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An arrangement based on a degenerate cavity laser for forming an array of nonlinearly coupled lasers
with an intracavity saturable absorber is presented. More than 30 lasers were spatially phase locked and
temporally Q switched. The arrangement with nonlinear coupling was found to be 25 times more sensitive
to loss differences and converged five times faster to the lowest loss phase locked state than with linear
coupling, thus providing a unique solution to problems that have several near-degenerate solutions.
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Phase locking of lasers corresponds to a state where all
the lasers have the same frequency and the same constant
relative phase, leading to a coherent superposition of their
fields [1,2]. Accordingly, the total brightness of the lasers is
high and allows focusing of all the lasers to a sharp spot
[3–5]. Phase locking of lasers has been incorporated in
many investigations, including simulating spin systems
[6–9], finding the ground-state solution of complex land-
scapes [6,9,10], observing dissipative topological defects
[11,12], and solving the phase retrieval problem [13].
Phase locking of laser arrays can be achieved with

dissipative coupling that leads to a stable state of minimal
loss, which is the phase locked state [6,11,12]. Dissipative
coupling involves mode competition whereby modes of
different losses compete for the same gain [2,6,9,14]. Only
modes with the lowest loss survive and are amplified by the
gain medium. Accordingly, by inserting amplitude and
phase linear optical elements into a laser cavity that
minimize the loss of the phase locked states, it is possible
to achieve phase locking with mode competition [2–4,15].
While phase locking with such linear optical elements

has yielded many exciting results [4–6,9,11,13–18], it
suffers from inherent limitations. It is very sensitive to
imperfections, such as positioning errors, mechanical
vibrations, thermal effects and other types of aberrations
associated with these intracavity elements. Moreover, in
many cases, especially for spin simulations and computa-
tional problem solving [6,10,13,19], there are two or more
states with nearly degenerate minimal loss that cannot be
distinguished from each other.
In this Letter, we resort to nonlinear coupling between

lasers by means of a saturable absorber (SA). A SA is a
nonlinear optical element that block light until it saturates,
where its optical loss decreases sharply [20]. It can thus
affect the temporal modes within the laser so as to obtain
passive Q switching and (longitudinal) mode locking, for
generating short pulses and high output peak powers [1]
and studying nonlinear laser dynamics [1,3,21–23].

Nonlinear coupling with SA in the spatial domain was
used to phase lock two lasers [3] and for selecting spatial
modes [24,25]. Here we analyze and demonstrate that a SA
can robustly and efficiently phase lock many lasers.
Specifically, inserting a SA at the far-field plane of a laser
array ensures that the phase locked state (that has sharp and
strong intensity peaks there [3–6,19]) corresponds to the
minimal loss state, to be selected by optical feedback (mode
competition) [18].
We show experimentally and numerically that nonlinear

coupling provides stable phase locking and is inherently
more robust to alignment errors, aberrations and noise than
linear coupling. Moreover, nonlinear mode coupling pro-
vided by the SA both in the spatial and temporal domains
can yield multiple coupled copies of the laser array
(corresponding to different longitudinal modes) that all
converge to the same minimal loss state. Hence, signifi-
cantly improving the ability of the coupled lasers to
distinguish between near-degenerate states.
Our experimental arrangement with nonlinear coupling

of laser arrays is based on a degenerate cavity laser (DCL)
[4,5,26], schematically presented in Fig. 1(a). It was
comprised of two flat mirrors where one served as a back
mirror with high 99.5% reflectivity and the other as an
output coupler with 80% reflectivity. A mask of holes for
forming the array of lasers was placed at the near-field
plane, adjacent to the output coupler. In our investigations,
the mask was a square array of holes of diameter 200 μm
and period a ¼ 300 μm. The gain medium was Nd:YAG
crystal rod of 0.95 cm diameter and 10.9 cm length placed
adjacent to the back mirror and optically pumped by quasi-
CW 100 μs pulsed flash lamps operating at 1 Hz flashing
pulse rate, so operating wavelength is λ ¼ 1064 nm.
Between the mirrors, two spherical (Fourier) lenses of
focal lengths f ¼ 20 cm and diameters 5.08 cm formed a
4f telescope configuration. Due to the 4f telescope, each
hole in the mask was precisely imaged onto itself after a
cavity round-trip, to obtain an independent laser.
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The nonlinear coupling between the lasers was achieved
with a Cr:YAG saturable absorber, having initial trans-
mission of 45%, which was inserted in the far-field
(Fourier) plane midway between the two lenses of the
4f telescope [4,5]. For comparison, we also performed
experiments with linear coupling by removing the SA and
displacing the output coupler by half of the Talbot length
from the mask, such that the round-trip distance between
them (Talbot distance) is equal to the Talbot length ZT ¼
ð2a2=λÞ and the cavity length becomes 4f þ ZT=2 [5] [27].
First, we detected the time evolution of the laser

array output power without and with the SA. Figure 1(b)
shows the results without the SA where the lasing
pulse duration was 200 μs with complicated strong oscil-
lations. Figure 1(c) shows the results with the SAwhere the
lasing pulse duration was reduced to 100 ns indicating
temporal Q switching [1]. The total energy in both cases
was similar.
Next, we characterized the spatial coherence between the

lasers by measuring the near-field and far-field intensity
distributions without and with the SA. The lasers were
operated close to their lasing threshold. As evident in
Fig. 2, the near-field intensity distributions of the square
array of lasers are essentially the same, while the far-field
intensity distributions differ dramatically, indicating differ-
ent spatial coherences. Specifically, the broad Gaussian in
the far-field intensity distribution without the SA in
Fig. 2(a) indicates no phase relation between the different
lasers in the array [3–5].
On the other hand, the sharp peaks in the far-field

intensity distribution with the SA in Fig. 2(b) indicate in
phase locking of most, if not all, of the 30 lasers in the array
[3–5]. These high intensity peaks increase the saturation of
the SA and minimize loss. This minimal nonlinear loss
combined with mode competition explain the phase locking

mechanism of the lasers by the SA. Even more lasers can be
phase locked with the SA, but with a somewhat lower
quality [27]. We also performed numerical simulations to
support our experimental results. The simulations were
performed by combining the Fox-Li algorithm [30] and the
Gerchberg-Saxton algorithm [31] to obtain a combined
algorithm [5]. As evident in Fig. 2, the simulated far-field
intensity distributions are in good agreement with the
experimental ones, indicating that the SA phase locked
the lasers in the in phase state.
For some pump pulse realizations, other phase locked

states such as the out of phase state [3–5] can occur. The
other phase locked states also have sharp peaks in their far-
field intensity distribution and similarly minimize loss.
Some typical results are presented in Fig. 3, showing
experimental far-field intensity distributions with a SA
for different pump pulse realizations. Figures 3(a) and 3(b)
show the in phase and out of phase states, and Fig. 3(c)
shows a coexistence state of the in phase and out of phase
states. To explain such a coexistence state, we note that
each laser in the array contains several hundreds of
temporal (longitudinal) modes [5,6]. Each of these longi-
tudinal modes corresponds to a different realization of the
spatially coupled lasers so phase locking could be either in
the in phase state or in the out of phase state. In the
coexistence state, part of the longitudinal modes phase
locked in phase and part out of phase [5,6].

FIG. 1. Degenerate cavity laser (DCL) arrangement and ex-
perimental temporal evolution of the laser array intensity.
(a) DCL arrangement with a mask of holes in the near-field
plane so as to form an array of lasers and a saturable absorber
(SA) in the far-field plane so as to non-linearly couple them.
(b) Time evolution of the laser array intensity without the SA.
(c) Time evolution with the SA indicating temporal Q switching.

FIG. 2. Experimental and simulated near-field and far-field
intensity distributions of the DCL arrangement. (a) Without and
(b) with a SA in the far-field plane. The broad Gaussian far-field
intensity distribution without the SA indicates that there is no
phase relation between the lasers whereas the sharp peaks with
the SA indicate near-perfect phase locking of the entire array. As
evident, there is good agreement between the experimental results
and the numerical simulations.
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We determined the likelihood of the coexistence state
when using either linear or nonlinear coupling. The results
are presented in Fig. 3(d), for 50 different pump pulse
realizations where all the near-field intensity distributions
were the same. For the linear coupling (by Talbot diffrac-
tion with Talbot distance ZT for which the two phase locked
states are exactly degenerated), we always observed coex-
istence states only (top row). Such behavior can be easily
understood: for linear coupling, the different longitudinal
modes act as an ensemble of independent realizations,
where each can have a different phase locked state. The
probability that all of them have the same state is expo-
nentially small. For linear coupling, the loss of the
coexistence state is minimal, similar to that of in phase
or out of phase state.
For nonlinear coupling (with SA), we found that the

likelihood of the coexistence state is completely suppressed
near the lasing threshold and all the longitudinal modes
choose the same phase locked state (bottom row). Such
suppression can be explained by noting that in the
coexistence state, there are many far-field peaks whose
intensity is relatively low and saturate less the SA, thereby
increasing the loss. In addition, the nonlinear coupling
between longitudinal modes provided by the SA forces the
longitudinal modes to have the same phase locked state. As
a result, near lasing threshold where mode competition is
the strongest, a single phase locked state is enforced
and the coexistence state is suppressed [32]. We also
found that high above the lasing threshold, the likelihood
of the coexistence state was not completely suppressed
although it is lower with nonlinear coupling than with
linear.
Next, we investigated whether adding nonlinear coupling

to linearly coupled lasers can improve the convergence to
the lowest loss phase locked state (e.g., out of phase state),

when an additional state (e.g., in phase state) with nearly
identical but slightly higher loss is present. The effects of
the SA on the convergence to the lowest loss phase locked
state are presented in Fig. 4. The linear losses of the in
phase and out of phase states were controlled by varying
the Talbot distance (round-trip distance between the near-
field mask and the output coupler) [5].
Using an eigenvalues modal analysis [33], we calculated

the losses, without and with a SA, of the in phase and out of
phase states for different Talbot distances in the range
½1to1.2�ZT . The results are presented in Fig. 4(a). For linear
coupling, there is a degeneracy between the two phase

FIG. 3. Typical experimental far-field intensity distributions for
different pump pulse realizations. (a) In phase state with SA,
(b) out of phase state with SA and (c) coexistence state of in phase
and out of phase states with SA. (d) Distribution of the number of
states for 50 different pump pulse realizations, top row: linear
coupling (Talbot diffraction), bottom row: nonlinear coupling
(SA) near lasing threshold.

FIG. 4. The effect of the SA on the convergence to the lowest
loss phase locked state. (a) Calculated losses of the in phase and
out of phase states as a function of Talbot distance in the range
½1to1.2�ZT . The SA increases the loss of the out of phase state by
∼0.5% as compared to the in phase state thereby shifting the
degeneracy distance between them from 1ZT . to 1.05ZT . (b) Mea-
sured relative occurrence of the in phase, out of phase, and
coexistence states as a function of Talbot distance. (c) Measured
expectation value of the in phase and out of phase states as a
function of Talbot distance. (d) Typical far-field intensity dis-
tribution for single realizations and averaged distribution over the
100 realizations at 1.05ZT .
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locked states at 1ZT . The difference in loss between the two
states increases as the Talbot distance increases, where the
loss of the out of phase state becomes significantly lower
[34]. When adding nonlinear coupling, the calculated
losses of the in phase state are slightly reduced (by
∼0.5%) compared with those of the out of phase state
for all Talbot distances, shifting the degeneracy distance
from 1ZT to about 1.04ZT [Fig. 4(a) right] [35].
We measured the relative occurrence of each phase

locked state (in phase, out of phase, or coexistence state)
as a function of the Talbot distance for 100 different
pump pulse realizations [36]. The results are presented in
Fig. 4(b). For linear coupling, the minimal loss phase
locked state (i.e., out of phase state) with ≥ 90%
occurrence rate is achieved only at distances larger than
1.15ZT where the loss difference between in phase and
out of phase states is large [≃5% in Fig. 4(a) left]. For
smaller loss difference, the coexistence state is dominant,
indicating that some of the longitudinal modes select the
wrong phase locked state.
For the nonlinear coupling, the occurrence of the

coexistence state is negligible (occurs only around the
degeneracy distance 1.04ZT with a very small probabil-
ity), confirming that with nonlinear coupling all longi-
tudinal modes select the same phase locked state (as
already noted in Fig. 3 without Talbot diffraction). As the
Talbot distance is varied across the degeneracy distance
1.04ZT , a sharp transition occurs between the in phase
and the out of phase states. The minimal loss state with
≥ 90% occurrence rate is achieved at Talbot distances
1.03 and 1.06ZT when the difference in loss is ≃0.2%
(≃25 times smaller than for linear coupling). We also
found that the results for the nonlinear coupling are more
robust and repeatable [27].
The method used to obtain the results in Fig. 4(b) only

provides the relative occurrence of each phase locked state
and does not provide the ratio of intensities between the in
phase and out of phase states. Figure 4(c) shows the
expectation value of the in phase and out of phase states
as a function of the Talbot distance (obtained by summing
the far-field intensity distributions of all 100 realizations
and calculating the expectation intensity value of each
phase locked state).
For nonlinear coupling, the results in Figs. 4(b) and 4(c)

have the same behavior (simply because there are only in
phase or out of phase states with no coexistence state). For
linear coupling, the minimal loss state with ≥ 90% expect-
ation value is achieved again only for Talbot distances
larger than 1.15ZT , where the difference in loss is large
(∼5%). Even “majority selection” of the longitudinal
modes (expectation value above 50%) fails for Talbot
distances smaller than 1.08ZT , where the difference in loss
is ≃1.3%. The improvement of nonlinear coupling over
linear coupling for finding the lowest loss state can also be
quantified by using the slope of the transition from the out

of phase to in phase state, which is ≃5 times sharper with
nonlinear coupling.
Finally, Fig. 4(d) shows experimental far-field intensity

distributions at 1.05ZT for two typical realizations and the
averaged distribution over the 100 realizations, for both
linear and nonlinear coupling. For linear coupling, the
distributions for all the different single realizations are
identical (and hence also is the averaged distribution) and
correspond to the coexistence state, indicating that the
longitudinal modes are uncoupled. For nonlinear coupling,
the distribution for the single realizations correspond either
to the in phase or out of phase state (no coexistence state),
indicating that the longitudinal modes are coupled and the
averaged distribution reveals both states. We also repeated
the experiments for a larger range of Talbot distances and
numerically simulated the far-field intensity distribu-
tions [27].
We calculated the loss functional that is minimized by

the lasers at the vicinity of its global minimum [27]. Loss
functionals for nonlinear coupling were theoretically inves-
tigated also for optical parametric oscillators and non-
equilibrium condensates (polariton arrays) [9,19]. In
polariton arrays, the nonlinear coupling introduced a phase
lag in the system that shifted or destabilized the stationary
point, with improved convergence to the ground-state
solution [19].
We also showed analogy with strongly coupled Ising

spins that produce significant magnetization even for
magnetic energy smaller than their thermal energy [27].
To conclude, we showed that an array of 30 lasers can be

phase locked efficiently and robustly, by resorting to
nonlinear coupling with a saturable absorber in the far-
field. The nonlinear coupling was found to significantly
improve the ability of the lasers to converge to the correct
minimal loss phase locked state, that is mapped to the
ground state of the classical XY spin Hamiltonian [6]. It is
25 times more sensitive to differences in loss with five
times faster convergence to the lowest loss state than with
linear coupling. The nonlinear coupling forces all longi-
tudinal modes of the lasers to have the same phase
locked state.
We also showed that nonlinear coupling inherently

improves the phase locking of many lasers. Specifically,
reducing the sensitivity to misalignment errors, mechanical
vibrations, thermal effects, and various aberrations.
Moreover, nonlinear coupling also improves the phase
locking by converging to a single (minimal loss) phase
locking state. We plan to study the effect of nonlinear
coupling on the time dynamics of the degenerate cavity
laser after replacing the flash lamps pumping by diode
pumping.
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