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Abstract
Questions: The cover and abundance of individual plant species have been recorded 
on ordinal scales for millions of plots world‐wide. Ordinal cover data often need to be 
transformed to a quantitative form (0%–100%), especially when scrutinising summed 
cover of multiple species. Traditional approaches to transforming ordinal data often 
assume that data are symmetrically distributed. However, skewed abundance pat-
terns are ubiquitous in plant community ecology. The questions this paper addresses 
are (a) how can we estimate transformation values for ordinal data that account for 
the underlying right‐skewed distribution of plant cover; (b) do different plant groups 
require different transformations; and (c) how do our transformations compare to 
other commonly used transformations within the context of exploring the aggregate 
properties of vegetation?
Location: Global.
Methods: We assigned Braun‐Blanquet cover‐abundance ordinal values to continu-
ous cover observations. We fitted a Bayesian hierarchical beta regression to estimate 
the predicted mean (PM) cover of each of six plant growth forms within six ordinal 
classes. We illustrate our method using a case study (2,809 plots containing 95,812 
observations), compare the model‐derived estimates to other commonly used trans-
formations and validate our model using an independent dataset (2,227 plots con-
taining 51,497 observations) accessed through the VegBank database.
Results: Our model found that PM estimates differed by growth form and that previ-
ous methods overestimated cover, especially of smaller growth forms such as forbs 
and grasses. Our approach reduced the cumulative compounding of errors and was 
robust when validated against an independent dataset.
Conclusions: By accounting for the right‐skewed distribution of cover data, our alter-
nate approach for estimating transformation values can be extended to other ordinal 
scales. A more robust approach to transforming floristic data and aggregating cover 
estimates can strengthen ecological analyses to support biodiversity conservation 
and management.
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1  | INTRODUC TION

Field‐based assessment of the cover and abundance of individual 
plant species is complex. Observers making on‐ground visual esti-
mates of plant cover need to account for, and assess, foliage cover 
of different densities, dimensions, shapes and structures across 
multiple species, growth forms and strata. So too, counting cryptic, 
clonal, or copious numbers of plants can be complicated. Owing to 
this complexity, vast numbers of floristic plots across many conti-
nents have been surveyed using ordinal scales (Chytrý et al., 2016; 
Dengler et al., 2011; Schaminée, Hennekens, Chytrý, & Rodwell, 
2009). Whilst Braun‐Blanquet (1932) originally described an abun-
dance–dominance scale, the practical, on‐ground application of this 
scale is to assess plant cover, and where cover is <5%, abundance is 
also assessed. The Braun‐Blanquet cover‐abundance (BBCA) scale is 
perhaps the most common ordinal scale used in plant ecology. For 
example, within the vegetation plot database sPlot v2.1 (www.idiv.
de/splot), more than 740,000 plots (66%) have recorded plant oc-
currence using Braun‐Blanquet cover‐abundance (Bruelheide et al., 
2019). This volume of data is testament that ground‐based visual 
assessments of cover‐abundance using ordinal scales provide a cost‐
effective, rapid and non‐destructive approach to gathering the data 
needed to summarise the composition and structure of plant com-
munities. These data represent a wealth of investment in field ef-
fort and have supported major advances in vegetation classification, 
mapping and distribution modelling.

The ever‐growing access to global vegetation plot databases 
(Dengler et al., 2011; Schaminée, Janssen, Hennekens, & Ozinga, 

2011) has opened pan‐continental opportunities to explore many 
uses of floristic data. Some ecological questions may best be ad-
dressed using aggregate properties of vegetation, such as the 
summed total foliage cover within a plot or across strata, the total 
summed cover or abundance of exotic or invasive species, or the rel-
ative cover or abundance of plants within different functional, tax-
onomic or growth form groups. Summing cover to derive aggregate 
properties of floristic data has a multitude of uses in ecology includ-
ing assessing presence and diversity of faunal habitat, as covariates 
in species’ distribution models (SDMs), for assessing the spatial and 
temporal status of ecosystem baselines, predicting the effects of 
shifts in climate, land use and land cover, or measuring site‐scaled re-
sponses to disturbance (McElhinny, Gibbons, & Brack, 2006; Pereira 
et al., 2010; Scholes & Biggs, 2005). Aggregate properties of vegeta-
tion data are particularly relevant to exploring ecological questions 
concerning the patterns, processes, and prognoses at a range of spa-
tial scales in contemporary and predicted future landscapes.

There are many applications where ordinal data have been used 
successfully, such as ordination, classification, modelling or map-
ping of vegetation communities (Lyons, Keith, Warton, Somerville, 
& Kingsford, 2016; Podani, 2005, 2006) and for modelling the cover 
of single species (Damgaard, 2014; Irvine, Rodhouse, & Keren, 2016). 
However, ordinal‐scaled cover observations of individual species 
cannot be summed (Chen, Shiyomi, Hori, & Yamamura, 2008; Guisan 
& Harrell, 2000; Podani, 2006) and need to be transformed into a 
continuous scale prior to aggregating.

Approaches to transforming Braun‐Blanquet cover‐abundance 
(BBCA) ordinal data have been proposed by Tüxen and Ellenberg 

K E Y W O R D S

aggregated, beta regression, Braun‐Blanquet, growth form, midpoint, ordinal transformation, 
species abundance distribution, sPlot, summed foliage cover, VegBank, vegetation cover

TA B L E  1  Class divisions for the 1–6 Braun‐Blanquet ordinal cover–abundance (BBCA) scale (columns 1–3), previous proposals for 
transforming them to percentage cover (columns 4–6), and proposed transforms (independent of growth form) based on estimating the 
predicted mean (PM) from a beta distribution of observed quantitative cover data and the lower 2.5% and upper 97.5% credible intervals

BBCA Class
Range of 
cover (%)

Qualitative abundance 
termsa 

Tüxen and Ellenberg 
(1937)b 

Braun‐Blanquet 
(1964)b 

van der Maarel 
(2007)c  PM Credible interval

1 <5 e.g., present, few, rare, 
erratic, occasional, 
uncommon

0.1 0.1 1 0.49 0.48–0.51

2 <5 e.g., common, 
abundant, many, 
several

2.5 5 2 0.74 0.72–0.76

3 5–25   15 17.5 17.5 8.95 8.84–9.07

4 26–50   37.5 37.5 35 38.77 37.97–39.57

5 51–75   62.5 62.5 70 62.43 60.69–64.13

6 76–100   87.5 87.5 140 81.24 79.10–83.26

Note. Number of observations (n) for BBCA1 (n = 54,811); BBCA2 (n = 26,968); BBCA3 (n = 11,946); BBCA4 (n = 1,583); BBCA5 (n = 366) and BBCA6 
(n = 138).
aColumn 3 shows some of the qualitative descriptors used by field surveyors to divide observations between BBCA1 and BBCA2. bAdapted from van 
der Maarel (1979). cOrdinal transform values (OTV) using 1.415 weighting factor (van der Maarel, 2007). 

http://www.idiv.de/splot
http://www.idiv.de/splot
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F I G U R E  1  Workflow showing the major elements required to estimate transformation values for ordinal data using continuous cover 
estimates. Here we use the Braun‐Blanquet cover‐abundance (BBCA) 1–6 scale, although this approach could be extended to any ordinal 
scale. Note, this flow diagram represents data from one plot, but many plots are needed to obtain robust estimates of mean cover
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(1937) and Braun‐Blanquet (1964) (see Table 3 in van der Maarel, 
1979). In addition, van der Maarel (1979) proposed the ordinal trans-
form value (OTV) with different scale adjustments, as a solution for 
converting ordinal data to percentage cover values. All these meth-
ods tend to transform data to the approximate midpoint of the ordi-
nal class range for observations of cover >5%. For classes with cover 
<5%, the transformation values appear arbitrary and differ consider-
ably (Table 1 columns 4–6).

Transforming data to the approximate midpoint of the class 
ranges assumes that data are symmetrically distributed within 
each class. Yet, patterns in plant abundance including density, bio-
mass (Chiarucci, Wilson, Anderson, & De Dominicis, 1999; Morlon 
et al., 2009), frequency (Chiarucci et al., 1999), percentage cover 
(Damgaard, 2009), size, energy use, and productivity (Whittaker, 
1965) have all been shown to have a right‐skewed distribution; 
skewed species abundance distributions occur in every known multi‐
species community (McGill et al., 2007). Midpoint transformations 
are inflexible to the underlying distribution of cover data and assume 
that the distribution does not vary across species, groups of plant 
entities (such as growth forms, life forms, functional or taxonomic 
groups), vegetation types, or biomes. Due to the prevalence of right‐
skewed distributions, we predict that midpoint transformations 
overestimate cover and the compounding of these errors will result 
in gross overestimation of summed cover for aggregated properties.

Here we develop a flexible approach to estimate cover trans-
formations for ordinal‐scaled data that can then be used to provide 
accurate estimates of summed vegetation cover. The method we 
describe is applicable to data in any ordinal scale, can be extended 
to allow for differences in vegetation type or among biomes and 
can accommodate alternative aggregate properties of plant data 
such as growth forms, life forms, functional, or taxonomic groups. 
To demonstrate the potential applicability of our approach we build 
and then validate the model using two separate and independent 
datasets.

Given that diverse architectures and spatial arrangements of fo-
liage lead to varied patterns of plant cover (Damgaard, 2013), we 
also predict that different plant growth forms will require different 
transformation values. Growth forms are practical and observable 
entities that can inform site‐based assessment and monitoring, are 
recognizable from remotely‐sensed imagery, and are used to re-
port on broad‐scale biodiversity assessment or baselines (Pereira 
et al., 2013) with which we can measure change in cover (Abelleira 
Martínez et al., 2016; Pettorelli et al., 2014).

2  | MATERIAL S AND METHODS

We outline the key steps required to estimate transformation val-
ues within ordinal classes for different plant groups. A pre‐req-
uisite for our method is cover data that have been collected on a 
continuous cover scale, ideally sourced from the same study re-
gion and vegetation types as the ordinal cover data. To prepare 
the input data for the model, ordinal values need to be mapped, a 

posteriori, to this continuous cover data as an intermediary vari-
able (Figure 1, Step 1). Models, with a beta distribution, are then 
used to predict the mean cover of each plant group within each or-
dinal cover class. This predicted mean cover is the transformation 
value (Figure 1, Step 2). Using a case study, we explore summed 
cover estimates for different plant groups and evaluate the per-
formance of the ordinal cover transformations. We compare our 
transformation to existing approaches in the context of summed 
cover for plant groups (Figure 1, Step 3). We evaluate the robust-
ness of our predicted mean transformations on an independent 
dataset (Figure 1, Step 4).

2.1 | Estimate mean cover using parameters of a 
beta distribution

We used a generalised linear mixed model (GLMM) with a beta dis-
tribution to derive estimates of the mean vegetation cover, within 
an ordinal class, given a plant's growth form and random variation 
owing to plot identity. Individual species’ cover data are continu-
ous proportional estimates, and once suitably transformed, fall 
within the known range (0 < y < 1). Linear regression with a normal 
distribution is inappropriate for the analysis of proportions, such 
as percent plant cover, because data often violate assumptions 
such as normality and homogeneity of errors and furthermore fit-
ted values can fall outside of the range [0,1] (Ferrari & Cribari‐
Neto, 2004). A common approach to address these problems is 
to apply arcsine or logit transformations to the response variable, 
prior to regression (Warton & Hui, 2011), although the results can 
be difficult to interpret (Ferrari & Cribari‐Neto, 2004). Numerous 
authors have instead demonstrated that percent plant cover is 
more appropriately analysed by assuming that cover approximates 
a two‐parameter beta distribution (Chen, Shiyomi, Bonham, et al., 
2008; Cribari‐Neto & Zeileis, 2010; Ferrari & Cribari‐Neto, 2004; 
Herpigny & Gosselin, 2015). Beta distributions are attractive be-
cause fitted values are constrained between the interval 0 < y < 1 
and they can accommodate asymmetrical distributions with left‐ 
or right‐skew. This flexibility makes beta distributions highly suit-
able for modelling diverse and often asymmetrical plant cover data 
(Cribari‐Neto & Zeileis, 2010).

We present a Bayesian GLMM with a logit link to estimate the 
parameters of the beta distribution and allowed these parameters 
to vary among ordinal classes and plant growth forms. Estimates of 
these parameters were used to derive the predicted mean (PM) for 
each plant growth form in each ordinal class.

The proportional vegetation cover is given by the two‐parameter 
beta distribution:

where aij and bij are shape parameters for species j in plot i, and 
i = 1,…n plots. The shape parameters are further defined as

Proportionij∼Beta(aij,bij)

aij=�×�ij
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where θ allows for potential overdispersion to be incorporated in the 
model (Zuur, Hilbe, & Ieno, 2013).

πij is modelled with a logit link

The model consists of regression parameters (β) for each ordinal 
class, plant growth form and their interactions, plot level random in-
tercepts and variance (zi):

where zi is a random intercept for plot, Xij are the matrix of all covari-
ates (ordinal classes and their interaction with plant growth form) 
and β are the regression parameters for each covariate. That is, for 
each ordinal class 1…6, separate β values were estimated for each 
plant growth form. For a simplified example with two growth forms 
and two ordinal classes this can also be expressed as:

where β0 = predicted value of logit transformed cover if species j be-
longs to the “reference” growth form and its value in plot i has the 
“reference” level ordinal cover‐abundance class.

β1 = departure of the predicted value for species j from β0 if the 
observation is of another ordinal cover‐abundance class.

β2 = departure of predicted value from β0 if species j belongs to 
another growth form.

β3 = departure of predicted value from β0 + β1 + β2 when neither 
growth form nor ordinal cover‐abundance class are of the reference 
level.

In this example, fOrdinalClassij and fGrowthFormij are binary 
dummy variables coding growth form and cover‐abundance scale 
categories, thus Xij is a vector containing values for these dummy 
variables (including their products) for species j in plot i.

We included plot as a random intercept because although we 
assumed each plot should follow the characteristic skewed species 
abundance curve, we expected variation among plots and hence dif-
ferences in the average cover of any given ordinal class and plant 
growth form.

This basic model structure can be easily expanded to accommo-
date other possible sources of variation, such as among vegetation 
types or owing to the richness of plant species within a plot. In this 
case study, we decided not to include additional covariates to mini-
mise computational demands and simplify model interpretation and 
operational complexity.

The model was fit via Markov chain Monte Carlo optimization 
in JAGS (http://mcmc-jags.sourceforge.net) via the R2jags package 
(Su & Yajima, 2015) within R 3.5.0 (R Core Team, 2018). Posterior 
parameter estimates and back‐transformed predicted means were 

derived from three chains, with a burn‐in of 3,000 iterations, 
15,000 subsequent iterations per chain and with a thinning rate of 
15. Autocorrelation and mixing were visually inspected. The inter-
action models were compared to additive models using Deviance 
Information Criteria. Appendix S1 contains R code for our models.

2.2 | Case study — New South Wales, Australia

We illustrate our model with a case study where we have used 1–6 
BBCA as our ordinal scale and grouped plants into six growth form 
categories. Following is a brief description of how we prepared the 
case study dataset to build our model. We note that randomly gener-
ated data from an appropriate beta distribution (for similar example 
see Damgaard, 2014) could also be used to demonstrate our ap-
proach. However, we chose to use a large archival dataset from a 
range of bioclimatic regions and vegetation types to demonstrate 
that, despite the underlying variation, our approach still led to robust 
estimates of summed cover.

2.2.1 | Preparation of observed percentage 
cover dataset

To demonstrate our modelled approach, we sourced case study 
data from archival quantitative floristic data that met three consid-
erations: (a) each species record included a visual estimate of foliage 
cover on a continuous scale from 0.1% to 100% and a count of abun-
dance where cover was <5%; (b) in each plot, full species invento-
ries were recorded from a fixed area (400 m2); and (c) sites covered 
a wide geographic distribution (Appendix S2) and included a wide 
range of vegetation types with different structural complexity in-
cluding rainforests, forests, woodlands, shrublands, grasslands, and 
wetlands (Keith, 2004). A total of 2,809 geo‐referenced plots con-
taining 95,812 occurrence records with visual estimates of cover for 
3,967 species met these criteria and were exported from the NSW 
BioNet Atlas database (www.bionet.nsw.gov.au).

2.2.2 | Analysis of the empirical cover distribution

To confirm our assumption of right‐skewed distribution of cover data 
we plotted our data and used the ‘skewness’ function in the e1071 
package (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2017) 
within R 3.5.0 (R Core Team, 2018) to calculate the adjusted Fisher–
Pearson skewness coefficient (G1; Joanes & Gill, 1998) for the whole 
distribution, and for distributions within each BBCA class. Skewness 
is a diagnostic tool usually used to test the symmetry of the data dis-
tribution. Here, we interpret skewness coefficients as being strongly 
and positively skewed when the G1 coefficient is >0.5 (Bulmer, 1979; 
Doane & Seward, 2011).

2.2.3 | Preparation of plant group entities

All taxa were allocated to one of six growth form categories: tree, 
shrub, grass and grass‐like (hereafter referred to as grass), forb, fern, 

bij=�× (1−�ij)

logit(�ij)=�ij

�ij=Xij×�+zi

zi∼N(0,�2
plot

)

�ij=�0+�1× fOrdinalClassij+�2× fGrowthFormij

+�3fOrdinalClassij× fGrowthFormij+zi

http://mcmc-jags.sourceforge.net
http://www.bionet.nsw.gov.au
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and other remaining growth forms (Oliver et al., 2019). For each 
growth form in each plot, total cover was estimated by summing the 
observed quantitative estimates of cover and the estimates of cover 
derived from the transformations of the ordinal data.

2.2.4 | Allocating an intermediary variable

We created an intermediary variable by matching each quantitative 
estimate of cover for every floristic record (n = 95,812) to its com-
mensurate ordinal value. Any ordinal scale can be used to partition 
data, but here we demonstrate our approach by allocating data to 1–6 
BBCA (Table 1). BBCA1 and BBCA2 were assigned based on their 
observed foliage cover (<5%) and abundance; where BBCA1 ≤10 
and BBCA2 >10 individuals. The pragmatic choice of ten individu-
als provides an explicit quantitative abundance threshold between 
classes BBCA1 and BBCA2. BBCA3–BBCA6 were assigned based on 
observed foliage cover (≥5%; Mueller‐Dombois & Ellenberg, 1974). 
The ordinal dataset created by this process approximates the form 
of many data held within vegetation databases.

In our case study dataset, observations of 5% cover were more 
prevalent than expected from a typical theoretical beta distribution 
(Figure 2). This bias was detected in preliminary model convergence 
diagnostics and model fit suggested that, for our case study, it would 
be preferable to split the data and separately model (a) BBCA1 and 
BBCA2 bounded between 0% and <5% cover; and (b) BBCA3 to 
BBCA6 bounded between 5% and 100% cover inclusive. To ensure 
the response variable was bounded by 0 and 1, percent cover was 
transformed using (y − a)/(b − a) where in (a) a = 0 and b = 5, and in (b) 
a = 5 and b = 100 (Cribari‐Neto & Zeileis, 2010). In the second model, 
the response variable was further transformed using (y * (n − 1))/n 
where n = sample size (Cribari‐Neto & Zeileis, 2010). This split‐model 
approach may not be necessary for all datasets, especially where 
data are derived from less subjective cover methods (e.g., point in-
tercept or pin frame) but is included here to support the handling 
of datasets with similar patterns in distribution (see Appendix S3, 
Figures 1‒3 for other datasets that appear to show a similar pattern).

2.3 | Evaluation of past and proposed approaches to 
transforming ordinal data

We transformed each of the 1–6 BBCA records using three different ap-
proaches outlined in Table 1. We then evaluated these past approaches 
proposed by Tüxen and Ellenberg (1937), Braun‐Blanquet (1964) and 
van der Maarel (2007) to the PM estimated from a beta distribution.

For each plot, growth form cover and total cover were calculated 
by summing the observed continuous cover estimates (%) and the es-
timates of cover derived from the various transformations. Linear re-
gression models with zero intercept were fitted to the sum of observed 
continuous cover data (y) and sum of transformed cover data (x) in R 
3.5.0 (R Core Team, 2018). We can justify using a regression through 
the origin because we are most interested in comparing the slope of the 
regression line to the 1:1 line of best fit to determine if our PM models 
were over‐ or under‐predicting summed cover. We compared the root 

mean squared deviation (RMSD; see Equation. 1) as an estimate of the 
deviation of the transformed cover values from the 1:1 line.

where, ŷi are the predicted cover values, yi are the observed cover 
values, and n is the number of observations.

The RMSD estimate represents the mean deviation of trans-
formed cover values with respect to the observed cover values. 
We also compared estimates of the slope with lower and upper 
95% confidence intervals expecting that robust transformations 
would result in a slope = 1 and transformations that overestimate 
summed cover will have a slope <1. We note that RMSD is most 
useful for evaluating models as it represents the absolute measure 
of fit to the 1:1 line and reports the prediction error in the same 
units as the data (i.e., summed cover). Adjusted R2 is somewhat 
less useful, as it gives a relative measure of the goodness‐of‐fit 
that is explained by the fitted line on a scale between 0 and 1 and 
adds a penalty when independent variables are included but do 
not improve the fit of the model.

We validated the PM transformation values on an independent 
dataset (2,227 sites with 51,497 observations) from West Virginia 
Natural Heritage Program (Vanderhorst, Byers, & Streets, 2012) 
accessed from VegBank (Peet, Lee, Jennings, & Faber‐Langendoen, 
2013; accessed 28th August 2018). Whilst VegBank has a primary 
role for enabling the vegetation classification, large volumes of in-
dividual floristic observations are available for ecoinformatic syn-
thesis and analysis. Owing to the ease of access and completeness 
of datasets stored in VegBank we were able to validate our model 
estimates on a geographically distinct dataset containing cover es-
timates of plants from entirely different vegetation communities. 
Details outlining the data preparation are included in Appendix S4.

3  | RESULTS

3.1 | The empirical cover distribution

The source continuous cover data were right‐skewed and domi-
nated by low cover — 85% of observations were between 0.1% and 
4%, and 60% of these observations were of cover <1% (Figure 2). 
Data were heavily right‐skewed for the whole distribution 
(G1 = 5.62) and right‐skewed within five of the six BBCA classes 
(BBCA1 G1 = 2.64, BBCA2 G1 = 1.57, BBCA3 G1 = 1.04, BBCA4 
G1 = 0.61 and BBCA6 G1 = 0.95). Only BBCA5 had a skewness co-
efficient <0.5 (G1 = 0.36). We also note potential observer bias for 
5% cover. These patterns are similar to other visually estimated flo-
ristic cover data from other archived datasets (see Appendix S3).

3.2 | Estimate mean cover using parameters of a 
beta distribution

Table 1 (columns 7 and 8) shows the predicted mean transforma-
tions and their lower 2.5% and upper 97.5% credible interval for 

(1)RMSD=

√

√

√

√

1

n−1

n
∑

i−1

(

ŷi−yi
)2
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each ordinal class, independent of growth forms. The most marked 
differences are noted in BBCA2 and BBCA3, where the predicted 
means are well below the previous approaches. The predicted mean 
for class BBCA6 is lower than the midpoint but was derived from 
relatively few observations (n = 138).

3.3 | Evaluation of past and proposed transform 
values for summed growth form cover

Estimates of the PM suggest that accounting for growth form within 
each ordinal class results in more robust summed cover estimates. 
Credible intervals suggest that in classes BBCA1–BBCA3, trees typi-
cally have higher mean cover and warrant higher transformation val-
ues (Table 2). Credible intervals also suggest the need for separate 
transformation values for shrubs in BBCA1 and BBCA2 and a lower 
value for forbs in BBCA2 and BBCA3 (Table 2).

When these growth form specific transformations were evalu-
ated using the summed cover estimates, RMSD did not exceed 9.50 
(trees) and slope ranged from 0.91 (forbs) to 1.05 (others; Figure 3 
and Appendix S5). In contrast, estimates based on past transfor-
mations had consistently higher RMSD and slope estimates were 
always <0.85, suggesting considerable overestimation of summed 
growth form cover (Figure 3 and Appendix S5).

3.4 | Evaluation of past and proposed transform 
values for total summed cover

Evaluation of summed total cover revealed that when transforma-
tions are tailored to growth forms, the PM performed better than 
existing approaches (Figure 3 and Appendix S5). The PM reduced 
the overestimation of total summed cover by up to four times. 
The evaluation of model fit for summed total cover using past ap-
proaches generally revealed a poorer model fit: RMSD ranged from 
41.47 to 79.37 (cf. PM = 18.21) and slope ranged from 0.57 to 0.74 
(cf. PM = 1.01; Figure 3 and Appendix S5).

Evaluation of the growth form specific PM transformation on an 
entirely independent validation dataset from West Virginia Natural 
Heritage Program (Vanderhorst et al., 2012) show that transforma-
tions were robust, although tending to underestimate summed cover 
of most growth forms (Appendix S7). RMSD ranged between 1.59 
(others) and 14.97 (trees) and slope ranged between 1 (others) and 1.12 
(forbs). When compared to the transformation proposed by Tüxen and 
Ellenberg (1937), the PM transformation values were marginally better 
in that they did not overestimate summed cover of all growth forms 
(Appendix S8, Figures 2a–f); RMSD was consistently higher than PM 
transformations for all growth forms; slopes were generally further 
from 1, ranging between 0.76 (forbs) and 0.95 (shrubs; Appendix S7).

F I G U R E  2  Distribution of visual estimates of cover for 95,812 observations, and their corresponding Braun‐Blanquet cover‐abundance 
(BBCA) class for our case study. Dashed vertical lines show cut points between each BBCA class. Number of observations (n) for BBCA1 
(n = 54,811); BBCA2 (n = 26,968); BBCA3 (n = 11,946); BBCA4 (n = 1,583); BBCA5 (n = 366) and BBCA6 (n = 138). Numbers between 
the dashed lines show the percentage of each class in the dataset. BBCA1 and BBCA2 (both represent <5% cover) are shown as stacked 
histograms; BBCA1 (≤10 individuals) sits above BBCA2 (>10 individuals). See Appendix S3 for comparison with other archival datasets
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Evaluation of total cover using the PM transformation values 
showed RMSD was less than that estimated if the transformation was 
undertaken using estimates of Tüxen and Ellenberg (20.54 vs 27.01; 
Appendix S7) and PM transformation values showed a slight underes-
timation (slope = 1.1) when tested on the independent dataset.

Scatter plots showing the relationships between visual estimates 
of summed cover for all six growth form groups using the PM model 
and for Tüxen and Ellenberg (1937) transformations are provided in 
Appendix S8, Figures 1a–f and 2a–f.

4  | DISCUSSION

Transforming ordinal data to a quantitative form is common prac-
tice in plant ecology and extends across disciplines including res-
toration (Fill, Forsyth, Kritzinger‐Klopper, Le Maitre, & van Wilgen, 
2017) and classification (Cawsey, Austin, & Baker, 2002; Faber‐
Langendoen, Aaseng, Hop, Lew‐Smith, & Drake, 2007; Wiser & De 
Cáceres, 2013), and for assessing disturbance (Knapp & Ritchie, 

2016; Scott & Kirkpatrick, 2008). Similarly, universal skewed pat-
terns in the species abundance distribution are a long standing and 
well‐recognised pattern in ecology (MacArthur, 1960). The data 
we present here are no exception. Yet the integration of these 
two concepts, underpinned by a robust modelling approach, has 
received little attention, especially in the context of synthesizing 
information on aggregate properties of vegetation data. We dem-
onstrate, using two large quantitative independent datasets, that, 
when the underlying right‐skewed cover distribution is accounted 
for, a more robust set of transformations is generated. Where the 
aggregate properties of floristic data are of interest, our method, 
unlike previous approaches to transformation of ordinal data, does 
not overinflate cover.

Where possible, we advocate that others replicate this approach 
and source continuous cover data, so that the means within each 
ordinal class can be estimated accounting for the underlying dis-
tribution. Ideally, the continuous cover datasets will encompass 
the same temporal and spatial variation as that of the ordinal data. 
Notwithstanding these recommendations for best practice, we have 

TA B L E  2  Proposed transformation values, tailored to different growth forms, based on estimates of the predicted mean (PM) from a beta 
distribution of observed data

 

Growth Form

Tree Shrub Grass Forb Fern Other

BBCA1

PM 0.78 0.52 0.45 0.42 0.43 0.45

CI [0.76–0.80] [0.51–0.53] [0.44–0.46] [0.41–0.44] [0.41–0.45] [0.44–0.46]

n 6465 13366 8731 16981 1863 7405

BBCA2

PM 1.78 0.96 0.82 0.58 0.75 0.74

CI [1.7–1.86] [0.93–0.99] [0.8–0.84] [0.57–0.6] [0.72–0.78] [0.71–0.77]

n 441 2821 8488 12065 1324 1829

BBCA3

PM 9.53 8.60 8.86 8.02 8.80 8.48

CI [9.38–9.7] [8.42–8.76] [8.71–9.01] [7.81–8.24] [8.46–9.19] [8.23–8.74

n 4347 2070 3500 893 412 724

BBCA4

PM 38.06 39.18 39.32 37.86 39.30 38.72

CI [36.74–39.38] [36.98–41.26] [38.05–40.59] [34.01–41.81] [34.92–43.72] [34.76–42.64]

n 582 217 599 68 52 65

BBCA5

PM 61.71 63.15 62.67 62.80 62.01 62.11

CI [58.15–65.16] [58.23–67.78] [60.24–65.08] [49.59–75.8] [54.16–70.05] [54.66–69.15]

n 89 48 184 6 18 21

BBCA6

PM 80.80 83.9 80.81 78.87 77.59 80.55

CI [76.04–85.31] [78.99–88.41] [77.82–83.65] [64.83–90.78] [55.35–93.93] [70.09–89.57]

n 29 23 73 4 2 7

Note. Lower 2.5% and upper 97.5% credible intervals (CI) are shown in square brackets; n = number of individual observations for each Braun‐
Blanquet cover–abundance (BBCA) class.
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demonstrated our modelling approach can produce robust estimates 
of summed cover using floristic data from geographically distinct 
datasets containing observations of entirely unrelated vegetation 
communities. We expect the estimates of summed cover would fur-
ther improve had we used representative data from the same region 
and vegetation type to model specific estimates of the parameters 
for the beta distribution. Undoubtedly there will be circumstances 
where appropriate continuous data will not be available and the pa-
rameters of the beta distribution cannot be estimated for a specific 
study or region. In these situations, adopting the PM transforma-
tions provided in Tables 1 and 2 would be preferable to application 
of ordinal class midpoints. When plant cover data are right‐skewed, 
midpoint transformations will bias and overestimate total cover.

Hierarchical models are useful for handling complex interactions 
in observational data. Despite the size of the initial dataset, some 
plant groups were poorly represented in the higher cover classes. By 
appropriately specifying the hierarchical model, estimates for these 
combinations could still be obtained, because they draw from the 
full model structure.

We have identified that different growth forms have different 
cover distributions. Our empirical evidence strongly suggests that 
in plots where there are many small entities from the same growth 
form, such as for forbs and grasses, the cumulative cover of that 

growth form (when derived from transformations of ordinal data) 
may amplify and inaccurately describe the structural complexity of 
vegetation communities. Identifying and accounting for these dis-
tributions in other grouped entities has the potential to further im-
prove summed cover estimates.

We also note potential observer bias for cover estimates of 5%. 
We acknowledge that visual estimates of cover and counts are sub-
ject to inter‐ and intra‐operator error and bias (see Morrison, 2016 
for review) and this may account for the data digressions from a 
smooth‐shaped abundance curve. This is no doubt an artefact of ob-
server preference for regular intervals when estimating cover, rather 
than a true representation of plant cover. In our case study analyses, 
the high frequency of estimates of 5% cover required a split‐model 
approach where cover data were treated in two separate models. 
Given this right‐skewed distribution and potential bias among dispa-
rate datasets (Appendix S3), we propose the split‐model approach 
may serve wider applications. Simulated beta distribution data may 
not be entirely appropriate when using visually estimated cover 
data, but may be useful where other less subjective methods for 
estimating cover are used (such as point‐intercept methods). Given 
that visual estimates of cover abundance are the assessment proto-
col for many floristic surveys, our approach offers a way these data 
can still be transformed and used with greater confidence, despite 

F I G U R E  3  Results of linear regression with zero intercept to compare root mean squared deviation (RMSD) and slope for each growth form 
and for total summed cover under previous transformations compared to the predicted mean transformation. Lower and upper 95% confidence 
intervals are shown for slope. Vertical dashed lines represent the perfect regression fit where RMDS = 0 and slope = 1 (data table supplied in 
Appendix S5). Number of observations (n) for trees (n = 11,953); shrubs (n = 18,545); grasses (n = 21,575); forbs (n = 30,017); ferns (n = 3671); 
other (n = 10,051) and total (n = 2,809). See Appendix S6 for plots of all growth forms and three previous approaches to transformation proposed 
by Tüxen and Ellenberg (1937), Braun‐Blanquet (1964), and van der Maarel (2007) [Colour figure can be viewed at wileyonlinelibrary.com]

Tree Shrub Grass Forb Fern Other Total

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75

Predicted Mean  

van der Maarel (2007)

Braun−Blanquet (1964)

Tüxen & Ellenberg (1937)

RMSD

Tree Shr ub Grass Forb Fern Other Total

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

Predicted Mean

van der Maarel (2007)

Braun−Blanquet (1964)

Tüxen & Ellenberg (1937)

Slope
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the underlying variability and bias. The approach we outline here 
can rapidly generate robust and defensible transformation estimates 
that are less prone to inflating summed cover estimates.

We envisage that detailed growth form cover information that 
describes the structural complexity of vegetation may be useful 
when combined with emerging remote‐sensing technologies, such 
as 3‐dimensional LiDAR. Furthermore, where large‐scale biodiver-
sity assessments, that rely on terrestrial vegetation as indicators of 
change, seek to integrate site observations to validate or train im-
agery, vegetation cover data collected in an ordinal scale will be of 
little benefit.

Our approach to transforming ordinal estimates of cover using 
a beta distribution can extend the application of these data beyond 
the realm of vegetation classification and can salvage information 
from many millions of floristic records. We expect most large repos-
itories of floristic data will contain cover estimates with multifarious 
and nuanced ordinal scales. Here we provide a method that can be 
applied to floristic data in different ordinal scales for transforming 
and integrating datasets with much greater confidence. Moreover, 
we have demonstrated an application of accessing some of the data 
amassed in data repositories. By sourcing open‐access ecoinformatic 
data from VegBank, as well as using the recent work to allocate over 
67,000 plant species to a primary growth form (Engemann et al., 
2016), we were able to validate our model using entirely indepen-
dent, yet comparable cover data.

We foresee our approach to transforming ordinal data as sup-
porting the synthesis of multiple datasets containing legacy data 
collected in different ordinal scales, especially where the aggre-
gate properties of vegetation cover for different plant groups are 
of interest. These transformations and the resultant aggregated 
properties of cover data can inform a multitude of applications 
in ecology from site‐scaled, to landscape‐scaled and for global 
applications.
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