
Appl. Phys. Rev. 7, 021306 (2020); https://doi.org/10.1063/1.5142397 7, 021306

© 2020 Author(s).

Nonlinear topological photonics 
Cite as: Appl. Phys. Rev. 7, 021306 (2020); https://doi.org/10.1063/1.5142397
Submitted: 12 December 2019 • Accepted: 06 May 2020 • Published Online: 02 June 2020

 Daria Smirnova,  Daniel Leykam, Yidong Chong, et al.

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

A semiconductor topological photonic ring resonator
Applied Physics Letters 116, 061102 (2020); https://doi.org/10.1063/1.5131846

Perspective: Photonic flatbands
APL Photonics 3, 070901 (2018); https://doi.org/10.1063/1.5034365

Photonic tensor cores for machine learning
Applied Physics Reviews 7, 031404 (2020); https://doi.org/10.1063/5.0001942

https://images.scitation.org/redirect.spark?MID=176720&plid=1829485&setID=378290&channelID=0&CID=673742&banID=520715384&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=04d8c7b39cf3e6815e3c0b2cd709c9faf5d5473f&location=
https://doi.org/10.1063/1.5142397
https://aip.scitation.org/topic/collections/featured?SeriesKey=are
https://doi.org/10.1063/1.5142397
https://orcid.org/0000-0001-8033-3427
https://aip.scitation.org/author/Smirnova%2C+Daria
https://orcid.org/0000-0002-8588-9886
https://aip.scitation.org/author/Leykam%2C+Daniel
https://aip.scitation.org/author/Chong%2C+Yidong
https://aip.scitation.org/topic/collections/featured?SeriesKey=are
https://doi.org/10.1063/1.5142397
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5142397
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5142397&domain=aip.scitation.org&date_stamp=2020-06-02
https://aip.scitation.org/doi/10.1063/1.5131846
https://doi.org/10.1063/1.5131846
https://aip.scitation.org/doi/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://aip.scitation.org/doi/10.1063/5.0001942
https://doi.org/10.1063/5.0001942


Nonlinear topological photonics

Cite as: Appl. Phys. Rev. 7, 021306 (2020); doi: 10.1063/1.5142397
Submitted: 12 December 2019 . Accepted: 6 May 2020 .
Published Online: 2 June 2020

Daria Smirnova,1 Daniel Leykam,2,3 Yidong Chong,4 and Yuri Kivshar1,a)

AFFILIATIONS
1Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
2Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Korea
3Basic Science Program, Korea University of Science and Technology, Daejeon 34113, Korea
4Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637371

a)Author to whom correspondence should be addressed: yuri.kivshar@anu.edu.au

ABSTRACT

Rapidly growing demands for fast information processing have launched a race for creating compact and highly efficient optical devices that
can reliably transmit signals without losses. Recently discovered topological phases of light provide novel opportunities for photonic devices
robust against scattering losses and disorder. Combining these topological photonic structures with nonlinear effects will unlock advanced
functionalities such as magnet-free nonreciprocity and active tunability. Here, we introduce the emerging field of nonlinear topological photon-
ics and highlight the recent developments in bridging the physics of topological phases with nonlinear optics. This includes the design of novel
photonic platforms which combine topological phases of light with appreciable nonlinear response, self-interaction effects leading to edge
solitons in topological photonic lattices, frequency conversion, active photonic structures exhibiting lasing from topologically protected modes,
and many-body quantum topological phases of light. We also chart future research directions discussing device applications such as mode
stabilization in lasers, parametric amplifiers protected against feedback, and ultrafast optical switches employing topological waveguides.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
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I. INTRODUCTION

Topological insulators represent a recently discovered class of sol-
ids, which are insulating in their bulk but exhibit special scattering-
resistant conducting states on their surfaces, known as topological
edge states.1 The underlying concepts behind these topological edge
states are not limited to electronic condensed matter systems, and
topological phases can be realized with other physical platforms,
including electromagnetic systems such as photonic crystals and meta-
materials.2–4 Currently, we observe rapidly growing interest in the
study of topological effects in photonics, motivated by a grand vision
of using topological edge states to guide and route light in a manner
that is robust against scattering by disorder.

Initial studies of topological effects in photonics were largely
inspired by direct analogies with similar effects previously discovered
for condensed matter systems, arising from the presence of topologi-
cally nontrivial energy bands of electronic band structures. The spectra
of electromagnetic waves in periodic media form similar band struc-
tures, which can likewise contain topologically nontrivial bands.
However, there are a number of important distinctions between pho-
tonic systems and their condensed matter counterparts, such as the

bosonic nature of photons and the presence of absorption and radia-
tion losses that make photonic systems intrinsically non-Hermitian.5

Thus, photonics also provides a platform for studying new kinds of
topological effects, which have no counterpart in condensed matter.
Topological edge states have now been predicted and realized in a
wide variety of photonic systems, including gyromagnetic photonic
crystals, arrays of coupled optical resonators, metamaterials, helical
waveguide arrays, and microcavity polaritons, recently reviewed in
Refs. 2–4.

The nonlinear regime is natural to consider at higher optical pow-
ers, and therefore, the fundamental question arises:What effects do nonli-
nearities have on topological phases and edge states, and vice versa? In
particular, the concept of band topology is inherently tied to linear sys-
tems—specifically, the existence of a bandgap structure—and the gener-
alization to nonlinear systems is not straightforward. Nonlinear response
in photonics and related fields such as Bose–Einstein condensates is
expected to open a door toward advanced functionalities of topological
photonic structures, including active tunability, genuine nonreciprocity,
frequency conversion, and entangled photon generation6–14 (see Fig. 1).
In addition, nonlinearities may provide a simple way to reconfigure and

FIG. 1. Basic platforms (top row), selected physical effects (middle row), and potential device applications (bottom row) of nonlinear topological photonics. The fundamental
physics of topological phases is combined with nonlinear effects to create advanced functionalities.
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control topological waveguides;15,16 in particular, they are required
for ultrafast optical modulation.17,18 Such studies are still in their
initial stages, and they are expected to uncover many surprises.

Here, we review recent advances in the emerging field of nonlin-
ear topological photonics, focusing on the intersection between the
studies of topological phases and nonlinear optics. We also describe
the broader context of nonlinear effects in other engineered topologi-
cal systems, including electronic and mechanical metamaterials.
However, we omit discussions of Maxwell surface waves19–22 and the
active research topic of using topological electronic materials for non-
linear optics applications.23–25 Our primary focus here is on artificial
topological meta-structures that can be created using mature fabrica-
tion techniques and available platforms (silicon, lithography, etc.),
which are most feasible for near-term device applications.

This review paper is organized as follows: Sec. II begins with a
brief introduction into the field of topological photonics; for detailed
reviews, we suggest more comprehensive articles;2–4 Ref. 3 also
includes a brief overview of nonlinear topological photonics up to
mid-2018. Section III describes representative topological photonic
models that can be employed for the study of nonlinear effects. In Sec.
IV, we discuss how to introduce nonlinear effects to topological pho-
tonic media. Section V reviews recent theoretical and experimental
results on nonlinear localization in topological systems. Nonlinear
saturable gain leading to topological lasers is the subject of Sec. VI, fol-
lowed by the study of topological frequency conversion in Sec. VII.
Section VIII discusses the efforts toward realizing topological many-
body quantum states of light. Finally, Sec. IX concludes with a discus-
sion of future prospects and open problems.

II. BACKGROUND
A. Topological invariants

Topology is a branch of mathematics concerned with characteriz-
ing objects based on their global properties, using topological invari-
ants. A topological invariant is a quantity that is unaffected by
continuous deformations of the object. For example, a closed 2D sur-
face of any finite 3D object can be characterized by the genus g, which
counts the number of holes in the object. Thus, a sphere has a genus of
g¼ 0, and a torus has a genus of g¼ 1; these two objects cannot trans-
form continuously into each other: Any transformation from a sphere
to a torus necessarily involves some discontinuity at which a hole is
created; such topological phase transitions are accompanied by a step-
wise (quantized) change in a topological invariant.

Crucially, global topological properties such as the genus can be
related to local geometrical properties via the Gauss–Bonnet theorem,
which states that topological invariants can be calculated by integrat-
ing some local field strength over the entire surface. For example, the
genus can be computed by integrating the local Gaussian curvature
over the entire surface.

Under certain conditions, topological invariants can be used to
describe band structures of periodic crystalline materials. In this con-
text, continuous transformations are those that preserve all symmetries
of system and do not close the bandgap, and a topological phase tran-
sition requires the bandgap to close and re-open. Boundaries between
two materials characterized by distinct topological invariants necessar-
ily host special gapless states localized to the boundary. These states
are robust in the sense that they can only be removed by a change in
one of the bulk topological invariants. This important relationship

between bulk topology and the existence of boundary states is known
as the bulk-boundary correspondence.

The dimension of the system plays an important role in the clas-
sification and properties of topological phases,26 as shown in Fig. 2.
Topological boundary states can occur at the ends of one-dimensional
(1D) systems, the edges of a two-dimensional (2D) systems, or the sur-
faces of a three-dimensional (3D) systems, as shown schematically in
Fig. 2 (upper row). Generally, an N dimensional topological insulator
has N dimensional gaped bulk states and ðN � 1Þ dimensional bound-
ary states. For example, the boundaries of 1D systems are end points,
and 1D topological insulators host end states whose energies are
pinned to the middle of the bandgap. Note that while the dimension N
is usually assumed to be the physical dimension of the system, one can
also employ internal degrees of freedom, such as orbital angular
momentum, as additional synthetic dimensions to realize higher-
dimensional topological phases.27,28

B. Topological insulators

The 2D case has been particularly important for the development
of the field. The first known example of a topological insulator phase
was the quantum Hall (QH) phase discovered in 1980, which emerges
in 2D systems with broken time-reversal (TR) symmetry, e.g., in the
presence of a strong magnetic field.29 The corresponding bulk topolog-
ical invariant is the Chern number C.30 The topological boundary
states of the QH phase are called chiral edge states and propagate uni-
directionally along the boundary, immune to backscattering from dis-
order. In 2005, a generalization to insulators preserving time-reversal
symmetry and exhibiting strong spin–orbit interactions was discov-
ered by Kane and Mele, known as the quantum spin-Hall (QSH)
phase.31 In its simplest form, the Kane–Mele model is essentially two
copies of the QH phase, where up and down-spin electrons are
decoupled and experience opposite effective magnetic fields. Although

FIG. 2. Topological classes in different dimensions. Conventional topological insula-
tors are insulating in a bulk but conducting via gapless states at their edges or sur-
faces. Higher-order topological insulators have topological states at corners or
hinges.
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the net Chern number is zero due to TR symmetry, one can formulate
a spin Chern number Cspin ¼ ðC# � C"Þ=2, which is nonzero in the
QSH phase. The QSH phase supports pairs of counter-propagating
edge modes with opposite spins, called helical edge states, which are
protected from backscattering into each other as long as time-reversal
is preserved. Interestingly, this protection can hold even in the presence
of spin-mixing interactions that make Cspin ill-defined; this more gen-
eral case is described by a binary Z2 invariant.

1 Subsequently, the QSH
phase was observed in quantum well hetero-structures,32,33 whose spec-
trum of edge states was in fact first calculated back in the 1980s.34,35

The discovery of the QSH phase and Z2 invariant sparked broad
interest in topological insulators, and a large “zoo” of topological
materials with various symmetries and dimensions have since been
discovered.36 Particularly important for photonics applications are
topological crystalline insulators (TCI) and valley-Hall (VH) insula-
tors: these are similar to the QSH phase in that they exhibit protected
counter-propagating edge states, however, they replace the electron
spin with pseudospin degrees of freedom associated with point-group
symmetries such as rotation37 and inversion.38,39

Topological phases also exist in periodically modulated systems,
which can be characterized by the Floquet band structures describing
states that remain invariant (up to a phase factor) when viewed at inte-
ger multiples of the driving period. When the driving frequency is
large, the Floquet band structure can be understood in terms of static
effective Floquet Hamiltonians.40,41 On the other hand, low-frequency
driving gives rise to topological phases unique to driven systems42 and
allows topological adiabatic pumping between edge modes via bulk
modes.43

Recently, new classes of the so-called higher-order topological
insulators in dimensions N> 1 have been discovered.44 Higher-order
topological insulators have ðN � 1Þ-dimensional boundaries that,
unlike those of conventional topological insulators, do not exhibit gap-
less states but instead constitute topological insulators themselves. An
n-th order insulator has gapless states on an ðN � nÞ-dimensional
subsystem. For instance, in three dimensions, a second-order topologi-
cal insulator has gapless states on the 1D hinges between distinct surfa-
ces, and a third-order topological insulator has gapless states on its 0D
corners, as shown in Fig. 2 (lower row). Similarly, a second-order
topological insulator in 2D also has mid-gap corner states.

C. Photonic topological insulators

There are numerous approaches to engineering photonic analogs
of topological insulators,2,4,45–48 which can be subdivided into TR-
broken systems, which require an external magnetic bias or time mod-
ulation, and TR-preserved routes, which do not. Some notable 2D
topological photonic phases and systems are illustrated in Figs. 3 and 4,
following Ref. 46. In many cases, the structures are designed to emu-
late topological materials studied in condensed matter physics.49

Photonic analogs of QH systems can be realized via gyroelectric
or gyromagnetic photonic crystals, where the gyrotropy effect breaks
TR symmetry. The first demonstration of backscattering-immune pho-
tonic topological edge states with the use of a gyrotropic microwave
photonic crystal was performed by Wang et al. in 2009,50 following a
theoretical proposal by Raghu and Haldane.54–56 However, this
approach is challenging to scale to optics due to the difficulty in inte-
grating magnetic materials with optical circuity, and the fact that mag-
netic responses are weak at optical frequencies. Thus, TR-preserving

approaches have been more widely pursued, as they are compatible
with a large variety of platforms including waveguide arrays,51,57 cou-
pled resonators,58 photonic crystals,53 and metamaterials.59

For example, Rechtsman et al. implemented a waveguide array
that acts as a Floquet photonic topological insulator in the optical fre-
quency domain.51 The waveguides are twisted so that inter-waveguide
tunneling is accompanied by phase accumulation, similar to a gauge
field; hence, the propagation of light in the array is similar to the time
evolution of 2D electrons in a magnetic field. Notably, the waveguide
array itself preserves TR symmetry; the sign of the effective magnetic
field depends on the direction of propagation along the waveguide
array axis.

Another breakthrough approach used arrays of coupled optical
ring resonators58,60 in the near-infrared (1.55lm). Here, each ring
supports degenerate clockwise and counterclockwise modes, forming a
spin degree of freedom. A spin-dependent gauge field is implemented
by auxiliary coupling rings with different optical path lengths. The
overall structure obeys TR symmetry, with the sign of the effective
magnetic field depending on whether the clockwise or counterclock-
wise mode is considered, forming a QSH phase.

Other photonic QSH systems have also been implemented,
including bianisotropic photonic crystals, with the magnetoelectric
coupling serving in the role of spin–orbit interaction,61–63 as well as
TCIs and VH phases based on nonmagnetic photonic crystal
slabs,16,37,64–70 electronic circuits,71,72 and metacrystals containing
overlapping electric and magnetic dipolar resonances specially
designed to satisfy electromagnetic duality.52,59

We emphasize a common feature of all the structures listed
above. The standard electromagnetic TR symmetry alone is

FIG. 3. Schematic of the spectra for two distinct types of topologically nontrivial
photonic systems in 2D with broken (left column) and preserved (right column) TR
symmetry. The structures are designed to emulate the quantum Hall effect (QHE)
and quantum spin- and valley-Hall effects (QSHE and VHE). Gray shaded regions
in band diagrams depict the continuum of the extended bulk states with insulating
gaps. The bulk bandgaps are traversed by gapless edge states (colored dispersion
lines). These edge states are topologically protected from backscattering and prop-
agate along the interfaces of topologically inequivalent materials as illustrated in
insets. The TR-invariant system supports a pair of counter-propagating edge states
with their spin locked to their momentum (spin-momentum locking). Spin-up and
spin-down states are shown with red and blue arrows, respectively.
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insufficient to protect the QSH phase, and other internal symmetries
such as duality61 or point group symmetries37 are required; the edge
state robustness is conditional on these internal symmetries also being
preserved. Imperfections in real samples can therefore cause the topo-
logical properties to break down, so photonic topological edge states
are only protected from scattering on defects of certain types and are
overall less robust than topological edge states in condensed matter
systems.

III. TOPOLOGICAL LATTICE MODELS

The key features of topological bands, including their interface
states, can be understood by studying simple discrete lattice models.
This section introduces some basic lattice designs known to exhibit
topological transitions in the linear regime. They can be formulated in
terms of abstract tight binding models for 1D and 2D arrays, illus-
trated in Fig. 5.

A. Basic concepts

According to Bloch’s theorem, the spectrum of any periodic lat-
tice forms a band structure, where energy eigenvalues enðkÞ form a

discrete set of bands indexed by n, and the Bloch momentum k is
restricted to the lattice’s Brillouin zone. The corresponding eigenstates
are Bloch waves wn ¼ unðk; rÞeikr, where the Bloch function unðk; rÞ
shares the same spatial r periodicity as the lattice, and is, in general, a
vector encoding internal degrees of freedom such as the spin or polari-
zation of the field. Topological properties of lattices are dictated by the
behavior of the Bloch functions as k is varied.

One fundamental property of the Bloch waves is their Berry
phase,73 which can be calculated as a line integral along a closed path
in k space as cn ¼

Þ
An � dk, where AnðkÞ ¼ hunjirkjuni is the Berry

connection. Here, the inner product defined by the bra-ket notation is
spatial integration over a single unit cell. Roughly speaking, the Berry
connection provides a measure of how the form of the Bloch function
(e.g., its polarization) changes along the given path. Using Stokes’
theorem, the Berry phase can be alternatively computed as an integral
over the area enclosed by the path: cn ¼

Ð Ð
Fnd

2k, where Fn ¼ rk

�An is the Berry curvature.
The Berry connection and curvature are strongly reminiscent of

the vector potential and magnetic field in the theory of electromagne-
tism. For example, the Berry connection is gauge-dependent:

FIG. 4. The TR-broken and TR-preserved designs from Fig. 3 are illustrated by images of the photonic structures fabricated for specific applications in microwaves and
optics,8,16,50–53 one of which is topological lasers. These include magnetically biased photonic crystals, waveguide arrays, ring resonator lattices, metacrystals of bianisotropic
disks, and nanopatterned dielectric slabs. Images adapted with permissions from Rechtsman et al., Nature 496, 196 (2013). Copyright 2013 Nature Springer; Shalaev et al.,
Nat. Nanotechnol. 14, 31 (2018). Copyright 2018 Nature Springer; Bahari et al., Science 358, 636–640 (2017). Copyright 2017 The American Association for the Advancement
of Science; Bandres et al., Science 359, eaar4005 (2018). Copyright 2018 The American Association for the Advancement of Science.
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transforming the Bloch functions as unðkÞ ! unðkÞeiuðkÞ modifies the
Berry connection as An ! An �rkuðkÞ. On the other hand, the
Berry phase and Berry curvature are gauge-invariant quantities that
can be related to physical observables. Integrating the Berry curvature
over a 2D Brillouin zone yields the quantized Chern number Cn, which
characterizes QH topological phases. The Chern number counts the
winding (the number of complete turns) of the phase evolution of the
eigenvector upon encircling the entire Brillouin zone.

Often one is only interested in the dynamics within a narrow
range of energies, such that only a few bands are relevant. In this case,
the dynamics can often be captured by effective discrete lattice
Hamiltonians, written in second quantized notation as

Ĥ ¼
X
i;j

Hijâ
†
i âj; (1)

where â†i (âi) creates (annihilates) an excitation at the ith site, off diag-
onal matrix elements Hij describe couplings between sites i and j (e.g.,
due to evanescent coupling), and the diagonal elements Hii describe
site energies (e.g., determined by the local refractive index).

Owing to the translation invariance of the lattice, performing a
Fourier transform block diagonalizes Ĥ to a Bloch Hamiltonian ĤðkÞ.
If there are m degrees of freedom per unit cell, ĤðkÞ is an m�m
Hermitian matrix, which results in an m band lattice model. Each
eigenvalue of ĤðkÞ gives the dispersion relation of one of the bands of
interest, with corresponding eigenvectors defining the Bloch functions
unðkÞ, which are nowm-component vectors.

In all one-band models, the Bloch functions are trivial; as one
component vectors, there is no way for their direction to vary with k,
and therefore, the Berry connection and curvature necessarily vanish.
Thus, the simplest models of topological phases involve two bands.

The most general two band Hermitian Bloch Hamiltonian can be
written as ĤðkÞ ¼ hðkÞ � r̂ and has eigenvalues e6ðkÞ ¼ 6jhðkÞj,
where r̂ ¼ðr̂x; r̂y; r̂zÞ is a vector of the three Pauli matrices. In many
cases, the topological properties of the lattice model can be captured in
the continuum limit by Taylor expanding hðkÞ for small displace-
ments dk about some point of interest in the Brillouin zone to obtain a
Dirac-like Hamiltonian, which, e.g., in 2D systems, take the form

ĤDðdkÞ ¼ vDðdkxr̂x þ dkyr̂yÞ þmr̂z; (2)

where vD is a velocity parameter and m is an effective mass, which
determines the size of the bandgap.

When m¼ 0, Eq. (2) describes a conical intersection with linear
dispersion relation e6 ¼ 6vDjdkj resembling that of massless fer-
mions.74 These continuum models can be generalized to a larger num-
ber of bands. For example, certain three band intersections are
described by the effective continuum Hamiltonian

ĤMðdkÞ ¼ vDðdkxŜx þ dkyŜyÞ; (3)

expressed through spin-1 matrices; its three eigenvalues are
e0 ¼ 0; e6 ¼ 6vDjdkj, corresponding to a zero energy flatband and
two linearly dispersing modes.

B. Su–Schrieffer–Heeger model

The simplest lattice that exhibits topological modes is the
Su–Schrieffer–Heeger (SSH) model, which describes a 1D dimer chain
with alternating weak and strong nearest-neighbor couplings j1;2 [see
Fig. 5(a)]. In the second quantized notation, the many-body
Hamiltonian is

Ĥ SSH ¼ �
XN
j¼1

j1â
†
j b̂j þ j2â

†
jþ1b̂j þ h:c:

� �
; (4)

where â†j ; b̂
†

j (âj; b̂j) denote creation (annihilation) operators at A or B
sublattices of the jth unit cell. By Fourier transformation, Eq. (4) returns
the single-particle Bloch Hamiltonian in the momentum representation

Ĥ SSHðkÞ ¼ � j1 þ j2 cos ðkdÞ½ �r̂x � j2 sin ðkdÞr̂y; (5)

where d is a lattice spacing. The two bands e6 are separated by a gap
when j1 6¼ j2, with the closure of the bandgap when j1 ¼ j2 forming
a transition between two distinct topological phases, described by the
1D Berry phase, also known as the Zak phase,75 which takes the quan-
tized values p (in the nontrivial case, j2 > j1) or 0 (in the trivial case,
j2 < j1).

In finite lattices whose terminations break the stronger coupling
(j2 > j1), there exist edge states in the middle of the bandgap. These
states are localized in one sublattice and decay exponentially away
from the lattice edge, at a rate determined by the size of the gap. These
states are protected in the sense that their frequency is pinned to zero
and they cannot be destroyed by any perturbation that respects the
chiral symmetry r̂zĤ SSHðkÞr̂z ¼ �Ĥ SSHðkÞ, as long as the two bands
remain separated by a gap.

FIG. 5. Schematics of topological lattices. (a) SSH array of dimers (1D chiral chain)
created by alternating coupling strengths j1 < j2 between nearest-neighbor ele-
ments. In a finite chain terminated at the weak bond, the edge-bound state shown
in reddish color represents a staggered mode localized at one sublattice (pseudo-
spin down) with the decay factor defined by the coupling imbalance. (b) Haldane
model on a honeycomb lattice with complex next-nearest-neighbor hopping that
breaks TR symmetry and creates pseudo-magnetic flux (QHE). The green wavy
arrow illustrates a chiral edge state. (c) Staggered graphene composed of two inter-
penetrating triangular sublattices (shown as open and filled circles) with different
on-site potentials. The domain wall created by inversion of a staggered sublattice
potential guides chiral valley-polarized (K6) edge states shown with red and blue
wavy arrows (VHE). (d) Hexagonal Kekul�e lattice of expanded/shrunken hexamers.
The interface between two domains supports a pair of topologically protected, spin-
momentum locked edge states with opposite helicities r6 (QSHE).
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More generally, one can introduce the winding number
� ¼ 1

2p

Þ
darg½hðkÞ�, where hðkÞ ¼ hxðkÞ þ ihyðkÞ, which counts the

number of times the curve traced out by the vector hðkÞ
¼ �½j1 þ j2 cos kd; j2 sin kd; 0� encloses the origin of the (hx, hy)
plane. The winding number is equal to the number of edge states for
Hamiltonians with chiral symmetry. For example, in the SSH model
�ðj2 > j1Þ ¼ 1 or �ðj2 < j1Þ ¼ 0, indicating a topological transi-
tion at j2 ¼ j1.

C. Honeycomb lattices

The prototypical model for studying 2D topological phases is the
honeycomb lattice, which can be used to implement optical analogs of
graphene (i.e., photonic graphene).51,54,55,76–83 This lattice has a hexagonal
Brillouin zone, whose inequivalent corners (called the K6 points) host
conical intersection degeneracies protected by TR and parity P (spatial
inversion) symmetries. Breaking either symmetry lifts the degeneracies
and opens a bandgap. Breaking P creates a trivial gap, because the Berry
curvatures at the K6 points have opposite signs, yielding a vanishing
Chern number. Breaking TR symmetry generates a nontrivial topological
phase, with the Berry curvature having the same sign at the K6 points.

These features are captured by the Haldane model,84 which
exhibits tunable transitions between trivial and topological phases. In
particular, TR is broken using complex-valued next-nearest-neighbor
(NNN) couplings, see a schematic in Fig. 5(b). To ensure that the
Brillouin zone is unaltered by the TR symmetry breaking, the cou-
plings are staggered so that there is no net magnetic flux per unit cell:
encircling one lattice plaquette clockwise (counterclockwise) gives a
phase factor of ei/ (e�i/). The lattice Hamiltonian is

ĤHaldane ¼ mI

X
hii

â†i ai � b̂
†

i bi

� �
� t1

X
hi;ji

â†i b̂j þ b̂
†

j âi
� �

�t2 ei/
X
hhi;jii

â†i âj þ e�i/
X
hhi;jii

b̂
†

i b̂j þ h:c:
" #

; (6)

where hi; ji and hhi; jii denote summations over the first and second
nearest neighbors sites, respectively, t1 and t2 are the hopping ampli-
tudes, and mI is a parameter that breaks inversion symmetry via sub-
lattice detuning. Near the K6 points, the effective continuum
Hamiltonian is

ĤK6
ðdkÞ ¼ 3t2 cos/þ vD 6dkxr̂x þ dkyr̂y

� �
þ mI 6 3

ffiffiffi
3
p

t2 sin/
� �

r̂z; (7)

where vD ¼
ffiffiffi
3
p

t1=2. Thus, the effective mass due to TR breaking has
opposite signs at the two valleys, whereas the effective mass due to P

breaking has the same sign at both valleys. The band structure of Eq.
(6) can be characterized by the Chern number, which is non-zero
when the gap is dominated by the TR breaking terms; in this regime,
chiral edge modes are guaranteed to exist along the boundary of the
finite lattice. Systems similar to the Haldane model are known as
Chern insulators.

A honeycomb lattice with preserved TR symmetry but broken P
(space-inversion) symmetry is a VH insulator, see Fig. 5(c). The
domain walls separating VH lattices that have opposite P breaking
host chiral edge states.39 For small P breaking, the Berry curvatures are
strongly localized at the valleys, and the local integrals around K6 val-
leys take non-zero quantized values of 6p for each band, which yields
a valley Chern number Cvalley ¼ 61=2. Flipping the sign of the P
breaking also flips the sign of the Berry curvature in each valley.
Across a domain wall, there is a difference of 61 between valley
Chern numbers, resulting in one family of topological edge states in
each valley.

Another honeycomb lattice variant that is extremely useful for
topological photonics is a topological crystalline insulator devised by
Wu and Hu.37 It involves clustering neighboring plaquettes of 6 lattice
sites by alternately widening or narrowing the inter-site separations
[see Fig. 5(d)]. This clustering causes the K6 points to be folded onto
the center of the Brillouin zone (the C point); the interaction of the
overlaid Dirac cones causes a bandgap to open. The corresponding
effective Hamiltonian is of the Bernevig–Hughes–Zhang QSH
Hamiltonian,32 where the role of spin is played by angular momentum
eigenstates of the lattice’s C6 point group symmetry. The model exhib-
its helical edge states at the boundaries between domains with
shrunken (trivial) and expanded (nontrivial) clusters.

The continuum Hamiltonians and topological invariants dis-
cussed in this section are listed in Table I.

IV. PLATFORMS FOR NONLINEAR TOPOLOGICAL
SYSTEMS

The linear lattice models discussed in Sec. III are agnostic about
length and frequency scales and the wave amplitudes involved. Indeed,
these models have been implemented at characteristic frequencies
ranging from the optical range (1014Hz) to microwaves (109Hz) and
electronics (106Hz), using platforms such as arrays of coupled wave-
guides, microring resonators, and photonic crystals. When studying
nonlinear phenomena, however, this universality is lost. This section
provides an overview of different platforms for nonlinear topological
photonics, summarized in Table II.

Much of the older literature on nonlinear effects in periodic latti-
ces was written before topological effects came into focus, and, there-
fore, mainly dealt with the consequences of bandgaps and

TABLE I. Continuum Hamiltonians of common 2D topological models employed in photonics. Here, the Pauli matrices r̂; ŝ; ŝ act on the sublattice, valley and spin degrees of
freedom, respectively. mT; mI are the mass terms induced by TR and P symmetry reductions; mSO is responsible for the effective spin–orbit interaction.

Model Hamiltonian Topological invariant

Haldane Ĥ ¼ vDðr̂x ŝzdkx þ r̂y ŝ0dkyÞ þ r̂zðŝzmT � ŝ0mIÞ Chern number C ¼ 1
2 ðsgnðmI �mTÞ � sgnðmI þmTÞÞ

Kane–Mele Ĥ ¼ vD ŝ0ðr̂x ŝzdkx þ r̂y ŝ0dkyÞ þ r̂z ŝz ŝzmSO Spin Chern number Cspin ¼ sgn ðmSOÞ
Bernevig–Hughes–Zhang Ĥ ¼ vDðr̂xŝxdkx þ r̂y ŝ0dkyÞ þ r̂z ŝ0ðmþ bdk2Þ Spin Chern number Cspin ¼ 1

2 ðsgnm� sgn bÞ
Staggered graphene Ĥ ¼ vDðr̂x ŝzdkx þ r̂y ŝ0dkyÞ � r̂z ŝ0mI Valley Chen number Cvalley ¼ 6 1

2 sgnðmIÞ

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 021306 (2020); doi: 10.1063/1.5142397 7, 021306-7

VC Author(s) 2020

https://scitation.org/journal/are


discreteness, while overlooking the role of topology. For instance,
many works have studied how nonlinearity affects non-topological
surface states, which are typically generated by defects or localized
potentials along the boundary of a lattice. For example, a semi-infinite
array of coupled quantum wells can form surface states if the energy of
the first well is detuned from the energy of the other wells. Such
threshold conditions are typical of (topologically trivial) Tamm surface
states.85 In the nonlinear regime, it has been shown that self-trapping
can overcome surface repulsion, inducing localized modes near the
edge of a discrete lattice above a certain power threshold.86 On the
other hand, topological lattice models support edge states even in
the low-amplitude limit and do not require any threshold perturbation
to exist.

Since nonlinear problems are generally much harder to solve,
platforms where the full set of Maxwell’s equations can be well approx-
imated by simpler coupled-mode or tight-binding lattice models are
preferred for studying nonlinear topological photonics.

A. Waveguides

Nonlinear effects naturally emerge in waveguide lattices due to
the intrinsic nonlinearity of the host medium. For example, the
intensity-dependent refractive index of cubic nonlinear materials
enters tight binding models as a nonlinear on-site potential. One of
the advantages of waveguide lattices is that even though the bulk mate-
rial nonlinearity can be quite weak, the important parameter govern-
ing the dynamics is the ratio of the nonlinearity to the linear coupling
coefficient. Therefore, provided one has access to a sufficiently long
propagation distance and effects such as absorption remain negligible,
one can reduce the coupling to increase the effective nonlinearity and
observe effects such as optical switching and spatial solitons.

Nonlinear photonic waveguide lattices have a long history, dating
back to the seminal prediction of optical discrete solitons by
Christodoulides and Joseph in 1988.102 The first experiments by

Eisenberg et al. in 199887 used femtosecond laser pulses in a cubic
nonlinear 1D AlGaAs waveguide array. The following decade saw sev-
eral breakthroughs, including the observation of discrete solitons in
photorefractive crystals using continuous wave beams,89 laser-written
waveguide arrays in fused silica glass,88 and quadratic nonlinear lith-
ium niobate waveguides.90 For details, see Refs. 103–105.

The main challenge in generalizing these previous experiments to
topological waveguide lattices is that there is a trade-off between ease
of fabrication and ease of observing nonlinear effects. For example,
AlGaAs, lithium niobate, and photorefractive waveguide arrays have
strong nonlinearity, but are presently limited to simple 1D topological
lattices such as the SSH model. Alternatively, fused silica glass wave-
guides created using laser writing can readily form 2D topological latti-
ces, but the nonlinearity is much weaker, demanding shorter pulses
with higher peak powers and increasing the complexity of experiments
and modeling. For example, beam shaping is required to avoid mate-
rial damage when exciting the waveguides and modeling should take
into account effects such as material dispersion and two photon
absorption.106 Moreover, many theoretical proposals are based on
models of nonlinear coupling, which is negligible in this platform.

B. Microcavities

Optical cavities, supporting whispering-gallery, Fabry–P�erot, or
Mie-type resonances are able to efficiently trap light. Therefore, optical
resonator lattices, such as microring arrays and particle metasurfaces,
can enhance nonlinear effects and thus significantly lower optical
power requirements, but at the expense of operating bandwidth.
Additionally, the ability to tailor the pump beam or embed different
materials onto the resonators gives access to a variety of nonlinear
effects. For example, continuous wave operation leads to strong ther-
mal nonlinearities due to absorption-induced heating of microresona-
tors,92 while two-photon absorption results in nonlinear resonance
shifts due to free carrier dispersion.93 Unfortunately, the mechanisms

TABLE II. Examples of different platforms employed for nonlinear topological photonics. Frequency and power scales quoted are the data taken from the specific works cited.

Platform Material Spectral range Power, duration Source

Optical waveguides AlGaAs 1530 nm 500 W, 100 fs 87
Fused silica 800 nm 1 MW, 100 fs 88

Photorefractives 488 nm mW, CW 89
Lithium niobate 1550 nm 4 kW, 9 ps 90
Chalcogenides 1040 nm 10kW, 300 fs 91

Optical resonators Si microrings 1550 nm 85lW, CW 92
InP PhC slab 1587 nm 200lW, CW 93

GaAs/InAs PhC slab 1040 nm 150lW, 20 ns 94
Si metasurfaces 1550 nm 200 mW, 300 fs 69
Fiber loops 1555 nm 120 mW, 50 ns 95

Exciton–polaritons 780 nm 10 mW, CW 96
Atomic gases Warm 85Rb vapor 795 nm 1 mW, CW 97

Ultracold 87Rb gas 780 nm Single photon, 10 ms 98
Metamaterials Split ring resonators 1.5 GHz 1 W, CW 99

Circuit QED 5 GHz Single photon, 100 ns 100
RF circuits 100 MHz 300mW, CW 101
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that provide the strongest self-action effects are also intrinsically lossy,
although losses can be compensated via integration of gain media such
as quantum wells.94,95

Most experiments with nonlinear topological resonator lattices
have been limited to perturbative regimes, which are easier to analyze
and support effects such as lasing (Sec. VI) and harmonic generation
(Sec. VII). For self-action effects (e.g., bistability and nonlinear non-
reciprocity), it has been preferable to use only a few nonlinear ele-
ments to avoid complications such as multistability or instability.92,93

There are two exceptions where self-action effects are observable in
nonlinear propagation dynamics: pulse propagation in coupled fiber
loops95,107 and exciton-polariton condensates in microcavities.108

C. Nanophotonic structures

In the last five years, nanostructures made of high-index dielec-
tric materials,109 with judiciously designed resonant elements and lat-
tice arrangements, have shown special promise for practical
implementations of nonlinear topological photonics.11,15,16,65–67,69

This approach bridges the fundamental physics of topological phases
with resonant nanophotonics and multipolar electrodynamics.110

The high-index dielectric nanostructures typically employed for
topological nanophotonics possess strong optical nonlinearities
enhanced by Mie-type resonances. In particular, silicon has a strong
bulk third-order optical susceptibility,111,112 while III–V noncentrosym-
metric semiconductors are favorable for efficient second-order nonlin-
ear applications due to a large volume quadratic nonlinearity.113,114

The resonant near-field enhancement associated with excitation of
multipolar Mie modes in high-permittivty dielectric nanostructures
further facilitates the nonlinear processes at the nanoscale.

Already a few topological nanostructures that support subwave-
length edge states and convert infrared radiation into visible light have
been proposed and experimentally verified.11,69 Due to compactness
and robustness to fabrication imperfections, topological nanophoton-
ics is also being pursued for quantum information transport in inte-
grated photonic platforms.66 We discuss these applications further in
Sec. VII.

D. Atomic gases

Optical beams resonant with atomic transitions provide perhaps
the strongest optical nonlinearities available for topological photonics,
supporting even single photon (quantum) interactions provided the
atoms are placed in an optical cavity and cooled to ultra-low tempera-
tures.98,115,116 Novel quantum many-body states accessible in this
regime are discussed further in Sec. VIII.

One can also employ atomic gases in a waveguide configuration,
enabling the study of nonlinear propagation dynamics. In this case, a
bright beam coupled to a transition of a three level atom controls the
effective refractive index seen by a weaker probe beam. Very recent
experiments have demonstrated induction of honeycomb lattices using
this approach.82,97 A big advantage compared to non-resonant nonli-
nearities is that both the sign and magnitude of the Kerr nonlinear
response seen by the probe beam can be adjusted just by slightly
changing its frequency. Moreover, by pumping an additional atomic
energy level, one can also introduce a Raman gain, enabling the study
of various non-Hermitian photonic lattices.117 Thus, atomic gases

provide a highly promising platform for both nonlinear and non-
Hermitian topological photonics.

E. Microwave metamaterials

In the microwave regime, nonlinearities are much harder to real-
ize than in optics (unlike most other photonic phenomena). One
approach is to insert nonlinear electronic lumped elements, like varac-
tor diodes, into microwave metamaterials such as split ring resona-
tors.99 This can yield mean-field nonlinear effects under a pump
power of �1 W. Alternatively, one can construct photonic crystals out
of materials exhibiting nonlinear susceptibilities at microwave
frequencies.118

Ultra-strong single photon nonlinearities are accessible by cou-
pling microwave cavities to superconducting qubits such as Josephson
junctions,100,119,120 although this introduces the additional experimen-
tal complication of cryogenic operating temperatures. Recent experi-
ments have implemented basic ingredients for observing topological
phases such as synthetic magnetic fluxes,121,122 discussed further in
Sec. VIII. One advantage compared to optical cavities is the greater
flexibility in lattice designs; for example, individual resonators can be
stretched or bent without affecting their tight binding model proper-
ties, enabling the implementation of exotic lattices, e.g., embedded in
hyperbolic space.123

F. Electronic circuits

Electronic circuits have recently emerged as a convenient and
accessible platform for studying the combination of nonlinearity with
band topology.14,71,72,101,124–130 Key advantages include the ease with
which such circuits can be designed and fabricated using circuit simu-
lators, printed circuit boards (PCBs), and other commodity technolo-
gies; the fact that they can be characterized using inexpensive
laboratory equipment such as function generators and oscilloscopes;
the availability of strongly nonlinear circuit elements; and the exciting
prospect of using circuit wiring to implement complex geometries
(like M€obius strips71) that are practically impossible to realize on other
platforms. Such systems include circuits implemented on breadboards
or PCBs, typically operating in the 0.1–500MHz frequency
range,14,71,101,127–130 as well as electromagnetic structures (such as
microstrip resonator arrays) with attached lumped circuit elements,
which can operate at GHz frequencies.72

The most commonly used method for introducing nonlinearity
into an LC circuit is to use varactor diodes.14,101,129,130 These two-port
circuit elements are essentially diodes operated in reverse bias; with
increasing reverse bias voltage, the thickness of the diode’s depletion
region increases and its effective capacitance decreases. For
alternating-current (AC) operation, a nonlinear capacitor can be
implemented by a pair of varactors arranged back-to-back, such that
neither varactor can be forward-biased. The resulting capacitance
decreases with the magnitude of the voltage across the circuit element,
independent of its sign.

While back-to-back varactors have the advantage of realizing
an extremely simple Kerr-like nonlinearity, they are not the only
nonlinear circuit elements available. The alternatives, however,
introduce an additional complication: they are typically not only
nonlinear but also “active” (i.e., energy-non-conserving or non-
Hermitian). As we will discuss in Sec. VI, the combination of
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nonlinearity, non-Hermiticity, and band topology to form topolog-
ical lasers is an active and largely unsettled area of research, and
electronic circuits may serve as a key playground for future experi-
mental investigations. Recently, Kotwal et al. have taken the first
steps in this direction by performing a theoretical analysis of 1D
and 2D topological circuits with nonlinear negative-resistance ele-
ments such as van der Pol circuits or tunnel diodes.131 They
uncovered an extremely rich set of behaviors, such as SSH-like
boundary states that exhibit self-sustained limit cycle oscillations,
which can induce synchronized bulk oscillations that mediate the
interactions between different boundaries.

G. Mechanical metamaterials

Finally, we mention related experiments based on the platform of
mechanical metamaterials. Although, strictly speaking, not photonics,
similar governing equations make this a useful setting for investigating
nonlinear topological phenomena. The first mechanical implementa-
tion of the quantum spin-Hall effect (QSHE) was experimentally dem-
onstrated by S€usstrunk and Huber132 in a lattice of mechanical
pendula, with operating frequency in the Hz range. Based on this
model, nonlinear Duffing oscillators connected by linear springs can
support unidirectional nonlinear traveling edge waves.133 Another
nonlinear topological phononic crystal—a 1D array which consists of
masses connected with two alternating types of nonlinear springs—
was analyzed in Ref. 134. It was numerically shown that by increasing
the excitation amplitude the lattice makes a topological transition giv-
ing rise to different families of nonlinear solutions.

V. LOCALIZED NONLINEAR STATES
A. Motivation and general approaches

Nonlinear generalizations of linear topological models support
peculiar mechanisms for the field localization, leading to phenomena
such as topological gap solitons and nonlinear edge states (bulk and
edge solitons),135–138 embedded solitons,139 and semi-vortex soli-
tons,140 as depicted in Fig. 6. Notably, these solitons have nontrivial
vorticity and a pseudospin structure. Interestingly, in many cases, the
formation of topological solitons can be understood in terms of the
nonlinearity locally inducing a domain wall between different topolog-
ical phases, with the soliton being self-consistently trapped by the
interface. Since what matters is a change in the topological invariant
across the interface,140 one can obtain solitons that create a trivial
defect within a nontrivial phase,135 as well as solitons that create non-
trivial defects out of trivial phases.139

These phenomena pose an interesting challenge to our under-
standing of band topology. Strictly speaking, the concept of band
topology is tied to linearity, which is necessary for the existence of a
Bloch Hamiltonian and band structure, as discussed in Sec. III. Some
authors have explored correcting the definition of the Berry phase in
order to describe the band structures of weakly nonlinear Bloch modes
with fixed homogeneous intensities.141,142 However, localized nonlin-
ear states—solitons—represent strong modifications to an underlying
topological structure, or even the creation of topological order from a
trivial system.

From a practical point of view, localized nonlinear states may be
extremely useful for tunable topological photonics.9,99,137,143 They may
also be accompanied by novel effects such as the spontaneous

breakdown of Lorentz reciprocity, wherein the light intensity itself
determines whether the light can propagate via an edge state.134,144

In lattice models, nonlinearity can be introduced either into
the on-site energy or the coupling between lattice sites. The result-
ing behavior may be non-universal, sensitive to either the form of
the nonlinearity or the particular lattice geometry. For weak nonli-
nearities, the formation of edge solitons was understood in the tra-
ditional framework of scalar effective nonlinear Schr€odinger
equations, where the nonlinearity compensates the linear edge
state dispersion.146,149,150

For stronger, non-perturbative nonlinear phenomena, exact solu-
tions are scarce, and they require a combination of approximate
approaches such as the variational method, analytical solutions in sim-
ple limits, and numerical solutions of specific lattices.7,97,136,139,145 For
example, the self-induced traveling edge states of Ref. 139 were first
obtained analytically in the special limit where they are perfectly local-
ized to a single lattice site. This exact solution was then used as an ini-
tial guess for numerics to demonstrate their persistence over a broader
range of parameters, as shown in Fig. 6(b).

Further insights can be obtained using the continuum nonlinear
Dirac model, through the perspective of phase portraits and bifurca-
tion analysis. This approach is able to describe bulk solitons and non-
linear edge states in a variety of 1D and 2D nonlinear photonic
lattices, including SSH, honeycomb, and Kagome lattices. For instance,
treating ĤD in Eq. (2) as an operator, which contains spatial deriva-
tives, and incorporating nonlinear corrections as a field-dependent
operator ĤNL yield a nonlinear equation for the evolution of the
spinor wavefunction W ¼ ½W1;W2�,

i@tW ¼ ðĤDðdkÞ þ ĤNLÞW: (8)

This can be tackled analytically for various types of nonlinearity,
including the one most commonly encountered in optics, a local
cubic nonlinearity of the form ĤNL ¼ �g½jW1j2; 0; 0; jW2j2�. By
contrast to relativistic field theory, nonlinear Dirac equations in
photonics appear as effective equations and they are not restricted
by the Lorentz invariance. As compared to the nonlinear
Schr€odinger equation, the existence and stability analysis of soli-
tons in Dirac models is more subtle because of the absence of the
rigorous Vakhitov–Kolokolov criterion.151–153

B. Su–Schrieffer–Heeger lattices

The simplest structure linking topology and nonlinearity is a
nonlinear version of the 1D SSH model. Such a model can be imple-
mented in arrays of resonant elements with nonlinear couplings.144,154

This formally corresponds to off diagonal nonlinearity in Eq. (8). The
model exhibits a self-induced topological transition, in which the non-
linearity drives the lattice into a different topological phase supporting
edge states. However, the resulting nonlinear edge states are not truly
localized as they sit on a nonzero intensity background.

This model is challenging to realize in optics, where local on-site
Kerr nonlinearities are more feasible, but has been implemented in
electronic circuits by Hadad et al.101 The nonlinear SSH circuit was
created using a dimerized 1D lattice of LC resonators with two resona-
tors (sites) per unit cell, shown in Fig. 7(a). The intra-cell and inter-
cell couplings were implemented by two types of capacitors, one of
which was nonlinear [Fig. 7(b)]. The self-induced edge state was
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FIG. 6. Solitons localized in topological lattices. (a) Bulk soliton in a honeycomb lattice of helical waveguides alongside a sketch of the intraperiod rotation of the intensity.145

The wavepacket rotates around the nonlinearity-induced defect as an edge state in a clockwise direction. (b) Single-site localized edge soliton propagating unidirectionally
along the edge of the Floquet lattice of coupled helical waveguides embedded in a medium with local Kerr nonlinearity.139 Shown is a numerically calculated profile of the out-
put intensity after propagation around a missing edge waveguide, when the waveguide circled in green is excited at the input. (c) Dark (left) and gray (right) edge solitons
(seen as whitened dips in intensity) at the boundary of a Kagome lattice strip of coupled microcavity pillars.146 In the weakly nonlinear regime, the solitons in the exciton–polar-
iton condensate are constructed from wavepackets of topological edge modes with the envelope described by the Schr€odinger equation. [(d) and (e)] Excitation of chiral topo-
logical edge modes by scattered traveling gap solitons at (d) domain walls created by mass inversion in a 2D continuum Dirac model;137 (e) at the pointy edge of the Lieb
lattice.147 (f) Observation of topological gap solitons in a square lattice of helical waveguides femtosecond-laser-written in a borosilicate glass:148 schematic of the lattice (left);
calculated intensity profile of the soliton whose maximum exhibits cyclotron-like rotation jumping four sites (1–4) sequentially (middle); measured output intensity distribution
(right) at a propagation distance of 1.5 driving period for an input power of 3.32 mW.
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indeed observed in the circuit experiment, in the form of an input
admittance peak appearing at a mid-gap frequency when the lattice
was driven above a threshold power level, as shown in Figs. 7(c) and
7(d). The resonance frequency was shown to be insensitive to disorder
introduced by deliberately shorting different resonators to ground,
consistent with the topological protection in the underlying linear SSH
model.

A few experiments have now probed SSH models with on-site
Kerr nonlinearity.99,107 In particular, Dobrykh et al. demonstrated
nonlinearity-induced tuning of the linear topological edge states in an
array of coupled nonlinear microwave resonators.99 The SSH array
was made of N¼ 7 broadside-coupled split-ring resonators with the
magnetic dipole resonance at the frequency f0 � 1:5GHz. The Kerr-
type nonlinear tunability of the frequency was introduced by varactor
diodes mounted inside the gap of each split ring resonator. The experi-
ment was conducted in the pump-probe setup, where a homogeneous
pump tuned to the linear edge state frequency was used to excite the
array, and the probe measures the spectrum of fluctuations about the
resulting nonlinear steady state. The setup can be described by the
nonlinear lattice model

dan
dt
¼ �can � ijanj2an þ tn;�an�1 þ tn;þanþ1 þ P; (9)

where an is a normalized amplitude of the n-th oscillator
(n ¼ 1;…;N), c is a damping coefficient, P is an amplitude of the res-
onant homogeneous pump, and tn;�; tn;þ are alternating weak and
strong nearest-neighbor couplings. With increasing the power, the

field becomes localized at the edge and induces a nonlinear blue shift
for the edge state, as shown in Fig. 8.

Bulk solitons and edge states in SSH models with on-site Kerr
nonlinearity have been also analyzed theoretically from different per-
spectives.136,137 Bulk solitons exhibit anistropic pseudospin (sublattice)
textures, which results in asymmetric interactions with localized
defects.136 Later, Ref. 137 showed that the bulk solitons and nonlinear
edge states in this setting have a closely related origin; mutual transfor-
mations between edge and bulk states, forbidden in linear limit, can
occur in the nonlinear regime. It has also been predicted that traveling
bulk solitons are capable of exciting the edge states by reflecting off the
topologically nontrivial edge.137,147 In this regard, recent experiments
using coupled optical fiber loops have demonstrated coupling between
localized topological edge states and nonlinear bulk modes.107

C. Two-dimensional lattices

Theoretical studies of 2D nonlinear topological lattice models
have revealed several interesting new phenomena inaccessible in 1D
settings: bulk solitons exhibit cyclotron-like rotation or vorticity140,145

and under an applied force experience anomalous Berry curvature-
induced transverse shifts.147 Self-induced edge solitons can be mobile,
traveling along the edge and around corners and certain defects.6,139

These models are, however, more challenging to implement in optics
experiments. For instance, using longitudinally modulated waveguide
arrays, it is relatively easy to create topological lattices, but the longitu-
dinal modulation induces additional radiation losses reducing already
weak nonlinear effects.135,139,145 On the other hand, nonlinearities are

FIG. 7. Nonlinear electronic circuit analog of the Su–Schrieffer–Heeger model.101

(a) Schematic of the unit cell consisting of sites (LC resonators) coupled via linear
CL and nonlinear CNL capacitors. (b) Nonlinear capacitance CNL implemented using
back-to-back varactor diodes. [(c) and (d)] Measured input admittance spectra at
the edge of a 6-cell chain. (c) In the linear limit, the chain is trivial and multiple
peaks (resonances) associated with bulk modes are observed. (d) In the nonlinear
regime a self-induced edge state emerges, visible as a single dominant resonance
in the middle of the spectrum. A solid black line corresponds to an ideal chain while
thin colored curves are measured spectra in the presence of various defects, dem-
onstrating robustness to disorder. Adapted with permission from Hadad et al., Nat.
Electron. 1, 178–182 (2018). Copyright 2018 Nature Springer.

FIG. 8. Nonlinear tuning of microwave topological edge states.99 (a) Experimental
setup: SSH array of nonlinear microwave resonators with source (horn antenna)
and receiver (loop antenna). (b) Measured nonlinear shift of the edge state fre-
quency depending on the pump power. With increasing the pump power, the edge
state frequency is gradually blue-shifted from the mid-gap. (c) Measured magnetic
field distribution for weak pump exhibits a staggered profile characteristic of the lin-
ear SSH model. (d) Spatially resolved pump–probe reflection spectrum for power
0.8W. Curves 1–7 correspond to the resonators from left to right. The central peak
in the black curve, corresponding to the excitation of the edge resonator, is detuned
from the linear mid-gap position marked by a dashed vertical line.
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easier to observe using exciton–polaritons, but strong external magnetic
fields are required to create a topological bandgap.7,136,138,146,150,155,156

Zangeneh-Nejad and Fleury130 have implemented nonlinear cir-
cuits generalizing the SSH model to a class of high-order topological
insulators.44,127,129 The 2D lattice they studied hosts a nontrivial topo-
logical phase characterized by quantized Wannier centers (with quan-
tized values of the bulk polarization) and robust mid-gap corner
modes,157 with the topological transition governed by the ratio of
intra-cell to inter-cell couplings, similar to the SSH case. The nonlinear
circuit was again implemented by using back-to-back varactors for the
inter-cell connections, and self-induced corner states were observed
above a certain power threshold.

Very recently, the observation of topological gap solitons has
been reported in a square lattice of laser-written periodically modu-
lated waveguides, which creates a Floquet topological phase. The non-
linearity arises from the optical Kerr effect of the ambient glass. Under
the paraxial approximation, the z propagation of light through this
photonic lattice is captured by the discrete equation, which includes
the linear tight-binding Hamiltonian with nearest-neighbor evanes-
cent coupling and diagonal on-site nonlinearity,

i
@an
@z
¼
X
hn0i

Hnn0 ðzÞan0 � janj2an: (10)

In the nonlinear dispersion given by the dependence of quasienergy
(propagation constant) on power, a family of gap solitons bifurcates
from the linear modes and shows maximal localization in the vicinity
the mid-gap quasienergy. In accordance with their chiral nature, soli-
tons residing in the topological bandgap exhibit continuous cyclotron-
like rotation. The solitons were probed in propagation using single-site
excitation in the input [see Fig. 6(f)]. The characteristic peak in the
degree of localization vs power was observed that distinguishes topo-
logical gap solitons from trivial solitons in static lattices of straight
waveguides, where localization continuously grows up and then satu-
rates at very high nonlinearity.148

D. Future directions

The initial studies of two-dimensional topological solitons have
largely focused on models of the QH phase, in which time-reversal sym-
metry is explicitly broken, and topological phases are well-defined even
in the absence of special symmetries. While this aids in the interpretation
of the solitons as nonlinearity-induced domain walls, these models are
more challenging to realize in experiment. There have now been many
experimental demonstrations of time-reversal symmetric QSH and VH
phases using nanophotonic crystals supporting tight light confinement
and appreciable Kerr nonlinearities.66,67,69,158 Recent realizations of hon-
eycomb lattices in nonlinear atomic vapors are also a promising step
toward observing self-localized states in these models.82,97 Studies of self-
localized states in time-reversal symmetric topological models remain
relatively scarce, however, and form an interesting direction for further
research. For example, Bleu et al.159 have predicted robust, charge-
controlled transport of vortex solitons along VH domain walls.

VI. TOPOLOGICAL LASERS
A. Motivation and general approaches

Topological photonics has potential applications for the design of
lasers, as it provides a systematic way to control the number and

degree of localization of spectrally isolated edge and defect modes in
photonic structures. For example, mid-gap modes of 1D topological
lattices are optimally localized within the bandgap, which allows for
the tight confinement of lasing modes.94,160–163 In 2D systems,
backscattering-immune edge modes hold promise for the design of
ring cavities supporting large modal volumes and single mode opera-
tion regardless of the cavity shape.8,53,164 In both cases, the resulting
modes are protected against certain classes of fabrication disorder,
offering improved device reliability.

At a fundamental level, topological lasers are interesting as a plat-
form for exploring the interplay between nonlinearity and topology.
Once a mode rises above the lasing threshold, it becomes crucial to
account for nonlinear gain saturation, which is what enables the sys-
tem to relax toward a steady state. The high optical intensity within
the laser cavity can also lead to other nonlinear effects such as Kerr
self-focusing. Nonlinearities in conventional lasers are known to lead
to a rich variety of phenomena including chaos and instabilities, so it
is interesting to ask how these effects interact with the topological fea-
tures of the photonic structure.

Since 2017, several experiments have demonstrated lasing of
topological edge modes in both 1D and 2D lattices. The experiments
can be divided into two classes: (1) photonic lattices of coupled resona-
tors with structural periods somewhat larger than the operating wave-
length, and (2) photonic crystals with structural periods comparable to
the operating wavelength. These systems have been modeled as either
class A or class B lasers.165

In class A lasers such as quantum cascade lasers, the photon life-
time is much longer the gain medium’s polarization and population
inversion, which are adiabatically eliminated leaving a nonlinear wave
equation involving only the optical field amplitude w. Under the tight
binding approximation, this results in a discrete set of equations of the
form

i@twn ¼ ĤLwn þ
gnðiþ aÞ

1þ jwnj
2=Isat

wn; (11)

where n indexes the weakly coupled resonators forming the tight
binding lattice and ĤL is an effective Hamiltonian accounting for
all the linear effects such as absorption c, coupling between the res-
onators J, and disorder W. The second term is nonlinear and
describes the saturation of the gain induced by the pump gn, gov-
erned by a characteristic intensity scale Isat. The linewidth
enhancement factor a accounts for carrier-induced shifts of the
ambient refractive index, which can lead to self-focusing or defo-
cusing behavior. This model assumes frequency independent gain,
a good approximation for tight binding lattices which typically
have a narrow bandwidth.

Semiconductor gain media such as quantum dots that are typi-
cally integrated with photonic nanostructures are class B lasers. In
these lasers, the free carriers providing the gain have a much longer
lifetime than the photons and their dynamics must be taken into
account, resulting in coupled equations of the form166,167

i@twn ¼ ĤLwn þ Nnðiþ aÞwn; (12)

s@tNn ¼ Rn � Nn � ð1þ 2NnÞjwnj
2; (13)

where NnðtÞ is the normalized excess carrier population, Rn is the nor-
malized excess pump rate, and s is the ratio between the carrier and
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photon lifetimes (�100–1000 for semiconductor lasers and � 1 for
class A lasers). A significant challenge presented by class B models is
that while topological protection can be readily implemented in the
photonic part of the field, the carrier populations Nn are not coupled
directly to one another and do not share this protection. Slow carrier
dynamics are a well-established source of instabilities in coupled semi-
conductor laser arrays; as the carrier lifetime is increased, the stable
steady states of the class A limit become unstable and are replaced by
limit cycles and eventually chaotic dynamics.165

In both classes of lasers, the lasing modes can be obtained numer-
ically using standard iterative methods to solve for stationary states of
nonlinear wave equations (e.g., Newton’s method) and seeking real
frequency solutions. The initial guess for these iterative schemes is typ-
ically chosen to be the profile of the mode of interest at its threshold,
obtained by solving a linear eigenvalue problem, followed by standard
linear stability analysis to determine if the lasing modes are stable. The
solution can be further verified by taking a direct numerical solution
of the governing equations starting from small random field ampli-
tudes as the initial condition; this can result in convergence to the sta-
tionary solution (in the case of stable single mode lasing), persistent
oscillations between competing lasing modes (multimode lasing), or
more complex dynamics such as irregular pulsations and chaos.165

B. Lasing of 1D edge modes

The first examples of topological lasers were based on the 1D
Su–Schrieffer–Heeger (SSH) model. Interest in this type of topological
laser was sparked by a 2013 theoretical study of the SSH model with
staggered linear gain and loss,168 which modeled a 1D topological pho-
tonic crystal under inhomogeneous pumping. For sufficiently weak
gain/loss, the bulk modes overlap with both the gain and loss regions
due to the chiral symmetry of the SSH model. This results in bulk
modes with vanishing net gain. At the ends of the array or at domain
walls, there exist topological modes localized to a single sublattice;
pumping this sublattice gives the modes nonzero net gain, allowing
them to lase before the bulk modes. The topological modes inherit a
certain robustness to disorder, since they reside in the middle of the
bandgap and are spectrally isolated from other modes. As the gain/loss
is increased, the bulk bandgap becomes smaller and eventually closes.
The bulk modes then start to localize onto the pumped sublattice and
compete with the topological modes, resulting in multiple modes ris-
ing above the lasing threshold.169

These predictions were observed in a trio of photonic lattice
experiments in 2017.160–162 St.-Jean et al.160 employed a zigzag polari-
ton lattice of micropillars, while both Parto et al.161 and Zhao et al.162

used ring resonator lattices with embedded InGaAsP/InP quantum
wells as the gain medium. The latter is illustrated in Fig. 9(a). Uniform
pumping results in spatially delocalized multimode emission due to
competition between bulk modes, while pumping a single sublattice
results in single mode lasing of the topological interface state as the
bulk bandgap remains open. Robustness of the edge modes to certain
classes of perturbations was also demonstrated.

Second generation designs based on nanoscale photonic crystals
are now emerging. In 2018, Ota et al. reported lasing at k � 1040 nm
in a protected defect mode at a topological domain wall of a GaAs
nanobeam photonic crystal with embedded InAs quantum dots,94

shown in Fig. 9(b). Their design supports strongly confined defect
modes with modal volumes as small as 0:23ðk=nÞ3, quality factors up

to Q � 59 700, and spontaneous emission coupling factor b � 0:03.
Similarly, Han et al.163 used nanocavities based on L3 defects in a
hexagonal InAsP/InP photonic crystal to achieve Q � 35 000 and
b � 0:15 at 1550nm. These values are, however, comparable to con-
ventional photonic crystal cavities; the main benefit of the topological
design is the ability to systematically control the Q factor and mode
volume via the size of the bulk bandgap while preserving single mode
operation. So far, these experiments have been limited to optical
pumping by ultrashort pulses at powers relatively close to the lasing
threshold, with observations largely explained in terms of linear
modes.

The SSH model also provides a simple testbed for exploring non-
linear dynamics of topological lasers and understanding whether there
can be meaningful topological effects in the nonlinear regime. For
example, if the linewidth enhancement factor is neglected (a¼ 0),
under inhomogeneous pumping the SSH model exhibits a dynamical
charge conjugation symmetry, a nonlinear and non-Hermitian analog
of the chiral symmetry protecting the linear topological edge states.170

The charge conjugation symmetry protects stationary zero modes

FIG. 9. Topological lasers based on the 1D Su–Schrieffer–Heeger chain. (a)
Photonic lattice of coupled silicon microring resonators exhibiting multimode or sin-
gle mode lasing depending on the gain profile.162 (b) Lasing at a topological domain
wall in a GaAs nanobeam photonic crystal.94 Left panel: emission intensity vs pump
power showing a transition to lasing at the threshold power of about 46 lW. Top
right: narrow spectral line of the topological mode emission above the threshold at
the pump power 150lW. Bottom right: broad spectrum of the emission below the
threshold at the pump power 5 lW. Adapted with permission from Zhao et al., Nat.
Commun. 9, 981 (2018). Copyright 2018 Author(s), licensed under a Creative
Commons Attribution 4.0 License; Ota et al., Commun. Phys. 1, 86 (2018).
Copyright 2018 Author(s), licensed under a Creative Commons Attribution 4.0
License.
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localized to the pumped sublattice, with the number of these modes
only changing at nonlinear bifurcations, which can be considered a
nonlinear topological transition.171 Above a critical power, the zero
modes become unstable and give birth to symmetry-protected time-
periodic oscillatory modes at Hopf bifurcations. While a 6¼ 0 breaks
the charge conjugation symmetry, the spectral isolation of the nonlin-
ear modes means that they can persist for sufficiently weak symmetry-
breaking perturbations. Similar behavior is observed for other forms of
nonlinearity172 and in 2D analogs of the SSH model such as the Lieb
lattice.171

The SSH model can also form the basis for a class of topology-
inspired large volume single mode lasers by introducing non-
Hermitian coupling. For example, asymmetric non-Hermitian cou-
pling Jn;n61 / exp ð6hÞ describes the preferential hopping of the
optical field from site n to nþ 1, equivalent to an imaginary effective
gauge field h. In a finite lattice, this does not affect the energy spectrum
because the gauge field can be removed by the gauge transformation
wn ! wn exp ðhnÞ. However, this transformation changes the eigenm-
odes’ localization: all modes start to localize to one end of the lattice.
When edge states exist (e.g., in the SSH model), the non-Hermitian
localization competes with the localization n of the topologically pro-
tected edge states. At a critical imaginary gauge field strength h ¼ n,
this leaves all but one of the modes localized to one edge of the system,
with the remaining (topologically protected) zero mode delocalized
over the whole lattice and therefore able to saturate the gain at all the
pumped sites.173

The (Hermitian) SSH model is not the only way to design novel
topological lasers. More recently, the idea of non-Hermitian topological
phases has been developed,174 which can be used to design disorder-
robust delocalized modes in 1D systems using non-Hermitian cou-
pling. As a second example, symmetric non-Hermitian coupling
Jn;n61 / eih describes effective gain dependent on the modal wavenum-
ber, i.e., the relative phase between the optical field at neighboring lat-
tice sites.166,167 This phase-dependent gain can promote single mode
lasing in simple quasi-1D ring-shaped lattices. Another recent proposal
by Longhi175 has predicted a non-Hermitian topological transition
from single mode lasing to multi-mode lasing in a mode-locked laser.

C. Lasing from 2D edge modes

The first experimental demonstration of lasing of 2D topological
edge states by Bahari et al. in 201753 used a photonic crystal embedded
on a yttrium iron garnet (YIG) substrate, shown in Fig. 10(a).
Breaking time reversal symmetry via the magneto-optic effect creates a
Chern insulator phase with a bandgap hosting protected chiral edge
modes. Despite the resulting topological bandgap (42 pm) being very
small due to weakness of magneto-optical effects at the operating
wavelength 1530nm, as well as the entire device being pumped, the
lasing profile shown in Fig. 10(b) is strongly localized to the edge and
insensitive to its shape. This unexpected observation still awaits a theo-
retical explanation: based on the behavior of the 1D SSH model and
2D lattices, uniform pumping should have led to multi-mode lasing of
bulk modes unless the gain medium has a narrow bandwidth centered
on a topological bandgap.176 In a follow-up study, the same group
demonstrated the generation of high charge (jlj � 100) optical vortex
beams using circular-shaped topological domain walls.177

Around the same time, Harari et al.178 studied theoretically class
A laser models of 2D optical ring resonator lattices exhibiting

topological edge states. They found that a pump localized to the edge
sites was required to suppress bulk mode lasing and induce stable sin-
gle mode lasing of the edge states. This single mode lasing also per-
sisted in the presence of moderate disorder and weak symmetry-
breaking perturbations that spoil the topological protection in the lin-
ear regime. In comparison, in similar non-topological models, disorder
tends to induce mode localization, resulting in multi-mode lasing
involving modes localized at different positions along the edge. Ring
resonator lattices incorporating gain and lasing of the topological edge
states were then realized by Bandres et al.;8 see Figs. 10(c) and 10(d).
Interestingly, the combination of nonlinear gain saturation with spatial
asymmetry (induced by either asymmetric pumping, or incorporating
S bends into the ring resonators) resulted in observable optical non-
reciprocity: preferential lasing of a single mode handedness or chiral-
ity, even though the underlying structure is non-magnetic and respects
time-reversal symmetry, meaning that the linear edge modes occur in
counter-propagating pairs with opposite spin. This is visible in Fig.
10(d) as an imbalance between the intensities at the two output ports.

Another 2D experiment was based on a honeycomb lattice for
exciton–polaritons combined with a strong magnetic field.164 The spi-
n–orbit coupling of the polariton condensate combined with a mag-
netic field-induced Zeeman shift created a Chern insulator phase,
although the resulting bandgap was small, making it difficult to
observe strong localization of the edge states. A subsequent theoretical
study by Kartashov and Skryabin179 of the governing class A gain
model verified the existence of stable nonlinear lasing modes in this
platform. They additionally found that above the polariton lasing
threshold, self-action terms such as a lead to frequency shifts of the
edge modes toward the bulk band edge. As the lasing mode
approaches the band edge, dynamical instabilities first develop, and
then at higher powers, the edge mode delocalizes due to resonance
with bulk modes. Thus, the topological protection of the edge state las-
ing mode does not persist in the nonlinear regime. A more involved
and accurate model of a polariton condensate would, however, incor-
porate a rate equation for the exciton reservoir density.180

In class B models, the slow carrier dynamics are another source
of instability.166 While the photonic field remains localized to the edge
and protected against disorder-induced backscattering, due to the car-
rier dynamics a limit cycle forms rather than a stationary state. In this
limit cycle, a localized excitation circulates around the edge of the
array due to competition between different edge modes with slightly
different energies and similar effective gain. Because of the slow carrier
response, the “winner takes all” effect of the saturable gain in the class
A laser is not available to strictly enforce single mode operation. Due
to this mode competition, the details of the dynamics and emission
spectra become sensitive to the particular disorder realization.

Finally, we mention very recent theoretical studies of topological
laser models analyzing the effects of initial and time-dependent noise
on the edge mode lasing,181 its spatial and temporal coherence,182 and
the transition from class A to class B lasing by varying the carrier life-
time.183 The precise energy of the lasing mode selected from one of
the topological edge states spanning the gap is sensitive to initial fluc-
tuations, due to similar gain of edge modes close to the middle of the
bandgap. Large arrays exhibit the well-known Kardar–Parisi–Zhang
scaling of their correlations, but always with reduced coherence com-
pared to the single mode Schawlow–Townes linewidth. Many of these
features can be captured by simpler one-dimensional effective models

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 021306 (2020); doi: 10.1063/1.5142397 7, 021306-15

VC Author(s) 2020

https://scitation.org/journal/are


describing the edge states.182,183 The advantage of the 2D topological
edge state lasers is that their coherence remains robust to (and can
even be enhanced by) moderate static disorder, compared to conven-
tional 1D arrays which form multiple incoherent lasing modes local-
ized by disorder.

D. Future directions

It is of interest to extend topological lasers to other gain media
and material platforms, such as waveguide or fiber loops.184 For exam-
ple, lasing in 2D honeycomb and square lattices of plasmonic nano-
particles using organic dyes as the gain medium was recently
demonstrated in Refs. 83 and 185. Such class A lasers can avoid insta-
bilities due to slow carrier dynamics. The radiative coupling present in
such plasmonic systems means that the tight binding approximation is
no longer valid, requiring re-examination of the results discussed
above.

Most studies to date have focused on lasing at the edges of finite
systems, but there is now growing interest in alternative schemes based

on lasing in the bulk of extended topological lattices, using one-
dimensional topological domain walls of VH or QSH lattices186–189

and point-like topological defects.190 The topological modes of the VH
models lie below the light line, such that the lasing modes are confined
in the plane of the photonic crystal.187,189 On the other hand, the QSH
models and point-like defects act as vertical cavity surface emitting
lasers.186,189,190

The main selling point of topological lasers to date has been their
potential for robust single mode continuous wave lasing, but for appli-
cations such as frequency comb generation or ultrashort pulse genera-
tion robust multimode emission is required. This can be achieved
using lattices hosting multiple topological gaps and edge states,191 or
by employing synthetic dimensions.192

The first topological lasers realized in experiment were proofs of
concept based on optically pumped gain media. Any real device appli-
cations will require electrical pumping, analysis of effects such as mod-
ulation bandwidth and how to avoid the instabilities discussed
above,165 and most importantly, a “killer application” in which topo-
logical lasers outperform their conventional counterparts, such as

FIG. 10. 2D topological lasers on photonic edge states. Top row: [(a) and (b)] InGaAsP/YIG photonic crystal laser.53 (a) InGaAsP photonic crystal bonded on gyrotropic yttrium
iron garnet (YIG). Under an external magnetic field, the inner domain forms a Chern insulator. (b) Intensity profile of the chiral lasing edge mode at the wavelength 1064 nm.
Bottom row: [(c) and (d)] InGaAsP ring resonators laser.8 (c) Photonic lattice of coupled InGaAsP microring resonators exhibiting spin momentum-locked edge states; (d)
Chiral lasing via asymmetric pump: Despite preservation of time reversal symmetry, asymmetric pumping induces chiral lasing due to nonlinear gain saturation, resulting in an
imbalance in intensity from the output ports coupled to the two spin states (highlighted in red and blue). Adapted with permission from Bahari et al., Science 358, 636–640
(2017). Copyright 2017 The American Association for the Advancement of Science; Bandres et al., Science 359, eaar4005 (2018). Copyright 2018 The American Association
for the Advancement of Science.
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tolerance to fabrication imperfections. As a step in this direction,
Suchomel et al.193 have implemented electrically pumped polariton
lasers in artificial honeycomb and square lattices, which can be readily
generalized to topological lattices such as the time reversal-symmetric
shrunken-expanded hexagon or VH designs discussed in Sec. III. Very
recently, Zeng et al. realized an electrically pumped quantum cascade
laser based on the VH edge states.194

VII. FREQUENCY CONVERSION
A. Motivation and general approaches

Topological photonics offers potential advantages for frequency
conversion applications. First, the conversion rate depends on the local
pump amplitude or intensity (in quadratic or cubic nonlinear media,
respectively) and can be enhanced when the pump excites a strongly
localized topological edge mode. Second, it is usually necessary to filter
the weak generated signal from the much stronger pump beam; this
filtering can be facilitated by the co-existence of bulk and edge modes
with very different spatial profiles, as well as the ability to robustly con-
trol the propagation direction of edge modes occupying different
bandgaps. Finally, phase-sensitive nonlinear wave mixing processes
provide a novel all-optical mechanism to tune the topological proper-
ties of small amplitude signal beams.

B. Harmonic generation

The first observation of topologically enhanced harmonic genera-
tion was carried out using a small zigzag array of silicon nanodisks fab-
ricated on a glass substrate.11 The zigzag array implements a variation
of the SSH model based on alternating strong and weak dipole–dipole
couplings, with the topological phase controlled by the zigzag angle, as
shown in Fig. 11. Due to intrinsic nonlinearity of silicon, topological
edge states facilitate resonant generation of third-harmonic radiation.
The topology-driven third-harmonic signal was shown to be robust
against coupling disorder due to misalignment of the individual nano-
disks; a number of arrays with randomly generated bond angles
between the disks were fabricated, and in full agreement with theory,
for disorder angle less than a critical value of 20	, edge states were
observed. Remarkably, the observed third-harmonic radiation
switched from one edge of the array to the other one, depending
whether the system was illumination from the substrate or from air.
This asymmetric harmonic generation is a type of nonreciprocal
response and has potential applications for nanoscale topological opti-
cal diodes.

Subsequently, Wang et al. studied a similar nonlinear SSH-like
circuit, showing how the topological edge state can enhance the har-
monic generation.14 They implemented a significantly longer 1D lat-
tice, with 40 sites, broad operating frequency bands, and clear
distinction between the bulk and edge modes. Such a circuit can be
viewed as a type of left-handed nonlinear transmission line (NLTL)196

and supports an SSH-like bandgap with a mid-gap topological bound-
ary state at the fundamental harmonic, as well as propagating-wave
modes at higher harmonics. When the circuit was excited at the
boundary, cross-phase modulation between the two types of modes
gave rise to strongly enhanced generation of third- and higher-
harmonic signals, five times higher than in a standard (non-dimerized)
NLTL and two orders of magnitude higher than in the lattice’s topo-
logically trivial configuration.

Going to 2D, topology-controlled third harmonic generation was
demonstrated in a nanostructured metasurface with a domain wall
supporting two counter-propagating spin-polarized edge waves (see
Fig. 12). Similar to the earlier theoretical proposal,37 the topological
metasurface was composed of hexamers of silicon nanoparticles. The
nontrivial topological properties in the QSHE phase are achieved by
deforming a honeycomb lattice of silicon pillars into a triangular lattice
of cylinder hexamers, as described in Sec. II.

Figure 12(c) shows the numerically computed bulk band diagram
of the structure and the characteristic Dirac-like dispersion of the

FIG. 11. Nonlinear generation of light from a topological nanostructure.11

(a) Concept of THG in a zigzag array of nanoresonators: third-harmonic light
(frequency 3x) is generated by the topological edge state. (b) Measured distribu-
tion of the third-harmonic field in 11-nanodisk zigzag array of Mie-resonant dielectric
nanodisks. (c) Spectrum of the zigzag array calculated as the function of the bond
angle. Shaded is the region where the topological edge states can exist.195 (d)
Robustness of the topological state to the disorder: edge state formation persists
up to the disorder angle of 20	.
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FIG. 12. Third-harmonic generation from nanoscale helical edge states.69 (a) Topological transition due to clustering the hexagonal unit cell. Band structures for shrunken
(left), unperturbed (middle), and expanded (right) lattices of hexamers. Color of the bands encodes polarization ranging from pure circularly polarized dipolar p6 to pure circu-
larly polarized quadrupolar d6 states. (b) SEM of the fabricated metasurface. (c) Calculated band diagram featuring gapped bands of bulk modes and Dirac-like crossing for
the edge states. [(d) and (e)] Experimental images of third-harmonic generation by the edge states at the sharp-corner domain wall (d) and Australia-shaped contour (e).
Adapted with permission from Smirnova et al., Phys. Rev. Lett. 123, 103901 (2019). Copyright 2019 American Physical Society.
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spin-momentum locked edge states residing in the bandgap. The two
pump polarizations couple to the edge modes with the opposite helic-
ity values rþ and r�. The metasurface was excited by a tunable pulsed
laser, and the third-harmonic signal was imaged onto a camera. The
waveguiding domain wall in the geometry-independent photonic
topological cavity was then clearly visualized via the third-harmonic
field contour, as shown in Fig. 12. Notably, the shorter wavelength of
the third harmonic provided the ability to directly image nanoscale
helical edge states passing sharp corners with unprecedented
resolution.69

The above studies all employed topological designs to enhance
the localization of the pump beam and hence improve the efficiency of
the harmonic generation, without much focus on the modal structure
at the harmonic frequency. Very recently, Lan et al. have proposed
designs for magneto-optical microwave photonic crystals supporting
topologically non-trivial bandgaps at both the pump and harmonic
wavelengths,118 enabling traveling wave harmonic generation.

One advantage of traveling wave harmonic generation is that one
can design the photonic crystal to have counter-propagating edge
states at the fundamental and harmonic frequencies, separating the
strong pump from the weak generated signal. Furthermore, the effi-
ciency of the generation can be strongly enhanced by optimizing the
edge state dispersion (e.g., via the edge termination) to minimize its
group velocity. Conventionally, this slow light-based enhancement is
accompanied by an enhanced sensitivity to disorder, which the topo-
logical design can overcome. However, for this traveling wave har-
monic generation to be efficient it is also necessary to optimize the
edge state dispersion to enhance phase matching of the wavevectors to
maximize the conversion efficiency.

C. Parametric amplification

In parametric amplification, a small-amplitude signal beam inter-
acts coherently with a strong pump beam. This phase-sensitive inter-
action can be used to control the topological phase of the signal. For
example, a pump beam that breaks time-reversal symmetry explic-
itly197 or spontaneously198 can be used to open topological bandgaps
for the small-amplitude signal beam, resulting in chiral edge states
which can be used to generate squeezed light.199

An alternate approach is to consider parametric amplification in
systems that are already topological in the absence of a pump, which is
similar in spirit to the harmonic generation discussed above in that
both the pump and signal beams propagate in a chiral edge mode. In
this case, however, both modes reside typically in the same topological
bandgap and therefore, they travel in the same direction.
Unidirectional edge states can also offer better phase-matching to
maximize frequency conversion. Peano et al.200 studied these processes
using a tight-binding model, showing that the frequency conversion is
nonreciprocal, and therefore, it suppresses unwanted feedback that
limits the performance of such phase-sensitive amplifiers. Later, You
et al.201 used rigorous full-wave simulations and coupled-mode theory
to demonstrate a strong enhancement of four-wave mixing of topolog-
ical plasmons in nanopatterned graphene under a strong static mag-
netic field, predicting a net gain at very low pump powers (10 nW)
even in the presence of plasmonic losses.

In addition to the above studies focused on amplification of an
external signal beam, parametric amplification of vacuum fluctuations
is of special interest for quantum photonic systems; the most common

approach for generation of quantum light, being single photons,
entangled photon pairs, and correlated biphotons, relies on spontane-
ous parametric downconversion (SPDC) and spontaneous four-wave
mixing (SFWM) in nonlinear media. Thus, nanophotonic structures
with modes robust against fabrication disorder and scattering losses
can be potentially used to engineer robust, mass-producible quantum
light sources and circuits. For example, Ref. 10 has observed reliable
and reproducible generation of correlated photon pairs in two-
dimensional topological resonator lattices.

Topologically protected biphoton202 and entangled203 states were
experimentally studied in the SSH-model-based array of coupled sili-
con nanowaveguides.204 Biphoton correlation maps resistant against
disorder were reported in Refs. 202, using a one-dimensional wave-
guide array with a single long-long topological defect pumped at an
infrared wavelength of 1550nm. Due to the high third-order nonline-
arity of silicon, the photon pairs generated via SFWM overlapped
strongly with the topological defect mode localized at one sublattice
with the topologically protected propagation constant. Subsequently,
strong spatial entanglement between two topological states was
revealed in the SSH geometry incorporating two coupled topological
defects.203

D. Future directions

In addition to potential applications as robust sources of classical
and quantum light, the frequency conversion processes also provide
the opportunity to implement novel topological lattice models based
on synthetic dimensions.27,28,205 In this approach, the photon energy
is treated as a fictitious dimension, along which hopping can be
induced by periodic modulation of the refractive index. Recent imple-
mentations of this idea have used periodic spatial modulation of wave-
guide arrays206 and temporal modulation of resonators,207,208 but all-
optical modulation using nonlinear frequency modulation is also pos-
sible. As a promising first step in this direction, Bell et al.209 have dem-
onstrated synthetic one-dimensional lattices with long-range hopping
using four wave mixing in a nonlinear optical fiber.

VIII. MANY-BODY QUANTUM EFFECTS
A. Motivation and general approaches

The study of many-body quantum effects in topological photonic
systems is motivated both by fundamental interest in emulating novel
strongly correlated electronic phases, and also potential practical appli-
cations in future quantum computing technologies as a way to
robustly store, transport, and manipulate quantum information.
Indeed, pursuit of these goals has been a long-standing challenge pre-
dating the emergence of topological photonics as its own research
field. One is faced with stringent requirements of strong single-photon
nonlinearities, comparably strong synthetic gauge fields for light, and
minimization of detrimental disorder and losses; combining all these
ingredients in topological systems is only now becoming feasible.

The prototypical model for exploring quantum many-body phases
is the Bose–Hubbard model, described by the Hamiltonian210,211

ĤBH ¼
X
ij

Hijâ
†
i âj þ U

X
j

â†j â
†
j âjâj; (14)

where Hij describes linear on-site energies and inter-site couplings [cf.
Eq. (1)] and U is the photon-photon interaction strength. In the mean
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field limit, Eq. (14) reduces to the nonlinear Schr€odinger equation sim-
ilar to the ones discussed in Sec. V. Since strong single photon interac-
tions are quite difficult to realize, several recent studies have explored
the emulation of one-dimensional two-particle quantum dynamics
using specially designed two-dimensional classical lattices.212–216

In the case of a simple 1D lattice, Eq. (14) exhibits a transition from
a superfluid phase to a Mott insulator phase as the interaction strength is
increased.211 Driven-dissipative extensions of the Bose–Hubbard model
are often required to account for inevitable photon losses.100 The inter-
play between photon-photon interactions, dissipation, pumping, disor-
der, and the lattice geometry and topology gives rise to rich behavior
qualitatively different from the classical limit.217–222 For example, topo-
logical adiabatic pumping, which can break down in nonlinear systems
due to instabilities, can become robust again in the presence of strong
single photon interactions.223,224 For further background on this exten-
sive topic, we refer the reader to earlier review articles,3,210,211 and in the
following focus on the most recent developments.

B. Strong interactions in synthetic magnetic fields

Combining strong single photon interactions with synthetic mag-
netic fields is of tremendous interest as a means of creating photonic
analogs of fractional QH states.225–227 Efforts in this direction have
focused on two platforms: superconducting circuits121,122 and Rydberg
atoms.98,115,116

One can create synthetic gauge fields for superconducting reso-
nator arrays by periodically modulating in time either their resonant
frequencies, or the inter-resonator hopping strength.220,223 The latter
approach was demonstrated by Roushan et al. in 2017 in the simplest
possible system supporting a nonzero synthetic magnetic flux, a trian-
gular three cavity array.121 Under the synthetic magnetic flux, a single
photon injected into one site exhibited chiral dynamics. Due to the
strong interactions, two photon states circulated in the opposite direc-
tion. This approach, when scaled up to larger arrays, is expected to
yield photonic fractional QH states.

Related experiments by the same group have probed the 1D
Harper–Hofstadter model in the strong interaction regime.122 The
Harper–Hofstadter model emulates a 2D tight binding lattice under a
uniformmagnetic field, exhibiting the characteristic Hofstadter butter-
fly eigenvalue spectrum as the effective magnetic field strength is
tuned. Due to the purely 1D geometry of this system, a larger number
of sites (9) were accessible, and time-domain spectroscopy was used to
measure both the single photon spectrum and signatures of many
body localization in the two photon spectrum.

Successful realization of a photonic fractional QH state, the
Laughlin state, was recently demonstrated by Clark et al. using ultra-
cold Rydberg atoms in a twisted cavity.115 The twisted cavity created
an effective magnetic field for light, with Floquet modulation used to
compensate for imperfections in the cavity and achieve a highly degen-
erate Landau level spectrum.98 The strong single photon nonlinearity
enabled by the Rydberg atoms induced two-photon scattering between
different degenerate orbital angular momentum modes in the Landau
level. Measuring the spatial structure of the optical field after injecting
two photons into the cavity, a circularly symmetric annular intensity
profile and angle-dependent two-photon correlations were observed as
key signatures of the Laughlin state, shown in Fig. 13.

C. Future directions

To generate photonic fractional QH states using superconducting
circuit arrays, the approach of Roushan et al. will have to be scaled up
to larger two-dimensional arrays.121 Two-dimensional arrays are more
challenging to fabricate, not only due to the larger number of sites, but
also because it is more difficult to integrate the required control cir-
cuitry while keeping inevitable decoherence effects to an acceptable
level. Nevertheless, due to the tremendous interest in quantum com-
puting using superconducting arrays, particularly the use of fractional
QH states as anyons for topological quantum computation, these
issues will likely be overcome in the near future.

Most experimental efforts (both in the non-interacting and strongly
interacting regimes) have focused on the generation and transport of
two-photon quantum states, requiring small system sizes to ensure
appreciable interaction effects. To reach the full many-body regime, it
will be necessary to scale up these experiments to larger lattices while
maintaining an appreciable photon number density. Theoretical predic-
tions for novel topological phenomena emerging for several interacting
photons will provide useful stepping stones for achieving this goal.
Conversely, with recent demonstrations of strongly interacting two pho-
ton states using Rydberg atoms and superconducting circuits, there are
nowmany interesting theoretical predictions to test.3,213,216,223

FIG. 13. Observation of a photonic Laughlin state.115 (a) Twisted cavity with nonlin-
ear interactions mediated by Rydberg atoms. (b) Circularly symmetric photon inten-
sity profile. (c) Measured two photon correlations are not circularly symmetric, but
depend on the relative angular position of the two photons. A solid curve indicates
the expected correlations of the Laughlin state, with minima at integer multiples of
120	. Adapted with permission from Clark et al., arXiv:1907.05872 (2019).
Copyright 2019 Author.
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IX. CONCLUSIONS AND OUTLOOK

We have reviewed the basic physics and practical implementa-
tions of photonic systems that combine the studies of topological
phases with nonlinear optics. Such systems can be modeled by nonlin-
ear tight-binding models or nonlinear continuous-wave equations.
Currently, there is a plethora of theoretical predictions of nonlinear
phenomena in topological photonic structures, including solitons,
modulational instability, frequency conversion, and optical switching.
Many of these are now starting to be realized in experiments: the past
two years have seen the first experimental demonstrations of las-
ing,8,53,160–162 harmonic generation,11,14,228 nonlinearly induced topo-
logical edge states,101 bulk solitons emerging from topological
bands,148 and Laughlin states of light.115

Topological dielectric nanostructures are another highly promis-
ing platform for future experimental studies. Topological nanostruc-
tures can be used to create robust components such as unidirectional
waveguides,66 miniature topological cavities,190 low-power nanoscale
lasers,94 and nonlinear light sources,69 whose properties can be tuned
via topological phase transitions. Connections with the older field of
singular optics are now starting to be appreciated, e.g., in the
polarization-controlled propagation direction of QSH edge states.

In nonlinear circuits, there are numerous opportunities to study
further topological phenomena. For instance, not all of the predicted
properties of topological solitons have been definitively observed in
circuit experiments, such as the frequency detuning and non-
exponential decay profiles of 1D solitons.144 It is presently unclear
whether or to what extent the sublattice trick, which proved useful for
simulating T-breaking in linear circuits, can co-exist with nonlinear
circuit elements.71,124 Achieving real or effective T-breaking in a 2D
electronic circuit would enable intriguing applications such as robust
traveling wave amplification.200 It would also be interesting to explore
how nonlinearities affect topological phenomena that rely intrinsically
on non-Hermiticity, which have already been studied in linear circuits
with resistive elements.125

For many practical applications, reconfigurability and dynamic
tunability of photonic topological insulators are essential. In Ref. 158,
the position of the topological bandgap in a pillar photonic crystal was
proposed to be tuned by modifying the refractive index of a liquid crys-
tal background medium with external electric field. Later, optical control
over the spectral position of edge states was implemented using pump-
induced carrier generation in a topological photonic crystal slab.229 Two
theoretical proposals were made by Shalaev’s group for ring resonators
to realize switchable topological phase transitions, based on thermal tun-
ing230 and integration with transparent conducting oxides.231 The devel-
opment of electrically or optically tunable photonic topological
insulators is another important direction for future research.

While the study of electronic topological states has a long history,
topological photonics is a comparatively young field of research. A
pressing question now is how to harness this newly discovered degree of
freedom in optical devices, for example, to design and fabricate
disorder-immune components for high-speed information transfer and
processing. As with conventional optical components, understanding
and exploiting nonlinear effects offers many new opportunities, such as:

• Nonlinearities provide a straightforward way to reconfigure or
otherwise manipulate topological lattices, and they are particu-
larly essential for achieving ultra-fast modulation.12

• Parametric frequency conversion processes are technologically impor-
tant. Feedback suppression enabled by certain topological edge states
may be useful for stabilizing traveling wave amplifiers.199,200

Spontaneous wave mixing processes are an important source of
entangled photon pairs for integrated quantum photonics applications.

• Lasers are ubiquitous, and they become inherently nonlinear
devices above threshold due to gain saturation, as well as they are
always non-Hermitian. Topological edge states may be useful for
the mode stabilization enabling high-power single-mode opera-
tion, although the extent to which this stabilization may hold in
realistic devices is still under debate.

• At a more fundamental level, nonlinear topological photonics
provides a playground for exploring novel nonlinear wave equa-
tions originally derived in the context of high energy physics and
potentially realizing them in tabletop experiments. These models
can support novel mechanisms for soliton formation (e.g., topo-
logical solitons and embedded solitons).

We envision nonlinear topological photonics to provide a fertile
playground for not only studying interesting theoretical problems at
the borderland between nonlinear dynamics and topology, but also as
a route toward novel designs for disorder-robust photonic device
applications, such as high-speed routing and switching, nanoscale
lasers, and quantum light sources.
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