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Abstract

Secure wireless communication between devices is essential for modern communication
systems. Physical-layer security over the wiretap channel may provide an additional level
of secrecy beyond the current cryptographic approaches. Given a sender Alice, a legitimate
receiver Bob, and a malicious eavesdropper Eve, the wiretap channel occurs when Eve
experiences a worse signal-to-noise ratio than Bob. Previous study of the wiretap channel
has tended to make assumptions that ignore the reality of wireless communication. This
thesis presents a study of short block length codes with the aim of both reliability for
Bob and confusion for Eve. The standard approach to wiretap coding is shown to be
very inefficient for reliability. Quantifying Eve’s confusion in terms of entropy is not
solved in many cases, though it is possible for codes with a moderate complexity trellis
representation. Using error rate arguments, error correcting codes with steep performance
curves turn out to be desirable both for reliability and confusion.
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Nomenclature

x Scalar value

x Vector

X Random variable

X Matrix

X Alphabet

X n Set of sequences of length n with elements from X

{0, 1}n Set of binary sequences of length n

F2 The finite field of two elements

H(X) Entropy of X

FER Frame error rate

BER Bit error rate

Γ Security gap
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Chapter 1

Introduction

1.1 Motivation

Modern communication is characterized by an abundance of digital devices which com-
municate wirelessly. In addition to personal devices such as phones, computers, and wear-
ables, the internet of things is connecting a massive number of wireless devices in industry,
infrastructure, offices, and homes. In almost all such applications, there is information
being communicated that is worth keeping secret, whether it relates to personal privacy,
passwords, financial details, trade secrets, military intelligence, government secrets, etc.

Wireless communication is by nature a broadcast medium. We do not have complete
control over where a wireless signal we transmit ends up. Consequently, eavesdropping
is a big potential security risk for wireless communication. Eavesdropping is when a
malicious actor listens in on communication between legitimate parties. Traditionally,
eavesdropping has been dealt with through cryptography. Cryptographic systems do not
prevent an eavesdropper from listening to the transmitted data, but instead modifies
the data such that only the legitimate receiver, who possesses a secret key, is able to
understand what is being communicated.

Let us present an analogy with three people; Alice, Bob, and Eve. Alice wants to tell
Bob a secret. However, she does not want Eve to know the secret. Cryptography may be
viewed as Alice and Bob agreeing on a secret language, and talking so that Eve can hear
them, but is unable to understand. In this thesis we will study an alternative approach,
which is more akin to Alice whispering to Bob, with a low enough volume that Eve is
unable to discern what is being said from the surrounding noise.

This situation where Eve has a ”signal” of lower quality than Bob, is called the wiretap
channel. While it can be seen as an alternative to cryptography, we do not consider it
as a replacement. Instead, wiretap communication may for instance be implemented at
the physical layer, as a supplement to the cryptography used in software. It may also be
used specifically for the initial key exchange of a cryptographic protocol, as it is generally
the stage most vulnerable to attack. In theory, there are stronger guarantees about Eve’s
information available for the wiretap channel than for standard cryptographic systems
[1].
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As an example, government agencies are known to require secrecy for many decades [2].
A dedicated enemy state may store encrypted data observed through eavesdropping today,
only to attack it decades later, when quantum computers, more powerful supercomputers,
and other unknown tools for attacking cryptography may be available. Under certain
assumptions across the wiretap channel, this is impossible, as the transmitted information
was not received in the first place.

In addition to the arguments above, cryptography may be too computationally expen-
sive for certain low power applications. We also have no need for the parties to exchange
a key securely before starting communication.

1.2 Goal

Our goal with this thesis is to evaluate methods and approaches to coding for the wiretap
channel, with wireless communication in mind. We will consider alternatives to the stan-
dard approach from existing literature, specifically by studying the effect of using codes
designed for communication to achieve secrecy over the wiretap channel. Additionally,
we will evaluate the various metrics that may be used for quantifying the information
gained by Eve. Our discussion will be backed up by both new and reproduced results
from implementations of various simulations and calculations.

1.3 Overview

The remainder of this thesis is organized as follows. In Chapter 2, we introduce and discuss
the prerequisite tools and knowledge needed to follow our work. In Chapter 3, we discuss
relevant previous work, and how it relates to our thesis. Chapter 4 describes our methods
and motivates our choices of tools such as models, implementations, codes, performance
measures, etc. These tools are used to answer research questions, the results of which are
presented and discussed in Chapter 5. In Chapter 6 we summarize our findings and their
implications, and we discuss what directions of future research we believe may yield the
most useful or interesting results.
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Chapter 2

Background

2.1 Information theory

In the process of communicating information from A to B, there are sometimes inaccu-
racies introduced in the process. In day-to-day speech this can happen when someone is
misheard, misinterpreted or otherwise misunderstood. In analog radio communication,
inaccuracies in the received audio may come from cosmic background radiation, atmo-
spheric phenomenon such as lightning, and from the electronic circuits in the radio device
[3]. These inaccuracies are generally referred to as noise. In digital communication noise
can also occur, and will manifest itself in the form of bit flips; either a transmitted ”1” is
received as a ”0”, or vice versa.

In his 1948 paper A Mathematical Theory of Communication [4], Claude Shannon
introduced a set of new tools to study noisy communication channels and created the field
of information theory. The main focus of this field has traditionally been on achieving
reliable communication despite communicating over noisy channels. However, in this
thesis we will focus on using the noise to our advantage for secure communication. More
on that in Section 2.5. In this section, we will introduce some of the important concepts
and results in information theory, in order to use them in our following work.

2.1.1 Shannon entropy

In [4], entropy is defined as a measure of uncertainty, or equivalently, information. When
Shannon was deciding what to name his new measure of information, the famous mathe-
matician John von Neumann reportedly told him [5]

You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one knows what
entropy really is, so in a debate you will always have the advantage.

Intuitively, entropy represents our uncertainty about some random event. As an ex-
ample we imagine a coin flip. The outcome of the coin flip is either heads or tails, with
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equal probability. We only have two possible outcomes, which is analogous to 1 bit which
has the value 0 or 1. Given that heads and tails are equally probable, we have no infor-
mation about the outcome. We can therefore say that we have 1 bit of uncertainty, or
equivalently, 1 bit of entropy.

Now, imagine that we have some magical coin, where instead of being equally probable,
heads has a 99% chance of occurring, and tails only has a 1% chance. We know that we
have less than 1 bit of uncertainty, as we will correctly predict the outcome in most cases,
but we also know that we still have some uncertainty.

Shannon’s definition of entropy allows us to quantify the amount of uncertainty in
a given situation. Entropy is typically denoted H, and is a function of some stochastic
random variableX taking values from X with probability mass function p(x) = P (X = x).
The Shannon entropy of X is defined as

H(X) , −
∑
x∈X

p(x) log2 p(x). (2.1)

In the special case where X is a Bernoulli distribution with only two outcomes of
probabilities p and 1−p, we use the term binary entropy, and the notation H(X) = hb(p),
where

hb(p) , −p log2 p− (1− p) log2(1− p). (2.2)

For reference and intuition, a plot of the binary entropy function is shown in Fig. 2.1.

0 0.2 0.4 0.6 0.8 1
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0.2

0.4
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1

p

h
b
(p

)

Figure 2.1: Binary entropy function hb(p)

Given two random variables X and Y , Shannon defined the conditional entropy of X
given Y as

H(X|Y ) , −
∑

x,y∈X ,Y

p(x, y) log2 p(x|y). (2.3)

The mutual information I(X;Y ) of X and Y is defined as

I(X;Y ) , H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.4)
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The conditional entropy and mutual information are useful measures in a communi-
cation scenario. Given some transmitted message X and a received message Y , H(X|Y )
represents the receiver’s remaining uncertainty about the transmitted message after hav-
ing observed the noisy received version Y . Similarly, I(X;Y ) represents how much infor-
mation is shared between the sender and the receiver.

2.1.2 Rényi entropy

Rényi generalized the concept of entropy with the following definition [6]

Hα(X) =
1

1− α
log

(
n∑
i=1

pαi

)
. (2.5)

Where α is called the order, and limα→1Hα(X) corresponds to Shannon entropy. When
α→∞, Hα(X) entropy converges to

H∞(X) = − log max
i
pi. (2.6)

This is called the min-entropy. Note the relationship between min-entropy and Shan-
non entropy

H∞(X) ≤ H(X). (2.7)

Unless otherwise specified, the term Rényi entropy on it’s own is sometimes used to
refer to H2(X), and is sometimes denoted R(X) [7, 8].

As opposed to Shannon entropy, there is no standard way of defining the conditional
Réniy entropy Hα(X|Y ) [9]. However, it is argued in [9] that Arimoto’s definition [10]
is the most appropriate, as it satisfies more desirable properties than other proposed
definitions. For the case of conditional min-entropy, Arimoto’s definition gives

H∞(X|Y ) , − log
∑
y∈Y

p(y) max
x∈X

p(x|y). (2.8)

2.1.3 Channel models

In order to study how noise affects communication, we need some mathematical mod-
els that approximate real-world noisy communication. These models are described as
channels, and choosing a channel to study can often be a trade-off between simplicity
and realism. Simple channels may be easier to study, but may not be very accurate
descriptions of real-world communication.

A channel model is described by a set of input symbols that may be transmitted over
the channel, and a set of possible outputs. A channel typically has some parameter that
describes the channel quality, from which a probability distribution on the output can be
calculated. ”Good” channels have low probabilities of error in the output, and conversely
”bad” channels have a higher probability of error.
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We will look at two types of channel models, discrete and continuous. Discrete channels
have outputs from a finite set of values, while continuous channels have outputs on a
continuous spectrum. The channels we will look at all have the characteristic that errors
occur independently in each transmitted symbol, these are known as memoryless channels.

Binary Symmetric Channel

The binary symmetric channel (BSC), is a simple discrete memoryless channel with binary
input and output. The channel quality is characterized by a transition probability p. Each
input bit will retain its value with probability 1− p and will flip with probability p. The
BSC is illustrated in Fig. 2.2 with input on the left and output on the right.

0

1

0

1

1− p

1− p
p

p

Figure 2.2: The binary symmetric channel with transition probability p

Binary Erasure Channel

The binary erasure channel (BEC) is a discrete memoryless channel with binary input.
The channel either outputs the input symbol, or it outputs an erasure denoted ”?”, which
gives no information about the transmitted symbol. The probability of erasure is denoted
ε, and is the same for both input symbols.

0

1

0

1

?

1− ε

1− ε

ε

ε

Figure 2.3: The binary erasure channel with erasure probability ε

Additive White Gaussian Noise

An Additive White Gaussian Noise (AWGN) channel, is a gaussian channel with discrete
inputs and continuous outputs. The output follows a gaussian distribution with the input
symbol as mean, and some given variance. A basic illustration of a binary input AWGN
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is shown in Fig. 2.4. The conditional probability density function f(y|x) for the output y
given an input symbol x is given as [11]

f(y|x) =
1√

2πN
e−

(y−x)2

2N (2.9)

where N is the noise variance. N is the parameter that defines the quality of the
channel.

0

1

0

1

Figure 2.4: Illustration of an additive white gaussian noise channel with binary input and
continuous output

2.1.4 Channel capacity and channel coding theorem

When describing communication across a channel, we have some set of messages W =
{0, 1}k, where {0, 1}k is the set of all binary sequences of length k. Each message is
mapped to a codeword in X n, where X is the input alphabet of the channel. An (n, k)
code, is defined by a set of codewords in X n and a mapping f :W → X n. The rate R of
an (n, k) code is defined as

R =
k

n
bits per channel use. (2.10)

The channel capacity of a channel is defined as [4]

C , sup
p(x)

I(X;Y ) (2.11)

where X and Y are random variables representing the input and output of the channel,
and p(x) is the probability distribution of X.

Shannon proved the channel coding theorem [4], which states the following.

Theorem 2.1.1 (Channel coding theorem) Given a channel of capacity C, there ex-
ists a code of rate R which achieves arbitrarily low error probability if and only if R ≤ C.

The channel capacity is therefore a fundamental limit that codes can be compared
against. The capacities of the binary symmetric channel and the binary erasure channel
can be shown to be

CBSC = 1− hb(p) (2.12)
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and

CBEC = 1− ε, (2.13)

respectively [11].

2.1.5 Information-theoretic security

Information-theoretic security refers to security with information theoretical guarantees.
We are specifically interested in secrecy, i.e. concealing the contents of a message from an
eavesdropper. This situation can be described with the random variable Xn representing
the encoded message, taking on values from {0, 1}n. And the random variable Zn taking
on values from Zn where Z is the output alphabet of the channel. Zn represents what is
observed by the eavesdropper. We can describe the amount of information gained by the
eavesdropper using the mutual information between the message and the observation by
the eavesdropper. Perfect secrecy is said to be achieved when no information is gained,
meaning

I(Xn;Zn) = 0, (2.14)

which by Eq. (2.4) implies

H(Xn|Zn) = H(Xn). (2.15)

Perfect secrecy is a very strong requirement. Shannon showed that it can be achieved
using a one-time pad [4]. Using a one-time pad is not practical in most circumstances,
as it requires a pre-shared key at least as long as the message, and the key cannot be
reused. Wyner introduced a weaker requirement [1], referred to as weak secrecy, which
can be formulated as [12]

1

n
I(Xn;Zn) ≤ ε, for some suitably small ε > 0. (2.16)

2.1.6 Fano’s inequality

Let X and Y be random variables, both taking on values from the same alphabet X . If
we let Y represent an estimate of X, we can define the error probability Pe as

Pe = P (X 6= Y ). (2.17)

Fano’s inequality is then given as [11]

H(X|Y ) ≤ hb(Pe) + Pe log
(
|X | − 1

)
. (2.18)

In addition to giving an upper bound on H(X|Y ) given Pe, it also provides us a lower
bound on Pe, given the conditional entropy H(X|Y ).

11



2.2 Finite fields

Here, we provide a very brief definition of finite fields and F2 specifically, which originate
from abstract algebra. Finite fields are required to describe the construction of some error
correcting codes. An introduction to abstract algebra in the context of codes is given in
[13]. For a more general introduction, see for example [14].

A finite field is a finite set of elements that can be added, subtracted, multiplied, and
divided such that the result is always in the same finite set. The mathematical operations
in a field F do not necessarily have the same definition as in everyday use, however they
must meet the following requirements for all a, b, c ∈ F [14]:

1. If a ∈ F and b ∈ F, then a+ b ∈ F.

2. (Associativity) a+ (b+ c) = (a+ b) + c.

3. (Commutativity) a+ b = b+ a.

4. There exists an element 0F ∈ F such that a+0F = a = 0F +a. From now on denoted
simply as 0.

5. The equation a+ x = 0 has a solution in F.

6. If a, b ∈ F, then ab ∈ F.

7. a(bc) = (ab)c.

8. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

9. ab = ba.

10. There exists an element 1F ∈ F such that a · 1F = a = 1F · a for all a ∈ F. From now
on denoted simply as 1.

11. Whenever a, b ∈ F and ab = 0, then a = 0 or b = 0.

12. For each a 6= 0 in F, the equation ax = 1 has a solution in F.

A field of q elements is typically denoted Fq. In this work, we will use the field F2

consisting of the elements 0 and 1, because it conveniently corresponds to binary. Addition
in F2 is done modulo 2, meaning that 1 + 1 = 0. This is equivalent to the exclusive or
(XOR) operation.
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2.2.1 Vector spaces

A vector space is defined by a finite set of elements V as well as a finite field F. We call the
elements of V vectors, and we say that V forms a vector space over F. Addition must be
defined between vectors in V, and must follow rules 1 through 5 from above. In addition,
multiplication of any element in F with any vector in V must be defined. This is called
scalar multiplication, and must meet the following requirements for all a, a1, a2 ∈ F and
v,v1,v2 ∈ V [14]:

1. a(v1 + v2) = av1 + av2.

2. (a1 + a2)v = a1v + a2v.

3. a1(a2v) = (a1va2)v.

4. 1Fv = v.

Just as the motivation for defining F2 was the relation to binary, we define vector
spaces here because they can represent sets of binary sequences. Specifically, let V be
the set of ordered sequences of length n of elements in F2. An element v ∈ V can be
expressed as

v = (a0, a1, ..., an−2, an−1), where a0, a1, ..., an−2, an−1 ∈ F2 (2.19)

Addition is performed pairwise. If we define two vectors

v1 = (a1,0, a1,1, ..., a1,n−1) and v2 = (a2,0, a2,1, ..., a2,n−1), (2.20)

then

v1 + v2 = (a1,0 + a2,0, a1,1 + a2,1, ..., a1,n−1 + a2,n−1). (2.21)

And scalar multiplication is defined as

bv = (ba0, ba1, ..., ban−1), where b ∈ F2 (2.22)

Ordered sequences of length n are sometimes called n-tuples. From the above, we can
see that the set of binary n-tuples, denoted {0, 1}n, form a vector space over F2 with XOR
(pairwise addition modulo 2) as its addition operator.

Another concept we will use is a subspace. Given a vector space V over F, if some
subset S ⊂ V also forms a vector space over F, we call S a subspace of V.

2.3 Error correcting codes

In Section 2.1, we introduced the concept of using a code to map messages into codewords
before transmitting them across a channel. The idea behind doing so is to introduce
redundancies that allow the receiver to reconstruct the message despite the channel noise.
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The receiver uses a decoder to produce an estimate ŵ of the message w. Ideally, we want
the decoder to find an estimate Ŵ which minimizes the probability of incorrect decoding,
i.e.

ŵ = arg min
v∈W

P (w 6= v|r) (2.23)

where r is the received channel output. If we have a bijective mapping between
messages and codewords, this is equivalent to the same process for an estimate x̂ of the
codeword x

x̂ = arg min
v∈X

P (x 6= v|r) (2.24)

This is further equivalent to maximizing the conditional probability of the codeword
[13], giving us

x̂ = arg max
x

P (x|r) = arg max
x

P (x)P (r|x)

P (r)
(2.25)

A decoder that evaluates Eq. (2.25) is called a maximum a posteriori (MAP) decoder.
A subtly different approach is to find x̂ such that

x̂ = arg max
x

P (r|x) (2.26)

This is called maximum likelihood (ML) decoding, and is equivalent to MAP decoding
when P (x) is constant, i.e. all codewords are equally probable. MAP and ML decoding
of linear codes in general is NP-hard [15], however some codes do have ML and MAP
decoding algorithms available.

We also defined the channel capacity and referenced the channel coding theorem, which
states that it is possible to achieve error free communication across noisy channels using
codes. However, when Shannon [4] proved this theorem, he did not provide practical ways
to construct such codes. Instead, arguments consisting of random codewords as well as
letting n → ∞ were used. Random codes are difficult to decode because of their lack of
structure, and very large or infinite block lengths are highly impractical.

In the years following the publication of [4], several more practical codes and accompa-
nying decoding algorithms were constructed including Hamming codes [16], Reed-Muller
codes [17, 18], cyclic codes [18–24], and convolutional codes [25–27]. As opposed to ran-
dom codes, all these examples have some sort of structure. The structure of a code is
some set of mathematical properties that allow us to reason about the code, and is often
used to build efficient encoding and decoding procedures. These codes make it possible to
detect and correct errors in the received channel output. However, the code rates needed
to achieve small error probabilities don’t come particularly close the channel capacity [13].

More recently efforts have been made to construct so-called ”capacity achieving” codes,
such as Turbo codes [28], Low Density Parity Check (LDPC) codes [29–32], and Polar
codes [33].

So far we have given relatively generalized definitions of codes, however from this point
forward we will limit ourselves to binary codes. For binary codes, messages have some
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length k and are represented as binary k-tuples, i.e. from the set {0, 1}k. Codewords of
length n are represented as binary n-tuples.

2.3.1 Linear block codes

In order to define the specific codes we use in this work, it helps to first define the more
general concept of binary linear block codes. A block code is a code with constant length
messages and codewords. In an (n, k) block code, a message or information vector with
k symbols is encoded into a codeword of n symbols. We have 2k possible messages and
corresponding codewords.

One structure we can give a code is linearity, which can be defined as follows [13].

Definition 2.3.1 A block code of length n and 2k codewords is called a linear (n, k) code
if and only if its 2k codewords form a k-dimensional subspace of the vector space of all
the n-tuples over the field F2.

It can also be shown that a binary block code is linear if and only if the sum of any
two codewords is also a codeword, i.e.

(c1 + c2) ∈ C, for all c1, c2 ∈ C, (2.27)

where C is the set of codewords, sometimes called the codebook or simply the code.
Linear block codes can be defined by their generator matrix G, or by their parity

check matrix H. The generator matrix G is a k × n binary matrix, where the rows are
k linearly independent codewords. All codewords in the code may be generated by linear
combinations of the rows of G. Because we have 2k possible linear combinations of the
rows, there are 2k codewords. The generator matrix can also be used as an encoder. Given
a generator matrix

G =


g00 g01 ... g0,n−1
g10 g11 ... g1,n−1
...

...
. . .

...
gk−1,0 gk−1,1 ... gk−1,n−1

 , (2.28)

and some information vector u = (u0, u1, ..., uk−1), we can encode the information
vector into a codeword c by calculating

c = uG = (u0, u1, ..., uk−1)


g00 g01 ... g0,n−1
g10 g11 ... g1,n−1
...

...
. . .

...
gk−1,0 gk−1,1 ... gk−1,n−1

 . (2.29)
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The parity check matrix H is a (n− k)× n matrix

H =


h00 h01 ... h0,n−1
h10 h11 ... h1,n−1
...

...
. . .

...
hn−k−1,0 hn−k−1,1 ... hn−k−1,n−1

 , (2.30)

constructed such that for any codeword c ∈ C, we have cHT = 0. For any received
vector r of length n, we can compute rHT = s, where s is called the syndrome. Calculating
the syndrome allows us to check for errors in the received vector.

2.3.2 Cyclic codes

A cyclic shift is an operation where all elements of a vector is moved between 0 and n− 1
steps to the right, placing any overflowing elements back at the beginning. We denote
an i-step cyclic shift of a vector v as v(i). As an illustrative example, consider the vector
v = (v1, v2, v3, v4) and its cyclic shifts

v(0) = (v1, v2, v3, v4) (2.31)

v(1) = (v4, v1, v2, v3)

v(2) = (v3, v4, v1, v2)

v(3) = (v2, v3, v4, v1)

A cyclic code is a linear block code where all cyclic shifts of codewords are also code-
words. In order to show some of the properties of cyclic codes, it is useful to view code-
words and messages as polynomials. Given the codeword n-tuple c = (c0, c1, ..., cn−2, cn−1),
we have the corresponding polynomial

c(X) = c0 + c1X + c2X
2 + ...+ cn−2X

n−2 + cn−1X
n−1. (2.32)

Of all codewords in an (n, k) cyclic code, one and only one codeword polynomial will
have degree n − k [13]. We call this polynomial the generator polynomial, and denote
it g(X). It can be shown that all codeword polynomials are multiples of g(X) [13], and
therefore, encoding an information polynomial u(X) is done by multiplying it with the
generator, i.e.

c(X) = u(X)g(X). (2.33)

Where the coefficients u0, u1, ..., uk−1 of u(X) are the message bits.
Perhaps the most well-known class of cyclic codes are Bose, Chaudhuri, and Hoc-

quenghem (BCH) codes, which were discovered independently in [20] and [21]. BCH
codes can be constructed from the integer paramters m ≥ 3 and t < 2m−1. They have a
block length of n = 2m − 1, and k must be chosen such that n − k ≤ mt. Such a code
is called a t-error correcting BCH code, because there exists a decoder that is guaranteed
to detect and correct any error pattern with up to t errors [13].
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2.3.3 Convolutional codes

So far we have discussed block codes exclusively, however there exists classes of codes that
do not necessarily have constant length messages and codewords. One of these classes
is convolutional codes. Convolutional codes have some rate k/n, and the encoder will
continuously produce n output symbols for every k input symbols. As opposed to block
codes, the n output symbols depend not only on the k input symbols, but also on the
state of the encoder. In our work we only utilize convolutional codes with k = 1, however
other values for k are also common to get higher code rates. In the rest of this section it
can be assumed that k = 1.

A convolutional encoder has m state bits, which means it has 2m possible states. At a
given time, each of the n output bits are determined by some linear function which takes
the message bit as well as the m state bits as inputs. As the current state is determined
by the m previous inputs, the state may be considered memory.

Consider a rate 1/n convolutional code with m state bits. The n output bits are

determined by n binary generator sequences g(i) = (g
(i)
0 , g

(i)
1 , ..., g

(i)
m ), 0 ≤ i < n. Given an

input bit u and m state bits s1, ..., sm, the n-bit output sequence c is then determined by

c = (c(0), c(1), ..., c(n−1)), (2.34)

where

c(i) = ug
(i)
0 + s1g

(i)
1 + ...+ smg

(i)
m . (2.35)

A convolutional code may be represented by its encoder diagram. See Fig. 2.5 for
the diagram representing the rate 1/2 convolutional code with generator sequences g(0) =
(1, 1, 1) and g(1) = (1, 0, 1).

u s1 s2

c(0)

c(1)

+ +

+

Figure 2.5: Convolutional encoder.

Another way to describe a convolutional code is using a trellis. A trellis is a directed
graph where the nodes represent the encoder state, and the edges represent some input.
Encoding a sequence of bits can be done by traversing the trellis and choosing which
edge to follow based on the input bit. Edges also have an associated output label, so
the output sequence can be read from the traversed path. The trellis is important be-
cause its structure is exploited by the ML and MAP decoding algorithms known as the
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Figure 2.6: Trellis for a rate 1/2 convolutional code with m = 2.

Viterbi algorithm [26] and the BCJR algorithm [27], respectively. The complexity of these
algorithms depend on the number of states (2m) as well as the message length.

While we have presented convolutional codes as continuous codes which encode one
bit at a time, in practice we tend to limit the length of the sequences we encode, because
practical decoding depends on it. One way to have a finite block length for convolutional
codes is to append m zero bits to the end of the message, which ensures that the encoder
returns to the zero state. This does slightly reduce the code rate from 1

n
to k′

(k′+m)n
, where

k′ is the message length. A technique to eliminate this reduction in the code rate is tail-
biting convolutional codes. See [13] for more about tail-biting codes, as we do not discuss
them further.

Using a finite block length turns a convolutional code into a linear block code [13]. It
is also possible to construct generator and parity check matrices for a finite convolutional
code.

2.3.4 Turbo codes

Invented in 1993 [28], turbo codes are designed to achieve small error rates while main-
taining a code rate close to Shannon’s channel capacity. Turbo encoders consist of two or
more convolutional encoders and an interleaver. The convolutional codes that are part of
the turbo code are called constituent codes, and their encoders may be arranged in serial,
in parallel, or in some hybrid arrangement. The interleaver performs a pseudo-random
permutation on the input bits before it is passed to the encoders, except for the first
encoder. An illustration of a simple turbo encoder can be seen in Fig. 2.7, where u is
the input bit, π represents the interleaver, and p(1) and p(2) are the parity bits from each
constituent encoder. For each input bit there are 3 output bits, meaning the rate of the
encoder is 1/3.

The main innovation of turbo codes is the iterative decoding process. As we have
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Figure 2.7: Rate 1/3 turbo encoder.

discussed, the individual convolutional codes have a MAP decoding algorithm available.
In the case of a turbo code with two constituent codes, this algorithm is used in alterna-
tion between the two convolutional codes along with a technique called belief propagation.
Without describing the process in detail here, the main concept is that probability esti-
mates for each bit is passed from one decoder to the other, with the output of the two
eventually converging. If they do not converge, decoding error is very likely. The number
of iterations is a parameter of the decoder, but can typically fall in the range of 10-20
[13].

2.4 Wireless communication

2.4.1 Modulation

Wireless communication between digital devices normally happens through the transmis-
sion of radio waves. Different wireless protocols have specific designated carrier frequen-
cies, and some bandwidth on each side of this center frequency. Carriers in the 2400-2500
MHz frequency range are, for example, common. In order to send digital information
using this carrier, we must convert bit patterns (abstracted as ”symbols”) into waveforms
through the process of modulation. There are several modulation techniques that en-
code symbols as waves by changing some property of a waveform. Frequency shift keying
(FSK) encodes symbols into different frequencies and amplitude shift keying (ASK) en-
codes symbols as different amplitudes. Phase shift keying (PSK) changes the phase of a
waveform. See Fig. 2.8 for an illustration of these techniques.

A common and simple modulation we will utilize in our work is Binary PSK (BPSK).
As the name suggests, we have two symbols: 0 and 1. 1 is encoded with a 0◦ phase, and
0 is encoded with a 180◦ phase.

Modern communication systems will often combine ASK and PSK into Quadrature
Amplitude Modulation (QAM). QAM allows us to represent symbols as points on a two-
dimensional plane, where the angle from the origin represents the phase, and the distance
from the origin represents the amplitude. These modulation techniques are typically
named n-QAM, where n is the number of symbols. 2-QAM corresponds to BPSK, with
the points (−1, 0) and (1, 0) representing 0 and 1, respectively.

A wireless receiver will typically measure the phase and the amplitude of the signal.
Demodulating in an n-QAM system is done by choosing the symbol with the smallest
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Figure 2.8: Modulation techniques.

euclidean distance to the received value.

2.4.2 Quantifying signal quality

The quality of a wireless signal is typically denoted by a signal-to-noise ratio (SNR).

SNR =
Signal power

Noise power
(2.36)

The SNR is often expressed in decibels (dB).

SNRdB = 10 log10 (SNR) dB (2.37)

Decibels are a logarithmic scale, which may require some adjustment of intuition. A
doubling of the SNR constitutes approximately a 3 dB increase in SNRdB, and an SNR
of 1 is equal to an SNRdB of 0. A negative SNRdB represents an SNR between 0 and 1.

2.4.3 Signal strength over distance

In an idealized model of wireless radio communication, we have a transmitting antenna
at a point in an infinite empty space in a vacuum. Using an omnidirectional antenna,
the transmitted signal will propagate in a sphere centered on the antenna. The signal
strength of the receiver can then be determined by what portion of the sphere is covered
by the receiver’s antenna.

Because the surface area of a sphere increases with the square of the radius (4πr2),
the signal strength S of the receiver is proportional to the inverse square of the distance
d:

S ∝ 1

d2
(2.38)
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Given a signal strength S1 at distance d1, we have the signal strength S2 at distance
d2 given by

S2 = S1

(
d1
d2

)2

. (2.39)

In Eq. (2.38) and Eq. (2.39) the idealized scenario described above is assumed. In
reality, there are several factors that may affect the propagation of radio waves, perhaps
most importantly the physical geography and buildings in the surrounding area. Such
scenarios can be modeled with a modified version of the inverse square law [34]

S ∝ 1

dγ
(2.40)

where γ is known as the path loss exponent. In a vacuum surrounded by infinite empty
space, we have γ = 2. In other scenarios, reflections may amplify the signal leading to
γ < 2, or the signal may be blocked or attenuated leading to γ > 2.

Given the SNR expressed in decibel at two distances d1 and d2, we then have [34]

SNR2 = SNR1 − 10γ log10

(
d2
d1

)
. (2.41)

In [34], a table of typical values for the path loss exponent γ is given, based on
measurements in the field. We list these values in Table 2.1.

Environment γ
Free space 2
Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 to 5
In building line-of-sight 1.6 to 1.8
Obstructed in building 4 to 6
Obstructed in factories 2 to 3

Table 2.1: Path loss exponent γ in various environments [34].

2.5 The wiretap channel

Introduced in 1975 by Wyner [1], the wiretap channel is a channel model consisting of
a sender we will call Alice, a recipient Bob, and a wiretapper Eve. Bob receives data
through a noisy channel we refer to as the main channel. Eve receives data through the
main channel as well as a second noisy channel (see Fig. 2.9). The real-world analog to
this model could for example be case of wireless communication where Eve is further away
from Alice than Bob is.
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Figure 2.9: Wyner’s general case wiretap channel

Wyner defines the equivocation rate ∆ of Eve as her uncertainty about the source
symbols given the received symbols.

∆ ,
1

k
H(W k|Zn) (2.42)

To achieve secure and reliable communication in this model, we want to maximize the
equivocation rate of Eve, while minimizing the probability of decoding error Bob as well
as maximizing the transmission rate k/n. Perfect secrecy is achieved if the equivocation ∆
is equal to the unconditional source entropy H(W k). The secrecy capacity Cs of a wiretap
channel is defined as the maximum achievable transmission rate R such that ∆ = H(W k).

Wyner shows that if Cm > Cmw where Cm and Cmw are the capacities of the main
channel and the wiretap channel, respectively, there exists a secrecy capacity Cs which
satisfies

0 < Cm − Cmw ≤ Cs ≤ Cm (2.43)

2.6 Coding for the wiretap channel

If our goal is to achieve secrecy across a wiretap channel, we want to use a code that
increases the confusion of Eve. More precisely, given a message W encoded as a code-
word Xn, and an observed channel output Zn by Eve, we want to minimize the mutual
information I(W ;Zn). We have that [12]

I(W ;Zn) = I(Xn;Zn)− I(Xn;Zn|W ) (2.44)

= I(Xn;Zn) +H(Xn|Zn,W )−H(Xn|W ).

From this it is clear that if H(Xn|W ) is zero, i.e. there is a bijective mapping between
messages and codewords, we get I(W |Zn) = I(Xn;Zn), which grows linearly with n [12].
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There is now a motivation to make H(Xn|W ) non-zero, so we can control the growth of
I(W ;Zn). A non-zero H(Xn|W ) can be achieved by mapping a message randomly into
one of multiple valid codewords, so that encoding is no longer deterministic. This is the
primary motivation for syndrome coding.

2.6.1 Syndrome coding

In an (n, k) linear code with an (n− k)× n parity check matrix H, the syndrome s of a
length-n vector r is defined as [13]

s = r ·HT . (2.45)

Syndrome coding, sometimes referred to as coset coding, was originally described
by Wyner in [1]. The idea of syndrome coding is to transmit a channel vector whose
syndrome is the information vector. An (n, k) linear code C will have 2n−k cosets C0 =
C, C1, C2, ..., Cn−k−1. We can define a coset Ci as

Ci = {v | vHT = bi, v ∈ {0, 1}n}, (2.46)

where bi is the n-bit binary representation of i. As is clear from this definition, all
members of a coset will produce the same syndrome. For example, for all x ∈ C0, xHT = 0.
Thus, encoding information using coset coding can be described as choosing a random
member of the coset which produces the syndrome equal to the desired information vector.
The decoding process is simply calculating the syndrome of the received vector r.

In practice, encoding boils down to choosing a solution to Eq. (2.45), where s is the
information vector and r is unknown, and calculating the codeword x as follows

x = c + r, (2.47)

where c is chosen uniformly at random from the code C.
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Chapter 3

Previous work

3.1 Privacy amplification

Privacy amplification was introduced in [7] as the specific scenario where Alice and Bob
is exchanging a cryptographic key over a wiretap channel. A cryptographic key is in this
context is simply a bit vector of a set length. This differs from a traditional communication
scenario in that Alice and Bob do not care what the exact content of the key is, only that
Eve has as little information about the key as possible.

[8] provides a discussion of syndrome coding for privacy amplification, in the situation
where Bob has a noiseless channel. They argue that the min-entropy is a more appro-
priate measure than Shannon entropy for quantifying Eve’s information, and furthermore
provides a probabilistic lower bound on the min-entropy of Eve given a randomly chosen
syndrome function.

The argument for using min-entropy is based on certain probability distributions where
the Shannon entropy H(X) and Rényi entropy H2(X) may be high, while there still
being a relatively high probability for some single value x. To illustrate this, take the
eavesdroppers Eve’s probability distribution of a 128 bit message P (W ). Let us assume
some message a has probability P (W = a) = 1/1000, and that P (W = w) = (1 −
1/1000)/(2128 − 1) for w 6= a. In this situation we have the Shannon entropy H(W ) ≈
127.88, which implies that Eve has only about 0.1 bits of information about the message.
However, if Eve tries to guess the message they will be correct with probability 1/1000,
which may be unacceptable for the system designer. On the other hand, we have the
min-entropy H∞(W ) ≈ 9.97, which more accurately captures Eve’s capabilities in this
situation.

We see that the min-entropy is a stronger requirement on security than Shannon
entropy. The authors also prove the following probabilistic bound on the min-entropy [8].

Let X be a random binary vector of length n with a fixed probability dis-
tribution, with min-entropy H∞(X) = r. Let H be a uniformly randomly
chosen r × n binary matrix, and let σ be the associated syndrome function.
The probability, over the choice of H, that H∞(σ(X)) < r − log2(1 + 2m) is
not more than 2−3m

2/4+m+r.
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Given that the min-entropy of the codeword, or equivalently the channel noise, is equal
to the message length, this allows us to give a lower bound on the min-entropy of the
message with a desired level of probability by adjusting m.

3.2 Calculating equivocation

In [35], an algorithm for designing syndrome codes for the wiretap channel is presented.
The focus is on constructing codes which give a large equivocation for Eve over the binary
symmetric channel. As part of this algorithm, they present a method for calculating the
equivocation of a given syndrome code over the BSC with a given error probability. This
method involves evaluating a sum over 2m elements, where m = n − k is the number of
message bits. 2m grows very fast with m. Consequently, the method is limited to small
values of m, and is used to construct syndrome codes with m = 15.

In [36], Pfister et. al. discuss the equivocation of Eve over a binary erasure wiretap
channel. They show that the specific equivocation H(W |Zn = zn) can be expressed as

H(W |Zn = zn) = k − µ+ rank(Gµ), (3.1)

where W is the message, zn is Eve’s observed vector, µ is the number of erasures,
and Gµ is the generator matrix of the underlying code with the columns at the erasure
positions removed. This could be used for direct calculation of the equivocation with a
weighted average over all possible received vectors zn. This has a complexity of 3n due
to the alphabet being {0, 1, ?} with ? representing an erasure. This complexity is even
more limiting than the method for the BSC in [35]. However, because they are able
to calculate the specific equivocation for a received vector, they can use a Monte Carlo
simulation to estimate the equivocation for longer block lengths. We will describe Monte
Carlo estimation of equivocation more in detail in Chapter 4.

3.3 Convolutional encoding for the wiretap channel

Verriest and Hellman [37] proposed the use of a rate 1 convolutional code for the wiretap
channel where Bob has a noiseless channel, and Eve has a binary symmetric channel.
They show that when Eve has a small error probability, the number of memory bits alone
dictates her entropy as n tends to infinity.

This approach, while somewhat novel compared to other wiretap coding schemes, has
limited practical utility on its own due to Bob’s noiseless channel and n tending to infinity.
We mention it regardless due to our own use of convolutional codes on the wiretap channel.

3.4 Alternatives to syndrome coding

There has been some limited work done on coding for the wiretap channel with other
methods than syndrome coding. In [38], Klinc, et. al. proposes a coding scheme based
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on LDPC codes, where the message bits are punctured in the encoding process, leaving
only the parity bits in the codeword. A code where the information bits are not present
in the codeword is called a nonsystematic code. Due to the difficulty in measuring equiv-
ocation, they use the bit error rate as an analog. This means they make no claim of
achieving information-theoretical security, but instead use the term physical-layer secu-
rity. Physical-layer security is said to be achieved when the BER of Eve is above a given
confusion threshold, and the BER of Bob is below a given reliability threshold. The
performance of a code is measured by the security gap, which is the difference in SNR
required between Bob and Eve to achieve the given thresholds. They also conjecture that
nonsystematic codes of other classes than LDPC may exhibit similar BER performance
on the wiretap channel.

3.5 Real-world wireless wiretap communication

In [39], a method for constructing a secure wireless communications channel using wiretap
codes is presented. The authors use measurements of the SNR of a wireless signal at
varying locations within an office building as a basis for their work. The intended receiver
Bob is assumed to be in a specific office, and the eavesdropper Eve is assumed to be
in one of several other offices. Using SNR measurements from all these locations along
with a channel model, they choose wiretap codes that maximize throughput to the Bob
while minimizing the information gained by Eve. They model the channel as an erasure
channel, specifically as follows:

y =

{
x, if SNR ≥ τ
?, if SNR < τ,

(3.2)

where y is the received symbol, x is the transmitted symbol, and ? represents an
erasure. They consider a symbol to be an erasure if the signal-to-noise ratio at the
receiver, SNR, is below a threshold τ . This model is justified by pointing out that many
practical communications systems behave very similar to an erasure channel, where we
either observe a very accurate representation of the transmitted data, or the transmitted
data is discarded entirely.

The authors do not conduct any experiments with coded communication over the
wireless channel, but instead use measurements of the SNR at each location along with
the model presented in Eq. (3.2) to calculate secrecy capacity. They then find the Reed-
Muller (RM) code that maximizes throughput with zero mutual information between the
transmitter and the wiretapper, in their specific scenario.

Changing the value of τ in the model is the equivalent of changing the transmission
power an equal negative amount. I.e. increasing τ by 1 dB has the same effect as
reducing the transmission power by 1 dB. The value for τ is chosen to maximize the
secure throughput.

Their erasure model may reflect typical communication scenarios, but it is important
to note that Eve might not behave like a typical receiver. Even if decoding does not yield
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the correct result, Eve might gain some information that could, for example, help reduce
the search space of a brute-force approach.

The process of measuring SNR at physical locations will be more accurate than a
path loss model as presented in Section 2.4, however it is very resource intensive, and
would have to be performed for each location the transmitter may be positioned. Such
measurements could also be utilized to inform the choice of the parameter γ of a path
loss model.
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Chapter 4

Methodology

When designing a communication system for the wiretap channel, we want to achieve both
secrecy and reliability. Secrecy may be defined by some threshold on Eve’s equivocation,
frame error rate, or bit error rate. We will discuss the merits of each of these measures.
Reliability can be defined by some threshold on Bob’s frame error rate. Intuitively, im-
proving reliability will weaken secrecy, and improving secrecy will weaken reliability. We
want to explore which codes provide a good trade-off between secrecy and reliability.

In this section, we present the set of codes we evaluate, as well as our methods for eval-
uation. We will especially focus on the merits of syndrome coding versus more traditional
codes used for reliable communication.

4.1 Channel model

We use a slightly modified version of Wyner’s model in Fig. 2.9. Instead of the wiretap
channel working on the output of the main channel, it is a completely independent channel
taking the encoder output as its input. See Fig. 4.1 for an illustration.

Source Encoder Main channel Decoder

Wiretap channel

W Xn Y n Ŵ

Xn

Zn

Figure 4.1: A modified wiretap channel.

We always use the same channel type for the main and wiretap channel, only with
differing signal quality. We use the binary symmetric channel due to its simplicity, and
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the AWGN channel due to its better approximation of wireless communication.

4.2 Simulation procedure
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Figure 4.2: Frame error rate of codes with message length 128 over the AWGN channel.

In order to measure the performance of the above codes, we run simulations of en-
coding, channel transmission, and decoding across the AWGN and BSC channels, with
varying noise levels. The source code for our implementations and simulations is available
at [40].

From our simulations, there are two primary measures we are interested in, the frame
error rate (FER) and the bit error rate (BER). They are defined as follows

FER ,
Incorrectly decoded codewords

Total simulations
, (4.1)

BER ,
Incorrectly decoded bits

k(Total simulations)
, (4.2)

where k is the message length in bits. From a reliability standpoint, we are most
interested in the FER, however for an eavesdropper, a frame error where only a single bit
is incorrect is very different from a frame error where around half the bits are incorrect.
Therefore the bit error rate can also be a useful measure because it gives an answer to
how many bits are incorrect on average. However, bit errors in a decoded message are
not independent, meaning that the average number of bit errors may not be a typical
number.

We simulate at a given noise level until we have observed at least 100 frame errors as
well as at least 100 correctly decoded messages, with the exception of BER simulations
for poor channels (FER > 0.999), in which case the contribution of the correctly decoded
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messages would be insignificant to the BER. This requirement is in addition to a minimum
number of transmissions, usually set at 100 000.

The frame error rate performance of the codes with message length 128 over the AWGN
channel is shown in Fig. 4.2. In Chapter 5, we will show and discuss these and related
results in different contexts relating to the wiretap channel.

4.3 Wiretap codes

In Section 2.6, we motivate the use of syndrome coding by showing that it can increase the
equivocation of Eve. However, syndrome coding on its own provides no improvement in
reliability for Bob and requires an almost noiseless channel to be usable. This motivates
looking at other codes which do provide reliability. In addition, the steep performance
curves of some codes may be useful in a wiretap scenario, as a smaller difference in signal
quality between very poor performance and high reliability will translate into a smaller
physical distance required between Bob and Eve in a wireless system.

In order to further illustrate this concept, let us define two thresholds TEFER and TBFER.
These thresholds represent the lowest acceptable FER for Eve and the highest acceptable
FER for Bob, respectively. Given two such thresholds as well as a given code, we may
define the security gap Γ as [38]

Γ ,
SNRBob

SNREve

, (4.3)

where SNRBob and SNREve are the SNRs where the FER is equal to TBFER and TEFER,
respectively. When the SNR is expressed in decibels, Γ becomes the difference between
the two SNRs. We may also use the security gap with other measures than the FER. In
order to give a preliminary intuition for how the code performance relates to the security
gap, we show the security gap of four codes with TBFER = 10−3 and TEFER = 0.9 in Fig. 4.3.
Note that these are quite relaxed requirements. In Chapter 5, rather than setting TE to
a fixed value, we will show Eve’s confusion as a function of Γ.

In the rest of this section, we will describe the codes we have used, and motivate these
choices. To be able to compare codes directly, all codes have a rate of roughly 1/2. For
simplicity, all message lengths are powers of two.

4.3.1 Syndrome coding

Syndrome coding is the standard method of coding for the wiretap channel [12], and is
therefore the benchmark we compare our other codes against.

In our simulations we use syndrome codes based on BCH codes. This means we
use a BCH code to create a parity check matrix, which is then in turn used to encode
information in the syndrome of a vector, and to compute the syndrome of a received
vector. This technique was more thoroughly described in Chapter 2. While [35] showed
that there are syndrome codes that achieve higher equivocation than the best codes for
communication, their technique is not viable for longer block lengths. It can also be argued
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Figure 4.3: Security gap for different codes with TEFER = 0.9 and TBFER = 10−3.

that due to the major difference in behavior between syndrome codes and other codes, it
is not critical that the codes we use are completely optimal for comparison purposes.

The BCH codes we use are listed in Table 4.1, with the generator polynomial presented
using octal digits. The binary form of each octal digit represents three coefficients in the
polynomial, and the digits are listed with the highest order coefficients on the left. As
discussed, we want our codes to have a rate of 1/2 and a message length that is a power
of two. To get BCH codes on this (2i, 2i−1) form, the following constructions from [41]
were used. Both BCH codes were extended by adding an all-one column to the generator
matrix. For the resulting (256,131) code, we removed rows from the generator matrix to
get a (256,128) subcode.
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n k t Generator polynomial
31 16 3 107657

255 131 18 215713331471510151261250277442142024165471†

Table 4.1: BCH codes used [13].

4.3.2 Convolutional Codes

Convolutional codes are normally used for error correction, which as opposed to syndrome
codes, will help us communicate reliably between Alice and Bob. We want to study how
using convolutional codes affects Eve. A useful property of convolutional code is that a
maximum likelihood (ML) decoder is available in the Viterbi algorithm [26]. This not only
ensures optimal decoding for Bob, but it means we know how the best possible decoder
for Eve performs. If we did not have an ML decoder and could not ensure that neither
did Eve, it would be more difficult to reason about Eve’s decoding performance.

Additionally, we are able to calculate the equivocation of Eve, given a specific received
vector. We will discuss this in detail in Section 4.4.

The convolutional codes we use are listed in Table 4.2 with generator polynomials in
octal form. We use terminated convolutional codes as block codes in our simulations and
calculations. Messages of length k′ are padded with m zeros before encoding, and the
codeword length n′ is given by n′ = 2(k′ +m). The rate r is then given by

r =
k′

2(k′ +m)
. (4.4)

Consequently, our convolutional codes are not of rate exactly 1/2. The rates of our
convolutional-based block codes are listed in Table 4.3, rounded to four decimal places.
This difference in rate is inconsequential at larger block lengths, however it can be signif-
icant for shorter block lengths.

n k m g(0) g(1)

2 1 2 5 7
2 1 4 27 31
2 1 6 117 155
2 1 12 10627 16765

Table 4.2: Convolutional codes used [13].

4.3.3 Turbo codes

We are interested in Turbo codes for the wiretap channel because of their steep perfor-
mance curves. A steep curve translates to a smaller security gap, as shown in Fig. 4.3.

†The generator polynomial of the (255,131) code is listed with a misprint in [13], missing the two
octal digits ”71” at the end of the polynomial. The polynomial is listed correctly in [42].
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n′ k′ m Rate
260 128 2 0.4923
264 128 4 0.4848
268 128 6 0.4776
280 128 12 0.4571

36 16 2 0.4444
40 16 4 0.4
44 16 6 0.3636

Table 4.3: Rate of convolutional-based block codes.

We therefore expect them to perform better than convolutional codes, however because
of their more complex structure, it is harder to reason about the equivocation when using
turbo codes. As opposed to for convolutional codes, there is not a practical ML decoder
available. In theory, this means Eve could do better than the decoder we have used. In
practice however, we perceive it as unlikely that Eve has access to a meaningfully better
decoder. Due to the iterative nature of turbo decoding, an obvious approach for Eve
would be to increase the number of iterations. While this can improve decoding per-
formance, it is a process of diminishing returns. The more iterations you perform, the
smaller the gain in performance will be, and eventually there is nothing to be gained from
added iterations.

In our simulations, we use an implementation of turbo codes from the Coded Modu-
lation Library (CML) from Iterative Solutions [43]. We use a turbo code with two con-
stituent codes, which are both identical (2, 1, 4) systematic feedback convolutional codes.
We also puncture the code to get a rate closer to 1/2. The generators and puncturing pat-
terns of the constituent codes are listed in Table 4.4. Because the two constituent codes
are identical, we only list their generators once. Puncturing patterns are represented
with a 0 indicating a puncture, and are listed with 3 rows representing the information
sequence and the two parity sequences. Each pattern is repeated over the length of the
corresponding sequence.

The interleavers of our turbo codes are semi-random or s-random interleavers with
s = 4. An s-random interleaver is simply a pseudorandom permutation that is generated
with the constraint that neighbouring symbols in the input must be at least s places apart
in the output.

Turbo code A is a relatively standard turbo code designed for communication. It is
based on a rate 1/2 code from the CCSDS standard [44] with a modified block length
and interleaver. However, codes good for communication are not necessarily the best
for the wiretap scenario. We will observe in Chapter 5 that when using the BER as a
measure of Eve’s confusion, turbo code A’s BER does not grow as fast as we would like
for poor-quality channels.

Inspired by [38], we look at a code that is not completely systematic, i.e. the full
information sequence is not part of the codeword. In turbo code B, we puncture most
of the information bits and instead retain most parity bits. This is known as a partially
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Name n k Rate m g(0) g(1) P

A 264 128 0.4848 4 23 33
1 1
1 0
0 1

B 260 128 0.4923 2 5 7
1 0 0 0 1 0 0 0
1 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1

Table 4.4: Turbo codes used.

systematic turbo code (PSTC), and was first described in [45]. Turbo code B is the result
of a very rudimentary and manual search to find a code that has a higher BER than turbo
code A for poor channels, while still retaining good enough performance for Bob.

4.4 Equivocation

While the frame- and bit error rates give an indication of what Eve is capable of in
practice, the equivocation is a more fundamental and powerful measure that can ensure
information-theoretical security. It can be difficult to calculate the equivocation in gen-
eral. As noted in Chapter 2, maximum a posteriori decoding is known to be NP-hard
[15]. MAP decoding involves finding the most probable transmitted codeword given a
received vector. Intuitively, this should be easier than calculating equivocation, as the
equivocation depends on the entire probability distribution of codewords given a received
vector. Consequently, we conjecture that calculating the equivocation of a code over a
given channel is NP-hard. We don’t attempt to prove this statement here, and no proof
has been found in the existing literature.

While calculating equivocation may be difficult in general, there are techniques we
can use to estimate it for specific codes over certain channels. It is also possible to find
bounds on the equivocation. In this section we will explore these options.

4.4.1 Direct calculation

In the uncoded case, bit errors are independent of each other, which means the total
equivocation is simply a sum of the equivocation of each bit, which in turn is a function
of the bit error probability. This gives us

H(X|Y ) = k · hb(Pbe), (4.5)

where Pbe is the bit error probability and hb is the binary entropy function.
In [35], a method for directly calculating the equivocation of a syndrome code on the

BSC is presented. The method involves computing a sum with 2m terms, where m is the
length of a message or syndrome, i.e. m = n − k of the underlying code. Thus, we can
only use this method for small values of m.
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4.4.2 Estimation with Monte-Carlo method

Given a received vector y, we may in certain cases be able to calculate the specific equiv-
ocation H(X|Y = y). We have that

H(X|Y ) =
∑
y∈Y

P (Y = y)H(X|Y = y). (4.6)

A sum over all possible received vectors is computationally infeasible for all but the
smallest block lengths on simple channels. However, by encoding and transmitting random
messages over a simulated channel, a given vector y will naturally occur with probability
P (Y = y). Using this fact, an estimate of H(X|Y ) can be obtained by taking the average
of the specific equivocation H(X|Y = y) over a large number of simulations. This is
called the Monte-Carlo method.

In [46], we present an algorithm for calculating the specific equivocation H(X|Y = y)
for codes that can be represented by a trellis, e.g. convolutional codes. The main idea of
the algorithm is that whenever two paths merge into a single state s in the trellis, we have
a decision with some entropy H(s). Given H(s) for all states, H(X|Y = y) is a weighted
average of H(s). It is weighted by the probability πs of a state being in the codeword
path given the received channel output y. πs can be calculated through a forward and
backward pass through the trellis. For a more detailed description of the algorithm, see
the paper itself [46].

4.4.3 Upper bound from Fano’s inequality

In Section 2.1.6 we describe Fano’s inequality, which can give an upper bound on H(X|Y )
if X and Y take values from the same alphabet X .

H(X|Y ) ≤ hb(Pe) + Pelog
(
|X | − 1

)
(2.18 revisited)

We let X = {0, 1}k, and let Pe be the frame error rate from our simulations. Thus,
we can use simulation results to upper bound the equivocation.

4.4.4 Min-equivocation

As discussed in Section 3.1, the conditional min-entropy, or min-equivocation, H∞(X|Y )
is a stronger measure of Eve’s confusion. Recall the definition of the min-equivocation

H∞(X|Y ) = − log
∑
y∈Y

p(y) max
x∈X

p(x|y). (2.8 revisited)

As with Shannon equivocation, we have an average overall y weighted by p(y). This
lends itself to Monte-Carlo estimation, as Y may be a very large or even infinite set.
Calculating maxx∈X p(x|y) is not necessarily trivial for all codes. ML and MAP decoding
algorithms will maximize similar probabilities, but they typically do not compute the
actual value of those probabilities.
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In the case where all codewords are equally likely, an ML decoding algorithm will max-
imize p(x|y). Raghavan and Baum [47] present the Reliability Output Viterbi Algorithm
(ROVA). Using a trellis representation of a code, this algorithm will output p(x|y) where
y is a received vector and x is the codeword chosen by the Viterbi algorithm. Given
that all codewords are equally likely at the source, this will correspond to maxx∈X p(x|y).
The ROVA combined with Monte-Carlo simulations will thus allow us to estimate the
min-equivocation of convolutional codes.

For uncoded transmission, we have independence between bits which allows us to
compute the min-entropy of a single bit and multiply it by the frame length.
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Chapter 5

Results

5.1 Energy use

In this chapter, we will mostly look at the relative difference in SNR between Bob and
Eve. While this is a useful view for the wiretap channel, it hides the differences in absolute
SNR between codes. Recall that the SNR is the energy per information bit divided by
the noise. Assuming noise is constant, the difference in SNR between codes tells us how
much more or less energy is required to achieve the same performance. Table 5.1 lists
the energy required for a frame error rate of 10−3 relative to uncoded communication
for codes with information length 128. This information can also be read from Fig. 4.2,
however the decibel representation may be unintuitive for reasoning about the actual
energy requirements.

Code Relative Energy
Coset code 2.14
Uncoded 1.00
(2,1,2) conv. code 0.42
(2,1,4) conv. code 0.33
(2,1,6) conv. code 0.27
Turbo code B 0.23
Turbo code A 0.21
(2,1,12) conv. code 0.20

Table 5.1: Energy needed for FER = 10−3, relative to uncoded. All codes have information
length 128.

From Table 5.1, we see that coset coding requires more than twice the energy as un-
coded, and approximately ten times the energy of the highest complexity convolutional
code. This illustrates that coset coding on its own is extremely inefficient in practice.
Viewing the wiretap channel in isolation without considering efficient and reliable com-
munication for Bob will result in impractical conclusions.
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5.2 Equivocation

In Fig. 5.1, we see the equivocation for a syndrome code, uncoded, and three convolutional
codes with a message length of 16 bits. The syndrome code equivocation is calculated us-
ing the method from [35], while the convolutional equivocation is a Monte-Carlo estimate
as described in Section 4.4.2 using the algorithm from [46].

This illustrates how in syndrome codes, the redundancy is used to increase equivoca-
tion, whereas in communication codes the redundancy reduces equivocation. It is clear
from this plot that in the case where Bob has a noiseless channel, syndrome codes are the
better choice to increase the equivocation for Eve.
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(16,32) Coset code
16 bit uncoded
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(2,1,6) conv. code

Figure 5.1: Equivocation over the binary symmetric channel with transition probability
p.

As discussed in Chapter 4, we are largely unable to measure the equivocation for larger
block lengths and on the AWGN channel, except for convolutional codes. We present some
results on the equivocation of convolutional codes here, however we are unable to make
direct comparisons with other codes except the uncoded case. In Fig. 5.2, we show the
equivocation of convolutional codes and uncoded transmission for the 128-bit message
length. We observe that convolutional coding gives a significant reduction in the required
signal energy to achieve a small equivocation compared to uncoded transmission.

If Bob does not have a noiseless channel, we want to set a threshold TBFER which is
an upper limit on Bob’s frame error rate. We can then observe Eve’s equivocation as a
function of the difference in channel quality between her and Bob. In Fig. 5.3, we set
TBFER = 10−3, and show Eve’s equivocation as a function of the difference in SNR between
Bob and Eve. We see that coding improves the situation for Eve, meaning it worsens
our security. This illustrates the issue faced when Bob does not have a noiseless channel;
helping Bob will also help the eavesdropper Eve.

However, this dynamic is not necessarily as strong if we move away from information-
theoretical security to a more practical view. In addition to her equivocation, let us
consider Eve’s frame error rate. We assume she uses a maximum likelihood decoder,
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Figure 5.2: Equivocation H(X|Y ) of convolutional codes, compared to uncoded trans-
mission.

0 5 10 15 20 25

32

64

96

128

Γ (dB)

H
(X
|Y

)

Uncoded
(2,1,12)
(2,1,6)
(2,1,4)
(2,1,2)

Figure 5.3: Equivocation of Eve when TBFER = 10−3.

and only considers the single most probable codeword. In Fig. 5.4, we show both the
equivocation and FER of Eve with a (2,1,6) convolutional code with a message length of
128 bits. We see that in order for Eve to have a FER ≈ 1, a much smaller difference in
SNR is required compared to an equivocation close to 128 bits.

5.2.1 Min-equivocation

In Fig. 5.5, we show the conditional min-entropy of the convolutional codes as well as
uncoded with 128 bit messages. Fig. 5.6 shows the same results as a function of the
security gap when TBFER = 10−3. Comparing these to equivocation (Fig. 5.2 and Fig. 5.3),
it is clear that a larger security gap is needed to ensure a high min-equivocation for Eve.

For both equivocation and min-equivocation, we observe that it can be very difficult
to get close to perfect secrecy, i.e. H(X|Y ) ≈ 128 or H∞(X|Y ) ≈ 128. However, in
the context of privacy amplification where Alice and Bob are exchanging a key, we may
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Figure 5.4: Equivocation and FER of Eve when TBFER = 10−3. (2,1,6) covolutional code
with 128 bit messages.

consider sending a larger message than necessary, and computing a one-way function or
hash function with the message as input, where the output is smaller than the equivocation
or min-equivocation. In such a situation it is not necessary to reach perfect secrecy over
the full message. Note that security in this situation would depend on the properties of
the hash function, but discussing that in detail is beyond the scope of this work.
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Figure 5.5: Min-equivocation for 128-bit messages over the AWGN channel.

5.2.2 Fano bound

As discussed in Chapter 4, Fano’s inequality can give an upper bound on the equivocation
H(X|Y ) based on the FER. This allows us to at least in a small sense reason about the
entropy of other codes than convolutional codes. In Fig. 5.7, we show an upper bound
on the equivocation of Eve as a function of the security gap when TBFER = 10−3. We also
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Figure 5.6: Min-equivocation of Eve when TBFER = 10−3. 128 bit messages.

reproduce the values from Fig. 5.3, which is the equivocation for convolutional codes and
uncoded in this situation. Comparing the bound with the actual value, we see that the
Fano bound preserves the order of the convolutional codes, but does not give an accurate
comparison between coded and uncoded. Additionally, the bounds are quite far from
the true values (it is not a tight bound). These two factors diminish the value of Fano’s
inequality in this context. It is hard for us to make definitive statements about which
codes give the highest equivocation based solely on these bounds.

For the future, newer, tighter bounds such as the one presented in [48] may provide a
more useful picture.
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Figure 5.7: Upper bounds on H(X|Y ) from Fano’s inequality, compared with the true
value of H(X|Y ) for convolutional and uncoded.
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5.3 Error rates

In this section, we will look at how the error rate performance curves of different codes
affect Eve. However, keep in mind that error rates alone can not ensure information-
theoretic security, and that there may be a rather large gap from a high error rate to a
high equivocation, as seen in Fig. 5.4.

Using the frame- and bit error rate as a measure of Eve’s confusion allows us to
compare codes where it’s not trivial to compute the equivocation. As seen in Fig. 4.3, the
steeper performance curves of communication codes can give a smaller security gap under
certain conditions. In Fig. 5.8, we show the FER of Eve, given that TBFER = 10−3. We
observe that Eve’s FER is higher for the turbo and convolutional code than for the coset
code. If we set TEFER = 0.9999 = 1 − 10−4, the security gap of the turbo, convolutional
and coset codes are approximately 4.5 dB, 6.3 dB, and 7.9 dB, respectively. Note that
we omit the (2, 1, 12) convolutional code here, due to the computational complexity of
simulating it for such high frame error rates.
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Figure 5.8: FER of Eve when TBFER = 10−3. 128 bit messages.

In addition to the FER, we can look at Eve’s bit error rate (BER). Ideally, we want
Eve to have a bit error rate as close to 0.5 as possible. We will see that this is more
difficult to achieve than a FER close to 1. In Fig. 5.9, we show Eve’s bit error rate when
TBFER = 10−3.

For syndrome coding and convolutional codes, it is important to note that these sim-
ulations were performed using maximum likelihood (ML) decoding, which minimizes the
frame error probability. Using a bitwise maximum a-posteriori (MAP) decoding may im-
prove the BER performance. For the turbo codes, the complete decoder is neither ML nor
MAP, however the decoder for each of the constituent codes are bitwise MAP decoders.
The apparent ”flattening” of the turbo code curves may be a result of the MAP decoders.
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Figure 5.9: BER of Eve when TBFER = 10−3. 128 bit messages.

5.4 Physical interpretation

As previously discussed, a real-world situation where the wiretap channel can arise is one
where Alice is communicating wirelessly with Bob, and Eve is at some position further
away than Bob. In this section we will illustrate the performance of the tested codes in
such a situation.

In addition to placing Bob at a given SNR based on TBFER, we now also place him at
a given physical distance from Eve. As described in Chapter 2, we can model wireless
communication with a simple path loss model. The path loss exponent γ quantifies path
loss, i.e. how fast the signal strength drops off over distance. In an idealized scenario we
have γ = 2, but it may be higher or lower depending on the physical environment. Recall
the following equation

SNR2 = SNR1 − 10γ log10

(
d2
d1

)
. (2.41 revisited)

In Fig. 5.10, we place Bob 10 meters from Alice and show Eve’s FER as a function
of her distance to Alice. In practice, this situation could be achieved by tuning the
transmission power of Alice such that Bob has a FER of 10−3 at 10 meters. We see that a
higher γ leads to a smaller security gap, but does not affect the comparison of the various
codes. This illustrates that the codes may be compared on a channel model, however for
a real-world application of wiretap codes, measuring γ or equivalent parameters of other
models is necessary to guarantee security. In fact, bypassing the path loss model and
instead measuring the SNR itself at various points may be a valid solution, as is done in
[39].

By introducing a physical model we also make some new assumptions about Eve’s
capabilities. The SNR of a receiver will depend on several factors beyond the physical
location. The size of a receiver’s antenna may affect the SNR, as a larger antenna can pick
up a larger share of the total signal energy. Additionally, the quality of the components of
the receiver and its design may reduce electrical noise, which will increase the SNR. For
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our purposes we assume that Bob and Eve have the same receivers, however for a real-
world deployment, one may want to quantify this possible increase in receiver quality,
for example by comparing with the best available off-the-shelf devices, or by adding a
security margin by multiplying Eve’s estimated SNR by some constant.
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Figure 5.10: FER over distance, using the path loss model with γ = 2 (left) and γ = 3
(right). Bob has a FER of 10−3 at 10 meters.
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Chapter 6

Conclusions

In this chapter we will summarize our findings, discuss the implications of those findings,
and discuss which directions of research have not been fully explored in the scope of this
thesis.

6.1 Summary

We have discussed how a lot of work on the wiretap channel assumes that Bob has a noise-
less channel, and that analysis of Eve’s confusion is done as the block length n tends to
infinity. Neither of these assumptions apply to the case of real-world wireless communica-
tion. We therefore choose to explore alternative options to the ones presented previously,
including the use of codes designed for communication. We also study the standard wire-
tap coding, syndrome coding, when the assumption about a noiseless channel is dropped.
This reveals the major inefficiency of using syndrome coding for communication over a
noisy channel, compared to other codes. The increase in the necessary signal energy makes
it in our view infeasible to use syndrome coding on its own for wireless communication.

We have looked at several ways to measure Eve’s confusion in this work. Specifically
the equivocation, the min-equivocation, the frame error rate, and the bit error rate. For
information-theoretical security as Shannon [4] and Wyner [1] defined it, the equivocation
is the measure used. As min-equivocation is a lower bound on the equivocation, it too can
ensure information-theoretical security, and is additionally a stronger measure of security
as shown by Cohen and Zémor [8].

We have however seen that the equivocation and min-equivocation can be difficult to
calculate, and that in the cases where we can compute them, only syndrome coding pro-
vides an improvement in security over uncoded communication. This presents a problem,
because as we have discussed above, syndrome coding is impractical for noisy channels.

From this, we move to discuss another form of security, not based on information
theory, but instead on observations of the bit error rate and frame error rate. This comes
with the caveat that Eve may employ more advanced techniques than standard decoding,
such as brute force through, for example, list decoding.

Our results on the frame error rate are very clear; to maximize Eve’s frame error
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rate we should employ codes with steep performance curves, such as turbo codes or
convolutional codes of high trellis complexity. The bit error rate gives a slightly less
clear picture, but indicates that searching for codes that are not necessarily optimal for
communication may give better security over the wiretap channel. Specifically, we find
a partially systematic turbo code (PSTC) that requires only ∼ 0.5 dB higher SNR for
Bob than a standard systematic turbo code, but gives a significantly higher bit error rate
for Eve. This is consistent with the suggestions of [38], where longer block length LDPC
codes are considered.

We also note that convolutional codes of high trellis complexity give a higher BER
for Eve than those of lower complexity. This may be counter-intuitive as high complexity
convolutional codes tend to give a lower BER for good channels, but there is a crossover
point where the higher complexity codes start performing worse.

6.2 Unexplored avenues

In this time-limited thesis project there are naturally interesting areas of study we were
unable to explore. In this section we will discuss some of those areas.

A central question of the thesis is when we are able to calculate the equivocation of
Eve. We know that the equivocation of syndrome codes is possible to estimate over the
erasure channel using Monte-Carlo simulation [36], and using similar arguments as [46] we
should be able to do the same for convolutional codes. This would provide a comparison
of equivocation for longer block lengths than we were able to over the BSC.

In our discussion of turbo codes we indicate that there may be codes that are not
optimal for communication, but provide a good trade-off when it comes to the reliability
for Bob vs. the confusion of Eve. A more thorough search for such codes may yield better
results.

Finally, we have seen that syndrome coding has good information-theoretical prop-
erties for security, but is impractical on its own. We suspect that a concatenated code
with an outer communication code and an inner syndrome code may provide some of the
information-theoretical properties of syndrome coding while still being usable for reliabil-
ity. No calculations or simulations were made to support this, so this is purely a suggestion
for future investigation. In this case, the rates of the two codes may be adjusted to spend
more of the redundancy on confusion and less on reliability or vice versa.
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