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Abstract
Questions: The	cover	and	abundance	of	individual	plant	species	have	been	recorded	
on	ordinal	scales	for	millions	of	plots	world-wide.	Ordinal	cover	data	often	need	to	be	
transformed	to	a	quantitative	form	(0%–100%),	especially	when	scrutinising	summed	
cover	of	multiple	species.	Traditional	approaches	to	transforming	ordinal	data	often	
assume	 that	data	are	 symmetrically	distributed.	However,	 skewed	abundance	pat-
terns	are	ubiquitous	in	plant	community	ecology.	The	questions	this	paper	addresses	
are	(a)	how	can	we	estimate	transformation	values	for	ordinal	data	that	account	for	
the	underlying	right-skewed	distribution	of	plant	cover;	(b)	do	different	plant	groups	
require	different	 transformations;	 and	 (c)	how	do	our	 transformations	compare	 to	
other	commonly	used	transformations	within	the	context	of	exploring	the	aggregate	
properties	of	vegetation?
Location: Global.
Methods: We	assigned	Braun-Blanquet	cover-abundance	ordinal	values	to	continu-
ous	cover	observations.	We	fitted	a	Bayesian	hierarchical	beta	regression	to	estimate	
the	predicted	mean	(PM)	cover	of	each	of	six	plant	growth	forms	within	six	ordinal	
classes.	We	illustrate	our	method	using	a	case	study	(2,809	plots	containing	95,812	
observations),	compare	the	model-derived	estimates	to	other	commonly	used	trans-
formations	and	validate	our	model	using	an	independent	dataset	(2,227	plots	con-
taining	51,497	observations)	accessed	through	the	VegBank	database.
Results: Our	model	found	that	PM	estimates	differed	by	growth	form	and	that	previ-
ous	methods	overestimated	cover,	especially	of	smaller	growth	forms	such	as	forbs	
and	grasses.	Our	approach	reduced	the	cumulative	compounding	of	errors	and	was	
robust	when	validated	against	an	independent	dataset.
Conclusions: By	accounting	for	the	right-skewed	distribution	of	cover	data,	our	alter-
nate	approach	for	estimating	transformation	values	can	be	extended	to	other	ordinal	
scales.	A	more	robust	approach	to	transforming	floristic	data	and	aggregating	cover	
estimates	can	strengthen	ecological	 analyses	 to	 support	biodiversity	conservation	
and	management.
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1  | INTRODUC TION

Field-based	 assessment	 of	 the	 cover	 and	 abundance	 of	 individual	
plant	species	 is	complex.	Observers	making	on-ground	visual	esti-
mates	of	plant	cover	need	to	account	for,	and	assess,	foliage	cover	
of	 different	 densities,	 dimensions,	 shapes	 and	 structures	 across	
multiple	species,	growth	forms	and	strata.	So	too,	counting	cryptic,	
clonal,	or	copious	numbers	of	plants	can	be	complicated.	Owing	to	
this	 complexity,	 vast	numbers	of	 floristic	plots	across	many	conti-
nents	have	been	surveyed	using	ordinal	scales	(Chytrý	et	al.,	2016;	
Dengler	 et	al.,	 2011;	 Schaminée,	 Hennekens,	 Chytrý,	 &	 Rodwell,	
2009).	Whilst	Braun-Blanquet	 (1932)	originally	described	an	abun-
dance–dominance	scale,	the	practical,	on-ground	application	of	this	
scale	is	to	assess	plant	cover,	and	where	cover	is	<5%,	abundance	is	
also	assessed.	The	Braun-Blanquet	cover-abundance	(BBCA)	scale	is	
perhaps	the	most	common	ordinal	scale	used	in	plant	ecology.	For	
example,	within	the	vegetation	plot	database	sPlot	v2.1	(www.idiv.
de/splot),	more	 than	740,000	plots	 (66%)	have	 recorded	plant	oc-
currence	using	Braun-Blanquet	cover-abundance	(Bruelheide	et	al.,	
2019).	 This	 volume	 of	 data	 is	 testament	 that	 ground-based	 visual	
assessments	of	cover-abundance	using	ordinal	scales	provide	a	cost-
effective,	rapid	and	non-destructive	approach	to	gathering	the	data	
needed	to	summarise	the	composition	and	structure	of	plant	com-
munities.	These	data	 represent	a	wealth	of	 investment	 in	 field	ef-
fort	and	have	supported	major	advances	in	vegetation	classification,	
mapping	and	distribution	modelling.

The	 ever-growing	 access	 to	 global	 vegetation	 plot	 databases	
(Dengler	 et	al.,	 2011;	 Schaminée,	 Janssen,	 Hennekens,	 &	 Ozinga,	

2011)	 has	 opened	 pan-continental	 opportunities	 to	 explore	many	
uses	 of	 floristic	 data.	 Some	 ecological	 questions	may	 best	 be	 ad-
dressed	 using	 aggregate	 properties	 of	 vegetation,	 such	 as	 the	
summed	total	foliage	cover	within	a	plot	or	across	strata,	the	total	
summed	cover	or	abundance	of	exotic	or	invasive	species,	or	the	rel-
ative	cover	or	abundance	of	plants	within	different	functional,	tax-
onomic	or	growth	form	groups.	Summing	cover	to	derive	aggregate	
properties	of	floristic	data	has	a	multitude	of	uses	in	ecology	includ-
ing	assessing	presence	and	diversity	of	faunal	habitat,	as	covariates	
in	species’	distribution	models	(SDMs),	for	assessing	the	spatial	and	
temporal	 status	 of	 ecosystem	 baselines,	 predicting	 the	 effects	 of	
shifts	in	climate,	land	use	and	land	cover,	or	measuring	site-scaled	re-
sponses	to	disturbance	(McElhinny,	Gibbons,	&	Brack,	2006;	Pereira	
et	al.,	2010;	Scholes	&	Biggs,	2005).	Aggregate	properties	of	vegeta-
tion	data	are	particularly	relevant	to	exploring	ecological	questions	
concerning	the	patterns,	processes,	and	prognoses	at	a	range	of	spa-
tial	scales	in	contemporary	and	predicted	future	landscapes.

There	are	many	applications	where	ordinal	data	have	been	used	
successfully,	 such	 as	 ordination,	 classification,	 modelling	 or	 map-
ping	of	vegetation	communities	 (Lyons,	Keith,	Warton,	Somerville,	
&	Kingsford,	2016;	Podani,	2005,	2006)	and	for	modelling	the	cover	
of	single	species	(Damgaard,	2014;	Irvine,	Rodhouse,	&	Keren,	2016).	
However,	 ordinal-scaled	 cover	 observations	 of	 individual	 species	
cannot	be	summed	(Chen,	Shiyomi,	Hori,	&	Yamamura,	2008;	Guisan	
&	Harrell,	2000;	Podani,	2006)	and	need	to	be	transformed	 into	a	
continuous	scale	prior	to	aggregating.

Approaches	 to	 transforming	 Braun-Blanquet	 cover-abundance	
(BBCA)	 ordinal	 data	 have	 been	 proposed	 by	 Tüxen	 and	 Ellenberg	

K E Y W O R D S

aggregated,	beta	regression,	Braun-Blanquet,	growth	form,	midpoint,	ordinal	transformation,	
species	abundance	distribution,	sPlot,	summed	foliage	cover,	VegBank,	vegetation	cover

TA B L E  1  Class	divisions	for	the	1–6	Braun-Blanquet	ordinal	cover–abundance	(BBCA)	scale	(columns	1–3),	previous	proposals	for	
transforming	them	to	percentage	cover	(columns	4–6),	and	proposed	transforms	(independent	of	growth	form)	based	on	estimating	the	
predicted	mean	(PM)	from	a	beta	distribution	of	observed	quantitative	cover	data	and	the	lower	2.5%	and	upper	97.5%	credible	intervals

BBCA Class
Range of 
cover (%)

Qualitative abundance 
termsa 

Tüxen and Ellenberg 
(1937)b 

Braun‐Blanquet 
(1964)b 

van der Maarel 
(2007)c  PM Credible interval

1 <5 e.g.,	present,	few,	rare,	
erratic,	occasional,	
uncommon

0.1 0.1 1 0.49 0.48–0.51

2 <5 e.g.,	common,	
abundant,	many,	
several

2.5 5 2 0.74 0.72–0.76

3 5–25  15 17.5 17.5 8.95 8.84–9.07

4 26–50  37.5 37.5 35 38.77 37.97–39.57

5 51–75  62.5 62.5 70 62.43 60.69–64.13

6 76–100  87.5 87.5 140 81.24 79.10–83.26

Note.	Number	of	observations	(n)	for	BBCA1	(n	=	54,811);	BBCA2	(n	=	26,968);	BBCA3	(n	=	11,946);	BBCA4	(n	=	1,583);	BBCA5	(n	=	366)	and	BBCA6	
(n	=	138).
aColumn	3	shows	some	of	the	qualitative	descriptors	used	by	field	surveyors	to	divide	observations	between	BBCA1	and	BBCA2.	bAdapted	from	van	
der	Maarel	(1979).	cOrdinal	transform	values	(OTV)	using	1.415	weighting	factor	(van	der	Maarel,	2007).	

http://www.idiv.de/splot
http://www.idiv.de/splot
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F I G U R E  1  Workflow	showing	the	major	elements	required	to	estimate	transformation	values	for	ordinal	data	using	continuous	cover	
estimates.	Here	we	use	the	Braun-Blanquet	cover-abundance	(BBCA)	1–6	scale,	although	this	approach	could	be	extended	to	any	ordinal	
scale.	Note,	this	flow	diagram	represents	data	from	one	plot,	but	many	plots	are	needed	to	obtain	robust	estimates	of	mean	cover
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(1937)	 and	Braun-Blanquet	 (1964)	 (see	Table	3	 in	 van	der	Maarel,	
1979).	In	addition,	van	der	Maarel	(1979)	proposed	the	ordinal	trans-
form	value	(OTV)	with	different	scale	adjustments,	as	a	solution	for	
converting	ordinal	data	to	percentage	cover	values.	All	these	meth-
ods	tend	to	transform	data	to	the	approximate	midpoint	of	the	ordi-
nal	class	range	for	observations	of	cover	>5%.	For	classes	with	cover	
<5%,	the	transformation	values	appear	arbitrary	and	differ	consider-
ably	(Table	1	columns	4–6).

Transforming	 data	 to	 the	 approximate	 midpoint	 of	 the	 class	
ranges	 assumes	 that	 data	 are	 symmetrically	 distributed	 within	
each	class.	Yet,	patterns	in	plant	abundance	including	density,	bio-
mass	 (Chiarucci,	Wilson,	Anderson,	&	De	Dominicis,	1999;	Morlon	
et	al.,	 2009),	 frequency	 (Chiarucci	 et	al.,	 1999),	 percentage	 cover	
(Damgaard,	 2009),	 size,	 energy	 use,	 and	 productivity	 (Whittaker,	
1965)	 have	 all	 been	 shown	 to	 have	 a	 right-skewed	 distribution;	
skewed	species	abundance	distributions	occur	in	every	known	multi-
species	community	 (McGill	 et	al.,	2007).	Midpoint	 transformations	
are	inflexible	to	the	underlying	distribution	of	cover	data	and	assume	
that	 the	distribution	does	not	vary	across	species,	groups	of	plant	
entities	 (such	as	growth	forms,	 life	 forms,	 functional	or	 taxonomic	
groups),	vegetation	types,	or	biomes.	Due	to	the	prevalence	of	right-
skewed	 distributions,	 we	 predict	 that	 midpoint	 transformations	
overestimate	cover	and	the	compounding	of	these	errors	will	result	
in	gross	overestimation	of	summed	cover	for	aggregated	properties.

Here	we	 develop	 a	 flexible	 approach	 to	 estimate	 cover	 trans-
formations	for	ordinal-scaled	data	that	can	then	be	used	to	provide	
accurate	 estimates	 of	 summed	 vegetation	 cover.	 The	 method	 we	
describe	is	applicable	to	data	in	any	ordinal	scale,	can	be	extended	
to	 allow	 for	 differences	 in	 vegetation	 type	 or	 among	 biomes	 and	
can	 accommodate	 alternative	 aggregate	 properties	 of	 plant	 data	
such	as	growth	forms,	 life	 forms,	 functional,	or	 taxonomic	groups.	
To	demonstrate	the	potential	applicability	of	our	approach	we	build	
and	 then	 validate	 the	model	 using	 two	 separate	 and	 independent	
datasets.

Given	that	diverse	architectures	and	spatial	arrangements	of	fo-
liage	 lead	 to	 varied	 patterns	 of	 plant	 cover	 (Damgaard,	 2013),	we	
also	predict	that	different	plant	growth	forms	will	require	different	
transformation	values.	Growth	 forms	are	practical	and	observable	
entities	that	can	inform	site-based	assessment	and	monitoring,	are	
recognizable	 from	 remotely-sensed	 imagery,	 and	 are	 used	 to	 re-
port	 on	 broad-scale	 biodiversity	 assessment	 or	 baselines	 (Pereira	
et	al.,	2013)	with	which	we	can	measure	change	in	cover	(Abelleira	
Martínez	et	al.,	2016;	Pettorelli	et	al.,	2014).

2  | MATERIAL S AND METHODS

We	outline	the	key	steps	required	to	estimate	transformation	val-
ues	within	 ordinal	 classes	 for	 different	 plant	 groups.	 A	 pre-req-
uisite	for	our	method	is	cover	data	that	have	been	collected	on	a	
continuous	cover	 scale,	 ideally	 sourced	 from	 the	 same	study	 re-
gion	 and	 vegetation	 types	 as	 the	ordinal	 cover	 data.	 To	prepare	
the	input	data	for	the	model,	ordinal	values	need	to	be	mapped,	a	

posteriori,	 to	this	continuous	cover	data	as	an	 intermediary	vari-
able	(Figure	1,	Step	1).	Models,	with	a	beta	distribution,	are	then	
used	to	predict	the	mean	cover	of	each	plant	group	within	each	or-
dinal	cover	class.	This	predicted	mean	cover	is	the	transformation	
value	 (Figure	1,	Step	2).	Using	a	case	study,	we	explore	summed	
cover	estimates	 for	different	plant	groups	and	evaluate	 the	per-
formance	of	 the	ordinal	cover	 transformations.	We	compare	our	
transformation	to	existing	approaches	 in	the	context	of	summed	
cover	for	plant	groups	(Figure	1,	Step	3).	We	evaluate	the	robust-
ness	 of	 our	 predicted	mean	 transformations	 on	 an	 independent	
dataset	(Figure	1,	Step	4).

2.1 | Estimate mean cover using parameters of a 
beta distribution

We	used	a	generalised	linear	mixed	model	(GLMM)	with	a	beta	dis-
tribution	to	derive	estimates	of	the	mean	vegetation	cover,	within	
an	ordinal	class,	given	a	plant's	growth	form	and	random	variation	
owing	to	plot	identity.	Individual	species’	cover	data	are	continu-
ous	 proportional	 estimates,	 and	 once	 suitably	 transformed,	 fall	
within	the	known	range	(0	<	y	<	1).	Linear	regression	with	a	normal	
distribution	is	 inappropriate	for	the	analysis	of	proportions,	such	
as	 percent	 plant	 cover,	 because	 data	 often	 violate	 assumptions	
such	as	normality	and	homogeneity	of	errors	and	furthermore	fit-
ted	 values	 can	 fall	 outside	 of	 the	 range	 [0,1]	 (Ferrari	 &	 Cribari-
Neto,	 2004).	 A	 common	 approach	 to	 address	 these	 problems	 is	
to	apply	arcsine	or	logit	transformations	to	the	response	variable,	
prior	to	regression	(Warton	&	Hui,	2011),	although	the	results	can	
be	difficult	to	interpret	(Ferrari	&	Cribari-Neto,	2004).	Numerous	
authors	 have	 instead	 demonstrated	 that	 percent	 plant	 cover	 is	
more	appropriately	analysed	by	assuming	that	cover	approximates	
a	two-parameter	beta	distribution	(Chen,	Shiyomi,	Bonham,	et	al.,	
2008;	Cribari-Neto	&	Zeileis,	2010;	Ferrari	&	Cribari-Neto,	2004;	
Herpigny	&	Gosselin,	2015).	Beta	distributions	are	attractive	be-
cause	fitted	values	are	constrained	between	the	interval	0	<	y	<	1	
and	they	can	accommodate	asymmetrical	distributions	with	 left-	
or	right-skew.	This	flexibility	makes	beta	distributions	highly	suit-
able	for	modelling	diverse	and	often	asymmetrical	plant	cover	data	
(Cribari-Neto	&	Zeileis,	2010).

We	present	a	Bayesian	GLMM	with	a	 logit	 link	to	estimate	the	
parameters	of	 the	beta	distribution	and	allowed	 these	parameters	
to	vary	among	ordinal	classes	and	plant	growth	forms.	Estimates	of	
these	parameters	were	used	to	derive	the	predicted	mean	(PM)	for	
each	plant	growth	form	in	each	ordinal	class.

The	proportional	vegetation	cover	is	given	by	the	two-parameter	
beta	distribution:

where aij and bij	 are	 shape	 parameters	 for	 species	 j	 in	 plot	 i,	 and	
i	=	1,…n	plots.	The	shape	parameters	are	further	defined	as

Proportionij∼Beta(aij,bij)

aij=�×�ij
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where θ	allows	for	potential	overdispersion	to	be	incorporated	in	the	
model	(Zuur,	Hilbe,	&	Ieno,	2013).

πij	is	modelled	with	a	logit	link

The	model	consists	of	regression	parameters	(β)	for	each	ordinal	
class,	plant	growth	form	and	their	interactions,	plot	level	random	in-
tercepts	and	variance	(zi):

where zi	is	a	random	intercept	for	plot,	Xij	are	the	matrix	of	all	covari-
ates	 (ordinal	 classes	 and	 their	 interaction	with	plant	 growth	 form)	
and β	are	the	regression	parameters	for	each	covariate.	That	is,	for	
each	ordinal	class	1…6,	separate	β	values	were	estimated	for	each	
plant	growth	form.	For	a	simplified	example	with	two	growth	forms	
and	two	ordinal	classes	this	can	also	be	expressed	as:

where β0	=	predicted	value	of	logit	transformed	cover	if	species	j be-
longs	to	the	“reference”	growth	form	and	its	value	in	plot	 i	has	the	
“reference”	level	ordinal	cover-abundance	class.

β1	=	departure	of	the	predicted	value	for	species	j	from	β0	if	the	
observation	is	of	another	ordinal	cover-abundance	class.

β2	=	departure	of	predicted	value	from	β0	if	species	j	belongs	to	
another	growth	form.

β3	=	departure	of	predicted	value	from	β0 + β1 + β2	when	neither	
growth	form	nor	ordinal	cover-abundance	class	are	of	the	reference	
level.

In	 this	 example,	 fOrdinalClassij and fGrowthFormij are binary 
dummy	 variables	 coding	 growth	 form	 and	 cover-abundance	 scale	
categories,	 thus	Xij	 is	 a	 vector	 containing	values	 for	 these	dummy	
variables	(including	their	products)	for	species	j	in	plot	i.

We	 included	 plot	 as	 a	 random	 intercept	 because	 although	we	
assumed	each	plot	should	follow	the	characteristic	skewed	species	
abundance	curve,	we	expected	variation	among	plots	and	hence	dif-
ferences	 in	 the	average	cover	of	 any	given	ordinal	 class	 and	plant	
growth	form.

This	basic	model	structure	can	be	easily	expanded	to	accommo-
date	other	possible	sources	of	variation,	such	as	among	vegetation	
types	or	owing	to	the	richness	of	plant	species	within	a	plot.	In	this	
case	study,	we	decided	not	to	include	additional	covariates	to	mini-
mise	computational	demands	and	simplify	model	interpretation	and	
operational	complexity.

The	model	was	 fit	 via	Markov	chain	Monte	Carlo	optimization	
in	JAGS	 (http://mcmc-jags.sourceforge.net)	via	 the	R2jags	package	
(Su	&	Yajima,	2015)	within	R	3.5.0	 (R	Core	Team,	2018).	Posterior	
parameter	 estimates	 and	back-transformed	predicted	means	were	

derived	 from	 three	 chains,	 with	 a	 burn-in	 of	 3,000	 iterations,	
15,000	subsequent	iterations	per	chain	and	with	a	thinning	rate	of	
15.	Autocorrelation	and	mixing	were	visually	 inspected.	The	 inter-
action	models	were	 compared	 to	 additive	models	 using	Deviance	
Information	Criteria.	Appendix	S1	contains	R	code	for	our	models.

2.2 | Case study — New South Wales, Australia

We	illustrate	our	model	with	a	case	study	where	we	have	used	1–6	
BBCA	as	our	ordinal	scale	and	grouped	plants	into	six	growth	form	
categories.	Following	is	a	brief	description	of	how	we	prepared	the	
case	study	dataset	to	build	our	model.	We	note	that	randomly	gener-
ated	data	from	an	appropriate	beta	distribution	(for	similar	example	
see	 Damgaard,	 2014)	 could	 also	 be	 used	 to	 demonstrate	 our	 ap-
proach.	However,	we	chose	 to	use	a	 large	archival	dataset	 from	a	
range	 of	 bioclimatic	 regions	 and	 vegetation	 types	 to	 demonstrate	
that,	despite	the	underlying	variation,	our	approach	still	led	to	robust	
estimates	of	summed	cover.

2.2.1 | Preparation of observed percentage 
cover dataset

To	 demonstrate	 our	 modelled	 approach,	 we	 sourced	 case	 study	
data	from	archival	quantitative	floristic	data	that	met	three	consid-
erations:	(a)	each	species	record	included	a	visual	estimate	of	foliage	
cover	on	a	continuous	scale	from	0.1%	to	100%	and	a	count	of	abun-
dance	where	cover	was	<5%;	 (b)	 in	each	plot,	 full	 species	 invento-
ries	were	recorded	from	a	fixed	area	(400	m2);	and	(c)	sites	covered	
a	wide	geographic	distribution	 (Appendix	S2)	 and	 included	a	wide	
range	 of	 vegetation	 types	with	 different	 structural	 complexity	 in-
cluding	rainforests,	forests,	woodlands,	shrublands,	grasslands,	and	
wetlands	(Keith,	2004).	A	total	of	2,809	geo-referenced	plots	con-
taining	95,812	occurrence	records	with	visual	estimates	of	cover	for	
3,967	species	met	these	criteria	and	were	exported	from	the	NSW	
BioNet	Atlas	database	(www.bionet.nsw.gov.au).

2.2.2 | Analysis of the empirical cover distribution

To	confirm	our	assumption	of	right-skewed	distribution	of	cover	data	
we	plotted	our	data	and	used	the	‘skewness’	function	in	the	e1071	
package	 (Meyer,	Dimitriadou,	Hornik,	Weingessel,	&	Leisch,	2017)	
within	R	3.5.0	(R	Core	Team,	2018)	to	calculate	the	adjusted	Fisher–
Pearson	skewness	coefficient	(G1;	Joanes	&	Gill,	1998)	for	the	whole	
distribution,	and	for	distributions	within	each	BBCA	class.	Skewness	
is	a	diagnostic	tool	usually	used	to	test	the	symmetry	of	the	data	dis-
tribution.	Here,	we	interpret	skewness	coefficients	as	being	strongly	
and	positively	skewed	when	the	G1	coefficient	is	>0.5	(Bulmer,	1979;	
Doane	&	Seward,	2011).

2.2.3 | Preparation of plant group entities

All	taxa	were	allocated	to	one	of	six	growth	form	categories:	 tree,	
shrub,	grass	and	grass-like	(hereafter	referred	to	as	grass),	forb,	fern,	

bij=�× (1−�ij)

logit(�ij)=�ij

�ij=Xij×�+zi

zi∼N(0,�2
plot

)

�ij=�0+�1× fOrdinalClassij+�2× fGrowthFormij
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http://www.bionet.nsw.gov.au


366  |    
Applied Vegetation Science

McNELLIE Et aL.

and	 other	 remaining	 growth	 forms	 (Oliver	 et	al.,	 2019).	 For	 each	
growth	form	in	each	plot,	total	cover	was	estimated	by	summing	the	
observed	quantitative	estimates	of	cover	and	the	estimates	of	cover	
derived	from	the	transformations	of	the	ordinal	data.

2.2.4 | Allocating an intermediary variable

We	created	an	intermediary	variable	by	matching	each	quantitative	
estimate	of	cover	for	every	floristic	record	(n	=	95,812)	to	its	com-
mensurate	ordinal	value.	Any	ordinal	scale	can	be	used	to	partition	
data,	but	here	we	demonstrate	our	approach	by	allocating	data	to	1–6	
BBCA	 (Table	1).	BBCA1	and	BBCA2	were	assigned	based	on	 their	
observed	 foliage	 cover	 (<5%)	 and	 abundance;	 where	 BBCA1	≤10	
and	BBCA2	>10	 individuals.	The	pragmatic	 choice	of	 ten	 individu-
als	provides	an	explicit	quantitative	abundance	threshold	between	
classes	BBCA1	and	BBCA2.	BBCA3–BBCA6	were	assigned	based	on	
observed	foliage	cover	 (≥5%;	Mueller-Dombois	&	Ellenberg,	1974).	
The	ordinal	dataset	created	by	this	process	approximates	the	form	
of	many	data	held	within	vegetation	databases.

In	our	case	study	dataset,	observations	of	5%	cover	were	more	
prevalent	than	expected	from	a	typical	theoretical	beta	distribution	
(Figure	2).	This	bias	was	detected	in	preliminary	model	convergence	
diagnostics	and	model	fit	suggested	that,	for	our	case	study,	it	would	
be	preferable	to	split	the	data	and	separately	model	(a)	BBCA1	and	
BBCA2	 bounded	 between	 0%	 and	 <5%	 cover;	 and	 (b)	 BBCA3	 to	
BBCA6	bounded	between	5%	and	100%	cover	inclusive.	To	ensure	
the	response	variable	was	bounded	by	0	and	1,	percent	cover	was	
transformed	using	(y	−	a)/(b	−	a)	where	in	(a)	a = 0 and b	=	5,	and	in	(b)	
a	=	5	and	b	=	100	(Cribari-Neto	&	Zeileis,	2010).	In	the	second	model,	
the	 response	 variable	was	 further	 transformed	using	 (y *	(n	−	1))/n 
where n	=	sample	size	(Cribari-Neto	&	Zeileis,	2010).	This	split-model	
approach	may	 not	 be	 necessary	 for	 all	 datasets,	 especially	where	
data	are	derived	from	less	subjective	cover	methods	(e.g.,	point	in-
tercept	or	pin	 frame)	but	 is	 included	here	 to	 support	 the	handling	
of	 datasets	with	 similar	 patterns	 in	distribution	 (see	Appendix	 S3,	
Figures	1‒3	for	other	datasets	that	appear	to	show	a	similar	pattern).

2.3 | Evaluation of past and proposed approaches to 
transforming ordinal data

We	transformed	each	of	the	1–6	BBCA	records	using	three	different	ap-
proaches	outlined	in	Table	1.	We	then	evaluated	these	past	approaches	
proposed	by	Tüxen	and	Ellenberg	(1937),	Braun-Blanquet	 (1964)	and	
van	der	Maarel	(2007)	to	the	PM	estimated	from	a	beta	distribution.

For	each	plot,	growth	form	cover	and	total	cover	were	calculated	
by	summing	the	observed	continuous	cover	estimates	(%)	and	the	es-
timates	of	cover	derived	from	the	various	transformations.	Linear	re-
gression	models	with	zero	intercept	were	fitted	to	the	sum	of	observed	
continuous	cover	data	(y)	and	sum	of	transformed	cover	data	(x)	 in	R	
3.5.0	(R	Core	Team,	2018).	We	can	justify	using	a	regression	through	
the	origin	because	we	are	most	interested	in	comparing	the	slope	of	the	
regression	line	to	the	1:1	line	of	best	fit	to	determine	if	our	PM	models	
were	over-	or	under-predicting	summed	cover.	We	compared	the	root	

mean	squared	deviation	(RMSD;	see	Equation.	1)	as	an	estimate	of	the	
deviation	of	the	transformed	cover	values	from	the	1:1	line.

where,	ŷi	are	the	predicted	cover	values,	yi	are	the	observed	cover	
values,	and	n	is	the	number	of	observations.

The	RMSD	estimate	 represents	 the	mean	deviation	of	 trans-
formed	cover	 values	with	 respect	 to	 the	observed	 cover	 values.	
We	 also	 compared	 estimates	 of	 the	 slope	with	 lower	 and	upper	
95%	 confidence	 intervals	 expecting	 that	 robust	 transformations	
would	result	in	a	slope	=	1	and	transformations	that	overestimate	
summed	cover	will	have	a	slope	<1.	We	note	that	RMSD	is	most	
useful	for	evaluating	models	as	it	represents	the	absolute	measure	
of	fit	to	the	1:1	line	and	reports	the	prediction	error	in	the	same	
units	 as	 the	 data	 (i.e.,	 summed	 cover).	 Adjusted	R2	 is	 somewhat	
less	 useful,	 as	 it	 gives	 a	 relative	measure	 of	 the	 goodness-of-fit	
that	is	explained	by	the	fitted	line	on	a	scale	between	0	and	1	and	
adds	 a	 penalty	when	 independent	 variables	 are	 included	 but	 do	
not	improve	the	fit	of	the	model.

We	validated	the	PM	transformation	values	on	an	independent	
dataset	(2,227	sites	with	51,497	observations)	from	West	Virginia	
Natural	 Heritage	 Program	 (Vanderhorst,	 Byers,	 &	 Streets,	 2012)	
accessed	from	VegBank	(Peet,	Lee,	Jennings,	&	Faber-Langendoen,	
2013;	accessed	28th	August	2018).	Whilst	VegBank	has	a	primary	
role	for	enabling	the	vegetation	classification,	large	volumes	of	in-
dividual	floristic	observations	are	available	for	ecoinformatic	syn-
thesis	and	analysis.	Owing	to	the	ease	of	access	and	completeness	
of	datasets	stored	in	VegBank	we	were	able	to	validate	our	model	
estimates	on	a	geographically	distinct	dataset	containing	cover	es-
timates	of	plants	 from	entirely	different	vegetation	communities.	
Details	outlining	the	data	preparation	are	included	in	Appendix	S4.

3  | RESULTS

3.1 | The empirical cover distribution

The	 source	 continuous	 cover	 data	 were	 right-skewed	 and	 domi-
nated	by	low	cover	—	85%	of	observations	were	between	0.1%	and	
4%,	and	60%	of	these	observations	were	of	cover	<1%	(Figure	2).	
Data	 were	 heavily	 right-skewed	 for	 the	 whole	 distribution	
(G1	=	5.62)	 and	 right-skewed	within	 five	 of	 the	 six	 BBCA	 classes	
(BBCA1	 G1	=	2.64,	 BBCA2	 G1	=	1.57,	 BBCA3	 G1	=	1.04,	 BBCA4	
G1	=	0.61	and	BBCA6	G1	=	0.95).	Only	BBCA5	had	a	skewness	co-
efficient	<0.5	(G1	=	0.36).	We	also	note	potential	observer	bias	for	
5%	cover.	These	patterns	are	similar	to	other	visually	estimated	flo-
ristic	cover	data	from	other	archived	datasets	(see	Appendix	S3).

3.2 | Estimate mean cover using parameters of a 
beta distribution

Table	1	 (columns	 7	 and	 8)	 shows	 the	 predicted	mean	 transforma-
tions	 and	 their	 lower	 2.5%	 and	 upper	 97.5%	 credible	 interval	 for	
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each	ordinal	class,	independent	of	growth	forms.	The	most	marked	
differences	are	noted	 in	BBCA2	and	BBCA3,	where	 the	predicted	
means	are	well	below	the	previous	approaches.	The	predicted	mean	
for	 class	BBCA6	 is	 lower	 than	 the	midpoint	but	was	derived	 from	
relatively	few	observations	(n	=	138).

3.3 | Evaluation of past and proposed transform 
values for summed growth form cover

Estimates	of	the	PM	suggest	that	accounting	for	growth	form	within	
each	ordinal	class	results	 in	more	robust	summed	cover	estimates.	
Credible	intervals	suggest	that	in	classes	BBCA1–BBCA3,	trees	typi-
cally	have	higher	mean	cover	and	warrant	higher	transformation	val-
ues	(Table	2).	Credible	intervals	also	suggest	the	need	for	separate	
transformation	values	for	shrubs	in	BBCA1	and	BBCA2	and	a	lower	
value	for	forbs	in	BBCA2	and	BBCA3	(Table	2).

When	these	growth	 form	specific	 transformations	were	evalu-
ated	using	the	summed	cover	estimates,	RMSD	did	not	exceed	9.50	
(trees)	and	slope	ranged	from	0.91	(forbs)	to	1.05	(others;	Figure	3	
and	 Appendix	 S5).	 In	 contrast,	 estimates	 based	 on	 past	 transfor-
mations	 had	 consistently	 higher	 RMSD	 and	 slope	 estimates	 were	
always	 <0.85,	 suggesting	 considerable	 overestimation	 of	 summed	
growth	form	cover	(Figure	3	and	Appendix	S5).

3.4 | Evaluation of past and proposed transform 
values for total summed cover

Evaluation	of	summed	total	cover	 revealed	 that	when	transforma-
tions	are	 tailored	to	growth	forms,	 the	PM	performed	better	 than	
existing	 approaches	 (Figure	3	 and	Appendix	 S5).	 The	 PM	 reduced	
the	 overestimation	 of	 total	 summed	 cover	 by	 up	 to	 four	 times.	
The	evaluation	of	model	 fit	 for	summed	total	cover	using	past	ap-
proaches	generally	revealed	a	poorer	model	fit:	RMSD	ranged	from	
41.47	to	79.37	(cf.	PM	=	18.21)	and	slope	ranged	from	0.57	to	0.74	
(cf.	PM	=	1.01;	Figure	3	and	Appendix	S5).

Evaluation	of	the	growth	form	specific	PM	transformation	on	an	
entirely	 independent	 validation	 dataset	 from	West	 Virginia	 Natural	
Heritage	 Program	 (Vanderhorst	 et	al.,	 2012)	 show	 that	 transforma-
tions	were	robust,	although	tending	to	underestimate	summed	cover	
of	 most	 growth	 forms	 (Appendix	 S7).	 RMSD	 ranged	 between	 1.59	
(others)	and	14.97	(trees)	and	slope	ranged	between	1	(others)	and	1.12	
(forbs).	When	compared	to	the	transformation	proposed	by	Tüxen	and	
Ellenberg	(1937),	the	PM	transformation	values	were	marginally	better	
in	that	they	did	not	overestimate	summed	cover	of	all	growth	forms	
(Appendix	S8,	Figures	2a–f);	RMSD	was	consistently	higher	than	PM	
transformations	 for	 all	 growth	 forms;	 slopes	were	 generally	 further	
from	1,	ranging	between	0.76	(forbs)	and	0.95	(shrubs;	Appendix	S7).

F I G U R E  2  Distribution	of	visual	estimates	of	cover	for	95,812	observations,	and	their	corresponding	Braun-Blanquet	cover-abundance	
(BBCA)	class	for	our	case	study.	Dashed	vertical	lines	show	cut	points	between	each	BBCA	class.	Number	of	observations	(n)	for	BBCA1	
(n	=	54,811);	BBCA2	(n	=	26,968);	BBCA3	(n	=	11,946);	BBCA4	(n	=	1,583);	BBCA5	(n	=	366)	and	BBCA6	(n	=	138).	Numbers	between	
the	dashed	lines	show	the	percentage	of	each	class	in	the	dataset.	BBCA1	and	BBCA2	(both	represent	<5%	cover)	are	shown	as	stacked	
histograms;	BBCA1	(≤10	individuals)	sits	above	BBCA2	(>10	individuals).	See	Appendix	S3	for	comparison	with	other	archival	datasets
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Evaluation	 of	 total	 cover	 using	 the	 PM	 transformation	 values	
showed	RMSD	was	less	than	that	estimated	if	the	transformation	was	
undertaken	using	estimates	of	Tüxen	and	Ellenberg	(20.54	vs	27.01;	
Appendix	S7)	and	PM	transformation	values	showed	a	slight	underes-
timation	(slope	=	1.1)	when	tested	on	the	independent	dataset.

Scatter	plots	showing	the	relationships	between	visual	estimates	
of	summed	cover	for	all	six	growth	form	groups	using	the	PM	model	
and	for	Tüxen	and	Ellenberg	(1937)	transformations	are	provided	in	
Appendix	S8,	Figures	1a–f	and	2a–f.

4  | DISCUSSION

Transforming	ordinal	data	to	a	quantitative	form	is	common	prac-
tice	 in	plant	ecology	and	extends	across	disciplines	 including	res-
toration	(Fill,	Forsyth,	Kritzinger-Klopper,	Le	Maitre,	&	van	Wilgen,	
2017)	 and	 classification	 (Cawsey,	 Austin,	 &	 Baker,	 2002;	 Faber-
Langendoen,	Aaseng,	Hop,	Lew-Smith,	&	Drake,	2007;	Wiser	&	De	
Cáceres,	 2013),	 and	 for	 assessing	 disturbance	 (Knapp	 &	 Ritchie,	

2016;	Scott	&	Kirkpatrick,	2008).	Similarly,	universal	skewed	pat-
terns	in	the	species	abundance	distribution	are	a	long	standing	and	
well-recognised	 pattern	 in	 ecology	 (MacArthur,	 1960).	 The	 data	
we	 present	 here	 are	 no	 exception.	 Yet	 the	 integration	 of	 these	
two	 concepts,	 underpinned	 by	 a	 robust	modelling	 approach,	 has	
received	 little	attention,	especially	 in	 the	context	of	 synthesizing	
information	on	aggregate	properties	of	vegetation	data.	We	dem-
onstrate,	using	two	large	quantitative	independent	datasets,	that,	
when	the	underlying	right-skewed	cover	distribution	is	accounted	
for,	a	more	robust	set	of	transformations	is	generated.	Where	the	
aggregate	properties	of	floristic	data	are	of	 interest,	our	method,	
unlike	previous	approaches	to	transformation	of	ordinal	data,	does	
not	overinflate	cover.

Where	possible,	we	advocate	that	others	replicate	this	approach	
and	 source	 continuous	 cover	 data,	 so	 that	 the	means	within	 each	
ordinal	 class	 can	 be	 estimated	 accounting	 for	 the	 underlying	 dis-
tribution.	 Ideally,	 the	 continuous	 cover	 datasets	 will	 encompass	
the	same	temporal	and	spatial	variation	as	that	of	the	ordinal	data.	
Notwithstanding	these	recommendations	for	best	practice,	we	have	

TA B L E  2  Proposed	transformation	values,	tailored	to	different	growth	forms,	based	on	estimates	of	the	predicted	mean	(PM)	from	a	beta	
distribution	of	observed	data

 

Growth Form

Tree Shrub Grass Forb Fern Other

BBCA1

PM 0.78 0.52 0.45 0.42 0.43 0.45

CI [0.76–0.80] [0.51–0.53] [0.44–0.46] [0.41–0.44] [0.41–0.45] [0.44–0.46]

n 6465 13366 8731 16981 1863 7405

BBCA2

PM 1.78 0.96 0.82 0.58 0.75 0.74

CI [1.7–1.86] [0.93–0.99] [0.8–0.84] [0.57–0.6] [0.72–0.78] [0.71–0.77]

n 441 2821 8488 12065 1324 1829

BBCA3

PM 9.53 8.60 8.86 8.02 8.80 8.48

CI [9.38–9.7] [8.42–8.76] [8.71–9.01] [7.81–8.24] [8.46–9.19] [8.23–8.74

n 4347 2070 3500 893 412 724

BBCA4

PM 38.06 39.18 39.32 37.86 39.30 38.72

CI [36.74–39.38] [36.98–41.26] [38.05–40.59] [34.01–41.81] [34.92–43.72] [34.76–42.64]

n 582 217 599 68 52 65

BBCA5

PM 61.71 63.15 62.67 62.80 62.01 62.11

CI [58.15–65.16] [58.23–67.78] [60.24–65.08] [49.59–75.8] [54.16–70.05] [54.66–69.15]

n 89 48 184 6 18 21

BBCA6

PM 80.80 83.9 80.81 78.87 77.59 80.55

CI [76.04–85.31] [78.99–88.41] [77.82–83.65] [64.83–90.78] [55.35–93.93] [70.09–89.57]

n 29 23 73 4 2 7

Note.	Lower	2.5%	and	upper	97.5%	credible	intervals	(CI)	are	shown	in	square	brackets;	n	=	number	of	individual	observations	for	each	Braun-
Blanquet	cover–abundance	(BBCA)	class.
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demonstrated	our	modelling	approach	can	produce	robust	estimates	
of	 summed	 cover	 using	 floristic	 data	 from	 geographically	 distinct	
datasets	 containing	 observations	 of	 entirely	 unrelated	 vegetation	
communities.	We	expect	the	estimates	of	summed	cover	would	fur-
ther	improve	had	we	used	representative	data	from	the	same	region	
and	vegetation	type	to	model	specific	estimates	of	the	parameters	
for	the	beta	distribution.	Undoubtedly	there	will	be	circumstances	
where	appropriate	continuous	data	will	not	be	available	and	the	pa-
rameters	of	the	beta	distribution	cannot	be	estimated	for	a	specific	
study	 or	 region.	 In	 these	 situations,	 adopting	 the	PM	 transforma-
tions	provided	in	Tables	1	and	2	would	be	preferable	to	application	
of	ordinal	class	midpoints.	When	plant	cover	data	are	right-skewed,	
midpoint	transformations	will	bias	and	overestimate	total	cover.

Hierarchical	models	are	useful	for	handling	complex	interactions	
in	observational	data.	Despite	 the	 size	of	 the	 initial	dataset,	 some	
plant	groups	were	poorly	represented	in	the	higher	cover	classes.	By	
appropriately	specifying	the	hierarchical	model,	estimates	for	these	
combinations	 could	 still	 be	obtained,	because	 they	draw	 from	 the	
full	model	structure.

We	have	 identified	 that	 different	 growth	 forms	have	different	
cover	distributions.	Our	 empirical	 evidence	 strongly	 suggests	 that	
in	plots	where	there	are	many	small	entities	from	the	same	growth	
form,	 such	 as	 for	 forbs	 and	 grasses,	 the	 cumulative	 cover	 of	 that	

growth	 form	 (when	 derived	 from	 transformations	 of	 ordinal	 data)	
may	amplify	and	inaccurately	describe	the	structural	complexity	of	
vegetation	 communities.	 Identifying	 and	 accounting	 for	 these	dis-
tributions	in	other	grouped	entities	has	the	potential	to	further	im-
prove	summed	cover	estimates.

We	also	note	potential	observer	bias	for	cover	estimates	of	5%.	
We	acknowledge	that	visual	estimates	of	cover	and	counts	are	sub-
ject	to	inter-	and	intra-operator	error	and	bias	(see	Morrison,	2016	
for	 review)	 and	 this	 may	 account	 for	 the	 data	 digressions	 from	 a	
smooth-shaped	abundance	curve.	This	is	no	doubt	an	artefact	of	ob-
server	preference	for	regular	intervals	when	estimating	cover,	rather	
than	a	true	representation	of	plant	cover.	In	our	case	study	analyses,	
the	high	frequency	of	estimates	of	5%	cover	required	a	split-model	
approach	where	 cover	data	were	 treated	 in	 two	 separate	models.	
Given	this	right-skewed	distribution	and	potential	bias	among	dispa-
rate	datasets	 (Appendix	S3),	we	propose	the	split-model	approach	
may	serve	wider	applications.	Simulated	beta	distribution	data	may	
not	 be	 entirely	 appropriate	 when	 using	 visually	 estimated	 cover	
data,	 but	may	 be	 useful	 where	 other	 less	 subjective	methods	 for	
estimating	cover	are	used	(such	as	point-intercept	methods).	Given	
that	visual	estimates	of	cover	abundance	are	the	assessment	proto-
col	for	many	floristic	surveys,	our	approach	offers	a	way	these	data	
can	still	be	transformed	and	used	with	greater	confidence,	despite	

F I G U R E  3  Results	of	linear	regression	with	zero	intercept	to	compare	root	mean	squared	deviation	(RMSD)	and	slope	for	each	growth	form	
and	for	total	summed	cover	under	previous	transformations	compared	to	the	predicted	mean	transformation.	Lower	and	upper	95%	confidence	
intervals	are	shown	for	slope.	Vertical	dashed	lines	represent	the	perfect	regression	fit	where	RMDS	=	0	and	slope	=	1	(data	table	supplied	in	
Appendix	S5).	Number	of	observations	(n)	for	trees	(n	=	11,953);	shrubs	(n	=	18,545);	grasses	(n	=	21,575);	forbs	(n	=	30,017);	ferns	(n	=	3671);	
other	(n	=	10,051)	and	total	(n	=	2,809).	See	Appendix	S6	for	plots	of	all	growth	forms	and	three	previous	approaches	to	transformation	proposed	
by	Tüxen	and	Ellenberg	(1937),	Braun-Blanquet	(1964),	and	van	der	Maarel	(2007)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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the	 underlying	 variability	 and	 bias.	 The	 approach	we	 outline	 here	
can	rapidly	generate	robust	and	defensible	transformation	estimates	
that	are	less	prone	to	inflating	summed	cover	estimates.

We	envisage	 that	detailed	growth	 form	cover	 information	 that	
describes	 the	 structural	 complexity	 of	 vegetation	 may	 be	 useful	
when	combined	with	emerging	 remote-sensing	 technologies,	 such	
as	3-dimensional	 LiDAR.	Furthermore,	where	 large-scale	biodiver-
sity	assessments,	that	rely	on	terrestrial	vegetation	as	indicators	of	
change,	seek	to	 integrate	site	observations	to	validate	or	 train	 im-
agery,	vegetation	cover	data	collected	in	an	ordinal	scale	will	be	of	
little	benefit.

Our	approach	to	transforming	ordinal	estimates	of	cover	using	
a	beta	distribution	can	extend	the	application	of	these	data	beyond	
the	 realm	of	 vegetation	 classification	 and	 can	 salvage	 information	
from	many	millions	of	floristic	records.	We	expect	most	large	repos-
itories	of	floristic	data	will	contain	cover	estimates	with	multifarious	
and	nuanced	ordinal	scales.	Here	we	provide	a	method	that	can	be	
applied	to	floristic	data	 in	different	ordinal	scales	for	transforming	
and	 integrating	datasets	with	much	greater	confidence.	Moreover,	
we	have	demonstrated	an	application	of	accessing	some	of	the	data	
amassed	in	data	repositories.	By	sourcing	open-access	ecoinformatic	
data	from	VegBank,	as	well	as	using	the	recent	work	to	allocate	over	
67,000	 plant	 species	 to	 a	 primary	 growth	 form	 (Engemann	 et	al.,	
2016),	we	were	able	 to	validate	our	model	using	entirely	 indepen-
dent,	yet	comparable	cover	data.

We	foresee	our	approach	to	transforming	ordinal	data	as	sup-
porting	the	synthesis	of	multiple	datasets	containing	 legacy	data	
collected	 in	 different	 ordinal	 scales,	 especially	where	 the	 aggre-
gate	properties	of	vegetation	cover	for	different	plant	groups	are	
of	 interest.	 These	 transformations	 and	 the	 resultant	 aggregated	
properties	 of	 cover	 data	 can	 inform	 a	 multitude	 of	 applications	
in	 ecology	 from	 site-scaled,	 to	 landscape-scaled	 and	 for	 global	
applications.
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SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.

Appendix S1.	Sample	R	code	to	build	Bayesian	hierarchical	mixed-ef-
fects	model	to	estimate	predicted	means	(PM)	for	each	growth	form	
for	BBCA3–BBCA6
Appendix S2.	 Geographic	 spread	 of	 2,809	 plots	 used	 to	 compare	
visual	quantitative	cover	estimates	of	95,812	floristic	records	with	a	
transformed	Braun-Blanquet	cover-abundance	(BBCA)	scale
Appendix S3.	Figure	1:	Floristic	data	sourced	from	Waterton	Lakes	
National	 Park,	 British	 Columbia,	 Canada.	 Figure	2:	 Floristic	 data	
sourced	 from	 Hawai‘i	 Volcanoes	 National	 Park,	 Hawai‘i	 Island.	
Figure	3:	Floristic	data	sourced	from	Fire	Island	National	Park,	Long	
Island,	New	York.	Figure	4:	Floristic	data	sourced	from	Great	Britain	
Countryside	Survey	(1990),	England,	Scotland	and	Wales
Appendix S4.	 Preparation	 of	 the	 validation	 dataset	 and	 results	 of	
linear	regression	and	RMSD	analyses
Appendix S5.	 Results	 from	 linear	 regressions	with	 zero	 intercepts	
using	case	study	dataset	of	observed	and	predicted	summed	cover	
for	 six	 plant	 growth	 forms	 and	 total	 summed	 cover	 transformed	
using	either	the	predicted	mean	or	historical	transformations

Appendix S6.	Figure	1:	Scatterplots	of	case	study	dataset	showing	
the	relationships	between	summed	cover	for	the	visual	estimates	
of	cover	(0.1%–100%)	compared	to	the	sum	of	cover	when	trans-
formed	 using	 predicted	 mean	 (PM)	 for	 different	 growth	 forms. 
Figure	2:	Scatterplots	of	case	study	dataset	showing	the	relation-
ships	 between	 summed	 cover	 for	 the	 visual	 estimates	 of	 cover	
(0.1%–100%)	 compared	 to	 the	 sum	 of	 cover	 when	 transformed	
using	Tüxen	and	Ellenberg	(1937)	(T&E)	for	different	growth	forms. 
Figure	3:	Scatterplots	of	case	study	dataset	showing	the	relation-
ships	 between	 summed	 cover	 for	 the	 visual	 estimates	 of	 cover	
(0.1%–100%)	 compared	 to	 the	 sum	 of	 cover	 when	 transformed	
using	 Braun-Blanquet	 (1964)	 (BB)	 for	 different	 growth	 forms. 
Figure	4:	Scatterplots	of	case	study	dataset	showing	the	relation-
ships	 between	 summed	 cover	 for	 the	 visual	 estimates	 of	 cover	
(0.1%–100%)	 compared	 to	 the	 sum	 of	 cover	 when	 transformed	
using	van	der	Maarel	(2007)	(vdM)	for	different	growth	forms
Appendix S7.	 Results	 from	 linear	 regressions	with	 zero	 intercepts	
using	validation	dataset	of	observed	and	predicted	summed	cover	
for	 six	 plant	 growth	 forms	 and	 total	 summed	 cover	 transformed	
using	 either	 the	 predicted	 mean	 or	 Tüxen	 &	 Ellenberg	 (1937)	
transformations
Appendix S8.	Figure	1:	Scatterplots	of	validation	data	showing	the	
relationships	 between	 summed	 cover	 for	 the	 visual	 estimates	 of	
cover	 (0.01%–100%)	 compared	 to	 the	 sum	 of	 cover	 when	 trans-
formed	by	predicted	mean	(PM)	for	different	growth	forms.	Figure	2:	
Scatterplots	of	 validation	data	 showing	 the	 relationships	between	
summed	cover	for	the	visual	estimates	of	cover	(0.01%–100%)	com-
pared	to	the	sum	of	cover	when	transformed	by	Tüxen	and	Ellenberg	
(1937)	(T&E)	for	different	growth	forms
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