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Decoupling cross-quadrature correlations using passive operations
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Quadrature correlations between subsystems of a Gaussian quantum state are fully characterized by its
covariance matrix. For example, the covariance matrix determines the amount of entanglement or decoherence
of the state. Here, we establish when it is possible to remove correlations between conjugate quadratures using
only passive operations. Such correlations are usually undesired and arise due to experimental cross-quadrature
contamination. Using the Autonne-Takagi factorization, we present necessary and sufficient conditions to
determine when such removal is possible. Our proof is constructive, and whenever it is possible we obtain
an explicit expression for the required passive operation.
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I. INTRODUCTION

The decomposition of Gaussian quantum systems has
proven to be a fruitful subject of research. For instance, the
textbook examples of Williamson (see [1,2]) and Braunstein
[3] tell us that any Gaussian state can be decomposed through
beamsplitters, phase shifters, and single-mode squeezers into
uncorrelated thermal states. This is useful for designing quan-
tum gates [4]. More generally, instead of demanding the com-
plete diagonalization of the state, it can also be transformed
into another that has specific kinds of correlations. Early
examples of this are the Simon and Duan et al. standard forms
(see [5,6], respectively): using local squeezing and phase
shifts to bring an entangled state into some standard form of
correlations. This turned out to be important in advancing our
understanding of Gaussian entanglement.

All the transformations above require the use of active
operations and bring the state to a form that does not have any
cross-quadrature correlations. Active operations are those that
require an external source of energy, for example, squeezing,
while passive operations are those that do not [7]. Active oper-
ations are usually more difficult to implement in a real device
compared to passive operations which can be implemented
almost free of errors using beamsplitters and phase shifts [8].
When restricted to only passive operations, a generic Gaus-
sian state cannot be diagonalized; it can only be brought to
standard forms that remain correlated. There exist conditions
with which one can check whether a Gaussian state can be
diagonalized by a passive operation [2,9]. These conditions
are always satisfied when the Gaussian states are pure [3,9].
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Here, instead of requiring the state to be fully diagonalized,
we report a necessary and sufficient condition under which the
correlations between conjugate quadrature variables can be
entirely removed using passive operations only. This is stated
in the following theorem.

Theorem 1. Let a = [a1, . . . , an, a†
1, . . . , a†

n] be a vector
collecting the annihilation and creation operators of n modes.
Let

S jk = 1

2
Tr[ρ(a ja

†
k + a†

k a j )] =
[

X Y
Y∗ X∗

]
jk

be the complex covariances of an n-mode Gaussian state ρ

having zero mean Tr[ρ a] = 0. Then S can be brought into a
cross-quadrature decorrelated form using passive operations
if and only if there exist an Autonne-Takagi factorization
of Y: Y = Z†Y0Z∗ and a diagonal matrix R with entries in
{1, i} such that R†ZXZ†R is real. Furthermore, the required
passive operation is given by Z up to swapping of quadratures
determined by R.

The crux of the theorem is the diagonalization of Y, which
is given to us by the Autonne-Takagi factorization [10,11].

Theorem 2: Autonne-Takagi factorization. Let Y be a com-
plex symmetric matrix. Then there exists a unitary matrix
Z such that Y = Z†Y0Z∗, with Y0 real, non-negative, and
diagonal.

The diagonal entries of Y0 are the singular values of Y in
any desired order. The uniqueness property of Z is stated in
the Appendix. Essentially, the physical situation of interest is
a correlated state with unwanted correlations between some
of the conjugate quadratures and we are concerned with the
conditions under which these unwanted correlations can be
removed using only passive operations. We mean “conjugate
quadratures” in a more general sense—any quadrature pairs,
q j and pk with j not necessarily equal to k and where
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[q j, pk] = iδ jk . In other words, theorem 1 identifies those
states that are composed of q correlations and p correlations
plus passive operations. As a corollary, it also identifies states
which cannot be constructed by passive operations on initially
uncorrelated, squeezed or otherwise, single modes. The proof
of the theorem is constructive in that the required passive
operation is obtained whenever it exists. It turns out to be,
up to local rotations, just Z given by the Autonne-Takagi’s
factorization, which is very convenient.

We note that Autonne-Takagi’s factorization makes its ap-
pearance in multimode quantum optics [12,13] that resembles
the approach we have taken here, but there is one important
difference—we consider the factorization of quantum states
rather than the decomposition of unitaries for determining
supermodes as is the case in multimodal theories.

II. PROOF OF THEOREM 1

In what follows, we prove Theorem 1. We work with the
complex covariance matrix which can be obtained from the
quadrature covariance matrix by the change of variables [14]

a j = q j + i p j√
2

and a†
j = q j − i p j√

2
. (1)

The reason for working in such a basis is twofold. First, the
conjugate quadratures have vanishing correlations if and only
if both matrices X and Y are real. Second, passive operations
take the simple form [

E 0
0 E∗

]
with E unitary due to the symplectic conditions. A direct
calculation shows that the covariance matrix transforms as E :
(X, Y) �→ (EXE†, EYEᵀ) under passive operations, whence
it follows that the problem of decoupling conjugate variables
is reduced to finding a unitary matrix E such that EXE† and
EYEᵀ are simultaneously real. We can now proceed to prove
the main result.

Proof: Forward direction. Suppose S is the covariance
matrix of a state ρ the cross-quadrature correlations of which
can be removed by a passive operation Q. In other words,
after applying Q, the cross-quadrature correlations {q j, pk} =
0, where to simplify notations we use {qj, pk} to mean
1
2 Tr[ρ(q j pk + pkq j )]. In the complex representation, denoting
the transformed matrix as X1 = QXQ† and Y2 = QYQᵀ, the
transformed covariance matrix has entries

[X1] jk = {a j, a†
k} = {q j, qk}

2
+ {p j, pk}

2
,

[Y2] jk = {a j, ak} = {q j, qk}
2

− {p j, pk}
2

,

which are real. Since Y2 is a real symmetric matrix, it has a
spectral decomposition Y2 = Rᵀ

1 Y1R1 [15], where R1 is a real
orthogonal matrix and Y1 is a real (but not necessarily posi-
tive) diagonal matrix the entries of which are the eigenvalues
of Y2. To obtain the Autonne-Takagi decomposition, consider
a passive unitary (but not necessarily real) transformation R :
(a j, a†

j ) �→ (ia j,−ia†
j ) on Y1 for every j ∈ J where J is the

set containing all indices j for which [Y1] j j is negative. This

corresponds to a rotation of the quadratures R : (q j, p j ) �→
(p j,−q j ) for j ∈ J . In matrix form, R is diagonal with entries

[R] jk =
⎧⎨
⎩

1 for j = k /∈ J
i for j = k ∈ J
0 for j �= k

.

Applying this to Y1 brings it to a non-negative diagonal matrix
Y0 = RY1Rᵀ since

R : {a j, a j} �→
{−{a j, a j} for {a j, a j} < 0

{a j, a j} for {a j, a j} � 0
.

Putting everything together, we arrive at the Autonne-Takagi
decomposition of Y as

Y = Q†Rᵀ
1 R†︸ ︷︷ ︸

Z†

Y0 R∗R1Q∗︸ ︷︷ ︸
Z∗

.

Then X transforms as

ZXZ† = RR∗
1QXQ†Rᵀ

1 R†

= R R∗
1X1Rᵀ

1︸ ︷︷ ︸
X0

R† ,

where X0 is a real (symmetric) matrix since both X1 and R1

are real. This implies R†ZXZ†R is real, which completes the
proof. �

Proof: Reverse direction. Let Z be the unitary matrix in
the Autonne-Takagi factorization of Y: Y = Z†Y0Z∗ and R be
a diagonal matrix with entries in {1, i} such that R†ZXZ†R
is real. The passive transformation R†Z results in R†Z :
(X, Y) �→ (R†ZXZ†R, R†ZYZᵀR∗). The first term is real by
assumption. The second term

R†ZYZᵀR∗ = R†ZZ†Y0Z∗ZᵀR∗ = R†Y0R∗

is also real since Y0 is a real diagonal matrix. When X and
Y are simultaneously real, it follows from direct substitution
that the quadrature covariance matrix has no cross-quadrature
correlations. �

What does this mean? It means that we have a way of
testing if the correlations between conjugate variables can
be removed—diagonalize Y to obtain the matrix Z using
the Autonne-Takagi factorization and subsequently compute
ZXZ†. If Y is a full-rank matrix with nondegenerate eigen-
values and ZXZ† cannot be transformed to a real matrix by a
diagonal matrix R, then the correlations cannot be decoupled.
This is certainly the case if ZXZ† has any entries that are
neither real nor purely imaginary. On the other hand, if all
the entries of ZXZ† are real, then Z is the passive operation
that we are after. If some entries are purely imaginary then in
addition to Z additional local rotations R are required. If Y
is singular or has degenerate eigenvalues, then we have some
freedom in choosing Z to make the entries of R†ZXZ†R real.

When S corresponds to a pure state, the matrix Z gives
the passive operation required to create it from a product of
independent squeezed states. However, if S is mixed, our
result implies that it is sometimes impossible to create by
passive operations on any independent states, or even on
states possessing only q correlations and p correlations. One
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FIG. 1. The output state with quadrature covariance matrix given
by (2) has cross-quadrature correlations that cannot be removed
by passive operations. AM: Amplitude modulator. RNG: Gaussian
random number generator with variance 1/2. R( π

4 ): π/4 phase
shifter. SQZ: 3-dB squeezer.

example is the state with quadrature covariance matrix

S = 1

2

⎡
⎢⎣

3 0.5 1 0
0.5 0.75 0.5 0
1 0.5 2 0
0 0 0 1

⎤
⎥⎦ (2)

which can be created by the scheme in Fig. 1. The squeezing
operation “locks in” the cross-quadrature correlations and
makes it impossible to be removed using passive operations
only.

III. TWO-MODE EXAMPLE

We illustrate our result by working through an example.
Consider a two-mode Gaussian state having the following
quadrature covariance matrix:

S =

⎡
⎢⎣

m 0 c 0
0 m 0 −c
c 0 n s
0 −c s n

⎤
⎥⎦

with all m, n, c, and s positive. We want to determine if this
state can be brought into a cross-quadrature decorrelated form.
The basis transformation (1) represented by the unitary matrix

L = 1√
2

⎡
⎢⎣

1 i 0 0
0 0 1 i
1 −i 0 0
0 0 1 −i

⎤
⎥⎦

transforms the quadrature covariance matrix into the complex
covariance matrix

S = LSL† =

⎡
⎢⎣

m 0 0 c
0 n c is
0 c m 0
c −is 0 n

⎤
⎥⎦ ,

which identifies X and Y as

X =
[

m 0
0 n

]
and Y =

[
0 c
c is

]
.

The Autonne-Takagi factorization of Y = Z†Y0Z∗ is given by

Z = eiπ/4

[ −i
√

t
√

1 − t√
1 − t −i

√
t

]

and

Y0 = 1

2

[√
4c2 + s2 − s 0

0
√

4c2 + s2 + s

]

with t = (1 + s/
√

4c2 + s2 )/2. This results in

ZXZ† =
[

n(1 − t ) + mt −i
√

t (1 − t )(m − n)

i
√

t (1 − t )(m − n) nt + m(1 − t )

]

which has entries that are all real or purely imaginary, and is
transformed to a real matrix by

R =
[

1 0
0 i

]
so that finally we have

R†ZXZ†R =
[

n(1 − t ) + mt
√

t (1 − t )(m − n)√
t (1 − t )(m − n) nt + m(1 − t )

]
.

This means that the state S can be brought to a cross-
quadrature decorrelated form and the passive operation that
does this is R†Z. This can be factorized as

R†Z =
[

eiπ/4 0
0 e−i3π/4

][ √
t

√
1 − t

−√
1 − t

√
t

][
e−iπ/2 0

0 1

]
which is realized by a beamsplitter of transmissivity t and
three phase shifts: π/4 and −3π/4 at the outputs and −π/2
at the input port.

The expert reader might have recognized that the state
S can in fact be cross-quadrature decorrelated through the
simpler transformation

R†Z =
[

eiπ/4 0
0 e−iπ/4

]
requiring just two phase shifts. This shows that when it is pos-
sible to decorrelate the conjugate quadratures the procedure
we presented is not the only way to do so. The condition that
Y be diagonalized can be relaxed—all we need to decouple
q and p is for Y to be transformed into a real matrix after
applications of the passive operation—this real matrix need
not be diagonal or non-negative. In terms of implementations,
this would mean that the required operation might be simpler;
for instance, we can do away with the beamsplitter in the
example considered.

IV. DISCUSSIONS

An immediate application of theorem 1 is to the calculation
of the “squeezing of formation” [16]. This quantity measures
how much squeezing is required to create a given state and in-
dicates the degree of nonclassicality of the state. Squeezing of
formation is invariant under passive operations because these
transformations do not require any squeezing. This means that
the result of this paper can be used to simplify complicated
states to a form in which the squeezing of formation can be
directly calculated. For example, a brute force computation
of the squeezing of formation for a two-mode Gaussian state
involves an optimization over six free parameters. However,
by first transforming the state to a quadrature-decorrelated
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form, if it is possible, this computation reduces to a simple
one parameter optimization problem [17].

There is also an interesting connection with the generation
of cluster states. A cluster state has multiple quantum modes
with correlations between each mode [18–20]. Many of these
can be shown to possess correlations only between the q’s and
between the p’s, such as the two-dimensional square cluster.
However, in real devices for generating cluster states there are
imperfections which give rise to correlations between q and
p. This implies that our result might be useful for identifying
if an ideal cluster state can be recovered using only passive
operations.

What can be said about a state with cross-quadrature
correlations which cannot be removed by passive operations?
While most theoretical work on Gaussian quantum informa-
tion considers cross-quadrature decorrelated states, almost
every state realized experimentally would have some cross-
quadrature correlations that cannot be decoupled using only
passive operations. However, if we are also allowed to add
correlated noise in the form of random Gaussian quadrature
displacements, then any state can be cross-quadrature decorre-
lated. One obvious question is then the following: what is the
least amount of noise required to achieve such decorrelation?
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APPENDIX: UNIQUENESS OF AUTONNE-TAKAGI
DECOMPOSITION

For completeness, this Appendix recalls the unique-
ness properties of the Autonne-Takagi decomposition. See,
for example, the textbook by Horn and Johnson [15] for
proofs.

Let Y be an n × n complex symmetric matrix of rank r. Let
λ1, . . . , λd be the distinct positive singular values of Y, in any
given order with respective multiplicities n1, . . . , nd . Let Y0 =
λ11n1 ⊕ . . . ⊕ λd1nd ⊕ 0n−r ; the zero block is missing if Y is
nonsingular. Let U and V be unitary. Then the Autonne-Takagi
decomposition of Y: Y = UY0Uᵀ = VY0Vᵀ if and only if
V = UQ, with Q = Q1 ⊕ . . . ⊕ Qd ⊕ W where each Q j is an
n j × n j real orthogonal matrix and W is an (n − r) × (n − r)
unitary matrix. If the singular values of Y are distinct (that is,
if d � n − 1), then V = UD, in which D = diag(d1, . . . , dn)
with d j = ±1 for each j = 1, . . . , n − 1. The last entry dn =
eiθ if Y is singular (d = n − 1), otherwise dn = ±1 if Y is
nonsingular (d = n).
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