher, 2002). The integrated model incorporates 
numerous interactions, including streamflow, 
rainfall, land use, crop profits and water extraction 
policy. The original model incorporates 
considerable complexity, but to perform an initial 
and thorough SA, the model has been simplified, 
while maintaining its integrated nature. This 
enables the evaluation of SA tools for complex 
models.  

4.1. Model Outline 

The model used consists of IHACRES, a flow 
model with a non-linear component (Croke et al., 
2004), a policy model that determines allowed 
extractions based on flow, an economic model 
which incorporates land use, and an extraction 
model which calculates the actual extraction based 
on a combination of land use, allowed extractions 
and river flow. The model is run to simulate one 
year, with flow calculated daily. 

In the context of its use for decision-making and 
determining appropriate management options, two 
versions of the policy model, representing different 
management options, have been employed. The 
first option bases the allowed irrigation extractions 
on the level of flow in the river, giving three 
different allowed extractions for each of three 
minimum flow levels. The extractions occur on a 
daily basis. The areas planted with irrigated and 
dry crops are then determined based on the amount 
of water available for extraction in that year. The 

second policy option does not limit the extraction, 
but requires that a minimum percentage of the area 
be planted with the dry crop so as to limit the level 
of irrigation. The crop areas are based on the 
amount of water available in the river, assuming 
there is no limit on extraction, beyond being able 
to remove what is currently there. Consideration of 
two different policy models allows assessment of 
changing sensitivities as the management options 
are altered. The importance of this rests in the 
necessity to use models to assess management 
options whilst ensuring that each assessment has 
the same level of accuracy. 

The Namoi flow network consists of several sub-
catchments, each identified as a particular node. A 
single node of the model will be used to assess the 
SA methods against the proposed criteria in this 
research.  

5. ANALYSES CONDUCTED 

The SA software SimLab 2.2, an updated version 
of that outlined by (Giglioli et al., 2000), was used 
to facilitate the analysis. SimLab 2.2 consists of a 
preprocessor module that allows the user to select 
between various methods of parameter 
combination generation, a model execution module 
allowing the user to run either an internal or 
external model with the parameter combinations 
generated, and a postprocessor module which 
performs both uncertainty analysis and SA.  

Two versions of the model using differing 
management options to maximize the 
environmental flows in the river, while also 
maintaining profit levels among farmers, were 
investigated. The two models utilize the same 
parameter values for the flow and economic 
models; however, the policy and extraction models 
have different parameter values. This analysis 
allows testing as to whether the alteration in 
parameter values increases the model’s sensitivity 
to the common parameters. It also allows 
investigation of how effective each SA method is 
at providing a comparison between different 
versions of the model with different parameter 
values. Management option 1 uses flow levels to 
determine maximum allowable irrigation 
extraction from the river, with three specific levels 
set (L1, L1 + L2 and L1 + L2 + L3) and 
corresponding allowed extractions (M1, M1 + M2, 
M1 + M2 + M3). The total allowed annual 
extraction is then used to determine the area 
planted with irrigated or dry crops, by planting as 
much of the irrigated crop as possible with the 
water available for irrigation. There is also an 
upper limit of annual extraction. Management 
option 2 sets a minimum requirement for the 
percentage of the area which must be planted with 
the dry crop. In this case, given the flow in the 
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river, as much water as possible may be removed. 
The area of each crop is determined in a similar 
way to management option 1, but with a minimum 
area requirement of dry crop to be planted.  

SA of the two versions of the model are conducted 
using the Morris method, two different sampling 
strategies (Monte-Carlo and Latin Hypercube 
Sampling) to generate regression and correlation 
coefficients, the FAST method, and the method of 
Sobol’.  

Five model outputs are considered in this analysis, 
these being: total annual flow before extractions, 
total annual flow after extractions, number of days 
with zero flow (< 1 ML), and total profit generated 
over the whole area under study. These were 
chosen to represent key outcomes that would be 
potentially desirable to alter through manipulation 
of the system, as well as providing an assessment 
of the sensitivity of each component of the model. 

With the exception of the profit per unit area of 
each crop planted and the maximum annual 
extraction (management option 1 only), the 
sensitivity to the entire set of static model 
parameters was analyzed. These two parameters 
were not selected for SA due to the direct 
relationship between them and the model outputs. 
Distributions for all parameters were chosen to be 
uniform, with the exception of the time constant of 
the linear flow module, which has been shown to 
have a normal distribution.  

Ranges for the non-linear loss module parameters 
(f, e, d, τq) were selected based on model 
calibration studies, while the ranges of the decision 
variables of the model (L1, L2, L3, M1, M2, M3, 
DCR, WR) were based on values used by (Hicks, 
2003). The parameter ranges are given in Table 1 
and 2 below. 

Table 1.  Uniformly distributed parameters. 

Parameter Use Lower 
bound 

Upper 
bound

F Non-linear loss module 0.5 1 

E Non-linear loss module 0.15 0.2 

D Non-linear loss module 100 400 

L1 (ML) 1st flow level 15 45 

L2 (ML) 2nd flow level 375 450 

L3 (ML) 3rd flow level 800 1000 

M1 (ML) 1st extraction limit 10 25 

M2 (ML) 2nd extraction limit 5 15 

M3 (ML) 3rd extraction limit 10 25 

DCR (%) 
Percentage of dry crop 
required (management 

option 2)
0 50 

WR (ML) 
Water requirement per 
unit area for irrigated 

crop
15 45 

Table 2.  Normally distributed parameters. 

Parameter Use Mean Standard 
deviation 

τq 
Time constant 
of the linear 
flow module 

2 0.4 

 

6. RESULTS AND DISCUSSION 

6.1. Comparison of Methods Against Criteria 

This research investigated at most 11 model 
parameters for the Namoi model and the model 
took less than 1 second of computing time to run. 
Hence, computational efficiency, while desirable, 
is not as significant an issue as in models with 
many more parameters and longer run times. For 
these models, a small reduction in computational 
efficiency can lead to a significant increase in SA 
run times. None of the methods trialled perform 
well with significant numbers of parameters and 
any increased computational efficiency in the 
methods comes at the expense of their ability to 
sample the parameter space. FAST seems to 
perform the most efficiently due to the cyclical 
nature of the curve used to select samples, while 
the Sobol’ method is less computationally 
efficient. The computational cost of the Morris 
method is proportional to n = 2kr, where r is the 
selected size of each sample and k is the number of 
input factors (parameters). Consequently, as the 
number of parameters increases, the required 
number of samples increases significantly, thereby 
reducing the computational efficiency of the 
method. The choice of sampling method (e.g. 
Monte Carlo, Latin Hypercube) dictates the 
computational efficiency of the regression and 
correlation methods, placing increased importance 
on the sampling method chosen. 

The difference between the first order sensitivity 
indices and the TSIs computed using both the 
FAST and Sobol’ methods shows that there are 
higher order interactions present in the Namoi 
model. While FAST and Sobol’ are able to take 
these into account, the regression methods do not 
take higher order interactions into account at all 
and the Morris method only considers the main 
effect of each parameter, but does provide an 
overall measure of interactions and curvatures. In 
the Namoi model, the parameter with the highest 
sensitivities is identified by all methods tested. 
However, methods that identify interaction effects 
alter the order of lower-ranked parameters. For 
example, considering the annual flow after 
extractions using management option 2, when 
using the regression methods, the time constant τq 
is considered to be among the three parameters 
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with highest sensitivities, whereas in fact when 
higher order interactions are taken into account, it 
is not, and the f parameter from the non-linear loss 
module shows greater sensitivity. In this case, had 
the higher order interactions not been taken into 
account, the model’s high sensitivity to parameter f 
would not have been captured. 

FAST is the only method tested that does not 
require knowledge of the parameter distributions, 
as it assumes a uniform distribution for all 
parameters. Despite this advantage, the relation of 
the variance of the parameter to its range dictates 
that the method is sensitive to the parameter range 
selected. In fact, sensitivity indices for both the 
first and total order varied considerably when 
parameter ranges were altered. The sampling 
methods used for the Sobol’, Morris and 
Regression and Correlation methods all require 
knowledge of the parameter distributions. This 
requirement was problematic for the Namoi case 
study, as there is little information on the 
distributions of parameters for the non-linear loss 
module, and also as the model parameters that 
were actually decision variables do not have 
distributions. In this case, a uniform distribution 
was assumed for all parameters with unknown 
distribution, however, this may have meant that 
some sensitivity data were lost due to poor 
sampling of areas with a high density of likely 
samples. These data requirements mean that none 
of the tested methods, with the exception of the 
FAST method, meet criterion 3.  

The use of linear regression by the regression and 
correlation coefficients means that non-linearities 
in the model are poorly taken into account. This is 
apparent from the low R2 values of the regression 
returned during the SA of the Namoi model. While 
use of the rank regression and correlation 
coefficients shows improvement in the R2 values, 
it must be noted that this method alters the model 
to perform SA and hence results are not as 
accurate. For example the lack of account of non-
linearity leads to incorrect sensitivity results from 
the regression and correlation measures when 
considering the number of days with zero flow in 
management option 1. The regression measures 
underestimate the sensitivity of parameter d from 
the loss module, which could potentially lead to 
less emphasis being placed on the accuracy of that 
parameter, and hence a reduction in overall model 
accuracy. 

While the Morris method can account for non-
linearity, there is no differentiation between the 
effects caused by non-linearities in the model and 
parameter interaction, and it has an assumption of 
monotonicity, which is not always valid. The two 
variance based methods, FAST and Sobol’, are the 

only methods able to account for non-linearities 
and non-monotonicity in the model. 

Criterion 5 is not met in any of the tested cases. 
All of the methods tested output sensitivity in a 
way that needs to be interpreted considerably by 
the modeller. The output of all SA methods does 
not allow effective comparison between the 
sensitivities of parameters in the two different 
management options, and no methods give 
sensitivity values that have clear physical meaning.  

Comparison of the SA methods investigated 
against the five criteria outlined in Section 2 shows 
that while each method has different strengths and 
weaknesses, the FAST and Sobol’ variance-based 
methods meet more of the criteria more effectively 
than the other methods tested.  

6.2. Sensitivity Results for the Namoi Model 

The sensitivity results obtained using the extended 
FAST method for management option 1 and 2 are 
shown in Figure 1 and 2 respectively. The results 
obtained using the method of Sobol’ are very 
similar to those obtained using FAST in all 
instances. There is little variation in the sensitivity 
indices of the various model outputs. The analyses 
show that for management option 2, the number of 
days with zero flow (els0), annual flow after 
extraction (sumY) and total profit are all extremely 
sensitive to the crop water requirement (WR). 
Hence, in considering this management option, 
care needs to be taken when assessing crop water 
requirements, in particular as this value varies for 
different crops. Thus, the accuracy of the model is 
dependent on the choice of crop used in the model 
and may require modification of the model to 
include more than one type of crop.  

The model behaved as expected in relation to the 
sensitivity of the annual flow before extraction 
(sumQ), with virtually all of the variance in the 
model being accounted for by the parameters of 
the flow model (d, e and f). Further, there is some 
similarity in the ratio between the sensitivity 
indices of d, e and f, the parameters from the non-
linear loss module, in all of the model outputs for 
management option 2. It is apparent in Figure 2 
that this similarity carries over to the annual flow 
before and after extraction for management option 
1 and also to some extent the number of days with 
zero flow.  

The sensitivity to the loss module parameters 
indicates a necessity for careful calibration of the 
parameters in order to ensure that the model is 
behaving as accurately as possible.  

Results indicate that the annual flow after 
extraction, as well as the total profit of the system 
in management option 1, are both sensitive to the 
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decision variables within the model, in particular 
the minimum level at which extraction is allowed 
and the maximum extraction allowed at that flow. 
This indicates that decision-makers do have 
considerable control over the system in setting 
these variables and as such must be cautious to 
ensure that these are set appropriately. Analyses 
also showed that the sensitivity of the annual 
extraction was identical to the sensitivity of the 
total profit from crop sales.  

 

Figure 1.  Extended FAST total order indices for 
management option 2 

 
Figure 2.  Extended FAST total order indices for 
management option 1 

Comparison between the SA outputs for each 
management options shows that both options are 
consistently sensitive to parameters from the loss 
module, but generally (for outputs other than the 
flow before extraction), management option 2 is 
most sensitive to the crop water requirement while 
the strong sensitivities in management option 1 are 
to the decision variables. Ultimately this means 
that there is more potential for controlling the flow 
of the river and the profit of the system using 
management option 1. 

7. CONCLUSIONS 

While some of the criteria for SA were met by the 
methods tested, the lack of a SA method that meets 
all the criteria indicates that there is a need for new 
methods of SA for integrated models used for 

decision-making. In particular, the lack of any SA 
method that provides results meeting criterion 5 
indicates that current methods of SA are not 
adequate. Overall the FAST method performed the 
best of the four methods. 

The Namoi model shows the expected sensitivities 
to the flow model parameters, with higher 
sensitivity to the loss module parameters. When 
management option 1 is run through the model, the 
sensitivity to the decision variables shows that this 
option is more easily able to control the flow levels 
within the river and as such is a more effective 
management choice than option 2, provided that 
the decision variables are set appropriately. 
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