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ABSTRACT
The role of particle shape in self-assembly processes is a double-edged sword. On the one hand, particle shape and particle elongation are
often considered the most fundamental determinants of soft matter structure formation. On the other hand, structure formation is often
highly sensitive to details of shape. Here, we address the question of particle shape sensitivity for the self-assembly of hard pear-shaped
particles by studying two models for this system: (a) the pear hard Gaussian overlap (PHGO) and (b) the hard pears of revolution (HPR)
model. Hard pear-shaped particles, given by the PHGO model, are known to form a bicontinuous gyroid phase spontaneously. However, this
model does not replicate an additive object perfectly and, hence, varies slightly in shape from a “true” pear-shape. Therefore, we investigate
in the first part of this series the stability of the gyroid phase in pear-shaped particle systems. We show, based on the HPR phase diagram,
that the gyroid phase does not form in pears with such a “true” hard pear-shaped potential. Moreover, we acquire first indications from the
HPR and PHGO pair-correlation functions that the formation of the gyroid is probably attributed to the small non-additive properties of the
PHGO potential.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007286., s

I. INTRODUCTION

In colloidal and soft matter science, the influence of parti-
cle shape on the geometry of self-assembled meso-structures and,
hence, on their physical properties is well documented. To some
approximation, colloids behave as hard particles that are subject to
thermal Brownian motion. Similar to objects with hard-core poten-
tials, they interact largely by volume exclusion effects, which are
defined by their outline, and otherwise feel no energetic repulsion
or attraction. The effect of shape is demonstrated, for instance,
in dense collections of elongated nano- or microrods, which

spontaneously develop a preferential particle direction and, con-
sequently, introduce a distinguished global orientation known as
the nematic director.1,2 Furthermore, it has been reported that
the morphology of platonic and other polyhedral colloids can
be used as a tool to create complex crystalline arrangements.3–9

Hence, the manipulation of particle shapes is an auspicious mech-
anism to design self-assembled materials. However, the relationship
between the shape of the constituent particles and the adopted self-
assembled structure is not straightforward. While particle shape is
beyond doubt an important determinant of structure formation,
only a handful of quantifiable shape parameters could be related to
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long-ranged order directly. In colloidal self-assembly, it is gener-
ally accepted that the nematic order only occurs in particles that
are sufficiently elongated, indicated by the aspect ratio between
the length and width of the particle.1,6,10–12 Similarly, it has been
shown that close-packed structures, like those based on the γ-brass
lattice, require particles with a high isoperimetric quotient, which
indicates the ratio between the particle’s volume and its surface
area.6

In this article, we focus on a related aspect, namely, shape
sensitivity upon self-assembly, which aggravates the prediction of
collective behavior in multi-particle systems by just the outline of
the single constituents even further. Even if morphological parame-
ters are identified necessary for the formation of certain mesostruc-
tures, the stability of these assemblies tends to be sensitive toward
small changes in shape. The sensitivity to details of shape is pre-
sumably most clearly observed in hard-core systems. These systems
are by design reduced to the shape of the inherent particles, which
is defined by the hard interaction potentials. Already introducing
a small degree of polydispersity into simple systems such as the
hard sphere fluid13 can destabilize the crystalline into an amorphous
phase for high densities.14 Similarly in other hard particle mix-
tures, where depletion attractions between hard colloidal particles
are induced by a solvent of surrounding small depletants, entropic
forces are highly affected by the shape of colloids15–21 (for a more
in-depth discussion about depletion, see Paper II22). The significant

influence of shape also becomes apparent by comparing the phase
behavior of hard spherocylinders1 and hard ellipsoids2 obtained by
simulations. Even though the shapes of the individual particles seem
similar, the smectic phase is only assembled by spherocylinders and
not by ellipsoids.

These observations are in accordance with other hard parti-
cle systems, which have been studied by investigating the inter-
mediate stages of interpolations between two shapes. It has been
shown, for example, that in systems of hard cubes, rounded edges
have a significant influence on the cubical ordering of the crystalline
phase.4,23–25 In addition to these superballs, various families of trun-
cated polyhedra,5–9 elongated and twisted triangular prisms,26 disks
with adjustable thickness,27 and very recently dimpled spheres with
various dimple sizes28 have also been studied. Here, it has been indi-
cated that, in particular, more complex particle arrangements are
stable within a narrow window of shapes, which makes them even
more prone to small shape changes.

Cubic structures based on triply periodic minimal surfaces are
among the most complex representatives of such phases, which
have been observed within the field of colloidal self-assembly. For
instance, computational simulations of hard pear-shaped particles,
reminiscent of tapered ellipsoids, indicate the spontaneous forma-
tion of highly symmetric liquid crystal phases, such as the cubic
and bicontinuous Ia3̄d double gyroid29,30 or the Pn3̄m double dia-
mond phase (upon addition of a hard sphere solvent).31 Here, the

FIG. 1. Top: the contact profiles according to the PHGO model (- -) and the HPR model (....) for identical pear-shaped particles with k = h
σw
= 3 and kθ = (2 tan( θk2 ))

−1
= 3

at different angles between the molecules ϕ = arccos(ui ⋅ uj ) in the xz-plane. The surrounding pears are positioned in contact according to the PHGO model. The arrows
demonstrate the different contact between blunt (red) and pointy (blue) ends depending on ϕ. Bottom: the maximal overlap volume Voverlap between two PHGO particles with
different tapering parameters kθ when in contact. The volume is given in comparison to the volume of the Bézier pear Vpear. The marks ai and bi are the control points of the
Bézier curves, which are used to fit the pear shape.
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shape of the used hard-core potential, called the pear hard Gaus-
sian overlap (PHGO) potential, is best illustrated by a pear shape,
which is described by two Bézier curves32 (see Fig. 1 for the outline
of a pear-shaped particle). The Bézier curves feature the two main
morphological traits of the pear shape: the aspect ratio k between
height and width of the colloid and the tapering angle θk or the
tapering parameter kθ that encodes the angle between the tangents at
the waist of the outline of the pear-shape (see also Fig. 1). However,
the effective shape of the PHGO model is just a close approximation
and not a perfect fit to the Bézier description. Therefore, the shape
represented by the PHGO potential can be interpreted as a slight
distortion of the perfect Bézier pear. For a more detailed descrip-
tion of the shape and the PHGO potential, we refer to Refs. 30
and 32.

Up to this point, the influence of the distinctions between the
PHGO model and the “true” Bézier pear-shape has not been stud-
ied in detail, a fortiori, as for the ellipsoidal counterparts [the hard
Gaussian overlap (HGO) ellipsoids and the hard ellipsoids of rev-
olution (HER)], small differences between the two models are
known.33 The phase transitions between the isotropic and orien-
tationally ordered liquid crystal phases do not match perfectly for
both ellipsoid models as the HGO interaction profile promotes
the alignment of particles by a greater margin. Consequently, the
phase transition of the HGO ellipsoids occurs for lower densities
than for HER ellipsoids. Nevertheless, the distinct transition density
does not change the characteristics of the observed phase behav-
ior significantly. Both models exhibit a similar nematic phase in
between the isotropic and solid states without the HGO ellipsoids
adding more complex phases. Thus, the two types of ellipsoids
are qualitatively equivalent, and their small differences in particle-
shape are of only marginal consequences. However, the double
gyroid phase is a much more complex structure than the “simple”
nematic.

It seems plausible that higher complexity leads to an increased
response and that, in particular, the self-assembly of configurations
such as the double gyroid is more sensitive to the interaction of the
particles. Hence, we focus in this paper on the phase behavior of
a more accurate, but computationally much more expensive Bézier
pear model. In this case, the hard potential is based on triangulated
meshes of the pear-surface, which we address as the hard pears of
revolution (HPR) model. Here, the contact is determined by test-
ing for the overlap between the triangulated surfaces and, hence,
coincides with the Bézier description arbitrarily accurately.

In the following, we first detail the specific shape differences
between the two pear-shaped particle models in Sec. II. Afterward,
we analyze the effect of these distinctions by calculating the phase
diagram of the HPR model numerically and comparing it to the
phase behavior of PHGO particles in Sec. III. Here, we show that the
gyroid phase, which can be interpreted as a warped bilayer phase, is
not universal for tapered pear particles and that the special features
of the PHGO contact function promote the formation of otherwise
unfavorable bilayer-configurations. Subsequently in Sec. IV, we ana-
lyze the local environment of the pear-shaped particles within the
different phases. In combination with our results from Paper II,
where we observe the depletion behavior between pear-shaped par-
ticles within a hard sphere solvent,22 this study sheds light on the
different mesoscopic behavior between the PHGO and HPR model
from a microscopic perspective.

II. MICROSCOPIC DIFFERENCES BETWEEN HARD
PEARS OF REVOLUTION AND PEAR HARD GAUSSIAN
OVERLAP PARTICLES

In Fig. 1, the contact profiles of PHGO and HPR particles with
aspect ratio k = 3 and tapering parameter kθ = 3 are compared. The
contact profile is determined by the interface of the excluded volume
given by the contact function,

σ(rij,ui,uj) =
⎧⎪⎪⎨⎪⎪⎩

0, if particles i and j do not overlap

1, if particles i and j overlap
(1)

with the relative distance rij between the reference particle i and
a secondary particle j and their orientation vectors ui and uj. It
becomes apparent that the two models show considerable differ-
ences for relative angles ϕ = arccos(ui ⋅ uj) between 50○ and 130○.
In this regime, the PHGO profile often overestimates the overlap,
which leads to gaps between the particles. This, however, is inher-
ited from a similar error between the HGO and HER (hard ellip-
soids of revolution) potential of the ellipsoid.33 For small angles,
an additional effect occurs. At around 30○, the PHGO profile also
occasionally underestimates the contact distance, in other words,
the distance of the closest approach, σ, compared to the Bézier
shape such that the colloidal particles overlap with their blunt ends
when represented by Bézier pears. The gap size and the overlap vol-
ume (see Fig. 1) are higher for more asymmetrical pears such that
the PHGO approximation is worse for Bézier-pears with a larger
taper.

In the following, we will use the term self-non-additivity to
describe this combination between over- and underestimation of the
contact distance and this special angle dependency of the contact
distance. Conventionally, hard-core interactions are labeled addi-
tive, if in a mixture the distance of the closest approach σAB between
species A and B can be logically deduced from the contact distance
between particles of the same type by the additive constraint: σAB
= 0.5(σAA + σBB). If this rule does not hold, the mixture is
referred to as non-additive.34–38 This concept is illustrated in
Fig. 2(a).

A similar effect, however, also occurs in the mono-disperse
PHGO particle system. This becomes apparent by explaining the
choice of the prefix “self” in self-non-additivity, which is illustrated
by analyzing the contact distance between the blunt ends of the pear-
shaped particles in Fig. 1 and explained additionally in Fig. 2(b). For
certain relative angles, the blunt ends overlap (ϕ = 36○), whereas
for other angles, their contact coincides with the Bézier description
(ϕ = 144○, indicated by red arrows in Fig. 1). Similar behavior is
observed for the contact between the thin ends (gaps at ϕ = 108○ and
no gap at ϕ = 156○, indicated by blue arrows in Fig. 1). Hence, the
PHGO model represents the hard interactions between two Bézier
pear-shaped objects depending on their relative angle differently
well. Alternatively, differently orientated pears can be interpreted as
distinct hard particle species with non-additive interactions as the
contact at ϕ = 36○ cannot be deduced additively form the contact
at ϕ = 144○ [see Fig. 2(b)]. Moreover, the described angular depen-
dency of the contact function implies that a true physical hard shape
cannot copy the PHGO model.39

Evidently, the self-non-additivity of the PHGO model is a spe-
cific form of an orientation- and distance-dependent interaction
potential. The interaction remains, for all relative orientations of the
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FIG. 2. (a) The concept of an additive and non-additive mixture of disk species A and B. In the additive mixture, the interspecies contact distance σAB can be calculated
from the contact between disks of the same species σAA and σBB by an additive rule. In the non-additive case, this rule does not hold. (b) The concept of self-additive and
self-non-additive systems by the example of pear-shaped particles. The contact between different parts of self-additive pears at a certain relative angle (i.e., ϕ = 36○) and
distance can be deduced logically from the contact between the same particles at a different angle (i.e., ϕ = 144○). In self-non-additive systems, the contact distance between
parts of the particles varies and does not follow an overall shape.

particles, a hard-core interaction where the particles experience no
interaction until the point of contact.

III. PHASE BEHAVIOR OF HARD PEARS
OF REVOLUTION AND PEAR HARD GAUSSIAN
OVERLAP PARTICLES

The key result of this paper is the computation of the phase dia-
gram of HPR particles and its comparison to the phase behavior of
pears, as approximated by the PHGO model. Whereas PHGO par-
ticles were found to form complex phases (including smectic and
gyroid), these phases are absent in the phase diagram of hard pears
of revolution (HPR).

A. Phase behavior of pear hard Gaussian overlap
(PHGO) particles

To highlight the sensitivity of the special collective behavior
of PHGO pears in terms of particle shape, the phase diagram of
the PHGO pear-shaped particle model, which has been obtained in
Ref. 30, is revisited and put into perspective in the following. In
Ref. 30, a complete phase diagram of PHGO particles with aspect
ratio k = 3 is calculated (see also the recreated phase diagram in
Fig. 3). Depending on the tapering parameter, the phase diagram
can be separated into three regimes. Two parts, containing pears
with high (kθ < 2.3) and intermediate tapering (2.3 < kθ < 4.5),
are characterized by the formation of bilayer-phases, namely, the
bilayer smectic and the gyroid configuration. The third fraction
(kθ > 4.5) of the phase diagram involves nearly ellipsoidal parti-
cles that generate monolayer states such as nematic and monolayer
smectic.

B. Phase behavior of hard pears of revolution (HPR)
The slight shape change of the pear particles is realized by

changing the model to describe pear particle interactions from the
PHGO to the HPR representation. The calculated phase diagram
is based on NVT Monte Carlo simulations with N = 400 and
N = 1600 monodisperse HPR particles interacting via a hard-core
potential. The boundary conditions of the cuboidal simulation box
are set as periodic in all three directions. The tapering parameter
kθ lies between 2.0 and 5.0, which corresponds to tapering angles
between 28.1○ and 11.4○. The MC translation step and the rotation
step are initially set as Δq ,max = 0.015σw and Δu ,max = 0.015σw ,40

respectively, but have been adjusted in an equilibration phase to
maintain acceptance rates of roughly 50% for the displacement
attempts.

Every simulation starts from an initially crystalline arrange-
ment of particles at very low density (ρg = 0.1), which is then
compressed to the global density ρg = 0.44, where all systems
are obtained in the isotropic phase. Subsequently, the systems
are slowly compressed further (see symbols in Fig. 3). For each
data point of the sequence, the assembly is equilibrated for 2 ⋅ 106

MC steps and afterward analyzed for 1.8 ⋅ 107 step, where snap-
shots are taken after every 10 000th step. At very high densi-
ties ρg = 0.63, the mean squared displacement of the individual
pears indicates the trapped particles. These particles hardly dif-
fuse within the simulation box during simulation runs. This could
be an indicator of a solid state. However, our simple Metropolis
MC method is not sufficient to access this region reliably. Thus,
solid phases are not drawn in the phase diagram. Afterward, expan-
sion sequences are performed in an equivalent, but reverse, manner
from each ρg = 0.63 state. The resultant phase diagram is shown
in Fig. 3.
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FIG. 3. (a) Phase diagram of hard PHGO pear-shaped particles with k = 3.0
obtained by compression (from isotropic) and decompression at fixed tapering
parameter kθ for systems of 3040 particles in a cubic simulation box. Gray
regions between the isotropic and ordered phases indicate parameter values for
which phase hysteresis is observed between compression and decompression
sequences. The phase diagram is adopted from Ref. 30. (b) Phase diagram of
hard HPR particles with k = 3.0 obtained by compression (from isotropic) and
decompression at fixed tapering parameter kθ for systems of 400 and 1600 par-
ticles in a cubic simulation box. Gray shaded regions indicate configurations that
demonstrate a high degree of local orientational order and basic features, which
could lead to bilayer formations according to their pair-correlation functions (see
Fig. 8). However, this should not be seen as a separate phase from the isotropic
state. The schematics above both graphs indicate the cross-sectional shape of the
particles associated with each kθ value.

Already at first sight, the HPR phase diagram differs starkly
from the phase diagram of PHGO particles. It becomes apparent
that the remarkable division into three different regimes in terms
of shape is absent. Independent of tapering, all particles feature a
similar phase behavior. For low densities, the particles adopt the
expected isotropic phase. However, during the compression, the
pear-shaped particles begin to globally align with the director of the
system and eventually transition into a nematic state (see nematic
order parameter in Fig. 4).

Also at direct visual comparison between the HPR and PHGO
assemblies, the major distinctions become apparent (see the char-
acteristic configurations pictured in Fig. 5). Next to the absence of
gyroid phases and of the global alignment into one preferred direc-
tions, the HPR particles even lack of any indications of bilayer for-
mation. Neither do they display interdigitated zig-zag patterns of
anti-parallelly aligned pears nor is it feasible to detect layers or chan-
nel domains via distance clustering of their blunt ends for any given
tapering parameter. By contrast, the influence of the tapering param-
eter kθ is manifested in a shift of the transition density from the
isotropic to the nematic phase. A greater head–tail asymmetry of the
pear shape induces destabilization of the nematic order such that
the transition occurs for larger densities. Also note that the hystere-
sis effects are marginal compared to those observed in the process
of constructing Fig. 3. Consequently, the hysteresis is not drawn in
this phase diagram. Moreover, the transition line coincides with pre-
vious observations of the isotropic–nematic transition for prolate
ellipsoids with k = 3 and kθ → ∞ (ρin = 0.5412,41). As the nematic
phase arches over all values of kθ, it becomes evident that HPR pears
seem to be unable to form bilayer-structures via self-assembly.

The computational complexity of the overlap calculations for
HPR implies that our results are based on fewer and shorter sim-
ulation runs. While the question of equilibration is a more persis-
tent one than for PHGO, there are clear indications that the HPR
behavior described above is a close representative of the equilibrium
behavior: First, we have been unsuccessful in obtaining an equili-
brated bilayer configuration even when the HPR systems are initially
prepared as an artificial smectic or gyroid arrangement. Here, the
pre-constructed structures destabilize and transition into nematic
configurations upon equilibration. Second, during our simulations,
the HPR pears hardly show any sign of precursors of bilayer forma-
tion. This, however, is a typical initial step in the isotropic phase of
PHGO particles before entering the bilayer states.30 The precursors
appear as small randomly oriented clusters that are unjoined such
that they do not form long-ranged structures. Only HPR particles
within the gray area in Fig. 3 hint toward some of the character-
istics of such bilayer precursors, which is discussed in more detail
below.

IV. PAIR CORRELATION FUNCTIONS

Overall, we can draw the conclusion that the small differences
between the PHGO and HPR models have major repercussions on
the pears’ ability to collectively form bilayer phases. To give an expla-
nation for the drastic change in phase behavior, we investigate the
local surrounding of the different phases by calculating the lateral g�

and longitudinal g∥ pair-correlation functions. As the local behavior
is intimately linked with global phase behavior, this analysis, next to
our studies on the depletion behavior of the two pear-shaped par-
ticle models in Paper II,22 sheds light on the propensity of PHGO
articles to form gyroid structures from a microscopic point of view.
Here, we concentrate not only on the density distribution in lat-
eral and longitudinal directions of the pears but also the polar and
nematic weighted correlation functions. Before we apply these tools
to the PHGO and HPR systems, however, we first describe the def-
inition of g(r) as a basis for our extended definition of g� and g∥

below.
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FIG. 4. The nematic order parameter P2 during the compression of HPR particle systems with N = 400 for different tapering parameters kθ.

FIG. 5. Representative configurations of 3040 PHGO pear-shaped particles in the gyroid phase (first row: k = 3, kθ = 3.8, and ρg = 0.60) and 1600 HPR particles forming the
nematic phase (second row: k = 3, kθ = 3.0, and ρg = 0.58). The structures are illustrated in the cluster representation (first column) and the blunt end representation (second
column) where the colors indicate the cluster affiliation. In the third column, the particles are additionally colored according to their relative orientation to the director n.

A. Technical definition of pair correlation functions
One of the best established observables to characterize the

translational order of particle systems is the pair correlation func-
tion g(r), also known as the radial distribution function, which bears
valuable information about the positional correlations between the
particles. Based on the number density distribution function, the
radial distribution function is written as

g(r) = 1
NρN
⟨∑

i
∑
j≠i

δ(r − rij)⟩, (2)

with the global number density

ρN =
N
V

. (3)
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To calculate g(r) numerically in our simulations, the mean number
of particles δN(r) found within a small distance interval (r, r + δr)
from another particle is determined by

δN(r) = ρNg(r)Vshell(r), (4)

with Vshell(r) being the volume of the thin spherical shell of thickness
δr whose inner boundary is a sphere of radius r. By approximating
Vshell(r) = Vsph(r+δr)−Vsph(r) ≈ 4πr2δr+O(δr2) and rearranging
Eq. (4), we obtain

g(r) = 1
ρN

δN(r)
4πr2δr

. (5)

This can be interpreted as a formula to generate the radial distribu-
tion function by a normalized histogram.42 The concept is pictured
in Fig. 6(a).

In the analysis of liquid crystals, it is often advantageous not
to determine the radial distribution as described above, but to sep-
arate the distance between two molecules into a longitudinal and
lateral part, particularly for smectic phases. Due to their anisotropic
features, the order parallel to the director is different from the
order perpendicular to the director. By calculating g∥(n ⋅ r) and
g⊥(
√
r2 − (n ⋅ r)2), the information is separated for the two direc-

tions. The former characterizes the smectic layering of the system,
whereas the latter is a measure of translational order within the
layers. However, this approach has the disadvantage that global ori-
entational order is needed. Lipid systems adopting a bicontinuous
surface geometry exhibit no overall global orientational order as they
form pronouncedly curved bilayers. Nevertheless, locally neighbor-
ing lipids are clearly orientationally correlated such that a lateral
and longitudinal distribution function on a local scale seems to be
more effective. Thus, we replace the director with the orientation of
the liquid crystal at the origin ui. In this way, we can guarantee to
detect both curved bilayer ordering and smectic layering as ui ≈ n.43

The longitudinal and lateral distances are defined by r∥ = ui ⋅ r and
r⊥ =
√
r2 − r∥2, respectively.44

To compute the longitudinal distribution function g∥(r∥) and
lateral distribution function g�(r�), we use a similar histogram
approach like in Eq. (5). For simplifying the normalization of the
histograms, they are calculated within a cylinder. This implies that
only particles that lie within a cylinder with radius Rcyl and height
Hcyl centered at the position of particle i are considered. The cylin-
der, furthermore, shares the same rotational symmetry axis as the
very particle i [see Fig. 6(b)]. The dimensions of the encapsulating
cylinder have to be chosen such that either only neighboring pears
of the same bilayer Hcyl = k ⋅ σw or one zig-zag motif Rcyl = 1.2σw
is enclosed by the cylinder. The probability to find a particle at the
longitudinal distance r∥ within a circular disk of thickness δr∥ and
volume Vdisk = πR2

cylδr
∥ bounded by the cylinder is given by

g∥(r∥) = 1
ρN

δN∥(r∥)
πR2

cylδr∥
, (6)

where δN∥(r∥) is the mean number of particles within the disk.
Analogously, the probability to find a particle at the lateral dis-
tance r� within a cylindrical shell of thickness δr� and volume Vdisk

≈ 2πrδr∥Hcyl is defined as

g⊥(r⊥) = 1
ρN

δN⊥(r⊥)
2πHcylr⊥δr⊥

. (7)

Here, δN�(r�) is the mean number of particles within the cylindri-
cal shell. The notion of both distribution functions is depicted in
Figs. 6(b) and 6(c).

The different distribution functions provide the possibility to
study the local orientational ordering in a much more detailed way
as well. Here, the number density in Eq. (2) can be weighted by
a factor, which includes the relative orientations of the pear parti-
cles. With this take on g(r), we can define a polar radial distribution
function gP1 weighted by the first Legendre polynomial P1(ui ⋅ uj)
= cos(ui ⋅ uj),

gP1(r) =
1

NδN(r)⟨∑i
∑
j≠i

cos(ui ⋅ uj)δ(r − rij)⟩. (8)

FIG. 6. Schematics of the radial (a), longitudinal (b), and lateral distribution function (c). These figures show cross sections through the sampling space. The gray areas
represent shells, which bin the space around the center pear-shaped particle and are used to create the corresponding histogram. The shells are spherical (a), diskal (b),
and cylindrical (c).
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For the nematic radial distribution function gP2, the second Leg-
endre polynomial P2(ui⋅uj) = 1

2(3 cos2(ui ⋅ uj) − 1) is used as a
weighting factor such that

gP2(r) =
1

NδN(r)⟨∑i
∑
j≠i

1
2
(3 cos2(ui ⋅ uj) − 1)δ(r − rij)⟩. (9)

Both the polar and nematic distribution functions are scaled by the
mean number of particles at distance r to easier relate the values
to polar and nematic order parameters. This means that gP1(r) and
gP2(r) determine how strongly two particles separated by a distance
r are orientationally correlated.45 In a similar vein also, lateral and
longitudinal variants of the distributions are defined.

B. Pair correlation functions of PHGO systems
The lateral and longitudinal pair correlation functions are first

applied to various PHGO systems, which represents the different
phases in the phase diagram shown in Fig. 3. The local properties
to form bilayers have a clear signature in the form of the different
longitudinal pair-correlation functions g∥(z) of PHGO particles (see
Fig. 7, left). In the case of the smectic bilayer phase, all three plots
[Figs. 7(a)–7(c)] indicate multiple distinct peaks, suggesting both
long ranged transitional, polar, and nematic order in the longitudi-
nal direction and a piling of multiple sheets of pear-shaped particles.
Moreover, the bifurcation of peaks in Fig. 7(a), for instance, the
pair of peaks indicated by ∎ and ☀, implies an organization into
stacks of interdigitated bilayers rather than monolayers. Here, the
arrangement into parallel leaflets (∎, ⧫, ▼), where the polar order
parameter P1 locally exhibits positive values, and antiparallel leaflets
of the bilayers (☀, ▲), where P1 changes sign, can be identified.
This propensity to obtain the local polar order is also observed in
pear-sphere-mixtures dominated by small hard spheres, where the
PHGO particles align due to depletion attractions (see Paper II22).
The leaflets are also affirmed by the g∥P2

(z) profile of this phase in the
form of small dips at each maximum. The lateral pair-correlations
also indicate the smectic bilayer phase (see Fig. 7, right). First, the
weighted functions show that the particles are aligned for large lat-
eral distances, suggesting that the layers are flat. Second, a small peak
(∎) before the main peak is observable in Figs. 7(d) and 7(f), which
can be assigned to the immediate antiparallel and parallel neighbors
of the reference pears in the same bilayer, respectively.

Analogously, the pair correlation functions belonging to gyroid
forming PHGO particle systems prove that single particles arrange
within interdigitating curved bilayers. The characteristics of the dis-
tance distributions are locally similar to those observed in the flat
bilayer-smectic phase of strongly tapered pears. The bifurcation of
peak (a) and the clear bump at the location of the secondary minor
maximum for small r� in the bilayer smectic phase (d) coincide with
the architecture of interdigitated bilayers. Yet, both of these plots
also point to considerable differences on a larger length scale. The
correlations are less distinct and diminish faster in the longitudi-
nal and lateral directions, which can be explained by the inherent
curvature of the minimal surface structure. The influence of the
warped bilayers is reflected even more in the characteristics of the
weighted pair correlation functions. First, the polar order vanishes
in (b) and (e) for large distances and is less periodic. Second the

nematic order in (c) oscillates around 0 and, like the plot in (f), even-
tually approaches this very value for r∥ → ∞. This means that the
stacks of bilayers do not lie parallel to each other anymore and also
that largely separated particles within the same leaflet are likely to be
differently oriented.

In addition, the pair-correlation functions of the nematic and
monolayer smectic give valuable information about the importance
of the mentioned signatures of the different g(r)s for bilayer assem-
bly. Although both translational and orientational orders are still
present, the correlations are weaker than for bilayer arrangements.
Furthermore, the plots not only differ quantitatively but also quali-
tatively. On the one hand, the division into two maxima per peak for
g∥(r∥) in Fig. 7(a) vanishes. On the other hand, the small secondary
peak, which was contributed to the opposite leaflet of a bilayer, also
disappears for small r� in g�(r�) [see ∎ in Fig. 7(d)]. Both of these
phenomena can be explained by the lack of inversion asymmetry.
In this regime, the particles are not tapered enough to interdigi-
tate into a neighboring sheet and rather form a separate monolayer.
Moreover, the weak taper causes the polarity within a sheet to be
less pronounced (indicated by the overall small peaks in the P1 pro-
files) as in the bilayer smectic phase such that antiparallel particles
can be found within the same leaflet more often [high peak at☀ in
Fig. 7(d)]. This also causes the profile of the nematic and monolayer
smectic phases in Fig. 7(c) to be more homogeneous at a high mean
nematic value.

C. Pair correlation functions of HPR systems
Based on these observations gained from the PHGO particles,

we can deduce the lack of bilayer phases in the HPR phase diagram
by an analysis of these phases’ local behavior. The profiles of the pair
correlation functions in the nematic and the isotropic phase close
to the transition line (see Fig. 8) exhibit both similarities and differ-
ences to the liquid crystal phases of the PHGO pear systems in Fig. 7.
The lateral pair-correlation functions g�(r�) of the nematic phases of
both pear models, for example, produce similar plots, also compara-
ble to the monolayer smectic of the PHGO model. The characteristic
minor peak before the first major peak [see ◽ in Fig. 8(d)], however,
which have been attributed to interdigitating bilayer arrangements,
is not present. Only for pears close to kθ = 2.0, this peak is implied by
a bump. The profiles of g⊥P2

(r⊥) are also akin (even if the alignment
is not as strong) to the not-bilayer forming liquid crystal phases of
the weakly tapered PHGO pears. The most significant difference in
terms of lateral correlation, however, is in the polarity of the neigh-
boring particles in Fig. 8(e). For HPR pears, the nearest neighbors
show basically no preference of parallel or anti-parallel orientation.
The high degree of local polar order for PHGO pears is at best
vaguely reflected and largest for kθ < 2.5.

The plots of the longitudinal pair correlations g∥(r∥) shown in
Fig. 8 (left), however, also indicate why the particles are not arranged
within a bilayer formation and rather create nematic phases. The
most noticeable one is the missing peak [◽ in Fig. 8(a)] at r∥ = 0 in
the nematic and monolayer smectic phases. This signifies that this
particular correlation is crucial for the formation of bilayer phases
as it corresponds to particles sitting side by side to another. All other
peaks ( , △, ◊) can be attributed to their counterparts in the
g∥(r∥)-signature of the nematic/smectic phases of the PHGO pears
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FIG. 7. The longitudinal pair-correlation function g∥(r∥) [(a)–(c)] and the lateral pair-correlation function g�(r�) [(d)–(f)] of the smectic bilayer (kθ = 2.2, ρg = 0.57), the gyroid
(kθ = 3.8, ρg = 0.56), the nematic (kθ = 5.4, ρg = 0.56), and the smectic monolayer phase (kθ = 5.4, ρg = 0.585). The pair-correlation functions are additionally weighted by
the polar order parameter P1 (second row) and the nematic order parameter P2 (third row).

but seem to be closer together. Furthermore, the weighted functions
indicate that the reference pears barely influence the polar prefer-
ence of their neighbor’s orientation, not even longitudinal direction.
On a similar note, the local nematic order indicated by the minor
peaks, even though obviously present, is not as pronounced and long
ranged in this model, not to mention the double peaks, which can be
observed for all liquid crystal phases in Fig. 7, but are not noticeable
here.

Despite these distinctions, similarities can be determined as
well. For once, the pears tend to aggregate preferentially at the
blunt ends (r∥ < 0) rather than the pointy ends (r∥ > 0) of other
particles. This leads to the assumption that, in principle, the mech-
anism, which brings the pears together with their blunt ends to
form clusters, also exists in the HPR model. Unfortunately, the
impact of this mechanism is not strong enough to indeed induce
the self-assembly of bigger clusters (see cluster representation in
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FIG. 8. The longitudinal pair-correlation function g∥(r∥) [(a)–(c)] and the lateral pair-correlation function g�(r�) [(d)–(f)] of the isotropic (kθ = 2.0:ρg = 0.58 and kθ = 3.5:ρg

= 0.55) and nematic (kθ = 2.0:ρg = 0.6 and kθ = 3.5:ρg = 0.58) in systems of N = 400 HPR particles. The pair-correlation functions are additionally weighted by the polar order
parameter P1 (second row) and the nematic order parameter P2 (third row).

Fig. 5). More intriguing, however, is the observation that for highly
tapered particles kθ < 2.5, the peaks of g∥(r∥) ( , , and
△1, △2) and g⊥P2

(r⊥) (◽ and ) widen considerably or even split
into two. This can be already observed in the isotropic phase close
to the phase transition. The area within the system that demon-
strates these indications of bifurcation is shaded in the phase dia-
gram. Thus, some of the basic conditions for bilayer formation are
also met at least for highly tapered HPR particles. Nevertheless,
without additional features to the contact function, these effects
are too weak to produce a more complex phase behavior than
nematic.

In this paper, we focused exclusively on pear-shaped particles
with a specific aspect ratio of k = 3. While possible, it is unlikely
that a different choice of k for the HPR would have yielded a differ-
ent phase behavior for the following reasons. First, by increasing the
aspect ratio, the maximum adjustable taper of convex pear-shaped

particle decreases. As we have shown that higher taper implies
higher local order, we can rule out the existence of the gyroid phase
in HPR systems for k ≥ 3. Second, less elongated hard particles usu-
ally lose their ability to create global orientational order (rule of
thumb k < 2.751,2) and form isotropic configurations instead. There-
fore, the window of aspect ratios, which comes into consideration,
seems too small to increase the local polar order in Figs. 8(b) and
8(e) to values, which are needed to achieve bilayering comparable to
PHGO systems.

V. CONCLUSION AND OUTLOOK
The overarching theme of this paper concerned the stability

of the gyroid phase with respect to particle shape, particularly the
difference in phase behavior between HPR and PHGO particles.
Hence, it fits closely with the broader topic of how self-assembly (in
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particular in hard core systems) is sensitive to the details of the
particle shape.4–9,23–28 In particular, we compared two hard pear-
shaped particle models on the microscopic scale and their abilities to
form the double gyroid spontaneously globally. One is the pear hard
Gaussian overlap (PHGO) particle, which closely approximates a
pear-shape but also features self-non-additive properties. The other
model represents the exact pear shape perfectly and is called the hard
pear of revolution (HPR) model.

Therefore, we revisited the phase behavior of PHGO particles
and additionally generated a phase diagram based on particles inter-
acting according to strict hard-core HPR interactions. In contrast to
the rich phase diagram of PHGO particles containing nematic and
monolayer smectic, but also both bilayer smectic and bilayer gyroid
structures, we observed in the HPR systems only a rudimentary
phase behavior. More precisely, the HPR systems form nematic liq-
uid crystal phases for all particle shapes analyzed (i.e., all kθ), where
more highly tapered particles visibly destabilize the nematic order
and push the transition to higher densities. However, both the gyroid
and bilayer smectic phases, characteristic for the phase behavior of
PHGO particles, vanish.

According to these observations, the small differences in the
contact function between the PHGO and HPR model, which can eas-
ily, but mistakenly, be considered negligible, have a major impact on
the self-assembly of pear-shaped particles. Even though most fea-
tures of a pear (such as aspect ratio and tapering parameter) are
present in both models, the PHGO particles have to offer additional
morphological properties to which the stability of the gyroid phase
is ascribed. This is also supported by the fact that only the nematic
phase is obtained, which has also been found for PHGO pears with
small tapering angles. In this regime of large kθ, the two pear models
differ the least in terms of contact functions. Hence, their collective
behaviors are very similar. All these results lead to the assumption
that the formation of bilayer structures, including the double gyroid
phase, is due to the special orientation dependency of the PHGO
contact function. In particular, the self-non-additive features in ref-
erence to the pear shape seem to magnify the spontaneous place-
ment of pears side to side. This mechanism would naturally lead to
sheets, which then interdigitate due to the pointy ends of the individ-
ual particles. Not only the HPR model and our depletion studies in
Paper II22 hint toward the validity of this hypothesis, also other mod-
els that lack self-non-additive features but look similar to pears are
known to fail assembling into the bilayer configuration. Neither hard
multisphere particles, such as snowman46 or asymmetric dumbbell
particles,47 nor conical colloids48 show any propensity to form the
gyroid.

Despite the differences in phase behavior, the self-assembly of
some HPR particles with small kθ close to the phase transition also
demonstrates interesting properties, which were attributed as neces-
sary precursors to the formation of bilayers. Therefore, it is conceiv-
able that the HPR particles might be able to form similar phases such
as the PHGO pears, if we, for instance, add suitable changes to the
pear-shape or introduce non-additivity to the HPR contact function.
These particle modifications also have the potential to be utilized as a
regulating mechanism to control the coupling strength between the
blunt ends. This might allow us to create a model for pear-shaped
particles, based on those indicated by the gray-striped area in Fig. 3,
with an intermediate degree of blunt end aggregation. A first attempt
to conceptualize such a pear-shaped particle model is made in Paper

II.22 In general, these particles could potentially form phases with a
short-range order, sufficient to display a bicontinuous network, but
also display with disorder over larger length scales. These disordered
cubic phases are known as L3 sponge phases49 and are formed typi-
cally in lipid-water mixtures by swelling the cubic phases due to the
presence of additives.50–58

The formation of gyroid structures in pear-shaped PHGO par-
ticle systems remains a fascinating finding. This is particularly so
because of the mechanism of creating a propensity for the forma-
tion of interdigitated “smectic-like” warped bilayers. While particle
shape clearly plays a crucial role in this, this paper has highlighted
the subtleties, namely, that the effect vanishes for the additive hard
pear HPR model. This, in turn, brings us back to the opening state-
ment that the particle shape is a double-edged sword. Surely, the
“coarse” (or first order) characterization of the particles as pear-
shaped is critical for the process. Yet, pear-shaped appearance is not
sufficient to ensure the effect that occurs, as the lack of the gyroid
in the HPR phase diagram demonstrates. It appears that first-order
shape characteristics are a necessary condition for some structure
phase formation but not sufficient criteria.

As a closing note, we want to mention here that it is difficult
to judge which of the two pear models represents the interactions
of pear-shaped particles, which might be synthesized in the future,
better. For example, it is well established that colloids in experi-
mental systems are never truly hard and the interparticle potential
always inherits some degree of softness.59–62 Therefore, the poten-
tials we used here—both the PHGO and HPR potentials—have
to be considered as approximations of a real pear-shaped colloid.
This becomes even more important as recent studies show that
the introduction of already a small degree of softness can influ-
ence the stability of crystalline phases.63 Additionally, pear-shaped
particles have not been synthesized yet. In principle, many dif-
ferent strategies to produce nanoparticles with aspherical shapes
have been developed via methods such as templates,64–66 parti-
cle swelling and phase separation,67–69 seeded emulsion polymer-
ization,70–73 controlled deformation of spherical colloids,74–76 par-
ticle confinement,77 or lithography.78–80 However, many of these
techniques are still limited in either their customizability of the par-
ticle shape, rely on colloids as a basic shape, or cannot be mass-
produced easily. Furthermore, it is difficult to draw practical knowl-
edge from the formation of other bilayer forming systems prominent
in nature and chemistry. It has been shown earlier that the collective
mechanism of PHGO particles to form bilayers via interdigitation
is fundamentally different from the one observed in amphiphilic
lipidic or polymeric systems and based on the shape change of indi-
vidual molecules.30 All these difficulties seem to be exacerbated by
the big contrast of the two phase diagrams in Fig. 3, which highlights
that in both experiments and simulations even small nuances of the
interaction profiles of molecules have to be taken into account to
predict the right phase behavior. In addition, the composite sphere
method, where complexly shaped particles are modeled from mul-
tiple sphere constituents, is known to face issues with inaccuracies
due to the degraded smoothness of the particle surface.81–83
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