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Abstract

Quantum information systems are on a path to vastly exceed the complexity of

any classical device. The number of entangled qubits in quantum devices is rapidly

increasing [1–3] and the information required to fully describe these systems scales ex-

ponentially with qubit number [4]. This scaling is the key benefit of quantum systems,

however it also presents a severe challenge. To characterize such systems typically re-

quires an exponentially long sequence of different measurements [5], becoming highly

resource demanding for large numbers of qubits [6]. Here we propose a novel and

scalable method to characterize quantum systems, where the complexity of the mea-

surement process only scales linearly with the number of qubits. We experimentally

demonstrate an integrated photonic chip capable of measuring two- and three-photon

quantum states with reconstruction fidelity of 99.67%.
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The standard way to characterize a quantum system is known as quantum state tomog-

raphy [5, 7]. It involves measuring expectation values of a complete set of observables and

using these to reconstruct the system’s density matrix [8–13]. To characterize an N -qubit

state, 22N different observables are measured [8], thus the measurement apparatus must be

reconfigured exponentially many times, which is impractical for large states. Furthermore

many of the expectation values measured will be vanishingly small, and thus contribute little

useful information. Finally, even if all the measurements can be completed, the task of recon-

structing the density matrix from measurement data becomes computationally challenging

for high qubit-number states [6].

New approaches to quantum state tomography are being developed in an effort to increase

its practicality and efficiency. Some approaches seek to avoid unnecessary measurements by

assuming that the system is in particular low rank states, such as sparse states [14, 15] or

low dimensional matrix product states [16]. Alternatively tomography can be ‘self-guided’,

where real-time feedback of measurement results guides the next choice of the measurement

basis [17, 18], helping to avoid taking measurements that have limited utility for analyzing

the state. It has been shown that tomography procedures involving some global quantum

measurements have increased error robustness relative to using only local qubit measure-

ments, and thus can be completed in less time [19]. The computational burden of inverting

large data sets to find the density matrix is reduced with simple real-time optimization

algorithms in self guided tomography, or can be completely avoided with systems for di-

rect projection of density matrix parameters [20–22]. However all these approaches rely on

a common measurement paradigm, whereby different characteristics of a system are mea-

sured sequentially, thus they become exponentially complex to implement as the number of

parameters in the density matrix scales exponentially with qubit number.

Here we present a quantum tomography method with complexity that scales linearly

with qubit number. This is achieved by leveraging quantum systems’ greatest strength, the

simultaneous occupation of exponentially many states, in the measurement process. Instead

of preforming a sequence of different measurements on the state, we design a single static

measurement system [Fig. 7(a)] that preforms one, many-outcome measurement. Since

the state is spread coherently across all the outputs, the number of different measurement

outcomes follows a similar scaling to the number of parameters in the density matrix. Thus

the exponential scaling of quantum sates can be balanced by a similar scaling in the amount

2



N 
photons

M 
outputs

|1〉 |1〉
〈1| 〈1|
|1〉 |2〉
〈1| 〈2|

|2〉 |1〉

〈2| 〈1|
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FIG. 1. Linearly scalable quantum state tomography concept. a, Conceptual diagram

of a photonic chip for scalable tomography based on a single unitary transformation. b, Scaling

relationship between the number of photons in the quantum state to be measured and the number

of output waveguides required in the linear transformation. The scaling for both distinguishable

and indistinguishable photons are both considered.

of information extracted from measurement of the state. This leads to the striking benefit

that the required physical complexity of multi-outcome measurement only scales linearly

with the number of qubits in the state being measured, in contrast to the usual exponential

scaling.

In the context of photonic quantum states our approach also removes the need to build

complex reconfigurable measurement systems [8], instead allowing full quantum tomography

with just static linear optical circuits, which can easily be implemented on photonic chips.

This avoids the problem faced by conventional approaches, where some measurements pro-

vide little useful information about the underlying state. This is because in our approach,

the full complement of measurements are performed simultaneously, and thus the most im-

portant correlation detections for reconstructing a particular state naturally have the highest

count rates. Our approach is based on interfering all the photons through a special unitary

transformation, thus can be optimized to incorporate nonlocal measurement, allowing the

error robustness to be increased. Furthermore, we show that our approach is compatible

with computationally scalable reconstruction, avoiding resource intensive direct inversion.

We explain our method for the case of N -photons in an arbitrary pure or mixed state

featuring spatial quantum entanglement between two input ports, although a larger number

of ports can be considered as well [23]. TheN -photon quantum state is described by a density

matrix, ρ̂in, which has 22N real parameters. We apply a single (fixed) linear transformation,
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FIG. 2. Experimental realization with a photonic chip. a, The structure of the silica

photonic chip showing simulation of coupling a single photon in state |0〉 + i |1〉 into the input

ports. b, Experimentally determined mappings from the input Bloch sphere to the six output

waveguide field intensities. c, The experimental setup. Photon-pairs at 815nm are generated via

spontaneous parametric down-conversion (SPDC) by pumping a bismuth triborate (BiBO) crystal

with a 407.5nm diode laser. The two photons are then coupled into two fibers, and optionally passed

through a fiber-splitter to transform the anti-bunched state into a bunched state. The photons are

then coupled to the photonic chip and detected with a array of 6 single photon-detecting avalanche

photo-diodes (APD’s).

Û , to map the quantum state from two inputs to a larger number of output waveguides, M , as

illustrated in Fig. 7(a). Then, we obtain information about the quantum state by measuring

coincidences, Γ, in the arrival time of photons to different combinations of the single-photon

detectors. There are M !/(M −N)! different N -photon correlations which can be measured,

assuming the detectors cannot resolve photon numbers, but can distinguish photons (i.e.

by arrival time for time-bin encoded states). The reconstruction of the density matrix is

possible if the number of different correlations is larger than the number of unknown density

matrix elements. We establish that the minimum number of output ports required scales

linearly with the number of photons and approaches M = N + 3 for large photon numbers,

both in cases of distinguishable (red shaded area) and indistinguishable (blue line) photons

as shown in Fig. 7(b); mathematical details are provided in the Sec. 2 of the supplementary
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FIG. 3. Two photon tomography results. a, Results for an anti-bunched state, b, a N00N

state, and c, a N00N state with π/2 phase shift. The second column shows the measured 2-photon

correlations, while the third and fourth columns show the real and imaginary parts of the recovered

density matrices.

information.

We experimentally demonstrate our approach by performing tomography of spatially

entangled mixed or pure states of two indistinguishable photons, using a specially designed

on-chip laser-written waveguide circuit [24]. The action of the circuit on the input single

photon state |ψ〉 = |0〉 + i |1〉 is shown in Fig. 8(a). The circuit allows full reconstruction

of the input density matrix just by measuring the output two-photon coincidences with

non-photon-number resolving single-photon detectors.

The circuit was optimized to make the tomographic reconstruction highly robust to mea-

surement errors. Each output waveguide carries information from a different vector on the

input Bloch sphere. The Bloch vectors were determined experimentally using a classical

characterization method [25], and are shown graphically in Fig. 8(b). The equal spacing

of vectors around the Bloch sphere gives the device maximum robustness to errors in the

tomography procedure [26], by essentially realizing non-local measurements. This can be

confirmed by calculating the condition number of the transfer function of the chip, lower
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values of which correspond to higher robustness of the state reconstruction to measurement

errors. The experimentally realized device has a condition number of ' 5, which is better

than the condition number of ' 9 for typical to tomography [19].

To test the performance of the device we prepared a range of different two-photon entan-

gled quantum states, coupled them into the chip, and measured the output correlations as

schematically shown in Fig. 8(c). We first analyze an anti-bunched state, which in an ideal

form is described by the pure wavefunction |ψ〉 = (|01〉+ |10〉) /
√

2 and the corresponding

density matrix ρ̂ = |ψ〉 〈ψ|. We present in Fig. 9(a) the experimentally measured probabili-

ties of detecting the photon-pair in a given pair of output waveguides, and the reconstructed

real and imaginary parts of the density matrix, as indicated by labels. We confirm that this

is indeed an anti-bunched state, with the fidelity of 95.0%. Furthermore, this measurement

permits us to get information about the spectral overlap of the pair of photons, since the

observed correlations exhibit a generalized form of Hong-Ou-Mandel interference [27–29],

see Sec. 1 of the supplementary material for details.

We also prepared N00N states, with wavefunctions given by |ψ〉 =
(
|00〉+ eiφ |11〉

)
/
√

2,

where φ is a phase shift. The phase shift is determined by the photon propagation before

the chip, and because the shift is double the value that would accumulate classically [30] it

is highly sensitive to the environment. Experimentally, we explored this quantum-enhanced

sensitivity by propagating a two-photon N00N state through one meter long optical fibers

before the chip. The accumulated phase was very sensitive to fiber stress, varying by up to 2π

on the scale of a few minutes. With our approach we observed experimentally the temporal

variation of the phase in the density matrix using an integration time of 20 seconds with

a photon pair detection rate of 30Hz. We show typical two-photon correlations at different

times in Figs. 8(b) and (c) and the corresponding reconstructed N00N states, with phases

determined to be φ = 0 in Fig. 9(b) and φ = π/2 in Fig. 9(c). The fidelity of both states

exceeds 94%. Thus, we can observe with high precision the density matrix of a quantum

state that is varying over time (a video of the time evolution of the density matrix is included

in the supplementary material).

The reconstruction of the density matrices from the measured correlations was carried

out using a computationally scalable algorithm. This is important, since although the num-

ber of detectors and waveguides in the circuit scales linearly with the number of qubits to

be measured, the number of photon detections required for reconstruction still necessarily
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a
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FIG. 4. Scalable reconstruction algorithm for mixed states. a, inset Measured two-photon

correlations for the mixed state ρ̂mix = (ρ̂anti-bunched + ρ̂N00N) /2. a, Performance of the self guided

tomography algorithm searching for the input density matrix that best matches the measured

correlations. Red curves show 1000 different realizations of the algorithm. b, The real (top row)

and imaginary (bottom row) parts of the density matrix at iteration numbers 1, 30 and 300 during

the realization highlighted in blue in Fig. 6(a).
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FIG. 5. Tomography of a three-photon state. a, Diagram of the three-photon GHZ state. b,

Simulated correlations of the GHZ state after propagation through the measured transfer function

of the device in Fig. 8(a). Gaussian error with standard deviation of 5% the maximum correlation

element’s value is added to each element. c, The real part of the GHZ state’s density matrix. d,

Real part of the density matrix that was recovered using the simulated correlations from (b).

scales exponentially, and processing of measurement data can be extremely resource de-

manding. We employ an optimization technique known as the simultaneous perturbation

stochastic approximation [31], similar to the algorithm formulated for self-guided quantum

state tomography [17]. It minimizes a distance measure between the true state and the algo-

rithm’s current guess. We use the least squares distance between the measured correlations
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and the correlations that would be produced by the current guess of the density matrix,

|Γmeas.−Γguess|2. The reconstruction fidelity of the algorithm is 99.67% after 1500 iterations

(see Methods).

We demonstrate recovery of the mixed state ρ̂mix = (ρ̂anti-bunched + ρ̂N00N) /2 using the

algorithm. The inset of Fig. 6(a) shows the experimentally measured correlations corre-

sponding to ρ̂mix, obtained by numerically combining separately recorded raw coincidence

data from an anti-bunched state and a N00N state. The main plot in Fig. 6(a) shows 1000

realizations of the algorithm as red lines, and density matrices at iteration numbers 1, 30 and

300 are shown in Fig. 6(b) for the realization highlighted in blue in Fig. 6(a). Importantly,

our method offers the same computational advantage as self-guided tomography, but with-

out a need for complex reconfigurable measurements which so far restricted this approach

to only pure states [18].

The chip presented in Fig. 8(a) is also capable of tomography of degenerate three-photon

states. We demonstrate this using the experimentally determined transfer function, Û ,

and simulate the propagation of a three-photon Greenberger-Horne-Zeilinger (GHZ) state

[Fig. 5(a)] through the chip. The simulated output three-photon correlations are shown in

Fig. 5(b), where Gaussian noise with standard deviation 5% of the peak correlation value

has been added to each element. Reconstruction of the input density matrix gives highly

accurate results despite this noise. The real part of the recovered density matrix is shown

in Fig. 5(d), which closely matches the three-photon GHZ state in Fig. 5(c). This provides

a significantly simpler and more stable platform for three-photon tomography compared to

previous realizations [32].

In our work, we have demonstrated that a fixed linear optical transformation can be

devised to allow complete quantum tomography of N -photon states. Importantly, the com-

plexity of the transformation only scales linearly with the number of photons in the state, in

contrast to the exponential scaling in the number of measurements required in usual tomog-

raphy [33]. Due to its simplicity and lack of tunable elements, this approach to quantum

measurement is uniquely suited to integration with on-chip single photon detectors [34] for a

fully on-chip tomography scheme. This provides a promising way to facilitate the character-

ization and development of increasingly complex quantum communication and computation

systems.
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METHODS

Direct waveguide writing. We write our waveguides into transparent fused silica

wafers (Corning 7980 ArF Grade), using ultrashort laser pulses (τ < 150 fs, λ = 800 nm) that

are focused 250µm below the sample surface using a 20× microscope objective (NA≈ 0.35).

The actual writing speed, achieved with a high-precision positioning system (Aerotech) is

100 mm/min at a pulse energy of 200 nJ and a repetition rate of 100 kHz (Coherent Mira/Reg

A). Such waveguides exhibit low propagation losses (< 0.3 dB/cm) and almost vanishing

birefringence (∆nH,V ≈ 10−6). With a supported mode field diameter of 12µm× 15µm

coupling losses of 3 dB are obtained with standard single mode fibers.

Photon-pair generation and measurement. We generate photon-pairs at λ =

815 nm using a standard type-I spontaneous parametric down-conversion source with a vis-

ibility of 93%. A BiBO crystal is pumped by a 100 mW, 407.5 nm laser diode producing

horizontally polarized photon-pairs, which are collected by polarization maintaining fibers.

Commercial V-groove fiber arrays were used to couple the photons into the chip as well

as collecting them at the output facet from the individual waveguides. We used high-NA

multi-mode fibers in order to feed the photons to the respective avalanche photo-diodes, en-

suring low coupling losses at the output side of the chip. From the data of the photo-diodes,

the photon probability distribution at the output, as well as the inter-channel correlations,

were computed using a correlation device (Becker-Hickl) and standard computer programs

(LabView for the data acquisition and MatLab for the data processing). The photonic chip

was fabricated such that the waveguide spacing at the input and output facets matched

the standard fiber array spacing of 127µm. The typical two-photon coincidence rates after

propagating through the chip were approximately 30Hz, and an integration time of around

20 seconds was used for coincidence measurements.

Algorithmic reconstruction. The algorithm for reconstructing the density matrix

from a measured set of correlations uses the simultaneous perturbation stochastic approxi-

mation (SPSA) [31]. We follow an optimization process very similar to [17], except we adapt

it to work with mixed quantum states. This is achieved by defining the density matrix as,

ρ̂(t) = T̂ †(t)T̂ (t)/Tr{T̂ †(t)T̂ (t)}, as in Eq. (4.5) of Ref. [8]. Then the optimization algorithm

proceeds optimizing t, rather than ψ as in previous approaches for pure quantum states. We

determine the reconstruction accuracy using the experimentally measured device transfer

10



function. The recovery of 500 random density matrices is simulated, each for 1500 iterations

of the algorithm. The reconstruction fidelity, the average fidelity between the true density

matrix and the algorithm’s final guess, is found to be 99.67%.
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SUPPLEMENTARY MATERIAL

Classical characterization of the device transfer function

Using the photonic chip for tomography requires that the action of the chip on an input

photon can be accurately predicted. The propagation of a photon wavefunction through

the chip can be described by Û |ψin〉 = |ψout〉, here Û is the transfer function of the chip,

describing the mapping from the input waveguides to the outputs. Thus in order to use the

chip for tomography this transfer function needs to be determined. This could be achieved

using quantum process tomography, however we used a more straightforward method [25]

requiring just classical light.

We use a classical laser beam coupled into the chip in order to find its transfer function.

The absolute values of each element in the transfer function, |Ui,j|2 are found simply by

coupling the laser into one of the inputs and measuring the intensity at each of the 6

outputs. For example coupling the laser into input waveguide 1 and measuring the intensity

at output waveguide 6 will give the transfer element |U1,6|2. Doing this for both the two
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FIG. 6. Measurement of transfer function elements phases. (a) Output intensities of each

waveguide when a 810nm laser is coupled into each of the two input ports simultaneously using a

beamsplitter. The intensity of each waveguide is normalized so that the maximum intensity value

is 1 for each waveguide. (b) Colored data points show the intensity in waveguide 2 against the

intensity in waveguide 3. The time each data point is recoreded is shown by its color, with the

earliest data points being blue.

input ports of the chip gives the absolute values of each of the 12 elements in the transfer

function.

In a similar way the phases of the transfer function can be easily determined, up to a

constant overall phase factor between the two columns of the transfer function. To do this

we pass the laser through a beamsplitter, splitting it into two beams, then couple each beam

into one of the two input waveguides. The two beams interfere within the chip. The output

field in the jth waveguide is be given by,

U1,j E
(in)
1 + U2,j E

(in)
2 = E

(out)
j (1)

Here E
(in)
1 is the complex field amplitude at input waveguide number 1 and E

(in)
2 is the

complex field amplitude at input 2. Since the absolute values of the transfer matrix elements

are already known, it makes sense to separate the transfer matrix into its absolute values

and phase components. Thus we rewrite Eq. (1) as,∣∣∣|U1,j||E(in)
1 |+ |U2,j| |E(in)

2 |ei(φj+∆d/λ)
∣∣∣2 = |E(out)

j |2 (2)

Here φj is the phase difference between U1,j and U2,j, which we need to determine. The global

phase ∆d/λ denotes a variable phase shift we will intentionally introduce by increasing the
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path length of the beam coupled into input 2. Varying the phase of one input relative to the

other is ultimately what will allow the unknown transfer matrix phases, φj, to be determined.

The changing phase produces oscillations in the intensity of each output waveguide. These

oscillations measured in our chip are shown in Fig. 6(a). The output intensity, |E(out)
j |2, will

oscillate with changing ∆d according to

|E(out)
j |2 =

a

2
[1 + cos(φj + ∆d/λ)] + b (3)

Here a and b are constants related to absolute values of the transfer matrix and input

beams. Since ∆d/λ at a given time is the same for all output ports, the phase shifts between

transfer matrix elements, φj, can to be determined, up to an unknown phase shift, θ, between

the two columns of the transfer function. This is achieved by comparing the phase shifts

between the oscillations of the different outputs in Fig. 6(a). To determine the phase shifts

efficiently we plot the output intensity of waveguide j against the intensity of waveguide k,

which yields elliptical Lissajous curves. The shape and orientation of the ellipses’ determine

the phase difference between the oscillations of the intensity in waveguides j and k. For

example the Lissajous curve for waveguides 2 and 3 is plotted in Fig. 6(b). An ellipse is

fitted to the data points and the parameters of the ellipse determine the phase difference

between the oscillations in outputs 2 and 3, thus give the quantity φ2−φ3. This is repeated

for all combinations of output ports to find all the phases of the transfer function, up to an

unknown constant phase shift eiθ between the two columns of the transfer function, as in

[25].

After extracting the phases between all the elements in one column of the transfer function

we can now write the transfer function up to the constant overall phase factor eiθ,

|U1,j|E(in)
1 + |U2,j|ei(φj+θ)E

(in)
2 = E

(out)
j (4)

This constant phase factor, θ, is unknown because the absolute value of the phase shift

between the two inputs E
(in)
1 and E

(in)
2 is never directly measured, all that is known is that

the shift is changing with the displacement ∆d. This unknown phase factor could have

been determined using an interferometric setup, but we chose not to do this since we can

already observe relative phase differences between different density matrices without needing

to know the absolute phase.
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The spatial density matrix of a broadband two-photon wavefunction

In the main work, ‘Scalable on-chip quantum state tomography’, we characterized the

spatial density matrix of a number of different two-photon quantum states. Of course these

states also have spectral and temporal properties, and these properties have an impact

on the spatial density matrices we recover. In this section we show a link between the

spectral/temporal properties of the photon-pair and the resulting spatial density matrices.

We do this starting from a general frequency dependent two-photon wavefunction of the

type that would be produced by our SPDC source, then we integrate over the photon

frequencies in order to derive the reduced density matrix of the spatial state of the two-

photons. Finally we link this analytic result to real measurements of two-photon states

with different temporal delays, demonstrating that our approach to tomography can recover

information about spectral/temporal distinguishably of photons.

First we write the frequency dependent two-photon wavefunction as

|Ψ〉 =
∑
n,m

∫
dω1dω2 Ψn,m(ω1, ω2) â†n(ω1)â†m(ω2) |0〉 (5)

Here ψn,m(ω1, ω2) is the joint spatial and spectral distribution of photons a and b. The

spatial mode of photon a is denoted n and the mode of photon b is denoted m.

For comparison with experiment we now specify the form of the wavefunction to be an

anti-bunched state, of the type that would be produced by our SPDC source. Specifically

we set

Ψn,m(ω1, ω2) = φ(a)(ω1)φ(b)(ω2)δn,1δm,2 (6)

Giving photons a and b spectra φ(a) and φ(b), and putting them in different spatial modes

to make an anti-bunched state.

Elements in the reduced spatial density matrix ρ̂n,m,n′,m′ can be calculated by projecting

the two-photon wavefunction into the operator basis for the spatial density matrix, effectively

integrating over frequency to leave a purely spatial description of the density matrix. So we

will take inner products with the following operators,

|Dn,m〉 〈Dn′,m′ | =
∫
dω3dω4D

∗(ω3)F ∗(ω4)â†n(ω3)â†m(ω4) |0〉 〈0|D(ω3)F (ω4)ân′(ω3)âm′(ω4),

(7)
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Where D and F represent some spectral or temporal windows used to distinguish the

two photons. In the case where the measurement apparatus is not designed to distinguish

different photons we set D∗(ω3)D(ω3) = F ∗(ω3)F (ω3) = 1/
√

2, to preserve normalization

since each photon will be detected by both detection windows. Otherwise D and F can be

set to be step functions in frequency or time, depending of whether photons are distinguished

by their spectrum or arrival times.

So the elements of the anti-bunched state’s density matrix are given by the expectation

values,

ρ̂n,m,n′,m′ = 〈Ψ| |Dn,m〉 〈Dn′,m′ | |Ψ〉 =

1

2
〈0|
∫
dω1dω2 φ

(a)∗(ω1)φ(b)∗(ω2)â1(ω1)â2(ω2)×∫
dω3dω4D

∗(ω3)F ∗(ω4)â†n(ω3)â†m(ω4) |0〉 〈0|D(ω3)F (ω4)ân′(ω3)âm′(ω4)×∫
dω5dω6 φ

(a)(ω5)φ(b)(ω6)â†1(ω5)â†2(ω6) |0〉 . (8)

This can be evaluated to give,

ρ̂1,2,1,2 =

∫
dω3dω4 φ

(a)∗(ω3)φ(b)∗(ω4)φ(a)(ω3)φ(b)(ω4) = 1/2, (9)

ρ̂2,1,2,1 =

∫
dω3dω4 φ

(a)∗(ω4)φ(b)∗(ω3)φ(a)(ω4)φ(b)(ω3) = 1/2, (10)

ρ̂1,2,2,1 = ρ̂∗2,1,1,2 =

∫
dω3dω4 φ

(a)∗(ω3)φ(b)∗(ω4)φ(a)(ω4)φ(b)(ω3)/2 =∫
dω3 φ

(a)∗(ω3)φ(b)(ω3)

∫
dω4φ

(b)∗(ω4)φ(a)(ω4)/2. (11)

All other density matrix elements are zero. Thus general form of the anti-bunched state

density matrix will be,

ρ̂ =
1

2


0 0 0 0

0 1 Ia,bIb,a 0

0 Ia,bIb,a 1 0

0 0 0 0

 , (12)

where Ia,b =
∫
dω φ(a)∗(ω)φ(b)(ω) is the spectral overlap between the two photons. Clearly

this spectral overlap is an important factor in determining the exact form of the two photon
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FIG. 7. HOM interference of photon source. Standard HOM interference measurement of

the two-photon source, using a fiber-splitter to give the interference. The HOM visibility is 93%,

without subtracting the background counts.

density matrix. It can be equal to zero in cases where the photons have non-overlapping

spectrum or if there is a temporal delay between the photons. In the case where the photons

are indistinguishable the overlap will be unity, resulting in a different spatial density matrix

compared to the non overlapping (distinguishable case) case.

The reduced density matrix of the anti-bunched state [Eq. 12] can be recovered using

our static photonic chip based approach to tomography. This can be achieved for quantum

states of both distinguishable and indistinguishable photons, despite the fact that we do not

use single-photon detectors to directly determine which photon was detected. Ultimately

this is possible because of generalized Hong-ou-Mandel (HOM) [27] interference between the

photons in the case where their spectra overlap.

To demonstrate this we use a two-photon source that can be tuned between producing an

anti-bunched state of distinguishable or indistinguishable photon pairs. The distinguishably

is achieved by introducing variable time delay between the two photons. The quality of this

source is checked using traditional HOM interference, showing a visibility of 93% [Fig. 7].

With this photon source we can therefore create two different anti-bunched two-photon

states, one state where the two photons are distinguishable because of a time delay between

them, and one state where there is no time delay so the photons can’t be distinguished. These

correspond to non-degenerate and degenerate two-photon density matrices, respectively,
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a bDistinguishable Indistinguishable

FIG. 8. Two-photon spatial correlations of anti-bunched two-photon states at the

output of the photonic chip. (a) Correlations between the six output waveguides when the

photons in the anti-bunched state are separated in time (by > 3 ps). (b) Correlations between the

six output waveguides when the photons in the anti-bunched state are overlapping in time (with

≈ 93% visibility).

both of which can be described by Eq. 12.

We then demonstrate recovery of both the distinguishable and indistinguishable anti-

bunched states. We couple these two different states into our photonic chip, and observe

the two distinct sets of two-photon correlations at the six outputs, much like in traditional

HOM. For these two cases the two-photon correlations that are observed across the six

output waveguides of the device are shown in Fig. 8(a) and 8(b) for the distinguishable and

indistinguishable cases respectively. There is a clear difference between these two sets of

measurements, especially in the elements (2, 3), (3, 4), and (4, 5), which are much larger in

the distinguishable case than the indistinguishable case. This is due to quantum interference

as some parts of the two-photon wavefunction are non-orthogonal in the indistinguishable

case and thus interfere with one another. Thus we can observe a generalized form of the

HOM effect in our device.

As can be seen in Eq. 12 the form of the density matrix we are recovering depends on

the overlap between the (complex) spectrum of the photons being measured, so it contains

information about how indistinguishable the photons are. Performing reconstruction of the

17



a b

c d

FIG. 9. Reconstructed density matrices of distinguishable and indistinguishable

photon-pairs. (a,b) Reconstructed real and imaginary parts, respectively, of the distinguish-

able two-photon anti-bunched state density matrix, corresponding to the measured correlations

in Fig. 8(a). (c, d) Reconstructed real and imaginary parts respectively of the indistinguishable

two-photon anti-bunched state density matrix, based on the measured correlations in Fig. 8(b).

input density matrices of the distinguishable and indistinguishable coincidence measure-

ments from Fig. 8(a) and (b) allows us to see the difference between the density matrices.

The real and imaginary parts of the reconstructed density matrix for the distinguishable

case is shown in Figs. 9(a) and (b) and the density matrix for the indistinguishable case is

shown in Figs. 9(c) and (d). Both reflect the expected form of the reduced density matrix

that was derived in Eq. 12. The density matrix of the distinguishable case has small off

diagonal elements, suggesting that it is a ‘classical’ state. In contrast the density matrix

of the indistinguishable state has two large off diagonal elements, these show that there is

quantum coherence between different states of the two particles, and thus the state will

exhibit some non-classical statistics.

Therefore, even without photon distinguishing detection schemes, our approach to quan-

tum tomography is capable of recovering distinguishable and indistinguishable multi-photon
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quantum states using generalized HOM interference.
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