
University of Bergen
Department of informatics

An efficient implementation
of a test for EA-equivalence

Marie Heggebakk

May, 2022

ii

Acknowledgments

First of all, I would like to thank my supervisors, Lilya Budaghyan and Niko-
lay Kaleyski at the Selmer Center for their guidance and support throughout
my thesis.

A special thanks to Nikolay for helping me formulate my thesis, always
being available and for answering all my questions. His involvement and
encouragement have been highly appreciated and invaluable. I will never
forget all our epic debugging sessions.

I would also want to thank my family and friends for their support and
believing in me.

Last, but not least, I would like to thank my boyfriend, St̊ale, for always
being there for me, and his endless support and encouragement throughout
the last year.

Marie Heggebakk
Bergen, 2022

ii

Abstract

We implement an algorithm for testing EA-equivalence between vectorial
Boolean functions proposed by Kaleyski in the C programming language,
and observe that it reduces the running time (as opposed to the original
Magma implementation of the algorithm) necessary to decide equivalence
up to 300 times in many cases. Our implementation also significantly re-
duces the memory usage, and makes it possible to run the algorithms for
dimensions from 10 onwards, which was impossible using the original im-
plementation due to its memory consumption. Our approach allows us to
reconstruct the exact form of the equivalence and to prove that two given
functions are equivalent (for comparison, computing invariants for the func-
tions, which is the approach typically used in practice, only allows us to
show that two functions are not equivalent). Furthermore, our approach
works for functions of any algebraic degree, while most existing approaches
(such as invariants and other algorithms for EA-equivalence) are restricted
to the quadratic case.

We then adapt Kaleyski’s algorithm to test for linear and affine equiv-
alence instead of EA-equivalence. We supply an implementation in C of
this procedure as well. As an application, we show how this method can
be used to test quadratic APN functions for EA-equivalence through the
linear equivalence of their orthoderivatives. We observe that by taking this
approach, we can reduce the time necessary for deciding EA-equivalence up
to 20 times (as compared with our efficient C implementation from the pre-
vious paragraph). The downside compared to Kaleyski’s original algorithm
is that this faster method makes it difficult to recover the exact form of the
EA-equivalence between the tested APN functions. We confirm this by run-
ning some computational experiments in dimension 6, and observing that
only one out of all possible linear equivalences between the orthoderivatives
corresponds to the EA-equivalence between the APN functions in question.
To the best of our knowledge, this is the first investigation into the exact
relationship between the EA-equivalence of quadratic APN functions and
the affine equivalence of their orthoderivatives given in the literature.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Vectorial Boolean functions 3

2.1.1 Algebraic normal form (ANF) 5
2.1.2 Univariate representation 6
2.1.3 Walsh Transform . 7

2.2 Cryptographic Properties . 7
2.2.1 Algebraic degree . 8
2.2.2 Differential uniformity 9
2.2.3 Nonlinearity . 9

2.3 Equivalence Relations . 10
2.3.1 Linear and Affine equivalence 11
2.3.2 EA-equivalence . 12
2.3.3 CCZ-equivalence . 12

2.4 Testing equivalence relations 13
2.4.1 Known approaches for testing equivalence 13
2.4.2 Invariants . 14

3 Implementation 19
3.1 The original implementation 19
3.2 About the implementation . 20

3.2.1 Structures . 21
3.2.2 Functions . 24
3.2.3 How to use the program 28
3.2.4 Computational results 29

4 Testing Linear and Affine equivalence 35
4.1 Introduction . 35

iii

4.2 Algorithm for testing linear equivalence 36
4.3 Implementation and experimental results 38

5 Conclusion 41

Bibliography 42

iv

Chapter 1

Introduction

Cryptographically optimal functions (such as APN functions) are typically
classified up to equivalence relations such as CCZ-equivalence and EA-
equivalence. This reduces the number of functions that have to be consid-
ered and makes searching for them easier. However, this raises the practical
problem of testing whether a given pair of functions is equivalent. This is
crucial to e.g. constructing new APN functions, since an APN function is
only considered to be new if it is inequivalent to all currently known ones.

Testing CCZ- and EA-equivalence of vectorial Boolean functions is a very
hard computational problem. At present, no efficient way exists for testing
CCZ-equivalence from first principles. It is possible to test CCZ-equivalence
through linear codes, but this only works reliably below dimension 10; for
dimensions 10 and above, this approach can give false negatives. In fact,
this method cannot be used for dimensions greater than 10 at all due to its
huge memory consumption (even on our department server having around
500 GB of memory). In practice, it can be shown that a given pair of
functions are inequivalent using invariants such as the Γ- and ∆-rank, or the
differential spectrum of the orthoderivative. One issue with this approach,
is that invariants can only be used to show that functions are inequivalent (if
they have distinct values of a given invariant); it is not possible to prove that
two functions are equivalent in this way. Furthermore, the known invariants
can be restrictive with respect to their use cases: the Γ- and ∆-rank, for
instance, are only usable up to dimension 10, and are quite slow to compute;
the orthoderivatives are only defined in the case of quadratic APN functions.

1

In many cases (such as for quadratic APN functions), testing CCZ-
equivalence can be reduced to testing other equivalence relations such as EA-
equivalence. Testing EA-equivalence is possible using linear codes as well,
but this approach has the same problem as in the case of CCZ-equivalence.
Recently, an algorithm for testing EA-equivalence from first principles (with-
out going through linear codes) was proposed by Kaleyski. Realizing an
efficient implementation of this algorithm was left as a problem for future
work.

In this thesis, we implement Kaleyski’s algorithm in C, and observe
that this implementation is significantly faster than the existing proof of
concept implementation in Magma provided by Kaleyski. More precisely,
our implementation is up to 300 times faster, and more memory efficient
than the Magma one. Furthermore, our implementation has a significantly
lower memory consumption, and can be used in dimensions n ≥ 10 which
was impossible using the Magma implementation. Besides testing whether
two functions are EA-equivalent, our approach can recover the exact form
of the equivalence. We conduct computational experiments and summarize
the running times in order to give a clear picture of how much more efficient
our C implementation is.

We also know that if two quadratic APN functions are EA-equivalent,
then their orthoderivatives are linear equivalent. To date, there is no effi-
cient algorithm for testing affine or linear equivalence in the general case.
We adapt Kaleyski’s algorithm to the case of testing linear and affine equiv-
alence, and implement this new procedure in C. We test its efficiency by
applying it to the orthoderivatives of some of the known quadratic APN
functions. We observe that by doing so, we can cut down the computation
time for deciding EA-equivalence by another factor of up to 20 times (as
opposed to the C implementation of Kaleyski’s algorithm discussed above).
Unfortunately, we also observe that reconstructing the exact form of the EA-
equivalence is very difficult in this way, and if this is necessary, a different
algorithm should be used. Nonetheless, the most frequent use case involves
merely testing whether two given functions are equivalent or not, and then
our newly developed procedure can significantly reduce the running times.

We provide open source implementations of both algorithm online.

2

Chapter 2

Background

2.1 Vectorial Boolean functions

Let us denote by F2 = {0, 1} the finite field of two elements, and by Fn2
the vector space of dimension n over F2. We consider functions that take n
binary inputs (that is, zeros and ones) and produce a single binary output,
i.e. functions from Fn2 to F2. Such a function is called an (n,1)-function,
also known as a Boolean function. Any information can be represented
in binary, i.e. as a sequence of binary values. Therefore, any data can be
expressed using Boolean functions. Because of this, Boolean functions are
widely used in many areas within mathematics and computer science.

A Boolean function f gives only one binary output. If we need to out-
put more than a single bit of data, it is necessary to use several Boolean
functions. For instance, if we need to output m bits of data, we would
need m Boolean functions f1, f2, . . . , fm. By combining these into a vector
F = (f1, f2, . . . , fm), we obtain what is called an (n,m)-function, taking n
binary inputs and producing m binary outputs. In other words, we obtain a
function from Fn2 to Fm2 . This is also known as a vectorial Boolean func-
tion, and the Boolean functions f1, f2, . . . , fm are called the coordinate
functions of F .

The nonzero linear combinations of the coordinate functions are called
the component functions of F . Thus, every component is a coordinate

3

but not every coordinate is a component. The component functions of a
vectorial Boolean function are needed for the definition of nonlinearity which
we will give later. For example: if F = (f1, f2, f3) has the coordinates f1, f2
and f3, then the components would be f1, f2, f3, f1 + f2, f1 + f3, f2 + f3 and
f1 + f2 + f3. Since every component function is the sum of a subset of the
coordinate functions of F and there are n coordinate functions in total, we
can represent each component function by an n-dimensional binary vector.
For instance, f1 + f3 for F = (f1, f2, f3) can be represented as b = (1, 0, 1)
since the first an last coordinate occur in the sum, but the second one
does not. We denote the component functions of F by Fb with b ∈ Fn2 for
b 6= (0, 0, . . . , 0).

The easiest way to represent a Boolean function or a vectorial Boolean
function is with a Truth Table. The Truth Table explicitly lists the output
for every possible input to the function. An example of a Truth Table of a
Boolean function is given in Table 2.1 and of a vectorial Boolean function
in Table 2.2. Table 2.1 represents the Boolean function f(x1, x2, x3) =
x1 + x2 + x3 and Table 2.2 represents the (4, 2)-function F = (f1, f2) with
f1(x1, x2, x3, x4) = x1 + x2 and f2(x2, x2, x3, x4) = x3 + x4.

When working with (n,m)-functions on a computer, we can represent
their truth table as a list of integers between 0 and 2m − 1. To do this,
we identify each vector of Fm2 with the integer that is its binary expansion.
For instance, the vector (1, 0, 0, 1, 1) would be represented by the integer
24 +21 +20 = 19. The truth table can then be written in a file as a sequence
s0, s1, s2, . . . , s2n−1 of integers, where si is the value of the function for the
input vector corresponding to the integer i.

x1 x2 x3 f(x1, x2, x3)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 2.1: Truth Table of an (3, 1)-function

4

x1 x2 x3 x4 f1(x1, x2, x3, x4) f2(x1, x2, x3, x4)
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 0 1 0 1
1 1 1 0 0 1
1 1 1 1 0 0

Table 2.2: Truth Table of an (4, 2)-function

The downside with this kind of representation is that the size of the truth
table becomes large even for relatively small values of n. For n = 20, the
table would end up with 220 = 1 048 576 entries. Because of this, it may be
better to use other representations that can be more compact than the truth
table, such as the Algebraic normal form and the univariate representation.

2.1.1 Algebraic normal form (ANF)

The Algebraic normal form (ANF) of an (n, 1)-function f is the poly-
nomial

F (x1, . . . , xn) =a∅ + a1x1 + · · ·+ anxn+
a1,2x1x2 + a1,3x1x3 + · · ·+ an−1,nxn−1xn+
a1,2,3x1x2x3 + a1,2,4x1x2x4 + · · ·+ an−2,n−1,nxn−2xn−1xn+
· · ·+ a1,2,3,...,nx1x2x3 · · ·xn,

with n binary variables x1, x2, . . . , xn, where the coefficients a∅, a1, . . . , a1,2,...,n
are binary. Any (n, 1)-function has a uniquely defined ANF.

5

We can see for example that the (n, 1)-function given in Table 2.1 can
be represented as f(x1, x2, x3) = x1 + x2 + x3. Since this function has three
inputs, the ANF consists of 23 = 8 terms, but only three of them have
non-zero coefficients, and so the ANF is quite short.

Vectorial Boolean functions can be represented in a similar way using
the ANF, except that the coefficients are vectors of bits. For instance,
the function given in Table 2.2 will be represented as F (x1, x2, x3, x4) =
(1, 0)x1 +(1, 0)x2 +(0, 1)x3 +(0, 1)x4. Note that in the worst case, the ANF
of a (4, 2)-function could have 24 = 16 terms, but in this case only 4 of
them have non-zero coefficients. Thus, in many cases, the ANF can be more
compact than the Truth Table, which always has 2n entries. Just like in the
case of (n, 1)-functions, any (n,m)-function has a uniquely defined ANF.

Another benefit of the ANF is that it is easy to compute important
properties such as the algebraic degree, which is defined in the next section.

2.1.2 Univariate representation

In the particular case when n = m, (n, n)-functions can be conveniently
expressed using univariate polynomials over a finite field. Let F2n denote
the finite field with 2n elements for some positive integer n. Recall that Fn2
can be identified with F2n , so that the vectors of Fn2 can be interpreted as
finite field elements. Then any (n, n)-function can be seen as a function from
F2n to itself, and this allows it to be uniquely represented as a univariate
polynomial over F2n of the form

2n−1∑
i=0

aix
i, ai ∈ F2n .

Some important classes of (n, n)-functions, such as APN functions have a
very simple univariate representation; in fact, almost all known construc-
tions of APN functions use the univariate representation.

6

2.1.3 Walsh Transform

Vectorial Boolean functions can also be represented with the Walsh trans-
form. The Walsh transform of a vectorial Boolean function F is the
function WF that takes a pair of elements from F2n×F2m as input, and out-
puts an integer in Z, i.e. WF : F2n × F2m → Z. The formula for computing
the values of the Walsh transform of an (n,m)-function F is

WF (a, b) =
∑
x∈F2n

(−1)Trm(bF (x))+Trn(ax),

where Trn(x) is the absolute trace function Trn(x) = x+x2+x22 +· · ·+x2n−1 .

The multiset {|WF (a, b)| : a, b ∈ F2n} of the absolute values of WF is
called the extended Walsh spectrum of F .

The Walsh transform is invertible, i.e. if we know all the values WF (a, b)
for all a and b, then we can uniquely reconstruct F ; this is why the values
of WF can be seen as a representation of F . The Walsh transform can also
be used to express many of the important properties of vectorial Boolean
functions such as their differential uniformity and nonlinearity, which we
will see later.

2.2 Cryptographic Properties

Boolean functions and vectorial Boolean functions play an important role
in the design and analysis of cryptographic primitives. In cryptography,
the importance of secure functions that are resilient to different types of
cryptanalytic techniques is extremely high. There are different types of
attacks that exploit weaknesses in functions used in block ciphers. If it is
possible to exploit patterns and regularities in the behavior of a function,
an attacker can be able to crack the cipher. This is why the design and
analysis of cryptographic primitives crucially relies on (n,m)-functions with
high cryptographic security, and researchers in the area work on finding new
functions with optimal values of various cryptographic properties. In this
section, we introduce some of the most important cryptographic properties
for (n,m)-functions that are also relevant to our work.

7

2.2.1 Algebraic degree

The algebraic degree, denoted deg(F), is one of the essential properties of
a vectorial Boolean function and it measures the resistance of the function
to higher-order differential attacks. If a function F is given in ANF, we can
quickly compute deg(F), which is the largest number of variables in any
term with a non-zero coefficient. Suppose that we have the ANF

F (x1, x2, x3, x4) = (1, 0, 1, 0)x1x3x4+(1, 1, 1, 1)x3+(0, 1, 1, 0)x3x4+(1, 1, 0, 1).

We can see that there are four terms with non-zero coefficients: x1x3x4, x3,
x3x4 and the constant term 1. To find the degree of these terms, we look at
the number of variables that they contain. Therefore, the degree of the first
term, x1x3x4, is equal to 3; the degree of the second term x3 is 1, and the
degree of the third term x3x4 is 2, while the degree of the constant term is,
of course, 0. The algebraic degree of F is then deg(F) = 3.

It is also easy to compute the algebraic degree from the univariate rep-
resentation, in which case it is expressed in terms of the binary weights of
the exponents. For instance, the number 19 can be represented in binary as
10011. Since it has three non-zero bits, its binary weight is 3. The algebraic
degree of a function F (x) =

∑
aix

i given in univariate form is then the
largest binary weight of an exponent i with ai 6= 0.

The algebraic degree can be used to define some important classes of
functions that are used throughout the literature. An affine function is an
(n,m)-function where deg(F) ≤ 1. Equivalently, it has the property that

F (x) + F (y) + F (z) = F (x+ y + z)

for all x, y, z ∈ Fn2 . An affine function F where F (0) = 0 is called linear
and has the property that

F (x) + F (y) = F (x+ y)

for all x, y ∈ Fn2 . A quadratic function is a function where deg(F) = 2.

It is easy to see that an affine function is, in fact, a linear function plus a
constant. Linear and affine functions play an essential role in various trans-
formations such as equivalence relations. However, they act predictably, and
so they are not suitable for cryptographic purposes by themselves since ci-
phers should not have any obvious patterns or regularities that the attackers
can exploit.

8

2.2.2 Differential uniformity

One of the most important cryptographic properties of an (n,m)-function
is the differential uniformity, which describes how strong the correlation
between the input and output differences to a function is. The differential
uniformity determines the resistance against differential cryptanalysis, which
is a powerful attack applied to block ciphers [1]. The derivative DaF of
F , in the direction a ∈ Fn2 is the (n,m)-function

DaF (x) = F (a+ x)− F (x).

Since addition and subtraction are the same operation over Fn2 , this is usually
written as

DaF (x) = F (a+ x) + F (x).

Let δF (a, b) denote the number of solutions x ∈ Fn2 to the equationDaF (x) =
b, i.e.

δF (a, b) = #{x : DaF (x) = b}.

The differential uniformity, ∆F , of an (n,m)-function F is the largest
value of δF (a, b), i.e.

∆F = max{δF (a, b) : a ∈ Fn2 , b ∈ Fm2 |a 6= 0}.

The multiset of all possible values of δF (a, b) for all a ∈ Fn2 , b ∈ Fm2 where
a 6= 0 is called the differential spectrum of F .

To provide good resistance against differential attacks, δF should be as
low as possible. We are mostly interested in the case when n = m. The
smallest possible value in this case is δF = 2. Suppose a function has δF = 2.
Then it is called an almost perfect nonlinear (APN) function, which
provides the best possible resistance against differential attacks.

2.2.3 Nonlinearity

Another powerful attack against block ciphers is the linear attack. The
linear attack attempts to approximate an (n, n)-function F used in a block
cipher by using a linear or an affine function. As mentioned above, linear
and affine functions behave predictably and can be easily analyzed.

9

Nonlinearity measures the distance between any component function Fb
of an (n, n)-function F and any affine (n, 1)-function A. The distance be-
tween any choice of Fb and A should be large in order to make approximation
difficult. To measure this distance, we use the notion of Hamming dis-
tance, which counts the number of inputs that two functions disagree on.
The Hamming distance is defined as

dH(F,G) = #{x ∈ Fn2 : F (x) 6= G(x)}.

We consider that the functions F and G are close to one another if the Ham-
ming distance is low. Using the Hamming distance, we can define the nonlin-
earity as follows. The nonlinearity of a Boolean function f with n variables
is the minimum Hamming distance between f and any affine Boolean func-
tion with n variables. Let us denote the set of all affine Boolean functions
on n variables by An. For a vectorial Boolean function F the nonlinearity
NL(F) is the minimum distance between any of its component functions Fb
and any affine Boolean function in An, i.e.

NL(F) = min {dH(Fb, l) : b ∈ F2n , b 6= 0, l ∈ An}.

It is known from [2] that the nonlinearity of any (n, n)-function F satisfies

NL(F) ≤ 2n−1 − 2(n−1)/2.

If a function attains this optimal value, it is called Almost Bent (AB).
An AB function provides the best resistance against linear cryptanalysis.
This optimal nonlinearity can only be achieved if n is odd, which makes AB
functions only exist for odd dimensions n. Any AB function is also APN,
which makes these function not only good against linear cryptanalysis, but
also against differential cryptanalysis. Even though all AB functions are
APN, not all APN functions are AB, but it is known that all quadratic
APN functions for odd n are AB [3].

2.3 Equivalence Relations

The number of (n,m)-functions grows exponentially as n increases, so that
it becomes extremely large even for small values of n. Because of this, the
number of functions needs to be reduced with the help of equivalence rela-
tions. There are many ways to define equivalence relations, but for them to

10

be useful in practice, they need to preserve the cryptographic properties that
we study, such as differential uniformity and nonlinearity. If two functions
F and G are equivalent, they are considered to be “the same”, which helps
to reduce the size of the search space and the number of functions that we
need to consider.

In this section, we introduce the most frequently used equivalence rela-
tions on vectorial Boolean functions. As we shall see, these relations form a
hierarchy of increasing generality. The relationship between the individual
equivalence relations is visualized in Figure 2.1.

CCZ

EA

Affine

Linear

Figure 2.1: Equivalence relations

2.3.1 Linear and Affine equivalence

The linear equivalence relation is one of the simplest equivalence relations
on (n,m)-functions. If a function F satisfies F (x) 6= F (y) for all x 6= y it
is called a permutation. Suppose that L1 and L2 are linear permutations of
Fn2 and Fm2 , respectively, and that L1 ◦ F ◦ L2 = G for two (n,m)-functions
F and G, where the symbol ◦ denotes functional composition. Then F and
G are said to be linear equivalent. If L1 and L2 are affine, then F and
G are called affine equivalent. Since linear functions are a special case of
affine functions, linear equivalence is a special case of affine equivalence, so
that if F and G are linear equivalent, then they are also affine equivalent,
but not necessarily vice-versa.

Linear and affine equivalence preserve a number of important crypto-
graphic properties, such as the differential uniformity, nonlinearity and the

11

algebraic degree. They also preserve the property of a function being a
permutation.

2.3.2 EA-equivalence

Extended Affine equivalence, or EA-equivalence, is rather similar to affine
equivalence, but it is more general because it allows for the addition of an
affine function. More precisely, we say that F and G are EA-equivalent if
A1 ◦ F ◦A2 +A = G, where A1, A2, A are affine functions, and A1, A2 are
permutations.

EA-equivalence preserves most of the important cryptographic proper-
ties, such as the differential uniformity, nonlinearity and algebraic degree,
but unlike affine equivalence it does not preserve the property of the func-
tion being a permutation. EA-equivalence is one of the most frequently used
relations together with CCZ-equivalence which is described below. CCZ-
equivalence is strictly more general than EA-equivalence, and it is currently
the most general known equivalence relation that preserves differential uni-
formity and nonlinearity. Because of this, APN functions are typically clas-
sified up to CCZ-equivalence. However, in many important cases, CCZ-
equivalence coincides with EA-equivalence.

For instance, we know by [4] that two quadratic APN functions are CCZ-
equivalent if and only if they are EA-equivalent. Most of the APN functions
that are known are quadratic, and because of this, EA-equivalence is almost
as important as CCZ-equivalence in the classification of APN functions.

2.3.3 CCZ-equivalence

Carlet-Charpin-Zinoviev equivalence, or CCZ-equivalence is the most gen-
eral equivalence relation that is used on APN functions. Two vectorial
Boolean functions F and G are called CCZ-equivalent, if there exists an
affine permutation that maps the graph of F , ΓF , to the graph of G, ΓG,
where ΓF = {(x, F (x)) : x ∈ Fn2} and ΓG = {(x,G(x)) : x ∈ Fn2}. CCZ-
equivalence is more general than EA-equivalence so that any two functions
that are EA-equivalent are also CCZ-equivalent, but not necessarily vice-
versa. In fact, CCZ-equivalence is known to be strictly more general than
EA-equivalence combined with taking inverses of permutations [5].

12

2.4 Testing equivalence relations

In the process of searching for new APN functions, it is important to check
that any newly found APN function is not equivalent to any of the pre-
viously known APN functions. Since APN functions are classified up to
CCZ-equivalence, a newly discovered function is only considered to be gen-
uinely new if it is CCZ-inequivalent to all currently known ones. However,
testing whether two given functions are CCZ-equivalent is a very hard prob-
lem. The only currently known approach is by testing the permutation
equivalence of linear codes. Invariants can also sometimes be used to show
that two given functions are inequivalent. We outline the currently available
methods for testing and deciding equivalences below.

2.4.1 Known approaches for testing equivalence

Linear codes

Given an (n, n)-function F , one can construct a matrix MF of the form

MF =

 1 1 1 1 · · · 1
0 1 α α2 · · · α2n−2

F (0) F (1) F (α) F (α2) · · · F (α2n−2)

 ,

where α is a primitive element of F2n . We can then define the linear code
CF by using the matrix MF as its parity-check matrix. Two linear codes
C1 and C2 are called permutation equivalent if there is a permutation π of
{1, 2, . . . , 2n} such that (x1, x2, . . . , x2n) is a codeword of C1 if and only if
(xπ(1), xπ(2), . . . , xπ(2n)) is a codeword of C2. It can be shown that F and G
are CCZ-equivalent if and only if their associated linear codes CF and CG
are permutation equivalent [6].

The advantage of linear codes is that coding theory is an old and more
developed discipline than the study of APN functions and therefore more
approaches and algorithms are known. However, testing permutation equiv-
alence takes a lot of time for dimensions n > 8, and testing for dimensions
n ≥ 9 can result in false negatives when the implementation runs out of

13

memory. This means that testing functions above n = 10 may not be possi-
ble to do reliably using our current resources, and so these functions cannot
be classified up to CCZ-equivalence directly.

One can also test EA-equivalence with linear codes, where the approach
is the same, but the associated codes have a different form. Unfortunately
this method has the same problems with memory, which can result in
false negatives. There are two other known approaches for testing EA-
equivalence. These do not go trough linear codes, but use invariants to
restrict and reduce the search space when trying to find the equivalence
between the two functions. Recalling that the vast majority of the known
APN functions are quadratic, and that EA-equivalence is the same as CCZ-
equivalence in the case of quadratic APN functions, this means that these
two algorithms can effectively be used to classify quadratic APN functions
up to CCZ-equivalence.

The two known algorithms use invariants to restrict the number of
guesses for the functions A1, A2 and A from the definition of EA-equivalence.
The first algorithm is due to Kaleyski, and is introduced in [7]. It is efficient
for APN functions in even dimensions n. A proof of concept implementation
in Magma is provided by Kaleyski, but an optimized implementation in a
low-level programming language (such as C) is left as a problem for future
work. Efficiently implementing this algorithm is the main focus of this the-
sis. Through writing a more sophisticated implementation of the algorithm
in C, we are able to reduce the running times more than 300 times. This
also has the advantage of making the implementation accessible since it does
not require proprietary software such as Magma.

The other algorithm, due to Canteaut et al., is introduced in [8]. Can-
teaut’s algorithm is based on an invariant called the Jacobian matrix which
is used to restrict the search space; however, while it is usable for both even
and odd dimensions n, it works only for quadratic functions. This shows
that, while similar in principle, the two algorithms handle distinct use cases.

2.4.2 Invariants

An invariant is a property that is preserved by an equivalence relation e.g.
if F and G are CCZ-equivalent, then both of them have the same value

14

for this property. The differential uniformity ∆F is an invariant for CCZ-
equivalence, which is why CCZ-equivalence is used to classify APN functions.

The most useful aspect of invariants is that they can show that two given
functions F and G are inequivalent, e.g. if a property P is an invariant under
CCZ-equivalence, and if P (F) 6= P (G), we can immediately conclude that
F and G are not CCZ-equivalent. However, if P (F) = P (G), this does not
give us any useful information.

One of the benefits of invariants is that they are concrete values, so that
we can pre-compute the invariants of given functions and store them. This
way it is only necessary to compute the value once for each function, and
then if one wants to compare a newly found function for equivalence against
the known ones, one can start by computing the value of an invariant for
it. If the new value is not among the known values, the function is not
equivalent to any of the currently known functions. If the invariant matches
some known value, one needs to conduct further equivalence tests only for
those functions with the same value of the invariant.

Other algorithms

Efficient algorithms that do not use linear codes are known for some spe-
cial cases of EA- and linear equivalence. For instance, the algorithm due
to Biryukov et al. [9] can test linear and affine equivalence, but only if the
tested functions are bijective. A suite of algorithms for testing so-called
“restricted EA-equivalence” is described in [10]; unfortunately, these algo-
rithms cannot handle the general case of linear equivalence, or any of the
more general relations such as EA-equivalence or CCZ-equivalence. Finally,
the algorithm due to Canteaut [8] mentioned above can test EA-equivalence
between vectorial Boolean functions of any dimension, but only when the
tested functions are quadratic.

Orthoderivatives

An important invariant under EA-equivalence is the so-called orthoderiva-
tive. The differential spectrum of the orthoderivative is an EA-invariant that

15

almost always distinguishes EA-inequivalent functions [8]. An orthoderiva-
tive of an (n,m)-function F is an (n,m)-function πF such that πF (0) = 0
and for any α ∈ F2n\{0} and any x ∈ F2n , we have πF (α) 6= 0 and

πF (α) · (F (x) + F (α+ x) + F (α) + F (0)) = 0,

where “·” denotes a scalar product on F2n .

Suppose F is a quadratic function, then it has a unique orthoderivative
if and only if F is APN. If F and G are EA-equivalent quadratic APN (n, n)-
functions, then their orthoderivatives, πF and πG, are affine equivalent but
not necessarily APN [8]. Because of this, invariants that are not very useful
for classifying APN functions by themselves, such as the extended Walsh
spectrum and the differential spectrum, become useful for distinguishing
EA-inequivalent APN functions if applied to their orthoderivatives.

The Walsh spectra and the differential spectra of the orthoderivatives
take distinct values on almost all EA-inequivalent classes of quadratic APN
functions, which means that the orthoderivatives can be used as an EA-
equivalence test in practice. In our work, we exploit the fact that the or-
thoderivatives of EA-equivalent functions must be affine equivalent and use
this to design an algorithm for testing EA-equivalence through the affine
equivalence of the orthoderivatives. This allows us to cut down the com-
putation time significantly (as opposed to the approach of directly testing
EA-equivalence), although it does have the drawback of making it difficult
to recover the exact form of the equivalence.

Γ- and ∆-rank

One drawback of the orthoderivatives is that they can only be used for
quadratic APN functions. In the case of functions of higher algebraic de-
gree, or functions that are not APN, we cannot apply orthoderivatives in
order to disprove equivalence. The Γ- and ∆-rank are defined in [11] as the
ranks of the incidence matrices of certain combinatorial designs that can
be associated with vectorial Boolean functions. We do not go into details
here since the definition is rather technical. The two ranks, however, can be
computed for any vectorial Boolean function, and are invariant under CCZ-
equivalence. However, computing these invariants is resource intensive: as
indicated in e.g. [12], computing a Γ-rank for dimension n = 10 can take

16

up to a week in some cases, while ∆-ranks tend to be even harder to com-
pute. Furthermore, there are instances of functions having the same Γ- and
∆-rank that are not CCZ-equivalent. Thus, an equivalence test is necessary
in this case to test such functions for equivalence.

For instance, functions 1.8 and 1.11 over F28 from the switching class
representatives from [11] have the same value of the both the Γ-rank and
the ∆-rank, and hence cannot be distinguished in this way. Running our
EA-equivalence test, however, can establish their inequivalence in around 30
seconds.

17

18

Chapter 3

Implementation

The main goal of this thesis is to write an efficient implementation of [7],
referred to as Kaleyski’s algorithm. A proof of concept implementation in
Magma was already developed alongside [7], but an efficient implementation
of the algorithm was left as a problem for future work. As part of this master
project, we realize such an implementation in C, and, as we observe from
our computational experiments, the running times decrease more than 300
times (in some cases) as compared to the Magma implementation. The
reduced memory requirements of our efficient implementation also make it
usable in dimensions 10 and above, which was not possible with the Magma
program. Furthermore, in the following chapter we propose a modification
of Kaleyski’s algorithm for testing linear and affine equivalence. We observe
that by applying it to the orthoderivatives of quadratic APN functions, we
can further reduce the computation time needed for deciding EA-equivalence
up to 20 times (in some cases) as compared to the C implementation.

3.1 The original implementation

The original implementation of Kaleyski’s algorithm is in the Magma al-
gebra system[13] as a proof of concept. The benefit of using a high-level
programming language such as Magma is that it includes implementations
of different useful procedures and structures, making the implementation

19

easier. One downside with Magma is that it is not readily available since
it is proprietary. A more serious problem is that because of its high-level
philosophy, the running times of the implementation are quite long; indeed,
Magma is good for prototyping and testing ideas, but in order to obtain
optimal efficiency, a lower-level programming language has to be used.

By implementing Kaleyski’s algorithm in C, we can avoid many of the
problems that occur in the original implementation, such as accessibility
(the implementation can now be run on any computer and does not require
special software) and memory consumption (the Magma implementation
can run out of memory in some cases for dimensions n ≥ 10), and we can
significantly reduce the running times.

Based on our experimental results, we can see that our implementation
is much more efficient in time and memory than the original Magma imple-
mentation. This allows it to be used efficiently for dimensions such as 10
and 12, which was impossible using the Magma version, and is still outside
the capabilities of other algorithms such as the code isomorphism test. We
give a detailed discussion and comparison of the running times for the com-
putation of Kaleyski’s implementation in Magma and our implementation
in C in Section 3.2.4.

3.2 About the implementation

To be able to write an efficient implementation of Kaleyski’s algorithm, an
important first consideration is the programming language. As mentioned
above, Magma is not accessible, and results in longer running times.

By choosing the C programming language [14], we gain more control
of the memory allocation and end up with faster running times. Also, C
is freely distributed software. Finite field arithmetic can be performed ex-
tremely quickly in C since we only need finite field addition, which can be
implemented as bitwise XOR. However, programming in C does come with
certain trade-offs. Since C is not an Object-oriented programming (OOP)
language, it does not provide objects such as lists, dynamically allocated
arrays, sets, and other structures that can be very useful and simplify the
implementation. The language does not provide any heap or garbage col-
lection. In practice, all of these structures, objects, and features need to

20

be implemented from scratch. All of this has the consequence that writing
an implementation in C is a much harder and more laborious process than
doing so in e.g. Magma. Nonetheless, we believe that the improvement in
running times is ultimately worth it.

In the following, we give an overview of the structure of our implementa-
tion, including a brief description of the most important auxiliary structures
and functions. For more details, the reader can refer directly to our imple-
mentation which is available at [15].

3.2.1 Structures

Since C is not an OOP language, most of the structures (such as sets,
multi-sets, linked lists, etc.) need to be implemented from scratch. All
of the implemented structures are defined in the header file structures.h.
Here one can find implementations of the structures TruthTable, Partition,
WalshTransform and Linkedlist.

One of the most fundamental and widely used structures in our imple-
mentation is the TruthTable which is used to represent a vectorial Boolean
function. The TruthTable needs to store two things: the elements of a func-
tion F , and the dimension, n, of F . The definition of this structure is given
in Listing 3.1 below.

Listing 3.1: Structure TruthTable
typedef struct TruthTable {

size_t n; // Dimension of the function
size_t * elements ; // All the elements of the function

} TruthTable ;

The TruthTable needs to allocate enough memory so that it can hold all
the 2n elements. When memory is allocated, it is important to deallocate it
at some point, preferably as soon as possible. In addition, truth tables will
be typically stored in text files, and need to be converted into the internal
representation shown in Listing 3.1. In order to make all of this easier, the
same header file contains the following auxiliary functions:

• initTruthTable: allocates enough memory to store 2n elements and
sets the dimension, n;

21

• parseTruthTable: reads a file which contains a truth table and stores
the information in a structure of the type TruthTable. In this case, the
file has to be of the following form: the first line of the file contains a
single number, which is the dimension n. The second line contains 2n
integers separated by spaces which represent the values of the function
F on F (0), F (1), F (2), . . . , F (2n − 1). We recall that the elements of
F2n can be represented as integers between 0 and 2n−1 by identifying
their coordinate vectors with the binary expansion of integers.

• printTruthTable: given a truth table, prints it out to the console. The
first line represents the dimension n and the second line contains all
2n values.

• destroyTruthTable: frees the memory allocated to a TruthTable.

Another structure that we implement is Partition which stores a par-
tition of F2n . Recall that in order to compute the list of possible outer
permutations L1, we partition the field F2n into “buckets” with respect to
the multiplicities of certain elements. The Partition structures must there-
fore contain the number of elements in each “bucket”, the multiplicities of
the elements of F2n , and the total number of “buckets”. For instance, for the
Gold function in dimension 6, Partition holds 3 “buckets”, with the multi-
plicities 12160, 4992 and 3456. The number of elements in each “bucket” is
1, 21 and 42, respectively. The definition of this structure is given below in
Listing 3.2.

Listing 3.2: Structure Partition
typedef struct Partition {

size_t numberOfBuckets ;
size_t * multiplicities ;
size_t * bucketSizes ;
size_t ** buckets ;

} Partition ;

We define several auxiliary functions for this structure:

• initPartition: allocates the memory needed to represent the structure;

• partitionFunction (described in more detail below): given a function
F (represented as a truth table), computes the partition of F2n into
“buckets” and stores it in the structure;

22

• printPartition: given a partition, prints it out to the console; the first
line is the number of “buckets” n, and each of the following n lines
lists all elements in the corresponding bucket;

• destroyPartition: deallocates the memory used by the structure.

The program also uses linked lists, and since C does not include its own
implementation, we also need to implement these. The program uses two
different kinds of linked lists: Node with integers as values, and TtNode
with structures of the type TruthTable as values. Because of this, there
are two different linked list implementations with different functions. The
definition of the structures Node and TtNode is given below in Listing 3.3
and Listing 3.4, respectively.

Listing 3.3: Structure Node
typedef struct Node {

size_t data;
struct Node *next;

} Node ;

Listing 3.4: Structure TtNode
typedef struct TtNode {

TruthTable *data;
struct TtNode *next;

} TtNode ;

Node and TtNode contain different auxiliary functions, which essentially
do the same, except for different structures:

• initNode/initTtNode: allocates the memory needed to represent the
structure;

• addNode/addTtNode: given the head of a linked list, and the data
(either an integer or a truth table), adds a new node to the linked list;

• countNodes/countTtNodes: given the head of a linked list, counts all
nodes and returns their number;

• printNodes/printTtNodes: given the head of linked list, prints the
values to the console. Each line represents a node;

• destroyNode/destroyTtNode: deallocates the memory used by the struc-
ture.

23

3.2.2 Functions

The implementation of Kaleyski’s algorithm needs several functions. These
include partitionFunction, mappingOfBuckets, outerPermutation and inner-
Permutation. All of these functions are described below.

partitionFunction

The partitionFunction takes a TruthTable F and an integer k as input. To
partition a function F , we find the multiplicity of all elements of F2n where
the multiplicity of an element e ∈ F2n is defined as the number of k-tuples
(x1, x2, . . . , xk) ∈ Fk2n such that

x1 + x2 + · · ·+ xk = 0

and
F (x1) + F (x2) + · · ·+ F (xk) = e.

The multiplicities are then grouped into “buckets”, such that all the elements
e with the same multiplicity are in the same bucket. Since the size of k is
not fixed, the calculation of the multiplicities is implemented as a recursive
function of depth k. When the recursion is done, it returns a Partition with
all the data that has been computed.

Obviously, the time needed for computing the multiplicities as described
above grows exponentially with k. In order to avoid this exponential growth,
we also implement a variant of the above procedure which computes the mul-
tiplicities of the elements e ∈ F2n using the Walsh transform, as described
in Proposition 4 of [7]. More precisely, the multiplicity M of an element
e ∈ F2n can be expressed as

22nM =
∑

a,b∈F2n

(−1)Tr(be)W k
F (a, b).

24

mappingOfBuckets

We know that if F and G are EA-equivalent via L1 ◦ F ◦A2 +A = G, then
L1 must map a bucket from the partition under F to a bucket of the same
size from the partition under G. However, it is possible that the partitions
contain multiple buckets of the same size, and then it is not clear a priori
which bucket should be the image of a given bucket under L1. Therefore,
after the program has calculated the partitions of two functions F and G, it
is necessary to guess the mapping of the buckets BF of F to the buckets BG
of G. For each of these mappings, we find all linear permutations L1 that
respect the bucket partition, and map buckets under F to buckets under G in
the specified manner. If for some such L1, we manage to find a valid A2 (that
is, an A2 which correctly defines an EA-equivalence between F and G), we
can immediately terminate with success. Otherwise, we proceed to the next
choice of L1 under the current mapping of buckets; or to the next mapping of
buckets, if we have exhausted all choices of L1. An example of two functions
F and G with multiple buckets of the same size in their partitions is given in
Figure 3.1, with F being the function F (x) = x3 +α17(x17 +x18 +x20 +x24)
in dimension n = 6, where α is a primitive element of F26 . The arrows in the
figure illustrate all the possible mappings for any given bucket; for instance,
the first bucket in the partition under F can map to the first, the fourth, or
the last bucket in the partition under G.

1 20 10 26 5 1 1

1 10 20 1 5 26 1

BF :

BG:

Figure 3.1: Map between BF and BG with multiple buckets of same sizes.

25

outerPermutation

Having computed the Partition of F and G, and selected a mappingOf-
Buckets, we now find all outer permutations, L1, of F2n that respect them.
Since L1 is a linear function, it is enough to guess its values on a basis
of F2n . All the permutations L1 are therefore found by a recursive search
which guesses their values on a basis. We simply use the standard ba-
sis, {20, 21, 22, . . . , 2n−1}. The search procedure is essentially a depth first
search (DFS) with backtracking. When guessing the value L1(b) of a basis
element b, we first find the bucket under F to which b belongs; then we know
that L1(b) must belong to its corresponding bucket under G, although we
do not know which element from that bucket it is. We thus make guesses,
and try out all possibilities. Having guessed the values of e.g. b and b′ under
L1, we can also derive the value L1(b+ b′) of b+ b′ using the linearity of L1.
This can lead to contradiction, if b + b′ belongs to a certain bucket under
F , while L1(b + b′) does not belong to its corresponding bucket under G.
This means that when we reach a point where such a contradiction occurs,
we backtrack and try a different guess, until all possible combinations have
been tested. Once all basis elements have been assigned a value, we can re-
construct the entire truth table of L1, and either store it, or directly search
for a corresponding inner permutation as described below.

In our main implementation, we do not store the outer permutations
L1 in memory, but instead process each one of them using the innerPer-
mutation procedure described below until an equivalence is found, or all
possibilities have been exhausted. In this way, our implementation ends up
with negligible memory requirements since practically no information has to
be stored.

We note that the original implementation in Magma takes a different
approach, and first computes a list of all the outer permutations L1, before
processing each one separately. This might be useful if one is interested in
the exact number or form of the outer permutations, but is not optimal from
the point of view of efficiency: for instance (as we observe in our experimen-
tal results), it is possible that already the first few outer permutations L1
that we find will provide an inner permutation giving an EA-equivalence
between the tested functions; computing other outer permutations is then
wasteful. Furthermore, this is the reason that the Magma implementation
would often run out of memory when testing EA-equivalence for dimensions
10 and above.

26

Nonetheless, we implement a variation of the algorithm in which we do
compute all outer permutations first (just like in the Magma implementa-
tion), and then process them one by one. In this case, instead of being
directly processed by innerPermutation, the outer permutations found by
the DFS are stored in a linked list. This version allows us to give a detailed
breakdown of the running times, and an exact comparison of the efficiency
as compared to the Magma implementation. We discuss this in more detail
in Section 3.2.4.

innerPermutation

For each L1 found by outerPermutation we apply the inverse L−1
1 to both

sides of the relation L1 ◦ F ◦A2 +A = G and obtain F ◦A2 +A′ = G′. For
each L1, the goal is now to find an A2. Once we have guessed A2, we can
compute A′ as A′ = F ◦ A2 +G′; if A′ is affine, then the pair (L1, A2) that
we have selected gives us a valid EA-equivalence between F and G.

The function innerPermutation takes in some parameters that are needed,
such as a function F , a function G′, an empty TruthTable A2 and an empty
TruthTable A. Once again, we guess A2 by guessing its values on the stan-
dard basis. In order to do this efficiently, we first compute restricted domains
for the basis elements; the domain of an element b is the set of possible values
that A2(b) can take. To reduce the domain of x ∈ F2n (which is initially set
to F2n), we compute (using the notation from [7]) the intersection of all the
sets OF3 (t) of all triples (x1, x2, x1 +x2) with F (x1)+F (x2)+F (x1 +x2) = t,
for all values of t that can be expressed as G(x1) +G(x2) +G(x1 +x2) with
x ∈ {x1, x2, x1 + x2} (see the discussion in [7, pp. 284-285]). In order to
compute intersections, we use Boolean maps, i.e. a Boolean array W [x] in-
dexed by x ∈ F2n , such that W [x] = 1 if and only if x belongs to the set
under consideration. Computing the intersection of two sets can then be
naturally expressed using bitwise “and”.

Having computed the reduced domains, we use a DFS to guess the inner
permutation A2 and reconstruct A = F ◦A2 +G and check if A is affine. If
the reconstructed A is affine, we have found an equivalence between F and
G, and can terminate with success.

When the program is done, it prints the functions L1, A2 and A to
the console. If the program has not found an affine function such that
L1 ◦ F ◦ A2 + A = G, the output will remain empty. Finally, the program
frees all the allocated memory before it terminates.

27

3.2.3 How to use the program

Our implementation is provided on GitHub [15]. The easiest way to use the
program is to clone the GitHub project and run the compile.sh script which
will create the executable, ea.

The ea program tests and recovers the EA-equivalence between two given
functions F and G. It expects at least one argument, the function F given
as a truth table. In the case that only a single function is given, the program
generates a random function EA-equivalent to F and compares it against
F for equivalence (for testing purposes). By running the program with the
flag “-h” the program will output all options to run the program, which will
look something like this:

Listing 3.5: Running ./ea with help
> ./ea -h
EA - equivalence test
Usage: ea [ea_options] [filename_F] [filename_G]
Ea options :

-h - Print help
-k - Size of k
-t - Add this for printing running times

for different functions .

filename_F : path to the file of a function F
filename_G : path to the file of a function G

When giving the program the path to two functions F andG it will search for
EA-equivalence between these two. If the search is successful, the program
will print L1, A2 and A.

An example of running the program is given below:

Suppose that the file f.tt contains the function F :

6
0 1 8 15 27 14 35 48 53 39 43 63 47 41 1 1 41 15 15 47 52 6
34 22 20 33 36 23 8 41 8 47 36 52 35 53 35 39 20 22 33 34 48
53 39 48 6 23 22 33 63 14 23 52 14 43 27 63 36 6 27 43 20 34

28

and the file g.tt contains the function G:

6
0 31 12 49 26 49 4 13 45 26 58 47 59 56 62 31 42 48 62 6 27 53
29 17 23 37 24 8 42 44 55 19 44 14 30 30 34 52 2 54 18 24 59
19 16 46 43 55 0 39 42 47 37 54 29 44 46 33 31 50 7 60 36 61

Then the EA-equivalence test between these two functions can be run
as follows:

Listing 3.6: Example of output from the program
>./ea f.tt g.tt
L1:
6
0 3 1 2 38 37 39 36 32 35 33 34 6 5 7 4 9 10 8 11 47 44

46 45 41 42 40 43 15 12 14 13 58 57 59 56 28 31 29
30 26 25 27 24 60 63 61 62 51 48 50 49 21 22 20 23
19 16 18 17 53 54 52 55

A2:
6
0 52 50 6 40 28 26 46 4 48 54 2 44 24 30 42 43 31 25 45

3 55 49 5 47 27 29 41 7 51 53 1 39 19 21 33 15 59
61 9 35 23 17 37 11 63 57 13 12 56 62 10 36 16 22
34 8 60 58 14 32 20 18 38

A:
6
0 50 59 9 35 17 24 42 6 52 61 15 37 23 30 44 60 14 7 53

31 45 36 22 58 8 1 51 25 43 34 16 2 48 57 11 33 19
26 40 4 54 63 13 39 21 28 46 62 12 5 55 29 47 38

20 56 10 3 49 27 41 32 18

3.2.4 Computational results

As discussed above, we have implemented the EA-equivalence test in two
different ways. In the first one, we compute all outer permutations L1 first,
and then process them one by one. This is done so that it will exactly
mirror the Magma implementation, and allow us to objectively compare the

29

improvements in running time. This also allows us to estimate the worst-
case running times by noting the number of outer permutations and the
time necessary for processing each of them. Our observations are presented
in Table 3.1.

The first column of the table gives the dimension n of F2n . The functions
are indexed in the second column in the same way as in [7]. The next 4
columns under “Kaleyski’s implementation” and the next 4 columns under
“This implementation” give the time in seconds for computing the partitions
of F2n according to the quadruple sums as explained in [7] and using the
Walsh transform, respectively. The following column gives the time for
computing all outer permutations L1 preserving the corresponding partition.
The last column gives the time for reconstructing the inner permutation L2.

We observe that the efficient implementation in C as a whole is much
faster than the proof of concept implementation in Magma. The running
time for computing the partition using the quadruples as described in [7] is
much faster in C. For example, for function 1.3 for n = 8, we observe that
the runtime for partitioning in C is over 500 times faster than in Magma.
We also observe that using the Walsh transform, the runtime for the same
function is over 200 times faster (using the Walsh transform should be faster
if we are using k-tuples with k > 4 instead of quadruples in the partition, or
if we have the Walsh transform precomputed since the running times given
here include the time for computing the Walsh transform from the truth
table of the function). For finding all outer permutations L1, we observe
that for most of the cases the runtime is much faster than in Magma. For
instance, for function 1.2 for n = 8, we observe that the runtime is about 16
times faster in C. However, in some cases we observe that Magma is faster,
such as for functions 1.5 and 1.6 for n = 8, where the runtime in Magma is
almost 2 times faster. It is also worth mentioning that we have been able
to run the implementation for functions with n = 10, where Magma runs
out of memory (this is because the proof of concept implementation was
designed in such a way that it would compute all outer permutations first,
storing everything in memory, and only then processing them one by one).

However, in practice it is not necessary (and not optimal) to compute
and store all outer permutations in advance. Instead, a more time and
memory efficient approach is to try and find an inner permutation for an
outer permutation L1 as soon as L1 is found by the DFS. In this way, we do
not need to allocate any memory for storing the outer permutations, and if

30

Kaleyski’s implementation This implementation
n ID Sums Walsh L1 L2 Sums Walsh L1 L2

6

1.1 1.650 1.250 1.030 0.308 0.011 0.028 0.076 0.006
1.2 1.510 1.390 0.300 0.337 0.008 0.017 0.050 0.005
2.1 1.390 1.450 0.010 0.134 0.006 0.017 0.004 0.008
2.2 1.250 1.250 0.380 0.419 0.006 0.017 0.041 0.006
2.3 1.240 1.450 0.970 0.405 0.009 0.017 0.070 0.006
2.4 1.260 1.250 0.010 0.283 0.010 0.018 0.010 0.007
2.5 1.300 1.310 0.050 0.317 0.007 0.022 0.001 0.084
2.6 1.260 1.290 0.010 0.316 0.007 0.022 0.006 0.008
2.7 1.310 1.290 0.010 0.352 0.007 0.028 0.003 0.008
2.8 1.310 1.310 0.010 0.326 0.007 0.021 0.002 0.010
2.9 1.300 1.310 0.010 0.262 0.008 0.019 0.010 0.008
2.10 1.580 1.300 0.010 0.317 0.009 0.018 0.030 0.008
2.11 1.290 1.290 0.000 0.302 0.012 0.019 0.001 0.010
2.12 2.450 2.470 0.030 0.524 0.007 0.017 0.002 0.004

8

1.1 103.580 74.910 23.090 0.935 0.426 1.015 3.603 0.374
1.2 92.140 86.570 206.830 0.955 0.439 1.013 12.674 0.338
1.3 244.540 238.560 78.180 1.432 0.430 1.022 15.736 0.376
1.4 146.520 140.710 12.530 1.160 0.431 1.019 16.736 0.377
1.5 112.860 107.580 58.300 1.036 0.438 1.020 112.924 0.326
1.6 111.810 106.920 62.580 1.015 0.439 1.020 116.904 0.327
1.7 127.330 121.320 10.020 1.084 0.436 1.011 7.316 0.360
1.8 126.210 121.740 26.670 1.065 0.433 1.011 36.422 0.351
1.9 127.250 121.730 40.370 1.007 0.442 1.017 54.936 0.348
1.10 127.090 121.270 10.400 1.068 0.443 1.019 6.379 0.384
1.11 127.410 122.560 50.560 1.083 0.432 1.014 24.540 0.370
1.12 127.950 121.240 46.520 1.075 0.438 1.019 18.709 0.355
1.13 127.850 122.320 10.530 1.083 0.454 1.019 16.742 0.366
1.14 132.900 127.100 0.010 1.070 0.439 1.015 0.001 0.754
1.15 126.410 121.940 22.580 1.086 0.430 1.014 106.083 0.353
1.16 127.020 121.040 9.970 1.070 0.439 1.023 9.615 0.360
1.17 126.860 120.790 69.860 1.027 0.432 1.027 6.843 0.394
2.1 99.690 94.340 27.380 56.611 0.435 1.011 59.920 0.374
3.1 118.870 112.990 57.480 1.042 0.438 1.018 29.217 0.335
4.1 115.700 110.040 0.070 40.200 0.437 1.016 0.003 0.696
5.1 102.470 96.640 0.030 1.016 0.430 1.024 3.699 0.669
6.1 110.940 105.610 0.040 0.980 0.434 1.013 0.002 0.520
7.1 98.650 93.330 49.350 132.942 0.432 1.022 12.565 0.320

Table 3.1: Observed running times for Magma and C

31

we find an outer permutation which allows us to reconstruct an equivalence
between the tested functions, then we do not even need to search for the rest
of the outer permutations. One would almost always use this more efficient
version in practice, except possibly if the exact list of outer permutations
is needed for some reason, or if the computation needs to be carried out in
separate phases.

Running times for this more efficient implementation are given in Ta-
ble 3.2. The third and fourth column, respectively, give the total running
time for the experimental implementation described above (which computes
all outer permutations first) and the observed running times for our main
implementation, while the last column gives the number of all outer permu-
tations. As we can see, the running times are significantly faster, and the
procedure can even be used for dimensions such as n = 12, where verifying
that the Gold function x3 is EA-equivalent to a randomly generated func-
tion equivalent to it takes around 4535 seconds. We note that the running
times for this implementation may depend a bit on how “lucky” we are when
searching for the outer permutations; in other words, if we find an outer per-
mutation L1 first which does lead to an EA-equivalence between the tested
functions, then the running time will obviously be quite short since we will
find the EA-equivalence almost immediately. On the other hand, if we have
to go through many outer permutations before we find one that corresponds
to an EA-equivalence, the running time may be much longer. As Table 3.2
illustrates, however, the running times in practice appear to be quite satis-
factory. As already discussed above, this improved implementation also has
minimalistic memory requirements, and so can be used in high dimensions
such as 12 or even 14, where none of the currently available methods for
testing EA-equivalence can be used.

32

n ID Finding all L1 Main implementation Permutations

8

1.1 13.403 1.004 680
1.2 13.451 0.954 680
1.3 16.542 4.668 8
1.4 17.545 0.952 8
1.5 113.688 0.935 4
1.6 117.670 6.623 4
1.7 8.113 7.495 1
1.8 37.206 29.939 4
1.9 55.727 29.870 4
1.10 7.206 3.602 2
1.11 25.342 16.125 4
1.12 19.503 15.994 4
1.13 17.563 3.404 2
1.14 1.194 11.034 2
1.15 106.866 9.197 1
1.16 10.414 1.977 2
1.17 7.669 1.192 2
2.1 61.892 40.525 360
3.1 29.991 5.150 4
4.1 2.011 3.888 16
5.1 4.799 9.405 8
6.1 0.957 7.801 8
7.1 13.317 2.057 680

10

1.1 17225.140 62.031 3410
1.2 17114.651 73.068 3410
1.5 35158.835 436.070 155
1.6 39467.687 495.447 155

Table 3.2: Observed running times for finding all L1 by computing all L1
first, and by processing each L1 directly

33

34

Chapter 4

Testing Linear and Affine
equivalence

In this chapter we adapt Kaleyski’s algorithm to a procedure for deciding
linear equivalence between two vectorial Boolean functions. We also describe
how the approach can be generalized to handle affine equivalence. Finally,
we provide an efficient C implementation of the algorithm.1

4.1 Introduction

Recall that an orthoderivative of an (n,m)-function F is an (n,m)-function
πF such that πF (0) = 0 and for any α ∈ F2n\{0} and any x ∈ F2n , we have
πF (α) 6= 0 and πF (α) · (F (x) + F (α + x) + F (α) + F (0)) = 0. Recall also
that any quadratic APN function has a unique orthoderivative [8]. If two
quadratic APN (n, n)-functions F and G are EA-equivalent via A1 ◦ F ◦
A2 + A = G, then (L∗1)−1 ◦ πF ◦ L2 = πG, where L1(x) = A1(x) + A1(0),
L2(x) = A2(x)+A2(0), and L∗1 is the adjoint of L1. By using this observation
we investigate how to test EA-equivalence between F and G through the
linear equivalence between πF and πG.

1An extended abstract describing this work has been submitted to the 7th International
Workshop on Boolean Functions and Their Applications (BFA) 2022.

35

The varied structure of the orthoderivatives that is observed in [8] sug-
gest that comparing the orthoderivatives of F and G for equivalence (rather
than F andG themselves), might be more efficient as a test for EA-equivalence.
Since there is currently no known efficient method for testing linear or affine
equivalence, we design a natural algorithm for this and show that by apply-
ing it to the orthoderivatives, the time needed for verifying EA-equivalence
is cut down significantly (up to twenty times in some cases) as compared to
our main C implementation described in the previous chapter.

4.2 Algorithm for testing linear equivalence

Recall that two (n,m)-functions F and G are linear equivalent if L1◦F ◦L2 =
G. Similarly to the algorithm from [7], we first restrict the set of possible
L1, and then, for each guess of L1 we compose both sides of the relation
L1 ◦ F ◦ L2 = G with the inverse, L−1

1 , and try to reconstruct L2. We
reduce the possible choices of L1 by partitioning F2n into “buckets” with
respect to the pre-images under F and under G. In this way, we write
Fn2 = BF

0 ∪ BF
1 ∪ · · · ∪ BF

2n , where BF
i = {x ∈ Fn2 : #F−1(x) = i}; and

similarly, Fn2 = BG
0 ∪BG

1 ∪· · ·∪BG
2n . The sizes of BF

i and BG
i for any i must

be the same, otherwise we already have reached a contradiction, and can
conclude that F and G are linear-inequivalent. Otherwise, we know that
the image of any BF

i under L1 must be BG
i . By using a DFS we find all

L1 that satisfy this condition. The number of L1 is sufficiently small for us
to test all of them. For instance, for n = 8 we only get several hundreds
possibilities for L1 in the worst case. The pseudo-code for this procedure is
given in Algorithm 1.

This algorithm can be easily adapted to test affine equivalence, i.e A1 ◦
F ◦A2 = G between functions F and G. Here A1 = L1 +c1 and A2 = L2 +c2
for some constants c1, c2 and L1, L2 linear, and so it suffices to go trough
all choices of c1 and c2, and run the linear-equivalence algorithm for each of
them. With the following observation, we can reduce the number of choices.

36

Algorithm 1: Reconstructing the outer permutation L1 in L1◦F ◦
L2 = G

Input : Two (n,m)-functions F and G
Output: All linear permutations L1 of Fm

2 respecting the partitions
induced by F and G

Partition Fm
2 = BF

0 ∪ · · · ∪BF
2m = BG

0 ∪ · · · ∪BG
2m ;

if (∃i)(#BF
i 6= #BG

i) then
return ∅

end
Let B = {b1, b2, . . . , bm} be a basis of Fm

2 ;
return Guess (B, 1, ∅) # recursively guess the values of L1 on B
Function Guess(B, i, L):

if i = n+ 1 then
reconstruct L1 from its values on B ;
return L ∪ {L1} ;

end
Let j be such that bi ∈ BF

j ;
for y ∈ BG

j do
L1(bi)← y ;
Check all currently known values of L1 for contradiction
contradiction← false ;
for x ∈ Span(b1, b2, . . . , bi) do

let j, k be such that x ∈ BF
j , L1(x) ∈ BG

k ;
if k 6= j then

contradiction← true ;
break ;

end
end
if contradiction = false then
L ← L ∪Guess(B, i+ 1,L) ;

end
end
return L ;

We assume that F (0) = G(0) for simplicity. First, we observe that
#F−1(F (c2)) = #G−1(0). Indeed, from c1 + L1(F (L2(x) + c2)) = G(x),
by substituting x = 0 we get L1(F (c2)) + c1 = 0; then if x ∈ Fn2 with
F (x) = F (c2), then G(x) = L1(F (c2)) + c1 = 0 as well. Thus, it is enough
to consider c2 with #F−1(c2) = #G−1(0).

37

4.3 Implementation and experimental results

We have implemented the modified algorithm in C and made it available on
GitHub [16]. The implementation allows for several use cases:

(i) Testing two functions for linear equivalence;

(ii) Testing two functions for affine equivalence;

(iii) Testing two quadratic APN functions for EA-equivalence through the
linear-equivalence of their orthoderivative.

We give some running times for case (iii) and compare them with the running
times for the efficient implementation of Kaleyski’s algorithm.

Since our linear equivalence algorithm is an adaptation of Kaleyski’s
algorithm, we can reuse the structures and functions from [15] and simply
recombine them in order to implement this new algorithm. In fact, this
procedure is simpler to implement; there is no need for the k-tuple sums
for partitioning the functions (and so no need for a recursive function). We
partition the field into buckets according to the multiplicities of the images
of F , which is not only simpler but also faster (since instead of k nested
loops we only need one). There is no need to create maps of the buckets
since we know a priori which bucket under F will map to which bucket under
G (these are uniquely defined by the corresponding multiplicities). After we
have created the partitions, we proceed in the same way as in [7], finding all
possible outer permutations L1 and trying to find an inner permutation A2.

For testing the efficiency of the approach for deciding EA-equivalence
through the orthoderivatives, we generate a random triple (A1, A2, A) for
some of the known APN functions F from [11] for n = {6, 8} and from
the CCZ-inequivalent representatives for n = 10. We then construct G =
A1 ◦ F ◦A2 +A and apply our algorithm to πF and πG. For each choice of
F , we generate 10 triples (A1, A2, A) and give the average running time for
finding an EA-equivalence relation. We compare the running time of this
procedure with the efficient implementation of Kaleyski’s algorithm. The
results are summarized in Table 4.1 given in seconds.

38

n ID Main implementation This implementation

8

1.1 1.004 0.252
1.2 0.954 0.289
1.3 4.668 1.138
1.4 0.952 1.794

10

1 62.031 20.338
2 73.068 15.728
5 436.070 17.977
6 495.447 91.324

Table 4.1: Running times of Kaleyski’s algorithm and this algorithm.

As we can see from Table 4.1, this approach always cuts down the com-
putation time (except for function 1.4 in n = 8), and the effect is particularly
pronounced in high dimensions such as n = 10, where the running time is
approximately 24 times faster than using the efficient implementation of [7]
for function 5.

However, the downside of this method is that knowing the linear equiv-
alence L′1 ◦ πF ◦ L′2 = πG between πF and πG does not allow us to easily
reconstruct the EA-equivalence A1 ◦ F ◦ A2 + A = G between F and G.
As observed in Proposition 36 of [8], if F and G are EA-equivalent via
A1 ◦ F ◦ A2 + A = G then their orthoderivatives are linear equivalent via
(L∗1)−1 ◦ πF ◦L2 = πG, where L1 and L2, are the linear parts of A1 and A2,
respectively. However, this is not the only one possible equivalence between
πF and πG; in fact there are many other such pairs of (L′1, L′2) satisfying
the equation L′1 ◦ πF ◦ L′2 = πG. In the worst case, we will have to run the
algorithm until it find all pairs (L′1, L′2) with L′1 ◦πF ◦L′2 = πG before we are
able to recover the EA-equivalence between F and G. We have tested this
computationally for some APN functions in n = 6, and we observe that we
do find the pair (L1, L2) originating from the EA-equivalence between F and
G, but this is the only pair corresponding to an EA-equivalence. Therefore,
if the exact form of the EA-equivalence between F and G is needed, it would
be better to compute it using Kaleyski’s algorithm or Canteaut’s algorithm
from [8].

39

40

Chapter 5

Conclusion

In this thesis we have efficiently implemented in C a test for EA-equivalence
between vectorial Boolean functions, and showed that it can be used to re-
duce the running time for testing EA-equivalence significantly (as opposed
to the existing implementation of the same algorithm). We have showed that
the new implementation can check for EA-equivalence for dimension n = 10
and above, overcoming some of the memory issues of the existing imple-
mentation. This approach can not only decide whether two given functions
are EA-equivalent, but it can recover the exact form of the EA-equivalence
between them. The proposed method can work for any pair of functions (of
any algebraic degree and any differential uniformity), although as observed
in [7], it is not efficient in the case of e.g. AB functions. We provide the
implementation as open source software online.

We have also developed a new algorithm for deciding linear-equivalence
and affine equivalence between vectorial Boolean functions, and have shown
that it can be used to reduce the computation time for checking EA-equivalence
between quadratic APN functions significantly. We have provided an effi-
cient implementation in C of this algorithm as well, and made it available
online as open source software.

Unlike the approach of using invariants, our algorithms can prove that
two functions are EA- or linear-equivalent (as opposed to only being able to
disprove it), and in the case of Kaleyski’s original algorithm, we can recover
the exact form of the equivalence (if it exists).

41

42

Bibliography

[1] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. Journal of Cryptology, 4(1):3–72, January 1991. ISSN 1432-
1378. doi: 10.1007/BF00630563.

[2] Claude Carlet. Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, first edition, November 2020. ISBN 978-
1-108-60680-6 978-1-108-47380-4. doi: 10.1017/9781108606806.

[3] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent func-
tions and permutations suitable for des-like cryptosystems. Designs,
Codes and Cryptography, 15(2):125–156, 1998.

[4] Satoshi Yoshiara. Equivalences of quadratic APN functions. Journal of
Algebraic Combinatorics, 35(3):461–475, May 2012. ISSN 0925-9899,
1572-9192. doi: 10.1007/s10801-011-0309-1.

[5] L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent
and almost perfect nonlinear polynomials. IEEE transactions on
information theory, 52(3):1141–1152, 2006. ISSN 0018-9448. doi:
10.1109/TIT.2005.864481.

[6] Yves Edel and Alexander Pott. On the Equivalence of Nonlin-
ear Functions. Enhancing Cryptographic Primitives with Techniques
from Error Correcting Codes, pages 87–103, 2009. doi: 10.3233/
978-1-60750-002-5-87.

[7] Nikolay Kaleyski. Deciding EA-equivalence via invariants. Cryptogra-
phy and communications, 14(2):271–290, 2021. ISSN 1936-2447. doi:
10.1007/s12095-021-00513-y.

43

[8] Anne Canteaut, Alain Couvreur, and Léo Perrin. Recovering or Testing
Extended-Affine Equivalence. IEEE Transactions on Information The-
ory, pages 1–1, 2022. ISSN 1557-9654. doi: 10.1109/TIT.2022.3166692.

[9] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Pre-
neel. A Toolbox for Cryptanalysis: Linear and Affine Equivalence
Algorithms. In Advances in Cryptology — EUROCRYPT 2003, Lec-
ture Notes in Computer Science, pages 33–50, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. ISBN 978-3-540-14039-9. doi:
10.1007/3-540-39200-9 3.

[10] Lilya Budaghyan and Oleksandr Kazymyrov. Verification of restricted
ea-equivalence for vectorial boolean functions. In International Work-
shop on the Arithmetic of Finite Fields, pages 108–118. Springer, 2012.

[11] Yves Edel and Alexander Pott. A new almost perfect nonlinear function
which is not quadratic. Advances in Mathematics of Communications,
3(1):59–81, 2009. ISSN 1930-5338. doi: 10.3934/amc.2009.3.59.

[12] Nikolay S. Kaleyski. Invariants for EA- and CCZ-equivalence of APN
and AB functions. Cryptography and Communications, 13(6):995–1023,
2021.

[13] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma
Algebra System I: The User Language. Journal of Symbolic Com-
putation, 24(3-4):235–265, September 1997. ISSN 07477171. doi:
10.1006/jsco.1996.0125.

[14] Brian W. Kernighan. The C Programming Language. Prentice-Hall,
Englewood Cliffs, N.J, 1978. ISBN 978-0-13-110163-0.

[15] Marie Heggebakk. heggebakk/ea-equivalence: Computationally testing
ea-equivalence. https://github.com/heggebakk/ea-equivalence, 2022.

[16] Marie Heggebakk. heggebakk/affine: Testing Affine functions.
https://github.com/heggebakk/affine, 2022.

44

	Introduction
	Background
	Vectorial Boolean functions
	Algebraic normal form (ANF)
	Univariate representation
	Walsh Transform

	Cryptographic Properties
	Algebraic degree
	Differential uniformity
	Nonlinearity

	Equivalence Relations
	Linear and Affine equivalence
	EA-equivalence
	CCZ-equivalence

	Testing equivalence relations
	Known approaches for testing equivalence
	Invariants

	Implementation
	The original implementation
	About the implementation
	Structures
	Functions
	How to use the program
	Computational results

	Testing Linear and Affine equivalence
	Introduction
	Algorithm for testing linear equivalence
	Implementation and experimental results

	Conclusion
	Bibliography

