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Saturation mechanism of the fluctuation dynamo at PrM � 1
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The presence of magnetic fields in many astrophysical objects is due to dynamo action,
whereby a part of the kinetic energy is converted into magnetic energy. A turbulent dynamo
that produces magnetic field structures on the same scale as the turbulent flow is known as
the fluctuation dynamo. We use numerical simulations to explore the nonlinear, statistically
steady state of the fluctuation dynamo in driven turbulence. We demonstrate that as the
magnetic field growth saturates, its amplification and diffusion are both affected by the
back-reaction of the Lorentz force upon the flow. The amplification of the magnetic field is
reduced due to stronger alignment between the velocity field, magnetic field, and electric
current density. Furthermore, we confirm that the amplification decreases due to a weaker
stretching of the magnetic field lines. The enhancement in diffusion relative to the field
line stretching is quantified by a decrease in the computed local value of the magnetic
Reynolds number. Using the Minkowski functionals, we quantify the shape of the magnetic
structures produced by the dynamo as magnetic filaments and ribbons in both kinematic
and saturated dynamos and derive the scalings of the typical length, width, and thickness
of the magnetic structures with the magnetic Reynolds number. We show that all three of
these magnetic length scales increase as the dynamo saturates. The magnetic intermittency,
strong in the kinematic dynamo (where the magnetic field strength grows exponentially),
persists in the statistically steady state, but intense magnetic filaments and ribbons are more
volume-filling.
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I. INTRODUCTION

Magnetic fields are observed in a variety of astrophysical objects, including stars, galaxies, and
galaxy clusters, where they play an important role in various physical processes. Based on length
and timescales, astrophysical magnetic fields can be divided into two types: the large scale or mean
field, which is coherent over scales comparable to the size of the system, and the small scale or
fluctuating field, whose correlation length is of the order of the driving scale of the underlying
turbulent flow. The driving scale of turbulence, l0, is of the order of 0.1 kpc in spiral galaxies [1–3],
and 10 kpc in galaxy clusters [4,5]. The fluctuating magnetic field is believed to evolve over the
eddy turnover timescale, which is considerably shorter than the corresponding evolution timescale
for the large-scale field (which is typically of the order of 108 yr in spiral galaxies, comparable to the
rotation period). For spiral galaxies, the mean and fluctuating fields have comparable magnitudes
and thus both kinds of fields are equally important for the galactic dynamics [6]. There are a number
of reviews covering the theoretical, numerical, and observational aspects of the subject [7–12].
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The evolution and maintenance of magnetic fields is generally explained by dynamo action, a
process by which kinetic energy is converted to magnetic energy. Astrophysical flows leading to
dynamo action are typically turbulent; such flows may be driven by convection in stars, supernovae
in galaxies, and merger shocks, motion of galaxies and AGN outflows in galaxy clusters. Magnetic
field amplification by turbulent motions has also been observed in laboratory experiments [13].
Depending upon the magnetic fields that they produce, such dynamos are generally categorized as
either mean-field or fluctuation (or “small-scale”) dynamos. Mean-field dynamos produce large-
scale magnetic fields, whereas the fluctuation dynamo generates the small-scale component of the
field via random stretching of field lines by the turbulent velocity [14,15] (as conceptually explained
by the stretch-twist-fold mechanism [16,17]). Fluctuation dynamo action plays a crucial role not
only in spiral galaxies [7,10,18–21], elliptical galaxies [22,23], and galaxy clusters [24–27] but also
in stars such as the Sun [28–31], making it a general type of astrophysical process. Fluctuation
dynamos naturally produce intermittent magnetic fields [32–34], characterized by the presence of
intense, localized field structures. In the galactic context, a better understanding of these structures
is needed for cosmic ray propagation studies [35,36] and in the galaxy cluster context for the
interpretation of radio observations [37]. The initial stages of magnetic field growth, when the
Lorentz force is negligible, have been thoroughly studied [9,32], so here we focus on the nonlinear
states of the fluctuation dynamo, for which it is possible to consider relatively simple idealized flows
(i.e., homogeneous, isotropic turbulence). A mean-field dynamo would require additional physics,
such as rotation, velocity shear, and density stratification; such effects can be safely ignored over
the length and timescales that will be of interest here.

In a fluctuation dynamo, the root-mean-square (rms) magnetic field grows exponentially if
the magnetic Reynolds number ReM (quantifying the efficiency of inductive effects compared to
magnetic diffusion) exceeds its critical value Re(crit)

M , which depends on the properties of the flow.
When the magnetic energy is low in comparison to the turbulent kinetic energy, the flow dynamics
are not influenced by the magnetic field (the kinematic stage). For an isotropic, incompressible,
mirror-symmetric, homogeneous, and Gaussian random velocity field, which is also δ-correlated in
time, it can be shown that the magnetic field power spectrum Mk in the kinematic stage follows
a power law (at low wave numbers) with slope 3/2 [9,14]. However, an exponentially growing
magnetic field also leads to the exponential growth of the Lorentz force, which eventually makes
the problem nonlinear. This slows down the growth and finally leads to the saturation of the dynamo
(the saturated stage). The nonlinear problem is mostly studied via numerical simulations, in which
the Navier-Stokes and induction equations are solved simultaneously [e.g., 26,28,30,33,38–47].
Our aim in this paper is to explore the saturation mechanism of the fluctuation dynamo and to
characterize the magnetic structures it generates.

For fluctuation dynamos driven by homogeneous and isotropic turbulence, the following three
quantities are prescribed: the driving scale of the turbulent flow l0, the fluid viscosity ν, and
the magnetic resistivity η. Based on the magnetic Prandtl number PrM (defined to be the ratio
of viscosity to resistivity, PrM = ν/η), fluctuation dynamos can be divided into small and large
PrM cases. PrM is greater than unity (η < ν) for hot diffuse plasma (interstellar and intergalactic
medium) and PrM is much smaller than unity (η > ν) for dense plasma (planets, stars, and liquid
metal dynamo experiments). The critical magnetic Reynolds number Re(crit)

M , which is a threshold
for dynamo action to occur, increases with decreasing PrM [48–52]. We focus upon the PrM � 1
regime, fixing the underlying flow (i.e., fixing Re) and then varying ReM to study the sensitivity of
the magnetic structures of nonlinear dynamo states to the magnetic Reynolds number.

This paper is structured as follows. In Sec. II, we introduce the basic equations and describe the
numerical setup and provide parameters of the simulations. In Sec. III, we discuss magnetic field
intermittency. In Sec. IV, we examine possible saturation mechanisms. In Sec. V, we use Minkowski
functionals to quantify the magnetic field structures (as a function of the magnetic Reynolds number)
in both the kinematic and nonlinear regimes. Finally, in Sec. VI, we conclude with a discussion and
propose some future directions of research.
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II. BASIC EQUATIONS AND NUMERICAL MODELLING

To study the fluctuation dynamo action in a turbulent flow driven by a prescribed random force,
we solve the equations of magnetohydrodynamics, using the Pencil code [53]. The computational
domain is a triply periodic cubic box of nondimensional width L = 2π , with 2563 or 5123 grid
points. The equations are solved with sixth-order finite differences in space and a third-order Runge–
Kutta scheme for the temporal evolution. The governing equations are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂b
∂t

= ∇ × (u × b) + η∇2b, (2)

∂u
∂t

+ (u · ∇)u = −∇p

ρ
+ j × b

cρ

+ ν

(
∇2u + 1

3
∇(∇ · u) + 2S · ∇ ln ρ

)
+ F, (3)

where u is the velocity field, b is the magnetic field, ρ is the fluid density, p is the pressure, η is the
magnetic diffusivity, j = (c/4π )∇ × b is the electric current density, c is the speed of light, ν is the
viscosity, Si j = 1

2 (ui, j + u j,i − 2
3δi j∇ · u) is the rate-of-strain tensor, and F is the forcing function

(defined below). We use an isothermal equation of state, p = c2
s ρ, where the constant cs is the sound

speed. Eq. (2) is solved in terms of the magnetic vector potential to ensure that the magnetic field
remains divergence free.

We drive the flow with a mirror-symmetric and δ-correlated in time forcing [39] of the form

F(x, t ) = Re{NFk(t ) exp[ik(t ) · x + iφ(t )]}, (4)

where k is the wave vector, x is the position vector and −π < φ � π is a random phase. To ensure
that the forcing is nearly δ-correlated in time, k and φ are changed at each time step δt . Also, to
ensure that the time-integrated force is independent of the chosen time step δt , the normalization
is N = F0cs(|k|cs/δt )1/2, where F0 is the nondimensional forcing amplitude chosen such that the
maximum Mach number is small enough ( urms/cs � 0.1) to avoid strong compressibility. We select
many random wave vectors k, each of magnitude k (a multiple of 2π/L to make sure that the flow is
periodic) in a given range. Then we select an arbitrary unit vector e (neither parallel nor anti-parallel
to k) and set

Fk = k × e
|k × e| . (5)

The form of Eq. (5) ensures that the forcing is solenoidal, i.e., ∇ · F = 0 by construction. The
average wave number at which the flow is driven is denoted by kF. Even when the flow is periodic,
kF need not be a multiple of 2π/L. Physically, 2π/kF represents the driving scale of the turbulent
flow, l0, in the system.

The turbulent plasma is characterized by the hydrodynamic Reynolds number Re and magnetic
Reynolds number ReM , defined in terms of the rms velocity urms and the forcing scale kF [54], as

Re = urms

ν

2π

kF
, ReM = urms

η

2π

kF
. (6)

We use nondimensional units with lengths in units of the domain size L = 2π , speed in units of
the isothermal sound speed cs, time in units of the eddy turnover time t0 = 2π/ urmskF, density in
units of the initial density ρ0, and the magnetic field in units of (4πρ0c2

s )1/2. Initially, the density
is constant everywhere and u = 0, while there is a weak random, seed magnetic field with zero net
flux across the domain.
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TABLE I. Summary of fluctuation dynamo simulations in a numerical domain of size (L = 2π )3 with 2563

mesh points. In all cases, the forcing scale kF is approximately equal to 1.5(2π/L), the forcing amplitude
F0 = 0.02, the magnetic Prandtl number PrM = 1, and the rms velocity in the saturated state is urms/cs ≈ 0.11.
For each simulation, we quote the Reynolds number, the magnetic Reynolds number, the rms magnetic field
in the saturated state brms, the ratio of magnetic to kinetic energy in the saturated state εM/εK = b2

rms/ u2
rms, the

correlation length of the velocity and magnetic field in the kinematic stage lukin and lbkin, and similarly in the
saturated stage lusat and lbsat .

η, ν ReM , Re brms εM/εK lukin lbkin lusat lbsat

10 × 10−4 449 0.033 0.08 3.14 1.82 3.77 1.95
5 × 10−4 898 0.042 0.14 3.20 1.26 3.45 1.76
4 × 10−4 1122 0.048 0.20 3.01 0.94 3.64 1.76
3 × 10−4 1496 0.049 0.21 3.01 0.88 3.39 1.57
2.5 × 10−4 1796 0.054 0.25 2.95 0.75 3.58 1.57
2 × 10−4 2244 0.055 0.26 2.95 0.69 3.33 1.56

For the first set of simulations, with parameters given in Table I, the turbulent motions are driven
at the wave numbers 2π/L and 2(2π/L) at equal intensities, which implies that kF ≈ 1.5(2π/L).
The magnetic field grows for ReM � Re(crit)

M , with Re(crit)
M ≈ 220 for PrM = 1 [39]. The evolution of

the rms velocity field, urms, and magnetic field, brms, is shown in Fig. 1 for ReM = 1122. The flow
speed is controlled by the forcing function and thus remains nearly constant. The magnetic field first
decays until it reaches an eigenstate of the induction equation. Then it grows exponentially in the
kinematic stage at the growth rate of 0.4 urmskF/2π in dimensional units. As it becomes stronger, the
Lorentz force affects the flow and slows down the exponential increase. Finally, when the magnetic
field becomes strong enough, the dynamo reaches a statistically steady state in the saturated stage.
The exponential growth and then saturation of the magnetic field occurs in all of the runs shown in
Table I.

FIG. 1. Root-mean-square (rms) velocity field urms (red) and magnetic field brms (blue) as functions of
normalized time t/t0 (where t0 = 2π/ urmskF is the eddy turnover time) for Re = ReM = 1122. During the
kinematic stage (area shaded in light red), the black dashed line corresponds to the exponential growth. As
the magnetic field grows, the dynamo passes through a transitional stage (area shaded in light green), before
reaching a statistically steady saturated state (area shaded in light blue).
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FIG. 2. The shell-averaged (one-dimensional) kinetic Ek (dashed) and magnetic Mk (solid) energy spectra
in the kinematic (red) and saturated (blue) stages for Re = ReM = 1122. The kinetic energy spectrum is close
to the Kolmogorov spectrum, Ek ∝ k−5/3 (dotted, black) in the main part of the wave number range. The
magnetic spectrum is initially of the form Mk ∝ k3/2 (dashed, black) at smaller wave numbers. As the magnetic
field saturates, its power shifts to smaller wave numbers and the magnetic spectrum flattens.

The shell-averaged (one-dimensional) power spectra, for various stages of the magnetic field
evolution, are shown in Fig. 2. At all times, the kinetic energy spectrum is close to the Kolmogorov
spectrum, Ek ∝ k−5/3, in the range 3 � kL/2π � 20 (flow is driven at k = 2π/L and k = 2(2π/L)),
which suggest that the velocity field is turbulent in nature. The magnetic spectrum in the kinematic
stage has a broad maximum at large wave numbers and its slope agrees with the Kazantsev model,
Mk ∝ k3/2, in the range 2 � kL/2π � 10 with maximum power at approximately kL/2π = 10.
Kazantsev’s theory assumes that the turbulent flow is δ-correlated in time. While we have used a
δ-correlated forcing in the Navier-Stokes equation [term F in Eq. (3)], the flow that it drives is
not δ-correlated, especially at high Re. However, it is known that the slope of the spectrum in the
kinematic stage remains the same even when the flow has a finite but small correlation time [55,56],
which explains why we recover the Kazantsev result in these simulations. As the magnetic field
grows, the spectral maximum shifts to smaller wave numbers and the spectrum becomes much
flatter with a broad maximum in the range 2 � kL/2π � 5.

III. MAGNETIC INTERMITTENCY

Intermittency in a random field can manifest itself via heavy tails in its probability distribution
function (PDF) and leads to an increased kurtosis in comparison with the Gaussian distribution. For
the random velocity field u with zero mean, the kurtosis is defined by

K(u) = 〈u4〉
〈u2〉2

, (7)

with angular brackets denoting the volume average. A useful diagnostic of the spatial structure is
the correlation length of the field, lu, which is calculated from the power spectrum Ek as

lu = π

2

∫ ∞
0 2πk−1Ek dk∫ ∞

0 Ek dk
. (8)

Here, using such tools, we discuss the spatial intermittency of the velocity and magnetic fields in
nonlinear fluctuation dynamos.
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FIG. 3. The PDF of the normalized velocity field component ux/ urms for ReM = 1122 and ReM = 2244 in
the kinematic (dashed) and saturated (solid) stages for the value of ReM given in the legend. The PDF of the
single component of the velocity field is roughly Gaussian (dashed, black) in both the stages for both ReM .
Here only ux/ urms is shown but similar behavior is exhibited by all three velocity components.

Figure 3 shows the PDF of a single component of the velocity field ux/ urms in the kinematic and
saturated dynamo stages for ReM = 1122 and ReM = 2244. The PDF is nearly Gaussian in both the
kinematic and saturated stages. This is generally true for homogenous turbulence [57]. The velocity
PDFs remain Gaussian even in the case of supersonic turbulence with a compressible forcing (e.g.,
Fig. A1 in Ref. [58]). For all cases of Table I, the kurtosis of the velocity field is very close to
K = 3, which is the value for a Gaussian distribution. The correlation length of the velocity field
lu, also given in Table I, is about half of the periodic domain size L = 2π , as can also be seen from
Fig. 4. It decreases slightly as Re increases and is slightly larger in the saturated stage than in the
kinematic stage for all ReM . The velocity field thus becomes more volume filling as the magnetic
field saturates. This is directly attributable to the dynamical effects of the magnetic fields.

FIG. 4. A 2D cut in the xy plane with vectors (ux/ urms, uy/ urms) and color showing the magnitude of
uz/ urms in the kinematic (a) and saturated (b) stages with ReM = 2244. The velocity field in both the stages
looks qualitatively the same. The structures span approximately half of the domain.
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FIG. 5. The PDF of the normalized magnetic field component bx/ brms for ReM = 1122 and ReM = 2244
in the kinematic (dashed) and saturated (solid) stages for the values of ReM given in the legend. The magnetic
field for both ReM in both stages is far from a Gaussian (dashed, black). It has heavy tails, which is a sign
of intermittency. Here only bx/ brms is shown but similar behavior can be observed in all three magnetic field
components.

Even though the velocity field statistics are nearly Gaussian, the magnetic field in both the
kinematic and saturated stages is spatially intermittent and strongly non-Gaussian. This can be
seen from the PDFs of a normalized component of the magnetic field bx/ brms in Fig. 5. The
distribution is far from a Gaussian one and has long, heavy tails. The nonlinearity truncates the most
extreme relative magnetic field strengths above |bx|/ brms ≈ 3. The magnetic field intermittency is
further demonstrated in Fig. 6 which shows the PDF of b/ brms for ReM = 1122 and ReM = 2244

FIG. 6. The PDF of the normalized magnetic field strength b/ brms for ReM = 1122 and ReM = 2244 in
the kinematic (dashed) and saturated (solid) stages for the values of ReM given in the legend. The PDF of the
magnetic field in the kinematic state follows a lognormal distribution (dashed, black). The magnetic field is
more intermittent in the kinematic stage than in the saturated stage.
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FIG. 7. Qnl = 〈(b/brms)nl〉(1/nl ) (a) and Qnl/Qnl−1 (b) as function of nl for the kinematic (red, solid) and
saturated (blue, solid) stages for ReM = 1122. The corresponding quantities for randomized fields which have
almost Gaussian statistics (dashed) are also plotted. The dynamo generated magnetic field is always intermittent
with the degree of intermittency being higher in the kinematic stage.

in the kinematic and saturated stages. The PDF of the kinematic magnetic field strength follows a
lognormal distribution and it has heavier tails in comparison to that of the saturated magnetic field.
Thus, the magnetic field is intermittent in both the kinematic and the saturated stages, but the level
of intermittency decreases as the field saturates. It should be noted that this conclusion is consistent
with that of Schekochihin et al. [33] (Fig. 6 in this paper is similar to their Fig. 27), who studied
a closely related system. This confirms that this finding is robust to small variations in the model
setup and parameters.

Magnetic intermittency can also be quantified by measuring the quantity Qnl = 〈(b/brms)nl〉(1/nl )

and its rate of change as nl changes (for example, Qnl/Qnl−1). Higher Qnl and Qnl/Qnl−1 is a
signature of a larger degree of intermittency. Figure 7 shows Qnl and Qnl/Qnl−1 for the magnetic
field in the kinematic and saturated stages for ReM = 1122 for nl = 1, 2, 3, . . . , 50. Qnl and its
rate of change are higher for the kinematic stage as compared to the saturated stage. This further
demonstrates that the magnetic field in the saturated stage is less intermittent than that in the
kinematic stage. We further compare both terms with the corresponding Gaussian versions obtained
by randomizing phases in Fourier space (keeping the exact same magnetic field spectrum but
destroying intermittent structures, as done in Refs. [35,36,59]). Qnl and Qnl/Qnl−1 are higher for the
dynamo generated field in comparison to its randomized Gaussian versions in both the kinematic
and saturated stages. Thus, the dynamo generated field is always spatially intermittent and the degree
of intermittency decreases as the field saturates due to nonlinearity.

The two-dimensional vector plots of the magnetic fields in Fig. 8 also show larger structures in
the saturated stage. This can be further seen in Fig. 9, which shows the isosurfaces of magnetic
fields in the kinematic and saturated stages. The kurtosis of the kinematic magnetic field for
ReM = 1122 is 5.29 but is 3.32 in the saturated stage. This also suggests that the magnetic field
in the kinematic stage is more intermittent than the saturated stage. The magnetic field correlation
length lb is calculated using Eq. (8) by replacing Ek with Mk , the magnetic field power spectrum.
The magnetic field correlation length in the kinematic lbkin and saturated lbsat stages is given in
Table I. The magnetic field correlation length decreases as ReM increases, both for the kinematic
and saturated stages (see Sec. V for further details). Thus, the magnetic field intermittency increases
during both kinematic and saturated dynamo stages as ReM increases. It is also clear that lbsat > lbkin
for all ReM which confirms again that the magnetic field in the kinematic stage is less volume filling.
The increase in the correlation length due to magnetic field saturation is true regardless of the choice
of ReM and agrees with previous numerical studies [26,40].
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FIG. 8. As described in the caption of Fig. 4 but for the magnetic field. The magnetic field in the
kinematic stage (a) is intermittent with random magnetic structures. In the saturated stage (b), the field remains
intermittent but the structures are larger.

IV. SATURATION OF THE FLUCTUATION DYNAMO

Several mechanisms have previously been considered to explain the saturation of the fluctuation
dynamo, including a reduction in magnetic field line stretching due to the suppression of the
Lagrangian chaos in the velocity field [60,61], changes in the mutual alignment of the velocity and
magnetic field lines [43], the folded structure of magnetic fields and energy equipartition between
magnetic and velocity fields for PrM � 1 [33,62], enhancement in diffusion due to additional
nonlinear velocity drift [63,64] and selective dissipation of the turbulent kinetic energy [65,66].
From the induction Eq. (2), there are two type of processes that could lead to the saturation: a
decrease in the induction term [∇ × (u × b)] or an increase in the dissipation term (η∇2b). We
explore each scenario here.

FIG. 9. Isosurfaces of b2/ b2
rms = 4 (blue) and b2/ b2

rms = 5 (yellow) for the magnetic fields in the kinematic
(a) and saturated stages (b) for ReM = 2244. The structures in the saturated stage are larger in size as compared
to that in the kinematic stage.
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FIG. 10. The total and conditional probability distribution functions of the cosines of the angles between
u and b, cos(θ )u, b (a) and between j and b, cos(θ )j, b (b) for ReM = 1122 in the kinematic (red) and saturated
(blue) states. The magnetic field in the saturated stage is more aligned with the velocity field (reducing the
induction effects) as compared to the kinematic stage. The magnetic field also becomes better aligned with the
electric current density, reducing the back reaction on the velocity field.

A. Alignment of velocity field, magnetic field, and electric current density

We first examine how the induction term is affected when the field becomes stronger. The rms
magnitude of both the velocity and magnetic fields are statistically steady, as shown in Fig. 1. Thus,
we consider the alignment of the magnetic field with the velocity field as a possible mechanism for
the saturation. Such an alignment has been studied in the context of convectively driven fluctuation
dynamos [43,67], MHD turbulence in the presence of a strong guide field [68] and decaying
isotropic MHD turbulence [69]. For the numerical simulations described in Table I, we calculate
the angle between the velocity u and magnetic field b, and between the current density j and b,

cos(θ )u, b = u · b
|u||b| , and cos(θ )j, b = j · b

|j||b| , (9)

respectively. An increase in the level of alignment between u and b implies a decrease in the
effectiveness of magnetic induction; an increase in the level of alignment between j and b leads
to a decrease in the Lorentz force, i.e., the field becomes more force-free.

Figures 10 and 11 show the probability density functions of the cosines in the kinematic and
saturated stages for ReM = 1122 and ReM = 1496. Since both angles are symmetric about b = 0,

FIG. 11. As described in the caption of Fig. 10 but for ReM = 1496.
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we show PDFs of the absolute value of their cosines. For both values of ReM , the cosine of the
angle between the velocity and magnetic field, | cos(θ )u, b|, tends to be larger in the saturated stage
than in the kinematic stage. The better alignment between u and b decreases the induction term
∇ × (u × b) and thus reduces the amplification of the magnetic field. To put this another way, the
enhanced alignment between u and b implies a decrease in the energy transfer from the flow to
the magnetic field (which is a process that has been studied in some detail in the context of shell
models of magnetohydrodynamic turbulence [70–73]). However, there is a significant fraction of the
volume where the two fields are not aligned and so the amplification is not completely suppressed.
This minimum level of amplification is required to balance the magnetic diffusion. The cosine of
the angle between the current density and magnetic field cos(θ )j, b is also statistically larger by
magnitude in the saturated stage. Thus, the field becomes closer to a force-free form as it saturates.
This also implies that the morphology of magnetic field changes on saturation, which motivates us
to study the morphology of magnetic structures in Sec. V. Overall, because of the enhanced local
alignment between the velocity and magnetic field, the field amplification rate decreases. At the
same time, due to the increase in the local alignment between the current density and magnetic
field, the field becomes more force-free.

Similar broad conclusions apply when we consider conditional PDFs that focus exclusively upon
the regions of stronger field (higher b/ brms in Figs. 10 and 11). However, the level of alignment
between the velocity and magnetic field is higher in the strong field regions in both the kinematic and
saturated stages. This suggests that the strong field regions require a larger reduction in amplification
by alignment. The distribution of cos(θ )j, b in the kinematic stage shows some dependence upon the
field strength but in the saturated stage the difference is less pronounced. In the kinematic stage,
alignment is weakest in the relatively strong field regions, suggesting that in the strong field regions,
not only because of its higher strength (as the Lorentz force is proportional to the strength of the
field) but also because of the lower level of alignment, the field produces a stronger back reaction
on the flow.

Another important question is whether the alignment between the velocity and magnetic fields
and the magnetic field and current density occur in the same spatial region. To answer this, we show
the cross-correlation between the two angles in Fig. 12, which suggests that the velocity, magnetic
field, and current density are always nearly aligned to each other at same spatial positions. It is
difficult to see any further difference between the kinematic and saturated stages in Figs. 12(a)
and 12(b). Figures 12(c) and 12(d) show the same correlation but only for strong field regions,
b/ brms > 1.5. In Fig. 12(c), the kinematic stage shows higher correlation in regions with high
cos(θ )u, b and low cos(θ )j, b, which is absent in the saturated stage. The larger misalignment of j
and b, especially in the strong field regions, enhances the work done on the magnetic field by the
flow. This promotes growth of the magnetic field. Once the field saturates, the larger correlation at
high cos(θ )u, b and low cos(θ )j, b disappears in Fig. 12(d). This implies a statistical decrease in the
back-reaction of the magnetic field on the flow as the field saturates.

To summarize, the alignment between the velocity and magnetic field vectors and the magnetic
field and current density vectors is statistically enhanced as the dynamo saturates. The alignment
does not completely inhibit the amplification, so there is always some field generated to balance the
resistive decay. This in turn also implies that the back reaction of the Lorentz force always remains
significant.

B. Magnetic field stretching

To explore another mechanism by which magnetic field amplification can be suppressed, we
consider the stretching of the magnetic field lines by the turbulent velocity. For this, we consider
the alignment of the magnetic field with the eigenvectors of the rate of strain tensor. Neglecting the
rather weak divergence of the flow, the symmetric 3 × 3 matrix Si j = 1

2 (ui, j + u j,i ) is calculated at
each point in the domain using sixth-order finite differences, and its eigenvalues and eigenvectors are
calculated. The eigenvalues are arranged in an increasing order, λ1 < λ2 < λ3. The corresponding

043702-11



SETA, BUSHBY, SHUKUROV, AND WOOD

FIG. 12. The cross correlation of cos(θ )u, b and cos(θ )j, b in the kinematic (a, c) and saturated (b, d) stages
for ReM = 1122. Panels (a) and (b) refer to the whole domain and the difference between them is not significant.
Panels (c) and (d) refers to only the strong field regions (b/ brms � 1.5). The yellow patch close to low cos(θ )j, b

and high cos(θ )u, b in the kinematic stage vanishes for the saturated stage. The peak in the count is always at
high cos(θ )u, b and high cos(θ )j, b, which implies significant alignment between magnetic field, velocity field
and current density.

eigenvectors are e1, e2, e3. The sum of the eigenvalues is close to zero since the flow is nearly
incompressible. λ1 is always negative and the vector e1 corresponds to the direction of local
compression of magnetic field, λ3 is always positive and the vector e3 corresponds to the direction
of local stretching, whereas λ2 can be obtained from λ1 + λ2 + λ3 ≈ 0. The direction e2 (sometimes
referred to as the “null” direction [33,74]) can correspond to either local stretching or compression
depending on the sign of λ2. We then quantify the alignment with the magnetic field b of the vectors
e1 and e3 by considering

cos(θ )e1, b = e1 · b
|e1||b| and cos(θ )e3, b = e3 · b

|e3||b| . (10)

Figure 13 shows the PDF of the cosines in the kinematic and saturated stages for ReM = 1796.
In most of the volume, the direction of the magnetic field is perpendicular to the direction of the
local compression [Fig. 13(a)], which leads to the amplification of magnetic field, and this trend
is slightly stronger in the kinematic stage. The PDF of the angle between the direction of local
stretching and the magnetic field cos(θ )e3, b has maxima at cos(θ )e3, b = 0 and cos(θ )e3, b = 1 in the
kinematic stage. In the saturated stage, however, all angles are nearly equiprobable. This change in
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FIG. 13. The total and conditional PDFs of the cosine of the angle between the direction of local field line
compression and the magnetic field cos(θ )e1, b (a) and between the direction of local field line stretching and
the magnetic field cos(θ )e3, b (b) for ReM = 1796 in the kinematic (red) and saturated (blue) stages.

behavior is more pronounced in the strong field regions, b/ brms � 1. In Fig. 14(a), we also show
the PDF of cos(θ )e2, b, cos(θ )e1, b, and cos(θ )e3, b. The forms of the PDF for cos(θ )e2, b are different
from that of cos(θ )e1, b and cos(θ )e3, b in the kinematic and saturated stages. The magnetic field is
less aligned to the direction e2 in the kinematic stage as compared to the saturated stage and its
effect, locally on the magnetic field, is decided by the sign of the eigenvalue λ2 [dashed lines in
Fig. 14(b)]. Figure 14(b) shows the PDF of all three eigenvalues in the kinematic and saturated
stages. All three eigenvalues are statistically lower in magnitude in the saturated stage as compared
to the kinematic stage. However, as can be seen in Figs. 13 and 14(a), the difference between the
PDFs in the kinematic and saturated stages, while statistically significant, is not very strong. This
suggest that a small reduction in the local stretching and compression of magnetic field contributes
toward the saturation of the fluctuation dynamo.

Before concluding this section, we note that some of these conclusions are similar to those
reached independently in the PhD thesis of Denis St-Onge [74], albeit for a different model
setup.

FIG. 14. The PDFs of the cosine of the angle between three three eigenvectors (e1, e2, and e3) with the local
magnetic field direction (a) and three three eigenvalues (λ1, λ2, and λ3) normalized by urms (b) for ReM = 1796
in the kinematic (red) and saturated (blue) stages.
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FIG. 15. The total and conditional PDFs of the local growth term λ1(b1/ brms)2 + λ2(b2/ brms)2 +
λ3(b3/ brms)2 (a) and the local dissipation term (∇ × b)2 (b) in the kinematic (red) and saturated (blue) stages
for ReM = 1122. The skewness of the local growth term distribution (solid red line in (a)) is 0.4 in the kinematic
stage and 0.1 in the saturated stage (solid blue line), so the tendency of this term to promote growth decreases on
saturation, as could be expected. The local dissipation term (b) also decreases statistically as the field saturates.
This conclusions hold in both the weak and strong field regions, except for the local dissipation term, which
increases in the weak field regions.

C. Local magnetic energy balance

We now directly consider the equation for magnetic energy evolution and calculate its local
growth and dissipation terms. For an incompressible flow in a periodic domain, the magnetic energy
evolution equation can be written as [75]

dEM

dt
=

∫
V

bib jSi j dV − η

∫
V

(∇ × b)2 dV, (11)

where EM = 1
2

∫
V b2 dV and summation over repeated indices is understood. The term contributing

to the energy growth, bib jSi j , is calculated at each point in the volume as follows. First, we project
the magnetic field vector b on to each of the eigenvectors of the rate of strain tensor, e1, e2, e3. Let
these be b1, b2, b3, and then the local growth term bib jSi j = λ1b2

1 + λ2b2
2 + λ3b2

3 at each position.
This term can be positive or negative (λ1 < 0 and λ3 > 0). A negative local growth term leads to a
decrease in the magnetic energy, while a positive value leads to an increase. The term contributing
to the decay in energy is calculated by computing (∇ × b)2 (η = constant) at each point in space.

Figures 15 and 16 show the total and conditional PDFs of the local growth and dissipation terms
in the kinematic and saturated stages for ReM = 1122 and ReM = 1796, respectively. Figures 15(a)
and 16(a) show that the local growth term decreases on saturation and this is equally true of the
strong and weak field regions. This confirms that the stretching of the magnetic field line reduces,
which in turn decreases the amplification. Numerically, this can be quantified by calculating the
skewness of the local growth term distribution in the kinematic and saturated stages [solid red and
blue lines in Figs. 15(a) and 16(a)]. The skewness is defined for a quantity X as 〈(X − 〈X 〉)3〉/〈(X −
〈X 〉)2〉3/2, where 〈· · · 〉 refers to the mean. The skewness of the local growth term distribution in
the kinematic [solid red line in Fig. 15(a)] and saturated [solid blue line in Fig. 15(a)] stage for
ReM = 1122 are 0.4 and 0.1, respectively. The corresponding values for ReM = 1796 [Fig. 16(a)]
in the kinematic and saturated stages are 0.9 and 0.4, respectively. The local growth term always
has a positive skewness implying continuous magnetic field generation. The skewness decreases on
saturation, where the growth is only required to compensate the dissipation. The dissipation term
also exhibits an overall decrease on saturation as shown in Figs. 15(b) and 16(b), but its behavior
differs in the strong and weak field regions, where the dissipation increases in the latter regions.
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FIG. 16. As Fig. 15 but for ReM = 1796. The skewness of the local growth term distribution [solid red line
in (a)] is 0.9 in the kinematic stage and 0.4 in the saturated stage (solid blue line). The conclusions remain the
same here as for ReM = 1122 in Fig. 15.

To calculate the overall decrease or increase in the magnetic energy at each point in the domain,
we calculate the local magnetic Reynolds number. This helps us to explore the behavior of the
diffusion term (η∇2b) in the induction equation [Eq. (2)] as the dynamo saturates. Both terms in
Eq. (11) are calculated at each point in the volume, and the local magnetic Reynolds number is
derived at each position as

(ReM )loc = bib jSi j

η(∇ × b)2
, (12)

providing a measure of the local dynamo efficiency. The local magnetic Reynolds number can
be positive or negative, signifying the locally increasing or decreasing magnetic field strength,
respectively. Figures 17 and 18 show the total and conditional PDFs of the local magnetic Reynolds
number in the kinematic and saturated stages for ReM = 1122 and ReM = 1796. (ReM )loc varies
from values much less than to those much greater than Re(crit)

M in both the kinematic and saturated
stages. Thus, magnetic field grows and decays in different parts of the volume but remains in a

FIG. 17. The total and conditional PDFs of the local magnetic Reynolds number (ReM )loc in the kinematic
(red) and saturated (blue) stages with ReM = 1122. The purple dashed line shows the critical magnetic
Reynolds number Re(crit)

M = 220 and the black dashed line shows ReM for this run.
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FIG. 18. As described in the caption of Fig. 17 but for ReM = 1796.

statistically steady state overall in the saturated stage. On saturation, both Figs. 17 and 18 show that
(ReM )loc decreases statistically. The mean of (ReM )loc for ReM = 1122 in the kinematic stage is 808
and that in the saturated stage is 595. Thus, the mean value of the local magnetic Reynolds number
over the entire domain decreases on saturation (to a value close to but not exactly equal to the
critical value, Re(crit)

M ≈ 220). This effectively implies a relative enhancement in the local diffusion
in comparison to the local stretching, which also contributes toward the saturation of the fluctuation
dynamo.

To summarize, the fluctuation dynamo saturates due to both reduction in stretching and altered
diffusion. The alignment between the velocity and magnetic fields increases as the field saturates,
signifying reduced amplification. Furthermore, the current density and magnetic field are also
statistically better aligned in the saturated stage, which implies a trend toward a force-free field.
The local growth term statistically decreases (the skewness of the distribution, though remaining
positive, decreases on saturation), which implies that the reduced magnetic field stretching reduces
the amplification, which contributes toward the saturation of the fluctuation dynamo. The local
magnetic Reynolds number, though varying over a wide range from values much less than to much
higher than the critical value, decreases on average. This further implies relative enhancement in the
local dissipation compared to the local stretching, which also contributes toward the saturation of
the fluctuation dynamo.

V. MORPHOLOGY OF MAGNETIC STRUCTURES

As shown in Sec. III, magnetic field generated by a fluctuation dynamo is intermittent as it is
concentrated in filaments, sheets and ribbons (Figs. 8 and 9). To characterize the magnetic structures,
we use the Minkowski functionals [76]. Minkowski functionals have been used in studying mor-
phology of structures in a number of numerical simulations [34,77–82] and observations [83–86].
The morphology of a d-dimensional structure can be described by d + 1 Minkowski functionals. In
three dimensions, there are four Minkowski functionals, as described in Table II. We calculate the
Minkowski functionals using Crofton’s formulas [87,88] and then calculate the representative length
scales (l1, l2, l3) of magnetic structures (defined by isosurfaces at a fixed value of the magnetic field
strength, e.g., see Fig. 9) as [77,89]

l1 = V0

2V1
, l2 = 2V1

πV2
, l3 = 3V2

4V3
. (13)
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TABLE II. Four Minkowski functionals (MF) V0,V1,V2, and V3, their geometrical interpretation and
definitions in three dimensions. dV is the volume element, dS is the surface element, and κ1 and κ2 are the
principle curvatures of the surface of a structure.

MF Geometric interpretation Expression

V0 Volume
∫∫∫

dV
V1 Surface area (1/6)

∫∫
dS

V2 Integral mean curvature (1/6π )
∫∫

(κ1 + κ2) dS
V3 Euler characteristic (1/4π )

∫∫
(κ1κ2) dS

We associate the smallest of these length scales with the thickness T of the structures, the next
largest with the width W , and the largest length scale with the length L, i.e., if l1 � l2 � l3, then T =
l1,W = l2, and L = l3. The thickness, width, and length can be further used to obtain dimensionless
measures of the structure shape: planarity p and filamentarity f , given by

p = W − T

W + T
, f = L − W

L + W
. (14)

By definition, 0 � p � 1 and 0 � f � 1; p = 0 and f = 1 for a perfect filament, p = 0 and f = 0
for a sphere, and p = 1 and f = 0 for a sheet. The planarity and filamentarity are not sensitive to
the size of the structures but quantify the shape. It is useful to remember that, unlike the Minkowski
functionals, p and f are not additive.

To explore the morphology of magnetic structrures for a range of ReM values, we use simulations
with parameters given in Table III. We keep Re about the same for all runs, vary ReM (making sure
PrM � 1), and choose kF ≈ 5(2π/L), so there is a sufficient number of magnetic correlation cells
within the volume (with 53 velocity correlation cells).

Figure 19(a) shows the thickness, width, and length of magnetic structures obtained by averaging
over 30 values of magnetic field strengths ranging from b/ brms = 2.5 to 4. The lower limit of
the magnetic field strength is chosen to ensure that the structures represent the tail of the PDF
(e.g., see Fig. 6), while the upper limit is chosen to ensure a sufficient number of points within
each structure. The computed values of planarity and filamentarity also remain roughly constant
within this selected range of magnetic field strengths. For the kinematic stage, we expect that the
largest length scale L will be independent of ReM . This is because the length of the structures is
controlled by the correlation length of the flow since the magnetic correlation function of the fastest

TABLE III. Parameters of various runs for the nonlinear fluctuation dynamo in a numerical domain size
of (2π )3 with 5123 mesh points. In all cases, the forcing scale is approximately L/5, the forcing amplitude
is F0 ≈ 0.02 and the hydrodynamic viscosity is ν = 4 × 10−4. The magnetic diffusivity η, the rms velocity in
the saturated stage urms, the Reynolds number Re, the magnetic Reynolds number ReM , the magnetic Prandtl
number PrM and the critical magnetic Reynolds number Re(crit)

M (≈220Pr−1/2
M ) are given.

η urms Re ReM PrM Re(crit)
M

4 × 10−4 0.11 346 346 1.00 220
3 × 10−4 0.11 346 461 1.33 191
2 × 10−4 0.10 314 628 2.00 156
1 × 10−4 0.09 283 1131 4.00 110
7.5 × 10−5 0.09 283 1508 5.33 95
5 × 10−5 0.09 283 2261 8.00 78
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FIG. 19. (a) Average length (L), thickness (T ) and width (W ) of magnetic structures in the kinematic
(dashed, color) and saturated stages (solid, color) of the nonlinear fluctuation dynamo as functions of ReM .
The width and thickness of the magnetic structures both decrease as Re−0.5

M . The ReM dependence of the size
of the structures is approximately the same in both the kinematic and saturated stages. (b) Planarity (p) and
filamentarity ( f ) of the magnetic structures, as functions of ReM , for the kinematic (dashed, color) and saturated
(solid, color) stages. As ReM increases, the filamentarity increases and the planarity decreases but they seem
to approach an asymptotic value after ReM ≈ 1200. The trend with respect to ReM is the same for both the
kinematic and saturated stages.

growing dynamo mode decreases exponentially after that scale [32]. As seen in Fig. 19(a), the length
remains roughly constant but then increases slightly after ReM ≈ 600 and again remains roughly
constant. This variation is likely to be due to the decrease in the Reynolds number Re (Table III).
The other two scales (W and T ) decrease as Re−0.5

M . This scaling can be obtained by balancing
the rate of magnetic dissipation with the local shearing rate [90], η/W 2 	 urms/l0, where η is the
magnetic resistivity, urms is the rms turbulent velocity, and l0 is the driving scale of the turbulence.
This gives W 	 l0(η/ urmsl0)1/2 = l0Re−0.5

M . This means that the shape of the magnetic structures
becomes more filamentary (L � W ≈ T ) and ribbonlike (T � W 
 L) as ReM increases, but the
filamentarity is always larger than the planarity, so the filaments dominate among the magnetic
structures [91]. The differences in ReM scalings with the previous work [34] is probably due
to the following reasons. First, they have a prescribed velocity field with forcing at a range of
scales, whereas we force the flow at two scales (k = 4 and k = 6) and then let it evolve via the
Navier-Stokes equation. Second, our simulations are at a higher resolution (5123) as compared to
theirs (1283) and thus magnetic structures, especially at higher ReM , are better resolved in our case.
Last and most importantly, they consider values of ReM which are both lower and higher than Re(crit)

M ,
whereas we only consider ReM > Re(crit)

M . This is because we strongly believe that those two regimes
(ReM < Re(crit)

M and ReM � Re(crit)
M ) are physically different and must not be considered together to

characterize the length scales of magnetic structures as functions of ReM .
All three scales are larger in the saturated stage than in the kinematic stage. Thus, the magnetic

structures become larger as the magnetic field saturates. This is also the reason that the magnetic
field correlation length scale increases as the field saturates (as shown in Table I). The increase in the
length (the largest length scale) of magnetic structures on saturation is consistent with the finding
by Schekochihin et al. [33]. The ReM scaling for all three scales is roughly the same for both the
kinematic and saturated stages.

Figure 19(b) shows the planarity and filamentarity of magnetic structures as functions of ReM .
The filamentarity is always higher than the planarity and thus the magnetic structures are more
like filaments in both the kinematic and saturated stages. The dependence of these morphological
measures on ReM is the same for the kinematic and saturated stages.
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VI. CONCLUSIONS AND DISCUSSION

It is important to understand the saturated state of the fluctuation dynamo because the saturated
state seeds the mean field dynamo, controls the small-scale magnetic field structure, and decides
the magnetic field length scales in the system where the mean field dynamo is absent (for example,
elliptical galaxies). Moreover, it is crucial to understand the physics of the saturation mechanism
because numerical simulations, at present, are at much lower values of ReM than their estimated
values (ReM ≈ 1018 for spiral galaxies, ReM ≈ 1022 for elliptical galaxies, and ReM ≈ 1029 for
galaxy clusters).

Using numerical simulations of driven nearly incompressible turbulence, we have explored
the saturation mechanism of the fluctuation dynamo. We find that the dynamo saturates because
both the amplification and diffusion are affected by the action of the Lorentz force on the flow.
Most previously suggested mechanisms hinted at changes in either of those two and thus required
significant changes in the properties of the velocity and magnetic fields from the kinematic stage.
For example, if only the enhancement in diffusion is responsible, then it would require the effective
ReM in the saturated state to reduce from hugely supercritical levels to values close to Re(crit)

M
(	102–103 [14]). And, if only the decrease in amplification is responsible for saturating the dynamo,
then it would require a drastic decrease in the Lyapunov exponents (which are a measure of chaotic
properties of the flow) [60]. We suggest that both occur and thus such a dramatic change is not
necessary. We confirm that the amplification decreases by reduction in the stretching of magnetic
field lines. The local magnetic Reynolds number (ReM )loc, which is suggested as a measure of the
local magnetic diffusion, decreases slightly. This confirms that the local diffusion of magnetic field
relative to field line stretching is enhanced, which is also responsible for saturating the dynamo.

The fluctuation dynamo-generated magnetic field is spatially intermittent. So, we studied the
morphology of the magnetic structures in the kinematic and saturated stages. In both cases, the
largest length scale is roughly independent of ReM and the other two scales decrease as Re−0.5

M . We
find that the structures are of a larger size (all three length scales increase) in the saturated stage
as compared to the kinematic stage. This agrees with the results in Table I, where we find that the
correlation length is higher for the saturated magnetic field. This also aligns with the conclusion in
the Sec. III (also shown in Ref. [33]) that the magnetic field is less intermittent in the saturated stage
as compared to the kinematic stage. However, the ReM dependence is the same for both the stages
and thus the overall shape of magnetic structures produced by the fluctuation dynamo is not affected
by the Lorentz force to any significant extent (all three length scales increase but in a very similar
way).

The study explores physical effects over a range of ReM for PrM � 1. However, for PrM > 1
at very high ReM (�103), the fields might be unstable to fast magnetic reconnection [12]. This
might change the morphology of magnetic fields, locally affect velocity fields and thus might
alter the saturated state of the fluctuation dynamo. However, the effect of fast, stochastic magnetic
reconnection on the dynamo is not very well understood yet [92] and would require high-resolution
numerical simulations over a number of very high ReM values to study the effect of fast magnetic
reconnection on the fluctuation dynamo saturation mechanism.

The study can be extended in several ways. An immediate extension would be to repeat
the entire analysis for dynamos in a stratified medium [42,46,47,93], which is more relevant
for young galaxies and star-forming gas clouds. We have performed the analysis for PrM � 1
which is of relevance to fluctuation dynamo in the interstellar and intergalactic medium but this
should be extended to the PrM < 1 regime which is important for stars, planets and liquid metal
experiments [94,95]. We have adopted the MHD approximation but plasma effects might also play
an important role. It would also be interesting to compare our results with those of the plasma
dynamo [96,97] and see how the relationship between velocity and magnetic fields and the magnetic
field structure change when plasma effects are considered. Plasma effects might be particularly
important for the weakly collisional gas in galaxy clusters. We aim to consider such problems in our
future work.
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