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We predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits
coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical
lattice between two indistinguishable photons, where one photon creates a standing wave that traps the
other photon. The localization is caused by the interplay between on-site repulsion due to the photon
blockade and the waveguide-mediated long-range coupling between the qubits.
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Introduction.—Many-body quantum optical systems
have received intense interest in recent years due to
ground-breaking experiments with superconducting qubits
[1–3] and cold atoms coupled to waveguides [4]. A
paradigmatic system in quantum optics is an array of
atoms coupled to freely propagating photons [5–7].
Waveguide quantum electrodynamics, where photons
propagate in one dimension, is promising for quantum
networks [8] and quantum computation [9]. When atoms
are located at the same point, the full quantum problem can
be solved exactly [10] because light interacts only with the
symmetric superradiant excitation of the array. When atoms
are arranged in a lattice where the spacing is smaller than
the wavelength of incident light, collective subradiant
excitations begin to play an important role [11–15].
The physics of such systems becomes especially rich in

the multiexcitation regime due to photon blockade. Since a
single qubit cannot be excited twice, the interaction
between excitations becomes a decisive factor that strongly
affects both the lifetime and spatial distribution of the
collective many-body states. For arrays of two-level atoms,
subradiant two-excitation states are fermionized due to
interactions [16] and two-particle excitations which are
products of dark and bright single-excitation states can
appear [17]. Spatially bound subradiant dimers have also
been predicted [18] and a transition from few-body
quantum to nonlinear classical regimes has recently been
theorized [19].
In this Letter, we uncover and study a new class of two-

particle hybrid excitations in arrays of subwavelength-
spaced two-level qubits coupled to a waveguide. We reveal
that when one of two indistinguishable photons forms a

standing wave, the second photon can be localized in the
nodes of this wave, as shown in Fig. 1(a). This effect can be
viewed as a self-induced quantum optical lattice. This state
is represented as a special type of photon-mediated cross-
shaped states with strong spatial localization in the quasi-
2D probability distribution, as in Figs. 1(b) and 1(c). In the
quasi-2D color map Fig. 1(b) the x and y coordinates
correspond to the positions of the first and second exci-
tations, and the color represents the probability of a pair to
occupy that site. The “cross shape” means that the motion
is highly constrained for the first excitation and free to
propagate in space for the second excitation, or vice
versa. We demonstrate that such cross-shaped states arise
naturally for subwavelength arrays in a broad range of

FIG. 1. (a) Schematic illustration of a two-particle state in an
array of qubits in a waveguide, where one photon behaves as a
standing wave and traps another one in the antinode of that wave.
(b) Spatial map of the corresponding two-excitation wave
function jψmnj2 with ε=Γ0 ¼ −2.57 − 0.54i depending on the
coordinates of the first and second qubits. (c) Cross sections of
the map for n ¼ 1 and 26. The calculation parameters are
φ ¼ 0.01, N ¼ 51, χ ¼ 0.5 × 103Γ0.
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parameters which should be experimentally observable in
systems where the qubits are probed individually [3].
In the single-excitation regime for the same system, all

single-particle states are ordinary delocalized standing
waves. Thus, the presence of strong localization on just
a few lattice sites in the two-excitation regime, as observed
in Fig. 1(b), is solely a result of the interaction due to
photon blockade. While the most subradiant excitations in
the considered system behave as hard-core bosons [16], the
ansatz of Ref. [16] involves only single-particle states
that are delocalized and do not describe our cross-shaped
states. Since the localization involves two indistinguishable
entangled particles, it is also qualitatively different from the
physics of self-localized polarons which originates from
electron-phonon interaction in solids.
The spatially localized structure studied in this Letter

bears some resemblance to the profiles of intrinsic localized
modes known to occur in discrete systems [20], self-
trapped localized solitons studied in nonlinear discrete
systems [21], compact localized states in tight-binding
models with flat bands [22], as well as localized excitations
found in generalized Bose-Hubbard models [23,24].
However, in our system both long-range coupling and
photon blockade are crucial for localization which distin-
guishes it from these studies. The range of interaction can
be tuned in practice by varying the relative strength of the
near-field dipole-dipole coupling and the long-distance
radiative coupling via the waveguide mode [4,15].
Model and numerical results.—We consider N periodi-

cally spaced qubits in a one-dimensional waveguide. In the
Markovian approximation, this system is characterized
by the Hamiltonian [14,17] (see also Supplemental
Material [25] for details)

H ¼
X
m;n

Hm;nb
†
mbn þ

χ

2

X
n

b†nb
†
nbnbn; ð1Þ

where Hmn ≡ −iΓ0eiφjm−nj, m; n ¼ 1…N. Here, bm are
the annihilation operators for the bosonic excitations of the
qubits and the parameter χ describes the interaction. The
results for two-level qubits can be obtained in the limit of
χ=Γ0 → ∞. The phase φ ¼ q0d is given by the product of
the distance between the qubits d and the light wave vector
q0 at the qubit frequency. The parameter Γ0 is the radiative
decay rate of an individual qubit. We analyze the spatial
distribution of the two-excitation states

P
ψmnb

†
nb

†
mj0i

in the strongly subwavelength regime with 0 < φ ≪ 1
by means of full diagonalization. In the limit of χ → ∞,
when ψnn ≡ 0, the Schrödinger equation can be presented
in the following matrix form [25]:

Hψ þ ψH − 2diag½diagðHψÞ� ¼ 2εψ ; ð2Þ
with ψnm ¼ ψmn. Here, the first two terms in the left-
hand side describe the propagation of the first and

second particle, respectively, and the third term accounts
for the interaction.
Our numerical calculation demonstrates that a large

number of two-excitation states of the system Eq. (2) have
the following structure:

ψnm ≈ uðlocÞn uðfreeÞm þ uðlocÞm uðfreeÞn : ð3Þ

Here, theN-vector uðfreeÞm is essentially a standing wave with
the wave vector on the order of π=N, slightly modified

by the interaction. The vector uðlocÞn has a very different
shape and consists of peaks localized at just several sites
which are pinned to the antinodes of the standing wave

uðfreeÞm . Examples of several such states are presented in
Figs. 2(a)–2(c). Figure 2(d) shows how the number of
cross-shaped states of the type of Eq. (3) depends on the
distance between the qubits and the interaction strength.
The states were singled out by requiring the inverse
participation ratios (IPRs)

P juj4=ðP juj2Þ2 for uðlocÞ to
be larger than 0.12 and the remaining singular values in the
Schmidt decomposition to be smaller than 0.25. Physically,
large IPR≲ 1 for uðlocÞ corresponds to a highly localized
state, while delocalized states are characterized by a small
IPR ∼ 1=N. We have also required the IPR of the Fourier

transform
P

N
n¼1 e

iknuðfreeÞn , evaluated for k changing from 0
to π with the step 0.1 to be larger than 0.12 to select free-
space solutions. The crosslike states occupy up to 25% of
the two-excitation spectrum when the phase is close to an

FIG. 2. (a)–(c) Examples of spatial distributions for different
two-excitation states calculated for N ¼ 51 and φ ¼ 0.01. Com-
plex eigenenergy is shown for each panel. (d) Phase diagram
showing the relative number of cross-shaped states Eq. (3)
depending on the interqubit phase φ ¼ ω0d=c and the interaction
strength χ. Calculated for N ¼ 25.
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integer multiple of π and when the photon-photon inter-
action is strong such that χ ≫ Γ0.
Quasiflat polaritonic dispersion.—We focus on the

crosslike state shown in Fig. 1. It is instructive to first
review the results for single-particle states in an infinite
periodic array

P
n e

iknσ†nj0i, where k is the Bloch wave
vector. These states are coupled light-matter excitations
(polaritons) and their energy dispersion is given by εðkÞ ¼
Γ0 sinφ=ðcos k − cosφÞ [26]. The dispersion consists of
upper and lower polariton branches separated by the gap
around the qubit resonant frequency. We are interested only
in the states of the lower polaritonic branch in the regime
where φ ≪ k ≪ 1. In this case, the lower polaritonic
branch can be well approximated by εðkÞ ≈ −2φΓ0=k2

for k ≪ 1, as demonstrated by the calculation in Fig. 3(a).
The important feature of this dispersion law, which is
central for our study is that there is a huge density of states
for ε just below zero when the group velocity is small and
dk=dε ≫ 1. In other words, the polaritons are heavy and
slow, which strongly facilitates their trapping. This single-
particle dispersion leads to quite interesting isoenergy
contours for a pair of noninteracting polaritons with the
given total energy 2ε and the wave vectors kx, ky. The
isoenergy contour is given by

εðkx; kyÞ ≈ −φΓ0

�
1

k2x
þ 1

k2y

�
; ð4Þ

and is plotted in Fig. 3(b) for the average pair energy ε ¼
−2.57Γ0 corresponding to the real part of the complex
energy of the state in Fig. 1(b). Crucially, for most points
of the isofrequency contour, the group velocity dε=dk is
parallel to either the x or y axis. This means that only one of
the two photons can propagate in space at the same time, in
full agreement with the real space maps of the eigenstates
shown in Figs. 1 and 2.
It is instructive to study the wave function shown in

Fig. 1 in the reciprocal space. The results are prese-
nted in Figs. 3(c) and 3(d). We start by calculating the
Fourier transform along only one particle coordinate,
jPn e

−iknψmnj2 when the second particle position m is
either at the center (m ¼ 26) or at the edge (m ¼ 1). Indeed,
the Fourier transform along the center reveals a sharp peak
that corresponds to a standing wave with a well-defined
wave vector [blue curve in Fig. 3(c)]. The Fourier transform
at the edge results in a broad distribution of large wave
vectors characteristic for a localized state [red curve in
Fig. 3(c)]. The same results can be deduced from the two-
dimensional Fourier transform jPnm e−ikxm−ikynψmnj2 plot-
ted in Fig. 3(d): one of the two polaritons has large wave
vector when the other one has a small one, or vice versa.
Interestingly, the numerically obtained properties of

the crosslike states seem to be in general agreement with
the features of our study of metastable twilight states
reported in Ref. [17]. In this Letter, the twilight state is

defined as a metastable product of dark and bright states.
Here, the crosslike states result from the products of less
subradiant states (standing wave) with strongly subra-
diant states (localized distribution). In this Letter, we
focus on the spatial distribution of the two-photon states,
rather than their lifetimes, but more details are given in
the Supplemental Material [25].
Interaction-induced localization.—The flat dispersion

is an essential ingredient for the trapping of polaritons.
The second necessary ingredient is their interaction. In
order to explain the interaction effects analytically we have
to overcome the technical difficulty of the original
Schrödinger equation, Eq. (2), which has a very dense
Hamiltonian for φ ≪ 1, Hnm ≈ −iΓ0 due to the long-range
coupling between the qubits. It is useful to write a two-
particle equation for the matrix E ¼ HψH rather than
the two-photon wave function ψ directly. By rewriting
the Schrödinger equation under this transformation
(see Ref. [25] for details), we can derive an equation of
the form

ð∂2
x þ ∂2

yÞE − δx;yð∂2
x þ ∂2

yÞE ¼ ε

φΓ0

∂2
x∂2

yE; ð5Þ

where x; y ¼ 1, N, and ∂2
x;y are just the operators of discrete

second-order derivatives, ∂2
x¼∂2⊗1N×N , ∂2

y¼1N×N ⊗∂2.
The N × N matrix ∂2 is defined as

FIG. 3. (a) Lower polariton branch of the single-particle
dispersion. Star indicates the energy ε ¼ −2 × 2.57Γ0 and the
wave vector corresponding to the cross-shaped state in Fig. 1.
(b) Two-excitation dispersion Eq. (4) for ε ¼ −2.57Γ0. Green
arrows indicate the directions of group velocity in the
corresponding regions. (c),(d) One- and two-dimensional
Fourier transforms of the state ψmn in Fig. 1. Blue and
red curves in (c) are calculated for the m index being at the
center or at the edge, respectively. Calculation parameters are
the same as in Fig. 1.
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∂2 ≡

0
BBBBBB@

−1 1 0 …

1 −2 1 …

. .
.

… 1 −2 1

… 0 1 −1

1
CCCCCCA
: ð6Þ

Importantly, in Eq. (5) we have neglected the radiative
decay of the eigenstates, Imε≡ 0, which is a reasonable
approximation in the considered strongly subwavelength
regime with φ ≪ 1. If the interaction term ∝ δx;y is omitted,
the eigenstates of Eq. (5) are just standing waves with
the dispersion law Eq. (4). We have verified numerically
that when the interaction term is kept, Eq. (5) features
the same kind of cross-shaped eigenstates as our original
Schrödinger equation Eq. (2). Hence, while Eq. (5) looks
quite simple, it still captures the physics of the interaction-
induced localization. Importantly, since the matrices ∂2

x;y

are tri-diagonal, Eq. (5) is local in both the first and second
photon coordinates x and y. The physical reason why
Eq. (5) is local is that the matrix E describes a two-photon
amplitude of the electric field in contrast with the matrix
of two-qubit excitations ψmn. The considered array of
qubits is subwavelength and can be viewed as a quantum
nonlinear metamaterial [27]. As such, it is natural to expect
a local two-photon wave equation in the effective-medium
approximation.
In order to explain the localization it remains only to

understand why the diagonal cross section of the two-
photon distribution Eðx; xÞ is localized at x ≈ N=2. To this
end, we introduce the Green’s function Gðx; y; x0; y0; εÞ of
Eq. (5) without the interaction term, satisfying

ð∂2
x þ ∂2

yÞG ¼ ε

φΓ0

∂2
x∂2

yGþ δx;x0δy;y0 : ð7Þ

The solution of Eq. (7) can be expanded over the single-
particle eigensolutions which are just standing waves.
We are now interested in the case when the photon pair
energy 2ε is close to the resonance of the given standing
wave u0 with the wave vector k0 and the energy ε0 ≈ 2ε.
The Green’s function can then be approximated by the
following general expression

Gðx; y; x0; y0; εÞ ≈ a
δε

½u0ðxÞu0ðx0Þgðy; y0Þ
þ u0ðyÞu0ðy0Þgðx; x0Þ�; ð8Þ

where δε ¼ ε − ε0=2 and a ¼ Γ0=k20. Here, the matrix
gðy; y0Þ describes the short-range components of the
Green’s function. By construction, the distribution G as
a function of x, y for given x0, y0 has a crosslike shape which
is characteristic of the isoenergy contours discussed in
Fig. 3. More detailed derivation and analysis of Eq. (8) is
presented in Sec. S3 of the Supplemental Material [25],

where we demonstrate that the short-range component can
be qualitatively approximated by gðy; y0Þ ≈ ½∂2 − κ2�−1y;y0,
where κ ∼ k0 ≪ 1 is a cutoff parameter. Physically, the
function gðy; y0Þ takes into account the net contribution to
the Green’s function from all standing waves with the wave
vectors larger than k0.
Substituting Eq. (8) into Eq. (5) we obtain the following

equation for the diagonal components of the matrix E:

δεEðx; xÞ ¼ Lx;x0Eðx0; x0Þ; ð9Þ

where

L ¼ 2adiag½u0ðxÞ�½∂2
x − κ2�−1diag½u0ðxÞ�∂2

x: ð10Þ

It can be easily checked numerically that for κ ≪ 1 the
operator L has spatially localized eigenstates, see Fig. 4(a).
Specifically, the third eigenstate, shown in Fig. 4(b),
describes the diagonal cross section of the considered
crosslike distribution. Figure 4(c) shows the inverse par-
ticipation ratio

P
x jψxj4 for the third eigenstate as a

function of the cutoff parameter κ. The high value of
IPR ≈ 0.5 for κ ≲ 0.1 is a fingerprint of localization.
Indeed, for κ ≪ 1 the eigenstate is practically independent
of the cutoff parameter and looks like a derivative of a
discrete δ function. One can then interpret Eq. (9) as
describing a motion of a particle with large mass in the
potential determined by u0ðxÞ2 ∝ cos2ðk0xÞ. Clearly, in
such a case the localization takes place in the node of the
standing wave u0ðxÞ, in agreement with the results in
Fig. 4. More detailed analysis is given in Sec. S4 of
Ref. [25]. Just as in the conventional Bose-Hubbard model
[28], our results are valid both for strong repulsion and
strong attraction between the photons.

FIG. 4. (a) Eigenstates of the operator (10) for κ ¼ 0.1,N ¼ 31.
(b) Spatial profile of the third eigenstate, indicated in (a) by an
arrow. Inverse participation ratio of the third eigenstate depending
on the cutoff parameter κ.
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In summary, we have revealed that the presence of a
polariton quantized as standing wave in a finite qubit array
creates an effective potential to trap the second polariton.
This second polariton is pushed by the repulsive interaction
to become localized in the antinodes of the standing wave,
and stays trapped there due to its large effective mass. Our
finding demonstrates that the interaction yields surprising
results in the strongly quantum regime when only several
particles are present in the system. We believe that the
potential of waveguide quantum electrodynamical plat-
forms for analog quantum simulations of many-body
effects is still largely unexplored. For instance, it is not
clear whether the considered states can be generalized to
the many-body case, such as whether two photons can form
an effective two-dimensional optical lattice that can trap the
third photon in its nodes. Another open but very interesting
question is the role of interactions in topologically non-
trivial qubit arrays [29,30].
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