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Abstract

Causal reasoning under ambiguity requires subjects to estimate
and evaluate ambiguous observations. This paper proposes a
hierarchical model that accounts for the uncertainty of both the
distribution of the functional form selection and distribution of
the ambiguity treatment selection. The posterior distribution of
the causal estimates is determined by both the functional form
and the ambiguity processing strategy adopted by the reasoner.
A model is tested in a simulation study for its ability to recover
the strategy and functional form adopted by subjects across a
range of hypothetical conditions. The model is further applied
to the results of an experimental study.
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Introduction
A number of models have been proposed in previous several
decades to characterize the mechanisms of causal reasoning
from covariation information (Lagnado, Waldmann,
Hagmayer, & Sloman, 2007). The goals of these models
are to account for peoples’ inferences about the causal
strength between a candidate cause and an effect. These
computational and rule-based models assume that subjects
observe only unambiguous discrete observations during
causal reasoning (e.g., Cheng, 1997; Lu, Yuille, Liljeholm,
Cheng, & Holyoak, 2008; Griffiths & Tenenbaum, 2005).

Problems can arise when the observed causal evidence
is ambiguous. In the present paper, we define ambiguous
causal evidence as observations where the occurrence of
cause and/or effect is unclear; each observation has two
possible interpretations: either the cause/effect is present
or absent(Pushkarskaya, Liu, Smithson, & Joseph, 2010).
Ambiguous observations can result in imprecise probabilistic
information which models of rule-based causal reasoning
cannot account for.

The way in which the reasoner treats these ambiguous
observations could influence the reasoner’s judgment on the
causal association between the cause and the effect. For
example, one reasoner may treat all ambiguous outcomes
with the presence of the cause as if they do not have the effect,
while another reasoner may treat these outcomes as if they
have the effect. The former would have a lower estimate of
the causal association than the latter as perceiving there is less
evidence supporting that the cause can generate the effect.

Detecting how reasoners treat ambiguous observations,
however, can be complicated by the uncertainty in the
functional form they adopt to parameterize the causal
association. The functional form refers to the way in
which the different causes combine in the causal structure
(Tenenbaum, Griffiths, & Kemp, 2006; Lucas & Griffiths,
2010). Reasoners hold different assumptions about how the

Table 1: Covariance Information
Cause Present c+ Cause Absent c−

Effect Present e+ n(e+,c+) n(e+,c−)
Effect Absent e− n(e−,c+) n(e−,c−)

alternative causes may interact with the candidate cause in
influencing the effect. The assumption of the functional form
held by the reasoner determines how subjects will estimate
the strength of the causal links between the different causes
and the effect.

The goal of this paper is to propose a model of causal
reasoning with ambiguous observations, that accounts for
the two types of uncertainty: the uncertainty in functional
form selection and the uncertainty in the choice of a strategy
for processing ambiguous observations. We apply Bayesian
inference techniques and the cognitive toolbox approach
proposed by Scheibehenne, Rieskamp, and Wagenmakers
(2013) to unify the two processes in a single model
framework. We first review several computational models
of causal reasoning, and explain the connection between
these models and functional form learning. We then
introduce several possible strategies of ambiguity processing.
Subsequently, we propose the model that integrates these two
cognitive processes. Next, we perform a simulation study to
examine the properties of the model. Finally, we apply the
model to empirical data.

Normative Models of Causal reasoning
In the current study, we focus on the elemental causal
reasoning, which has only one candidate-cause and one effect
(Griffiths & Tenenbaum, 2009). The goal of subjects is to
estimate the causal link between the candidate cause and
the effect in presence of some background causes. The
observations are covariational information outlined in Table
1. We adopt the causal graphical model to illustrate the
possible functional forms introduced below. As shown in
Figure 1, the background cause (b), candidate cause(c) and
the effect (e) are connected by hypothetical causal links. The
parameters of the links (w0 and w1) indicate the statistical
dependencies between b, c and e. Given that there is a link
between c and e, three structures can be generated depending
on how the three node are combined.

Linear Model The classical model of causal reasoning
is ∆P proposed by Jenkins and Ward in 1965. ∆P is
defined by ∆P = P(e+|c+)− P(e+|c−), where P(e+|c+) is
the probability of the occurrence of the effect when the cause
is present, and P(e+|c−) is the probability of the occurrence
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Figure 1: Graphical representation of the functional forms
Notes. The background cause (b), candidate cause(c) and
effect (e) are connected by hypothetical causal links. The
links with arrows indicate the dependencies between the

nodes.

of the effect when the cause is absent. As illustrated in the
first graph in figure 1, ∆P suggests the background cause and
the candidate cause linearly combine to generate the effect
(Griffiths & Tenenbaum, 2005), :

P(e+|w0,w1,b,c) = w0b+w1c (1)

where b and c are binary indicator variables of the
occurrence of the background cause and the candidate cause,
w0 and w1 are parameters quantifying the strength the links
between b and e and between c and e. The causal strength of
the candidate cause c is:

w1,LIN = P(e+|c+)−P(e+|c−) (2)

Noisy OR: Power PC Model A second way to
parameterize the candidate causal structure was logic
Noisy OR function proposed by Cheng (1997). A noisy-OR
logic function is applied to estimate a generative causal
relationship:

P(e+|b,c;w0,w1) = w0b+w1c−w0w1bc (3)

The generative causal power or w1 for a generative causal
link is the contribution of the candidate cause independent
from the background cause, and is defined by:

w1,NOR =
P(e+|c+)−P(e+|c−)

1−P(e+|c−)
(4)

Single Cause-Full Mediation The last functional form is
the one in which subject attributes all effect to the candidate
cause: P(e+|w1,c) = w1c. One way to interpret this
parametrization is that subjects perceive the candidate cause
can fully mediate the effect of the background cause, given
that the candidate cause occurs after the background cause.
The causal strength between the candidate cause and the
effect, by fully mediating the effect of other causes, therefore
is defined by:

w1,MED = P(e+|c+) (5)

Strategies of Ambiguity Treatment
The two types of reasoners mentioned previously are
examples of how two simple strategies may be adopted. We

shall name the two strategies as positive imputation (treating
all ambiguous observations as if the effect is present) and
negative imputation (treating all ambiguous observations as
if the effect is absent). The possibility that people may
treat the incomplete information as negative or positive has
also been documented in past research (Garcia-Retamero &
Rieskamp, 2008; Lim & Kim, 1992). A third strategy, we
name uniform imputation, is to treat ambiguous observations
as equally likely to have the effect present or absent. This
strategy is similar to a ”rational” strategy for resolving an
interval estimate of a probability by taking the midpoint of
the interval.

Mixture Model of Elemental Causal Reasoning
Detecting the strategies adopted by subjects requires
distinguishing among the functional forms that subjects
may apply in causal reasoning. A relatively low causal
rating provided by subjects might be a result of using a
linear function in causal reasoning, or applying a negative
imputation strategy in treating ambiguous information.
Accounting for the functional form could help accurately
recover the strategies people use to treat ambiguous
information.

We propose a two-step Bayesian hierarchal model to
account for both the strategy choice and the function
preference. Figure 2 provides a graphical representation.
Suppose the ith individual is reasoning about the causal
strength yi j of the jth reasoning trial. The individual
has observed a j ambiguous instances, and nj unambiguous
observations that includes the four types of observations:
n j(e+, c+), n j(e−, c+), n j(e−, c−) and n j(e−, c+).

yij

µij

φj

wij

fi ξ

nj

aj n̂ij πi Si ψ

Π

i = 1, . . . , N
j = 1, . . . , J

yij ∼ Norm(µij , φj)

µij ← wij · fi

fi ∼ Multinomial(ξ, 1)

wij ←







NOR(n̂ij)
LIN(n̂ij)
MED(n̂ij)

n̂ij ←
{

nj(e
+, c) + aj|c · πi

nj(e
−, c) + aj|c · (1− πi)

πi ← Π · Si

Π← {0, 1, 0.5}

Si ∼ Multinomial(ψ, 1)

φj ∼ Gamma(0.1, 0.1)

ψ ∼ Dirichlet(1)

ξ ∼ Dirichlet(1)

Figure 2: Graphical representation of the model
Note. The shaded nodes represent observed variables,
while the unshaded nodes represent unobserved variables.
The square nodes represent discrete variables while
the round nodes represent continuous variables. The
double-edged nodes represent deterministic variables while
the single-edged nodes represent stochastic variables.
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Model Stage 1: Processing the Ambiguous Information
Ambiguous observations influence causal judgments
by influencing the estimations of the four covariance
frequencies, which in turn influences the estimations of the
relevant conditional probabilities. The reasoner processes
and transforms ambiguous observations, into the forms that
can be used for causal judgments

n̂i j

{
n̂i j(e+,c) = n j(e+,c)+a j ·πi
n̂i j(e−,c) = n j(e−,c)+a j · (1−πi)

Where πi is a strategy selected by the reasoner from the
strategy pool Π to impute ambiguous observations. The
strategies can be positive imputation (π1 = 1), negative
imputation (π2 = 0) or uniform imputation (π3 = 0.5). The
choice of the strategy follows Si ∼ Multinomial(ψ,1) and ψ
is the vector parameter that determines the probabilities of
which the strategies would be selected.

Model Stage 2: Causal reasoning The estimated causal
strength of each subject µi j on the jth judgment occasion, is
determined by the estimated evidence n̂ij and the preferred
functional form fi. We assume each of subjects adopts
one of the three functions outlined previously, µi j = Wfi,i j.
Where W1:3,i j represents the three types of formulation in
Equation 1, 2 and 3. The selected function fi follow fi ∼
Multinomial(ξξξ,1), where ξξξ is the vector that determines the
probabilities for each functional form being adopted.

Simulation Study
We first explored the properties of the model via model
recovery studies using simulated data. The simulated subject
groups differed in the distributions of the preferred functional
forms/ambiguity strategy, and the level of rating variability.
We examined to what extent the model could successfully
recover the strategy or functional form applied by subjects
in various conditions.

In this study, we assumed that subjects apply the same
function and the same strategy for ambiguity treatment over
time. It is reasonable to assume that subjects are consistent
over a short time in an actual experiment. Second, to
maximize the distinction between different strategies after
being combined with different functional forms, we started
from the three simplest strategies.

Simulation Conditions
The simulation study had a factorial design with nine
functional form distributions, nine ambiguity strategy
distributions, nine levels of variability and two sources of
variability. The details of each factor are described below.

Functional form and Ambiguity strategy distributions.
The parameter vector ξ that determines the proportions of
the functional forms among the simulated subjects had nine
different configurations, including three levels of function
dominance (80%, 60% and 40%) by the three types of
the functional forms (Linear, NOR and Mediation). For

example, a condition with the dominance level of 80% where
the linear function is the dominant function results in ξ =
[0.8,0.1,0.1]. That is, 80% of the subjects adopt the linear
function, while 10% of the subjects adopt each of the other
non-dominant functions. The proportions of the strategy
adoption determined by ψ also had nine configurations, i.e.,
three levels of dominance crossed with the three strategies.

Between-subject Variability. The first source of response
variability is the between-subject variability. There are
individual differences in setting up a base-line of responses,
and in the ability to reason about causal relationships. We set
up the subject-level error term ui ∼ Normal(0,τ−1/2), where
τ is the precision parameter. The lower τ indicates the higher
variability of ui, and the higher dispersion of ratings among
subjects. The nine levels of between-subject variability
τ−1/2 varied from 0 to 0.2, because the between-functional
form variance at different causal covariance levels in the
current study ranged from 0.008 to 0.09. To enhance
the discrimination between different functional forms, we
constrained the between-subject variability to be smaller than
the between-function variability.

Within-subject Variability. A second source of variability
is the within-subject variability, which indicates the degree of
inconsistency of an individual in providing causal judgments.
This variability can be regarded as some non-systematic
errors when people are judging each trial within the
same condition. We define the within-subject error term
εi j ∼ Normal(0,λ−1/2). We manipulated the levels of
within-individual variability by varying λ−1/2. The higher
λ−1/2 indicates the higher variability of εi j, and more
inconsistence of subjects in providing judgments. For the
same reason as mentioned in previous above, we set up the
nine levels of within-subject variability λ−1/2 to range from
0 to 0.2.

Data generation
For each simulation condition, 20 subjects were simulated,
and each of the simulated subject completes 10 causal
judgments trials, with different levels of causal strength in the
observations. The composition of these observations is shown
in Table 2. We chose the covariance levels to ensure (1) the
values of P(e+|c+) are greater than zero, and are different
depending on the strategy of ambiguity treatment, and (2)
P(e+|c+) will not be smaller than P(e+|c−) to keep the causal
direction as generative.

First, the estimated contingency cell frequencies were
generated by combining the observed evidence and the
ambiguity strategy selected by an individual. Next, the
aggregated covariance information was passed on to the
causal reasoning model component. For the error-free
situation, the simulated responses were generated by
combining the functional forms (see Equation 2, 4, and 5) and
the estimated evidence in each reasoning trial. For conditions
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with the between subject variability, w′
i j = wi j + ui. For the

within-subject variability conditions, w′
i j = wi j + εi j.

Estimations and Evaluations
Estimation was performed in JAGS. For each simulated
dataset, Markov chain Monte Carlo (MCMC) two-chain
processes were run. For each chain, 10000 representative
samples were drawn from the posterior distributions, with
the first 5000 steps being discarded. The summarized results
are based on the 5000 samples, and averaged over the two
chains. The summary of the key nodes was obtained.
The performance of the model was evaluated by assessing
the accuracy of the strategies predicted by the model.
Additionally, Bayes factors were calculated to compare the
mixture model against a model which assumes all subjects
use one single functional form.

Results and Discussion
Figure 3 (upper panel) shows Bayes factors comparing
mixture function model against models based on a single
function form. For each of the nine functional form
distributions and the nine levels of variability, the Bayes
factors were averaged over the nine ambiguity distribution
conditions. For conditions where a single function form was
strongly dominant in the data, the data equally supported
the mixture model and the single function form model. The
preference for the mixture model over the single functional
form model by the Bayes factors increased the preference
with the decrease of the dominance of the single function.

Figure 3 (lower panel) displays the accuracies of the model
in predicting the ambiguity strategies. For each of the
nine ambiguity strategy distributions and the nine levels of
variability, the accuracies of ambiguity strategy prediction
were averaged over the nine functional form distribution
conditions. The proportions of those who correctly recovered
the strategy selections were above chance in all conditions.
The accuracy of prediction decreased with the increase in the
variability in the data.

Experimental Study
We conducted an experimental study and applied the model
to predict the strategies used by subjects. We fixed the
functional form adopted by subjects by training the subjects
to learn a certain type of function form. They were required to
apply the given functional form when doing causal reasoning
with ambiguous observations.

Method
Participants A total of 77 subjects (42 females, Mean age
= 36.44 , SD =11.2) were recruited via on-line crowdsourcing
platform CrowdFlower. They were paid 80 American cents
for their participation. Subjects were randomly assigned to
one of the functional form conditions (N=25 in the linear
function condition, N=26 in the NOR function condition, and
N=26 in the mediation function condition).

Materials Subjects were asked to pretend to be employees
in a neurovirology research institution, and their task was to
evaluate the effects of a range of chemicals on certain types
of viruses which cause neurological diseases. They observed
stimuli that indicated the status of the virus and the presence
or absence of the chemical, and judged whether the chemical
was an activator or inhibitor of the virus.

In each experimental block, subjects were shown two sets
of virus samples, each of which had 10 virus samples. The
status of a sample virus was either activated or inactivated.
They were told that one set had not been exposed to the
testing chemical (i.e., the effect status in absence of the
cause), and another had been exposed to the testing chemical
(i.e., the effect status in presence of the cause).

Their task was to estimate how likely it was that the
chemical activated the virus. At the beginning of the task,
subjects were instructed according to the functional form
condition they were assigned to. Subjects were told about the
functional form in the scene, i.e., how the chemical influences
the viruses in combination with the background causes. They
were instructed how to do causal reasoning1.

Subjects first went through 10 trials without ambiguous
observations. The composition of the covariation frequencies
are shown in Table 2. After the 10 trials, they began another
10 trials, in each which one observation in n j(e+,c+) and
one observation in n j(e−,c+) were replaced by ambiguous
observations, of which the outcome virus was represented
by a grayed image with a question mark in the center.
The instruction before the ambiguous condition was ”In the
following several laboratory results, for some reason, the
status of some viruses were not clear, they were represented
by the grayed picture with a question mark on it as shown
in the legend. It does not matter which strategy you select
to deal with the unclear viruses, however, it is very essential
that you use one strategy consistently through all judgments.”
At the end of the study, subjects were asked to indicate
the strategy that best described their way to process the
ambiguous observations.

They were asked to select one of the following choices:
(a) regarding the ambiguous virus samples as inactive
viruses; (b) regarding the ambiguous virus samples as active
viruses;(c) regarding the ambiguous virus samples as half
active viruses and half inactive viruses; (d) estimating the
ambiguous observations depending on the probability of
unambiguous active viruses in presence of the chemical; (e)
estimating the ambiguous observations depending on causal
link between the unambiguous viruses and the chemical; (f)
ignoring the ambiguous viruses; and (g) others.

Results
The proportions of the self-reported strategy among subjects
were 45.46% for the negative imputation (N = 35), 19.48%
for the positive imputation (N = 15), 22.08% for the uniform

1The instructions of the rules are available in the online
supplemental materials at http://goo.gl/PdJWMy
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Figure 3: Bayes Factors for Comparing the Mixture Model against Single Function Models(upper panel) and Accuracy of the
Model in Predicting Ambiguity strategies across Simulation Conditions(lower panel)
Note. The annotated proportion indicates the level of dominance of a strategy/functional form adopted in the data. The dashed
horizontal line in the lower panel is the chance level (0.33).

Table 2: Covariance information in the experiment
n j(e+,c+) n j(e−,c+) n j(e+,c−) n j(e−,c−)

C1 5 5 2 8
C2 7 3 5 5
C3 7 3 2 8
C4 8 2 3 7
C5 3 7 2 8
C6 6 4 4 6
C7 9 1 6 4
C8 3 7 1 9
C9 6 4 2 8

C10 9 1 3 7

imputation (N = 17), and 12.99% for all other strategies
(N=2 for applying the unambiguous observations, and N=7
for others). We implemented the mixture model to estimate
the functional forms and ambiguity strategy simultaneously.
The functional forms predicted by the model matched all
those assigned to subjects. The ambiguity strategies predicted
by the model agreed with 72.7% of the subjects’ self-report
strategies, Cohens kappa = 0.60 (83.58 % of the 67 subjects
who reported the first three strategies, Cohens kappa = 0.74).

We then fit the model to the entire data. The estimation
results of the ξ and ψ were displayed in Table 3. The
estimated proportion of the strategy selection generally
matched the self-reported strategy. We compared the
mixture model against each of the single strategy model with
controlling the functional forms. Bayes factors were 2.3 for
the mixture model over the negative-imputation-only model,
9.9 over the positive-imputation-only model, and 3.35 over
the uniform-imputation-only model, respectively.

Table 3: Parameter Estimation for Experimental Data
Model SE 2.5% 97.5% Self-Report

ξLinear 0.32 0.05 0.22 0.43 0.32
ξNOR 0.34 0.05 0.24 0.44 0.34
ξMed 0.34 0.05 0.24 0.45 0.34

ψNegative 0.48 0.06 0.37 0.59 0.45
ψPositive 0.16 0.04 0.09 0.25 0.19

ψUni f orm 0.36 0.05 0.26 0.47 0.22

Note. The self-reported of the strategy selection was out of
the entire data including subjects who reported strategies

other than the three main strategies.
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Discussion
Treating ambiguous observations as the negative cues (i.e.,
the effect was absent) was most preferred by the subjects,
followed by the uniform imputation strategy and positive
imputation. The results are in line with some studies of
missing data treatment in which people were more likely to
treat the missing information as negative cues in decision
making (Lim & Kim, 1992). The findings can also be related
to studies of ambiguity aversion, where people generally
disprefer an a gamble when the probability is ambiguous,
and are pessimistic about the probability of a reward from
such a gamble. This suggests that processing ambiguous
observations in causal reasoning may share mechanisms with
processing ambiguous and missing information in decision
making.

General Discussion and Future Extension
We applied Bayesian hierarchical modelling approach to
account for individual differences in applying functional
forms to reasoning about causal relationships and adopting
strategies for processing ambiguous observations. This
current model can distinguish a case where a subject applies
the mediation function and is pessimistic about the outcome
probability of the ambiguous observations, from a case where
a subject applies a linear function and is optimistic about
the outcome probability of the ambiguous observations. The
risk of misidentifying strategy of ambiguity processing can
be reduced.

The current model can be readily extended in several
ways. First, the collection of the strategies can be
expanded to include more strategies. The three strategies
illustrated in this paper do not require the integration of the
observed evidence when treating the ambiguous information,
and are independent from the unambiguous observations.
Other possible strategies, as noted by Garcia-Retamero
and Rieskampm (2008), may include ignoring ambiguous
observations and averaging the unambiguous observations to
estimate the probability of the effect occurring in ambiguous
observations.

Second, the model can incorporate more functional
forms, such as Noisy-AND-NOT function in reasoning the
preventive causal link (Lu et al., 2008). The inclusion of
functional forms especially for preventive causal reasoning
may also need to take into account interactions between the
functional form and strategy selection.

Furthermore, we assume subjects applied the same strategy
or functional form through the time of course. Future study
may consider the possibility that subjects may be inconsistent
in applying for strategies and investigate the factors that may
contribute to the inconsistency.

Finally, a parameter that represents how subjects may
weigh ambiguous observations may be considered. It is
possible that subjects perceive the ambiguous observations
as weak evidence in comparison to the unambiguous
observations, especially when the proportion of observations

that are ambiguous is small.
The current model provides a framework to explain

causal reasoning with ambiguous observations. The model
can be applied to improve understanding of how different
factors such as the available cognitive resources, distribution
of ambiguous observations, and prior knowledge about
the reasoning scenario influence subjects’ treatment of
ambiguous observations.
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