
Modeling biodiversity benchmarks in variable environments
JIAN D. L. YEN ,1,2,5 JOSH DORROUGH ,3 IAN OLIVER ,3 MICHAEL SOMERVILLE,3 MEGAN J. MCNELLIE ,3,4

CHRISTOPHER J. WATSON ,3 AND PETER A. VESK
1,2

1School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
2ARC Centre of Excellence for Environmental Decisions, The University of Melbourne, Parkville, VIC 3010, Australia

3Office of Environment and Heritage, GPO Box 39, Sydney, NSW 2001, Australia
4Fenner School of Environment and Society, Frank Fenner Building, Building 141 Linnaeus Way, The Australian National University,

Acton, ACT 2601, Australia

Citation: Yen, J. D. L., J. Dorrough, I. Oliver, M. Somerville, M. J. McNellie, C. J. Watson, and
P. A. Vesk. 2019. Modeling biodiversity benchmarks in variable environments. Ecological
Applications 29(7):e01970. 10.1002/eap.1970

Abstract. Effective environmental assessment and management requires quantifiable bio-
diversity targets. Biodiversity benchmarks define these targets by focusing on specific biodiver-
sity metrics, such as species richness. However, setting fixed targets can be challenging because
many biodiversity metrics are highly variable, both spatially and temporally. We present a mul-
tivariate, hierarchical Bayesian method to estimate biodiversity benchmarks based on the spe-
cies richness and cover of native terrestrial vegetation growth forms. This approach uses
existing data to quantify the empirical distributions of species richness and cover within
growth forms, and we use the upper quantiles of these distributions to estimate contemporary,
“best-on-offer” biodiversity benchmarks. Importantly, we allow benchmarks to differ among
vegetation types, regions, and seasons, and with changes in recent rainfall. We apply our
method to data collected over 30 yr at ~35,000 floristic plots in southeastern Australia. Our
estimated benchmarks were broadly consistent with existing expert-elicited benchmarks, avail-
able for a small subset of vegetation types. However, in comparison with expert-elicited bench-
marks, our data-driven approach is transparent, repeatable, and updatable; accommodates
important spatial and temporal variation; aligns modeled benchmarks directly with field data
and the concept of best-on-offer benchmarks; and, where many benchmarks are required, is
likely to be more efficient. Our approach is general and could be used broadly to estimate bio-
diversity targets from existing data in highly variable environments, which is especially relevant
given rapid changes in global environmental conditions.

Key words: Australia; best-on-offer benchmarks, biodiversity offsets; indicators; reference conditions;
species richness; vegetation restoration.

INTRODUCTION

Biodiversity benchmarks (hereafter, benchmarks) are
routinely used in a range of assessment and management
applications as the quantitative estimates of desirable
biodiversity states (e.g., restoration ecology [Hobbs and
Harris 2001], offsetting schemes [Bull et al. 2014a, b]).
Despite debate on how best to apply these benchmarks
(Suding 2011, Maron et al. 2012), it is agreed that natu-
ral resource managers require transparent and repeat-
able methods to quantify desirable and undesirable
biodiversity states (Oliver et al. 2002, 2007, Qu�etier and
Lavorel 2011, Pardo et al. 2012, Bull et al. 2014a, b).
Deviations from benchmarks provide an estimate of the
quality of a site and indicate the potential for improve-
ments in biodiversity at a site (Sinclair et al. 2002).

Benchmarks often represent quantitative estimates of
“historical” (e.g., pre-intensive agriculture, presettlement;
Stoddard et al. 2006), “long undisturbed” (Parkes et al.
2003, Stoddard et al. 2006), or unmodified (Gibbons
et al. 2008) reference states. However, it can be challeng-
ing to define long-undisturbed or historical reference
states because biodiversity records rarely predate human
disturbances (Hobbs et al. 2010, Balaguer et al. 2014)
and patterns and intensities of historical disturbances are
poorly quantified. Identifying long-undisturbed reference
states is further complicated by the need to specify the
time period over which baseline levels of disturbance are
defined. In addition, even where long-undisturbed refer-
ence states are known, these states may be unattainable in
contemporary and future systems due to ongoing changes
in species composition, climate, and landscape configura-
tion (Pauly 1995, Millar et al. 2007, Corlett 2016). Con-
ceptually, the use of long-undisturbed reference states
assumes that maximum biodiversity value occurs in
undisturbed systems. However, maximum biodiversity
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value can arise at intermediate levels of disturbance (e.g.,
intermittent fire or livestock grazing; Shea et al. 2004).

Best-on-offer biodiversity benchmarks

An alternative to a long-undisturbed reference state is
a “best-on-offer” reference state (Eyre et al. 2015) that
represents the biodiversity values that exist under con-
temporary conditions (Eyre et al. 2015). Our primary
focus in this paper is the development and application of
benchmarks that describe best-on-offer reference states.
Specifically, we focus on a “more-is-better” approach
(e.g., more species or more habitat), wherein the distri-
bution of available biodiversity states is used to set a
minimum threshold for different biodiversity metrics.
This approach draws on definitions of biological integ-
rity, which often emphasize locations with many native
species, few nonnative species, few overly dominant spe-
cies, and high levels of functional diversity within or
among species (Brooks et al. 1998, Oliver et al. 2014).
Locations with high values of biodiversity metrics are
expected to be associated with higher biodiversity values,
increased resistance to external stressors, and reliable
provision of key ecosystem services (Hobbs et al. 2010).
Importantly, a focus on contemporary biodiversity states
avoids the need to characterize past disturbances (natu-
ral and anthropogenic) at large spatial extents.
Best-on-offer reference states can be defined through

expert elicitation, with experts commonly asked to iden-
tify either the values of biodiversity metrics that collec-
tively define a best-on-offer state or existing sites that
reflect best-on-offer reference states (Hiers et al. 2012,
Sinclair et al. 2015). Although expert elicitation can
quantify abstract and complex reference states without
knowledge of past disturbances, expert assessments are
inherently subjective (Sinclair et al. 2015). Similarly, the
identification of reference sites relies on expert experi-
ence, knowledge, and ability to recognize when a site clo-
sely resembles the desirable reference state (Eyre et al.
2011).
An alternative to expert elicitation is to use empirical

data to characterize the distribution of available states,
and to use value judgements to specify desirable regions
of this empirical distribution. Calculating benchmarks
from data defines contemporary best-on-offer reference
states transparently and aligns benchmarks directly with
field methods, which may not always match an expert’s
conceptual knowledge of biodiversity. Increasing avail-
ability of archived data (Bruelheide et al. 2019) allows
data-driven benchmarks to be calculated rapidly over
large spatial extents, a process that would be expensive
and time-consuming using expert elicitation.

Estimating best-on-offer benchmarks over large spatial
scales

Estimating benchmarks over large spatial scales is
challenging because most ecological systems are highly

variable in space and time (Bull et al. 2013, Kirkman
et al. 2013). Attempts to define a best-on-offer reference
state should reflect climatic and biogeographical varia-
tion at local and regional scales (Sinclair et al. 2002,
Harris et al. 2006). Benchmarks that do not account for
spatial or temporal variation risk under- or over-valuing
particular reference states depending on the time of sam-
pling and contemporary climatic conditions. Identifying
spatial and temporal variation in reference states is espe-
cially important given potential differences between
past, contemporary, and future environmental condi-
tions. The use of data-driven benchmarks is particularly
valuable in this context because benchmarks can be
updated as new data are collected or made available.
Benchmarks could be estimated for many different

biodiversity metrics, such as species richness, relative
abundance or cover, habitat complexity, and functional
diversity. Species richness is a common biodiversity met-
ric because it is widely understood, easily measured for
better known taxonomic groups, and has close associa-
tions with measures of ecological integrity, such as resis-
tance, resilience, and ecosystem functioning (Hooper
et al. 2005). Relative abundance and cover are alterna-
tives to species richness that account for differences in
dominance and rarity among species or functional
groups (Yen et al. 2017a). Differences in relative abun-
dances and cover affect the functional roles performed
by different species, and can influence the demographic
processes (e.g., survival, reproduction) that determine
long-term population or community persistence (Mace
et al. 2008, Stuart-Smith et al. 2013). Together, species
richness and cover or abundance data provide comple-
mentary information on the nature of vegetation struc-
ture, composition, and function and often are used as
practical surrogates for biodiversity more generally
(Qu�etier and Lavorel 2011).
We sought to develop a statistical method to estimate

spatially and temporally variable benchmarks from
existing floristic plot data collected at a large spatial
extent. We used a multivariate, hierarchical Bayesian
model to estimate distributions of native species richness
and summed cover (hereafter, cover) at ~35,000 sites
spanning broad climatic, biogeographical, and distur-
bance gradients in southeastern Australia (~800,000
km2). We used quantiles of these distributions to define
best-on-offer benchmarks for each of six plant growth
forms (grasses, forbs, ferns, shrubs, trees, not otherwise
classified [e.g., twiners, grass trees, palms]; see Oliver
et al. 2019) in each combination of vegetation type, bio-
geographical region (bioregion), and month, for three
prior rainfall amounts (below average, average, above
average) based on the preceding 12 months (Dudney
et al. 2017). This approach defines best-on-offer refer-
ence states as those locations with high native species
richness and cover relative to other locations within the
same vegetation type and bioregion. The multivariate,
hierarchical model structure accounted for dependencies
among growth forms and allowed information from
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extensively sampled vegetation types and bioregions to
inform parameter estimates in sparsely sampled vegeta-
tion types and bioregions. We compared our modeled
benchmarks to existing expert-elicited benchmarks that
were available for a small subset of the vegetation types
included in our present study.

METHODS

Study region

We used data spanning the state of New South Wales
in south-eastern Australia. The study region contains
eight major climate zones, including arid, temperate,
subtropical, and alpine (Stern et al. 2000). Vegetation
across New South Wales is classified into 99 vegetation
classes nested in 16 vegetation formations (Keith 2004).
Vegetation formations are primarily distinguished by
structural attributes and vegetation classes are defined
by shared floristic and structural features (Keith 2004).
We had data from 95 vegetation classes in 16 vegetation
formations. The study region also has been classified
into 18 biogeographical regions (bioregions) as part of
the Interim Biogeographic Regionalization of Australia
(IBRA) (Thackway and Cresswell 1995). Bioregions dif-
fer in climate, substrate, and soils but do not explicitly
differ in vegetation type (Thackway and Cresswell 1995),
so that a single vegetation class may occur in multiple
bioregions. All vegetation survey plots used in this study
had been previously allocated to a vegetation class as
part of state-wide vegetation mapping and classification
(available online).6

Vegetation data

We used full species inventories from floristic plots
surveyed between 1976 and 2016 to estimate species rich-
ness and cover. From a data set of ~60,000 plots we iden-
tified 35,615 plots for species richness and 35,493 plots
for cover that had been sampled using a standard
400 m2, typically 20 9 20 m quadrat. Some plots were
surveyed multiple times, so that there were a total of
36,543 surveys for richness and 36,372 surveys for cover.
Of the 1,710 theoretical combinations of bioregion (18)
and vegetation class (95), we had floristic plot data for
469 combinations (27%). Many of the unobserved com-
binations do not exist and are unlikely to exist under
current climatic conditions (e.g., subtropical rainforests
in the Australian Alps bioregion).
Cover was visually estimated for each species at each

plot. Cover was estimated quantitatively (0–100%) in
6,789 plots and was recorded on various Braun-Blanquet
cover-abundance (BBCA) ordinal scales for the remain-
ing 29,583 plots. We previously used a beta regression
model to estimate quantitative cover from BBCA data,

using a subset (2,809 plots) of the 6,789 true cover esti-
mates (McNellie et al. 2019), and transformed all BBCA
data to quantitative estimates accordingly. Cover esti-
mates of trees were based on crown cover, foliage cover,
or projective foliage cover (Walker and Hopkins 1990).
We included the method of cover assessment, recorded
for 26,130 plots, as a covariate in preliminary models.
However, we did not include cover assessment method in
final models because it was unknown for 10,242 plots
and 95% credible intervals for the effects of cover assess-
ment method overlapped zero.
Prior to estimating species richness and cover, we allo-

cated all native taxa to one of six growth forms: ferns,
forbs, grasses and grass-like (hereafter, grasses), shrubs,
trees, and not otherwise classified (hereafter, other; Oli-
ver et al. 2019). Growth form was attributed based on a
standardized species list for species endemic to New
South Wales (Oliver et al. 2019). We calculated species
richness and cover of each growth form within each plot
by summing over all native species assigned to that
growth form (Appendix S1: Figs S1–S2). This approach
resulted in some summed cover estimates exceeding
100% due to species within growth forms having overlap-
ping foliage. The majority of cover values were <100%
(Appendix S1: Fig. S2). We calculated summed percent
cover of nonnative species, irrespective of their growth
form, with this same approach.

Rainfall data

We used gridded daily rainfall totals from the Aus-
tralian Water Availability Project (Jones et al. 2009) to
calculate accumulated rainfall in the 12 months prior to
each survey (rainfall data available online).7 These data
are at a resolution of 0.05° 9 0.05° (approximately 5 9

5 km). Rainfall values were interpolated from gridded
data to survey location and the rainfall time series was
extracted for the 12 months prior to a given survey. The
12-month accumulated rainfall was calculated at each
plot location and date. This approach was also used to
calculate 3-month and 36-month accumulated rainfall
but we did not include these variables in our models
because both were positively correlated with 12-month
accumulated rainfall (r = 0.70 and 0.89, respectively).
We used rainfall as a predictor variable in fitted mod-

els and used estimates of below average (10th quantile),
average (50th quantile), and above average (90th quan-
tile) rainfall to estimate benchmarks at different rainfall
levels (see Calculating species richness and cover bench-
marks, below). Given that only 469 (27%) of the theoreti-
cal combinations of bioregion and vegetation class were
observed, we needed to estimate rainfall levels in the
remaining 1,241 combinations. We used rainfall data
from 1900 to 2015 to calculate 10th, 50th, and 90th
quantiles of rainfall in the 12 months prior to the survey
month at each of the initial ~60,000 plots (prior to

6 http://www.environment.nsw.gov.au/research/Visclassification.
htm 7www.bom.gov.au/jsp/awap/

October 2019 DYNAMIC BIODIVERSITY BENCHMARKS Article e01970; page 3

http://www.environment.nsw.gov.au/research/Visclassification.htm
http://www.environment.nsw.gov.au/research/Visclassification.htm
http://www.bom.gov.au/jsp/awap/


filtering to those with complete floristics surveys). We
used these three quantile estimates as response variables
in separate linear regressions, with bioregion and vegeta-
tion class included as independent (additive) predictor
variables. This model structure allowed us to estimate
10th, 50th, and 90th rainfall quantiles in unobserved
combinations of bioregion and vegetation class. Links to
model data and code are in Supporting information.

Data analysis: overview

Our aim was to develop a statistical method to esti-
mate benchmarks from existing floristic plot data.
Specifically, we related data on species richness and
cover of six growth forms to vegetation class, bioregion,
month, rainfall, and nonnative cover to estimate distri-
butions of species richness and cover in each month in
each combination of bioregion and vegetation class at
three rainfall levels. We used quantiles from this distribu-
tion to define benchmarks, that is, best-on-offer biodi-
versity states.
We used a multivariate, hierarchical Bayesian model

to model all growth forms simultaneously, but fitted sep-
arate models for native species richness and cover. Our
model accounts for correlations in species richness and
cover among growth forms, and allows for differences in
species richness and cover among vegetation classes,
bioregions, and months. We assumed that vegetation
class and bioregion had additive effects on species rich-
ness and cover, and nested the effects of vegetation
classes within those of the broader vegetation forma-
tions. The model also included effects of rainfall and
percentage cover of nonnative species, as well as stochas-
tic variation in species richness among years and plots.
Vegetation classes are partially based on systematic

differences in the species richness and cover of different
growth forms. We expected these systematic differences
among vegetation classes to capture many of the correla-
tions among growth forms. For example, shifts from tree
cover in forests to grass cover in grasslands are reflected
in different vegetation classes. Our multivariate model
also accounted for residual correlations among growth
forms. The model structure reflects our expectation that
growth forms are not independent within vegetation
classes. For example, species richness and cover might be
positively correlated among growth forms due to shared
responses to local environmental conditions (e.g., soil
nutrient availability, recent rainfall). By contrast, species
richness and cover might be negatively correlated among
growth forms due to competitive interactions within a
single vegetation type (e.g., trees and grasses; Scholes
and Archer 1997).
Our model included cover of nonnative vegetation as

a predictor variable but did not explicitly include prior
anthropogenic disturbance, for which reliable data were
unavailable. Nonnative vegetation cover is often posi-
tively correlated with the frequency and intensity of dis-
turbances related to landscape transformations such as

agriculture and urbanisation (Hobbs 2001) and invasion
by nonnative species can modify vegetation composi-
tion, structure, and function (Simberloff et al. 2013).
We allowed rainfall effects to differ among bioregions.

Although we expected generally positive effects of rain-
fall, the magnitude of this effect on richness and cover
might vary systematically owing to broad differences in
climate and landform. For example, we expected that
small increases in total rainfall would have larger effects
in arid and semiarid regions than in coastal regions that
generally experience higher rainfall amounts.
We modeled monthly trends in two ways. First, we

estimated smooth monthly trends and allowed these
trends to differ among bioregions. This model form
incorporates seasonal variation in species richness and
cover and reflects our expectation that seasonal patterns
differ throughout the study region due to broad differ-
ences among arid, temperate, alpine, and subtropical cli-
matic zones. Second, we included months as random
intercepts in our model but did not allow monthly varia-
tion to differ among bioregions. This model form is less
ecologically realistic but has 186 fewer parameters to
estimate than the dynamic model, which was expected to
improve model predictions in bioregions with few plots.

Data analysis: model definition

We defined the vector yi as the species richness and
the vector zi as the cover of all growth forms in survey i
(six-dimensional vectors). We assumed that species rich-
ness was Poisson distributed and that cover was lognor-
mally distributed. We accounted for dependencies
among growth forms by including multivariate normal
over-dispersion on the log-transformed location parame-
ters for species richness and cover. The model was

yi �Poisson kið Þ for species richness½ �

or

log zi þ 0:001ð Þ�Normal log kið Þ; rð Þ for cover½ �;

log kið Þ� MVN li;Rð Þ;

li ¼ aþ bvðiÞ þ cmðiÞ;bðiÞ þ ridbðiÞ þ eieþ fyðiÞ þ gpðiÞ;

where Σ is the covariance matrix for all growth forms,
v(i) is the vegetation class of plot i, m(i) is the month of
plot i, b(i) is the IBRA bioregion of plot i, ri is the
amount of rainfall in the 12 months preceding a survey
in plot i, ei is the proportional nonnative cover recorded
in plot i, y(i) is the year in which plot i was surveyed,
and p(i) is the identity of plot i. Parameters in boldface
type are six-dimensional vectors with one value for each
growth form, so that a is a six-dimensional vector con-
taining average log(richness) or log(cover) for each
growth form, b is a vector of deviations from the inter-
cept in vegetation class v(i), c is a vector of deviations in
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bioregion b(i) in month m(i), d is a vector of regression
coefficients for the effect of rainfall in bioregion b(i), e is
a vector of regression coefficients for the effect of nonnative
cover, f is a vector of deviations in year y(i), and g is a vec-
tor of deviations in plot p(i). The tilde (~) denotes “dis-
tributed as.” MVN is the multivariate normal distribution.
The log(z + 0.001) transformation for cover data is equiva-
lent to a Box-Cox transformation with parameters k1 = 0
and k2 = 0.001 (Box and Cox 1964).
We used the above model form in models with region-

ally varying monthly trends. We used a simplified linear
predictor in models with a regionally consistent monthly
effect. This model included separate terms for bioregion
and month, and the linear predictor was

li ¼ aþ bvðiÞ þ cbðiÞ þ ridbðiÞ þ eieþ fyðiÞ þ gpðiÞ þ jmðiÞ;

where j is a vector of deviations from average log(richness)
or log(cover) in month m(i), b is a vector of deviations in
bioregion b(i), and all other terms are as defined above.

Data analysis: prior distributions

In models with regionally varying monthly trends, we
used a random walk prior for months within bioregions,
cm,b, to account for the non-independence of species
richness and cover between months. We used a first-
order random walk for all months from August to May,
so that c values were normally distributed with mean
equal to the preceding month:

cm;b �Normal c m�1½ �;b; rb
� �

:

We began the random walk in July, so that c values in
July were normally distributed with zero mean

cJuly;b �Normal 0; rbð Þ

and we linked June to May and July to ensure that c val-
ues changed smoothly between these months

cJune;b � Normal cMay;b þ cJuly;b
h i

=2; rb
� �

:

In models with regionally consistent monthly effects,
we used hierarchical priors for the effects of bioregion
and month, with the normally distributed deviations in
each bioregion and month:

cb �Normal 0; rbð Þ; jm �Normal 0; rmð Þ:

In all models, we used a hierarchical prior for the
effects of vegetation class, with deviations from mean
log(richness) or log(cover) in each vegetation class
assumed to be normally distributed with a mean com-
mon to the vegetation formation to which that vegeta-
tion class belongs:

bvðiÞ �Normal hf ðvðiÞÞ; rv
� �

:

The common mean for the vegetation class was
assigned a zero-mean, exchangeable normal prior distri-
bution:

hf ðvðiÞÞ �Normal 0; rf
� �

:

We assigned a hierarchical prior to the bioregion-spe-
cific effects of rainfall, and the common mean for rain-
fall effects was assigned a vague, zero-mean normal prior
distribution:

dbðiÞ �Normal i; rrð Þ; i�Normal 0; 10ð Þ:

We assigned a vague, zero-mean normal prior distribu-
tion to the effects of nonnative species cover:

e�Normal 0; 10ð Þ:

We assigned exchangeable, zero-mean normal prior
distributions to the effects of year and plot:

fyðiÞ �Normal 0; ry
� �

; gpðiÞ �Normal 0; rp
� �

:

All standard deviations were six-dimensional vectors
and each element was assigned a half-normal prior dis-
tribution:

rv; rf ; rb; rr; ry; rp; rm �HalfNormal 0; 2ð Þ:

We used an LKJ prior for the covariance matrix Σ
(Lewandowski et al. 2009). The LKJ prior is governed
by a single parameter a, whose value determines the
prior weight assigned to different correlation matrices.
Setting a equal to 1 assigns equal weight to all correla-
tion matrices, while increasing this parameter above 1
places more weight on the unit diagonal correlation
matrix. Specifically, the density of the LKJ prior is pro-
portional to the determinant of the correlation matrix
raised to the power of the parameter a (i.e. p(Φ) = |Φ|a,
where Φ is the correlation matrix). The full covariance
matrix Σ can be recovered by multiplying Φ by a vector
of standard deviations, rs. We set a equal to 4 and
assigned rs a half-normal prior distribution with mean 0
and standard deviation equal to 2.

Computational details

We fitted the above model in Stan version 2.12 (Car-
penter et al. 2017, Stan Development Team 2017a) using
the rstan R package (version 2.12.1; Stan Development
Team 2017b) in R version 3.4.0 (R Core Team 2017).
Stan is general purpose software for Bayesian models,
and uses Hamiltonian Monte Carlo to generate samples
from the posterior distribution more efficiently than
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many other MCMC methods (e.g., Metropolis-Hastings;
Hoffman and Gelman 2014). All inferences were based
on four chains of 5,000 iterations following a 5,000 itera-
tion burn-in period. We assessed model convergence
using Gelman-Rubin statistics (Gelman and Rubin
1992) and the effective number of samples, neff. All Rhats
were <1.01 and neff was greater than 1,000 for all param-
eters. Links to model code and data are in Supporting
information.

Calculating species richness and cover benchmarks

We used quantiles of marginal posterior distributions
to estimate benchmarks. We note that any quantile could
be used as a benchmark value; here, we estimated the
55th, 65th, and 75th quantiles to represent lower
through to higher benchmark values.
Our multivariate model accounted for correlated

residuals among growth forms in model fitting but our
use of marginal posterior distributions assumed that the
posterior quantiles of species richness or cover are inde-
pendent among growth forms, conditional on vegetation
class, bioregion, month, rainfall, and nonnative species
cover. We did not use full posterior quantiles because
multivariate quantiles have multiple dimensions (six
dimensions in our case) and cannot be summarized as a
single number for each growth form (Chaudhuri 1996).
We calculated species richness and cover benchmarks

in two ways. First, we used models with regionally vary-
ing monthly trends to calculate dynamic benchmarks:
one value for each growth form in each combination of
vegetation class, bioregion, and month, at each of three
rainfall levels (below average, average, above average).
This approach resulted in 20,520 dynamic species rich-
ness and cover benchmarks for each growth form and
rainfall level (738,720 in total). Second, we used models
with regionally consistent monthly trends to calculate
static benchmarks: one value for each growth form in
each combination of vegetation class and bioregion
using the average rainfall for each combination of biore-
gion and vegetation class. This approach resulted in
1,710 static species richness and cover benchmarks for
each growth form (20,520 in total). We assumed a best-
on-offer reference state would exclude the presence of
nonnative plant species and so all estimated benchmarks
were based on 0% nonnative plant species cover. In our
data set, minimum nonnative cover was 0% in 69% of
observed combinations of bioregion and vegetation
class, and minimum nonnative cover was <5% in 83% of
observed combinations.

Comparison of modeled best-on-offer benchmarks with
expert-elicited benchmarks

We compared estimated static benchmarks (available
for 1,710 combinations of bioregion and vegetation
class) to benchmarks derived for four combinations of
bioregion and vegetation class through a separate expert

elicitation study (Dorrough et al. 2019 and Supporting
information). We note that expert-elicited benchmarks
were not obtained for the purpose of validating our
modeling approach but, rather, were used opportunisti-
cally to assess whether modeled benchmarks were
broadly consistent with expert knowledge of these vege-
tation classes. There were several differences in defini-
tions between elicited and modeled benchmarks. In
particular, expert-elicited benchmarks were derived for
spring (October) in a median rainfall year and cover esti-
mates were defined as visual estimates of growth-form
cover. Visual estimates of growth-form cover differ from
the plot data used to derive modeled benchmarks, where
cover was estimated from summed species-cover esti-
mates. Also, rather than estimating the 75th percentile,
experts were asked to estimate the range of values they
would expect among sites that were in a best-on-offer
reference state in the contemporary landscape. Expert-
elicited benchmarks were available for Inland Flood-
plain Woodlands in the Riverina bioregion, Sand Plain
Mulga Shrublands in the Mulga Lands bioregion, Sub-
tropical Rainforests in the South Eastern Queensland
bioregion, and Western Slopes Grassy Woodlands in the
Brigalow Belt South bioregion.

RESULTS

Patterns in modeled species richness and cover

Estimated mean native species richness was highest in
forbs, shrubs, and grasses and lowest in trees, ferns, and
growth forms not otherwise classified (others; Table 1).
Rainfall was positively associated with species richness
of all growth forms (5–24% increase in species richness
for each standard deviation increase in rainfall) with the
strongest associations with ferns, forbs, and others and
the weakest with trees. The cover of nonnative species
had a weak, negative association with species richness of
all growth forms (1–12% decrease in species richness for
each standard deviation increase in nonnative cover;
Table 1).
Fitted models explained 20–55% of the variation in

observed species richness (links to model fit statistics are
in Supporting information). There was substantial varia-
tion in species richness among vegetation classes with
less variation among bioregions and vegetation forma-
tions (Fig. 1). Estimated mean native species richness of
forbs and grasses differed more among years than
among months (Fig. 1). Estimated associations were
very similar in static and dynamic models of species rich-
ness. Links to full parameter estimates are in Supporting
information.
Estimated mean cover was highest in shrubs and

grasses and lowest in ferns and others (Table 1). Rainfall
was strongly positively associated with cover of all
growth forms (11–117% increase in cover for each stan-
dard deviation increase in rainfall) with strongest associ-
ations with ferns, forbs, grasses, and others (Table 1).
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The cover of nonnative species also had a positive associ-
ation with the cover of all growth forms with the excep-
tion of shrubs (7–19% increase in cover for each
standard deviation increase in nonnative cover; Table 1).
Fitted models explained 6–20% of the variation in

observed summed cover (links to model fit statistics are
in Supporting information). There was substantial varia-
tion in cover among vegetation classes with less variation
among bioregions and vegetation formations (Fig. 2).
Estimated mean native cover differed among years, with
forbs and grasses differing more among years than other
growth forms (Fig. 2). Estimated associations were simi-
lar in static and dynamic models of cover.

Correlations among growth forms

Residual species richness was positively correlated
among all growth forms in static and dynamic models.
In dynamic models, correlation coefficients (r) ranged
from 0.12 to 0.95 (mean = 0.53; Table 2). The highest
correlations were between forbs and grasses (0.95) and
between others and ferns (0.94; Table 2). The lowest cor-
relations were between shrubs and forbs (0.16) and
between trees and grasses (0.12; Table 2). Tree species
richness was strongly correlated with that of ferns (0.76),
shrubs (0.76), and others (0.89; Table 2). Correlations
among growth forms in static models did not differ from
those in the dynamic model by more than 0.02.
Residual cover was mostly positively correlated

among growth forms in static and dynamic models. In
dynamic models, correlation coefficients (r) ranged from
–0.04 to 0.36 (mean = 0.12) (Table 2). Grasses were the
exception, with negative correlations with trees (r =
–0.01) and shrubs (r = –0.04). All other pairs of growth
forms were positively correlated, with the highest corre-
lations between grasses and forbs (r = 0.36) and others
and forbs (r = 0.21; Table 2). Correlations among
growth forms in static models did not differ from those
in the dynamic model by more than 0.01.

Comparison of modeled benchmarks with expert-elicited
benchmarks

Modeled benchmarks for both richness and cover
aligned closely with expert-elicited benchmarks for all
growth forms (Fig. 3). Differences between modeled and
elicited benchmarks were most pronounced in forbs and
grasses, where modeled benchmarks tended to be lower
than elicited benchmarks, and in rainforest tree and
shrub cover in Mulga Shrublands, where modeled
benchmarks were higher than elicited benchmarks
(Fig. 3). The number of plots underlying modeled
benchmarks was not consistently associated with the dif-
ference between modeled and elicited benchmarks
(Fig. 3).

Patterns in modeled benchmarks

Species richness benchmarks were highest in shrubs
and forbs, followed by trees, others, grasses, and ferns
(Appendix S2: Figs S1–S3). Cover benchmarks were
highest in trees, shrubs, and other growth forms, fol-
lowed by ferns, grasses, and forbs (Appendix S2: Figs
S4–S6). We note that summed cover could exceed 100%
in our data set due to overlapping foliage among species
within a growth form. Modeled cover benchmarks were
highest and most variable in combinations of bioregion,
vegetation class, and month for which we had few obser-
vations, and this variability increased from lower to
higher benchmark quantiles (Appendix S2: Figs S4–S6).
Static and dynamic benchmarks were broadly similar

in many cases. However, richness and cover were associ-
ated with season and past rainfall in some vegetation
classes, bioregions, and growth forms. The effects of sea-
son and past rainfall differed among vegetation classes
and bioregions, and were most pronounced in forbs
(Fig. 4). For example, forb richness and cover peaked in
the austral spring in southern and central bioregions
(e.g., Riverina bioregion, Fig 4a, b) but in the austral

TABLE 1. Estimated mean values of native species richness and cover and multiplicative effects of rainfall amount and percentage
cover of nonnative species.

Ferns Forbs Grasses Other Shrubs Trees

Species richness
Mean 1 6 5 1 6 2
Rainfall 1.19 1.20 1.16 1.24 1.16 1.05
Nonnative species cover 0.95 0.99 0.98 0.96 0.88 0.96

Cover
Mean 0.05 2.63 8.25 0.19 6.43 3.01
Rainfall 1.90 1.45 1.66 2.17 1.22 1.11
Nonnative species cover 1.1 1.1 1.19 1.18 0.97 1.07

Notes: Mean values and rainfall effects are averages over all bioregions and vegetation classes. Effects of rainfall and percentage
nonnative cover are multiplicative. For example, the value of 1.19 in the first column of the second row reflects a 19% increase in
species richness for each one standard deviation increase in rainfall, whereas the value of 0.95 in the first column of the third row
reflects a 5% decrease in species richness for each one standard deviation increase in nonnative species cover. Values shown are from
models with regionally consistent monthly trends. Links to estimates for all model parameters are in Supporting information.
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summer in northern bioregions (e.g., Brigalow Belt
South, see Supporting information). In drier bioregions,
richness and cover often had no clear seasonal trend but
were associated strongly with total rainfall over the
12 months prior to a given survey (e.g., Nandewar biore-
gion, Fig. 4c, d). Vegetation in coastal bioregions often
had weak associations with season and rainfall (e.g.,
coastal vegetation classes in the Sydney Basin bioregion,
Fig. 4e, f). Links to plots of benchmarks for all combi-
nations of bioregion and vegetation class with >50 plots
are in Supporting information.

DISCUSSION

A need for variable, disaggregated benchmarks

We present a statistical method to estimate best-on-
offer (benchmark) reference states using a large number
of vegetation survey plots distributed along broad cli-
matic, biogeographical, and disturbance gradients. We
demonstrated estimation of native species richness and
cover benchmarks that accounted for spatial variation
among vegetation types and bioregions and temporal
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variation among months and due to recent rainfall.
Although vegetation type explained much of the varia-
tion in species richness and cover of shrubs and trees,
temporally varying factors such as year and rainfall
often explained substantial amounts of the variation in
richness and cover of forbs, grasses, and growth forms
not otherwise classified (others). Temporal variation in
richness and cover often differed among vegetation
classes and bioregions (e.g., spring vs. summer peaks at
different latitudes), and accounting for these interactions
in benchmark estimates is a key feature of our modeling
approach. Dynamic benchmarks that accounted for
monthly variation and recent rainfall amounts followed

ecologically plausible trends in combinations of biore-
gion and vegetation class. Substantial variation in
benchmarks among vegetation types, bioregions, years,
and rainfall levels reinforces the need for benchmarks
that differ both spatially and temporally (Bull et al.
2013, Kirkman et al. 2013).
We estimated benchmarks for each of six growth

forms: ferns, forbs, grasses, shrubs, trees, and others.
Growth forms are an intermediate grouping that sim-
plify the complexity of full species inventories without
reducing these inventories to simple biodiversity metrics
such as total species richness and total abundance or
cover (Mayfield et al. 2010, Maseyk et al. 2016, Yen
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et al. 2017b). We observed substantial variation in spe-
cies richness and cover benchmarks among growth
forms, which supports the use of disaggregated bench-
marks in our study system. Calculating separate (disag-
gregated) benchmarks for each growth form tracks
compositional, structural, and functional components
of biodiversity, and reduces the risk that one component
can substitute or “eclipse” another, for example the loss
of forb species being substituted for by the addition of
shrub species (McCarthy et al. 2004, Oliver et al. 2014).
Accounting for variation among different components
of biodiversity is critical to distinguishing sites that differ
in composition, structure, or function but that otherwise
have similar total numbers of species or relative cover
(e.g., grasslands and rainforests).

Expert-elicited vs. data-driven benchmarks

Although our estimated static benchmarks (averaged
over months and rainfall amounts) were broadly con-
sistent with expert-elicited benchmarks for four com-
binations of bioregion and vegetation class, there were
several differences between modeled and expert-eli-
cited benchmarks. Specifically, elicited benchmarks
exceeded modeled benchmarks for forbs, grasses, and
ferns in several vegetation classes, and modeled
benchmarks exceeded elicited benchmarks for shrubs
and trees in some vegetation classes (Fig. 3). Within a
vegetation type, elicited benchmarks tended to exceed
modeled benchmarks in low diversity growth forms
(e.g., grasses in rainforests), while the opposite was
true of highly diverse growth forms (e.g., trees in rain-
forests). These differences might be due to differences
in data or differences in perceptions or interpretations
of sampling scales. For example, modeled benchmarks
were based on summed estimates of cover from spe-
cies inventories, whereas experts were asked to con-
sider visual estimates of growth-form cover, which do
not necessarily include species with overlapping cover.
Similarly, elicited benchmarks are subject to high
levels of individual bias, with a tendency to avoid
very low or high estimates possibly resulting in species

richness and cover being overestimated in uncommon
growth forms and underestimated in diverse or com-
mon growth forms. Individual bias has been shown to
affect elicited estimates of bounded values (Mon-
tibeller and von Winterfeldt 2015), including elicited
abundances of rare species (Lichtenstein et al. 1978,
Farmer et al. 2012).
Although it is difficult to validate biodiversity bench-

marks without independent, a priori knowledge of refer-
ence states, differences between elicited and modeled
benchmarks indicate that these two approaches might be
complementary rather than competing. Although a
requirement for many benchmarks (>700,000 values in
this study) precludes the elicitation of all benchmarks,
targeted elicitation might inform benchmarks in loca-
tions with few or no data or when modeled benchmarks
have low precision. In these cases, elicited benchmarks
might be used to define benchmarks directly or to
inform prior distributions to be updated when data
become available. An important consequence of model-
ing benchmarks from empirical data is that these bench-
marks can be based on the same field methods,
measurement scales, and data types commonly used in
contemporary environmental assessment and manage-
ment applications. Aligning benchmarks with data col-
lection is important because empirical data will not
necessarily reflect an expert’s conceptualization of a
given vegetation type.

Ecological inferences from estimated benchmarks

Our method characterized variation in the richness
and cover of plant growth forms among vegetation
types, bioregions, seasons, and at multiple rainfall levels.
Past rainfall and resulting changes in soil moisture are
particularly important for fast-growing and shallow-
rooted plants (e.g., grasses and forbs), and can substan-
tially influence species richness and cover in these groups
(Zavaleta et al. 2003). We observed strong seasonal pat-
terns in some combinations of vegetation class and
bioregion, but the nature of these patterns often differed
among vegetation classes or bioregions. In many cases,
benchmarks differed more among recent rainfall levels
than among months, which indicates that recent rainfall
explains more variation in cover and richness than sea-
son. Failing to account for variation due to recent rain-
fall and season could result in benchmarks that are
either unattainable or too-readily attainable, which may
lead to undesirable biodiversity outcomes (Kirkman
et al. 2013). Close associations with rainfall suggest that
benchmarks might be sensitive to changes in natural dis-
turbance regimes, such as drought. An advantage of
variable, data-driven benchmarks is their explicit incor-
poration of changing environmental conditions, with the
capacity to update benchmarks as new data become
available.
Our use of a multivariate model structure gives

some insight into interactions among growth forms

TABLE 2. Correlations among growth forms in richness (lower
triangular) and cover (upper triangular).

Richness

Cover

Ferns Forbs Grasses Other Shrubs Trees

Ferns 0.18 0.08 0.17 0.09 0.08
Forbs 0.62 0.36 0.21 0.07 0.03
Grasses 0.44 0.95 0.08 –0.04 –0.01
Other 0.94 0.55 0.41 0.16 0.14
Shrubs 0.35 0.16 0.21 0.58 0.15
Trees 0.76 0.21 0.12 0.89 0.76

Notes: Estimated correlations are based on dynamic models.
Boldface type denotes values with 95% credible intervals not
overlapping zero.
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within vegetation classes and bioregions. We observed
positive residual correlations between almost all pairs
of growth forms, with the only exceptions being
weak negative correlations between the cover of

grasses and the cover of shrubs and trees (Table 2).
Positive correlations might reflect local aspects of site
fertility, disturbance, and weather, to which many
species within growth forms respond similarly. Such
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an association also was observed between the cover
of native and nonnative species, with highly produc-
tive locations supporting more cover of both native
and nonnative species (Mart�ın-For�es et al. 2017). Our
weak negative correlations between the cover of
grasses and trees and shrubs match expectations from
theoretical and empirical work on coexistence

between grasses and woody vegetation (Walker et al.
1986, Scholes and Archer 1997).

Implications of variable, data-driven benchmarks

We estimated benchmarks as the 55th, 65th, and 75th
quantiles of the marginal posterior species richness or
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cover distribution. A remaining challenge for practical
application of our method is the identification of the
most appropriate quantile for use as the best-on-offer
reference state. Our use of quantiles explicitly assumes
that many native species and high cover are more desir-
able than few native species and low cover relative to
other locations within the same vegetation type and
bioregion. We assume that more native species and
higher cover are associated with higher biological integ-
rity (Oliver et al. 2014). Under this assumption, the
choice of the appropriate quantile is inherently subjec-
tive but may be guided by four considerations. First, if
there is a sampling bias towards relatively undisturbed
(or disturbed) vegetation, a lower (or higher) quantile
may be appropriate. Second, we found that small sample
sizes and large amounts of residual variation widened
posterior credible intervals and potentially inflated
benchmarks, and this variability increased from lower to
higher quantiles, which might suggest that a lower quan-
tile is appropriate when few data are available or when
residual variation is high. For example, residual varia-
tion was higher for cover than richness in our case study,
indicating that a lower quantile might be appropriate for
cover benchmarks. Third, independent estimates of rich-
ness and cover benchmarks might result in high quan-
tiles being unattainable for richness and cover
simultaneously, in which case a lower benchmark might
be needed to ensure that current and future sites can fea-
sibly achieve best-on-offer status. Last, biodiversity
benchmarks used in biodiversity offset schemes can have
significant implications for offset ratios. When used to
assess a potential development site, low quantiles will
generally result in higher offset requirements whereas
high quantiles will result in lower offset requirements.
Each of these four points requires careful consideration
when selecting appropriate quantiles for use in a particu-
lar benchmark application.
A related challenge for practical applications is the

choice between dynamic and static benchmarks.
Although dynamic benchmarks capture important tem-
poral variation in biodiversity states, estimating dynamic
benchmarks reduces the amount of data underpinning a
given benchmark, with consequences for the precision of
benchmark estimates and the selection of benchmark
quantiles. Knowledge of ecological dynamics can inform
the choice of dynamic or static benchmarks. For exam-
ple, one would expect substantial variation in biodiver-
sity states in regions that experience large fluctuations in
water availability or high levels of seasonal variation.
Such associations were apparent in estimated bench-
marks, where dynamic benchmarks diverged from static
benchmarks in spring and autumn in a highly seasonal
system (Riverina Floodplain Woodlands; Fig. 4a, b)
and in dry and wet years in a system with highly variable
rainfall (Nandewar Dry Sclerophyll Forests; Fig. 4c, d),
but not in a more stable system (Sydney Basin Coastal
Woodlands; Fig. 4e, f). These differences highlight situa-
tions where dynamic benchmarks might be preferred

over static benchmarks, following which the choice and
implementation of dynamic or static benchmarks can be
guided by data availability and knowledge of a specific
benchmark application.

Benefits of variable, data-driven benchmarks

Our Bayesian modeling approach is easily updated,
allowing benchmarks to be refined as new data become
available. For example, we observed interannual varia-
tion in species richness and cover of grasses and forbs,
which suggests that benchmarks for these growth forms
might need updating to capture long-term climatic
trends (e.g., warming and drying climates; Parmesan
and Yohe 2003). Existing benchmarks can be used to
define prior distributions and newly collected data can
be used to update benchmark estimates (Ellison 2004).
This approach would substantially reduce the subse-
quent computational demands of our modeling
approach because the large data set used initially
(~35,000 observations for each of six growth forms) can
be reduced to a relatively small set of prior distributions
(~5,000 parameters). An important consideration when
collecting new data to update existing benchmarks is the
additional information gain from new data versus the
cost of collecting such data (Canessa et al. 2015).
A focus on data-driven benchmarks that reflect con-

temporary biodiversity states supports transparent and
updateable benchmarks, which we believe will have
broad application to conservation planning and manage-
ment. Whereas benchmarks based on concepts of mini-
mal disturbance emphasize divergences from idealized
biodiversity states, our approach highlights contempo-
rary states and existing data. The use of transparent
benchmarks, linked to empirical data, is particularly
beneficial in policy settings, where contentious decisions
are best supported by defensible benchmarks that reflect
empirical observations. The models outlined here were
used to deliver benchmarks to the Biodiversity Assess-
ment Method, which operates under the New South
Wales Biodiversity Conservation Act 2016 (Office of
Environment and Heritage 2018). Field testing of these
benchmarks in real world applications, such as assessing
biodiversity values to support biodiversity management,
will provide valuable feedback on the validity of the esti-
mated benchmarks and on key details of implementa-
tion, such as the identification of appropriate quantiles
to define best-on-offer reference states. We believe our
approach is general and could be used broadly to calcu-
late transparent and updateable biodiversity targets in
dynamic environments, especially given unprecedented
and global access to ‘big data’ such as floristic invento-
ries stored in data warehouses (Franklin et al. 2017, Bru-
elheide et al. 2019).
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1970/full

DATA AVAILABILITY

Details of additional models, all data, and all model code are available from the Open Science Framework at https://doi.org/
10.17605/osf.io/6p2b8
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