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ABSTRACT
Complex turbulent motions of magnetized gas are ubiquitous in the interstellar medium
(ISM). The source of this turbulence, however, is still poorly understood. Previous work
suggests that compression caused by supernova shockwaves, gravity, or cloud collisions,
may drive the turbulence to some extent. In this work, we present three-dimensional (3D)
magnetohydrodynamic (MHD) simulations of contraction in turbulent, magnetized clouds
from the warm neutral medium of the ISM to the formation of cold dense molecular clouds,
including radiative heating and cooling. We study different contraction rates and find that
observed molecular cloud properties, such as the temperature, density, Mach number, and
magnetic field strength, and their respective scaling relations, are best reproduced when
the contraction rate equals the turbulent turnover rate. In contrast, if the contraction rate
is significantly larger (smaller) than the turnover rate, the compression drives too much (too
little) turbulence, producing unrealistic cloud properties. We find that the density probability
distribution function evolves from a double lognormal representing the two-phase ISM, to a
skewed, single lognormal in the dense, cold phase. For purely hydrodynamical simulations,
we find that the effective driving parameter of contracting cloud turbulence is natural to mildly
compressive (b ∼ 0.4–0.5), while for MHD turbulence, we find b ∼ 0.3–0.4, i.e. solenoidal
to naturally mixed. Overall, the physical properties of the simulated clouds that contract at a
rate equal to the turbulent turnover rate, indicate that large-scale contraction may explain the
origin and evolution of turbulence in the ISM.
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1 IN T RO D U C T I O N

Molecular clouds (MCs) – the birthplace of the stars – have been
a matter of interest for the last few decades. Extensive studies
about the interstellar medium (ISM) and giant molecular clouds
(GMC) have established that the gases in the ISM and MCs are
highly magnetized and supersonically turbulent in nature. The
star formation rate (SFR) in MCs is directly correlated with the
physical properties of the clouds. For example, it is a complex
competition between supersonic turbulence and self-gravity along
with the column density, magnetic field, radiation, and thermal
pressure that determines when and where stars form inside the
clouds (Mac Low & Klessen 2004; Larson 2005; McKee & Ostriker
2007). However, observations show that the rate of the formation
of stars is much slower than that expected if the clouds were
forming stars at a free-fall rate (Zuckerman & Evans 1974; Wong &
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Blitz 2002; Gao & Solomon 2004). Thus, this indicates that there
are physical processes that oppose the gravitational free-fall. The
current understanding is that supersonic turbulence plays a crucial
role in opposing the fast gravitational collapse (Vázquez-Semadeni,
Ballesteros-Paredes & Klessen 2003; Mac Low & Klessen 2004;
Federrath & Klessen 2012; Padoan et al. 2014; Krumholz &
Federrath 2019). However, it has been established that un-driven
supersonic turbulence decays quickly, on a time scale comparable
to the turnover time of the largest eddies (Mac Low et al. 1998;
Padoan & Nordlund 1999). This means that turbulence must be
driven by some physical mechanism (Federrath et al. 2017).

Here we study the maintenance and dissipation of turbulence in
MCs in the context of star formation theories. Despite its importance
and inevitability for star formation, the origin and evolution of the
interstellar medium from the warm atomic phase to the cold, dense
MCs is still poorly understood. There are a number of proposed
models that act as a source of driving of the turbulence, which
include protostellar outflows (Li & Nakamura 2006; Wang et al.
2010; Federrath et al. 2014), feedback from massive stars such
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as expanding H II regions (Matzner 2002; Krumholz, Matzner &
McKee 2006; Goldbaum et al. 2011), energy injection from ongoing
accretion (Klessen & Hennebelle 2010; Vázquez-Semadeni et al.
2010; Lee & Hennebelle 2016), gravitational contraction on small
scales (Federrath et al. 2011; Sur et al. 2012) or supernova feedback
(Körtgen et al. 2016; Padoan et al. 2016a,b; Pan et al. 2016a).

On the other hand, large-scale contraction of MCs has gained
some attention recently in the list of driving agents of the turbulence.
Recent numerical and observational studies (Ntormousi et al. 2011;
Tremblin et al. 2014; Dawson et al. 2015) show that MCs may be
formed at the stagnation point between two expanding superbubbles
due to the compression induced by the expansion, even without
self-gravity. This motivates us to consider a large-scale global
compression (not necessarily due to self-gravity) as a potential
agent of driving the turbulence and a mechanism for MC formation
as the global compression has the ability to pump energy into
the turbulence to slow down the collapse (Körtgen, Federrath &
Banerjee 2017; Birnboim, Federrath & Krumholz 2018).

Large-scale contraction in a turbulent medium has been studied
for non-magnetized turbulence by Robertson & Goldreich (2012),
where they considered the equation of state to be isothermal and the
compression can inject energy in a way that they have described
as adiabatic heating. Birnboim et al. (2018) studied the same
phenomenon, but for isothermal magnetohydrodynamic (MHD)
turbulence. In this model, when the gas gets compressed, the
velocity increases due to P − V work (there P and V are the
pressure and volume of the cloud) against the kinetic pressure
(pressure that is generated by the kinetic motions of the particle
hitting and rebounding from the surface). Due to compression, the
eddy turnover timescale (τ ∼ L/v) decreases, and as a result, the
dissipation rate increases. Thus, depending on the balance between
compression timescale (here parametrized by a negative ‘Hubble’
parameter, H = ȧ/a, where a is the time-independent scale factor;
see details in the method section) and the dissipation timescale (τ =
1/ω = aL/(2v), where ω, L and v are the turnover frequency, cloud
size, and velocity dispersion, respectively), the turbulence can get
amplified or dissipates away.

However, Robertson & Goldreich (2012) and Birnboim et al.
(2018) did not include the effects of radiative heating and cooling,
which are crucial for the transition from the atomic to the molecular
phase of interstellar clouds. Gas inside the MCs usually radiates
its internal energy (radiative cooling) or absorbs energy from the
incident radiation (radiative heating) through different complex
mechanisms, and the cooling or heating rate depends on various
physical parameters that have been studied extensively (Cox &
Tucker 1969; Raymond, Cox & Smith 1976; Shull & van Steenberg
1982; Sutherland & Dopita 1993). When the magnetized gas is
subjected to rapid radiative cooling, the result is a highly supersonic
flow (as the turbulent sonic Mach number is proportional to
the inverse of temperature). Thus the effect of cooling has the
potential to alter the dynamics of the cloud (Koyama & Inutsuka
2002; Vázquez-Semadeni et al. 2007). Moreover, a model for MC
evolution is not complete, if it only predicts the source of the driving
of turbulence, but not the formation of the cloud itself. A successful
model would also reproduce the physical properties of the clouds
that have been measured through different observational techniques
(see Heyer & Dame 2015, for a detailed overview and references
therein).

From various theoretical models and observational surveys, it has
been established that MCs are highly supersonic and magnetized
with Mach number (M) ∼ 5–20, temperature (T ) ∼ 10–50 K, den-
sity range, n ∼ 102–105 cm−3 (Wilson, Walker & Thornley 1997;

Hughes et al. 2010). Larson (1981) first pointed out that there is a
strong correlation between the velocity dispersion (σ v) and the size
of the cloud (L), and established a scaling relation (L−σ v scaling
relation) in the form of a power law, σ v ∝ �0.5 (� is the cloud size
in the unit of pc), that has been verified observationally (Solomon
et al. 1987; Crutcher 1999; Ossenkopf & Mac Low 2002; Heyer &
Brunt 2004; Roman-Duval et al. 2011) . In addition, the magnetic
field strength (B) also shows a correlation with the number density
of the cloud in the high-density regime, n � 103 cm−3 (Crutcher
2012).

In this work, we aim to extend the works by Robertson &
Goldreich (2012) and Birnboim et al. (2018). In particular, we seek
to determine whether the effects of heating and cooling, which
were not included in Robertson & Goldreich (2012) and Birnboim
et al. (2018), can change the dynamics and structure of the MCs.
To this end, we run three-dimensional (3D) hydrodynamic (HD)
and MHD simulations including equilibrium heating and cooling.
We consider different compression rates with respect to the eddy
turnover rate to figure out the dependence of physical properties
of the MCs on the global compression rate, and to determine
which contraction model is most favourable in the context of MC
formation and evolution by comparing the results from simulations
with theoretical models and observational predictions. We organize
the paper in the following way. In Section 2, we discuss the detailed
methodology of our simulations, the physics of equilibrium cooling
and its implementation. In Section 3, we report the results from
simulations. In Section 4, we briefly describe the limitations of our
study, and in Section 5 we summarize our conclusions.

2 SI M U L AT I O N ME T H O D S

2.1 The FLASH code

We use the modified version of the grid-based code FLASH (Fryxell
et al. 2000) to solve the three-dimensional (3D), compressible, ideal
MHD equations

∂

∂t
ρ + ∇ · (ρv) = 0, (1)

∂

∂t
(ρv) + ∇ · (ρv ⊗ v − 1

4π
B ⊗ B

) + ∇Ptot = 0, (2)

∂

∂t
e + ∇ ·

[
(e + Ptot)v − 1

4π
(B · v)B

]
= 1

ρ

[ ρ

μmH

 −

( ρ

μmH

)2
�(T )

]
, (3)

∂

∂t
B − ∇ × (v × B) = 0, ∇ · B = 0. (4)

Here, ρ, v, Ptot = Pth + (1/8π )|B|2, B, μ and e = ρεint +
(1/2)ρ|v|2 + (1/8π )|B|2 denote the gas density, velocity, total
pressure (including thermal and magnetic), magnetic field, mean
molecular weight of the particles, and total energy density (internal,
kinetic, and magnetic). For simplicity, we assume μ = 1 throughout
this study, which does not affect the main conclusions of this study
(see Section 4). The MHD equations are closed by the ideal gas
equation of state

Pth = (γ − 1)ρεint, (5)

where we assume γ = 5/3 throughout. The energy equation also
includes the heating (
) and cooling (�) terms, which we discuss
in Section 2.3. To solve the system of MHD equations (1)–(4), we
use the robust HLL3R Riemann scheme by Waagan, Federrath &
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Klingenberg (2011), based on previous developments in applied
mathematics, to maintain positive density and pressure.

2.2 MHD equations in a contracting reference frame

Although the default hydrodynamic scheme in FLASH is written for
a static frame of reference, one can use the cosmology module in
FLASH to solve the MHD equations in an expanding or contracting
frame of reference. In order to do this, we change the MHD
equations from the physical coordinate system to the co-moving
coordinate system, where additional terms appear due to contraction
or expansion. All calculations are assumed to take place in co-
moving coordinates x = r/a, where r is the physical position vector
and x is the co-moving position vector. a(t) is the dimensionless
scale factor, which depends on time. The transformation of time
and space derivatives in co-moving coordinates is related to the
proper coordinates by (∂/∂t)x = (∂/∂t)r + H r · ∇r and ∇x = a∇r ,
where the Hubble constant (H) is defined as H = ȧ/a. The physical
velocity is ṽ = H r + a ẋ, where the first term is the Hubble flow
and the second term is called peculiar velocity, i.e. the velocity in
the co-moving frame of reference.

The hydrodynamic quantities in the physical (with tilde) and
co-moving (without tilde) coordinate system are related by the
following equations:

ρ = a3ρ̃, (6)

Ptot = aP̃tot, (7)

e = aẽ, (8)

εint = a−2ε̃int, (9)

B = a1/2 B̃. (10)

The MHD equations in co-moving coordinates can be determined
using a definition of a time and space derivative along with prior
hydrodynamic quantities, which read

∂

∂t
ρ + ∇ · (ρv) = 0, (11)

∂

∂t
(ρv) + ∇ · (ρv ⊗ v − 1

4π
B ⊗ B

) + ∇Ptot = −2Hρv, (12)

∂

∂t
e + ∇ ·

[
(e + Ptot)v − 1

4π
(B · v)B

]
=

−H [(3γ − 1)ρεint + 2ρv · v] + 1

ρ

[ ρ

μmH

 − a−3

( ρ

μmH

)2
�(T )

]
,

(13)

∂

∂t
B − ∇ × (v × B) = −3

2
H B, ∇ · B = 0, (14)

where ∂/∂t ≡ (∂/∂t)x and ∇ ≡ ∇x are the derivatives in the co-
moving frame. We use operator splitting to account for the Hubble
source terms, where the co-moving hydrodynamic variables are
modified in each time step to account for the expansion/contraction
(Birnboim et al. 2018).

2.3 Radiative heating and cooling

The previous studies by Robertson & Goldreich (2012) and Birn-
boim et al. (2018) used an isothermal equation of state. However,
in the real ISM, gas can absorb or emit radiation depending on
the quantum state and composition of the gas. There are various

mechanisms that can heat or cool: photoelectric heating from small
grains and polycyclic aromatic hydrocarbons, heating and ionization
from cosmic rays and X-rays, H2 formation and destruction, atomic
line cooling from hydrogen, etc. (Sutherland & Dopita 1993). As a
result, the temperature of the cloud varies, depending on the balance
between these various heating and cooling processes. The heating
or cooling rate depends on the temperature of the gas cloud, which
again depends on the density (ρ). As for static turbulence, the mean
density remains constant, the temperature does not vary that much,
which means the cooling rate is almost constant throughout the
evolution. But, for compressing turbulence, the mean gas density
increases with time, and hence, temperature varies a lot. As a result,
the heating or cooling rate varies, which has a profound effect on
the evolution of the turbulence.

Here we use tabulated values for 
 and � developed by
Koyama & Inutsuka (2002) and Vázquez-Semadeni et al. (2007),
based on a constant heating rate


 = 2 × 10−26 erg s−1, (15)

and a cooling rate based on the following equation:

�(T )



= 107exp

(−1.184 × 105

T + 1000

)
+1.4 × 10−2

√
T exp

(−92

T

)
cm3, (16)

where the temperature T is in units of Kelvin. These functions are
the fits to heating (
) and cooling (�) due to various processes
mentioned above. The thermal equilibrium condition is given by

n
 = n2�, (17)

where n = ρ/mH is the number density with μ = 1 for this study.
In hydrodynamic simulations, we generally apply cooling by

considering the cooling rate in the Courant condition to limit
the simulation time step. The densities gradually increase in this
problem of gas compression, which means a very small time step
can occur as the cooling rate increases. To avoid this problem, we
treat cooling as a source term in operator splitting, and following
each hydrodynamic step, the internal energy is adjusted. Consider
Teq and eeq are the equilibrium temperature and internal energy, and
the time required to radiate or absorb excess thermal energy is

τ� =
∣∣∣∣ e − eeq

n2� − n


∣∣∣∣ . (18)

Let ε be the excess energy. The rate of change of energy with time is
directly proportional to the instantaneous energy (Newton’s cooling
law). Thus we have

dε

dt
= − ε

τch
. (19)

Here τ ch is the characteristic cooling time-scale. Now, if the excess
energy after time t is ε1, then

ε1 = ε exp(−t/τch). (20)

In this case the initial excess internal energy is �e = e − eeq.
So, after a time-step dt the excess internal energy will be �e′ =
(e − eeq) exp(−dt/τ�). Then we compute the new internal energy
e

′
, after a time step dt, as

e′ = eeq + (e − eeq) exp

(−dt

τ�

)
. (21)

From this equation, we see that if the gas is undergoing rapid cooling
(or heating), τ� 	 dt and exp(− dt/τ�) → 0, such that the gas
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reaches thermal equilibrium very quickly. On the other hand, if the
cooling (or heating) rate is very slow, then τ� � dt and equation (21)
reduces to

e′ = eeq − dt (n2� − n
). (22)

2.4 Initial driving of turbulence to generate initial conditions

As we are experimenting with MHD turbulence statistics in a
contracting reference frame, we need a fully developed turbulent
field as the initial conditions of the contraction phase. To do that we
first drive the turbulence for five eddy turnover times, τ = 1/ω =
L/(2σ v), on a static background (a = 1). Here we consider a box
size of L = 200 pc, i.e. covering a large portion of the warm neutral
ISM with a uniform density of 1 cm−3. We drive turbulence to
reach a velocity dispersion σv = 10 km s−1, typical of the velocity
dispersion of the Milky Way on large scales (of order the disc scale
height).

The turbulence is driven by applying ρ F as a source term
in the momentum equation (2). In developing the turbulence
acceleration field F, we use the stochastic Ornstein–Uhlenbeck
(OU) method (Eswaran & Pope 1988; Schmidt et al. 2009; Price &
Federrath 2010). Federrath et al. (2010) developed the code, which
is accessible in the public version of FLASH. Turbulent stirring from
larger scales is correlated on time-scales related to the lifetime of
an eddy on the scale of the simulation domain. The OU process is
a well-defined stochastic process with finite autocorrelation time-
scale. In our periodic simulation box of side length L, it produces a
smoothly varying spatial and temporal driving pattern on the largest
scales (L/2). The driving process is carried out in Fourier space, and
the acceleration field F is set to inject most of the energy into
the lowest wave numbers, 1 < |k|L/2π < 3. The spectral shape
of the driving field we choose is paraboloid, i.e the peak energy
injection is on scale L/2, and falls off as a parabola for smaller
and higher wavenumber, so that the energy injection at k = 2π/L

and k = 6π/L is identically zero (Federrath et al. 2010; Federrath
2013a, 2016; Birnboim et al. 2018).

Depending on the physical interests, we can build the driving field
either purely solenoidal (∇ · F = 0) or compressive (∇ × F = 0)
or a blended field with fractional solenoidal and compressive modes.
For separating the driving field into the solenoidal and compressive
components, we use the Helmholtz decomposition in Fourier space.
For simplicity, we here use only solenoidal driving to develop the
turbulence fully before starting the contraction phase (a < 1).

2.5 Construction of initial turbulent magnetic field

The interstellar medium is magnetized. Thus, in order to simulate
MHD turbulence, we have to set the initial magnetic field. In our
study, we chose the magnetic field structure completely random, that
is to say, the magnetic field is fully turbulent. In order to construct
a fully turbulent magnetic field we use a method that has been
considered in the studies of Gerrard, Federrath & Kuruwita (2019)
and Birnboim et al. (2018). In this technique, we generate the initial
conditions so that all field vectors are randomly oriented, instead
of driving the turbulence in the field. We use a Kazantsev power
spectrum with an exponent 3/2 to decompose the turbulent field in
Fourier space (Brandenburg & Subramanian 2005; Federrath 2016).
We restrict the wave vectors in the range 2 < |k|/2π < 20. The
Kazantsev spectrum comes from turbulent dynamo amplification
(Kazantsev 1968; Federrath et al. 2011) as field amplification works

on the small-scale seeds of the magnetic field (Brandenburg &
Subramanian 2005; Schober et al. 2012; Schleicher et al. 2013).

The typical values of the large-scale magnetic field in interstellar
clouds in the spiral arms of the Milky Way and also in nearby
galaxies are about 3–10μG (Beck 2015; Han 2017). Therefore,
for our MHD simulations we initially set B = 3μG, and after
t = 5 τ it has slightly relaxed to B = 1.8 μG. Thus, the initial
magnetic field is slightly weaker than the observed field, but the
MHD simulations nevertheless provide us with at least a reasonable
qualitative measurement of MHD effects during cloud contraction.

2.6 Initial conditions, contraction parameters, and list of
simulations

All the simulations started from a uniform density ρ0 = 1.67 ×
10−24 g cm−3 and zero velocities. The simulation box size is initially
L = 200 pc. Then the turbulence was driven to five eddy turnover
times on a static background to establish fully developed turbulence.
After that, the driving module has been disabled and the cosmology
module has been activated and the evolution followed based on the
cosmological factor a(t). The scale factor a(t) of the compression is
solely determined by the Hubble parameter (H): a(t) = exp[H(t −
t0)], where t ≥ t0 (t0 is the contraction start time). In this phase a(t)
< 1 (Hubble parameter H is negative) as the box started contracting,
and the dynamics are determined by the contraction.

In order to study the dependence of the dynamics of turbulent
gas on the contraction rate, we chose three values of the Hubble
parameter (H): 1. slow compression (the contraction time scale
is 10 times longer than the eddy turnover time, ω/H = −0.1),
2. medium compression (contraction time scale is equal to eddy
turnover time, ω/H = −1), and 3. fast compression (contraction
time scale is 10 times shorter than eddy turnover time, ω/H = −10).
Table 1 provides the list of all simulations and initial conditions that
have been used for the contraction phase. Fig. 1 shows the evolution
of important integrated quantities during the driving phase.

In reality, the large-scale global compression may be induced
by various agents, such as supernova explosions, self-gravity,
dynamical shocks (from e.g. spiral-arm dynamics), compression
induced by ionization fronts, cloud–cloud collisions and many
more. Thus, it is not clear what should be the combined compression
rate and exact function form caused by all of these mechanisms.
Thus, we focus on a simple model of compression, where the
compression rate is constant and given in units of the turbulent
turnover rate, and we systematically vary this contraction rate over
different simulations to study the effect of different contraction rates
on the dynamics and cloud properties produced.

Previously, Robertson & Goldreich (2012) and Birnboim et al.
(2018) have discussed cases with different contraction rates for pure
HD and MHD simulations for isothermal turbulence. Here we are
mainly focused on the effect of radiative cooling on contracting
background with different contraction rates for pure HD and MHD
turbulence in the ISM.

3 R ESULTS AND D I SCUSSI ONS

3.1 Evolution of integrated quantities

In this section we present the main results obtained from our
numerical simulations of contracting interstellar clouds that were
initialized with the final state shown in Fig. 1. The evolution
of important integrated quantities during the contraction phase is
shown in Fig. 2 as a function of scale factor (a). The domain size
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Table 1. List of different simulation parameters at the beginning of the contraction.

Model H (s−1) τ = 1/ω (s) ω/H B (μG) σv (km s−1) M T (K) N3
res

HD-Slow −3.241 × 10−16 3.08 × 1014 − 0.1 0 11.57 1.85 4.67 × 104 (512)3

HD-Medium −3.241 × 10−15 3.08 × 1014 − 1.0 0 11.57 1.85 4.76 × 104 (512)3

HD-Fast −3.241 × 10−14 3.08 × 1014 − 10.0 0 11.52 1.84 4.78 × 104 (512)3

MHD-Slow −3.241 × 10−16 3.08 × 1014 − 0.1 1.82 11.12 1.75 4.97 × 104 (512)3

MHD-Medium −3.241 × 10−15 3.08 × 1014 − 1.0 1.82 11.12 1.75 4.97 × 104 (512)3

MHD-Fast −3.241 × 10−14 3.08 × 1014 − 10.0 1.75 11.22 1.75 4.87 × 104 (512)3

Figure 1. Initial driving phase to establish fully developed turbulence. We
take the state at after five eddy turnover times (t = 5 τ ) to serve as the initial
condition for the contraction phase. The red line corresponds to the purely
HD case and the blue line is for the MHD case.

L(a) = aL(a = 1), such that the cloud has contracted from 200 pc at
a = 1 down to 2 pc at a = 0.01. All the quantities are plotted with
decreasing a (on the bottom x-axis) and increasing mean density
(on the top x-axis). As the scale factor (a) is exponential in time
a(t) = exp[H(t − t0)] and the a-axis is in logarithmic scale, it
shows the evolution proportional to time. The quantities shown
were integrated over the whole volume of the simulation domain.
We divide our simulation results in three parts. The first column
in Fig. 2 presents the results for slow compression (ω/H = −0.1).
The second and third columns correspond to medium (ω/H = −1)
and fast (ω/H = −10) compression, respectively. For each case we

consider two types of simulations: 1. a purely HD simulation, and
2. an MHD simulation without guide field.

3.1.1 Evolution of temperature

The first row of Fig. 2 shows the temperature evolution. The
initial temperature for all the simulations is approximately the same
(∼ 5000 K, the equilibrium temperature of gas with mean density
∼ 1 cm−3). As the compression starts the temperature drops. The
behaviour of the temperature evolution is similar for each model,
because it is primarily determined by the evolution of the mean
density, which controls the cooling rate. However, the initial slope
of the temperature curve is different for different models. For fast
compression the number density grows faster, causing a higher
cooling rate and a faster drop in temperature until the density
has reached ∼ 10−23 g cm−3. Another point to notice is that the
presence of a magnetic field does not change the behaviour much,
as the HD and MHD simulations for each model follow almost
the same temperature evolution. This is expected as (1) the field
is weak and does not affect much the density, (2) we do not use a
proper heating/cooling via a chemical network, where the species
abundances might be affected by the magnetic field. Initially, when
the temperature is about ∼ 5000 K, the cloud is mostly in the warm
atomic phase. As the thermal energy of the particles drops below
(due to cooling) the binding energy (T ∼ 150 K) of H2 molecules,
the atomic hydrogen undergoes a phase transition to form molecular
hydrogen (H2). From Fig. 2 we find this occurs at a ∼0.2 for slow
compression, a ∼ 0.3 for medium compression, and a ∼ 0.5 for
fast compression. Beyond this epoch, the fraction of molecular H2

increases gradually and the gas becomes almost fully molecular.
When the density n ∼ 103–106 cm−3, the temperature drops to ∼50–
10 K and gets saturated around ∼ 10 K beyond that. Observations
in the Milky Way and extragalactic environments, such as the SMC
and LMC, indicate a similar overall temperature dependence on
density (Wilson et al. 1997; Bernard et al. 2008; Gratier et al. 2010;
Hughes et al. 2010; Heyer & Dame 2015; Jameson et al. 2019).
However, there are details in the temperature evolution that clearly
depend on the ratio of turbulent turnover rate and contraction rate,
which are too subtle to distinguish in observations, based on the
temperature evolution alone. Thus, we now turn to more statistics
involving the velocity and magnetic field.

3.1.2 Evolution of velocity dispersion (σ v)

An important distinction between different models is provided by
the variation of velocity dispersion (σ v). The second row of Fig. 2
presents the σ v evolution with scale factor. Starting from the fully
developed turbulence of σv ∼ 10 km s−1, all the simulations start
compression, which – depending on the contraction rate – can
drive or maintain turbulence to some level. For slow compression
(ω/H = −0.1), the compression time-scale is longer than the eddy
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Compression of turbulent gas under cooling 3103

Figure 2. Integrated quantities as a function of scale factor a (bottom axis) and mean density (bottom axis). The different column show (from the left to right)
slow (ω/H = −0.1), medium (ω/H = −1), and fast (ω/H = −10) compression. The red lines show the purely HD, and blue lines are for the MHD case. In
the velocity dispersion panel (second row) we have plotted the linewidth–size scaling relation (equation 23). Please note the different range of sonic Mach
numbers (third row) for the three compression rates.
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3104 A. Mandal, C. Federrath and B. Körtgen

turnover time-scale. As a result, the dissipation rate dominates over
the compression rate and the compression cannot inject energy
with enough power to drive the turbulence. Thus, σ v declines more
steeply with a than in the other cases. For fast compression (ω/H =
−10), σ v initially increases and after reaching a peak value it decays
with time. This behaviour of increasing to decaying turbulence
can be explained by the change of dissipation rate with a. As the
dissipation time-scale is proportional to the largest eddy turnover
time (ω ∼ v/2aL) (Mac Low 1999; Robertson & Goldreich 2012;
Birnboim et al. 2018) and a decreases with time, the dissipation
time-scale decreases. After some point (a ∼ 0.2) when ω/H becomes
less than −1, the turbulence dissipation dominates.

For medium compression, the compression and dissipation rates
are comparable and they remain so for a longer period of time, i.e.
the contraction drives just enough turbulence to maintain a nearly
constant decline of velocity dispersion with scale, very close to the
observed scale dependence of σ v . We discuss the scaling relation
in details in Section 3.2.

3.1.3 Evolution of Mach number (M)

The third row of Fig. 2 shows the evolution of mass-weighted
Mach number (M = σv/cs) for different simulations. In the cold,
dense molecular regime, there is no profound difference between
the volume-weighted and mass-weighted Mach number. Here, we
chose the mass-weighted Mach number, because it better represents
the kinematics in the cold, dense phase, which is where the Mach
number may be an important physical quantity to determine the star
formation potential of clouds (Federrath & Klessen 2012; Federrath
2013b; Salim, Federrath & Kewley 2015; Sharda et al. 2018, 2019;
Beattie, Federrath & Klessen 2019a; Beattie et al. 2019b). The
sound speed (cs) directly depends on the temperature of the cloud
(c2

s = γ kBT /μmH, where γ and μ are the adiabatic index and mean
molecular weight of the gas particles, respectively). Initially, for all
models, the turbulence is supersonic. Since contraction forces the
temperature to drop, the sound speed (cs) decreases with a, and
M increases, which is a direct consequence of the joint evolution
of temperature and velocity. For the medium and fast compression
rate, the HD simulations show the same behaviour, i.e M grows to
a peak value and then decays. For slow compression, M decreases
initially, and then grows to a peak value, followed by decay. This
behaviour is due to the different rates of change of temperature and
velocity dispersion. The interesting point is to notice the behaviour
of M in the MC regime for different compression rates. The
typical values of M in real MCs are known to be supersonic with
M ∼ 5–20 (Crutcher 1999; Schleicher et al. 2013). From Fig. 2
we see that the Mach number in the molecular regime for slow
compression is subsonic, which is too small. On the other hand, for
fast compression, the Mach numbers exceed 30 in the MHD case,
which is unusual for Milky Way conditions .1 Only the simulation

1For MHD turbulence, the presence of a magnetic field can change the
situation considerably. In Fig. 2, we see that the σv as well as M stop
decreasing and increases again after a sufficiently long period for MHD
simulation in the case of fast compression. Birnboim et al. (2018) have
shown that the value of a where the transition from decaying to increasing
turbulence happens depends on the presence of the guide field, and the
saturation level of turbulent dynamo for isothermal compressive turbulence.
The presence of a strong magnetic field changes the flow pattern to nearly
dissipationless. An interesting point to note that although Birnboim et al.
(2018) pointed out it for isothermal turbulence, the behaviour does not
change for the case of turbulence subjected to radiative cooling.

with medium compression rate produces realistic Mach numbers
of order 5–10 in the molecular regime and a dependence on scale
consistent with the observed velocity dispersion–size relation.

3.1.4 Magnetic field and plasma-β

The fourth row of Fig. 2 shows the magnetic field evolution for the
three MHD simulations with different compression rates. For all the
simulations, the mean magnetic field (|B|) starts from |B| ≈ 2μG
after the initial driving phase (cf. Fig. 1) and starts growing due to the
compression of field lines. Observations with different techniques
like Zeeman splitting in HI, OH, CN absorption lines (Crutcher et al.
1993; Crutcher 1999; Falgarone et al. 2008), and maser emission
from dense MC cores (Vlemmings & van Langevelde 2007; Watson
2009) have shown the existence of magnetic fields in interstellar
clouds. All of these studies show that for low-density clouds (n �
103 cm−3), there is nearly no correlation between the magnetic field
strength (B) and the density (ρ). However for dense MCs (n � 103–
107 cm−3), the magnetic field increases with the density of the cloud
(Crutcher 2012). This is usually stated in form of a power law, |B| ∝
ρκ . If the cloud undergoes homologous compression, then magnetic
flux (� = πR2|B|) conservation implies |B| ∝ R−2, while mass
conservation gives R ∝ ρ1/3; therefore |B| ∝ ρ2/3. On the other
hand, if the magnetic field is strong, the structure of the cloud will
be changed by the magnetic field. Fiedler & Mouschovias (1993)
numerically showed that for ambipolar diffusion driven contraction
κ ≈ 0.47, which has also been seen observationally (Crutcher 1999).
However, Basu (2000) showed that a better correlation was obtained
by fitting B ∝ σv

√
ρ.

The fifth row of Fig. 2 presents the dependence of plasma-β with
a. We see that for the MHD, medium-contraction model, the value
of β (the plasma β is defined as the ratio between thermal pressure
and magnetic pressure) is about 0.1 in the molecular regime (for real
MCs the value of β typically lies between 0.1 and 0.3; see Crutcher
2012; Federrath et al. 2016; Krumholz & Federrath 2019), which
implies a significant effect of the magnetic field (β < 1) (Planck
Collaboration XXXV 2016). Thus, we expect the value of κ for
our numerical experiment is 0.47 rather than 2/3. We explore more
about B − n scaling relation and dependence on β in Section 3.2.

3.2 Scaling relations

From various surveys mentioned in Section 3.1.1 it is empirically
established that the velocity dispersion (σ v) in MCs is correlated
with the size of the cloud � (Larson 1981; Solomon et al. 1987;
Ossenkopf & Mac Low 2002; Heyer & Brunt 2004; Roman-Duval
et al. 2011). Early observations predict that σ v is related with � in a
power-law fashion σ v ∝ �ξ . Larson (1981) first calculated the value
of ξ to be 0.38 (Larson relation). However, from various surveys,
the most accepted linwidth-Size scaling relation in recent days is
given by

σv ∝ �0.5, (23)

where � is the size of the cloud in the unit of pc and the unit of σ v

is km/s. This correlation also is reproduced by various numerical
studies (Kritsuk et al. 2007; Schmidt et al. 2009; Federrath et al.
2010; Federrath 2013a). In Fig. 2 we added the scaling relation
(equation 23) on top of the σ v − a lines. Only the simulation
with medium compression provides a good match to the observed
relation. Fig. 3 shows the scaling relation calculated from the
medium compression models along with the Larson (1981) relation
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Compression of turbulent gas under cooling 3105

Figure 3. �−σv scaling relation for the simulations with a medium-
compression rate (ω/H = −1). The red and blue solid lines correspond
to HD and MHD simulations, respectively. The dashed lines are various
observational scaling relations. The black dashed line is the σv ∝ �0.38

Larson (1981) relation. The green and magenta dashed lines are σv ∝ �0.5

(Solomon et al. 1987) and σv ∝ �0.5 (Bolatto et al. 2008) linewidth–size
scaling relations, respectively.

Figure 4. Relation between the magnetic field (B) and the density (n)
for the medium-compression simulations (ω/H = −1). The solid blue line
corresponds to MHD simulation. The black dashed line presents the scaling
relation |B| ∝ n2/3 (Crutcher 2012), resulting from homologous collapse
of a cloud where the magnetic field is dynamically weak. The green dashed
line represents the scaling relation |B| ∝ n0.47, established by an ambipolar
diffusion driven contraction model (Fiedler & Mouschovias 1993). Finally,
the red dashed line shows the scaling relation B ∝ σv

√
ρ (Basu 2000).

(exponent ξ = 0.38), equation (23) and the B08 relation (Bolatto
et al. 2008), which has an exponent ξ = 0.5. Result shows that the
� − σ v relation from the medium compression model is consistent
with the observational predictions. Moreover, equation (23) fit very
well to the MHD model in the molecular regime. This scaling
relation is also consistent with the results from MC simulation
driven by supernovae including self-gravity (Padoan et al. 2017).

In Fig. 4, we have plotted the dependence of B with number
density (n). We adopt the relation in the form of |B| = B0 (n/n0)κ

and |B| = B0(σv/σv,0)(n/n0)0.5, where κ = 2/3 (Crutcher 2012) and
0.47 (Fiedler & Mouschovias 1993) for two different models. Here
n0 = 103 cm−3, and B0 and σ v, 0 are the magnetic field and velocity
dispersion when the mean number density n0. As pointed out earlier,

the density–magnetic field correlation is valid in the high-density
regime n � 103 cm−3, we choose the starting point of the plots at
n = 103 cm−3 and calculate the value of B when n = 103 cm−3 to
find the constant B0. We show the various scaling relations discussed
in Section 3.1.4. Since all of these scaling relations are valid only
in the high-density regime (n ∼ 103–106 cm−3), we expect our
simulation results to be consistent with these relations only in the
higher density regime. Fig. 4 shows good agreement of the MHD
medium-compression model with the theoretical and observational
estimates of the B−n relation. As pointed out in Section 3.1.4, β <

1 implies a significant magnetic influence on the evolution of the
cloud, thus κ value will be close to 0.47. Moving-mesh simulations
of isothermal, self-gravitating MC cores (Mocz et al. 2017) find κ

≈ 1/2, when the magnetic field is strong (β < 1), consistent with the
simulations presented here. The MHD-Medium compression result
approximately follows the n0.47 curve. It also fits well to the σv

√
n

curve in the molecular regime. All of the above results suggest
that the ω/H = −1 contraction model produces reasonable cloud
parameters as a natural outcome of MC formation by compression
out of the warm atomic phase.

3.3 Morphological features

Fig. 5 displays a spatial representation of density (top panel),
temperature (middle panel), and Mach number (bottom panel) at
a = 1.0 (left), a = 0.1 (middle), and a = 0.01 (right) for the
MHD-Medium model. We have plotted the local magnetic field
lines projected on to the x–y plane on top of the density projections,
and local velocity field vectors in the Mach number projections.
In the density projections, we see that initially (a = 1), the large-
scale turbulence driving sets the density contrasts ranging over one
order of magnitude and the local magnetic fields are quite random.
However, at a later times (a = 0.1 and 0.01), when the strength of
the magnetic fields increase, the density contrasts decrease (ranging
over a factor of 3). This is because magnetic fields reduce the density
contrasts, due to additional magnetic pressure parameterized by the
plasma-β (Federrath & Klessen 2012; Molina et al. 2012). The
magnetic field directions at this epoch are more regular, which is
consistent with the strong-field predictions, i.e. for a strong field,
the field lines should be smoother (Crutcher 2012). The temperature
(second row in Fig. 5) also shows similar behaviour. Initially (a = 1),
the temperature fluctuations cover almost four orders of magnitude,
while at a = 0.01, the temperature fluctuations are very small and
gas is nearly isothermal at T ∼ 5–10 K.

One interesting point to notice is the correlation between density
and temperatures. In Fig. 5, we see that the correlations are very
prominent. Higher densities have lower temperature as expected
due to cooling. The correlations between density and Mach number
are quite weak. However, Fig. 5 shows that high-density regions
exhibit a lower Mach number on average, as a result of the velocity
dispersion–size relation discussed above.

3.4 Density dispersion–Mach number relation

In supersonic, isothermal turbulence, the density fluctuations ap-
proximately follow a lognormal distribution (Vazquez-Semadeni
1994), assuming that the local density fluctuations and velocities are
uncorrelated (Passot & Vázquez-Semadeni 1998; Federrath et al.
2010; Federrath & Banerjee 2015a; Kritsuk, Ustyugov & Norman
2017). However, if the gas is not isothermal, we do not expect a
lognormal distribution for density fluctuations, as the local density
and Mach number are correlated (Passot & Vázquez-Semadeni
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3106 A. Mandal, C. Federrath and B. Körtgen

Figure 5. The first row shows the projected density in the x–y plane for the MHD-Medium simulation. The second and third rows represent the line-of-sight,
density-weighted mean temperature and Mach number, respectively. The first, second, and third columns correspond to a = 1.0, 0.1, and 0.01, respectively.
The streamlines in the density projections represent the projected magnetic field in the x–y plane. The velocity field is shown as arrows in the Mach number
projections (bottom panels).

1998; Gazol & Kim 2013; Körtgen, Federrath & Banerjee 2019).
Various theoretical and numerical studies (Padoan, Nordlund &
Jones 1997a; Passot & Vázquez-Semadeni 1998; Kowal, Lazar-
ian & Beresnyak 2007; Federrath, Klessen & Schmidt 2008) have
established that the density dispersion and Mach number follow the
relation

σs(b,M) = [
ln(1 + b2M2)

]1/2
, (24)

where σ s is the variance of the logarithmic density contrast,
s = ln (ρ/〈ρ〉). Federrath et al. (2008, 2010) pointed out that the
parameter b is a function of how the turbulence is driven and
found b ≈ 1/3 for purely solenoidal (divergence-free) driving and
b ≈ 1 for purely compressive (curl-free) driving. For magnetized
turbulence the σ s–M relation is modified by magnetic pressure and
was analytically derived by Padoan & Nordlund (2011) and Molina
et al. (2012). For B ∝ ρ1/2 they find

σs(b,M, β) =
[

ln

(
1 + b2M2 β

β + 1

)]1/2

, (25)

where β is the ratio of thermal to magnetic pressure (denoted
plasma-β) of the magnetized flow. Equation (25) is a more general

form, as we can see in the limit of β → ∞ (hydrodynamic limit),
equations (25) and (24) are identical.

For given σ s, M, and β, equation (25) can be used to calculate
the effective driving parameter b of the turbulence, i.e.

b =
[

β + 1

βM2

(
exp(σ 2

s ) − 1
)]1/2

. (26)

In the limit β → ∞, equation (26) gives the effective driving
parameter for HD turbulence.

An alternative way of estimating b is to consider the mixture of
turbulent modes in the velocity field. For this purpose, Pan et al.
(2016b) define the compressive ratio

χ = 〈v2
comp〉/〈v2

sol〉, (27)

where 〈v2
comp〉 and 〈v2

sol〉 are the compressive and soleloidal com-
ponents of the velocity field, respectively. An effective driving
parameter (bχ ) can then be defined as

bχ =
√

χ

1 + χ
. (28)
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Compression of turbulent gas under cooling 3107

The velocity components 〈v2
comp〉 and 〈v2

sol〉 can be determined
via a Helmholtz decomposition in Fourier space. Thus, from the
velocity power spectra one can determine bχ using equations (27)
and (28). However, b in equation (26) may not be the same as bχ in
equation (28), but Pan et al. (2016b) and Jin et al. (2017) argue and
show that they are usually fairly similar.

In Fig. 6 we show σ s (left-hand panels) and the driving parameter
(b, bχ ; right-hand panels) as a function of a. The top panels represent
the evolution for the HD-Medium simulation and the bottom panels
show the same for the MHD-Medium simulation. Since in the
driving phase (before contraction), the turbulence is driven by
a solenoidal acceleration field (b ∼ 1/3), and contraction acts
primarily as a compressive acceleration, the resulting driving during
the contraction phase is a mixture of solenoidal and compressive
components (1/3 < b < 1) (fig. 8; Federrath et al. 2010). For our
case, we find that b ≈ 0.4–0.5 provides a good fit in the case without
magnetic fields (HD-Medium in the top panels of Fig. 6). We find
that the driving parameter b computed using equation (26) with β

→ ∞ and bχ computed from the Helmholtz-decomposed velocity
field are in good agreement, with bχ ∼ 0.4, somewhat smaller than
b ∼ 0.5.

In the bottom-left panel of Fig. 6, we show the evolution of σ s

for the MHD-Medium simulation. The turquoise line represents the
prediction from the theoretical model in the HD limit (equation 24)
with b = 0.4, while the green line is for the MHD model with the
β-parameter included and b = 0.5 (equation 25), for comparison.
The bottom-right panel shows the evolution of b and bχ for the
MHD-Medium model. The blue solid line corresponds to b directly
computed from equation (26) and the black dash–dotted line is bχ

computed using equation (28). The green dotted line corresponds
to the evolution of b calculated using equation (26) with β → ∞.

We see that the MHD model (equation 28) does not provide a
good fit to the data and suggests b > 1 for a � 0.2. This is because
equation (25) breaks down as the Alfvén Mach number drops below
∼2. Indeed, Molina et al. (2012) have shown that this σ s–M relation
(equation 25) does not work for MA � 2, and in our case, a � 0.2
is when this transition to strongly sub-Alfvénic turbulence occurs
(cf. the bottom panel of Fig. 2).

Despite these caveats, we find that using the purely hydrodynam-
ical version of the σ s–M relation, as well as bχ , suggest a driving
parameter of ∼0.3–0.4, with bχ giving a somewhat lower effective
driving parameter close to purely solenoidal or less (bχ ∼ 0.2–0.3)
than b ∼ 0.4 from the HD-version of the σ s–M relation.

Overall, these results suggest that contracting MHD turbulence
has an effectively solenoidal to naturally mixed driving parameter
(b ∼ 0.3–0.4), while contracting HD turbulence is naturally mixed
to slightly compressive (b ∼ 0.4–0.5).

3.5 The density PDFs for different compression models

As pointed out in Section 3.4, for an idealized isothermal turbulence,
the density contrast (ρ/ρ0) follows an approximately lognormal
distribution, a Gaussian distribution in the logarithmic density
contrast s ≡ ln (ρ/ρ0),

pLN(s) = 1√
2πσ 2

s

exp

(
− (s − s0)2

2σ 2
s

)
. (29)

The lognormal PDF contains two parameters: (1) the variance of
logarithmic density σ s and (2) the mean s0, which is related to
the variance by s0 = σ 2

s /2 because of mass conservation (Padoan,
Jones & Nordlund 1997b; Federrath et al. 2008; Hopkins 2013).
Although the lognormal model of the density PDF for isothermal

turbulence is well established, this is not obvious for non-isothermal
turbulence. Previous studies show that the PDF tends to depart
significantly from the lognormal form given by equation (29),
if the gas is non-isothermal (Vazquez-Semadeni 1994; Passot &
Vázquez-Semadeni 1998; Wada & Norman 2001; Kritsuk & Nor-
man 2002; Li, Klessen & Mac Low 2003; Audit & Hennebelle
2005; Hennebelle & Audit 2007; Seifried et al. 2011; Molina et al.
2012; Gazol & Kim 2013; Hopkins 2013; Federrath & Banerjee
2015b). A model for capturing the non-lognormality of density
fluctuation is the intermittency model presented by Hopkins (2013),
physically motivated by the quantized log-Poisson statistics for
velocity structure functions [Sp(R) ≡ 〈δv(Rp〉] (Dubrulle 1994;
She & Waymire 1995). The form of the density PDF in case is
(Hopkins 2013; Federrath & Banerjee 2015b)

pHK(s) = I1

(
2
√

λw(s)
)

exp[−(λ + w(s))]

√
λ

θ2w(s)
,

λ ≡ σ 2
s

2θ2
, w(s) ≡ λ

1 + θ
− s

θ
(w ≥ 0), (30)

where I1(x) is the first-order modified Bessel function of the first
kind. Equation (30) contains two parameters: (1) the standard
deviation σ s and (2) the intermittency parameter θ . In the zero-
intermittency limit (θ → 0), equation (30) simplifies to the lognor-
mal PDF, equation (29).

Hopkins (2013), Federrath (2013a), and Federrath & Banerjee
(2015b) showed that this intermittency model for the density PDF
fits well to the density PDFs of idealized non-isothermal turbulence
simulations with a large range of Mach numbers, magnetic field
strengths, and turbulence driving parameters. Thus, here we are
motivated to examine whether this also true for our non-isothermal
contraction model with radiative heating and cooling.

Fig. 7 shows the density PDFs of s ≡ ln (ρ/ρ0) obtained in our
simulations with different contraction rate. In the first row of Fig. 7,
we show the density distribution at a = 1 (i.e. when the turbulence is
fully developed and immediately before the contraction starts). The
second and third row of Fig. 7 correspond to the density distribution
at a = 0.1 and 0.01 for different compression models, respectively.
Different columns (from left to right) correspond to MHD-Slow,
MHD-Medium, and MHD-Fast compression models. In each panel,
the red points are the density PDFs from the simulation data.

At a = 1 (top panel in Fig. 7), we see that the density distribution
is divided into two phases: (1) diffuse warm gas, and (2) dense cold
gas. Thus, natural motivation indicates that each of these phases
may follow a separate lognormal distribution. Thus, for the entire
density range, we fit a double-lognormal PDF (e.g. Dawson et al.
2015)

pDLN(s) = N√
2πσ 2

s1

exp

(
− (s − s01)2

2σ 2
s1

)
+

1 − N√
2πσ 2

s2

exp

(
− (s − s02)2

2σ 2
s2

)
. (31)

This function has five parameters. Thus, we have to optimize all
five parameters for fitting. The black dashed line in the first panel
of Fig. 7 is the double-lognormal fit to the numerical PDF at a = 1.
The double-lognormal function fits the numerical PDFs very well,
with fit parameters provided in Table 2.

The PDFs for the later times (a = 0.1 and 0.01) are shown in
the second and third rows of Fig. 7. At these later stages in the
contraction of the clouds, the PDFs become close to lognormal.
The green dotted lines represent the corresponding lognormal fits
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3108 A. Mandal, C. Federrath and B. Körtgen

Figure 6. Evolution of standard deviation of log-density (σ s) (left-hand panels) and driving parameter b and bχ (right-hand panels) as a function of the scale
factor a for HD-Medium (top panels) and MHD-Medium (bottom panels). In the upper-left panel, the red solid line represents the evolution of σ s for HD
simulation and the black dashed line is the corresponding theoretical prediction, equation (24) with b = 0.5. The magenta and yellow lines in the upper-left
panel correspond to the theoretical predictions for purely solenoidal (b ∼ 1/3) and purely compressive (b ∼ 1) driving. The bottom-left panel presents the
result for MHD-Medium (blue solid line) and the green line corresponds to the theoretical model, equation (25) with b = 0.5. The cyan line in the bottom
panel is the HD limit (β → ∞) of the MHD model (equation 25) with b = 0.4, which fits the data well. In the upper-right panel, the red solid line corresponds
to the evolution of the driving parameter (b) that has been calculated using equation (26) with β → ∞ and the black dashed-dotted line is bχ calculated
using equation (28). In the bottom-right panel, the blue line is b calculated from equation (26) and the black dashed dotted line is bχ . The green dotted line
corresponds to equation (26) with β → ∞.

via equation (29). However, some intermittency and accompanying
skewness remains, which is why we also show fits using the Hopkins
(2013) intermittency PDF, equation (30) as the blue solid lines (with
fit parameters provided in Table 3). These provide very good fits
to all the simulations at a = 0.1 and 0.01, when the clouds have
become fairly dense and reached a nearly isothermal, cold state,
which can be seen from the temperature projection plots in Fig. 5.

4 LIMITATIONS

In this section, we discuss some of the main limitations of our
work. As a result of the simplicity of hydrodynamic simulations,
comparisons with observational results are limited and should be
considered carefully. These limitations are listed below:

(i) In this study, we neglect the detailed chemistry of the gas.
Throughout the study we consider a mean molecular weight μ = 1.
However, in reality, μ changes from about 1.3 in the atomic phase to
about 2.3 in the molecular phase. For simplicity, we did not model
this change in μ. However, this does not have a significant impact
on our general conclusions and would only marginally change our
quantitative results. For example, the sound speed would change
by a factor ∼ √

μ, which is significantly less than the differences
between our models with different contraction rates.

(ii) The numerical resolution of our simulations is limited. We
have performed all the simulations with a resolution of 5123 grid
points. However, we provide a resolution study in Appendix B,
which demonstrates reasonable convergence of the integrated quan-
tities shown in Fig. 2.

(iii) In this study, we only consider constant contraction rates
(i.e. independent of time or scale factor). While this allows for a
simple and clear investigation of the effects of different constant
contraction rates, it does not allow us to study the effects of a
dynamical change in the contraction rate, which is for example the
case for gravitational contraction, where the contraction accelerates
over time. Such cases are considered in the previous work by
Robertson & Goldreich (2012). However, here we wanted to focus
on the effects of heating and cooling without specifying the physical
source of the contraction (for example, gravity, shock waves, or
cloud–cloud collisions) and chose a constant contraction rate for
simplicity. Follow-up work may study cases where the contraction
rate is time- and scale-dependent.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we study the compression of magnetized turbulent
gas, incorporating the effects of radiative heating and cooling.
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Compression of turbulent gas under cooling 3109

Figure 7. PDFs of logarithmic density contrast s ≡ ln(ρ/ρ0) for different contraction models. In the first row, we show the density PDF at a = 1.0 (just after
the turbulence is fully developed and just before the contraction starts). The second and third row correspond to the density PDFs at a = 0.1 and 0.01, for
different compression models, respectively. Different columns (from left to right) correspond to MHD-Slow, MHD-Medium, and MHD-Fast. In each panel,
the red points are the simulation PDFs. The black dashed line in the first panel is the double-lognormal fit (equation 31) to the numerical PDF at a = 1.0.
In all subsequent panels, the green dotted lines represent lognormal fits (equation 29) and the blue solid lines show fits with the intermittency PDF model
(equation 30).

Table 2. Fitting parameters for the double-lognormal function at a = 1.

Model ω/H a N σ s1 σ s2 s01 s02

MHD-Slow/Medium/Fast −1.0 1.0 1.670 ± 0.017 0.618 ± 0.006 0.927 ± 0.016 −0.644 ± 0.021 1.423 ± 0.079

Table 3. Statistical measures of the fitting parameters at a = 0.1 and 0.01.

Model ω/H a Sim σ s,V lognormal σ s,V lognormal s0 Hopkins σ s,V Hopkins θ

MHD-Slow − 0.1 0.1 0.833 0.831 ± 0.010 −0.092 ± 0.040 0.823 ± 0.012 0.028 ± 0.011
MHD-Slow − 0.1 0.01 0.191 0.254 ± 0.009 −0.226 ± 0.034 0.221 ± 0.004 0.050 ± 0.002

MHD-Medium − 1.0 0.1 1.278 1.212 ± 0.003 −0.812 ± 0.013 1.212 ± 0.003 0.012 ± 0.002
MHD-Medium − 1.0 0.01 0.833 0.831 ± 0.010 −0.092 ± 0.040 0.823 ± 0.012 0.028 ± 0.011

MHD-Fast − 10.0 0.1 1.778 1.762 ± 0.029 −2.010 ± 0.079 1.807 ± 0.004 0.207 ± 0.002
MHD-Fast − 10.0 0.01 1.392 1.312 ± 0.009 −1.165 ± 0.031 1.346 ± 0.006 0.077 ± 0.003

We investigate whether compression can form MCs from the
warm atomic phase, matching observed properties, such as the
linewidth–size relation. We use the grid-based code FLASH for
our numerical experiments. The simulations follow the global
compression of turbulent gas at moderately initial supersonic
velocities (each with a velocity of 11.6 km s−1 for HD simulations
and 11.1 km s−1 for MHD simulations). A total of six simula-
tions were carried out: three different compression rates (Slow,
Medium, and Fast), each for HD (no magnetic fields) and MHD

(with magnetic fields). In the following we summarize our main
results:

(i) The global compression enhances the turbulent velocity of
purely hydrodynamic turbulence, if the compression time-scale
(1/H) is smaller than the turbulent dissipation time-scale (τ ).
For cases with compression time-scale less than dissipation time-
scale, although the turbulence does not get enhanced, the natural
turbulence dissipation gets delayed due to the energy pumping from
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global compression. However, compared to HD turbulence, the sit-
uation in MHD turbulence is slightly different. In the MHD models
the magnetic field stores additional energy, which replenishes some
of the kinetic energy that is dissipated.

(ii) Initially, when the temperature is high (∼ 5000 K), the
cooling rate is also high and the gas undergoes rapid radiative
cooling. For all the simulations, the temperature saturates around
5–30 K when the density has reached n ∼ 106 cm−3.

(iii) When the contraction rate (|H|) is high, the cascade of
turbulence energy to smaller scales is limited and dissipation
becomes inefficient. As a result, the Mach number (M) becomes
hypersonic, too large to be compatible with typical values in the
Milky Way. On the other hand, when ω/|H| 	 1, the dissipation
dominates and fails to sustain the turbulence. Only if the contraction
time-scale is of the order of the turbulence dissipation time-scale,
M remains in the supersonic regime (∼5–10), consistent with the
range of observed Mach numbers in typical MCs in the Milky
Way.

(iv) Due to rapid radiative cooling the temperature drops. Thus,
the Mach number (M) evolution depends on the balance between
turbulence dissipation rate and cooling rate. In the molecular regime,
the velocity dispersion for the MHD-Medium simulation shows a
strong correlation between velocity dispersion and the size of the
cloud (L–σ v scaling relation) and falls between the Larson relation
and the B08 relation, and almost follows the S87 relation. By
contrast, the linewidth–size relations for slow and fast compression
do not fit the observed scaling relations.

(v) It is observationally established that in the high-density
regime (n � 103 cm−3), the magnetic field strength (B) is correlated
with the density of the cloud and proportional to ρκ (for low
magnetic field strengths, κ ≈ 2/3, and for ambipolar diffusion
driven turbulence κ ≈ 0.47). The calculated B–n correlation from
the medium compression MHD simulations falls between these
two scalings, as the plasma-β, is about 0.1, which means that
the magnetic field is dynamically important, also consistent with
observations.

(vi) The relation given by equation (24) between logarithmic
density variance (σ s) and Mach number (M) derived for isothermal
turbulence is found to be consistent with the theoretical prediction
in the HD case for a forcing parameter b ≈ 0.5. However, it
slightly underpredicts σ s after a < 0.1 which means for our model
of compression the value of b is slightly higher. This can be
explained by the fact that in this model, b is not constant, but
rather changes with scale factor as we go from solenoidal driving
(the initial stage of contraction) to a mixed driving (mixture of
solenoidal and compressive components), i.e. 1/3 < b < 1. We find
that direct computation of the effective driving parameter (b) using
equation (26) with β → ∞ gives b ∼ 0.4–0.5, i.e. the turbulence is a
mild mixture of compressive components with the initial solenoidal
modes. This is also reasonably consistent with the driving parameter
(bχ ) computed by Helmholtz decomposition of the velocity field
(equation 28). However, for MHD there is a difference between
the simulation result and the theoretical prediction (equation 24)
when b ≈ 0.5 is assumed. The evolution of b computed from
equation (26) suggests that b > 1. This discrepancy is because
the Alfvén Mach number (MA) drops below 2, which means the
magnetic field becomes very strong and the σ s–M relation is
no longer applicable (Molina et al. 2012). However, the velocity
spectra give reasonable values of the driving parameter (bχ ∼
0.3–0.4), i.e. the suppression of the compressive modes due to
strong magnetic fields leave the turbulence as almost completely
solenoidal.

(vii) Just after the turbulence is fully developed and before the
contraction starts, which is when a two-phase medium (WMN and
CNM) is established, we find that a double-lognormal density PDF
provides a good fit to the simulation data. At later times, during
the contraction, almost all of the gas becomes dense and cold, such
that the isothermal approximation for the density PDF provides
a reasonable approximation, and the simulation PDFs are well
described by an intermittency PDF model (cf. Fig. 7).

In summary, using idealized simulations, we find that the large-
scale compression of the warm, atomic, magnetized ISM can drive
turbulence by injecting energy into the system due to compression,
if the contraction time-scale is less than the turbulence dissipation
time-scale. The models with contraction time-scale similar to dis-
sipation time-scale can reasonably produce key observed physical
properties of MCs. There are several candidates for causing such
turbulent compression: global gravitational contraction on large
scales, compression due to stellar feedback (e.g. supernova shock
waves), or cloud–cloud collisions.
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Körtgen B., Seifried D., Banerjee R., Vázquez-Semadeni E., Zamora-Avilés

M., 2016, MNRAS, 459, 3460
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A P P E N D I X A : MO R P H O L O G Y O F H D - F L OW
FOR MEDI UM C OMPRESSI ON

Fig. A1 shows the flow morphology for the hydrodynamic (HD)
simulation with medium compression, similar to the MHD simula-
tion with medium compression shown in Fig. 5.
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Figure A1. Same as Fig. 5, but for the HD-Medium simulation.

A P P E N D I X B: C O N V E R G E N C E W I T H
N U M E R I C A L G R I D R E S O L U T I O N

In Fig. B1, we show the dependence and convergence of our
numerical results with grid resolution. Fig. B1 shows the same
integrated quantities as Fig. 2 for the MHD-Medium compression
(ω/H = −1) model, but at different numerical resolutions. We
perform three different simulations with grid resolutions of 1283

(black line), 2563 (green line), and 5123 (blue line). The first panel
shows that the variations of temperature with different resolutions
are almost negligible when the cloud becomes cold and dense.
For the velocity dispersion (second panel of Fig. B1), we see some
dependence on numerical resolution, however, there is no clear trend
for this dependence. Thus, our end results do not systematically
depend on resolution. A similar trend can be seen for the mass-
weighted Mach number (third panel of Fig. B1). The quantities
that show the strongest resolution dependence involve the magnetic
field. As the dynamo amplification and the level of saturation of
turbulent dynamo depend on high Reynolds number, which is a
resolution-dependent quantity, and the tangling of magnetic field

requires higher resolution to resolve, higher grid resolution would
produce more converged results. We can clearly see this behaviour
in the magnetic field (fourth panel), plasma β (fifth panel), and
Alfvén Mach number (sixth panel).

We note that the fluctuations in plasma β and Alfvén Mach
number are of physical origin. These variables are bursty, because
of how they are defined. The bursts come from local fluctuations of
thermal and magnetic pressure. Since these can vary substantially on
small scales, even the space-averages still show them. For example,
if there is just one cell or a small local region that has tiny magnetic
pressure, then β andMA will shoot up (in extreme cases, they might
temporarily approach values near infinity, if the magnetic pressure
goes to zero in a local region).

Overall, we find that a grid resolution of 1283 cells is not enough
for simulating the compression of supersonic, magnetized turbulent
gas in the context of MC formation. We need at least a grid resolution
of 2563 for this study to achieve convergence to within a factor of
∼2 at all a. We conclude that for our standard resolution of 5123 we
obtain reasonable, nearly converged results for the integrated cloud
quantities that we have focused on in this study.
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Figure B1. Convergence study of integrated quantities with numerical grid
resolution for the MHD-Medium compression (ω/H = −1) model. In each
panel, we show results from three different simulations with grid resolutions
of 1283 (black), 2563 (green), and 5123 (blue) cells.
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