np)J | Quantum Information

ARTICLE

www.nature.com/npjqi

W) Check for updates

Optimal frequency measurements with quantum probes
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Precise frequency measurements are important in applications ranging from navigation and imaging to computation and
communication. Here we outline the optimal quantum strategies for frequency discrimination and estimation in the context of
guantum spectroscopy, and we compare the effectiveness of different readout strategies. Using a single NV center in diamond, we
implement the optimal frequency discrimination protocol to discriminate two frequencies separated by 2 kHz with a single 44 us
measurement, a factor of ten below the Fourier limit. For frequency estimation, we achieve a frequency sensitivity of 1.6 uHz/Hz? for
a 1.7 uT amplitude signal, which is within a factor of 2 from the quantum limit. Our results are foundational for discrimination and
estimation problems in nanoscale nuclear magnetic resonance spectroscopy.

npj Quantum Information (2021)7:55; https://doi.org/10.1038/s41534-021-00391-5

INTRODUCTION
Quantum sensing uses platforms such as photons, ions, solid-
state defects, and their quantum properties as resources to
estimate physical quantities as precisely as possible’?. The
performance depends on the sensing and readout protocols,
which should optimize the ratio of the sensor response for the
parameter of interest>* to readout noise”. Thus, finding optimal
protocols is crucial to enabling efficient estimation. One of the
major applications of quantum sensing is nanoscale nuclear
magnetic resonance (NMR) spectroscopy in which a nanoscale
quantum sensor replaces the macroscopic inductive coil and
interacts with a sample of nuclear spins®°. Pioneering work with
the nitrogen-vacancy (NV) center in diamond'®"", has demon-
strated nanoscale spatial resolution®”'7'* with single spin
sensitivity’. Understanding and realizing the limits of quantum
measurements is particularly important in spectroscopy wherein
frequency encodes energy, spatial, and structural information.
Here we determine the quantum limit for discriminating
known frequencies, develop a protocol that saturates it, and
prove that this protocol achieves the minimal possible error
probability as a function of time. After deriving the theoretical
limits, we experimentally demonstrate this protocol by dis-
criminating two known frequencies separated by 2 kHz, with a
single 44 ps (Fourier limit 1/T ~ 23 kHz) coherent measurement.
We extend our studies by explicitly analyzing the influence of
imperfect readout of our sensor qubit and perform a detailed
comparison between two readout strategies.We show that these
results can also be applied to find the optimal protocol for
frequency estimation'>™'® and we use this protocol to experi-
mentally estimate the value of a single unknown frequency. The
relevance of the estimation protocol for realistic nano-NMR
scenarios and the implications of the imperfect NV readout is
further analyzed. Our results are important when one is faced
with a decision on how to allocate finite resources to construct
better sensors.

RESULTS
Optimal frequency discrimination using a quantum probe

As a diagnostic tool, NMR can be used to answer “yes—no”
questions such as whether a certain toxin or metabolite is present
in the sample. As sketched in Fig. 1a, the task is then to
discriminate between two known spectra based on their
frequency components. We define discrimination error as the
error to decide on the wrong spectrum and our goal is to obtain a
minimal discrimination error or equivalently a minimal discrimina-
tion time. A typical method compromises sampling the signal with
consecutive, synchronized measurements and correlating the
individual outcomes, e.g., by applying Fourier analysis, to obtain a
spectrum. For sufficient recording time, the resolution can be high
enough for an almost error-free discrimination. To illustrate,
consider a simplified problem in which one wishes to discriminate
between two spectra, each containing only a single frequency (w,
or w,) with the same amplitude B (in units of angular frequency).
Naively, the method described above is Fourier limited, i.e., the
time required for discrimination is T = \(,J_A\ where wp = w, — w;.
Using a more sophisticated data analysis, such as Bayesian
interference or machine learning, which can be applied for known
B, the discrimination time lowers to T ~ % (see Supplemen-
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tary Note 1 and ref. 2°) However, we show in the following that,
given a sufficient coherence time, the discrimination time can be
further reduced to:
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The key idea is to drive the sensor such that the angle between
the states, |¢(wq)) and |Y(w;)), is maximal, to guarantee a
minimal error probability. Once orthogonality is achieved,
quantum projection noise can theoretically be eliminated by
measuring in the appropriate basis and it is possible to determine,
with a certainty limited by readout fidelity, which frequency is
present. Assuming a perfect readout, we show that this method is
in general optimal, even if orthogonality cannot be achieved.
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Fig. 1 Quantum-frequency discrimination. a The sensor state is tailored to depend on each frequency so that the sensor is driven in
orthogonal directions. Readout of the state provides a “Yes/No” answer. The task is to correctly identify the frequency with highest fidelity in
the shortest time. b Phase accumulation for frequency discrimination. For each Hamiltonian H;(t) = B sin(w;t + 6)oz = H;(t)oz, the sensor
accumulates a different phase. Left: without control, the phase difference ¢, oscillates and increases only slowly. nght optlmal control in this
scenario implies applying -pulses whenever the sign of H;-H, changes, leading to a monotone phase increase with t*. ¢ Geometrical picture
of the optimal protocol. The states of the sensor can be thought of as two runners, where the aim is to maximize the gap between them,
which is equivalent to the angle between the states. The speed of each runner is proportional to H;(t). As soon as the initially slower runner
becomes faster, we change their direction of motion to ensure an increasing gap. Note that the sketch just demonstrates the idea and the
runners actually move on circular orbits. d Error probability as a function of time for three different strategies: optimal control and a single
measurement (solid blue), this strategy is optimal and sets the fundamental error limit (see Egs. 3 and 4). Correlated measurements (dashed

red), in this illustration measurement is applied every
Supplementary Note 1.

w+w

Given free evolution of the sensor, the discrimination time is
T ~ 2 (see Supplementary Note 1), which is basically the same
scallng as the Fourier limit. As sketched in Fig. 1b, the phases
o(wq) and ¢(w;), accumulated by the sensor under w; and w,,
move apart and get closer to each other such that their difference
©r = ¢(w1) — @(w,) oscillates and only slowly increases. However,
T can be significantly reduced by applying a suitable control,
which is also shown in Fig. 1b: whenever the states start to get
closer to each other (¢, reduces), a control m-pulse can be used to
change the direction of motion such that their distance increases
instead. Formally, the distance between two states can be
described by the angle ¢, /2 def a(ws, w;), which evolves as:

datn 91) _ (k1) ~ (1) @
dt
where H;(t) = B sin(w;jt + 8)oz = H;(t)oz are the corresponding

signal Hamiltonians, 0 is the initial signal phase, and o7 is the Pauli
spin-z operator. As a consequence, maximizing a(wy, w,) implies
applying a m-pulse whenever H;(t) — Hy(t) changes sign and it
follows (see Supplementary Note 1):
t

— Uy 2

a(wy, wy) :/ Mdt’ ~ BZ wpt? (3)
0 2 mn

where pp,., and Y, are the maximal and minimal eigenvalues of
Hy — H,. Application of a series of m-pulses with a spacing o +wz

constitutes optimal control in this scenario. As orthogonality
requires a(wq, wy) =m/2, the minimal discrimination time is

TO t = #u
PL T 2VBy|wa
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No control (dotted green). More details on this comparison are found in

For an illustrative explanation, one can think of [p(w-)), |P(w,))
as two runners, where the goal is to maximize the gap between
them (see Fig. 1¢). As long as the same runner (suppose |P(wy))) is
faster (speed proportional to the current amplitude), their
separation gets larger as desired. However, once |p(w;)) starts
to be faster than |p(w,)), we prevent a reduction of the gap by
flipping the direction they run (equivalent to a m-pulse).

The phase acceleration in Eqg. (4) coincides with the funda-
mental speed limit derived in ref. 2" and this implies a minimal
discrimination error for every t. Hereafter, for all error analysis, we
assume that the prior probability for both frequencies is 1/2,
namely symmetric hypothesis testing. Given any two Hamiltonians
H.(t) and H,(t), we prove in Supplementary Note 1 that the error
probability when distinguishing between these Hamiltonians,
optimized over all possible strategies, is lower bounded by:

{ 0.5(1 — sin(amax))

0 Amax>3

m
e> Qmax < 2 @)
where Omax = fé@dt’. This lower bound can always be
saturated with a suitable control. Hence, even if amax < 7 at ¢, the
strategy that minimizes the error probability is to apply the above
discussed control and perform a measurement at t, which implies
that even multiple correlated measurements at times shorter than
t'9%2 cannot beat this fundamental limit, as shown in Fig. 1d (see
Supplementary Note 1).

Experiments

The experiments are performed using a single NV center in
ultrapure diamond (Fig. 2a). Here we use a 400 G magnetic field,
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Fig. 2 Quantum-frequency discrimination. a Experimental setup: the spin state of a single nitrogen-vacancy (NV) center in diamond
responds to magnetic fields by a Zeeman shift of the spin levels, which can be optically initialized and readout with a confocal microscope.
b Experimentally measured quantum phase difference ¢, as a function of coherent interaction time and as log-log plot (inset). Solid lines are
a fit to g, = 2Bwat?, where wy = |w; — w,| = (2m) - 2 kHz. ¢ Measured spin population as a function of coherent interaction time. The

probability to be in state |0) is: P(|0)|w;) =1 —1sin (B“’;rz>

P(10)|wa) =

Buwp t?

141 sm( = ) For @, = m, the sensor is driven to one of two

orthogonal eigenstates. All error bars correspond to SD of several independent repetitions.

aligned along the NV symmetry axis, to lift the degeneracy of the
three ground spin states and we use two of these states (here
denoted as |0), |1)) as a qubit. We initialize our qubit into a
coherent superposition state and map the sensor phase ¢ =2a
(compare Eq. (3)), acquired during interaction with the control
sequence and the signals, into a population difference (such that
the probability for the sensor to be projected to |0) reads
P =0.5-(1—sin(¢)), which is subsequently read out optically.

In Fig. 2b, @, is plotted, when a magnetic field of frequency
wy = (2m) - 0.999 MHz or w, = (2m) - 1.001 MHz, in the range of
frequencies typical for nano-NMR experiments with NV centers
and was measured with an XY8-N sequence with an interpulse
spacing of 500ns. The interaction time was extended by
increasing the pulse number. A logarithmic plot of ¢, shows the
expected t* increase until 44 us when @, = 1, at which time the
quantum sensor has been evolved into one of two orthogonal
states, as |P(w;) — P(wz)| = 1. By using a 90° phase-shifted J -
pulse (compared to the initialization basis), the sensor phase can
be mapped into a population difference and the resulting NV
population as a function of interaction time is plotted (Fig. 2¢). In
Supplementary Note 4, we show that this balanced readout is also
optimal. Experimental data for the dependency of the discrimina-
tion time on wy and B are provided in the Supplementary Note 5.
If the coherence of the sensor is not sufficient to achieve
orthogonality, the described protocol still remains optimal (see
detailed discussion in Supplementary Note 1).

Complex frequency discrimination

This method can be extended for complex spectra consisting of
more than one frequency or amplitude component. Consider a
Hamiltonian that takes the general form H;,=
ffu ) sin(wt)dw 07 = Hy 207 such that the two frequency
distribution functions f; >(w) are known, but we do not know
which of the Hamiltonians, H; or H;, is present. As an illustrative
example, we consider the '3C nuclear magnetic spectrum
produced by either a sample of ethanol or propanol, both of
which contain two chemically distinct carbon groups (Fig. 3a, b). A
similar speed bound for discrimination applies to this case (see
Supplementary Eq. 1) and is achievable with an analogous
protocol. We can again define Hy, = H; — H,, where optimal
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Fig. 3 Optimal frequency discrimination of complex signals.
a, b Calculated magnetic field experienced by the NV center exposed
to a solution of ethanol (red) or propanol (blue) in frequency (a) and
time (b) domains, where a n1/2 pulse is applied to the thermally
polarized sample at zero time. ¢ Calculated optimal control sequence
of m-pulses applied to the NV sensor (purple) overlayed on the signal
difference (green). d Sensor phase accumulation in presence of
ethanol (red), propanol (blue), and the phase difference (green),
showing quadratic scaling at short times.

control is achieved by applying m-pulses whenever Hp switches
sign (Fig. 3c). Importantly, for NMR detection of a polarized
sample, the initial signal phase is known, as it is defined by a n/2-
pulse applied to the sample. As a result, a sensor phase difference
of m can be tailored to perform optimal discrimination. Of note,
the sensor phase difference also increases according to %, until
the signals become completely out of phase with each other.

Implications of imperfect readout

Above, we showed that in principle, it is possible to discriminate
two frequency distributions within a single measurement by
eliminating projection noise. As perfect measurements are not
possible in an experimental realization, additional readout noise

npj Quantum Information (2021) 55
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Fig. 4 Experimental realization of the two readout strategies—ensemble averaging and SSR. a Ensemble averaging. The complete
sequence of sensor initialization, sensing period, and optical readout is performed Ng,s times. b Single-shot readout (SSR). After one sensing
duration, the sensor state is mapped onto the ancilla readout qubit (**C nucleus). Optical readout of the ancilla spin is weakly perturbing,
allowing its population to be probed Ngg times with a quantum non-demolition measurement.

has to be taken into account. For optical readout of NV centers,
e.g., photon shot noise has to be considered. As a result, noise
analysis is important to obtain a meaningful discrimination error.
The readout of the NV center is performed by detecting the spin-
dependent fluorescence emitted during a laser pulse (see
“Methods”). The recorded photons are well described by a Poisson
distribution with an average photon number of A, = 0.084
(A = 0.07) for the |0) (|1)) spin state (compare Supplementary
Note 2). With this small contrast, the error of a single
measurement, assuming again a symmetric hypothesis testing, is
~0.49, even for orthogonal states (see Supplementary Note 4), i.e.,
we have a nearly 50-50 chance to assign the frequency
incorrectly.

The probability to make an incorrect decision can be reduced in
two ways: first, by increasing the number of measurements, which
we refer to as ensemble averaging. Then, the difference in the
number of emitted photons increases, which leads to better
discriminability. The second approach is based on improving the
readout process itself by increasing the contrast between the
states. This can be achieved by introducing an ancilla qubit, which
acts as a quantum memory and stores the state of the NV
center”®?*, This method is usually referred to as single-shot
readout (SSR). We experimentally implement these two methods
and compare their performance using the error probability as
figure of merit. We show that by benchmarking against the
number of detected photons, ensemble averaging always per-
forms at least as good as SSR, but when compared in terms of
measurement time or number of coherent interaction periods, SSR
has particular advantages.

Temporal ensemble averaging was performed using a 1.35 NA
oil objective, to collect the NV fluorescence and repeating the
sensing and readout N, times (compare Fig. 4a). Hence, given
the orthogonal states and Ne,s repetitions of the measurement,
the discrimination between the states reduces to discrimination
between two Poissonian distributions: Poi(NensAg) and Poi(NensA1 ).

Assuming small contrast, namelyf‘\—‘: is close to 1, we observe that

the error probability scales as exp(—Nens0.5(vA1 — \/AT,)Z) (Sup-
plementary Note 4). For non-orthogonal states, the error prob-
ability also decays exponentially with Ng,s to 0 and the error

exponent is ~ % (Supplementary Note 4), where a is the

angle between the states. Hence, given that the duration of a
single ensemble average is T (including the overheads for readout
and initialization), the discrimination time with this strategy goes
as ~ 7 —2hoth)

(ho—N%sin(a)

SSR is implemented by using a weakly coupled '*C spin that
forms a memory qubit and allows repetitive readout of the NV
state with a quantum non-demolition (QND) experiment?
(compare Fig. 4b and Supplementary Note 2). The ancilla qubit
allows more photons to be scattered before its state is destroyed
and here we perform Ngg repetitive readouts after one sensing
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time. The larger Ngg, the closer we get to a perfect quantum
measurement, limited ultimately by the lifetime of the ancilla. For
Ngg = 10%, the photon statistics manifest digital step jumps, which
allows high-fidelity readout of the nuclear spin state (see
Supplementary Note 2). The discrimination between orthogonal
states using this method is, in theory, a discrimination between
Poi(NgrAo) and Poi(NggA7), and thus given as Ngg = Neps, precisely
the same as for ensemble averaging. Then, the only difference is
the time required to perform readout of the nuclear spin and that
SSR requires only one sensing period, which is discussed in more
detail below. For non-orthogonal states however, this strategy is
inferior as the error probability does not reduce to 0 in the limit of
large Ngg due to quantum projection noise. This additional
uncertainty inherent to quantum measurements results in a
scaling as 0.5(1 — |sin(a)|) (see Supplementary Note 1).

We experimentally investigated the performance of both
strategies by performing ensemble averaging and SSR for
discrimination of the same signals described earlier. The error as
a function of different parameters is plotted in Fig. 5a-e. In Fig. 5a,
it is shown that for any angle a between the states (or
equivalently, for any coherent interaction period), ensemble
averaging performs better than SSR. However, in contrast to the
theoretical expectation, we see that ensemble averaging yields a
lower error than SSR also for orthogonal states (44 ps, ¢, = m). The
reason for this is that, although the nuclear state can be readout
with high fidelity in our experiments, imperfect initialization of the
NV center into the correct charge state and the finite ancilla T;
lifetime, limits the sensor readout fidelity to 0.8 (see Supplemen-
tary Note 2 and refs. 2°%). In Fig. 5a (red line), we plot the expected
error achievable with SSR under perfect sensor initialization and
control, which demonstrates the equivalence between the two
readout methods when orthogonality is achieved.

Figure 5b shows the discrimination error as a function of the
number of photons detected with each readout technique, for a
fixed interaction time of 44 ys (A =m, dotted line in Fig. 5a). As
the sensor is driven to an eigenstate, each photon should convey
the same information about which frequency is present regardless
of whether it was obtained from ensemble averaging or SSR. We
observe that imperfect initialization reduces the information
carried by each photon using SSR, resulting in the error
converging to an offset of 0.2. By using charge-state detection
to improve the sensor initialization, it is expected that a
convergence in the two readout strategies would be observed.

However, SSR may still be useful if the total measurement time
is taken into account. For ensemble averaging, every repetition
cycle requires a duration of initialization (tn;t), interaction (t), and
readout (tread); thus, the total measurement time is
Tens = Nens(tinit + t + tread). FOr our experiments, tinit + tread ~
1.5 us. For SSR, only one initialization and interaction period are
required, while readout is performed Ngg times. The initialization
and readout time for SSR are different to ensemble averaging,
however, as manipulation of the ancilla is required; thus, the total

Published in partnership with The University of New South Wales
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Fig. 5 Performance of quantum-frequency discrimination as a function of available resources for w; = (2m)-0.999 MHz, w, =
(2n) 1.001 MHz. a Experimental frequency drscrlmrnatron error as a function of coherent interaction time. Data points are for sensor readout
using a single SSR measurement (orange, Ngg = 10%) and ensemble averaging (lilac, Nens = 10%). Fits are from Supplementary Eq. 89 and 91.

The ideal SSR curve corresponds to perfect sensor initialization and mapping to ancilla. b Experimental frequency discrimination error as a
function of detected photons for a single SSR measurement (orange) and ensemble averaging (lilac), for an interaction time of 44 ps (¢, = m).

Imperfect sensor initialization limits the error achievable with a single SSR measurement C Frequency discrimination error as a function of
total measurement time for a single SSR measurement (orange, Nggz = 10%) and ensemble averaging (lilac, Nens = 10%). Each data point
corresponds to a different interaction time. d Frequency discrimination error as a function of total measurement time, with a fixed interaction
time of 44 us (¢, = m). Although for SSR (orange) the total time is incremented by performing additional measurements (each using Ngg =
10%), for ensemble averaging Nen is increased. Expected errors obtained from simulations for Ngz = 102, 103, 10* are included (solid blue,
green, and yellow lines, see Supplementary Note 4). e Frequency discrimination error as a function of number of trials, i.e, number of times
the signal is interrogated, with a fixed interaction time of 44 ps using many SSR (each using Ngg = 10 orange) or ensemble averaging (lilac).

Error bars are 1 SD.

time is Tssg = tiic +t + Ngr thng. FOr our experiments, ti¢ =
100 us and 05, ~ 17 us, so for Ngg> 10, most of the temporal
overheads for SSR arise from readout of the ancilla spin via
repeated mapping onto the NV electron spin (see “Methods”). For
long interaction times (217 us), this overhead is less costly than
repeating the interaction and SSR is faster than ensemble
averaging, as shown in Fig. 5c.

In addition to performing only a single SSR measurement, we
investigate the discrimination error when performing multiple
SSR measurements. In Fig. 5d, the discrimination error is plotted
as a function of the total time required by each readout strategy,
including all measurement overheads. For SSR, the time is
incremented by performing additional measurements, each
using Ngr = 10* repetitive readouts, which we in the following
refer to as hybrid strategy, as many individual SSR are averaged,
while for ensemble averaging just Nens is increased. Although
about twice the number of photons is recorded for the hybrid
strategy within the same time, ensemble average still performs
better. The reason for this is that Ngy is too large; we observe that
by reducing Ngg, the hybrid strategy can yield a smaller error as a
function of time. For Ngg = 10%, we find a slightly better scaling
for the hybrid strategy using simulations, taking our measure-
ment parameters into account (see Supplementary Note 4), as
projection noise is sufficiently reduced. By further reducing to
Ngr =107, we find that the error exponent with the hybrid
strategy is almost twice as large as the error exponent of
ensemble averaging and there is a reduction of the overall error
by a factor of 40 after measuring for 1's. A more detailed analysis
and optimization over Ngg can be found in Supplementary Note
4, In addition to benchmarking against the total measurement
time, we also compare in terms of the number of trials, (i.e. the
number of times the signal is queried), which becomes critical if
many interrogations are prohibited, e.g. due to sample

Published in partnership with The University of New South Wales

contamination or degradation. As expected, the hybrid strategy
performs significantly better, as a high confidence can be
obtained from a single trial (Fig. 5e). In Fig. 5d, e the error
decays exponentially with the total time (or equivalently number
of queries) as expected, the error exponent for both methods is
calculated explicitly in Supplementary Note 4.

It should be noted that these results apply to any problem with
the aim to discriminate between two NV center states.

Qptimal frequency estimation using a quantum coherent
probe

A related task is to estimate a single unknown frequency w of a
signal H(w) = B sin(wt + 8)oz = H(w)oz with minimum uncer-
tainty Aw. The variance (A(u)2 is lower bounded by the inverse of
the quantum Fisher information (QFI) /(w)*®

(Aw)* > @ (5)

Notably, the QFI has a clear geometric meaning, as /(w) can be
written using the Bures distance dg between quantum states:

@) = Jim, 2 o900~ w/2). [ + ws/2))

(6)
— % Wa
= lim —a(w £.0+%) ,
wp—0 wA
where a(w — %, w+%) is the angle between |¢(w+ws/2)).

Hence, maximizing the QFl is equivalent to optimizing the
discrimination of limg, _o|@(w+ %)). As shown above, this means

N . . H(w+)—H(w—%
maximizing the accumulation of %:IlmwpoW'
which is achieved by applying m-pulses whenever d—"’ changes

sign. This optimal strategy is illustrated in Fig. 6a, where m-pulses

npj Quantum Information (2021) 55
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Fig. 6 Optimal quantum-frequency estimation. a Maximal sensitivity to amplitude changes is obtained for m-pulses at the signal nodes
(6 = g), resulting in a linear accumulation of ¢. Maximal sensitivity to frequency changes is obtained for m-pulses at the signal antinodes (6 =
0). b Experimental data of the phase difference for a 1 uT change in amplitude (red) and 10 kHz change in frequency (black). Frequency
estimation results in a quadratic increase of ¢, whereas amplitude estimation produces a linear increase. ¢ Measured NV population as a
function of m-pulse spacing 7, given 6 = 7 (blue) and 6 = 0 (green). Fits correspond to Supplementary Eq. 39. d Measured derivative of the NV
population as a function of 7-pulse spacing 7, given 6 =7 (blue) and 6 =0 (green). Fits correspond to Supplementary Eq. 41. e Measured
frequency uncertainty as a function of interaction time, for X (dark purple) or Y (light purple) measurement basis. Red line corresponds to
Eg. (8) and pink line to Eq. (9). f Measured frequency uncertainty as a function of interaction time, for X (dark orange) or Y (light orange)
measurement basis using a single SSR measurement. Red line corresponds to Eq. (8). g Frequency estimation for short coherence signals (for
ensemble averaging): measured frequency uncertainty given 6 =7 (blue), 6 =0 (green), and unknown initial phase (gray) for a single
measurement with interaction time shorter than the signal coherence time (200 ps). For longer times, the sensitivity is obtained from
averaging multiple measurements, each with an interaction time of 97 ps.

are applied at the antinodes of the signal with a spacing close to 7.
According to Eq. (3), it follows:

wa\ E 2 _ 2224
w+ 2)_anAt :>I(w)_<n) Bt

wa
a(w——7

5 7)

The minimal uncertainty obtainable in a single experiment
reads'®:

Aw (8)

"~ 2Bt2
and scales again as 1/t* due to the phase acceleration of the
sensor. This is a special case of the analysis performed in refs, '5'°
and partially realized in ref. '* without taking readout noise into
account.

A further peculiarity is that the m-pulses should be applied close
to the signal antinodes where Z—Z changes sign, which is in contrast
to amplitude estimation. We demonstrate the underlying intuition
by recording spectra for the two edge cases—control started close
to a signal node (6 =12) or antinode (6 =0). We again used
XY8 sequences and chose the readout basis such that the final NV
population reads P = 0.5 (14 sin(p)). When the m-pulses are
placed at the signal nodes (Fig. 6b blue), the NV population P is
maximal, but g—z vanishes; thus, although the sensor acquires
maximal phase, it is insensitive to changes in the signal frequency.
In contrast, for 6 =0 (Fig. 6b green), the sensor acquires minimal
phase; however, small frequency changes lead to large population

deviations (here, (%)  ~ 10" Hz™', which corresponds to

2)Bt?).

Qn&ssuming perfect quantum measurements, any measurement
basis in the X-Y plane would be optimal, as they all saturate the
QFI (see Supplementary Note 7). The imperfect readout of the NV
center not only worsens the estimate, but also provokes a
dependency on the measurement basis>®. When using conven-
tional readout of single NV centers, the fluorescence contrast is
very low and the measurement noise barely varies with the
measurement basis (see Supplementary Note 8). As a conse-
quence, it is optimal to measure (approximately) in the basis that

) max
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yields the maximal slope. In our case, assuming an initialization in
the X basis, a maximal slope is obtained by measuring in the Y-

basis and it follows (in the limit of small contrast, see
Supplementary Note 8):
VAo +A
pwn T Yhoth )
V8Bt2 Ao — M|

Taking our experimental values of A, A; into account, a factor of
~40 in SD is lost.

We realize experimental frequency estimation by measuring an
unknown frequency w (=999.3 MHz) oscillating close to 1 MHz
with known amplitude (1.7 uT). Applying XY8 sequences with a
pulse spacing of 500ns and locking 6 =0, we use ensemble
averaging (Neps &~ 1000) to estimate the frequency several
thousand times for a variety of interaction times t (controlled by
tailoring the m-pulse number). By computing the SD and assuming
shot noise v/T-scaling, we are able to extract an estimate for the
uncertainty Aw for a single measurement, which is plotted in Fig.
6¢. As expected, there is a significant difference between X and Y
readout (for initialization in X). Measurements in the Y basis
saturate the bound in Eq. (9) and, in particular, Aw scales as t 2. In
contrast, measuring in the X basis leads to much higher
uncertainties, due to the very small slope g—z. Interestingly, using
SSR (here Ngg=10%, the results almost coincide with the
theoretical limits of perfect projective measurements (Fig. 6c
lower), namely a close agreement in uncertainty using X/Y
measurements and an SD of 1.6 pHz/Hz? within a factor of 2 to
the limit, 0.9 pHz/Hz? set by the QFI (Eq. (8), red line in Fig. 6¢).

Estimation: consequences of short coherence time

Finally, we address the relevance of this method to practical
frequency estimation scenarios in NMR and communication.
Although the described protocol is optimal if both, the signal
and the sensor, are perfectly coherent, any deviations require
further analysis of the estimation strategies.

For signals with short coherence time, which are especially
relevant in nanoscale NMR where influences of molecular diffusion
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and nuclear couplings limit the coherence of the NMR signal®*°,
the described protocol remains optimal, as it provides the most
information per individual measurement (and correlations are not
possible). As shown in Fig. 6d, the frequency can be estimated
with an SD improving as t 2 during one sensing period, where a
timing of 6=0 (green) provides three orders of magnitude
improvement in SD compared to 6 = n1/2 (blue). The estimate can
be further improved by performing multiple measurements up to
a total measurement time 7, albeit with a reduced T '"2 scaling,
typical for incoherent averages. We compute sensitivities, which
are here defined as n = Awv/T of 58 Hz/Hz"> for = 0 and 23 kHz/
Hz*® for 8=m/2. If the signal phase is not known a priori, we
cannot apply pulses at the right timing. Nevertheless, using
adaptive measurements, the t 2 uncertainty scaling can be
preserved, albeit with a higher uncertainty Aw. In Fig. 6d (gray),
the frequency SD is plotted where the spacing 1, was updated for
each interaction time and the measurement was averaged over all
signal phases (see Supplementary Note 10). Using this strategy,
the frequency can be estimated with an order-of-magnitude
reduction in uncertainty and sensitivity (here n =630 Hz/Hz"®),
but without the need to know the starting phase.

In the other limit, the coherence time of the sensor is much
shorter than the coherence time of the signal. It has recently been
shown that applying a chain of consecutive, correlated, measure-
ments can enhance frequency estimation in this case'>??3'32 Due
to the stability of the phase of the signal, the amount of
information gained from late measurements is much larger than
the information gained from early ones. Hence, by employing
the signal coherence, the T* scaling of the QFI, which relies on the
coherence of the sensor, degrades to 7>, Without any control, the
QFI in this regime reads (compare ref. ).

2
t
I(w) = 48’1 sinc(wt/2)cos (wr + % + (p)
T (10)
2 B?T3
~ SBT3t sinc(wt/2)°< 0.96 ——
3 w
where the decay prefactor: sinc(out/z)zcos(wrJr%ur(p)2 stems
from the oscillations of the signal slope. This term can be
suppressed by applying m-pulses close to the antinodes and the
ultimate limit of the QFI in this regime reads (compare
Supplementary Note 11):

I(w) = (;)ZBZZ((HT)Z—TZ)Zg(%)zszr%. (1)

Hence, the scaling is the same as without control (B*T3t);
however, there is a difference of ~ 0.56wt, which can be
significant for high frequencies (taking relevant experimental
values, wt ~ 20, it follows that a factor of ~10 is lost in the absence
of control). Here again, the timing of the pulses is crucial. Applying
resonant pulses generally leads to: / =% (%)ZBZT3tcos(9)2 (see
Supplementary Note 11). As a consequence, /(w) vanishes for 6 =
71/2 and is maximal for 6 = 0. More generally, applying pulses with
a general timing (6) and a general detuning & (defined as
w — 1/, Where 1, is the spacing between the m-pulses), leads to:

2

2
H(w) =~ Z4(%> B2t21% sinc(8t/2)* cos <6 (T + g) + 9)
T
~ 2 (E)ZBZT31‘{ 2cos(6)6T < 1

3\nm sinc(6t/2)°6T > 1

(12)
3

It is noteworthy that in the limit of 6t < 1, 8T > 1 (which was
implemented in ref. '°), only a factor of 1/2 is lost, compared to the
optimum, due to the detuning. Hence, in this regime, the maximal
achievable advantage, compared to the results in ref. '°, is a
factor of 2.
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DISCUSSION

We introduced a quantum mechanical detection scheme, which
achieves a quadratic increase in the sensor phase, while
simultaneously reducing measurement noise, to allow frequency
discrimination with a single measurement. We derived the
fundamental error limit in Hamiltonian discrimination and
achieved it experimentally with a suitable control. This method
can provide a significant speed-up in diagnostic tests based on
single quantum sensors, such as nano-NMR. In addition, we have
described optimal frequency estimation strategies dependent on
the readout method, and using near-ideal measurements, we
obtain a frequency uncertainty near the quantum limit. If the
signal phase is known, the best frequency estimate is obtained
when control is started close to a signal antinode, in contradiction
to methods that optimize amplitude sensitivity. These findings
should prove useful in NMR, where a m1/2-pulse on the sample
defines the signal phase®®>'. When the signal phase is unknown,
an improved scaling can be maintained using an adaptive
approach. Applications for these techniques include quantum
spectroscopy and spectrum analyzers®, characterization of
quantum systems, search for dark matter, and construction of
improved frequency standards.

METHODS

Experimental setup

An arbitrary waveform generator (Tektronix AWG70001A) with 20 ps
timing resolution and 8 bit amplitude resolution was used for microwave
control of the NV center and to generate signals of well-defined frequency
and phase. Before every measurement, possible phase shifts due to
different cable lengths and microwave switches and combiners were
compensated for. The signal amplitude at the NV center was calibrated
prior to every measurement with a standard XY8 measurement. For the
fluorescence detection, we used only the first 350 ns, as we found that this
duration optimizes the signal-to-noise ratio for our experimental setup.

Diamond samples

All QND measurements were performed on a diamond with 0.1% '*C
content®®. NV centers in this diamond have long-phase memory times
(~50 ps), while maintaining a high probability to find weakly coupled '*C
spins. For all other experiments, a hemispherical diamond polished into a
solid immersion lens provided a higher photon detection efficiency. On the
flat surface, an isotopically enriched diamond layer (99.999% 'C)
containing NV centers was grown by a plasma-enhanced chemical vapor
deposition process, as in ref. >4, The diamond was boiled ina 1:1: 1 tri-acid
mixture (H,SO4:HNO3: HCIO,) for 4 h at 130 °C before experiments.

Readout statistics

For ensemble averaging, a single measurement was defined as a single
interaction time followed by a single laser pulse, repeated Ngns times. The
readout noise, 8sy was determined by performing a few thousand
subsequent, identical measurements and recording fluctuations from the
average fluorescence intensity. For SSR statistics, a single projective
measurement was performed after each interaction time. The nuclear spin
state was measured with Ngg repetitive mapping operations which, based
on the overlap of the photon intensities, results in a readout fidelity higher
than 99% for Ngg= 10*. Fluctuations in the readout state from a few
thousand subsequent identical measurements was used to determine the
SD, respectively.

Discrimination analysis

For y-basis readout, the probability P for the NV to remain in its initial |0)
state is P = sin? (% — %) (see Fig. 2d). This formula was also used to calculate
the phase accumulation as shown in Fig. 2c. For ensemble measurements,
detection of a fluorescence level above or below a threshold value
determined the frequency assignment. For SSR, the frequency was
assigned dependent on the readout state, which was determined from a
normalized fluorescence measurement (see Supplementary Note 2).
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