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Abstract
Magnon excitations play an important role in understanding quantum magnetism and magnon
bound states observed with ultracold atoms in optical lattices. Here, we investigate how gradient
magnetic field and periodically modulated spin-exchange strength affect the two-magnon
excitations. In the Stark resonance where the driving frequency matches and smooths the potential
bias, the system gains translational invariance in both space and time in the rotating frame, and
thus we can develop a Floquet–Bloch band theory for two magnons. We find a new kind of bound
states with relative distance no less than two sites, apart from the conventional bound states with
relative distance at one site, which indicates the modulation-induced long-range interaction. We
analytically derive an effective Hamiltonian via the many-body perturbation theory for a deeper
understanding of such novel bound states and explore the interplay between these two types of
bound states. Moreover, we propose to probe modulation-induced bound states via quantum
walks. Our study not only provides a scheme to form long-range magnon bound states, but also
lays a cornerstone for engineering exotic quantum states in multi-particle Floquet systems.

1. Introduction

In single-particle systems, periodic modulation not only provides a versatile tool to manipulate the
quantum particles, but also brings novel states of matter into quantum systems. It has already been applied
to control the hopping [1, 2], band structure [3, 4], and quantized transport of a single particle [5–8].
Remarkably, single-particle coherent destruction of tunneling [9, 10] and artificial gauge field [11] have
been realized by well-designed modulation protocols. Recently, Floquet topological insulator of single
particle has attracted considerable attentions in theoretical investigations [12–16] and has also been realized
experimentally [17–19]. In principle, Floquet–Bloch theory of a single particle has been well developed to
analyze the properties of periodically modulated systems [20]. However, many-body effects induced by time
modulations are more challenging and appealing, such as collective emission of matter-wave jets [21], and
discrete time crystals [22] etc.

It becomes possible to periodically modulate many-body systems with various methods in ultracold
atomic systems. Modulation of particle–particle interaction may support many-body coherent destruction
of tunneling [23], density-dependent correlated tunneling [24], density-dependent synthetic gauge fields
[25], and effective three-body interactions [26]. Modulation of both on-site energy and interaction is a
route to create the nearest-neighbour (NN) interaction and density-assisted tunneling [27]. Considering
Hubbard-type models, periodic modulation of tunneling is used for engineering the interaction [28, 29].
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Considering spin systems, periodically driven gradient magnetic field is supposed to tune a long-range
interaction to a short-range interaction [30]. However, it is still unclear (i) how to tune a short-range
interaction to a long-range interaction in a spin chain, (ii) what the engineered interaction brings to
correlation properties of the states and (iii) how to probe the engineered interaction.

In this paper, we study two strongly interacting magnons in a spin-1/2 Heisenberg XXZ chain under a
gradient magnetic field and periodic modulation of the spin-exchange strength, which may in principle be
realized in one-dimensional spin-dependent optical lattices subjected to a gradient magnetic field. When
the potential bias between NN sites is equal to the driving frequency, a single magnon can resonantly tunnel
to the neighboring sites, called as Stark resonance. We develop a Floquet–Bloch band theory for two
magnons, because the system in the rotating frame is invariant when the two magnons are shifted as a
whole by multiples of lattice constant and time period. Apart from conventional bound states, we find that
two magnons are bounded with a relative two-site distance by calculating the magnon–magnon correlation,
indicating effective next-nearest-neighbour (NNN) interactions. An effective two-magnon model is
obtained by using the many-body perturbation theory, which interprets the physical mechanism of
modulation-induced long-range magnon bound states. The effective NNN interaction can be tuned to be
positive or negative. When the NN interaction is equal to the modulation frequency, the NN interaction
smooths the tilt in Floquet space and there exists a resonance between the bound states with relative
one-site and two-site distances, called as interaction resonance. Considering the experimental realization,
we also propose to probe the effective long-range magnon bound states via quantum walks.

2. Model

We consider ultracold two-level atoms in one-dimensional optical lattices. One can label the two hyperfine
levels of atoms as spin up |↑〉 and spin down |↓〉. Through applying a gradient magnetic field, spin up and
spin down feel opposite potentials at the lth site, Vl↑ = −Vl↓ = lB with the gradient B. The Hamiltonian
reads

ĤBH = −
∑

<l,g>,σ=↑,↓
tσ b̂†lσ b̂gσ +

∑
lσ

Uσσ

2
n̂lσ(n̂lσ − 1) + U↑↓

∑
l

n̂l↑n̂l↓ +
∑

lσ

Vlσn̂lσ. (1)

Here, b̂†lσ (b̂lσ) is the particle creation (annihilation) operator, n̂lσ is the number operator, tσ is the tunneling
matrix element of |σ〉, and Uσσ′ is the interaction between |σ〉 and |σ′〉. In the Mott-insulator regime with
one boson per site, the Hamiltonian (1) can be mapped onto a Heisenberg XXZ chain,

Ĥ =

Lt∑
l=1

[
J(t)Ŝ+l Ŝ−l+1 + H.c.+ΔŜz

l Ŝz
l+1 + lBŜz

l

]
(2)

with the total chain length Lt. The spin-1/2 operators ŜIl (I = +,−, z) are defined as

Ŝ+l = b̂†l↑b̂l↓,

Ŝ−l = b̂†l↓b̂l↑,

Ŝz
l = (n̂l↑ − n̂l↓)/2, (3)

and the parameters yield

J = −2t↑t↓
U↑↓

, Δ = −
4t2

↑
U↑↑

−
4t2

↓
U↓↓

+
2(t2

↑ + t2
↓)

U↑↓
. (4)

Usually, the tunneling matrix elements of two spin components are tσ > 0 in ultracold atomic experiments.
J may be positive or negative by tuning attractive interaction (U↑↓ < 0) or repulsive interaction (U↑↓ > 0),
respectively. Here, without loss of generality, we consider J > 0 and focus on the periodic modulation of
spin-exchange strength,

J(t) = [J0 + J1 cos(ωt)]/2 (5)

with the DC amplitude J0, the AC amplitude J1 and the modulation frequency ω. For simplicity, we choose
the units of J0 = � = 1.

Below we try to discuss the experimental possibilities of our time-modulated scheme, though great
efforts are needed with state-of-art experimental techniques. To induce on-demand control, we consider
two-level atoms in spin-dependent polarization-synthesized optical lattices described by Uσ(x, t) =
U0
σ(t)cos2{k[x − xσ(t)]} with a common wave vector k, lattice depths U0

σ(t) and lattice positions xσ(t) for

2
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Figure 1. (a) The driven two-magnon model (6) with NN interaction and time-modulated hopping rate. (b) The effective
two-magnon model (20) with the modulation-induced NNN interaction, modified NN interaction and reduced hopping rate.

σ = {↑, ↓} [31, 32]. Such optical lattices help to independently and separately modulate both lattice depths
and lattice positions for the spin-up and spin-down atoms. In order to obtain the driving parameter J(t),
one may independently modulate t↓ by using an acousto-optic modulator to modulate the lattice depth for
spin-down atoms satisfying U0

↓ [1 + β cos(ωt)] with the modulation depth β. At the same time, to fix Δ,
one may tune the atom-atom interactions to satisfy U↓↓ = 2U↑↓ via optical Feshbach resonance [33–36],
that is, the Heisenberg spin interaction Δ = 2t2

↑(1/U↑↓ − 2/U↑↑) which is independent of t↓(t). It may allow
to further adjust this Heisenberg spin interaction Δ by controlling the tunneling rate t↑ for spin-up atoms.

Unlike the three-color modulations in the Fermi–Hubbard model [29], our Heisenberg XXZ chain (2)
only involves a single frequency. The magnetic field gradient B breaks the translational symmetry of the
system. When the modulation is off (ω = 0), the ground state is the fully ferromagnetic state |↓↓↓ . . . ↓〉 for
a positive and sufficiently large B. By flipping spins over the ground state |↓↓↓ . . . ↓〉, we obtain the excited
states. Once one regards the ground state |↓↓↓ . . . ↓〉 as a vacuum state, magnon can be regarded as the basic
excitation around the ferromagnetic ground state. Considering the mapping relations |↓〉 ↔ |0〉 , |↑〉 ↔ |1〉 ,
Ŝ+l ↔ â†l , Ŝ−l ↔ âl, and Ŝz

l ↔ n̂l − 1
2 , it amounts to load magnons into the tilted optical lattice with

periodically driven hopping rate and NN interaction, i.e., Ĥ =
∑

l

[
J(t)â†l âl+1 + H.c.+Δn̂ln̂l+1 + Bln̂l

]
. â†l

(âl) creates (annihilates) a magnon at site l and satisfies the commutation relations of the hard-core bosons.
n̂l = â†l âl is the number operator.

By a unitary treatment Ĥ′ = ÛĤÛ† − iÛ ∂
∂t Û† with Û = exp(i

∑
llBtn̂l) [37, 38], the driven magnon

Hamiltonian in the rotating frame is given by,

Ĥ′ =

Lt∑
l=1

[
J(t)e−iBt â†l âl+1 + H.c.

]
+Δ

Lt∑
l=1

n̂ln̂l+1. (6)

If we impose periodic boundary condition, Hamiltonian (6) preserves translational invariance, which is
slightly different from Hamiltonian (2) at the boundary. We only consider the bulk properties where the
tiny difference between Hamiltonian (2) and Hamiltonian (6) takes no effect. For convenience, we focus on
Hamiltonian (6) with periodic boundary condition in the following paper.

Since [Ĥ′, n̂] = 0 with n̂ =
∑

ln̂l, the total magnon number is conserved. This means that subspaces
with different magnon numbers are decoupled. To take magnon–magnon interaction into account,
two-magnon excitations are fundamental objects and give enlightenment to multi-magnon excitations. We
aim to manipulate a NNN two-magnon bound state and explore its interplay with the original NN bound
state from both numerical and analytical perspectives. Based upon a two-body ansatz related to
center-of-mass and relative positions, we concentrate our analysis on the subspace of two-magnon
excitations. The driven two-magnon model is schematically shown in figure 1(a).

In the absence of the gradient magnetic field and periodic driving (B = J1 = 0), the spin-1/2 XXZ chain
occurs a quantum phase transition at Δ = J. For a two-magnon system, an isolated bound-state band and a
continuum scattering-state band appear in the energy spectrum for Δ > J, while the bound-state band
merges into the continuum one for 0 < Δ < J. After flipping two spins over the ground state with all spins
downward, two magnons undergo Bloch oscillations in the presence of the gradient magnetic field [39]. In
our paper, we only consider the Stark resonance, i.e., ω = B, where photon-assisted tunneling resonances
may happen [40, 41].

3
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Figure 2. (a) Quasienergy spectrum E as a function of Δ given by the static effective Hamiltonian ĤF (black solid lines). The red
and blue dashed lines respectively represent E = Δ and E = Δ− ω. (b) The quasienergy spectra obtained by the Floquet–Bloch
lattice model (13) (black solid lines) for F = 5 and the effective two-magnon model (20) (red dotted lines). (c) and (d) The
enlarged quasienergy spectra around scattering-state bands in (a) and (b), respectively. The other parameters are chosen as
ω = B = 10, J0 = 1, J1 = 0.01 and Lt = 21.

3. Floquet spectrum analysis

Only NN antiferromagnetic interaction (Δ > 0) is considered in the Hamiltonian (6), while our
conclusions can easily be extended to the corresponding ferromagnetic one (Δ < 0) due to the related
symmetry analysis [39]. The interplay between the NN interaction and time modulation makes it possible
to induce long-range magnon bound states. To understand how the long-range magnon bound states come
from, we need to analyze the Floquet spectrum and the Floquet states. We aim to study the
modulation-induced NNN magnon bound state and give an effective picture for its coexistence and
competition with the original NN magnon bound state. However, in addition to the NNN magnon bound
states, our system can also be modulated to induce other bound states. In appendix, we give a brief
discussion on the modulation-induced magnon bound states with relative distances at three and four sites.

The driven two-magnon Hamiltonian (6) satisfies a discrete time translation symmetry Ĥ(t + T) = Ĥ(t)
with a Floquet period T = 2π/ω. T̂ is the time-ordering operator, and we can define a time-evolution
operator in one period as

ÛT = T̂ exp(−i

∫ T

0
Ĥ′(t)dt) ≡ exp(−iĤFT), (7)

where the static effective Hamiltonian

ĤF =
i

T
log ÛT (8)

governs the dynamics at stroboscopic times nT (n = 1, 2, 3, . . . .. Before analyzing the dynamics, it is helpful
to solve the eigenvalue problem, ĤF|un〉 = En|un〉, where En and |un〉 are quasienergy and Floquet state,
respectively. En can be restricted in the interval [−ω/2,ω/2], which we term as the first Floquet–Brillouin
zone. The quasienergy has a period ω and consists of replicas of that in the first Floquet–Brillouin zone. We
calculate the quasienergy spectrum as a function of the NN interaction regarding the static effective
Hamiltonian (8), as shown in figure 2(a). The other parameters are chosen as ω = B = 10, J0 = 1, J1 = 0.01
and Lt = 21. There is a continuum flat band around zero energy, with eigenstates regarded as the scattering
states. When J0, J1 � Δ, two magnons at the NN sites approximate the bound states with energy ∼ Δ. The
red dashed line E = Δ is added in figure 2(a), which is well fitting with an isolated band (black solid lines)
corresponding to bound states with relative distance as one site. It becomes clear that E = Δ− ω (blue
dashed line) is the replica of E = Δ (red dashed line). Around the interaction resonance Δ− ω = 0, the
bound-state band E = Δ− ω (blue dashed line) seriously departs from two isolated bands (black solid
lines). Thus, the two isolated bands (black solid lines) around Δ− ω ≈ 0 must be a modulation-induced
effect.

The arbitrary two-magnon states can be expanded as |Ψ〉 =
∑

l1<l2
ψl1l2 |l1l2〉, with probability

amplitudes ψl1 l2 = 〈0|âl2 âl1 |Ψ〉 for one magnon at the l1th site and the other at the l2th site. After
substituting the two-magnon state in the Fock basis into the Schrödinger equation

i
d

dt
|Ψ(t)〉 = Ĥ′|Ψ(t)〉, (9)

the probability amplitudes ψl1l2 (t) at instantaneous time t satisfy

i
∂

∂t
ψl1 l2 (t) = M(t)

(
ψl1,l2+1(t) + ψl1+1,l2 (t)

)
+ M∗(t)

(
ψl1,l2−1(t) + ψl1−1,l2 (t)

)
+Δδl1,l2±1ψl1l2 (t) (10)

4
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with M(t) = J1/4 + J0/2e−iωt + J1/4e−i2ωt. Considering the periodic boundary condition, we have
ψl1,l2+Lt = ψl1+Lt,l2 = ψl1,l2 . Due to the time periodicity, we can express the probability amplitudes ψl1l2 (t)
by the Fourier components ψl1l2 (t) = e−iEt

∑∞
χ=−∞ e−iχωtUl1,l2,χ [2, 20]. Then we have

|Ψ(t)〉 = e−iEt
∑

l1<l2,χ

e−iχωtUl1,l2,χ|l1, l2,χ〉 (11)

where |Ul1,l2,χ|2 is the probability distributing in the state |l1, l2,χ〉. χ is the Floquet index taking values from
−∞ to ∞. The state |l1, l2,χ〉 intuitively represents two particles living in real space and Floquet space. Due
to the particle conservation, the two particles always share a common χ, that is, the two particles transfer
from χ to χ′ as a bounded pair. Replacing the state (11) into the equation (9) and averaging it over one
period, we can obtain

EUl1,l2,χ = (Δδl1,l2±1 − χω)Ul1,l2,χ +
∑

q

Jq

(
Ul1,l2+1,χ−q + Ul1+1,l2,χ−qUl1,l2−1,χ+q + Ul1−1,l2,χ+q

)
(12)

with q = 0, 1, 2, J0 = J2 = J1/4 and J1 = J0/2. It is equal to a Floquet–Bloch lattice model,

ĤFB = Ĥ0
FB + Ĥ1

FB, (13)

with
Ĥ0

FB =
∑
l1,l2,χ

(
Δδl1,l2±1 − χω

)
|l1, l2,χ〉〈l1, l2,χ| (14)

and

Ĥ1
FB =

∑
l1,l2,χ,q

(
Jq|l1, l2,χ〉〈l1, l2 + 1,χ− q|+ H.c.

)
+

∑
l1,l2,χ,q

(
Jq|l1, l2,χ〉〈l1 + 1, l2,χ− q|+ H.c.

)
(15)

with q = 0, 1, 2. We establish an equivalence between a periodically driven two-magnon model (6) and the
Floquet–Bloch lattice model (13). The motion of two magnons in the periodically driven one-dimensional
lattice in figure 1(a) is equivalent to the time-independent hopping dynamics of two magnons in a
two-dimensional lattice model with a potential energy gradient along the χ direction. Here, Ĥ0

FB consists of
the NN interaction and the gradient potential −χω along χ direction. Ĥ1

FB consists of individual hopping of
magnons in the same χ and pair-hopping between χ and χ′ with χ′ = χ± 1,χ± 2.

Numerically, we can calculate the quasienergy spectrum by truncating the Floquet spaces ranging from
χ = −f to f, and the total truncation number F = 2f + 1. In the high-frequency case, ω � J0, J1, the energy
barrier between χ and χ± 1 is so large that the two magnons tend to localize at a few χ. A small truncation
number gives sufficiently exact results and enables us to apply the perturbation theory to obtain an effective
Hamiltonian. However, as the modulation frequency decreases, the wave function becomes spread over a
larger range of χ, and a larger truncation number is needed. By choosing the same parameters as figure 2(a)
and F = 5, and diagonalizing the Floquet–Bloch lattice model (13), we also give the quasienergy spectrum
as a function of Δ, see black solid lines in figure 2(b). Compared the quasienergy spectrum obtained by ĤF

in figure 2(a) with the one obtained by ĤFB in figure 2(b), they are almost the same. Based on the above
Floquet analysis, we will investigate the Bloch states under a periodic boundary condition far away from and
around the interaction resonance.

4. Two-body Floquet–Bloch band

In this section, we obtain the two-body Floquet–Bloch band, a significant analysis of the many-body Bloch
theorem to the periodically modulated system. Based on the Floquet–Bloch lattice model (13) which has
cotranslational symmetry along the real space but violates such symmetry along the Floquet space due to
the effective gradient potential −χω, we can apply the many-body Bloch theorem in the real space and leave
alone the Floquet index χ. Away from the interaction resonance Δ− ω = 0, we analyze the isolated
Floquet–Bloch bands and reveal the modulation-induced long-range two-magnon bound states. Such
process can also be perfectly captured by an effective Hamiltonian via the many-body perturbation theory.
Near the interaction resonance, we find the hybrid of two kinds of magnon bound states.

4.1. Modulation-induced long-range two-magnon bound states
Imposing periodic boundary condition, the Floquet–Bloch lattice model (13) is invariant by shifting the
two magnons as a whole in the real space. Naturally, we introduce the center-of-mass and relative positions
R = (l1 + l2)/2 and r = l1 − l2, respectively. The center-of-mass quasimomentum K is a conserved quantity.

5
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Figure 3. Quasienergy spectrum E vs center-of-mass momentum K away from the interaction resonance for (a) Δ− ω = −3
and (b) Δ− ω = 3. The insets I and II respectively describe the normalized magnon–magnon correlations Cij = Cij/Cmax

ij of
Floquet states labeled in the isolated bands. The Floquet space is truncated to be χ = 0,±1,±2. The other parameters are chosen
as ω = B = 10, J0 = 1, J1 = 0.01 and Lt = 21.

According to the many-body Bloch theorem, the wave-function is a Bloch wave along the coordinate of
center-of-mass position, i.e., Ul1,l2,χ = eiKRφχ(r) where φχ(r) is the amplitude depending on the relative
position r and the Floquet position χ.

Substituting the above ansatz into equation (13), the amplitude φχ(r) satisfies the following
eigenequation in the quasimomentum space,

Eφχ(r) =
∑

q

J K
q

(
φχ−q(r − 1) + φχ−q(r + 1)

)
+
(
Δδr,±1 − χω

)
φχ(r) (16)

with q = 0,±1,±2, J K
0 = J1/2 cos(K/2), J K

±1 = J0/2e±iK/2 and J K
±2 = J1/4e±iK/2. Under the periodic

boundary condition, we find eiKLt = 1 and φχ(r + Lt) = eiKLt/2φχ(r) with K = 2πα/Lt for
α = −L,−L + 1, . . . , L. Here the total chain length is Lt = 2L + 1. Moreover, since the magnons are
hard-core bosons, we have φχ(0) = 0 and φχ(r) = φχ(−r).

Solving the above eigenequation (16), we can obtain the two-body Floquet–Bloch bands vs K in figure 3
(more results for longer-range magnon bound states are shown in appendix). Δ is chosen at the left- and
right-hand sides of the interaction resonance as Δ = 7, 13 for figures 3(a) and (b), respectively. The other
parameters are chosen as ω = B = 10, J0 = 1, J1 = 0.01 and Lt = 21. The Floquet space is truncated to be
χ = 0,±1,±2. At the left-hand side of the interaction resonance, there are two isolated bands above a
continuum band which ranges from −|J1| to |J1|, as shown in figure 3(a). This is qualitatively different from
a conventional two-band energy spectrum of two-magnon excitations in NN interaction quantum spin
chains without the periodic driving. In figure 3(a), an extra band appears in between the continuum band
and NN-interaction bound-state band, with quite a similar structure to the bound-state band arising from
the NN interaction. While at the right-hand side of the interaction resonance, the two isolated bands
sandwich the continuum band, as shown in figure 3(b). It will be clear later that the difference between
figures 3(a) and (b) is related to the positive and negative values of the effective interaction. A suitable
choice of parameters results in a negative modulation-induced bound band below the continuum band.

To better understand the band structure, it is instructive to calculate the magnon–magnon correlations
of corresponding Floquet states labeled with I and II in figure 3. The magnon–magnon correlation is
defined as Cij = 〈Ψ(T)|â†i â†j âjâi|Ψ(T)〉 where |Ψ(T)〉 is the Floquet state with a given quasimomentum K. i
and j take values from 1 to Lt. The magnon–magnon correlations at two specific lines i = j ± d in the (i, j)

6
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plane serve as a sensitive evidence of the two-magnon bound states, where d depends on the specific
magnon–magnon interactions. For example, due to the NN interaction, the Floquet states marked with I
are well distributed among the minor-diagonal lines i = j ± 1 of the magnon–magnon correlations in the
insets I of figure 3. While for the Floquet states marked with II, the insets II of figure 3 show the
magnon–magnon correlations are mainly distributed in the next-minor-diagonal lines. The type-II Floquet
state indicates the existence of effective long-range magnon bound states. The correlation properties of the
other Floquet states in these two bands are similar to their Floquet states with quasimomentum K = 0.
They are characteristic signatures of two types of bound-state bands, respectively derived from the NN
interaction and NNN interaction. Thus, we can claim the existence of modulation-induced long-range
magnon bound states.

4.2. Effective two-magnon model
Below particular attention is paid to attain an effective two-magnon model for understanding and
interpreting the origination of the modulation-induced long-range magnon bound states. Given the
perturbation conditions |Δ− ω| � J0/2 and |Δ− 2ω| � J1/4, we divide the Floquet–Bloch lattice model
(13) into two parts, Ĥ0

FB as a dominating term and Ĥ1
FB as a perturbation term. In the high-frequency

region, ω � J0, J1, it is sufficient to just take into account five χ with χ = 0,±1,±2. The dominating term
Ĥ0

FB is separated into two subspaces. The first subspace includes two kinds of states: (i) the states
{|l, l + 1, 0〉} with 1 � l � Lt and E = Δ, (ii) the states {|l1, l2, 0〉} with l1 �= l2 − 1, 1 � l1 < l2 � Lt and
E = 0. The complementary subspace consists of (iii) the states {|l, l + 1,χ〉} with 1 � l � Lt and
E = Δ− χω, (iv) the states {|l1, l2,χ〉} with l1 �= l2 ± 1, 1 � l1 < l2 � Lt and E = −χω for χ = ±1,±2.
We project the Floquet–Bloch lattice model (13) onto the first subspace with χ = 0 to obtain the effective
two-magnon model ĤEff = ĥ0 + ĥ1 + ĥ2 via a perturbative expansion up to the second order. In the lowest
order and first order, we have

ĥ0 = Δ
∑

l

|l, l + 1, 0〉〈l, l + 1, 0| (17)

and

ĥ1 =
J1

4

∑
l1l2

(
|l1, l2, 0〉

(
〈l1, l2 + 1, 0|+ 〈l1 + 1, l2, 0|

)
+ H.c.

)
, (18)

which respectively retain the original NN interaction Δ and NN tunneling in χ = 0. The second-order
effective Hamiltonian reads

ĥ2 = −Δ2

∑
l

(
|l, l + 1, 0〉〈l, l + 1, 0| − |l, l + 2, 0〉〈l, l + 2, 0|

)
(19)

with Δ2 = J2
0Δ/[2(ω2 −Δ2)] + J2

1Δ/[8(4ω2 −Δ2)]. Interestingly, the second-order process not only
contributes to the NNN interaction, but modifies the original NN interaction. Since the high-order term is
much smaller than the second-order one in the perturbation parameter region, it allows us to ignore the
results beyond the second-order term.

By means of the perturbation theory [42, 43], the effective two-magnon model up to second order in
χ = 0 is given as

ĤEff =
∑

l

[
J1

4
â†l âl+1 + H.c.+ (Δ−Δ2)n̂ln̂l+1 +Δ2n̂ln̂l+2

]
. (20)

∑
ln̂l = 2 restricts ĤEff to the two-magnon sector. The effective two-magnon model (20) can be

schematically described in figure 1(b) with the renormalized parameters. The effective NNN interaction
comes from the asymmetric pathways between absorbing and consequently emitting phonons,
{|l2 − l1 = 2, 0〉 → |l2 − l1 = 1,+χ〉 → |l2 − l1 = 2, 0〉,χ �= 0} and the inverse process, {|l2 − l1 = 2, 0〉 →
|l2 − l1 = 1,−χ〉 → |l2 − l1 = 2, 0〉,χ �= 0}. This is the origin of NNN interactions in a periodically
modulated interacting system. Coherent destruction of tunneling is a phenomenon in which the effective
tunneling rate is zero due to the destructive interference of different paths. Coherent destruction of
tunneling is possible to occur when one utilizes a driving field to switch off the tunneling [23]. Under the
zero effective tunneling rate, particles keep frozen at the initial positions in the time evolution. The
renormalized tunneling rate is reduced to a constant J1/4 for our effective two-magnon model (20), which
indicates there is no signal of coherent destruction of tunneling in our system with the parameters we focus
on. Therefore, two magnons of our system are allowed to undergo the tunneling dynamics. Note that
modulation amplitude J1 determines the width of the continuum band [−|J1|, |J1|]. Once J1 is sufficiently
large, the NNN-interaction bound-state band may be not enough to completely separate from the
continuum band. With the effective two-magnon model (20), we can systematically create and control the

7
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Figure 4. Quasienergy spectrum E vs K with the interaction resonance Δ = ω. The insets I and II respectively describe the
normalized magnon–magnon correlations Cij = Cij/Cmax

ij of Floquet states labeled in the top and bottom bands in the
quasienergy spectrum. The Floquet space is truncated to be χ = 0,±1,±2. The other parameters are chosen as ω = B = 10,
J0 = 1, J1 = 0.01 and Lt = 21.

NNN interaction. The long-range two-magnon bound states arising from the modulation-induced NNN
interaction constitute the central idea of our paper.

To show the concreteness, we compare the quasienergy spectrum given by the effective two-magnon
model (20) and that given by the Floquet–Bloch lattice model (13), respectively see the red dotted and black
solid lines in figure 2(b). It is clear that the isolated bands are well consistent in the perturbation parameter
regime |Δ− ω| � J0/2 and |Δ− 2ω| � J1/4. The perturbation conditions mean the energy gap between
the above two subspaces χ = 0 and χ = ±1,±2 of Ĥ0

FB should be much larger than their tunneling rate.
This energy gap decreases as Δ approaches to ω, so that the perturbation condition is no longer satisfied
and the effective two-magnon model (20) is invalid. As shown in figure 2(b) (red dotted lines), the isolated
bound band of ĤEff is no longer fitting with the modulation-induced band of ĤFB when the NN interaction
Δ approaches to the modulation frequency ω. But their continuum bands are always well consistent. In
order to clearly clarify the modulation-induced bound band, we just plot the continuum band of ĤFB in
figure 2(b).

4.3. Resonance between two types of bound states
However, the effective two-magnon model (20) becomes invalid around the interaction resonance Δ = ω

where the NN interaction smooths the tilt in Floquet space. To understand what happens under the
interaction resonance, we calculate the band structure and magnon–magnon correlations via the Floquet
spectrum analysis based on the eigenequation (16) (see figure 4). The truncated Floquet space is limited in
χ = 0,±1,±2.

For Ĥ0
FB, its eigenstates {|l, l + 1,χ〉 : 1 � l � Lt} with E0 = Δ− χω and {|l1, l2,χ− 1〉 : l1 �= l2 − 1,

1 � l1 < l2 � Lt} with E0 = −(χ− 1)ω become degenerate with the energy E0 and the energy difference
Δ− ω = 0. Once Ĥ1

FB is added, this energy degeneracy will be broken, and these states are not longer
eigenstates of the full Hamiltonian (13). Two types of bound states |l2 − l1 = 1,χ〉 and |l2 − l1 = 2,χ− 1〉
are coupled by a first-order process with the tunneling rate J0/2, while state |l2 − l1 = 1,χ〉 couples state
{|l2 − l1 > 2,χ− 1〉 : l1 �= l2 − 1, l2 − 2} by a second-order or even higher-order term, which can be
neglected in the high-frequency region. Here we are able to just consider the first-order tunneling process
between two types of bound states |l, l + 1,χ〉 and |l, l + 2,χ− 1〉, then the corresponding states of the
system (13) can be written as a superposition (|l, l + 1,χ〉 ± |l, l + 2,χ− 1〉)/

√
2 and the corresponding

energies are E = E0 ± J0/2.

8
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Figure 5. Quantum walks of two magnons in the driven Heisenberg XXZ chain under a gradient magnetic field (2). (a) is the
time evolution of spin distributions Sz

l (t). (b)–(d) are the normalized magnon–magnon correlations Cij = Cij/Cmax
ij for different

moments marked as A, B and C in (a). At the initial moment A (t = 0), two magnons are prepared in |10, 12〉, so one can see two
points in (10, 12) and (12, 10) in (b). (c) and (d) reveal that, in the course of the time evolution, two magnons mainly move
along the next-minor-diagonal lines of the magnon–magnon correlation. The other parameters are chosen as Δ = 7,
ω = B = 10, J0 = 1, J1 = 0.01 and Lt = 21.

Now we focus on the first Floquet–Brillouin zone E ∈ [−ω/2,ω/2], the energies of bound states
|1〉 = |l, l + 1, 1〉 and |2〉 = |l, l + 2, 0〉 are E0 = 0. Once the coupling between |1〉 and |2〉 turns on with
strength J0/2, the eigenstates follow |±〉 = (|1〉 ± |2〉)/

√
2 and eigenvalues are E0 ± J0/2. The energy bands

at the top and bottom are almost symmetrical with respect to E0 = 0, and the energy gap is J0 (see figure 4).
The parameters are chosen as J0 = 1, J1 = 0.01, Δ = ω = B = 10 and Lt = 21, in the high-frequency region
ω � J0, J1. We respectively mark the two Floquet states as I and II in the quasienergy spectrum and analyze
their correlated properties in the insets I and II of figure 4. The top and bottom bands behave almost the
same, that is, the magnon–magnon correlation is basically equal probability distribution on the
minor-diagonal and next-minor-diagonal lines. These numerical results completely follow the related
theoretical analysis.

There exists a process in which, with the increasing of Δ, a bound-state band caused by the NNN
interaction in χ = 0 emerges from the continuum band. When Δ approaches to ω, it gradually mixes with
the bound-state band caused by the NN interaction in χ = 1. The NN-interaction bound-state band in
χ = 1 plays a dominant role when Δ is large enough. Similarly, with the increasing of Δ, an isolated
NN-interaction bound-state band in χ = 1 appears below the continuum band, is mixed with the
NNN-interaction one in χ = 0 around the interaction resonance Δ = ω, and finally turns to the one of the
NNN interaction in χ = 0 for a sufficiently large Δ.

5. Probing long-range two-magnon bound states

Two-magnon quantum walks may provide an excellent method to probe the modulation-induced
long-range two-magnon bound states. The dynamics of single magnon and two-magnon bound states in an
undriven spin chain have been observed in ultracold atomic experiments [44, 45]. It is worth numerically
simulating the dynamics of two strongly correlated magnons, initially localizing on the sites l1 = 10 and
l2 = 12, which can be prepared by flipping two NNN spins from a saturated ferromagnetic state with all
spins downward |↓↓ . . . ↓〉. To investigate the dynamics of magnons initially locating in the bulk of the spin
chain, we resort to numerically solve the time-dependent Schrödinger equation. Starting from the driven
spin-1/2 Heisenberg XXZ chain under a gradient magnetic field (2), the time evolution of an arbitrary
two-magnon state |ψ(t)〉 obeys the Schrödinger equation i d

dt |ψ(t)〉 = Ĥ|ψ(t)〉, where |ψ(t)〉 =∑
l1<l2

ψl1l2 (t)|l1l2〉 and the probability amplitudes ψl1l2 (t) = 〈0|Ŝ−l2 Ŝ−l1 |ψ(t)〉. With the instantaneous wave

function |ψ(t)〉, we trace out the time-dependent spin distributions Sz
l (t) = 〈ψ(t)|Ŝz

l |ψ(t)〉 and the
instantaneous magnon–magnon correlations Cij(t) = 〈ψ(t)|Ŝ+i Ŝ+j Ŝ−j Ŝ−i |ψ(t)〉 for different moments, where
l, i and j take values from 1 to Lt.

Figure 5 displays the time evolution of spin distributions and the corresponding instantaneous
magnon–magnon correlations at three different moments for Δ = 7, ω = B = 10, J0 = 1, J1 = 0.01 and
Lt = 21. Figure 5(a) shows a light cone in the time evolution of spin distributions before the two magnons
collide with the boundaries. We timely cut off the evolution of spin distributions to avoid the boundary
effects and analyze its magnon–magnon correlations, marking A, B and C in figure 5(a). As shown in

9



New J. Phys. 22 (2020) 093052 W Liu et al

figures 5(b)–(d), almost all of the magnons are distributed among the next-minor-diagonal lines in the
magnon–magnon correlation. These results follow from the circumstance that two strongly NNN
interacting magnons initially occupying the NNN sites form a bound pair and tunnel together on the spin
chain. These time evolved results are in agreement with our analytical predictions. The two-magnon
quantum walks may pave the way for verifying the modulation-induced long-range magnon bound states in
experiments.

6. Summary and discussion

We have presented a scheme for generating tunable long-range magnon bound states by introducing a
gradient magnetic field and time-modulated spin-exchange into the spin-1/2 Heisenberg XXZ chain.
Desired long-range magnon bound states can be engineered by changing the modulated parameters and the
interaction Δ. The prerequisite lies in the modulation frequency ω is equal to the magnetic field gradient B,
which enables a single magnon to tunnel resonantly onto its neighbors. It can be understood as the
photon-assisted tunneling among the spin chain. We not only analyze the correlation properties of
modulation-induced long-range magnon bound states, but also explore the interplay between the original
bound state and modulation-induced bound state as NN interaction changes. Further, we obtain an
effective two-magnon model via a many-body perturbation theory to interpret the origin and condition for
the remarkable long-range magnon bound states. The effective two-magnon model becomes invalid near
the interaction resonance Δ = ω, where resonance between the two types of bound states happens. In
addition, two-magnon quantum walks may be used as an experimental verification of modulation-induced
long-range magnon bound states. Our scheme is not limited to two-magnon systems, and also gives insights
into engineering novel states of matter of multi-particle Floquet systems.

A few promising questions remain open and motivate further investigations. For example, this proposed
scheme has potential to realize the fractional topological states which exist in the one-dimensional
superlattice with the dipole–dipole interactions [46]. By introducing the modulation-induced NNN
interaction, the competitive relation between two kinds of bound states may bring different topological
effects into periodically modulated NN-interaction spin chains. In the whole text, we focus on the analysis
in the high-frequency region, while more abundant phenomena may arise in the low-frequency region.
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Appendix. Longer-range bound states

Our system not only is able to induce NNN bound states, but also has potential to engineer longer-range
bound states. In figure A1, we show how the quasienergy spectrum changes with J0 obtained by the
Floquet–Bloch lattice model (13) for F = 15. The other parameters are chosen as ω = B = 1, Δ = 0.7,
J0 = 1.2, J1 = 0.001 and Lt = 21. With the increase of J0, more and more modulation-induced bands
emerge. To illustrate how the longer-range bound state is induced, we take J0 = 1.2 marked with red dashed
line in figure A2 as an example. We obtain the two-body Floquet–Bloch bands versus K by solving the
eigenequation (16) in figure A2. Four isolated bands appear above the continuum band in figure A2. We
respectively mark the Floquet states from different isolated bands as I, II, III and IV in the quasienergy
spectrum and analyze their correlated properties in the insets I, II, III and IV of figure A2. The
magnon–magnon correlations clearly show that, aside from NN and NNN bound states, the bound states
with relative distance at three and four sites appear. It is worth noting that these correlations mostly
distribute along their corresponding diagonal lines and partly distribute in other diagonal lines, called as
hybridization. According to our further numerical results, in the appearance of modulation-induced
longer-range bound state, hybridization inevitably arises and even more complex case, e.g., the
transformation between different types of bound states in the same bound-state band.
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Figure A1. Quasienergy spectrum E vs J0 obtained by the Floquet–Bloch lattice model (13) for F = 15. The other parameters
are chosen as ω = B = 1, Δ = 0.7, J1 = 0.001 and Lt = 21. The red dashed line corresponds to J0 = 1.2.

Figure A2. Quasienergy spectrum E vs K by solving the eigenequation (16) for F = 15. The insets I, II, III and IV respectively
describe the normalized magnon–magnon correlations Cij = Cij/Cmax

ij of Floquet states labeled in the four bound-state bands
above the continuum band. The other parameters are chosen as ω = B = 1, Δ = 0.7, J0 = 1.2, J1 = 0.001 and Lt = 21.
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