
University of Bergen
Department of Informatics

Integrating multi-way data-flow

constraint systems in spreadsheets

Author: Torjus Schaathun

Supervisors: Mikhail Barash, Jaakko Järvi

June, 2022

Abstract

Graphical user interfaces (GUIs) can be found in almost all aspects of our lives. We

take a particular interest in spreadsheets in thesis, as they are an essential tool in many

professions. Microsoft Excel is a prevalent spreadsheet software widely used across indus-

tries; it is frequently used to fill out various forms. However, maintaining dependencies

between variables can be difficult to ensure and prone to bugs, especially as the size of

the project increases. Our approach is to introduce some structure to Excel, and we

have thus created a tool, HDTables, to address the problem of maintaining dependencies

between variables. HDTables is an Excel add-in created using HotDrink, a JavaScript

library that uses multi-way data-flow constraint systems to model GUIs, in combina-

tion with the visual programming environment Blockly. The tool is aimed at end-users

with no programming background and allows them to create variables and constraints to

explicitly define the data-flow between cells in Excel.

Acknowledgements

I would like to thank my two supervisors, Mikhail Barash and Jaakko Järvi, for pushing

on having weekly meetings and having my back throughout the thesis. I would not have

made it without such excellent supervisors.

I would also like to thank my parents for bringing me food supplies over the years

and encouraging and motivating me.

Lastly, I would like to thank Amund, Henrik, Kristian, and Simen (Brofavors).

Torjus Schaathun

Wednesday 1st June, 2022

Contents

1 Introduction 1

1.1 Thesis Outline . 2

2 Background 3

2.1 Constraint Systems . 4

2.2 Block-based Specifications . 7

2.3 Empirical Evidence For and Against Visual programming Languages . . . 8

2.4 Spreadsheets . 9

3 Constaint systems in spreadsheets 17

3.1 Excel Add-ins . 18

3.2 HDTables . 18

4 Implementation 24

4.1 Architecture . 24

4.2 Add-in implementation . 25

4.3 Blockly implementation . 26

4.4 Code generation . 28

5 User study 31

5.1 Experienced Programmers: Results . 32

5.2 Non-programmers: Results . 33

5.3 Feedback . 34

5.4 Summary . 34

6 Related work 35

6.1 XLBlocks . 35

6.2 Block Shelves . 37

6.3 Polaris . 38

6.4 TrueGrid . 39

i

6.5 ZenSheet Studio . 40

6.6 Spreadsheet Functional Programming . 40

6.7 Gradual Structuring . 41

6.8 Object Oriented Functional Spreadsheets 41

6.9 SpreadsheetDoc . 42

6.10 ClassSheets . 42

6.11 Tabula . 42

7 Discussion and Future Work 44

Bibliography 47

A Code generated from Blockly specifications 52

ii

List of Figures

2.1 Example of the GUI for converting US Dollar to Norwegian Krone in Google. 3

2.2 Example of Blockly code. 7

2.3 Spreadsheet example showing formulas. 10

2.4 Graph-oriented view of Figure 2.3. 11

2.5 Dependencies between cells from Figure 2.3. 12

2.6 Income and tax example with dependencies in Excel. 14

2.7 Income and tax example with dependencies in Excel. 14

2.8 Income and tax example with dependencies in Excel. 15

2.9 How the dependencies in Figure 2.8 should be. 16

3.1 Our add-in running in Excel. 19

3.2 Blockly code for the example in Figure 3.1. 20

3.3 Example of the method block inside the Method category. 21

3.4 Example of the contents in the Variables category. 22

3.5 Example of a variable block. 22

4.1 Architecture of our prototype implementation. 25

5.1 Performance on each task for experienced programmers 32

5.2 Performance on each task for non-programmers 33

6.1 Example of a block definition of a SUMIFS formula [23] 36

6.2 Example of a formula that makes reference to multiple worksheets [22]. . 38

6.3 Example of a TrueGrid implementation, with the code editor on the left

and the grid on the right side [20]. 39

iii

List of Tables

4.1 Correspondence between our tool, HotDrink code, and JavaScript/Hot-

Drink API. 30

A.1 Correspondence between visual Blockly specifications in our tool, Hot-

Drink code, and JavaScript/HotDrink API. 52

iv

Listings

2.1 Example of a constraint between Fahrenheit and Celsius using HotDrink. 4

4.1 Code for adding an event handler on the selected cell. 26

4.2 Code to setup and assemble the code from a block. 27

4.3 Code to setup a toolbox in Blockly . 27

4.4 JSON returned from method block . 28

4.5 JSON returned from method block . 29

v

Chapter 1

Introduction

There are many different types of user interfaces in the world, and many of them are used

to fill out forms. We are particularly interested in spreadsheets because they are used as an

essential tool in many professions, primarily to fill out forms. Microsoft Excel is one of the

most prevalent spreadsheet technologies [38], frequently used to create tables and fill out

forms. However, spreadsheets are generally prone to bugs and errors. Excel-integrated

Visual Basic for Applications and other approaches are often layered on top of Excel

spreadsheets to validate the correctness of the entered data values and improve users’

experience with such forms within spreadsheets. Even with these additional validation

layers, spreadsheets are still prone to errors.

We want to introduce some structure to Excel and allow Excel users to explicitly de-

fine the data-flow between cells, which is impossible in the traditional Excel model. We

present a tool that introduces multi-way data-flow constraint systems to spreadsheets.

Our tool, HDTables, is a Microsoft Excel add-in that allows users to specify the data-flow

between cells in Excel explicitly. HotDrink is a JavaScript library for creating multi-way

data-flow constraint systems that allow for the explicit definition of data-flow between

cells in Excel. However, we cannot assume that Excel users have any knowledge of

JavaScript, and we address this problem by implementing the visual programming envi-

ronment Blockly. Blockly and other block-based environments let users write code using

blocks. Blockly blocks are shaped like jigsaw puzzle pieces in various colors, making it

easy for people with little or no programming experience to understand how the pieces

connect. It is also nearly impossible to make syntactic errors when using blocks, which is

advantageous when used by a non-programmer. Participants in our user study expressed

this sentiment, and our prototype implementation demonstrates the feasibility of directly

specifying multi-way data-flow constraint systems in spreadsheets for non-developer users.

1

1.1 Thesis Outline

Chapter 1 gives an introduction and overview of the problem, and how we solve it.

In Chapter 2 we present an overview of how multi-way data-flow constraint systems

works, we introduce a block-based visual programming language, and we explain

spreadsheets.

Chapter 3 continues with an overview of how multi-way data-flow constraint systems

works with spreadsheets, and shows an example of our prototype. This should help

the reader understand how the prototype is used, and what its usages are.

Chapter 4 discusses the implementation of multi-way data-flow constraint systems in

spreadsheets.

In Chapter 5 we discuss how users utilized our solution, how they behaved, their needs

and their feedback.

Chapter 6 presents related work, why it is relevant and what is similar.

Chapter 7 gives a discussion and summary of our work.

2

Chapter 2

Background

Graphical user interfaces (GUIs) are ubiquitous, appearing on our computers, phones,

tablets, train stations, and so on. However, GUIs tend to be buggy sometimes, which

creates problems for the user, particularly when there are non-trivial dependencies be-

tween values that the user is supposed to edit. A simple example of such dependencies

is shown in Figure 2.1. When searching for the conversion from US Dollar to Norwegian

Krone in Google, Google presents a GUI for converting between them, where changing

one of the fields updates the other. This requires two methods to update the values of

the variables in a mutually dependent manner.

Figure 2.1: Example of the GUI for converting US Dollar to Norwegian Krone in Google.

3

2.1 Constraint Systems

A possible solution to fix buggy graphical user interfaces (GUIs) is to introduce constraint

systems. A constraint system [24] can be presented as a tuple ⟨V,C ⟩, where V is a set of

variables, and C is a set of constraints. Every constraint in the set is a tuple ⟨R, r,M ⟩,
with R ⊆ V. The r represents some n-ary relation between the variables in R, with n

= |R|, and M is a set of constraint satisfaction methods. A constraint is satisfied if the

values of variables in R satisfy r.

We use HotDrink [18] in this thesis to model constraint systems. HotDrink is a

JavaScript library that utilizes multiway data-flow constraint systems in order to model

GUIs. As it is a JavaScript library, it works especially well for web-based GUIs. A

simple example of a constraint system is an application to convert temperature between

Fahrenheit and Celsius, where the value of Fahrenheit is dependent on the value of Celsius

and vice versa. Listing 2.1 below shows the HotDrink code for a constraint system with

Fahrenheit and Celsius.

Listing 2.1: Example of a constraint between Fahrenheit and Celsius using HotDrink.
1 component comp {
2 var c = 1, f;
3 constraint {
4 (f -> c) => (f - 32) / 1.8;
5 (c -> f) => (c * 1.8) + 32;
6 }
7 }

When using HotDrink, it is the programmer’s responsibility to create and handle

bindings between the model and the view-model. As the classic Model-View-Controller

pattern [26], the model is the single authority on the application’s logic and ”business”

data. The HotDrink API essentially provides an embedded domain-specific language for

defining view-models, recognized as multi-way data-flow constraint systems. HotDrink

lets programmers declare variables and relationships between them, which comprise the

constraint system in the view-model.

A variable in HotDrink can be written by calling it as a function with the new value as

an argument, and read by calling it with no arguments. Constraints in HotDrink describe

the relationship between variables. Each constraint in the constraint system consists of

methods. A method establishes the relationship between variables by computing new

values for the variables in the constraint system, thus satisfying the constraint.

4

The constraints and variables form a multi-way data-flow constraint system. Exe-

cuting one method in each constraint in an order that does not cause already satisfied

constraints to be invalidated solves the constraint system.

The view-model updates when adding a new variable or constraint, writing to a vari-

able, or calling system.update(). Updating sends out notifications of each variable

change and solves the constraint system. Event handlers are necessary for the constraint

system to communicate with and update the view. The event handlers handle the bind-

ings from the view-model to the model and from the view-model to the view.

To create the constraint from Listing 2.1 using the HotDrink framework, we first start

by defining an empty constraint system:

const system = defaultConstraintSystem;

Then we create an empty component and give it a name:

const comp = new Component("MyComponent");

Then the component is added to the constraint system:

system.addComponent(comp);

We create the variables, add them to the component with null as the initial value,

and bind them to the view:

comp.emplaceVariable(’f’, null);

comp.emplaceVariable(’c’, null);

binder(comp.vs[’f’], ’f’);

binder(comp.vs[’c’], ’c’);

The binder() function takes a HotDrink variable and a reference to a component in

the view as arguments and creates event handlers between them, thus ensuring updates

when either variable changes.

We create one method to convert Fahrenheit to Celsius and one method to convert

Celsius to Fahrenheit:

5

const toFahrMethod = new Method(2, [0], [1], [maskNone], c =>

{ c * 1.8 + 32 });

const toCelMethod = new Method(2, [1], [0], [maskNone], f =>

{ (f - 32) / 1.8 });

The Method() object takes as argument the number of variables in the method, the

positions of the input variables, the positions of the output variables, a MaskType1, and

a function. We get the positions of the input and output variables from a list containing

all variables for the constraint.

We create specifications for the constraint where we add the two methods we created:

const cspec = new ConstraintSpec(

Array.from([toFahrMethod, toCelMethod]));

The ConstraintSpec() takes an array of methods as an argument and creates the

specifications for the constraint.

We refer to both variables from the component, and the reference can be attained in

the following way:

const fRef = comp.getVariableReference(’f’);

const cRef = comp.getVariableReference(’c’);

Finally, we are ready to create the constraint by adding the constraint specifications

and variable references to the component and updating the constraint system to ensure

that the constraint has been set:

comp.emplaceConstraint(constraintId, cspec, [cRef, fRef], false);

system.update();

1https://git.app.uib.no/Jaakko.Jarvi/hd4/-/blob/feature/scripting/src/constraint-
system/constraint-system-util.js#L67

6

https://git.app.uib.no/Jaakko.Jarvi/hd4/-/blob/feature/scripting/src/constraint-system/constraint-system-util.js#L67
https://git.app.uib.no/Jaakko.Jarvi/hd4/-/blob/feature/scripting/src/constraint-system/constraint-system-util.js#L67

2.2 Block-based Specifications

To specify a constraint system in HotDrink requires some programming knowledge in

JavaScript. However, this cannot be expected by the majority of spreadsheet users.

Therefore, we decided to implement a block-based visual programming language (VPL)

to let users specify constraint systems without prior programming knowledge.

Block-based environments are generally easy to use. They come with ”jigsaw pieces”

in different shapes and colors which makes it intuitive for the user to understand how

pieces connect. Block-based environments also eliminates the possibility for syntactic

errors, which is useful when utilized by an inexperienced programmer.

Figure 2.2: Example of Blockly code.

Block-based environments comes predominantly in the two types, languages and tools.

The former refers to programming languages that are written using blocks, in contrast

to traditional text-based programming languages. The latter refer to tools that help in

the development of block-based environments. Blockly [1] is such a tool, and is what has

been used in this thesis.

Blockly is an open source, pure JavaScript library, that is easily extensible and

customizable. Blockly code can be exported to many programming languages, such

as JavaScript, Python and Dart. At its simplest form the Blockly editor includes a

workspace for organizing blocks and a toolbox to store different block types to drag into

the workspace. It is also possible to create custom blocks in the application for users to

use in the workspace.

7

2.3 Empirical Evidence For and Against Visual pro-

gramming Languages

This paper by Whitley [43] was published in 1996, and we will look at this paper’s

proposed evidences for and against VPLs, even though new evidence has emerged since

then [30].

Many VPLs and visualization systems have been developed since the 80s as a result

of an active visual programming community. There is, however, as of 1996, relatively

little empirical evidence supporting the design choices of these systems.

The question this paper asks is ”What data exists that tells us when and how visual

notations can be beneficially used within the context of the complex cognitive activities

required by programming?” [43]. The paper does not focus as much on visualization

systems as it does on VPLs. The paper uses the term visuals when referring to visual

notations (such as geometric shapes, lines and patterns). Thus, we will do the same.

Evidence Against VPLs The studies relating to evidences against VPLs are mostly

speculation and some have premature conclusions. However, a study by Ramsey et al. [36]

brings up the problems of the Deutch Limit, which refers to how visual notations takes up

more screen space in comparison to textual notations. The visual programming commu-

nity have recognized this problem for a long time, a problem that fuels the impracticality

of VPLs.

An other study by Green and Petre [34] speculates that secondary notation, which is

an issue in textual notations as well as visual notations, will be harder for novice VPL

users to master.

Evidence For VPLs Organised and consistent information makes it easier to digest

the information, especially for people working in problem solving and design. Moreover,

explicit information tends to yield more efficient representations of that information. This

does not apply only to visuals, but to text as well. Visual notations, compared to textual,

can in many cases produce more explicit information and ensure better organization.

Furthermore, using visuals provides measurable performance enhancements, such as time

and correctness.

8

In text-based programming, where the problems tend to be larger and more complex

than those in controlled experiments, there might exist an important role for VPLs. This

was observed in these four studies from the paper: An editing study by Day [15], a

study by Polich and Schwartz [35], a study by McGuinness [28] and a flowchart study by

Scanlan [39]. Visuals was also observed yielding better performances in smaller problems.

This was noted by these studies: the editing study by Day, the flowchart study by Scanlan,

a flowchart study by Cunniff and Taylor [13] and a study by Pandey and Burnett [32].

These all show that VPLs could play a role in end-user programming where the problems

tend to be smaller and less complex than in traditional text-based programming.

Having looked at these evidences for and against VPLs we can also remark that

VPLs have become much more used since 1996 with popular VPLs such as Scratch [8],

Blockly [1] and many others, enforcing that VPLs works and makes it easier, for at least

some, to program certain things.

We see that the evidences for VPLs appears to outweigh the evidences against, es-

pecially when taking into account that these evidences came from a paper published in

1996, and we see that VPLs have become more popular since then. However, the remark

of the Deutch Limit may still be a problem in VPLs today, and something that might

impact our implementation.

2.4 Spreadsheets

This section will follow the structure of the What is a spreadsheet chapter in the book

Spreadsheet Implementation Technology: Basics and Extensions by Sestoft [40].

In 1979, Bricklin and Frankston developed the first spreadsheet program, VisiCalc,

for the Apple II computer [14]. Following VisiCalc came various spreadsheets, including

Lotus 1-2-3, SuperCalc, QuattroPro, and PlanPerfect. Today’s dominating spreadsheet

program is Microsoft Excel [3]. Many open-source spreadsheet programs exist, including

OpenOffice Calc [7] and Gnumeric [5].

Every spreadsheet program consists of a two-dimensional grid of cells. Rows in the

spreadsheet are labeled with numbers 1, 2, . . . , columns are labeled with the letters A,

B, . . . , Z, AA, AB, . . . , cells are addressed by row and column: A1, A2, . . . , B1, B2, . . . ,

and the area of a selection of cells by their corner coordinates, such as A1:C5. A cell can

contain a text, a number, or a formula. A formula can involve functions like SUM(...),

9

arithmetic operators (such as +, -, *, /), constants, and references to other cells such as

B4, or cell areas such as A5:D9. If the contents of a cell change, the cells that are directly

or transitively dependent on that cell will be recalculated.

Another essential feature that modern spreadsheets have in common is that a reference

in a formula can be relative (like B3), absolute (like D4), or a mixture of both, column-

relative but row-absolute (like D$5) or column-absolute but row-relative (like $D5).

Instead of viewing spreadsheets as rectangular grids of cells, they can be represented

as graphs with nodes representing cells and edges representing relationships between cells,

as shown in Figure 2.4.

Cell references and cell area references are usually entered and displayed in the for-

mat consisting of a row and a column representation, called the A1 format, introduced

originally by VisiCalc [14]. References are by default relative, and the dollar ($) prefix

indicates an absolute row or column.

Figure 2.3: Spreadsheet example showing formulas.

10

Figure 2.4: Graph-oriented view of Figure 2.3.

As mentioned, a formula in a cell is an expression that can contain standard operators

(such as +, -, *, /), calls to functions (such as SUM), and references to other cells. Most

spreadsheet programs contain basic functions such as LOG, EXP, SIN, RAND, IF, and many

more. Some functions take arguments that can be a cell area reference or range, such as

A1:A3, representing the A1, A2, and A3 cells. An area reference generally consists of two

cell references (here A2 and A4), giving two corners of a rectangular area of a sheet. The

reference to the two corner cells can be any combination of absolute and relative.

Modern spreadsheet programs let users define multiple related sheets in a workbook.

Optionally, a cell reference can refer to a cell on another sheet in the same workbook

using the notation Sheet3!A1 in Excel.

A significant part of spreadsheets is the dependencies between cells. We say that cell

D3 directly depends on cells B3 and C3 when it contains the formula =B3*C3, such as in

Figure 2.3. We also say that cells B3 and C3 directly support cell D3. Excel supports

a feature called Trace Dependents that displays the dependencies of a cell. Figure 2.5

shows the traced dependencies of the cells from Figure 2.3.

11

Figure 2.5: Dependencies between cells from Figure 2.3.

All cells directly supported by a cell must be recalculated when that cell changes value,

regardless of whether they are in the same sheet in the workbook. Recalculations do not

have to happen too often when humans edit the cells. However, some numerical routines

may update the spreadsheet more frequently. The order of recalculation is essential. If

cell A1 depends on cell A2, then the value of A2 should be calculated before the value A1.

Recalculations can start in either top-down order or bottom-up order. Recalculations

can start with any cell using top-down order. A cell is only computed when its value is

needed, and then the original cell can be computed. Recalculations start with cells that

do not depend on other cells in bottom-up order, proceeding with cells that only depend

on already calculated cells.

The recalculation mechanism of a spreadsheet implementation should be designed to

ensure reliability and efficiency. Following is a list of requirements for a recalculation

after one cell has been edited:

• Recalculations should be correct. The contents of all cells should be consistent with

each other after a recalculation.

• Recalculations should be efficient in time and space.

• Recalculation should detect dynamic cycles accurately. A dynamic cycle happens

when a cell dynamically transitively depends on itself.

• Recalculation should not evaluate unused arguments of non-strict functions such as

IF(e1; e2; e3) and should evaluate volatile functions such as RAND() and NOW().

Most spreadsheet programs’ built-in functions are strict, meaning that all their ar-

guments are evaluated before they are called. Non-strict functions are functions such

as IF(e1; e2; e3), where only one of e2 or e3 will be evaluated. Moreover, functions

such as NOW() and RAND() are volatile because, even though they take no argument, they

12

typically return different values each time they are called. RAND() returns a random num-

ber, and NOW() returns the current time. Volatile functions can complicate the control of

recalculation order.

Non-strict functions implicate the presence or absence of cycles. Putting the formula

IF(A1>0; A2; 1) inside cell A1 seems to introduce a cyclic dependence of A2 to A2;

however, that only happens if cell A1 evaluates to a positive number, as only arguments

that get evaluated can introduce a cycle. Excel works like this by only reporting a cyclic

dependency if it has to be evaluated.

Spreadsheet programs dynamically differentiate between many types of data, such as

text strings, numbers, arrays, and logical values. It is possible to have cell B1 contain the

function =IF(C1<0; 0; B1) as long as C1<0 is not false; otherwise, the evaluation will

contain a cyclic dependency.

A function may fail by giving it the wrong type of argument or the wrong number

of arguments. However, such failures are likely to arise when editing a spreadsheet.

The spreadsheet should tolerate such failures, and instead of throwing an exception,

it should produce an error value, and further computations must propagate the error

value. For example, applying the function to raise a number to a power on a string as in

POWER("two", 3) should give an ArgType error value, and further computations must

propagate the error value so it can easily be traced back.

Changing any value in a spreadsheet without breaking any dependencies could be

desirable. Excel includes the option Enable iterative calculation to allow circular de-

pendencies. However, this option does not allow users to change the value of cells with

circular dependencies without replacing the formula with the new value. One would need

to make multiple copies of a table to achieve the ability to change values without breaking

dependencies.

Consider now an example of how a simple calculator of income taxation can be im-

plemented in a spreadsheet. The Norwegian Tax Administration—Skatteetaten—has a

page where individuals can calculate how much tax they will owe based on their income,

as shown in Figures 2.6 and 2.7. However, as shown in the figures, it is impossible to

change any other field than the income field. It can be inconvenient to only be able to

change the income field because people may want to know their income if they set the

net income or how other fields may change based on other fields.

13

Figure 2.6: Income and tax example with dependencies in Excel.

Figure 2.7: Income and tax example with dependencies in Excel.

Figure 2.8 shows four income and tax examples with dependencies traced, where only

the yellow value in each example can be changed without breaking any dependencies.

We have arranged cells in a zig-zag manner to see the dependencies easily. In the top

left example, only income and deduction can be changed, and percentage, tax, and net

income are dependent on income, and deduction is dependent on time. The top right

example is similar, but the time is dependent on the deduction instead. In the bottom

right example, net income and time can be changed, and income is dependent on net

income, and deduction is dependent on time. The bottom right is similar, but the time

is dependent on the deduction.

14

Figure 2.8: Income and tax example with dependencies in Excel.

The tables in Figure 2.8 should optimally be fused to only one table, where it is

possible to change any value without overwriting the formulas. Figure 2.9 shows how

the dependencies may look if they are fused. However, this is not possible with Excel

because updating the cells with the derived values will overwrite the formulas in them.

Also, as Figure 2.9 may suggest, updating time should not cause an update in income.

Income should only be updated when tax or net income directly gets updated. Constraint

systems can ensure that the correct variables are updated by only executing one method

in each constraint, as described in Section 2.1.

15

Figure 2.9: How the dependencies in Figure 2.8 should be.

Apart from the features discussed above, most modern spreadsheet programs supply

business graphics such as pie charts, bar charts, and scatterplots. They also provide spell

checkers, pivot tables, and many other unique and practical features. This is beyond the

scope of our thesis.

16

Chapter 3

Constaint systems in spreadsheets

In the previous section, we explained where spreadsheet applications today are limited:

expressing spreadsheets where dependencies between cells are “multi-way”. In other

words, those are the dependencies that are arbitrary relations, not merely functional ones.

The goal of this thesis is to inspect the applicability of multi-way constraint systems as an

underlying computational engine underneath a spreadsheet. The conjecture is that multi-

way dependencies (like in the taxation example in the previous chapter) are easy and clear

to express in such spreadsheets. We conjecture that with such spreadsheets, certain types

of mistakes and errors in spreadsheet programs could be less frequent. Before explaining

how our system works, we discuss how serious a problem spreadsheet errors are, and then

describe the concept of Excel Add-Ons, which is how we have implemented our system.

Errors in spreadsheets are very costly and, unfortunately, not that uncommon. The

European Spreadsheet Risk Interest Group (EuSpRIG) [33] has collected and sorted

a list of spreadsheet errors that demonstrate common problems that occur with the

uncontrolled use of spreadsheets. A recent example of a costly error happened in 2020

when close to 16000 Covid-19 cases went unreported in England [25]. This happened

because of how Public Health England (PHE) gathered logs of swab tests from commercial

firms in order to find out who had the virus. An automated process to pull the gathered

data into Excel was made by PHE, so that the data could be uploaded to a central system.

However, the developers from PHE chose XLS as the file format to store the rows, an old

file format used primarily between 1997 and 2003 [9]. This format allows for only 65 000

rows each template, instead of the over 1 million rows actually allowed in Excel. Thus,

because each test result consists of several rows of data, each template could only hold

around 1 400 cases. Ultimately PHE ended up breaking down the test results in smaller

batches to avoid the problem, but it should never have been a problem in the first place.

17

It can be easy to think that experts are so experienced with Excel that they never make

mistakes. A famous paper, Growth in Time of Debt [37], by Reinhart and Rogoff, seemed

to prove that the growth of a country was approximately cut in half when its external

debt reached 90% of the GDP. The paper had a considerable influence, such as people

being fired to lower a country’s debt and supranational institutions and governments

using the paper to support government fell and austerity policies. The problem was that

the paper’s results were not accurate. Reinhart and Rogoff had forgotten to include an

entire column in their calculations. [41]

3.1 Excel Add-ins

An Excel add-in [4] gives us the ability to extend the functionality of an Excel application,

in multiple platforms, such as Mac, Windows and your browser. Office JavaScript APIs

are provided by the Office Add-ins platform. This lets us use standard web technologies

such as JavaScript, HTML and CSS, which lets us easily integrate it with HotDrink, as

HotDrink is a JavaScript library.

The Office JavaScirpt API enables our Excel add-in to interact with objects in Excel.

The API lets us access cells, write and read data to them, and perform complex functions

using their values. Listing 4.1 shows how to retrieve information from the currently

selected cell in Excel using the getActiveCell() method.

3.2 HDTables

As our title suggests, our prototype aims to integrate multi-way data-flow constraint

systems into spreadsheets. We have therefore created an Excel add-in and integrated it

with HotDrink functionality. We are targeting our implementation at end-users; that is

why we decided to introduce visual programming environment Blockly for them to be

able to write HotDrink code more efficiently.

18

Figure 3.1: Our add-in running in Excel.

When a user clicks Open HDTables in the top right corner of Excel (see Figure 3.1),

our add-in presents itself on the right side of the spreadsheet. When opening the add-in,

the first thing a user sees is the headers Variables and Constraints and three buttons.

Users can add new variables by clicking the plus sign next to the Variables header. By

doing so, a new variable named a will appear under Variables. Doing it multiple times

creates variables with the following letter in the alphabet. A user can also add new

variables by selecting a single column of cells in Excel and clicking Add selected rows.

Clicking Add selected rows adds the selected number of cells as variables in the add-in,

with the same name as the selected cells.

Variables in the add-in come inside input fields where users can change the names

to ones that make more sense and are easier to read. Next to the variables, there is a

button (Bind to active cell), which binds the variable to the currently active cell, and an

equality sign with the bound cell will appear next to it.

Clicking the plus sign next to the Constraint header adds a new constraint under the

header. Each constraint starts with the name Constraint with a number in ascending

19

order, beginning at 1, with the possibility to change it to something more explaining.

Next to each constraint is an Edit button and a Delete button. The Edit button presents

the user with the Blockly workspace, as can be seen in Figure 3.2, and the Delete button

deletes the constraint, both from the view and the view-model.

Figure 3.2: Blockly code for the example in Figure 3.1.

The Blockly workspace comes with a toolbox where all the different blocks are cat-

egorized on the left and an empty canvas where users can assemble blocks on the right.

The different categories inside the toolbox are Method, Loops, Control, Logic, Variables,

Math, and Return. Hovering over any block will display a tooltip to describe how the

block works.

There is only one block inside the Method category (shown in Figure 3.3). This block

(called method block) should be the outermost block in the constraint. However, multiple

method blocks can be placed next to each other in the same constraint. The method

block has three placeholders where users can place blocks. The top placeholder is where

the variables that will be updated are placed. The center placeholder is where users

assemble the code to update the variables. Lastly, the bottom placeholder is where users

20

return the newly computed values of the variables. The top and bottom placeholders

can contain multiple variables. However, they should always contain the same amount of

variables, and the returned values should match the position of the variable it updates.

Figure 3.3: Example of the method block inside the Method category.

Errors in the Blockly code will result in different error messages at the top of the

Blockly workspace depending on the error. Having a block that is not a method block

as the outer block will display one error message. Another error message is displayed by

leaving the top placeholder of a method block empty, and another by leaving the bottom

placeholder empty. Lastly, having a different amount of variables in the top and bottom

placeholders will display another error message.

Figure 3.4 shows the contents of the Variables category. The top block in this category

(called a variable block) is the most important one; it lets users choose one of the variables

they have defined from a dropdown menu (see Figure 3.5). The variable block can be

placed in the top placeholder of a method block and will then be the variable to be

updated by the method, or it can be used inside the center placeholder to access its

value. The second block has an input field for a number and returns that number. The

third one is a block with two placeholders, each accepting only variable blocks or more

of itself. This block is used in the top or bottom placeholders of the method block when

the user wants to update multiple variables in a single method. Lastly, are three blocks

that are related to each other. The first lets the user make a new temporary variable and

assign a name and value to it. The second lets the user change the value of an already

defined temporary variable. The third returns the value of a temporary value.

21

Figure 3.4: Example of the contents in the Variables category.

Figure 3.5: Example of a variable block.

After the user has created all the desired methods in a constraint, they can either

click Cancel or Save. Clicking Cancel exits the constraint editor and discards all the

changes made, and clicking save also exits the constraint editor but saves the changes.

The constraint will then be in place, such that changing values of cells bound to a variable

in the constraint will trigger the constraint to update variables accordingly. The user can

22

then go back to edit the constraint if needed, resulting in an updated constraint. Clicking

the delete button next to a constraint removes that constraint from the add-in window

while also removing it from the constraint system. The changes will not propagate to

bound variables if the user changes the value of a variable in a deleted constraint.

23

Chapter 4

Implementation

While HotDrink has initially been targeted at experienced programmers making web

applications with predefined constraints for end-users to utilize, our implementation takes

this a step further, letting end-users define their own constraints using our add-in in Excel.

We developed our implementation as an Excel add-in using the Office JavaScript API.

The entire project can be found in the HDTables [6] GitHub repository.

4.1 Architecture

We want to add constraints to spreadsheets. To achieve this, we create a web app in the

form of an Office add-in in Excel and integrate it with the HotDrink API. HotDrink needs

a way to interact with cells in Excel for the add-in to work. The Office.js JavaScript API

lets the add-in interact with objects in Excel, thus letting us read from and write to cells

in a spreadsheet.

Creating a variable using the add-in connects that variable to a HotDrink variable.

Changing the value of a cell bound to a variable in the add-in will trigger an update

on the corresponding HotDrink variable. Conversely, changing the value of a HotDrink

variable will trigger an update in the cell connected to the variable.

We use the visual programming environment Blockly for users to be able to make

constraints with HotDrink. The Blockly workspace has access to all variables defined by

the user in the add-in. Adding new variables will add them to Blockly, and renaming

them will rename them in Blockly. Figure 4.1 depicts the architecture of our project.

24

Figure 4.1: Architecture of our prototype implementation.

4.2 Add-in implementation

Office Add-ins can be created using either the Yeoman generator for Office Add-ins or

Visual Studio [2]. We decided to use the Yeoman generator to develop our project because

it generates a Node.js project that can be managed with any editor. We used Visual

Studio Code as our editor.

The Office.js JavaScript API gives us access to the workbook object in Excel, which

lets the add-in interact with Excel. The workbook stores collections of tables, worksheets,

and more. Excel data can be accessed and changed through this. Furthermore, the

workbook lets the add-in add, navigate through and assign event handlers to worksheets.

Event handlers are necessary in order for our add-in to work with HotDrink.

Figure 4.1 shows the code for adding an event handler to the selected cell. The function

addFromSelectionAsync() takes a string id as an argument which is the id used to refer

to the binding later on. If adding the event handler succeeds, we retrieve a reference to the

selected cell by using the getActiveCell()method. Each cell contains much information,

25

which would require some time to load. To avoid loading all information from a cell, we

need to use the load() function on the cell to get the information we need. When binding

a variable to a cell, we want to know which cell has been bound to the variable. Calling

load("address") on the cell loads the cells address. It is an asynchronous function,

meaning that we have to call context.sync() to ensure the information is loaded. After

context.sync() has finished, we retrieve the address, which would be something like

Sheet1!A1 and add it next to the variable bound to the cell.

Listing 4.1: Code for adding an event handler on the selected cell.
1 Office.context.document.bindings.addFromSelectionAsync(

↪→ Office.BindingType.Text , { id: id }, function (asyncResult) {
2 if (asyncResult.status == Office.AsyncResultStatus.Failed) {
3 ...
4 } else {
5 Excel.run(function (context) {
6 var activeCell = context.workbook.getActiveCell ();
7 activeCell.load("address");
8
9 return context.sync().then(function () {
10 document.getElementById(‘${id}cell‘).innerHTML = ‘ =

↪→ ${activeCell.address}‘;
11 });
12 }).catch((e) => {
13 ...
14 });
15 }
16 });

4.3 Blockly implementation

Listing 4.2 shows an example of creating a custom block using Blockly. The example

shows how the bottom block from Figure 3.4 can be created. When creating blocks, we

can define all types of connections the block contains, the text on the block, the color, the

tooltip, and more. Lines 4 to 8 in the example show how we have designed the block —

lines 12 to 14 show how we assemble and return the code. In the example, we only want the

text from the input field, and we get it by calling block.getFieldValue("TEMP VAR").

We return a tuple with the value we want to return and a number. The number decides

the operator precedence of the value, 0 being the lowest.

26

Listing 4.2: Code to setup and assemble the code from a block.
1 export function setupTempVarGetter () {
2 Blockly.Blocks["temp_var_getter"] = {
3 init: function () {
4 this.appendDummyInput ().appendField(new

↪→ Blockly.FieldTextInput("default"), "TEMP_VAR");
5 this.setOutput(true , null);
6 this.setColour (60);
7 this.setTooltip("Gives the value of the named temporary

↪→ variable");
8 this.setHelpUrl("");
9 },
10 };
11
12 JavaScript["temp_var_getter"] = function (block) {
13 let name = block.getFieldValue("TEMP_VAR");
14 return [name , 0];
15 };
16 }

The Blockly workspace contains a toolbox where users can get all the different blocks.

The toolbox can be organized with categories, as seen on the left side of Figure 3.1.

Listing 4.3 shows how some of the Variables category in Figure 3.1 is specified. We create

a category for each type of block. Calling setupTempVarGetter() from Listing 4.2 creates

the block and adds it to the toolbox. Such setup methods are called for each custom block

we create. Line 2 in Listing 4.2 sets the type of the block, placing the block where it

matches the type in the toolbox.

Listing 4.3: Code to setup a toolbox in Blockly
1 export function setupToolbox () {
2 var toolbox = {
3 kind: "categoryToolbox",
4 contents: [
5 {
6 kind: "category",
7 name: "Variables",
8 contents: [
9 ...
10 {
11 kind: "block",
12 type: "temp_var_update"
13 },
14 {
15 kind: "block",
16 type: "temp_var_getter"
17 },
18],
19 },
20 ...
21]
22 }
23 Blockly.inject("blocklyDiv", { toolbox: toolbox });
24 }

27

4.4 Code generation

Method blocks contain three fields: top, center, and bottom; we refer to these as the

output, code, and return fields, respectively. The output field is where output variables

reside. Output variables are all the HotDrink variables we want the method to affect.

The code field is where users write the code to update the output variables. The return

field is where the new variables made in the code field are returned to update the output

variables.

When assembling the code from method blocks, we start by getting all the input

variables. The input variables are all the HotDrink variables in a method that affects

the output variables. To get all the input variables, we go through all blocks inside the

code and return fields and filter out all unique HotDrink variables. We can do this by

calling getDescendants() on the code field in the method block, which returns a list of

all blocks nested in the field. We can then match the nested blocks to variable blocks and

filter out all unique variables. Then, we collect all output variables from the output field

by the same method. Then, we extract the code, collect the return values and append

them next to a return statement to the code. When all fields are collected, we assemble

and return them in a JSON format as seen in Listing 4.4.

Listing 4.4: JSON returned from method block
1 return ‘{
2 "inputs ": [${uniqueInputs }],
3 "outputs ": [${uniqueOutputs }],
4 "code": "${code}"
5 },‘

To create a constraint, we start by retrieving all code from the most recently saved

Blockly workspace. If the user has assembled the Blockly code correctly, the generated

code will be as in Figure 4.4, with one for each method in the constraint. We add the

code to a list in a JSON-like object and parse it to JSON. We parse the code inside a

try/catch block, and thus if the parsing fails, the user has not correctly assembled the

code, resulting in an error message on the top of the Blockly workspace. If the parsing

succeeds, we go through all input and output variables and create a list of all unique

variables.

Figure 4.5 shows how HotDrink methods are created. The Method object takes as

arguments the number of unique variables in the constraint, a list of all input positions,

a list of all output positions, masktype, and a function with the code of the method.

28

We loop through methods in the constraint, and for each method, we create a list with

positions of all input variables and a list with all output variables in the list of unique

variables. When adding the function argument, we create an arrow function as a string

that we evaluate with the eval() function. We create the arrow function with the inputs

joined by , on the left side of the arrow and the code on the right. If the constraint already

exists, we remove the existing component from the system and create a new component.

We add all constraints from the old component to the new with an updated version of

the edited constraint. If the constraint does not exist, we create a new constraint and

add it to the component.

Listing 4.5: JSON returned from method block
1 const methods = code["methods"].map((method) => {
2 const inPositions = method.inputs.map((inn) =>

↪→ allVars.indexOf(inn));
3 const outPositions = method.outputs.map((out) =>

↪→ allVars.indexOf(out));
4 return new Method(allVars.length , inPositions , outPositions ,

↪→ [maskNone], eval(‘(${method.inputs.join (",")}) => {
5 ${method.code}
6 }‘)
7);
8 });

Table 4.1 shows the correspondence between our tool, HotDrink code, and the

JavaScript/HotDrink API. The first row shows a method block in the first column. We

extract output variables, code, and input variables from the method block. The second

column shows the information extracted from a method block in HotDrink code. The

last column shows how we construct a method with the HotDrink API in JavaScript.

The second row in the table shows two variables and two constraints in our prototype,

what a component looks like in HotDrink code, and how to create a constraint system

and add a component to it using the HotDrink API in JavaScript.

The third row in the table shows two variables in our prototype, what variables look

like inside a component in HotDrink code, and how to add the variable to the component

using the HotDrink API in JavaScript.

The last row in the table shows two constraints in our prototype, what constraints

look like inside a component in HotDrink code, and how to create a constraint and add

it to the constraint system using the HotDrink API in Javascript.

29

Table 4.1: Correspondence between our tool, HotDrink code, and JavaScript/HotDrink
API.

30

Chapter 5

User study

In a think-aloud study, we asked ten participants to create a constraint in Microsoft Excel

using our add-in. The constraint we asked them to create is a constraint with Fahrenheit

and Celsius, like in Listing 2.1. We separated the participants into two groups: one group

of five experienced programmers and one group of five non-programmers.

We gave the two groups different amounts of information to complete the task. The

experienced programmers were tasked to create a constraint with Fahrenheit and Celsius

without any additional information. The non-programmers got the same task with the

additional information that they only needed to create two variables, one constraint, and

a method block should be the outermost block in a constraint. The steps we wanted the

participants to complete with this information are:

1. Create two variables.

1.1. Bind the variables to different cells.

1.2. Change the name of the variables to more explainable ones (optional).

2. Add only one constraint

2.1. Change the name of the constraint to a more explainable one (optional).

2.2. Click Edit on the constraint.

2.3. Use Blockly to create two correct methods.

2.4. Save the constraint.

3. Change the value of both cells to see if the constraint works.

31

5.1 Experienced Programmers: Results

We created a table with each participant as the rows and each step we wanted them to

complete as the columns, as shown in Figure 5.1. The cells can contain one of three

colors: green, red, or yellow. Green represents that the participant could complete the

step without any help (whole dots), yellow represents that we gave some input to help

them understand how to complete the step (half dots), and red represents that they were

not able to complete the step (empty dots).

Figure 5.1: Performance on each task for experienced programmers

The figure above shows that every participant successfully created the constraint.

Some participants could not complete either steps 1.2 or 2.1 or both. However, they

could still complete the entire task, as steps 1.2 and 2.1 are optional. Several participants

started by creating one constraint with one method and then wanted to create another

constraint with the other method. In those instances, rather than letting them waste

time creating another constraint, we explained that they could complete the entire task

using only one constraint, resulting in successfully creating the other method in the same

constraint.

To become acquainted with the tool, some participants attempted to create a variety

of variables and constraints. Some participants believed they could place blocks in the

top right corner of a method block and were surprised when this did not work. However,

after some trial and error, they figured out where to place the blocks.

32

All of the participants demonstrated a clear understanding of how to add variables

and constraints. They expressed that Blockly was intuitive and simple to use, and they

had a positive overall experience with the add-in.

5.2 Non-programmers: Results

As mentioned before, non-programmers performed the same tasks as programmers. We

created a similar table to the one in section 5.1 to map the results of the non-programmers,

as shown in Figure 5.2 below.

Figure 5.2: Performance on each task for non-programmers

From the figure above, we can see that all the non-programmers were able to create

only two variables (as expected from their instructions) and bind them to the correct

cells. Only one participant tried to create multiple constraints, despite being instructed

only to make one. None of the participants came up with new and illuminating explana-

tory names for the constraint. All but one participant had difficulty understanding how

blocks worked and required some assistance. We assisted them by asking them questions

about what they wanted to accomplish and gently guiding them in that direction.

Like some of the experienced programmers, one participant added several constraints

and variables to familiarize themselves with the add-in.

All of the non-programmers were, in the end, able to create the constraint and ex-

pressed that the add-in was relatively easy to understand after getting familiarized with

it.

33

5.3 Feedback

The participants who created several variables and constraints to familiarize themselves

with the tool expressed a desire to be able to delete variables in the same way that

constraints could be deleted. We discuss why variables cannot be deleted in the future

work section.

Several of the non-programmers said that it would be helpful to have some sort of

tutorial going through every step of creating a constraint before trying the add-in.

5.4 Summary

All participants, both programmers and non-programmers were able to complete the

task. We see that most of the programmers gave descriptive names to the constraint and

variables, while none of the non-programmers gave descriptive names to the constraint,

and few gave to variables. We assume this is because experienced programmers are used

to the concept of variables and giving them descriptive names, while non-programmers

are not.

We can also see that all experienced programmers were able to assemble method blocks

without assistance, whereas most non-programmers required some sort of assistance to

understand it. We believe this is because programmers understand the fundamentals of

programming while non-programmers require some time to become acquainted with it.

In conclusion, the results from this user test show promise, as all participants were

able to create the constraint, and the participants gave positive feedback on how they

experienced our solution.

34

Chapter 6

Related work

This chapter looks at several studies related to block-based programming and spread-

sheets. Some of these studies show how visualization tools improve the coding experience

of end-users. Many studies show that spreadsheets are error-prone and generally lack im-

portant functionalities that could benefit spreadsheet users. Some studies also investigate

tools to address problems with the spreadsheet paradigm. A few tools add to existing

spreadsheet programs like Excel, while others introduce a new spreadsheet software with

the tool integrated.

6.1 XLBlocks

When writing formulas in Excel, it can be easy to misplace parenthesis, quotes, and com-

mas. Research has shown that block-based environments can improve the performance of

beginner programmers. Jansen and Hermans [23] hypothesize that a block-based formula

editor also can be beneficial for spreadsheet users as it decreases the possibility of syntax

errors.

XLBlocks, like our prototype, is an Excel Add-in developed with the Excel JavaScript

API that uses Blockly to generate Excel formulas. XLBlocks has extended the Blockly

library with custom blocks and a code generator to define and generate spreadsheet for-

mulas. The functions included in their research prototype are: SUM, SUMIFS, INDEX,

IFERROR, IF, MATCH, VLOOKUP, -, /, <, and >. These functions were chosen based

on the frequent use of functions according to the Enron corpus [19].

35

Figure 6.1: Example of a block definition of a SUMIFS formula [23]
.

When using XLBlocks, a user begins with a formula block ((a) in Figure 6.1). The

formula can be given a name by the user (b), an output range (c), and the functions used

in the formula. The two comments in the example will not be shown in the spreadsheet

but are available in the block editor to describe the code to the programmer as with

text-based programming.

Jansen and Hermans aim to determine how a block-based formula editor could support

professional spreadsheet users while developing or maintaining formulas. To address this

goal, they developed XLBlocks and conducted a think-aloud study where participants

completed eight common spreadsheet tasks. When the participants completed the tasks,

they interviewed them and asked them to evaluate the XLBlocks interface using the

Cognitive Dimensions of Notation (CDN) framework [10]. For each dimension, they

asked them to answer the two following research questions:

• RQ1: ”What are the benefits of XLBlocks regarding this dimension?”

• RQ2: ”What are the drawbacks of XLBlocks regarding this dimension?”

The participants included in this study all use Excel professionally, with an average of

20 years of experience using Excel. The participants ranked themselves on a scale from

one to ten on how experienced they were in Excel and scored an average of eight out of

ten.

Jansen and Hermans results show that XLBlocks received better evaluation on all di-

mensions of the CDN framework. The dimensions: Error-proneness, Secondary notation,

36

Provisionality, Premature commitment, and Progressive evaluation showed the most no-

table difference.

The participants realized that considering the correct syntax of functions in XLBlocks

was unnecessary. Furthermore, parts of formulas were easier to edit in XLBlocks as parts

of the formula can effortlessly be dragged and dropped onto the canvas.

When comparing this project to ours, we see that both projects add functionality to

Excel, improving the end user’s experience. XLBlocks is, as our prototype, an add-in for

Excel, and both add-ins incorporate the visual programming environment Blockly to let

end-users code more intuitively.

6.2 Block Shelves

Block shelves [21] is a formatting and organizing tool developed to address some of the

limitations in block editors such as Blockly. Three of these limitations are program

structure, readability, and re-use.

Block shelves allow a user to group and arrange collections of blocks on shelves in a

shelfbox to get a better overview of the block code. It comes with seven primary shelf

functions:

1. Show/hide. Enables users to show or hide blocks on a shelf. If a user clicks the

hide button on a shelf, the corresponding blocks will disappear from the canvas.

2. Collapse/expand. Enables users to collapse all blocks on a shelf into one block.

3. Enable/disable. Enables users to enable/disable block code in a shelf.

4. Duplicate. Enables users to duplicate all the blocks on a shelf.

5. Comment. Lets users leave a comment on a shelf.

6. Delete. Lets a user delete a shelve without deleting the corresponding blocks.

7. Export/import. Makes it possible to share blocks across projects in the form of

XML.

37

Hsu et al. describe [21] how they tested their tool on 60 graduate and undergraduate

students from universities in Taiwan, all with some experience with programming but no

one who had ever used a visual programming language (VPL). The study aimed to mea-

sure how block shelves improve upon search and reading time, block code navigation, and

whether it improved block code understanding when added to a block editor compared

to a block editor without the tool.

The results from the paper indicate that block shelves significantly improve the read-

ability of projects and the time it takes to write one. Moreover, code block understanding

and navigation of projects became much easier once the users had become accustomed

to the tool for large projects.

Block Shelves, like our prototype, is a visual environment made to improve users’

experience. Our prototype improves end-users’ experience of Excel by letting them code

using the visual programming environment Blocky, and Block Shelves goes one step up

by adding to block environments, improving the block coding experience.

6.3 Polaris

Polaris is an Excel Add-in developed using VBA (Visual Basic for Applications) for

context-aware navigation in spreadsheets [22]. Polaris monitors the cells users select and

uses that information to ”guess” where it should navigate when a user switches between

sheets.

Figure 6.2: Example of a formula that makes reference to multiple worksheets [22].

In Figure 6.2, a user has selected cell C5. If the user then, for example, switches

to sheet Certificates, Polaris will go through the references of the last selected cell and

38

see if it finds any of them in Certificates. In this example, it will find the reference

Certificates!J15 and activate cell J15.

Polaris and our prototype are both add-ins for Microsoft Excel created to improve the

experience of spreadsheet users.

6.4 TrueGrid

Spreadsheet editors like Excel lack basic editor services such as reference resolution and

syntax highlighting, while modern IDEs do not. However, most IDEs lack the interactive

and live interaction style that spreadsheet users want. TrueGrid [20] introduces the

concept of bridging the gap between spreadsheets and programming. Hermans and van der

Storm use JavaScript in their prototype to illustrate that one can program a spreadsheet-

like grid using TrueGrid. The key feature of TrueGrid is that programmers can see the

code and data simultaneously; it also is live like a spreadsheet, meaning that changing

code or data updates the grid.

Figure 6.3: Example of a TrueGrid implementation, with the code editor on the left and
the grid on the right side [20].

While TrueGrid introduces a new spreadsheet and our prototype is an add-in to the

existing spreadsheet software Excel, both projects introduce a new way of coding in

spreadsheets, adding previously non-existing functionalities.

39

6.5 ZenSheet Studio

ZenSheet Studio [17] is a web client that provides a generalized spreadsheet comput-

ing experience. It is a part of the ZenSheet project, which aims to turn spreadsheets

into modern and robust computing environments with minimal influence on the learn-

ing curve. ZenSheet can be seen as a real-time data visualization tool, a live IDE for a

lazy programming language, or a spreadsheet environment that intuitively delivers the

generalized modeling power of ZenSheet. The project’s approach is motivated by the

idea of adding a spreadsheet-like interface to a functional programming language like

Haskell [27].

Initial tests of ZenSheet Studio with students and industry practitioners have shown

promise. However, extensive testing must be conducted in the future for conclusive

results.

ZenSheet Studio presents a spreadsheet environment with new functionalities, while

our prototype adds new functionalities to an existing spreadsheet environment. However,

both projects aim to further the experience of using spreadsheets.

6.6 Spreadsheet Functional Programming

Wakeling [42] introduces a way to define Haskell functions in Excel. When a user adds a

comment to a cell and begins the comment with Haskell, the program will interpret the

following lines as Haskell code. When a user changes the worksheet, the implementation

will execute some VBA code that writes a calculations file, executes a Haskell interpreter,

and reads a results file. The calculations file contains a Haskell program that the Haskell

interpreter executes, and the results file contains a list with pairs of results and cell

references. After reading the results file, the program updates the cells with correct

values.

Both Wakeling and us create an add-in to Microsoft Excel that introduces another

form of programming and adds functionalities previously unavailable to spreadsheets.

40

6.7 Gradual Structuring

Learning to program in spreadsheets is easier than in traditional programming languages.

However, spreadsheets are not as expressive as traditional programming languages, limit-

ing the levels of computational thinking that can be taught using spreadsheets. Gradual

Structuring [31] is a concept proposed by Miller et al., and it is the idea of introducing

language features to spreadsheets, enabling more structured models in spreadsheets.

The ability to group cells locally and apply a single formula to them is necessary to

enable Gradual Structuring. This feature, termed cell grouping, can eliminate the error-

prone use of copy-pasting in spreadsheets and makes the structure of spreadsheets more

explicit. Cell grouping introduces a range of new features. Miller et al.‘s paper focus on

the learnability and usability of these features.

Gradual structuring and our prototype both introduce new functionalities to spread-

sheets by adding a form of programming to them.

6.8 Object Oriented Functional Spreadsheets

While spreadsheets have become one of the most successful and used computer appli-

cations, they are also limiting and frustrating. Clack and Braine [11] believe that the

computational model of spreadsheets can be both extended to deliver more functionality

and simplified to benefit non-programmers. They propose a new spreadsheet paradigm

that includes object-oriented programming features such as overloading, inheritance, sub-

sumption, a class hierarchy, and dynamic despatch on an object. Their system also in-

cludes many functional programming features such as a strong type system, higher-order

functions, curried partial applications, lacy evaluation, and referential transparency.

As mentioned, Robert and Roger propose a new spreadsheet paradigm to increase the

functionalities of spreadsheets; this is similar to our project in that we also introduce new

functionality to spreadsheets.

41

6.9 SpreadsheetDoc

Spreadsheet systems lack a proper setup to document spreadsheet programs. It is possible

to add general notes to cells in spreadsheets, but not in a structured way as with tools

like JavaDoc. A user taking over an existing Excel program and trying to understand

everything can be very cumbersome, often resulting in them asking colleagues for help

or even quitting the task. SpreadsheetDoc [12] is an Excel Add-in that allows end-users

to add documentation to their projects more structurally. The core functionalities of

the add-in are the ability to document an entire spreadsheet document, each worksheet,

single cells, columns, rows, ranges, input cells, and output cells.

SpreadsheetDoc and our prototype are both Microsoft Excel add-ins that add func-

tionality to spreadsheets that were previously unavailable.

6.10 ClassSheets

The cell-oriented, low-level development process of spreadsheets can have many errors.

ClassSheet [16] is a higher-level object-oriented model that improves upon this process.

By integrating concepts from the Unified Modeling Language (UML), ClassSheets allow

users to express business object structures inside a spreadsheet explicitly. The approach

of ClassSheet is to link the object-oriented modeling world with spreadsheet applications.

Our approach is similar to that of ClassSheet in that both projects introduce a higher-

level development process for spreadsheets in order to address some missing functionalities

in spreadsheets.

6.11 Tabula

Tabula [29] is a modeling language for spreadsheets inspired by the visual notation of the

ClassSheet modeling language [16]. Tabula, on the other hand, presents more expressive

attributes than ClassSheet, such as type constraints and nested classes with repetitions

enabled by a different abstract representation. Furthermore, Tabula includes a bidirec-

tional transformation engine that ensures synchronization when updating the spreadsheet

or the Tabula model.

42

Tabula is similar to our project in the same way that ClassSheet is similar. The bidi-

rectional transformation engine that ensures synchronization is similar to how changing

the values of variables in a constraint synchronizes the corresponding variables.

43

Chapter 7

Discussion and Future Work

Microsoft Excel is a prevalent spreadsheet software widely used across industries; it is

oftentimes used to fill out various forms. In order to validate the correctness of the en-

tered data values and to improve users’ experience with such forms within spreadsheets,

Excel-integrated Visual Basic for Applications and other approaches are frequently lay-

ered on top of Excel spreadsheets. However, even with these extra layers of validations,

spreadsheets are still very prone to errors.

Our approach is to introduce some structure to Excel. We accomplish this by intro-

ducing HDTables, a tool that allows users to define the multi-way data-flow between cells

in Excel explicitly. This is in contrast to the traditional Excel model, where specifying

multi-way data-flow is not possible. We have used the multi-way data-flow constraint

system library HotDrink to enable such explicit definitions. The library requires some

knowledge of JavaScript, which may be impeding for some of the Excel users. We tackle

this problem by letting users define constraints using the visual programming environ-

ment Blockly. Block-based environments such as Blockly let users write code using blocks.

Blocks are beneficial because they come in various shapes and colors, making it intuitive

for non-programmers to understand how pieces connect. This is expressed by the partici-

pants of our user study. Our prototype implementation shows the feasibility of specifying

multi-way data-flow constraint systems directly in spreadsheets targeted at non-developer

users.

We have identified several directions for future work. First, constraint system libraries

other than HotDrink could be adapted and integrated with Excel—or, for that matter—

other spreadsheet software. These constraint systems may be based on languages other

44

than JavaScript, hence providing support for them is needed, either by creating a Blockly-

based (or another block-based) “front-end” for them, or by employing an entirely differ-

ent visual programming environment (such as, for example, node-based environments).

Trying out other visual programming specifications could give some insight into what

end-users need to be best able to create constraints.

In order to adequately support an ever-growing community of spreadsheet users, im-

plementing functionality to transform (legacy) spreadsheet specifications into HDTable-

based spreadsheets seems necessary. This will significantly extend the pool of HDTable’s

users and allow conducting a large-scale evaluation of the tool which would be neces-

sary to gain a better understanding of how users interact with “structural spreadsheets”.

Ultimately, this will help understand how spreadsheet software can be further improved.

45

46

Bibliography

[1] Blockly.

URL: https://developers.google.com/blockly/guides/overview.

[2] Build an Excel task pane add-in.

URL: https://docs.microsoft.com/en-us/office/dev/add-ins/quickstarts/excel-

quickstart-jquery?tabs=yeomangenerator.

[3] Microsoft Excel, .

URL: https://www.microsoft.com/en-us/microsoft-365/excel.

[4] Excel add-ins overview, .

URL: https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-

overview.

[5] Gnumeric.

URL: http://www.gnumeric.org/.

[6] HDTables.

URL: https://github.com/TorjusFS/HDTables.

[7] Apache OpenOffice Calc.

URL: http://www.openoffice.org/product/calc.html.

[8] About Scratch.

URL: https://scratch.mit.edu/about.

[9] Difference Between CSV and XLS.

URL: https://toggl.com/track/difference-between-csv-xls/.

[10] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda, M. S.

Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and R. M.

Young. Cognitive Dimensions of Notations: Design Tools for Cognitive Technol-

ogy. In Meurig Beynon, Chrystopher L. Nehaniv, and Kerstin Dautenhahn, editors,

47

https://developers.google.com/blockly/guides/overview
https://docs.microsoft.com/en-us/office/dev/add-ins/quickstarts/excel-quickstart-jquery?tabs=yeomangenerator
https://docs.microsoft.com/en-us/office/dev/add-ins/quickstarts/excel-quickstart-jquery?tabs=yeomangenerator
https://www.microsoft.com/en-us/microsoft-365/excel
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-overview
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-overview
http://www.gnumeric.org/
https://github.com/TorjusFS/HDTables
http://www.openoffice.org/product/calc.html
https://scratch.mit.edu/about
https://toggl.com/track/difference-between-csv-xls/

Cognitive Technology: Instruments of Mind, volume 2117, pages 325–341. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 9783540424062 9783540446170.

doi: 10.1007/3-540-44617-6 31.

URL: http://link.springer.com/10.1007/3-540-44617-6 31.

[11] Christopher Clack and Lee Braine. Object-oriented functional spreadsheets. 01 1998.

[12] Jácome Cunha and Diogo Canteiro. Spreadsheetdoc: An excel add-in for docu-

menting spreadsheets. In 6th National Symposium on Informatics (INForum 2015),

2015.

[13] Nancy Cunniff and Robert P. Taylor. Graphical vs. Textual Representation: An Em-

pirical Study of Novices’ Program Comprehension, page 114–131. Ablex Publishing

Corp., USA, 1987. ISBN 0893914614.

[14] Bob Frankston Dan Bricklin. VisiCalc: Information from its creators, Dan Bricklin

and Bob Frankston.

URL: http://www.danbricklin.com/visicalc.htm.

[15] Ruth S. Day. Alternative Representations. In Psychology of Learning and Motivation,

volume 22, pages 261–305. Elsevier, 1988. ISBN 9780125433228. doi: 10.1016/S0079-

7421(08)60043-2.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0079742108600432.

[16] Gregor Engels and Martin Erwig. Classsheets: automatic generation of spreadsheet

applications from object-oriented specifications. pages 124–133, 01 2005.

[17] Monica Figuera. ZenSheet studio: a spreadsheet-inspired environment for reac-

tive computing. In Proceedings Companion of the 2017 ACM SIGPLAN Interna-

tional Conference on Systems, Programming, Languages, and Applications: Software

for Humanity, pages 33–35, Vancouver BC Canada, October 2017. ACM. ISBN

9781450355148. doi: 10.1145/3135932.3135949.

URL: https://dl.acm.org/doi/10.1145/3135932.3135949.

[18] John Freeman, Jaakko Järvi, and Gabriel Foust. HotDrink: a library for web user

interfaces. ACM SIGPLAN Notices, 48(3):80–83, April 2013. ISSN 0362-1340, 1558-

1160. doi: 10.1145/2480361.2371413.

URL: https://dl.acm.org/doi/10.1145/2480361.2371413.

[19] Felienne Hermans and Emerson Murphy-Hill. Enron’s Spreadsheets and Related

Emails: A Dataset and Analysis. In 2015 IEEE/ACM 37th IEEE International

48

http://link.springer.com/10.1007/3-540-44617-6_31
http://www.danbricklin.com/visicalc.htm
https://linkinghub.elsevier.com/retrieve/pii/S0079742108600432
https://dl.acm.org/doi/10.1145/3135932.3135949
https://dl.acm.org/doi/10.1145/2480361.2371413

Conference on Software Engineering, pages 7–16, Florence, Italy, May 2015. IEEE.

ISBN 9781479919345. doi: 10.1109/ICSE.2015.129.

URL: http://ieeexplore.ieee.org/document/7202944/.

[20] Felienne Hermans and Tijs van der Storm. TrueGrid: Code the Table, Tabulate

the Data. In Paolo Milazzo, Dániel Varró, and Manuel Wimmer, editors, Software

Technologies: Applications and Foundations, volume 9946, pages 388–393. Springer

International Publishing, Cham, 2016. ISBN 9783319502298 9783319502304. doi:

10.1007/978-3-319-50230-4 29.

URL: http://link.springer.com/10.1007/978-3-319-50230-4 29.

[21] Sheng-Yi Hsu, Yuan-Fu Lou, Shing-Yun Jung, and Chuen-Tsai Sun. Shelves: A User-

Defined Block Management Tool for Visual Programming Languages. In Regina

Bernhaupt, Girish Dalvi, Anirudha Joshi, Devanuj K. Balkrishan, Jacki O’Neill,

and Marco Winckler, editors, Human-Computer Interaction – INTERACT 2017,

volume 10515, pages 335–344. Springer International Publishing, Cham, 2017. ISBN

9783319676869 9783319676876. doi: 10.1007/978-3-319-67687-6 22.

URL: https://link.springer.com/10.1007/978-3-319-67687-6 22.

[22] Bas Jansen. Polaris: Providing context aware navigation in spreadsheets. In 2016

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

pages 228–229, Cambridge, United Kingdom, September 2016. IEEE. ISBN

9781509002528. doi: 10.1109/VLHCC.2016.7739690.

URL: http://ieeexplore.ieee.org/document/7739690/.

[23] Bas Jansen and Felienne Hermans. XLBlocks: a Block-based Formula Editor for

Spreadsheet Formulas. In 2019 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), pages 55–63, Memphis, TN, USA, October 2019.

IEEE. ISBN 9781728108100. doi: 10.1109/VLHCC.2019.8818748.

URL: https://ieeexplore.ieee.org/document/8818748/.

[24] Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob Smith. Al-

gorithms for user interfaces. In Proceedings of the eighth international conference

on Generative programming and component engineering, GPCE ’09, pages 147–156,

New York, NY, USA, October 2009. Association for Computing Machinery. ISBN

9781605584942. doi: 10.1145/1621607.1621630.

URL: https://doi.org/10.1145/1621607.1621630.

[25] Leo Kelion. Excel: Why using Microsoft’s tool caused Covid-19 results to be lost.

URL: https://www.bbc.com/news/technology-54423988.

49

http://ieeexplore.ieee.org/document/7202944/
http://link.springer.com/10.1007/978-3-319-50230-4_29
https://link.springer.com/10.1007/978-3-319-67687-6_22
http://ieeexplore.ieee.org/document/7739690/
https://ieeexplore.ieee.org/document/8818748/
https://doi.org/10.1145/1621607.1621630
https://www.bbc.com/news/technology-54423988

[26] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view

controller user interface paradigm in smalltalk-80. J. Object Oriented Program., 1

(3):26–49, aug 1988. ISSN 0896-8438.

[27] Björn Lisper and Johan Malmstrm. Haxcel: A spreadsheet interface to haskell. 11

2002.

[28] Carol McGuinness. Problem representation: The effects of spatial arrays. Memory

& Cognition, 14(3):270–280, May 1986. ISSN 0090-502X, 1532-5946. doi: 10.3758/

BF03197703.

URL: http://link.springer.com/10.3758/BF03197703.

[29] Jorge Mendes and João Saraiva. Tabula: A Language to Model Spreadsheet Tables.

2017. doi: 10.48550/ARXIV.1707.02833.

URL: https://arxiv.org/abs/1707.02833.

[30] Mauricio Verano Merino, Jurgen Vinju, and Mark van den Brand. DRAFT-What

you always wanted to know but could not find about block-based environments.

arXiv:2110.03073 [cs], October 2021.

URL: http://arxiv.org/abs/2110.03073. arXiv: 2110.03073.

[31] Gary Miller, Felienne Hermans, and Robin Braun. Gradual structuring: Evolving

the spreadsheet paradigm for expressiveness and learnability. In 2016 15th Interna-

tional Conference on Information Technology Based Higher Education and Training

(ITHET), pages 1–8, Istanbul, Turkey, September 2016. IEEE. ISBN 9781509007783.

doi: 10.1109/ITHET.2016.7760759.

URL: http://ieeexplore.ieee.org/document/7760759/.

[32] Rajeev Pandey and Margaret Burnett. Is it easier to write matrix manipulation pro-

grams visually or textually? an empirical study. In IEEE Symp. Visual Languages,

pages 24–27, 1993.

[33] Tie Cheng Mary Pat Campbell Patrick O’Beirne, Felienne Hermans. EuSpRIG

Horror Stories.

URL: http://www.eusprig.org/horror-stories.htm.

[34] Marian Petre and Thomas R. G. Green. Learning to read graphics: Some evidence

that ’seeing’ an information display is an acquired skill. J. Vis. Lang. Comput., 4:

55–70, 1993.

[35] John M. Polich and Steven H. Schwartz. The effect of problem size on representation

in deductive problem solving. Memory & Cognition, 2(4):683–686, July 1974. ISSN

50

http://link.springer.com/10.3758/BF03197703
https://arxiv.org/abs/1707.02833
http://arxiv.org/abs/2110.03073
http://ieeexplore.ieee.org/document/7760759/
http://www.eusprig.org/horror-stories.htm

0090-502X, 1532-5946. doi: 10.3758/BF03198139.

URL: http://link.springer.com/10.3758/BF03198139.

[36] H. Rudy Ramsey, Michael E. Atwood, and James R. Van Doren. Flowcharts

versus program design languages: an experimental comparison. Communica-

tions of the ACM, 26(6):445–449, June 1983. ISSN 0001-0782, 1557-7317. doi:

10.1145/358141.358149.

URL: https://dl.acm.org/doi/10.1145/358141.358149.

[37] Carmen M Reinhart and Kenneth S Rogoff. Growth in a Time of Debt. Ameri-

can Economic Review, 100(2):573–578, May 2010. ISSN 0002-8282. doi: 10.1257/

aer.100.2.573.

URL: https://pubs.aeaweb.org/doi/10.1257/aer.100.2.573.

[38] Ben G. Rittweger and Eoin Langan. Spreadsheet Risk Management in Organisations.

2010. doi: 10.48550/ARXIV.1009.2775.

URL: https://arxiv.org/abs/1009.2775.

[39] D.A. Scanlan. Structured flowcharts outperform pseudocode: an experimental

comparison. IEEE Software, 6(5):28–36, September 1989. ISSN 0740-7459. doi:

10.1109/52.35587.

URL: http://ieeexplore.ieee.org/document/35587/.

[40] Peter Sestoft. What Is a Spreadsheet, pages 1–24. 2014.

[41] Gabriele Tomassetti. Are You Abusing Excel? You Need Something Different.

URL: https://tomassetti.me/excel-and-dsls/.

[42] David Wakeling. Spreadsheet functional programming. Journal of Functional

Programming, 17(1):131–143, January 2007. ISSN 0956-7968, 1469-7653. doi:

10.1017/S0956796806006186.

URL: https://www.cambridge.org/core/product/identifier/S0956796806006186/type/

journal article.

[43] K.N. Whitley. Visual Programming Languages and the Empirical Evidence For and

Against. Journal of Visual Languages & Computing, 8(1):109–142, February 1997.

ISSN 1045926X. doi: 10.1006/jvlc.1996.0030.

URL: https://linkinghub.elsevier.com/retrieve/pii/S1045926X96900300.

51

http://link.springer.com/10.3758/BF03198139
https://dl.acm.org/doi/10.1145/358141.358149
https://pubs.aeaweb.org/doi/10.1257/aer.100.2.573
https://arxiv.org/abs/1009.2775
http://ieeexplore.ieee.org/document/35587/
https://tomassetti.me/excel-and-dsls/
https://www.cambridge.org/core/product/identifier/S0956796806006186/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796806006186/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S1045926X96900300

Appendix A

Code generated from Blockly specifications

Table A.1: Correspondence between visual Blockly specifications in our tool, HotDrink
code, and JavaScript/HotDrink API.

52

53

54

55

	Introduction
	Thesis Outline

	Background
	Constraint Systems
	Block-based Specifications
	Empirical Evidence For and Against Visual programming Languages
	Spreadsheets

	Constaint systems in spreadsheets
	Excel Add-ins
	HDTables

	Implementation
	Architecture
	Add-in implementation
	Blockly implementation
	Code generation

	User study
	Experienced Programmers: Results
	Non-programmers: Results
	Feedback
	Summary

	Related work
	XLBlocks
	Block Shelves
	Polaris
	TrueGrid
	ZenSheet Studio
	Spreadsheet Functional Programming
	Gradual Structuring
	Object Oriented Functional Spreadsheets
	SpreadsheetDoc
	ClassSheets
	Tabula

	Discussion and Future Work
	Bibliography
	Code generated from Blockly specifications

