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This work considers non-crystallographic periodic nets obtained from multiple

identical copies of an underlying crystallographic net by adding or flipping edges

so that the result is connected. Such a structure is called a ‘ladder’ net here

because the 1-periodic net shaped like an ordinary (infinite) ladder is a

particularly simple example. It is shown how ladder nets with no added edges

between layers can be generated from tangled polyhedra. These are simply

related to the zeolite nets SOD, LTA and FAU. They are analyzed using new

extensions of algorithms in the program Systre that allow unambiguous

identification of locally stable ladder nets.

1. Introduction

We describe a series of knotted spatial graphs (embeddings of

abstract graphs) based on linkages of truncated octahedra

(‘sodalite cages’). They were inspired by the observation that

replacing the six-membered rings (6-rings) in the net of

faujasite by knotted 12-rings (trefoil knots) produced the

remarkable ‘knotted faujasite’ framework, qlg, shown in Fig. 1.

Embedded graphs are generally assigned RCSR (Reticular

Chemistry Structure Resource) symbols (O’Keeffe et al.,

2008), which are three letters in lower-case bold (for example,

the truncated octahedron symbol is toc). Graphs that corre-

spond to the nets of zeolite frameworks also have the IUPAC

symbol which is three-letter upper-case bold – for example the

net of the zeolite faujasite is the zeolite framework-type code

FAU (Baerlocher et al., 2007).

The standard approach to the characterization of periodic

graphs is that of the program Systre (Delgado-Friedrichs, 2005;

Delgado-Friedrichs & O’Keeffe, 2003; Delgado-Friedrichs et

al., 2017). In this approach, vertices of a periodic graph are

given barycentric (center-of-mass) coordinates. It is easy to

show (Delgado-Friedrichs, 2005) that if coordinates, say

(0, 0, 0), are assigned to one vertex in a periodic net relative to

unit-cell axes, the rest are unique. It can be shown also

(Delgado-Friedrichs, 2005) that barycentric coordinates are

the same as the equilibrium configuration that would result at

fixed volume if vertices were linked by equal harmonic springs,

so such a configuration is called an ‘equilibrium placement’. It

may happen that in such a placement two or more vertices

have the same barycentric coordinates (a ‘collision’). The

structure is then considered ‘unstable’. If distinct neighbors of

the same vertex in the structure always have distinct bary-

centric coordinates, it is ‘locally stable’; in particular, all

stable structures are also locally stable. The simplest kind of

local instability occurs when two vertices have the same

neighbors and, accordingly, identical barycentric coordinates.
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The automorphisms of the graph then include interchange

of the two vertices – an operation variously described as a

‘local symmetry’, ‘non-rigid-body symmetry’ or ‘non-crystal-

lographic symmetry’. The last term arises because the auto-

morphism group of the graph is not isomorphic with a

crystallographic symmetry group. Systre also produces a

unique ‘Systre key’, which allows unambiguous determination

of whether two crystallographic nets are the same or are

different graphs (Delgado-Friedrichs et al., 2017).

In this work we are concerned with structures in which no

non-crystallographic symmetries associated with local

instabilities as above occur, but for which, in barycentric

coordinates, each vertex collides with at least one other that is

symmetry-equivalent to it. Such structures, which are also

necessarily non-crystallographic, are called ‘ladders’ and are

not treated by the current version of Systre. However, recent

extensions (to be published) of the Systre algorithms allow

generation of Systre keys for locally stable ladder nets

provided that collisions only occur in pairs. These develop-

ments were applied to the nets reported herein. Non-crystal-

lographic periodic nets (those that have an automorphism

group that is not isomorphic to a space group) are always

unstable (Moreira de Oliveira & Eon, 2011, 2013, 2014). The

converse is not necessarily true: crystallographic nets may be

unstable (Eon, 2011; Delgado-Friedrichs et al., 2013). In the

terminology used by Eon et al. what we call a ladder here

could be described as a periodic graph in which the group of

‘bounded’ automorphisms (i.e. those for which the distance

between a vertex and its image is bounded) acts freely

(without fixed points) on the vertices and has non-trivial

elements of finite order (Eon, 2011; Moreira de Oliveira &

Eon, 2011, 2013, 2014).

A useful intrinsic property of graphs, such as those of zeolite

nets, is the vertex symbol (O’Keeffe & Hyde, 1997) which

gives the size and number of the shortest ring at each vertex.

2. Generation and description of ladder nets

We start with a pair of concentric truncated octahedra (i.e.

sodalite cages, symmetry 432) and link them together as shown

in Fig. 2. As may be seen in the figure, pairs of 4-rings can be

linked in a 4-crossing Solomon link. Likewise, pairs of 6-rings

can be connected to form a torus-knotted 12-ring (actually the

6-crossing trefoil knot). The possibilities (N = not linked, L =

linked) are NN = two separate polyhedra, LN = two catenated

polyhedra toc-c, NL and LL, and in both latter cases the

‘polyhedra’ with vertex symbol 4.108.108 are assigned RCSR

symbols qlp and qlz, respectively. These last three have

embeddings (shown) with symmetry 432 (O). It should be

apparent that, as abstract graphs, qlp and qlz are isogonal

(vertex-transitive) and indeed have the same vertex symbol

(Table 1) and are the same graph in two topologically distinct

embeddings (not ‘ambient isotopic’). This is because, although

in the 432 embedding there are two vertices, from the point of

view of an abstract graph there is an automorphism, inter-

changing the inner and outer sets of vertices. This vertex-
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Figure 1
Left column. The FAU framework type can be constructed by assembling
(a) 6-rings into (b) 6-ring prisms. (c) Prisms cross-connect to enclose
truncated octahedra (toc, sodalite cages) in the interior space, and (d)
these cross-connect, by sharing prisms, to form the FAU framework.
Right column. The knotted-FAU framework (qlg) can be constructed by
assembling (a) 12-ring trefoils into (b) knotted double-6-ring prisms. (c)
These cross-link, as for FAU, to form (d) the knotted FAU framework,
qlg.

Table 1
Data for the embedded graphs.

Under ‘vertices’ and ‘edges’ are the transitivity of the embedding with transitivity of the underlying graph in parentheses.

Symbol Parent Symmetry Linkage Vertices Edges Symbol

qlp toc 432 NL 2 (1) 3 (2) 4.108.108

qlz toc 432 LL 2 (1) 4 (2) 4.108.108

toc-c toc 432 LN 2 (1) 3 (2) 4.6.6
qle SOD I432 NL 1 (1) 1 (1) 4.4.1016.1016.1016.1016

qlh SOD I432 LL 1 (1) 2 (1) 4.4.1016.1016.1016.1016

qlf LTA P432 NL 2 (1) 4 (3) 4.8.4.108.4.108

lta-c LTA P432 NN 2 (1) 5 (3) 4.6.4.6.4.8
qlg FAU F4132 NL 4 (1) 9 (4) 4.4.4.108.108.12
qlk FAU F4132 LN 4 (1) 9 (4) 4.6.6.6.62.82

qlj FAU Fd3 NL 4 (1) 8 (4) 4.6.6.82.6.82

fau-c FAU Fd3 LN 4 (1) 8 (4) 4.4.4.6.6.12



transitivity, of course, does not correspond to a rigid-body

symmetry.

Turning now to 3-periodic structures, we note that packing

truncated octahedra into a simple tiling produces the sodalite

framework SOD as shown in Fig. 3. Linking truncated octa-

hedra and cubes produces the zeolite framework LTA and

linking truncated octahedra with hexagonal prisms produces

the faujasite framework FAU, as also shown in the figure. Note

that we restrict ourselves to the simplest possibility of one type

of large cage in each structure.

Structures derived from SOD (Fig. 4) are qle (NL) and qlh

(LL). qle, like SOD, is a vertex- and edge-transitive graph

(transitivity 1 1). qle and qlh both have the same vertex

symbol (Table 1) and the updated Systre program confirms

that these indeed have the same graph.

We also find two structures based on the lta pattern with the

maximum possible symmetry P432 (Fig. 5). The first (NN) is

two distinct interwoven LTA nets (RCSR symbol for the

embedding lta-c). The second (NL) qlf has transitivity 2 5 in

the embedding shown; however, the Systre analysis shows that

the graph transitivity is actually 1 3 and, further, that the

symmetry is a double extension of Pm3m (i.e. an order-2 non-

crystallographic supergroup of Pm3m). However (as also

shown in the figure), an embedding in Pm3m results in

intersecting edges in pairs of 6-rings, and therefore is unfea-

sible with rigid sticks.

In the FAU net (symmetry Fd3m) there are two sodalite

cages in the primitive cell. For a structure with chiral double

cages the maximum symmetry is 23 and the possible symme-

tries of the periodic structures are F4132 (all cages of the same

hand) and Fd3 (cages of opposite hand). We find four possi-

bilities shown in Fig. 6. One is a pair of interwoven FAU nets

(fau-c). The other three have distinct graphs, as can be seen

from the vertex symbols in Table 1 (in each case, for a given

embedding, all vertices have the same vertex symbol). Systre

analysis shows that all these structures have symmetries (not

necessarily the same) that are double extensions of Fd3m, and

that all graphs with embeddings in the higher crystallographic

symmetry (Fd3m) require merging of pairs of vertices into

one, reducing the vertex transitivity from 4 to 2, and again

resulting inevitably in intersecting edges.
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Figure 4
Structures based on the SOD framework.

Figure 6
Structures based on the FAU framework.

Figure 3
Zeolite frameworks with truncated octahedra (toc, sodalite cages).

Figure 5
Structures based on the LTA framework. The higher-symmetry version of
qlf on the right has intersecting straight edges of the 6-rings.

Figure 2
Modes of linkage for nestled pairs of sodalite cages.



Other patterns of entanglement may exist at lower sym-

metry, but are unlikely to be vertex-transitive, and we have not

explored those possibilities.

3. Summary and conclusions

We have generated a number of isogonal non-crystallographic

nets based on linked, tangled, truncated octahedra. The most

symmetrical crystallographic embeddings that avoid inter-

secting edges are chiral, but they have achiral crystallographic

embeddings with intersecting edges. We note that these

knotted and linked nets are related to those of zeolites of first

importance in materials chemistry. Although they cannot be

plausibly synthesized as silicates, they do present a challen-

ging, but feasible, problem for synthesis by reticular chemistry

methods.

A beta version of Systre that includes treatment of ladder

nets is available at https://github.com/odf/gavrog/releases/tag/

Systre-20.8.0.
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