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Abstract

Large stellar surveys are revealing the chemodynamical structure of the Galaxy across a vast spatial extent.
However, the many millions of low-resolution spectra observed to date are yet to be fully exploited. We employ
The Cannon, a data-driven approach for estimating chemical abundances, to obtain detailed abundances from low-
resolution (R=1800) LAMOST spectra, using the GALAH survey as our reference. We deliver five (for dwarfs)
or six (for giants) estimated abundances representing five different nucleosynthetic channels, for 3.9 million stars,
to a precision of 0.05–0.23 dex. Using wide binary pairs, we demonstrate that our abundance estimates provide
chemical discriminating power beyond metallicity alone. We show the coverage of our catalog with radial,
azimuthal and dynamical abundance maps and examine the neutron capture abundances across the disk and halo,
which indicate different origins for the in situ and accreted halo populations. LAMOST has near-complete Gaia
coverage and provides an unprecedented perspective on chemistry across the Milky Way.

Unified Astronomy Thesaurus concepts: Chemical abundances (224); Milky Way Galaxy (1054)

1. Introduction

Large stellar surveys such as Gaia (Gaia Collaboration et al.
2016), APOGEE (García Pérez et al. 2016; Majewski et al.
2017; Holtzman et al. 2018), GALAH (De Silva et al. 2015;
Martell et al. 2017), Gaia-ESO (Gilmore et al. 2012), RAVE
(Steinmetz et al. 2006), LAMOST (Newberg et al. 2012; Zhao
et al. 2012) and SEGUE (Yanny et al. 2009) are providing the
data to empirically characterize the Milky Way disk and infer
the primary drivers of its formation and evolution (Freeman &
Bland-Hawthorn 2002; Bland-Hawthorn & Gerhard 2016).

Detailed chemical abundances are one of the primary
measurements made from stellar spectra. Their determination is
a primary motivation for medium- and high-resolution spectro-
scopic surveys for several reasons: they provide effective
chemical fingerprints of stars, link directly to the environment
in which they were born (e.g., Krumholz et al. 2019), and
describe the chemical diversity of the disk (e.g., Weinberg et al.
2019) and the chemical pathways of enrichment (e.g., Rybizki
et al. 2017). Combined with stellar kinematics, abundances are
core to the pursuit of Galactic archeology.

Conventionally, detailed abundances have been derived from
medium- and high-resolution stellar spectra (e.g., APOGEE:
R=22,500; GALAH: R=28,000; RAVE: R= 7500; Gaia-
ESO: at least R=20,000) Until recently, the inferences from
low-resolution spectra, such as LAMOST and SEGUE, were
typically limited to stellar parameters and α-enhancements (Teff ,

( )glog , [Fe/H], [α/Fe]) (e.g., Lee et al. 2011). Ting et al. (2018a)
have shown that oxygen abundances can be inferred from spectra

in wavelength regions containing no atomic oxygen lines through
the features of species in the CNO atomic-molecular network.
Indirectly inferred abundances also have a long empirical history.
The Ca II triplet, for example, is an often-used metallicity index
(Armandroff & Zinn 1988; see Vásquez et al. 2015 for a recent
calibration). To date, with the exception of Xiang et al. (2019), the
efforts to extract individual abundances from LAMOST have
largely focused on a few elements, namely, an integrated α-element
abundance and the elements C and N, which are particularly
important, as these elements can indicate age (e.g., Li et al. 2016;
Ho et al. 2017a, 2017b; Xiang et al. 2017; Zhang et al. 2019).
In this work, we use a data-driven approach to label

low-resolution LAMOST spectra with several abundances.
LAMOST is one of the largest stellar surveys to date, with over
5×106 publicly available spectra, at R=1800. The survey
has extensive coverage of the Milky Way’s disk, halo, and, in
particular, the outer disk, the detailed chemodynamics of which
are largely unexplored. Specifically, we employ The Cannon
(Ness et al. 2015), a model characterized in large part by its
simplicity, to derive individual abundances from LAMOST.
Other data-driven methods include The Payne (Ting et al.
2019), which, like The Cannon, works by explicitly modeling
spectra as a function of labels (stellar parameters and
abundances), and that of Leung & Bovy (2019), which uses
a convolutional neural network to estimate labels directly from
spectra without explicit inference. Xiang et al. (2019) recently
released a catalog of 16 abundances (C, N, O, Na, Mg, Al, Si,
Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) for LAMOST DR5
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using a neural-net-based model calibrated by both labeled
spectra (using overlap between LAMOST and both APOGEE
and GALAH) and physical modeling. This work has many
common aspects with our own but is different in detail. Both
calibrate flexible spectral models (a shallow neural network, in
the case of Xiang et al. 2019) with labels from high-resolution
surveys, but Xiang et al. (2019) also employ gradients of
ab initio models. An advantage of using model gradients is that
physical expectations are incorporated into the label derivation.
Our approach, however, prioritizes the data alone in specifying
the model, which can be advantageous when physical models
are lacking. Differences between the catalogs for those
elements trained using the GALAH labels will help reveal
the biases of each approach.

Our approach requires reference objects, stars with high-quality
spectra and precise labels (stellar parameters and abundances), that
are representative of the survey objects. They are used to calibrate
a model that produces synthetic spectra from stellar labels. This
model is then used to estimate labels for the full set of survey
stars, in our case, the LAMOST catalog. Both the APOGEE and
GALAH surveys have stars in common with LAMOST that can
serve as possible reference objects. APOGEE provides higher-
precision abundance measurements than GALAH, which enables,
for example, the clear disambiguation of the the low- and high-α
sequences, as seen in the radial maps of Hayden et al. (2015) and
Nidever et al. (2014). However, the dimensionality of the
abundance space measured by APOGEE is low (Ness et al.
2018, 2019; Price-Jones & Bovy 2018) (although note that weak
lines of neutron capture elements have been identified in this
region; Hasselquist et al. 2016; Cunha et al. 2017). GALAH, on
the other hand, provides abundance measurements across a more
extensive set of nucleosynthetic channels, including the neutron
capture (r and s) processes. The neutron capture element
enhancements have been previously explored only through
boutique analyses of small samples of stars observed at high
resolution (e.g., Bensby et al. 2014; Spina et al. 2018) and in the
solar neighborhood, to which GALAH is largely confined (e.g.,
Buder et al. 2019; Schönrich & Weinberg 2019). GALAH also
provides abundances for main-sequence stars, allowing us to
extend our modeling to that regime.

We want to explore the promise of the largest number of
element abundance families as possible, so we took the roughly
10,000 stars in common between GALAH and LAMOST to build
a model using the LAMOST spectra and GALAH stellar
parameters and abundances. While the GALAH labels are less
precise than those from APOGEE and thus yield less precise
LAMOST labels, the LAMOST catalog is large enough to enable
very precise mean estimates of abundances on a population basis
(e.g., Blancato et al. 2019; Ness et al. 2019). Using GALAH as a
source for our input labels allows us to propagate r-process and s-
process abundances to the outer disk and halo.

In deriving a set of individual abundances for LAMOST, this
work complements the LAMOST catalog, which provides
stellar parameters and bulk metallicity (a term used inter-
changeably with [Fe/H] in this work) only. We deliver inferred
abundances for elements from five nucleosynthetic families:
light elements, which are dispersed by asymptotic giant branch
(AGB) stars and core-collapse supernovae (CCSNe), and
whose atmospheric abundances can change owing to dredge-
up; α-elements, which are dispersed primarily by CCSNe;
iron-peak elements, which are dispersed by both CCSNe and
SNeIa; odd-Z elements, which are dispersed by both CCSNe

and SNeIa and expected to display similar trends to the α-
elements; s-process elements, which are thought to be produced
and dispersed in AGB stars; and r-process elements, which are
produced in extremely neutron-rich environments. It is not
clear at present whether neutron star mergers are the primary
site of the r-process, or if other sites make appreciable
contributions (e.g., Arnould et al. 2007; Côté et al. 2018;
Hansen et al. 2018; Sakari et al. 2018, 2019; Siegel et al. 2019).
For each star, we deliver five (for dwarfs) or six (for giants)
abundances of O (light), Eu (r-process), mean α, Sc (iron-
peak), mean s-process, Mg (α), Al (odd Z), Mn (iron-peak),
and Ba (s-process). Having derived these abundances, we
demonstrate the scientific value of multielement abundances of
large numbers of stars. We do this using pairs of stars across
the disk and halo, examining the abundance similarity of wide
binaries, that have been identified by their kinematics alone.
We also map the chemodynamical abundance structure of the
disk and halo, making links to signatures of evolution such as
radial migration and Galaxy assembly.
In Section 2 we describe the GALAH and LAMOST data

and the quality cuts we applied. Section 3 provides a brief
overview of The Cannon. In Section 4 we discuss model
checks and evaluate the error of our label estimates. Section 5
discusses our public catalog and key scientific results, and
Section 6 discusses their implications.

2. Data

Our data comprise the R=1800 DR4 v2 LAMOST spectra,
the R=28,000 DR2.1 GALAH spectra, and stellar parameter
and abundance labels (Buder et al. 2018), as well as the Gaia
proper-motion and parallax measurements for our stars. From
GALAH we use Teff , ( )glog , vmic, and [Fe/H], along with
abundances with respect to Fe, of O, Si, Ca, Ti, Eu, Sc, Y, Mg,
Al, Mn, and Ba. Figure 1 shows the Galactic footprints of
GALAH and LAMOST. A portion of each survey’s spectrum
for a typical training set star is shown in Figure 2.

2.1. Quality Cuts and Data Cleaning

One of the formal assumptions of The Cannon is that the
training labels are known exactly, so constructing a high-fidelity
training set is crucial. To build our training set, we first determined
the set of stars in common between GALAH and LAMOST. We
performed a 1″ sky match between GALAH DR2.1 and
LAMOST DR4 v2 to identify these reference object candidates,
of which there were roughly 10,000. We then removed all stars
from the potential training set with signal-to-noise ratio (S/N) less
than 30 in either the LAMOST z band (snrz) or the GALAH
blue channel (snr_c1). We also removed any star for which
chi2_cannon (a column in the GALAH catalog, not a product
of our analysis)was greater than 4, which indicates that the best-fit
spectral model is a poor fit to the whole spectrum, and any star for
which flag_cannon was nonzero, which can indicate a variety
of problems with abundance determination. These cuts removed
roughly half of the stars from consideration.
We found that cutting on the reported GALAH label errors

did not improve our performance against the validation set. To
further exclude low-quality measurements from our training
set, we therefore generated and evaluated the fit of the best-fit
Cannon model spectrum for each reference stellar spectrum, for
every element in the GALAH catalog. The GALAH pipeline
uses separate Cannon models for each elemental abundance in

2

The Astrophysical Journal, 898:58 (20pp), 2020 July 20 Wheeler et al.



order to restrict each model to the wavelengths of unblended
lines. Each model has different best-fit parameters, which we
were not able to retrieve. They are, however, within the errors
of the mean reported stellar parameters for each star (Buder
et al. 2018). For the stellar parameter labels, we used the values
in the GALAH DR2.1 catalog,12 along with AK values
calculated with the Rayleigh–Jeans color excess method
(Majewski et al. 2011) applied to ALLWISE (Wright et al.
2010; Mainzer et al. 2011) and Two Micron All Sky Survey
(2MASS; Skrutskie et al. 2006) broadband photometry, as was
done for the GALAH models. We calculated χ2 between the
best-fit GALAH model and the observed GALAH spectrum for

every star in our training set in the region of the strongest lines
of each element (the chi2_cannon flag pertains to the global
fit). Appendix C lists the wavelength regions used, which are
the same windows used in the GALAH pipeline. The
distribution of χ2 values for some elements peaked lower than
expected from nominal measurement error alone by a factor of
2–3, meaning that a cut on some multiple of χ2/dof was not
theoretically justified. We removed all stars with χ2 values
above the 85th percentile, for any of its abundances. This led to
a significant improvement in our cross-validation (CV) results,
as discussed in our methods, on the order of 15%–40%). Using
the 75th percentile, as a more conservative cut, gave us no
improvement in CV tests. These cuts leave 1722 stars in the
training set. We do not exclude stars flagged in GALAH based
on flag_x_fe because we performed our own per-abundance
χ2 cut and because removing stars where the GALAH model
may be extrapolating reduces the size of our training set too
drastically. We emphasize, however, that The Cannon is likely
to extrapolate well for many abundances.

2.2. Dwarf and Giant Models

After the quality cuts described in Section 2.1, we were left
with a training set that spans the Kiel diagram and metallicity
(Figures 3, 4). We modeled giants and dwarfs separately, with
the division between models given in terms of LAMOST glog
and Teff by

⎧⎨⎩( )
( )=

<
- ´ +- 

g
T

T T
log

4.18 5200 K

6 10 K 7.3 5200 K.
1eff

4
eff eff

The split gives us 532 giants and 1190 dwarfs as our
reference objects. The values in Equation (1) to separate dwarfs
and giants are somewhat arbitrary. We find that each model
performance is not sensitive to these precise values. We
decided which elements to infer for each model by balancing
our ability to recover each abundance in CV (Section 4) with
the objective of having several elements across a nucleosyn-
thetic channel. For both models, we include Teff , glog , vmic,
[Fe/H], [O/Fe], and [Eu/Fe] as labels. For the dwarfs, we also
used iron-relative abundances of error-weighted mean α (from
Mg, Si, Ca, and Ti), Sc, and error-weighted mean s-process
(from Ba and Y), while for the giants we also used Mg (α), Al
(odd-Z), Mn (iron-peak), and Ba (s-process). Training a model
without α or Mg yields a systematic offset in inferred neutron
capture abundances, likely because the model will exploit
correlations between these nucleosynthetic families if they are
not controlled for.
We only used mean abundances in the same nucleosynthetic

family if they appeared strongly correlated in the training set.
We tried using dereddened Gaia G-band magnitude instead of

glog , which would allow us to apply a prior at test time, but we
found that this did not improve our results in practice. The
model had trouble predicting extinction, partially because our
training sets do not include any high-extinction stars. Including
extinction as a label did not improve our ability to predict any
of the abundances, so we opted not to.
For subsequent analysis, we cross-matched with Gaia by

taking the source within 1″ of the LAMOST star with the
lowest G-band magnitude. Throughout this paper, we use of the
parallactic distance estimates from Bailer-Jones et al. (2018),
which makes use of a prior incorporating the expected galactic
spatial distribution. Other distance catalogs (e.g., Anders et al.
2019) will have different biases for stars with uncertain

Figure 1. Face-on (top) and edge-on (bottom) contours in surface density
( ´5 104,3,2,1 kpc−2) shown in heliocentric Galactic coordinates for GALAH
and LAMOST, which probes much farther into the outer disk and halo. The
Galactic center is at = =X Y8 kpc, 0.

12 Available at https://docs.datacentral.org.au/galah/.
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distances (e.g., those far from the Sun), so quantitative results
derived from our catalog will be conditioned upon the
assumptions of Bailer-Jones et al. (2018). Our results below
are largely qualitative and unlikely to be strongly dependent on
choice of distance catalog. Figure 5 shows the mean fractional
distance error as a function of Galactocentric radius, R.
Distance errors blur our maps of chemistry across the Galaxy
(Section 5.3), particularly far from the solar annulus, where
they reach 20%.

3. Model

The following is a brief description of The Cannon (see Ness
et al. 2015, for a more extended discussion). For this work we

build a JULIA-based implementation of The Cannon, which is
documented and available at this URL13 and via the JULIA
package manager. The source code uses the same nomenclature
as the description here and allows for optional masking of
labels (self-consistent training with the model constrained so
that each label is only “on” at specified wavelengths).
For each star, n, we take the flux value in the spectral pixel

with wavelength λ to be lFn and its (Gaussian, independent)
measurement uncertainty to be s ln . To prepare the spectra for
The Cannon, we first redshift-corrected the spectra using the z
value provided in the LAMOST data table and interpolated
each star to a common wavelength grid. We then continuum-
normalized the spectra by dividing out the continuum,
approximated by smoothing the spectra with a Gaussian kernel
with a 50Å standard deviation, truncated at 150Å from the
center, in the same manner as Ho et al. (2017a, 2017b). This
normalized flux is then near unity in the absence of emission or
absorption features. For each reference star, we also define ℓn to
be the vector containing its physical parameters and abun-
dances (its labels). These are the quantities we ultimately wish
to infer for the rest of the LAMOST spectra, at test time.
Our label vector ℓn for each reference star is

[ ( ) [ ] [ ] [ ]] ( )=ℓ T g vlog Fe H X Fe ... X Fe , 2n N
T

eff mic 1

where X ,..., XN1 are the elements whose abundances we wish
to determine. It is good practice for both numerical stability and
model flexibility to express all labels in units such that they are
distributed around zero and have similar magnitudes. We do
this by subtracting from each label its (training set) mean and
dividing it by its (training set) dispersion. This transformation
is then undone after the inference has taken place.
In numerous published uses of The Cannon (including this

one), the flux in each pixel is described by a second-degree
polynomial of the elements of the label vector whose
coefficients, q, are determined by a training set of spectra for
which, ideally, both accurate and precise labels are available.
For a given spectral pixel and star, we then have our spectral
flux, F, for our n reference objects at each wavelength, λ,

Figure 2. Comparison of the GALAH and LAMOST spectra for the same star, 2MASS 00010184+0407201, Gaia DR2 2740354684364096000. The top panels show
part of the star’s GALAH spectrum (S/N=65) and the Cannon model, while the bottom two show the same for LAMOST (S/N=179). On the left, note the large
Hβ line and surrounding features, on the right, observe the fit around a known Mn feature (highlighted in red on the left). Both the measured spectra and Cannon
models are shown with their 1σ errors, shown with error bars in the right panels and a shaded region in the left panels.

Figure 3. Our 1722 training stars in the LAMOST Kiel diagram space colored
by (GALAH) [Fe/H]. Since there are more metal-poor stars in the giant
training set, our giant model is unbiased down to lower metallicity.

13 github.com/ajwheeler/TheCannon.jl
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defined as
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[ ]( )
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0
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eff
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N

N

N N

eff

eff
2 2

eff

1

To specify an error model, we can write the above as a
likelihood function

∣ ( ( ) · ) ( )q h q s~ +l l l l l lℓ ℓF s s, , , , 3n n n n
2 2

where  is the normal distribution, sλ is model uncertainty
(either inherent stochasticity or physics that has not been
captured by the model) at wavelength λ, ql is the vector of
coefficients describing how the flux at λ varies with label value,
and h, the quadratic expansion (called the vectorizing function
in Casey et al. 2016), maps from labels to every zeroth-, first-,
and second-order combination of components of the label
vector,

( ) [ [ ] ( ) ] ( )h =ℓ T T T g1 ... X Fe log ... . 4n N
T

eff eff
2

eff

If ℓn is a vector of length N, ( )h ℓn is a vector of length
( )+N N3 22 . A more flexible model could be constructed by
replacing h to an expansion with higher-order terms, or to other
combinations of labels. However, quadratic models have been
shown to be sufficient in practice (Ness et al. 2015, 2016, 2019;
Ho et al. 2017a, 2017b). In fact, a linear model is often all that
is needed (Birky et al. 2020; Hogg et al. 2018). The
combinatoric increase in model parameters that would be
necessary for a higher-order polynomial is undesirable.
Figure 6 shows the likelihood function as a probabilistic

graphical model, which depicts the relationships between
observed and latent quantities. Ideally, the full joint distribution
over training data and output labels would be sampled from
directly (with e.g., Markov Chain Monte Carlo), but such an
approach is not computationally feasible. Instead, the problem
is divided into a training step, in which a point estimate of each
ql and sλ is estimated from the training set, and an inference
step, in which the labels of each star are estimated.
During the training step, each ql and sλ is jointly fixed to its

maximum likelihood estimate (MLE), given the labeled spectra
in the training set. For fixed sλ, the model is linear with fixed

Figure 4. Our 1722 training stars across the (LAMOST) Kiel diagram in bins of metallicity. For the extreme ends of our metallicity range, the lack of training set
coverage may bias our estimated labels.

Figure 5. Mean fractional distance error as a function of Galactocentric radius.
Distance errors blur chemical maps of the Milky Way far from the solar
annulus.

Figure 6. The Cannon likelihood as a probabilistic graphical model. During
training, the latent variables in the “stars” panel (ℓn) are fixed using stars for
which labels are known, in our case from GALAH. When inferring stellar
labels, the latent variables in the “pixels” panel (ql and sλ) are fixed to their
point estimates from training and the maximum likelihood estimates for all ℓn

are calculated.
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Gaussian error in ql, so its MLE, ∣q ls , can be calculated
analytically. Finding ls is then a matter of numerically
maximizing the log-likelihood,

⎛
⎝
⎜⎜( )

( ( ) · ∣ )

( ) ( )


å

h q
s

s

=-
-

+

+ + +

l
l l

l l

l l

l s
ℓ F

s

s

log
1

2

ln const, 5

n

n s n

n

n

2

2 2

2 2

in one dimension. During the inference step, the MLE of ℓn is
calculated with sλ and ql fixed to their point estimates. There is
no trick to get us out of multivariate optimization here, since h
is nonlinear.

4. Model Evaluation

We use 12-fold CV in order to verify that the model is able
to recover stellar labels. We partition the reference objects into

12 random subsets and then predict the labels of each subset
using the other 11 as training data. This gives us a prediction
for each reference star that has not leveraged its GALAH
labels. Figures 7 and 8 show CV performance for the giants and
dwarfs, respectively, along with the scatter, bias, and correla-
tion coefficient for each label. Our CV-assessed abundance
precision ranges from 0.05 to 0.23 dex for dwarfs and from
0.07 to 0.22 dex for giants. Examination of the labels inferred
for spectra from repeat observation of the same star shows
differences consistent with CV precision.
We also use CV to identify the thresholds beyond which our

model is highly biased or unprobed by the training data. We say
that the model is in this regime when it under- or overpredicts
the label being considered 90% of the time in CV. The specific
calculation is as follows: For a given label, l (e.g., =l Teff ), we
approximate ( )p l l,true inferred with a kernel-density estimate with
bandwidth chosen by Silverman’s rule (Silverman 1986) and

Figure 7. CV recovery of training set labels for the dwarf model. Horizontal lines show boundaries beyond which the model is biased or unprobed by the training set.

Figure 8. Analogous to Figure 7; CV recovery of training set labels for the giant model. Horizontal lines show boundaries beyond which the model fails to extrapolate.
While the scatter in [Fe/H] is higher at lower values, the model appears to be nearly unbiased down to [Fe/H]≈−1.5.
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then use this approximate distribution to find the values of
linferred at which ( ∣ )p l ltrue inferred excludes linferred at the 90% level.
These boundaries are shown as horizontal lines in Figures 7 and
8. Stars that fall beyond these boundaries are flagged in our
catalog. Figure 9 shows the precision (twice the scatter in
Figures 7 and 8) of each of our abundances relative to the range
over which the model is roughly unbiased. This quantity is often
what is relevant when comparing the labels of different stars,
rather than characterizing a single star.

4.1. Model Interpretability

The Cannon is simple enough that its parameters are open to
direct interpretation. This sets it apart from more complex
modeling approaches such as neural networks.

It is clear, for example, that our model learns Teff in large part
from the Balmer series, as this is where qTeff becomes large. By
examining model scatter, sλ, as a function of wavelength, we
can tell that our model is less precise in the regions of CN
bands, at the beginning of the spectral region of LAMOST. In
some wavelength regions, sλ drops to 0, likely because
continuum normalization introduces small correlations between
nearby pixels that are not accounted for by the model. It is also
apparent that the model is leveraging the whole spectrum to
predict abundances, rather than strong lines only. We
performed tests by isolating only regions where individual
abundance features are present in the spectra, fixing the model
coefficients to zero outside these regions at training time. This
approach is similar to the way in which GALAH determined
their abundance labels, using abundance windows. For the
LAMOST spectra, this approach of using windows fails to
recover abundance ratios in CV. Section 5.1 discusses some
implications of this fact, and our scatter and linear coefficients
are plotted as a function of wavelength in Appendix A.

5. Results

5.1. Catalog

We produce a catalog of stellar parameters and individual
abundances for 4,541,883 observations of 3,744,284 stars

across the Kiel diagram (Figure 10), which is available
online,14 along with our model coefficients and training set.
We combine observations of the same star by reporting (z-
band) S/N-weighted averages of their labels. Along with our
inferred stellar parameters and abundances, we provide the
LAMOST and Gaia identifiers for each star, as well as its
Galactic position, radial velocity (RV), and estimated actions.
We also provide windowed and whole-spectrum χ2 values and
flags to tell when the model is extrapolating. For each star, we
calculated approximate actions with galpy (Bovy 2015) using
the Stäckel fudge (Binney 2012; Bovy & Rix 2013) and
MWPotential2014, applied using Gaia distances (Bailer-
Jones et al. 2018) and proper motions, and LAMOST RVs.
While Gaia achieves a better RV precision (see Figure B1),
Gaia RVs are only available for approximately one-fifth of our
catalog. We assumed that the Sun sits at X= 8 kpc,
z= 0.025 kpc (Jurić et al. 2008) and is moving with =vX

-11.1 km s 1, = - -v 232.24 km sY
1, = -v 7.25 km sz

1 (Schoen-
rich & Binney 2009). Table 1 provides the full catalog schema.
To understand the effect of RV and distance uncertainty
on our estimated actions, we sampled their values from
their error distribution and calculated Galactocentric coordi-
nates and actions for each iteration, performed 20 times.
The median uncertainties for JR, Jf, and Jz, respectively, were
5, 21, and -1 kpc km s 1. Appendix D explores these errors in
more detail.
Here we highlight several caveats to the use of these data:

1. We allow our model to take leverage of the full
information content of the spectrum. It therefore learns
not only from the most fundamental features of each label
but also from correlated features (as we can identify using
our model coefficients, which is an advantage of a simple
interpretable model). Examination of the model’s coeffi-
cients reveals that the whole spectrum is leveraged in
order to predict each abundance. Our CV tests show that
our model works. It performs well with no hyperpara-
meter tuning, and our analysis of wide binaries in the
solar neighborhood (El-Badry et al. 2019) is indicative of
the additional discriminating power beyond an overall
metallicity these abundances provide (see Section 5.2).
However, the abundances are not being measured
directly. The fidelity of our predicted labels relies on
our reference objects (confined to the solar neighborhood)
being representative of the survey data. For this reason,
our reported abundances may be more accurate for disk
stars than halo stars. In order to identify many cases
where the model fails to generalize from the training set,
we provide χ2 values calculated across the whole
spectrum and individually in narrow windows centered
on strong lines, for each element. If the best-fit spectrum
is a poor fit around known features of a given element, it
is likely highly enriched or depleted in that element. In
fact, this approach is a good way to find such stars with
anomalous abundance patterns. Indeed, Casey et al.
(2019), Kemp et al. (2018), and Norfolk et al. (2019)
have used the departure of a basic stellar parameter model
generated with The Cannon, from the spectra, to find
LAMOST stars that are enhanced in Li, K, and Ba and Sr,
respectively.

Figure 9. Precision of each of our abundances relative to the range over which
the model is approximately unbiased. We generally infer abundance ratios with
precision at the 30%–50% level. Smaller values indicate higher relative
precision of that abundance and presumably higher discriminating power
between stars.

14 https://doi.org/10.7910/DVN/5VWKMC
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2. A caveat that is general to data-driven methods is that the
model will not necessarily extrapolate correctly outside
the parameter space spanned by the training set (see
Figure 4). We provide flags to indicate when individual
abundances are in the regime where they may be
incorrectly extrapolated, as well as a flag indicating
when Teff , ( )glog , vmic, or [Fe/H] may be incorrectly
extrapolated (Table 1). We determine when our model is
extrapolating as described previously, in Section 4.

3. While error estimates for each abundance ratio are
desirable, producing accurate ones would be prohibitively
costly with our current inference infrastructure. We
advise the user to utilize our CV-assessed error and
caution them to be aware that treating our abundance
estimates as homoscedastic is a necessary compromise.

4. Examination of open clusters in our catalog reveals that
our inferred abundance ratios for dwarf stars are subject
to strong systematics as a function of Teff . There are
astrophysical explanations for weak abundance trends
with Teff and ( )glog , such as atomic diffusion (Dotter
et al. 2017; Gao et al. 2018; Souto et al. 2019), but not
trends of this magnitude. Similar systematics are present
in the GALAH DR2 internal catalog (which employs the
same analysis pipeline as the public release), as well as
the official LAMOST [Fe/H] values for dwarfs, suggest-
ing that these trends are not introduced by our label
transfer but are present in ab initio stellar models and
possibly inherited via our training set. There are no
obvious systematics in the red giant stars in our catalog,
save for [Ba/Fe], discussed below. However, LAMOST
does not contain enough red giants in known open
clusters or wide binaries to determine the presence and
magnitude of any systematics conclusively.

Figure 11 shows systematic trends in Praesepe in
[Fe/H] as a function of Teff by plotting our inferred values
(for stars selected by Gaia Collaboration et al. 2018)
alongside GALAH internal DR2 values for the same open
cluster, which is expected to be chemically homogeneous
to a level well below our precision. GALAH internal
DR2 includes stars not part of the public DR2, but it
employs the same analysis pipeline. Trends of the type
exhibited in Figure 11 are reduced but not eliminated in

GALAH DR3 (A. Buder et al. 2020, in preparation).
Other abundances exhibit similar behavior. This indicates
that systematic error as a function of stellar parameters is
a major contributor to our abundance error (see also
Section 5.2). To the extent that these trends are physical,
the recommendation that the catalog user compare stellar
abundances within a narrow range of Teff remains.

The systematic trends we see in dwarf abundances
could be “calibrated out” using the nearly 3000 stars in
LAMOST DR4 open clusters (with two or more targets;
Cantat-Gaudin et al. 2018) and 142 known wide binaries
(El-Badry et al. 2019). Instead of applying a post hoc
correction, they could also be used to constrain the model
at training time. Correcting for these systematics in the
dwarf population is beyond the scope of our analysis.
Despite this systematic effect, our abundances for dwarf
stars are still useful for conducting analyses in restricted
temperature ranges (see, e.g., our examination of
abundances of wide binaries in Section 5.2). When
examining the abundance trends across the disk, we
exclude the dwarf stars and focus on the ≈1×106 red
giant stars in our catalog. These giants span a vast spatial
extent and alone demonstrate the scientific potential of
the distribution of stellar abundance data across the
Galaxy.

Unless otherwise stated, in the sections below we employ
stars in our catalog for which chi2 is less than 7000. Other
cuts were not found to have an effect on the results presented
below.

5.2. Detailed Abundances of Wide Binaries

El-Badry et al. (2019, hereafter EB19) used Gaia to identify
wide binaries in the solar neighborhood and examined their
properties as a function of [Fe/H]. We examined the detailed
abundances of those present in LAMOST. For ease of analysis,
we excluded pairs for which Teff or ( )glog was not available and
those containing at least one giant (a total of eight pairs).
Because of the strong systematic trends with Teff that are
present in our dwarf abundances, we constrain our analysis to
wide binaries with D <T 250 Keff , for which both stars are
LAMOST dwarfs.

Figure 10. Portion of the best-fit model spectra (black) and real data (colored), both with 1σ uncertainties, for six randomly chosen stars in our catalog. Though
simple, the model is flexible enough to fit the data across the Kiel diagram.
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To confirm the additional discriminating power of our
inferred abundances, we examined the abundance similarity of
wide binaries compared to a reference sample of nonbinary
pairs. We constructed a set of random pairs of field stars, where
each pair has the same metallicity as the binary pair. The
reference stars also conform to the quality cuts made in EB19
with [ ]<T 250 Keff . We used rejection sampling to ensure that
they had as closely as possible the same [ ]D Fe H distribution

as the EB19 sample. By comparing the abundance distribution
of the random field pairs with the wide binaries, we can
characterize the amount of information contained in our
detailed abundances above and beyond that contained by the
bulk metallicity, [ ]Fe H . To capture the difference in chemistry
between stars, we use precision-scaled Euclidean distance,

⎛
⎝⎜

⎞
⎠⎟

[ ] ( )å s
D X Fe

, 6
i

i

i

2

where the Xiʼs are the elements estimated and the siʼs are their CV-
assessed uncertainty. Figure 12 shows the distribution of these
chemical distances for both the wide binaries and the field pairs
with the same Δ[Fe/H] distribution. The difference between
these distributions shows that detailed chemical abundances provide
additional information about stars’ birth sites. Each abundance
included pushes the chemical difference distribution of the binaries
and random pairs farther apart. The wide binaries peak at a smaller
chemical distance than the reference pairs. Wide binaries peak at a
distance of 0.8, and reference stars peak at a distance of 2.5. This is
consistent with findings that the majority of wide binaries are
chemically identical to at least the 0.1 dex level (Andrews et al.
2018, 2019; Hawkins et al. 2020). We did not find that binaries
with a larger separation are more chemically different, in contrast
with the results of Ramirez et al. (2019).
If a cut in DTeff is not made, the systematic error in each

abundance becomes similar in magnitude to the dispersion of
chemistry in the solar neighborhood (0.1–0.5 dex, depending on
abundance). Without this DTeff cut, and with this subsequent

Table 1
Catalog Schema

Column Name Type Unit Description

source_id integer Gaia DR2 source id
designation string LAMOST unique star identifier
giantmodel boolean True if labels were estimated with giant model
teff float K Teff

logg float ( )glog
vmic float vmic

kiel_extrap boolean True if Teff or ( )glog (the axes of the Keil diagram) are in regime where model fails to extrapolate for any observation
chi2 float Whole-spectrum χ2

fe_h float [Fe/H]
fe_h_extrap boolean True if [Fe/H] value is in regime where model fails to extrapolate for any observation
x_fe float [X/Fe]
chi2_x_fe float χ2 calculated in windows around strong lines of X
x_fe_extrap boolean True if [X/Fe] value is in regime where model fails to extrapolate for any observation
snrz float LAMOST z-band S/N
ra float deg Right ascension
dec float deg Declination
R float kpc R, in Galactic cylindrical coordinates
phi float rad f, in Galactic cylindrical coordinates
z float kpc z, in Galactic cylindrical coordinates
vR float -km s 1 R-velocity
vT float -km s 1 f-velocity
vz float -km s 1 z-velocity
JR float -kpc km s 1 Radial action
Jphi float -kpc km s 1 Angular momentum
Jz float -kpc km s 1 Vertical action

Note. Here, x and X stand for each of the chemical symbols for the elements whose abundances are being estimated. Our Galactic coordinate system is right-handed.
We also make available the table of per-observation labels.

Figure 11. Inferred [Fe/H] vs. effective temperature for LAMOST and
GALAH dwarfs in Praesepe. The GALAH values come from internal DR2,
which used the same analysis pipeline as the DR2 values in our training set.
The systematic trend with Teff is spurious, since all stars in Praesepe have the
same abundances to below the precision achievable with low-resolution
spectra.
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high systematic error, random field pairs and wide binaries
appear to have very similar chemical difference distributions.
Even more stringent requirements for DTeff result in even more
distinct chemical distance distributions for the wide binaries, but
at the expense of the number of qualifying wide binaries. In fact,
the chemical differences we see in the wide binaries are much
smaller than the error we get in CV. This suggests that
systematic Teff-dependent effects dominate our CV-assessed
errors (see Figure 11). If, in future work, we were able to reduce
or eliminate this effect, perhaps by conditioning a model on
chemically homogeneous open clusters, we could produce much
higher fidelity detailed abundances. Currently, scientific exploi-
tation of our ≈3 million dwarf stars should employ narrow
ranges of Teff .

Our tests of the chemical differences between wide binary
stars indicate not only that the detailed chemistry provides
evidence of a common birth site. They also show that
systematic effects are a large fraction of our error budget—a
promising sign that we can do better with low-resolution
spectra in the future.

We also similarly investigated the chemical differences for a
sample of comoving pairs in Kamdar et al. (2019) compared to
a reference set of field stars at the same [ ]Fe H and found that
they were also chemically more similar than an equivalent set
of field pairs, although less so than the wide binaries. Simpson
et al. (2019) used GALAH abundances to determine whether
15 comoving pairs found in Gaia were conatal; the same
approach could be used here.

5.3. Mapping Chemistry in the Milky Way

We have one of the largest homogeneous samples of stellar
abundances. This sample is ideal for mapping the abundance
distribution of the Milky Way across a large spatial extent.
First, we map the disk across the meridional plane, (R, z), to
characterize the spatial abundance trends in that plane. Similar
maps can be created with a different set of abundances using
APOGEE, but that data set is most concentrated to the disk and
the inner Galaxy, while the LAMOST giants more extensively
span the halo and outer disk. APOGEE data clearly reveal the
flaring in intermediate-age populations in the (R, z) plane (e.g.,
Ness et al. 2016). This is presumably a consequence of radial
migration (e.g., Roškar et al. 2008), whereby stars increase in

scale height as they move outward in the disk (Minchev et al.
2012). Due to the correlations between abundances and ages
(Bedell et al. 2018; Feuillet et al. 2018, 2019; Ness et al. 2019),
we might expect to also see such flaring in mean abundance
maps, although this is potentially confounded by the metallicity
dependence of the age–abundance relationships (Ness et al.
2019). Detailed analyses of the chemodynamical distribution
across (R, z) that seek to make any quantitative claims require a
careful consideration of the LAMOST selection function.
Characterization of the flaring profile of the disk also requires
stellar ages, as noted by Minchev et al. (2014, 2018). Here, we
aim to show the potential of these data for more in-depth
analysis that accounts for the selection function.
Figure 13 shows the (R, z) plane colored by mean label value

for nearly 800,000 giant stars, for abundance ratios of Fe, O,
Eu, Mg, Al, Mn, and Ba, as well as Teff and ( )glog . These maps
span - < <z4 kpc 4 kpc and < <R7.5 kpc 15 kpc. The
disk is clearly distinct from the halo. At =R 8 kpc, for
example, the halo transition appears as a smooth mean
abundance change centered on ∣ ∣ »z 2 kpc. Flaring is seen in
the individual elements, particularly for O, Mg, Eu, and Ba. All
of these elements show different flaring, of varying strength
and profile. All abundances increase or decrease monotonically
with ∣ ∣z at fixed R, except for [Al/Fe], which increases with ∣ ∣z
until ∣ ∣ »z 2 kpc, beyond which it decreases with ∣ ∣z .
The apparent barium-depleted “cone” centered on the Sun is

caused by systematic trends in [Ba/Fe] as a function of Teff and
( )glog , in combination with LAMOST’s selection function. If

we plot only the red clump stars as identified by Ting et al.
(2018b; roughly 2× 105 stars), which exhibit a narrow range of
stellar parameters and which have very precise photometric
distances, this feature disappears. The shape and morphology
of flaring in the elements are preserved when examining the
red clump stars only. Finally, we note that both [Ba/Fe] and
[O/Fe] appear to be asymmetrically distributed about the
Galaxy’s midplane. This asymmetry in the mean abundance
value around the midplane persists in maps of the (R, z)
plane made with only red clump stars, suggesting that they are
not related to Teff -dependent systematics. As seen in Figure 13,
this feature does not correlate clearly with Teff or ( )glog , nor
does it trace extinction as traced by dust maps, or mean S/N of
the stars. We do not rule out the possibility that the midplane
asymmetry seen in these elements is caused by selection
effects, particularly in light of the fact that these asymmetrical
features are stretched along lines of sight.
Figure 14 shows mean abundance maps in the (X, Y) plane

for kinematic thin-disk stars ( < -J 30 kpc km sz
1), as well as

mean Teff and AV maps, for comparison. We highlight the
apparent azimuthal structure in [Mn/Fe] and [O/Fe], which is
not easily explained by spurious correlation with Teff , AV, S/N,
z, or Jz. These are two abundances for which our inferred
values have lower relative uncertainty (Figure 9). Again, we
note that a complete treatment of these data would involve
explicit modeling of the LAMOST selection function. Note that
the sensitivity of [Ba/Fe] to Teff is clearly visible. Like the
“cone” in the ( )R z, plane, correlation of [Ba/Fe] with
heliocentric distance disappears in maps including only red
clump stars. The patterns in these maps along lines of sight are
likely of an observational origin but are not easily explained by
a single confounding factor. They do not trace mean height,
extinction, metallicity, Teff , or ( )glog .

Figure 12. Error-weighted chemical distances for EB19 wide binaries and for
random field pairs selected with the same cuts and chosen to have the same
Δ[Fe/H] distribution as the EB19 sample. The wide binaries are more
chemically similar than implied by their similarity in bulk metallicity alone.
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Azimuthal trends in abundance are known to exist in
Galactic gas and are often attributed to spiral structure (e.g.,
Wenger et al. 2019). Variations in the height of the midplane in
combination with LAMOST’s selection function could give
rise to azimuthal abundance gradients, but it is not clear why
this would be manifest in some abundances and not others
unless due to abundance–age correlations, which does not
appear to be the case here. Additionally, there is no correlation
between the strength of vertical (Figure 13) and azimuthal
(Figure 14) gradients, which would be expected if the
azimuthal trends were due to midplane variations.

Figure 15 shows mean abundance maps of LAMOST giants
for the thin disk ( < -J 30 kpc km sz

1) in the (R, vf) plane. By
using LAMOST RVs, we are able to probe farther out into the

disk than with the Gaia DR2 RVS sample. In this plane a
particularly prominent feature are the “ridges” first reported by
Kawata et al. (2018). A number of interpretations have been
given for the origin of these ridges, including perturbations
introduced by spirals, the bar, an external perturber, or a
combination of these (e.g., Antoja et al. 2018; Bland-Hawthorn
et al. 2019; Fragkoudi et al. 2019, 2020; Khanna et al. 2019;
Laporte et al. 2019). Of particular interest is the longest ridge
(outlined by a dashed line). A. Wheeler et al. (2019, in
preparation) will discuss its dynamical origin. Of our
abundances, the ridge is most visible in the [O/Fe] and [Mn/
Fe]. These are two elements that display the clearest azimuthal
abundance gradients, and for which our inferred abundances
have the lowest relative uncertainty (see Figure 9).

Figure 13. (R, z) plane colored by mean label value for nine labels of our 800,000 giant stars, summed over all f. The flaring of the disk can be seen in [Eu/Fe],
[Mg/Fe], and [Mn/Fe].
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5.4. The Disk−Halo Transition Seen in Chemistry

The distributions of the neutron capture elements, [Ba/Fe] and
[Eu/Fe], versus [Fe/H], colored by vf, are plotted in spatial bins in
Figures 16 and 17. Because of the Teff-dependent systematics in
[Ba/Fe], we have only plotted stars with < <T4800 K eff

5000 K in Figure 16. Using other temperature ranges does not
qualitatively change the plot, but not restricting Teff yields higher
dispersion in [Ba/Fe]. The azimuthal velocity, vf, allows us to
clearly distinguish between the disk and halo populations at the
scale heights (and vertical actions, Jz) where both are present
(primarily the center row in Figures 16 and 17), illuminating the
chemical differences between them. Disk stars are prograde across
R and concentrated to low z, with most disk stars having
f

-v 100 km s 1. There are fewer metal-poor disk stars as R
increases, with a narrower, more metal-rich distribution at larger R,
seen across the smallest z range. Halo stars are seen at larger z and
are characterized by their more isotropic, eccentric orbits. At

< <R11 kpc 13 kpc, most halo stars have f
-v 200 km s 1

with a distribution of = f
-v 80 70 km s 1. The halo stars also

appear to have increasingly negative velocities in the inner Galaxy.
At our intermediate height from the plane, < <z2 kpc 4 kpc,
the metal-poor stars ([ ] < -Fe H 1.0) are predominantly retro-
grade at our smallest R range, < <R3 kpc 5 kpc. Cutoffs of

» -J 100 km s kpcR
1 and »f

-J 1500 km s kpc1 also clearly
distinguish between disk and halo stars at large R. These

populations are not as dramatically distinguished at small R
because distance errors propagate to larger uncertainties in vf (see
Appendix D).
The distribution of (kinematic) halo stars in the ([Ba/Fe],

[Fe/H]) plane has a transition at [Fe/H]≈−1 (most clearly
seen in the middle row of Figure 16, ∣ ∣< <z2 kpc 4 kpc).
This metallicity corresponds to the transition between the disk
and halo, as well as the approximate boundary between the
accreted and (at least one component of the) in situ halo
(Bonaca et al. (2017), called “the splash” in Belokurov
et al. (2020) and the “heated thick disk” by Di Matteo et al.
(2019)). At least for barium, the abundance planes at

∣ ∣< <z4 kpc 6 kpc suggest an overlap in the chemical plane
of different sequences, perhaps associated with the accreted and
in situ halo. Both [Eu/Fe] and [Ba/Fe] have larger dispersion
at high [Fe/H], but the sequence of europium abundances
varies less across z.

6. Discussion and Conclusions

We have trained a data-driven model (The Cannon)to
estimate detailed abundances from low-resolution LAMOST
spectra, delivering up to seven abundances for ´3.9 106 stars to
a precision of 0.05–0.23 dex. A total of ´2.9 106 of these are
dwarf stars, for which we infer labels with 0.05–0.23 dex
precision. A total of ´8.8 105 are red giants for which we infer

Figure 14. Mean abundances of LAMOST giants in the thin disk ( < -J 30 kpc km sz
1), mapped in the (X, Y) plane. Teff and AV are also mapped for comparison.
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Figure 15. Mean abundance maps of thin-disk ( < -J 30 kpc km sz
1) LAMOST giants in the (R, vf) plane. The dashed box outlines the longest ridge of increased

stellar number density. We plot only stars with ( ) <glog 3 to minimize contamination from dwarfs, whose abundances are generally on a different scale and have
Teff -dependent systematic trends, but a vertical feature is still visible at the solar radius, =R 8 kpc, presumably induced by the selection function.

Figure 16. ([Ba/Fe]–[Fe/H]) plane, colored by azimuthal velocity, vf, and plotted in spatial bins in the Galaxy, with (up to) 700 randomly selected stars plotted in
each bin. Because of the Teff -dependent systematics in our inferred [Ba/Fe] values, we have only plotted stars with < <T4800 K 5000 Keff . With increasing ∣ ∣z , halo
stars (as distinguished by their lower f-velocities) become more dominant.
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abundances with 0.07–0.22 dex precision. Our best-fit model
spectra are easily reproducible using our catalog, implementation
of The Cannon, and model coefficients,15 which are available
online. We used the red giants to examine the spatial
distribution of abundances in the disk and halo and the dwarf
stars to investigate the chemical similarity of wide binaries.

Our analysis of the chemical similarity of dwarf stars in wide
binaries compared to field stars showed that these stars are from
a common birth site and enabled us to quantify the additional
resolving or discriminating power in the vector of our derived
abundances beyond an overall metallicity.

Using the red giants, we first mapped the profile of the disk in
the (R, z) plane in the elements O, Eu, Mg, Al, Mn, and Ba.
These maps show the flaring of the disk and the distinction in
abundances between the halo population at high latitudes and the
disk. Second, we examined face-on projections across the disk in
this set of abundances. These projections hint at some
nonaxisymmetric patterns in the abundances. Indeed, the Gaia
mission has revealed numerous dynamical deviations from
axisymmetry in the disk and perturbations in the solar
neighborhood (Antoja et al. 2018; Sellwood et al. 2019; Trick
et al. 2019). Third, we constructed mean abundance maps in the
(R, vf) plane and discuss the chemical signature of the high-
density ridges in this plane. Finally, we investigated the
abundance planes of [Ba/Fe]–[Fe/H] and [Eu/Fe]–[Fe/H]
across (R, z), making similar maps to Hayden et al. (2015), but
with the neutron capture abundances. These maps showed the
disk and halo trends across [ ]Fe H at all (R, z). These different
trends might be used to separate any in situ halo from heated disk
stars, from an accreted halo. As the set of abundances we deliver
give higher discriminating power to identify chemically similar
stars compared to [ ]Fe H alone, we expect that the multiple
families of abundances will be useful for studies of the plethora
of chemodynamical substructure in the Milky Way halo (see,
e.g., Antoja et al. 2018; Di Matteo et al. 2019; Helmi et al. 2018;
Myeong et al. 2019; Belokurov et al. 2020).

We derive abundances with diverse nucleosynthetic channels
and are demonstrably uncovering some of the breadth of
chemical information in the Milky Way. However, a number

of caveats are discussed in Section 5.1, and we further detail
some of these here.
In contrast to Ho et al. (2017a, 2017b), we find that our CV

results do not vary strongly with S/N. This indicates that our
precision is limited by that of reference labels themselves, and,
if improved, we would obtain higher-precision results for our
test objects that scale as expected with S/N.
Because our model is in some cases not inferring abundances

from the corresponding lines themselves, it may not be robust to
stars with properties or enrichment histories not represented in the
training set. This means that while stars that are highly enriched
or depleted in an element may not have their abundances
accurately inferred, the best-fit model should have large residuals
in regions of its known lines. Casey et al. (2019) used this effect
to identify stars that are unusually rich in lithium, but this
approach could be extended to all elements with strong lines in
the LAMOST wavelength range. In particular, it is challenging to
measure r-process abundances from r-process absorption features
even from extremely high quality, high resolution spectra, and
GALAH uses only two relatively unblended absorption regions
for their [Eu/Fe] measurement (Table C1). It raises questions
about stellar spectra that we are inferring [Eu/Fe] (albeit noisily)
from relatively low S/N, low resolution spectra, as confirmed by
CV, and that the [Eu/Fe] distribution across [Fe/H] mirrors that
of boutique studies (e.g., Bensby et al. 2005). The physical origin
of the significant correlations between absorption features of
nominally different nucleosynthetic families (Feeney et al. 2019)
is not clear but is presumably caused by a combination of the
inherent correlation induced by element-production mechanisms,
shared chemical enrichment history, and stellar physics. In other
words, the chemical manifold on which the majority of stars lie is
not well known. Of significant interest is most likely those stars
where we cannot well match the spectra with our data-driven
model, which is by far the minority of stars in LAMOST.
The large number of low- and medium-resolution spectra

available now (RAVE and SEGUE, in addition to LAMOST)
and coming in the near future (e.g., WEAVE, Dalton et al. 2012,
MOONs, Cirasuolo et al. 2014; 4MOST, de Jong et al. 2019 in
their lower-resolution modes; DESI, DESI Collaboration et al.
2016; Sloan V, Kollmeier et al. 2017; Gaia, Gaia Collaboration
et al. 2016) makes honing our ability to learn from these data a

Figure 17. Same as Figure 16, with [Eu/Fe] in place of [Ba/Fe] and with stars chosen without restriction on Teff .

15 See doi:10.7910/DVN/5VWKMC.
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fruitful endeavor. We also discussed future improvements to our
methodology, especially the possibility of using open clusters to
reduce the effect of systematic trends with stellar parameters in
inferred abundances. Other promising methodological directions
include using more robust inference for model parameters and
labels, perhaps allowing more rigorous error estimation, and
allowing missing labels in the training set, which would enable us
to use training data from multiple surveys.
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Appendix A
Linear Coefficients

Figures A1 and A2 show the linear coefficients of our
models as a function of wavelength.

Figure A1. Linear coefficients for the dwarf model, omitting high-uncertainty
pixels with Ål < 4000 . Figure A2. Same as Figure A1, but for our giant model.
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Appendix B
Radial Velocity Precision

Figure B1 shows reported RV error for stars in our catalog,
as measured by Gaia and LAMOST.

Figure B1. Reported RV precision of stars in our catalog from Gaia and LAMOST. While the LAMOST precision is worse, Gaia only measured RVs for
approximately one-fifth of our catalog.
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Appendix C
GALAH Windows

Table C1 lists the GALAH line windows for each estimate
element. We used these windows to calculate per-element χ2

values for GALAH spectra to eliminate spurious measurements
from our training set.

Table C1
GALAH Line Windows for Each Element

Element Windows (Å)

Al (6695.78, 6696.17), (6698.41, 6698.92), (7834.95, 7835.47), (7835.84, 7836.43)
Ba (5853.53, 5853.86), (6496.68, 6497.19)
Ca (5857.22, 5857.60), (5867.28, 5867.72), (6493.48, 6493.99), (6499.37, 6499.94), (6508.52, 6509.03)
Co (6632.23, 6632.81), (7712.41, 7713.07), (7837.76, 7838.50)
Cr (4775.03, 4775.21), (4789.20, 4789.47), (4800.83, 4801.20), (4847.98, 4848.31), (5702.12, 5702.50), (5719.50, 5719.99), (5787.64, 5788.14), (5844.40,

5844.79), (6629.80, 6630.25)
Cu (5781.92, 5782.42)
Eu (5818.61, 5818.99), (6644.97, 6645.29)
K (7698.57, 7699.31)
La (4716.29, 4716.61), (4748.62, 4748.85), (4803.92, 4804.24), (5805.52, 5805.96)
Li (6707.37, 6708.26)
Mg (4729.90, 4730.22), (5710.86, 5711.30)
Mn (4739.01, 4739.29), (4761.37, 4761.64), (4765.69, 4766.06), (4783.17, 4783.58)
Na (4751.71, 4751.94), (5682.54, 5682.92), (5687.93, 5688.37)
Ni (5748.21, 5748.59), (5846.82, 5847.21), (6482.60, 6483.05), (6532.58, 6533.10), (6586.02, 6586.47), (6643.37, 6643.94), (7713.89, 7714.48), (7788.48,

7789.29)
O (7771.53, 7772.27), (7773.75, 7774.57), (7775.08, 7775.75)
Sc (4743.56, 4743.98), (4752.99, 4753.41), (5657.68, 5658.12), (5666.92, 5667.30), (5671.59, 5672.09), (5684.02, 5684.30), (5686.72, 5687.21), (5717.02,

5717.52), (5723.90, 5724.28), (6604.39, 6604.97)
Si (5665.21, 5665.82), (5690.18, 5690.68), (5700.91, 5701.29), (5792.70, 5793.31)
Ti (4719.32, 4719.60), (4757.96, 4758.28), (4759.07, 4759.48), (4764.40, 4764.82), (4778.06, 4778.43), (4781.56, 4781.93), (4797.84, 4798.12), (4798.35,

4798.63), (4801.80, 4802.21), (4820.11, 4820.66), (4849.04, 4849.41), (4865.28, 4865.83), (4873.88, 4874.20), (5689.25, 5689.80), (5716.25,
5716.80), (5720.27, 5720.65), (5739.24, 5739.68), (5866.02, 5866.79), (6598.89, 6599.53), (6716.52, 6716.90), (7852.19, 7853.01)

V (4746.51, 4746.78), (4784.32, 4784.60), (4796.74, 4796.97), (4831.52, 4831.75), (4875.26, 4875.72), (5657.07, 5657.68), (5668.13, 5668.62), (5670.60,
5671.10), (5702.78, 5703.88), (5725.27, 5725.82), (5726.87, 5727.36), (5727.42, 5727.97), (5730.99, 5731.49), (5736.82, 5737.26), (5743.20,
5743.70), (6531.18, 6531.62)

Y (4854.79, 4855.02), (4883.54, 4883.82), (5662.74, 5663.18), (5728.74, 5729.01)
Zn (4721.99, 4722.27), (4810.36, 4810.63)
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Appendix D
Action and Azimuthal Velocity Uncertainty

Figure D1 shows the median values and errors of the three
actions and azimuthal velocity as a function of Galactocentric
radius. JR is particularly uncertain, and extremely so for stars
interior to the Sun.

Figure D1. Median values and uncertainties of the three actions and azimuthal velocity as a function of Galactocentric radius, R. Note that the error bars here do not
show scatter, but median uncertainty.
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