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Scalable quantum computation with fast gates in two-dimensional microtrap
arrays of trapped ions
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We theoretically investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a
two-dimensional microtrap architecture. In one dimension, such fast gates are optimal when employed between
nearest neighbors, and we examine the generalization to a two-dimensional geometry. We demonstrate that fast
pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighboring traps
faster than the trapping period, with experimentally demonstrated laser repetition rates. Notably, we find that
without increasing the gate duration high-fidelity gates are achievable even in large arrays with hundreds of
ions. To demonstrate the usefulness of this proposal, we investigate the application of these gates to the digital
simulation of a 40-mode Fermi-Hubbard model. This also demonstrates why shorter chains of gates required to
connect arbitrary pairs of ions make this geometry well suited for large-scale computation.
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I. INTRODUCTION

Trapped ion platforms are very promising for implement-
ing large-scale quantum computations, such as simulations
of many-body quantum systems, in the near future. The
achievement of a scalable quantum computer would allow for
unprecedented advances in quantum chemistry, physics, and
biology, from the study of molecular bonds and structure to
better understanding high-temperature superconductivity.

While trapped ion platforms have demonstrated several
key elements required for large-scale quantum computing—
long coherence times [1], single-qubit and two-qubit gates
with fidelities above fault-tolerant thresholds [2–4], and high-
fidelity readout [5]—scalability remains an issue. Chains of
ions are typically trapped in a common potential generated
by a Paul trap, with collective vibrational modes used for
entanglement. However, current approaches to scaling these
devices are limited, either by speed or by fidelity. This is
largely due to the sideband-resolving mechanisms generally
used to implement two-qubit entangling gates, that require
the gate be much slower than the trap frequency, such as the
Cirac-Zoller [6–9] and Mølmer-Sørensen [10–12] schemes.
Moreover, as the number of ions in the chain is increased, the
motional sidebands become harder to address, and thus the
gate time must increase [13].

One proposal for scaling these devices involves two-
dimensional (2D) arrays where ions are shuttled around seg-
mented traps to perform multiqubit gates [14–16]. However,
these approaches require time-dependent manipulation of
the trapping potentials, and even the fastest experimentally
demonstrated processes take multiple trap periods. Recent
work by Ratcliffe et al. [17] has proposed the use of fast
entangling gates that can be performed between ions in neigh-
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boring microtraps in a linear array using sequences of ultrafast
counterpropagating pairs of laser pulses [17–21], even in the
presence of large numbers of surrounding ions. Notably this
scheme requires no manipulation of trapping potentials for
shuttling ions; entangling gates can be performed between
ions in neighboring traps in situ and outperform state-of-
the-art shuttling schemes in terms of speed. Further work
has demonstrated that these gates can be enhanced by the
presence of micromotion, which is otherwise detrimental to
gates implemented on radial trap modes [22].

These recent developments lay the basis for this paper,
where we investigate the application of fast entangling gates
to architectures where ions are individually trapped in a two-
dimensional microtrap array [23,24]. A simple 2 × 2 micro-
trap array is visualized in Fig. 1. In Sec. II, we introduce
the mechanism considered for implementing fast entangling
gates that uses optimized sequences of ultrafast π pulses.
In Sec. III we show that high-fidelity gate operations are
theoretically achievable faster than the trap period, for realistic
trap parameters and demonstrated laser repetition rates. These
gates are insensitive to the number of surrounding ions, paving
the way for computation in large microtrap arrays. To provide
an example of a large-scale computation that fast gates in
microtrap arrays could enable, we study the feasibility of
realizing a digital simulation of the Fermi-Hubbard model in
Sec. IV.

II. BACKGROUND: FAST ENTANGLING GATES WITH
ULTRAFAST PULSES

Entangling gates can be implemented in trapped ions faster
than the trapping period 2π/ωt by exciting multiple collec-
tive motional modes, and using state-dependent motion to
generate entanglement between their electronic states. This
has recently been demonstrated by Schäfer et al. [25] using
amplitude-shaped pulses to drive state-dependent trajectories
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that implement maximally entangling gates [26]. While this
method was able to implement a high-fidelity (99.8%) en-
tangling gate in 1.6 μs, gates significantly faster than the
trap frequency were associated with a much lower fidelity
(≈60%).

An alternative mechanism for fast entangling two-qubit
gates has the state-dependent trajectories driven by counter-
propagating pairs of ultrafast resonant pulses each with pulse
area π that implement geometric phase gates [17–21,27–
29]. Each pulse pair imparts a state-dependent momentum
kick of ±2h̄k on each ion. When interspersed with periods
of free evolution, the state-dependent kicks can be used to
orchestrate internal state-dependent phase-space trajectories
of multiple motional modes. In the ideal two-qubit fast gate,
these phase-space loops will close perfectly and the state-
dependent phase accumulation along each trajectory will lead
to a π/2 phase difference between the |↑,↑〉/|↓,↓〉 and
|↑,↓〉/|↑,↓〉 internal basis states. However, designing pulse
sequences to orchestrate these trajectories such that they sat-
isfy these two conditions is highly nontrivial and requires a
numerical optimization approach.

In this paper, we consider fast gate schemes where pulse
sequences have pulse pairs grouped together, with pulse
groups separated by periods of free evolution. We employ a
global procedure to optimize pulse sequences for high-fidelity
fast gates [30]. In this optimization the free parameters are
the number of pulses in each group (corresponding to the
magnitudes of the state-dependent kicks). The total gate time
is fixed in each optimization, and characterizes the duration
of free evolution between pulse groups. We will report the
results of these optimizations in terms of the minimum re-
solving repetition rate fmin, which is the minimum repetition
rate required such that pulse groups do not overlap. It has
previously been shown that for a laser with a pulse rate above
fmin the gate fidelity is robust to the finite repetition period
between π pulses [17]. Pulse sequences can be optimized
for a specific repetition rate with a simple extension of our
optimization procedure, as outlined in Ref. [30]. Further detail
of this procedure is provided in Appendix B.

III. RESULTS: FAST GATES IN A 2D MICROTRAP ARRAY

We first examine a simple 2 × 2 square cell of ions in
individual traps with an edge length d corresponding to the
distance between nearest-neighbor (NN) traps, as shown in
Fig. 1. As there is only one key timescale of this system,
the angular trap frequency ωt , the results of this section will
be presented in units of ωt

2π
(trap frequencies) and 2π

ωt
(trap

periods). In the analogous one-dimensional (1D) case, the
mode structure is defined by the scaled difference between
the breathing and common motional modes frequencies, χ ≡
ωBR−ωt

ωt
, which can be calculated in terms of trap parameters.

Equivalently, we find that this 2D cell can be nondimen-
sionalized in terms of the normalized difference between the
squared breathing and common motional mode frequencies

ξ ≡ ω2
BR−ω2

t

ω2
t

(see Supplemental Material to Ref. [17]). This can
similarly be calculated based on trap parameters, as outlined
in Appendix A.

FIG. 1. Schematic of a simple 2 × 2 ion crystal in two dimen-
sions. Ions are represented as (orange) spheres in (blue) potentials.
The distance between the minima of nearest-neighbor traps, d , is
shown. In this paper, we assume the microtraps to be Paul traps with
equal radial and axial trapping frequencies of ωt , each containing a
single ion.

We perform global optimizations of pulse sequences to
realize a fast gate between nearest-neighbor ions in the 2 × 2
square cell for different values of ξ . In analogy to the 1D
treatment in Ref. [17], we identify n2

maxξ as a characteris-
tic parameter to characterize gate dynamics, where nmax is
the number of pulses in the largest pulse group of a given
optimized pulse sequence. In our calculations we assume
the common-motional Lamb-Dicke parameter is fixed to η =√

h̄
2Mωt

= 0.16; this corresponds to a fixed trap frequency

of ωt/2π = 1.2 MHz if the π pulses are performed on the
S1/2 → P3/2 optical transition in 40Ca+. Figure 2 shows gate
infidelity is monotonic with n2

maxξ until it falls below 10−2.
In the monotonic region, the infidelity is dominated by phase

FIG. 2. Infidelities of optimized gates are plotted as a function of
n2

maxξ , where nmax is the largest number of pulse pairs in a given group
for a given gate, plotted for several different gate times (in multiples
of the trap period τ0 = 2π/ωt ). For each gate time, the infidelity
of a gate is well described by the parameter n2

maxξ until it falls
below approximately 1 − F = 10−2. The vertical lines correspond
to the maximum values of n2

maxξ achievable with a state-of-the-art
5-GHz repetition rate laser [29] without pulse groups overlapping
for a given gate time and a trap geometry with ωt = 2π × 1.2 MHz
and d = 100 μm (ξ = 1.2 × 10−4). The horizontal dashed line is
an indicative fidelity threshold to implement fault-tolerant error
correction with a Bacon-Shor code with a depth of 10 [31].

012618-2



SCALABLE QUANTUM COMPUTATION WITH FAST GATES … PHYSICAL REVIEW A 102, 012618 (2020)

FIG. 3. Gate infidelity as a function of resolving repetition rate
for ξ = 1.2 × 10−4, which corresponds to an intertrap distance of
d = 100 μm for ωt = 2π × 1.2 MHz. Results are presented for a
variety of gate times, for gates between nearest-neighbor (filled) and
diagonal (empty) pairs of ions in a 2 × 2 cell. Both repetition rate
and gate times are presented in trap periods (τ0 = 2π/ωt ). The target
error correction threshold 1 − F = 10−4 is shown by the horizontal
dashed line.

accumulation error, for which optimal solutions are well
characterized by n2

maxξ . When this parameter is high enough
to satisfy the phase condition, residual infidelity is due to
motional restoration errors, which are not well characterized
by n2

maxξ .
Our results suggest that for realistic trapping parameters

of ωt = 2π × 1.2 MHz and d = 100 μm (realistic values
for the experimental “Folstrom” microtrap array reported in
Ref. [23]) a state-of-the-art 5-GHz repetition rate laser [29] is
able to resolve pulse sequences that implement gates as fast as

700 ns (0.85 trap periods) with infidelities as low as ≈10−4.
This is in agreement with Fig. 3, which shows optimizations
of gates as fast as 0.65 trap periods able to achieve almost
99.99% fidelity, requiring repetition rates ≈2 GHz. Longer
gate times above one to two trap periods require significantly
lower repetition rates to achieve high fidelities; Fig. 3 demon-
strates that a repetition rate of ≈300 MHz is sufficient to
resolve 1.85 trap period gates with fidelities above 99.99%,
both for gates between nearest-neighbor ions and for ions in
diagonally separated microtraps (i.e., with intertrap distance
of

√
2d). In general, low repetition rate lasers can be used for

gates in this architecture, at the cost of longer gate times (as
we show in the following sections; see Fig. 6). We emphasize
that for smaller intertrap distances d these gate speeds can
be achieved with lower repetition rate lasers. The phase-space
trajectories of the motional modes during an exemplary 2.0
trap period gate are visualized in Fig. 4.

While Fig. 3 shows that gate fidelity is roughly monotonic
with repetition rate, we see a discontinuity in the trends at
roughly 1 − F∼10−3, particularly apparent for shorter gate
times. Like the discontinuity observed in Fig. 2, this happens
as the infidelity transitions from being limited by the accumu-
lation of sufficient phase difference between the internal states
(low repetition rate) and motional restoration (high repetition
rate). The threshold depends on the gate time and ξ , but
when all else is equal we see that a higher repetition rate
is always better. For sub-trap-period gate times, we see that
motional restoration errors contribute to the infidelity on the
order of 10−3.

We have become aware of recent work by Wu and Duan
[32], where the authors investigate fast gates in a similar 2D
microtrap architecture. Our results are comparable to those
presented in their work; for system parameters correspond-
ing to ξ = 1.2 × 10−3 (d = 50 μm, ωt/2π = 0.93 MHz—see
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FIG. 4. Phase-space trajectories of the motional modes of a fast gate in a 2 × 2 microtrap array. The real and imaginary components
of α correspond to nondimensional position and momentum of each mode, respectively: α = x/(2x0 ) + ip/(2p0) where x0 = √

h̄/2Mωt and
p0 = √

Mh̄ωt/2. Each motional mode is represented in the rotating frame with respect to its mode frequency. The red (dashed) lines correspond
to the trajectories when both ions have the same qubit state (|↑↑〉, |↓↓〉), and the blue (solid) lines correspond to trajectories where the two
targeted ions are in different qubit states (|↓↑〉, |↓↑〉). Note that each motional mode is restored by end of gate operation. The difference in
areas enclosed by these two trajectories will lead to state-dependent phase accumulation; when the sum of the area differences is π/2, the gate
is maximally entangling. In the absence of pulse errors, this particular gate operation has a fidelity of approximately 1 − 10−9 and a duration
of 2.0 trap periods, for a trap characterized by ξ = 1.2 × 10−4.
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Supplementary Material V of Ref. [32]) the authors describe a
2.15-μs gate with infidelity ≈10−4 with a 80-MHz repetition
rate using 86 π -pulse pairs. For the same parameters, we
find a comparable 1.93-μs gate with an infidelity of 3.5 ×
10−4, requiring fmin = 88 MHz and 132 pulse pairs. We note
that while the gate scheme used in Ref. [32] is optimal in
creating the desired phase difference between internal states
it satisfies motional restoration by requiring gate times that
are integer multiples of two trap periods. In contrast, our
scheme allows arbitrary gate times, including those below
the trap period, as we explicitly optimize both for desired
phase and for motional restoration of all modes. Achieving
both of these conditions for sub-trap-period gates comes at the
cost of requiring more pulses and higher laser repetition rate.
The optimization scheme applied in this paper places strict
constraints on the timings of the pulses; results can be further
improved by adding a second stage of local optimizations on
pulse timings. We have reported on the effectiveness of such
a two-stage optimization protocol in Refs. [30,33].

A. Performance in large microtrap arrays

Thus far we have restricted our analysis to the simple
microtrap array with four ions in a 2 × 2 cell. Here we will
consider the performance of fast gates in scaled microtrap
arrays; we will report results for N × N arrays, which will
place an upper bound on achievable gate fidelities in more
general N × M arrays (N � M). A brute force approach to
this analysis might entail optimizing gates individually for
arrays of different sizes, and comparing achievable fidelities
for comparable operation times and repetition rates. However,
the complexity of the infidelity expression given in Eq. (B1)
scales with the number of motional modes, which in turn
scales as N2 (i.e., with the number of ions in the array). Thus
optimization with this cost function quickly becomes com-
putationally infeasible for all but the smallest 2D microtrap
arrays.

We take an alternative approach, where we directly apply
gates optimized for the simple 2 × 2 cell to larger N × N ar-
rays, in analogy to the one-dimensional treatment in Ref. [17].
This approach has the benefit of the control scheme (i.e.,
the pulse sequence used) remaining constant as the number
of ions is increased, and thus the total operation time and
required repetition rate also do not change. Calculation of
the phase accumulation and motional restoration terms in
Eq. (B1) includes all motional modes of the ions, and thus
the fidelities we report here are a lower bound on what is
achievable in large microtrap arrays.

The result of this approach is shown in Fig. 5, which shows
that the gate is largely unaffected by the presence of many
surrounding ions, with infidelity plateauing to extremely low
values. This is similar to the scaling results presented in
Ref. [32]. We find that the magnitude to which the gate fidelity
is affected depends on the location of the two ions the gate
is performed on in the lattice. We find that in the best cases
(along the edge of the array) the size of the lattice has little
effect on the infidelity, and in the worst cases (toward the
middle of the lattice) the infidelity grows by little more than
an order of magnitude (to ≈10−8). Given that our optimization
routine is able to find extremely low infidelity solutions, gates

FIG. 5. Scaling of nearest-neighbor fast gates in different loca-
tions in a square microtrap array with different numbers of ions. The
pulse sequence has a total gate time of 2.0 trap periods, a minimum
resolving repetition rate of 450 ωt

2π
, and a theoretical infidelity of 10−9

in a simple 2 × 2 array. The locations are pictorially represented for
the 4 × 4 array. Gate infidelity does not significantly increase, with
minimal change from the infidelity of gates in a 2 × 2 cell at best,
and an order-of-magnitude increase (≈10−8) at worst.

even in the worst-case locations will be very robust in large
microtrap arrays. This shows that microtrap arrays are well
suited to large-scale quantum computation, which we discuss
further in Sec. IV.

B. Optimal diagonal gates

Previous studies have shown that, for computation on a
linear ion chain, it is optimal to perform fast gates exclusively
between NN ion pairs [19,21]. This optimality is particularly
important for gates faster than the trapping period, as gates
between two distant ions must involve the motion of the ions
between them and thus are limited to a timescale set by the
trapping frequency. Non-nearest-neighbor operations can be
built using SWAP operations which can be realized with three
NN fast gates, up to local rotations [34]. However, it has not
been shown whether NN optimality extends to gates between
ions that are diagonally separated in the square 2 × 2 cell. The
existence of an intuitive answer is obscured by the tradeoff
between increased gate time for (a) a single diagonal gate as
compared to a NN gate due to a factor of

√
2 larger inter-ion

separation and (b) an equivalent NN operation due to the
multiple gates required to build the SWAP operation(s).

We will seek to clarify this tradeoff by comparing diagonal
gates to their NN equivalent by the repetition rates required
to resolve high-fidelity (above 99%) gates across a range of
gate times. The fidelity and operation time for the equivalent
NN operation are calculated by multiplying fidelities and
adding the gate times of each of the four constituent NN
operations (three gates to compose the SWAP operation, and
one entangling gate). This is presented in Fig. 6, where we fit
each dataset to the trend fmin = aτ

−5/3
G (where fmin and τG are

the laser repetition rate and gate time in trap units). The fitted
parameter a is 578.8 and 5245.3 for the diagonal gate and
equivalent NN operation data, respectively. This suggests that
the repetition rate requirement to perform a single diagonal
gate is almost an order of magnitude lower than the required
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FIG. 6. Minimum repetition rates required to resolve gates with
fidelity above 99% as a function of gate time for a single diagonal
gate (blue, triangles) and for an equivalent operation built out of
nearest-neighbor gates (red, circles). Each data point corresponds to
a gate optimized for a 2 × 2 microtrap array with ξ = 1.2 × 10−4.
Repetition rates and gate times are both presented in trap units in
multiples of 2π

ωt
and ωt

2π
, respectively.

repetition rate to implement an equivalent operation built out
of NN gates, for a given operation time. Therefore it is clear
that the notion of nearest-neighbor optimality does not extend
to gates between diagonally separated ions in a microtrap
array.

IV. EXAMPLE COMPUTATION: SIMULATION OF
THE FERMI-HUBBARD MODEL

We have thus far shown that fast, microsecond entangling
gates can be performed between ions in large 2D microtrap
arrays with high fidelity. It is thus natural to investigate the
use of this platform for a large-scale quantum computation.
In particular, we will now describe how such a platform
can be used to realize a digital simulation of a 40-mode
Fermi-Hubbard Hamiltonian, following the general approach
outlined in Ref. [35]. This is an extension of a previous
analysis that investigated the use of fast gates in a 40 ion
chain in a single Paul trap to perform this task [34]; the
authors found that the repetition rate requirement to perform
this computation was well beyond the capabilities of current
experiments. We find that this same task has a far smaller repe-
tition rate requirement when performed on a two-dimensional
microtrap array, well within the scope of current experimental
demonstrations.

A. Simulation algorithm

The Fermi-Hubbard Hamiltonian we will seek to simulate
has the following form:

H = w

20∑
〈i, j〉,σ

(b̂†
i,σ b̂ j,σ + H.c.) + U

20∑
j=1

b̂†
j,↑b̂ j,↑b̂†

j,↓b̂ j,↓, (1)

where b̂† (b̂) is the fermionic creation (annihilation) operator;
σ =↑, ↓ is a spin index; and 〈i, j〉 denotes nearest-neighbor
pairing. This Hamiltonian describes spin- 1

2 fermions in a

5 × 4 lattice, interacting with nearest neighbors only. The first
term represents tunneling of fermions between neighboring
sites, and the second term describes the potential generated
by on-site occupation.

We map Eq. (1) onto Pauli operators {σx, σy, σz} that act
on a system of 40 interacting qubits (one for each fermionic
mode) by the Jordan-Wigner (JW) transform [36]:

H →
∑

j

Hj = w
∑
λ=x,y

( 39∑
j=2

σ
j−1

λ ⊗ σ j
z ⊗ σ

j+1
λ

+
30∑
j=1

σ
j

λ

j+9⊗
k= j+1

σ k
z ⊗ σ

j+10
λ

)

+ U

⎛
⎝20 +

20∑
j=1

σ 2 j
z ⊗ σ 2 j−1

z +
40∑

k=1

σ k
z

⎞
⎠.

(2)

Details of this mapping are included in Appendix C. For
purposes of digital simulation we compose the time-evolution
operator by exponentiation of Eq. (2) and employ a first-order
Trotter-Suzuki decomposition (in units where h̄ = 1):

Û (t ) = e−i
∑

j Ĥ j t ≈
( ∏

j

e−iĤ j
t
n

)n

, (3)

where n is the number of Trotter steps, and the summands Hj

refer to individual elements of the sums in Eq. (2). Following
the algorithm outlined in Ref. [35], each of the unitaries can
be implemented by a local rotation on some mth qubit, and a
pair of multiqubit entangling gates:

e−iĤ j
t
n = Û †

UMQ e−iφσ̂ m
z ÛUMQ, (4)

where ÛUMQ is the ultrafast multiqubit (UMQ) gate:

ÛUMQ = exp

⎛
⎝−i

π

4
σ̂ m

z

∑
j �=m

σ̂ j
z

⎞
⎠. (5)

The summation in the above equation is only over the qubits
acted on by the particular Hj term.

A N-body UMQ operation can be physically realized by
a set of N − 1 fast geometric phase (GP) gates, as well as
single-qubit rotations that may be required to realize σx or σy

couplings [34,35]:

ÛUMQ = e−i π
4 σ̂ m

z

∑
j �=m σ̂

j
z =

∏
j �=m

Û j,m
GP . (6)

However, to construct some of the terms that arise in Eq. (2),
non-neighboring qubits will need to be entangled. In principle
fast gates can be performed directly between non-neighboring
ions, however as the coupling of these ions to their shared mo-
tional modes decays strongly with the distance between them
it is almost always preferable to construct such operations
with a series of nearest-neighbor gates [21]. We use SWAP

operations that “swap” the qubit states of two ions to connect
non-neighboring qubits; each SWAP gate can be constructed
from three fast gates, up to local single-qubit operations [34].
For large computations, the gates required to construct SWAP
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FIG. 7. Mapping of a 20-site Fermi-Hubbard model to a system of 40 interacting ion qubits in a 2D microtrap array. We have deliberately
chosen the numbering of the qubits to the ions in the array to reduce the number of gates required to simulate Fermi-Hubbard dynamics.
Exemplary terms in the Fermi-Hubbard Hamiltonian are shown representing different types of dynamics: hopping between nearest-neighbor
sites (black arrows) and onsite interaction (purple) between spin-up and spin-down fermions. The Jordan-Wigner (JW) transformations of these
terms are shown in gray. Conjugate terms are not explicitly visualized. Simulating the 20-site lattice shown requires 40 qubits—one for each
spin occupancy of each site.

operations are likely to be the majority of the total number of
entangling gates required.

B. Reduction in number of gates from 1D ion chains

For our platform for implementing this simulation algo-
rithm, we consider a 2D microtrap array of ions as shown
in Fig. 7. In this array, the numbering of qubits to ions in
the lattice is chosen judiciously for specific terms that arise
in Eq. (2). The aim of this section is to calculate the number
of fast gates required to implement the simulation algorithm
per Trotter step and compare to the number of gates required
with a 1D ion chain. We will not keep track of single-
qubit operations which only require one or few laser pulses
to implement and can thus be performed much faster and
with higher fidelity than fast two-qubit gates which typically
require tens or hundreds of pulses each [34].

There are three types of Hj terms in the JW mapped
Hamiltonian (2): 20 two-body terms of the form σ

j
z ⊗ σ

j+1
z ,

64 three-body terms of the form σ
j−1

λ ⊗ σ
j

z ⊗ σ
j+1

λ , and 60

11-body terms of the form σ
j

λ

j+9⊗
k= j+1

σ k
z ⊗ σ

j+10
λ (λ = x, y).

The unitaries arising from the two-body terms can each be
implemented with a single fast gate between NN ions, not
requiring the more elaborate decomposition in Eq. (4).

The unitaries arising from three-body terms do, however,
require the use of UMQ gates to implement. For example, con-
sider the term σ

j−1
x ⊗ σ

j
z ⊗ σ

j+1
x , which requires the three-

body UMQ gate:

Û 3body
UMQ = e−i π

4 (σ j
x ⊗σ

j−1
z +σ

j
z ⊗σ

j+1
x ). (7)

This operation can be realized by a pair of fast gates, Û 3body
UMQ =

Û j, j−1
GP Û j, j+1

GP , up to single-qubit rotations on j − 1 and j + 1
to transform from the σz to the σx basis. We have chosen
the lattice numbering (see Fig. 7) such that the qubit pairs
( j, j − 1) and ( j, j + 1) correspond to nearest-neighbor ions,
and thus no SWAP operations are required for the three-body
UMQs. There are 64 three-body terms in Eq. (2), each re-
quiring a forward (ÛUMQ) and backward (Û †

UMQ) UMQ to

implement, in total resulting in 256 fast gates required per
Trotter step.

The 11-body terms also require UMQs, which take the
form

Û 11body
UMQ = e−i π

4 (σ j
x ⊗σ

j+1
z +σ

j
x ⊗σ

j+2
z +···+σ

j
x ⊗σ

j+10
x ). (8)

Unlike Eq. (7), this operation involves nonlocal couplings
and thus its construction from fast two-qubit gates requires
the use of SWAP gates to create couplings between qubits in
non-neighboring ions. The number of SWAPs required varies
between the different 11-body terms and the locations of
the ions to be coupled in the array; in total the number of
fast two-qubit gates required for simulation of the 11-body
Hamiltonian terms is 2352 per Trotter step.

This brings the total number of gates required for im-
plementing the simulation on a 2D microtrap array to 2628
gates per Trotter step (this includes 344 diagonal operations).
For comparison, we now consider how many gates would
be required on a 1D ion chain where qubits are numbered
sequentially. The contribution from the two-body and three-
body terms does not change, as they similarly can be realized
without the use of SWAP operations. The UMQs that imple-
ment the 11-body couplings will require nine SWAP operations
and ten additional two-qubit gates. In total, implementing
the simulation algorithm on a 1D ion chain requires 4716
two-qubit fast gates per Trotter step. This demonstrates the
usefulness of microtrap ion arrays for large-scale computa-
tion; the increased closeness of ions in two dimensions allows
for a

√
3 reduction in the total number of gates required for

realizing this digital simulation of the Fermi-Hubbard model.
For larger-scale computations involving some N qubits, this
improvement will scale as

√
N .

C. Feasibility considerations

We now investigate the feasibility of realistically imple-
menting this computation on a microtrap array as studied in
Sec. III. In order for an implementation of this simulation
with ten Trotter steps to achieve reasonable fidelity (�75%),
individual entangling gate infidelity needs to be on the order
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of 10−5 or lower. As demonstrated in Fig. 5 much higher
fidelities F ∼ 1–10−8 are possible even in large arrays.

For realistic trap parameters (ωt = 1.2 MHz and d =
100 μm), these gates can be implemented in 1.7 μs with a
≈500-MHz laser. For ten Trotter steps, this means a total
simulation time of ≈50 ms. In contrast with the repetition rate
requirements specified in Ref. [34] (≈20 GHz), this is a far
more achievable goal, and much larger repetition rate lasers
have been experimentally demonstrated [29]. This is two
orders of magnitude faster than the lifetime of the metastable
D5/2 state in Ca40+ (considered as the qubit |1〉 state in this
paper). Moreover, the simulation fidelity is unlikely to be
affected if the rate of trap heating can be kept below five
phonons per second such that phonon absorption is unlikely
during the gate sequence [34].

However, the aforementioned gate fidelity of 1–10−8 as-
sumes an idealized trap and perfect laser control. Most im-
portantly, it does not take into account imperfect laser pulses
driving � �= π single-qubit rotations, which we have previ-
ously identified as a key experimental limitation [30]. For
a characteristic pulse rotation error of ε, we have shown in
Ref. [30] that a realistic estimate of single gate fidelity is

F = |1 − Npε|2 F0, (9)

where Np is the number of pulse pairs in the gate, and F0 is
its raw theoretical fidelity assuming perfect pulses. The gate
scheme presented in Fig. 5 is made up of 450 pulse pairs,
and thus rotation errors from imperfect pulses need to be on
the order of ε ≈ 10−8 or lower. Given that the state of the
art of single-qubit gates with ultrafast pulses has a fidelity
error on the order of 10−2 [29,37,38], it is clear that the
required experimental regime for realizing such a simulation
with fast gates has yet to be achieved. In Ref. [30], we have
made suggestions for improving these errors. One promising
approach is to replace each pulse with a composite BB1
sequence [39], which will result in a gate scheme that is robust
to first- and higher-order fluctuations in laser intensity.

D. Other error sources

While the required level of pulse control is likely the main
limitation of the fast gate mechanism, experiments have a
range of other limitations. We have analyzed the effects of
many error sources across several papers; here we list some of
the key points for the reader’s convenience.

1. Stray fields

Stray electric fields may result in differences in frequency
between neighboring traps, and are a possible source of error
for fast gates in microtrap architectures. This has been studied
in Ref. [22], where the authors reported that fast gate fidelity is
robust to stray fields as large as ≈1% of the applied voltages.

2. Hot motional states

In the same paper, the authors demonstrated that these fast
gate schemes are robust to high temperatures, even for mean
motional occupations on the order of n̄ = 10–100 [22].

3. Trap heating

Reference [34] investigated the effect of trap heating, dis-
covering that gate fidelity is only significantly affected if a
heating event occurs during the gate operation. Effectively, the
heating rate places a limit on the total number of gates that can
be sequentially implemented. However, given the gate speeds
reported in this paper, this number may still be large enough
for large-scale computation for experimentally demonstrated
heating rates (as discussed earlier in this section).

4. Timing errors

The effect of errors on the pulse timings has been discussed
previously, both for Gaussian noise [17] and shot-to-shot fluc-
tuations [33]. State-of-the-art lasers have exceptionally stable
repetition rates, with Refs. [28,29] demonstrating fractional
instabilities below 10−7. The gates discussed in this paper can
be made robust to timing errors, by fixing pulse timings to
integer multiples of the repetition period. This can be done by
adding a second stage to the optimization protocol wherein
the pulse timings are optimized on a finite grid specified by
the repetition rate, as we have demonstrated in Refs. [30,33].
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APPENDIX A: NONDIMENSIONALIZATION
MODE STRUCTURE

Visualizations of the corresponding mode eigenvectors,
bm, are shown in Fig. 8. Due to the symmetries of the
microtrap array we have considered, we are able to find nondi-
mensional expressions for the mode frequencies of a square
2 × 2 cell of ions in terms of the nondimensional parameter

ξ ≡ ω2
BR−ω2

t

ω2
t

. There are eight relevant motional modes of this
system, with frequencies ωm that can be expressed as

ω2
m

ω2
t

=
{

1, 1, ξ + 1, ξ + 1,− ξ

2
√

2
− ξ + 1,− ξ

2
√

2

+ 2ξ + 1,
ξ√
2

− ξ + 1,
ξ√
2

+ 2ξ + 1

}
. (A1)

This parameter can be expressed in terms of the intertrap
distance d and trap frequency ωt :

ξ = 2�

27

⎛
⎝ 3

√
δ + 18−8

√
2

3√
δ

+ 2(
√

2 − 4)

3
√

2(2
√

2 − 1)
+ 1

⎞
⎠

−3

, (A2)

where

δ =
√

−3528
√

2�2 + 5537�2 − 11 228
√

2� + 16 688�

− 28
√

2� + 63� − 50
√

2 + 88, (A3)

� = 1

M

27

d3ω2
t

e2

4πε0
. (A4)
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y

y

x x x x
FIG. 8. Visualization of the couplings of the motional modes to the ions in a 2 × 2 square cell. The displacements in the x and y directions

are represented in arbitrary units as the coupling vectors bm are normalized. The corresponding squared frequency of each mode is annotated,
ω2

m/ω2
t .

The components of the corresponding mode eigenvectors bm

can be interpreted as the couplings of the ions’ positions to the
mth motional mode. These vectors are visualized for each of
the modes of the 2 × 2 microtrap array in Fig. 8.

APPENDIX B: OPTIMIZATION METHODS

Our approach to gate design employs numerical optimiza-
tion techniques to identify a pulse sequence that implements
the desired entangling operation with fidelity as close to unit
value as possible. Specifically, we utilize the global optimiza-
tion methods outlined in Ref. [30] to numerically minimize
an expression of gate infidelity. We use a truncated expression
(generalized from Refs. [17,22,30]) for the infidelity of a fast
entangling gate between two ions, μ and ν:

1 − F ≈ 2

3
|�φ|2 + 4

3

∑
m

(
1

2
+ n̄m

)

× [(Kμ · bm)2 + (Kν · bm)2]|�αm|2, (B1)

where n̄m and bm are, respectively, the average phonon occu-
pation and classical eigenvector of the mth motional mode;
�φ is the phase mismatch; and �αm is the unrestored motion
of the mth motional mode in phase space:

�φ =
∣∣∣∣8η2

m(Kμ · bm)(Kν · bm)
∑
i �= j

ziz j sin (ωm|ti − t j |)
∣∣∣∣− π

4
,

(B2)

�αm = 2ηm

∑
k=1

zke−iωmtk , (B3)

where zk and tk are the number of pulse pairs and the time
of arrival at the ion of the kth pulse group, respectively.

Here ηm = k
√

h̄
2Mωm

is the Lamb-Dicke parameter of the mth

motional mode and Ki is a normalized vector corresponding to
the direction of the laser pulses with respect to the coordinates
of the ith ion. The inclusion of this vector allows the coupling
of the laser light to the motional modes to be expressed
for arbitrary laser orientation in the x-y plane. We assume a
coordinate basis where the x and y coordinates correspond to
the row and columns of the ion array, i.e.,

xi, j = {x1,1, y1,1, x1,2, y1,2, x2,1, y2,1, x2,2, y2,2}, (B4)

where (i, j) corresponds to the ith ion along the jth row of the
array. Unless otherwise stated, we will assume the direction
of the laser pulses to be colinear with the line that passes
through the equilibrium positions of the two ions involved in
the gate; i.e., the two ions are kicked directly towards or away
from each other by each kick from the counterpropagating
pulse pair. It is worth noting that the next-order terms of the
infidelity are strictly negative, and thus Eq. (B1) provides a
lower bound on the theoretical fidelity of a particular pulse
sequence.

For efficient optimization in the presence of multiple sur-
rounding ions, we optimize an antisymmetric pulse sequence
with 16 pulse groups that arrive at the ions at regular intervals,
i.e.,

zk = {−z8, . . . , −z2, −z1, z1, z2, . . . , z8},

tk = TG

16
{−8, . . . , −2, −1, 1, 2, . . . , 8}, (B5)

where TG is the total gate operation time. This is known as the
APG(16) scheme, where numerical optimization is performed
over the elements {z1, . . . , z8}. The antisymmetric constraints
on the elements of z and t guarantee momentum restoration of
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each motional mode, reducing the expression of |�αm| to

|�αm| = 2ηm

N∑
k=1

zk sin(ωmtk ). (B6)

This reduces the complexity of the infidelity cost function,
Eq. (B1), which is desirable for optimizations in 2D architec-
tures where even the most simple arrays have many motional
modes. For further details on the numerical optimization
routine used, see Ref. [30].

Here we provide two examples of optimized gate se-
quences, the fidelity of which can be verified using the ex-
pressions above. The first is for a system characterized by
ξ = 1.2 × 10−4:

zk = {23,−47,−47,−32, 31,−41,−47,

− 38, 38, 47, 41,−31, 32, 47, 47,−23},

tk =
{

− 1,−7

8
,−3

4
,−5

8
,−1

2
,−3

8
,−1

4
,

− 1

8
,

1

8
,

1

4
,

3

8
,

1

2
,

5

8
,

3

4
,

7

8
, 1

}
τ0,

which describes the gate with 1 − F  10−9, fmin = 450 ωt
2π

,
and TG = 2.0τ0. This is the gate used to create Figs. 4 and 5.
The second example is, again for a system characterized by
ξ = 1.2 × 10−4,

zk = {−74,−41,−14, 66, 24,−30,−72,

− 76, 76, 72, 30,−24,−66, 14, 41, 74},

tk = 1

16

{
− 10,−35

4
,−15

2
,−25

4
,−5,−15

4
,−5

2
,

− 5

4
,−5

4
,

5

4
,

5

2
,

15

4
, 5,

25

4
,

15

2
,

35

4
, 10

}
τ0.

This describes a gate with 1 − F  10−4, fmin = 950 ωt
2π

, and
TG = 1.25τ0.

During this optimization procedure, and in the fidelities we
report, we assume the Coulomb interaction can be truncated
to second order in the ion co-ordinates. This is an assump-
tion that will generally impact the gate fidelity, but can be
corrected for in a second stage of optimization which uses an
ordinary differential equation (ODE) description of the ion’s
motional dynamics [30]. This ODE description is also able to
explicitly incorporate the finite laser repetition rate. As this
optimization is a simple extension of the two-ion example
presented in Ref. [30], we have not explicitly included these
corrections in this paper.

APPENDIX C: JORDAN-WIGNER TRANSFORMATION OF THE FERMI-HUBBARD HAMILTONIAN

In this Appendix, we calculate the JW transformation of the fermionic Hamiltonian in Eq. (1). The Jordan-Wigner
transformation can be expressed in the form

b j = −
(

j−1⊗
n=1

σ n
z

)
⊗ σ

j
−, (C1)

b†
j = −

(
j−1⊗
n=1

σ n
z

)
⊗ σ

j
+, (C2)

and it can be simply verified that the transformation maintains the anticommutation relations {bj, b†
k} = δ jk . The fermionic

operators in Eq. (1) need to first be indexed by only a single value, and thus we will reindex bj,↑ → b2 j, b j,↓ → b2 j−1.
We begin by considering the on-site interaction terms that are of the form Ub̂†

j,↑b̂ j,↑b̂†
j,↓b̂ j,↓. As these terms only contain pairs

of creation or annihilation operators, the σz part of the transformation will cancel as (σz )2 = 1:

U
20∑
j=1

b†
j,↑b j,↑b†

j,↓b j,↓ → U
20∑
j=1

(σ 2 j
+ ⊗ σ

2 j
− ) ⊗ (σ 2 j−1

+ ⊗ σ
2 j−1
− ) (C3)

= U

4

20∑
j=1

(
1 + σ 2 j

z

) ⊗ (
1 + σ 2 j−1

z

)
(C4)

= U

4

⎛
⎝20 +

20∑
j=1

σ 2 j
z ⊗ σ 2 j−1

z +
40∑

k=1

σ k
z

⎞
⎠, (C5)

where we have used σ+ ⊗ σ− = 1
2 (1 + σz ) in the second line.

The next terms we will consider are those that describe tunneling of spins between neighboring sites along a row of the lattice.
We will consider the example of the term w b†

j,↑b j−1,↑ + H.c.:

wb†
j,↑b j−1,↑ + H.c. → w b†

2 jb2 j−2 + H.c. (C6)
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By using the identity (σz )2 = 1, the JW mapping of this can be expressed as

wb†
2 j,↑b2 j−2,↑ + H.c. → w

(
σ

2 j−2
− ⊗ σ 2 j−1

z ⊗ σ
2 j
+

)
+ H.c. (C7)

= w

2

(
σ 2 j−2

x ⊗ σ 2 j−1
z ⊗ σ 2 j

x + σ 2 j−2
y ⊗ σ 2 j−1

z ⊗ σ 2 j
y

)
, (C8)

where in the last line we have expanded σ± = 1
2 (σx ± iσy).

Finally, we have terms such as w b†
6,↑b1,↑ + H.c. which correspond to tunneling of spins between nearest-neighbor sites

along columns of the Fermi-Hubbard lattice. This mapping is similar to the row-tunneling term considered above, with fewer
cancellations arising from (σz )2 = 1. For example, for the term b†

1,↑b6,↑ + H.c., the JW mapping is

b†
1,↑b6,↑ + H.c. → b†

2b12 + H.c. (C9)

= σ 2
− ⊗ σ 3

z ⊗ · · · ⊗ σ 11
z ⊗ σ 12

+ + H.c.

= 1

2

(
σ 2

x ⊗ σ 3
z ⊗ · · · ⊗ σ 11

z ⊗ σ 12
x + σ 2

y ⊗ σ 3
z ⊗ · · · ⊗ σ 11

z ⊗ σ 12
y

)
. (C10)

For a general column-tunneling term b†
j,↑b j+5,↑ + H.c. the JW mapping has the form

b†
j,↑b j+5,↑ + H.c. → w

2

⎛
⎝σ j

x

j+9⊗
k= j+1

σ k
z ⊗ σ j+10

x + σ j
y

j+9⊗
k= j+1

σ k
z ⊗ σ j+10

y

⎞
⎠. (C11)

Combining the mappings expressed in Eqs. (C5), (C8), and (C11), we can express the full JW mapping of the Fermi-Hubbard
Hamiltonian (1):

H = w
∑
λ=x,y

⎛
⎝ 39∑

j=2

σ
j−1

λ ⊗ σ j
z ⊗ σ

j+1
λ +

30∑
j=1

σ
j

λ

j+9⊗
k= j+1

σ k
z ⊗ σ

j+10
λ

⎞
⎠ + U

⎛
⎝20 +

20∑
j

σ 2 j
z ⊗ σ 2 j−1

z +
40∑
k

σ k
z

⎞
⎠, (C12)

where we have rescaled U→4U and w→2w for convenience.
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