
U n i v e r s i t y o f B e r g e n
D e p a r t m e n t o f i n f o r m a t i c s

S i d e C h a n n e l A n a l y s i s o n B i t s l i c e d

A E S

A u t h o r : S t i a n J o h a n n e s e n H u s u m

S u p e r v i s o r s : M a r t i j n S t a m a n d Ø y v i n d Y t r e h u s

M a y 3 0 , 2 0 2 2

Git-Alt c8a195b5 (main)

A b s t r a c t

The current power analysis attacks on bitsliced AES only take into account the power
consumption of a single bit. We present a way of combiningmultiple Differential Power
Analysis attacks using different power models to target multiple bits. The new attacks
require less than half the amount of traces to reach a success rate of 99% compared to
the current state of the art.

A c k n o w l e d g e m e n t s

I would like to thankMartijn Stam and Nicolas Costes for their incredible guidance and
support during the writing of this thesis. Thanks also to my friends, classmates, and
everyone at Simula UiB for giving me some much-appreciated distractions, and giving
me the best social environment for when I needed a break. And lastly, I would like to
thank my family for supporting me in my studies, keeping me fed when I needed it
the most, and always offering their help.

C o n t e n t s

G l o s s a r y v

Symbols . v
Acronyms . vi

L i s t o f F i g u r e s v i i

L i s t o f T a b l e s v i i i

L i s t o f A l g o r i t h m s i x

1 I n t r o d u c t i o n 1

1.1 Introduction to Cryptography . 1
1.2 Introduction to Side Channel Analysis 2
1.3 Bitslicing . 2
1.4 Our Contribution . 3

2 A d v a n c e d E n c r y p t i o n S t a n d a r d 4

2.1 T-Table Implementation . 5
2.2 Bitslicing . 6
2.3 Speed Comparison . 7

3 S i d e - C h a n n e l A n a l y s i s 9

3.1 Differential Power Analysis . 10
3.1.1 Intermediate Values . 12
3.1.2 Power Models . 12
3.1.3 Correlation Power Analysis . 12

3.2 Measuring The Performance of Attacks 13
3.3 Signal-to-Noise Ratio for SCA . 14

4 A t t a c k s o n B i t s l i c e d A E S 1 6

4.1 Correlation Power Analysis . 16
4.2 Combining Scores . 18
4.3 Choice of Plaintexts . 21
4.4 Overall Results . 22
4.5 Experimental Setup . 23

C o n t e n t s i v

5 C o n c l u s i o n s a n d F u t u r e W o r k 2 4

B i b l i o g r a p h y 2 5

G l o s s a r y

S y m b o l s

Notation Description Size

|⬚| Absolute value

⬚ Arithmetic mean

𝐜 Vector of scores for key guesses 𝐾
𝐃 Matrix containing the data corresponding to

traces with parallel encryptions
𝑃 × 𝑁

𝐝 Vector containing the data corresponding to
the traces

𝑁

𝐠 Vector of key guesses sorted by score 𝐾
𝑘∗ Value of the correct key

𝐾 The number possible values for the part of
the key that the intermediate value depends
on

𝑁 The total number of traces

𝑃 The number of parallel encryptions

𝐑 Matrix of scores as a result of a DPA attack 𝐾 × 𝑇

𝐓 Matrix of power meassurement traces 𝑁 × 𝑇
𝑇 The number of power meassurement points

in one trace

A c r o n y m s v i

A c r o n y m s

Notation Description
AES Advanced Encryption Standard

CPA Correlation Power Analysis

DES Data Encryption Standard

DPA Differential Power Analysis

LSB Least Significant Bit

SCA Side Channel Analysis

SNR Signal-to-Noise Ratio

SPN Substitution-Permutation Network

SR Success Rate

L i s t o f F i g u r e s

2.1 Layout of the registers in bitsliced AES [Bal+15] 7

3.1 Trace from naive AES implementation 10

4.1 Layout of intermediate values in registers for bitsliced AES with two
parallel encryptions . 17

4.2 SNR plot for each bit of intermediate value during the first S-box com-
putation . 18

4.3 Success rates for attacks on each bit . 19
4.4 Success rates for attacks using maximum correlation 20
4.5 Success rates for attacks using sum or product 21
4.6 Success rates for attacks using either traces with equal plaintexts or

different plaintexts . 22

L i s t o f T a b l e s

4.1 The number of traces needed to have SR0 ≥ 0.99 22

L i s t o f A l g o r i t h m s

2.1 AES-128 . 6

3.1 Generalized DPA attack . 11
3.2 Compute a vector of keyscores . 12
3.3 Compute Keyguesses . 13
3.4 Compute an estimated SNR . 15

4.1 CPA on AES . 17
4.2 CPA on bitsliced AES implementations with parallel encryption 19
4.3 CPA attack with score combiner . 20

C h a p t e r 1
I n t r o d u c t i o n

1 . 1 I n t r o d u c t i o n t o C r y p t o g r a p h y

The field of cryptography is interested in keeping communication secure. There are
different aspects to security. One aspect is keeping information private such that an
eavesdropper can not understand it. Another aspect is keeping the information intact
to make sure nothing changes during transmission, either by tampering or an insecure
channel. And thirdly, the aspect of verification of the identities of all parties. These
aspects are known as confidentiality, integrity, and authentication, respectively, and
are some of the most important aspects of cryptography.

We focus on the first of these aspects, confidentiality. To achieve confidentiality,
messages are encrypted with a key such that they appear random to anyone other than
the intended recipient. The intended recipient can then decrypt the message with a
matching key to restore the original message. The original message is known as the
plaintext, and the encrypted message is known as the ciphertext.

Encryption can be divided into twomain categories: symmetric and asymmetric. For
symmetric encryption, the keys used for encryption and decryption are equal. One very
common symmetric algorithm is the Advanced Encryption Standard (AES), used, for
example, as a part of TLS to secure the internet. Meanwhile, for asymmetric algorithms,
encryption and decryption use different keys. Asymmetric encryption allows for public
keys to be broadcast. Senders can encrypt their message using the recipient’s private
key, and then only the recipient can decrypt the message. Asymmetric algorithms
are more versatile than symmetric algorithms, but asymmetric algorithms tend to
be slower. Therefore, before sending data, an asymmetric algorithm is often used to
exchange a shared key, and then that key can be used for symmetric encryption for the
rest of the exchange.

1 I n t r o d u c t i o n 2

1 . 2 I n t r o d u c t i o n t o S i d e C h a n n e l A n a l y s i s

While cryptography is interested in constructing secure algorithms, cryptanalysis tries
to break those algorithms. Breaking algorithms is a crucial part of security because it
is the only way to know if something is secure, by discovering weaknesses before an
adversary does. There are several ways to break an algorithm, and different attacks
require different assumptions about what the attacker knows. For example, an attacker
can try to recover the plaintext without knowing the key, or they can try to recover the
key knowing both the plaintext and the ciphertext.

In Side Channel Analysis (SCA), it is often assumed that the attacker has physical
access to the device. It incorporates additional information from the physical device
into the attack. Such information is known as side channels. When encryption is run
on a physical device, the behavior of that device depends on the secret key, and that
behavior can leak information about that key. That behavior can be the time used, the
power consumption, or even the electromagnetic radiation emitted by the device.

In cryptanalysis, the mathematical description of the algorithm is under attack, so
the implementation is not relevant. But for SCA, both the physical characteristics of a
device and the implementation become important. Different implementations of the
same algorithm can have different leakage and require different attacks.

In this thesis, we will focus on SCA based on power consumption, called power
analysis. For power analysis, the power consumption of a device is measured during
encryption. Such a power measurement is known as a trace. Traces are often collected
using fast oscilloscopes to measure the power several times per clock cycle. While the
attacker might have physical access to the device, they might not have the key that is
stored on it, so the goal is usually to recover the key. The power consumption can be
dependent on the key in multiple ways. For instance, the algorithm could do different
operations depending on the value of the key. Different operations often look distinct
in the power measurements, and the key could therefore be recovered from looking
at a single trace. Protecting from such attacks is done by avoiding any conditional
branching that depends on any secret value.

The power consumption also depends on the value of the data being operated on,
but the variation in power usage is much smaller. This leads to an attack introduced by
Kocher, Jaffe, and Jun [KJJ99] called Differential Power Analysis (DPA). DPA attacks
need a large number of traces that are analyzed using statistical functions, and the
effectiveness of the attack can be measured in the amount of traces needed for a
successful attack.

1 . 3 B i t s l i c i n g

Bitslicing is an implementation technique for encryption algorithms. Instead of storing
the values in the state as whole bytes, the bits of the state are spread across multiple

1 I n t r o d u c t i o n 3

registers. By filling the rest of the registers with bits from other computations of the
same cipher, multiple encryptions can be done in parallel.

Depending on the platform and algorithm, bitslicing can come at a great cost to speed.
However, bitslicing can help with protecting against side-channel attacks. For instance,
it protects against cache timing attacks, and it becomes easier to add countermeasures
against DPA attacks.

1 . 4 O u r C o n t r i b u t i o n

Since bitsliced implementations spread the secret data over multiple registers, the
leakage is no longer at a single point in time. Therefore, the DPA attacks normally
used for AES are no longer efficient. The goal of this thesis is to improve the current
state-of-the-art attacks on bitsliced AES proposed by Balasch et al. [Bal+15]. Their
attack is a DPA attack that only considers the power usage of a single bit. By considering
more bits and exploiting multiple timestamps in the traces, we attempt to reduce the
number of traces needed for a successful attack.

In Chapter 3 we go into detail about DPA attacks and introduce success rates as a
metric for comparing the effectiveness of attacks.

Then, in Section 4.1, we establish a baseline for benchmarking by applying the attack
by Balasch et al. [Bal+15] on a new platform and implementation. That implementation
is the currently fastest bitsliced implementation by Adomnicai and Peyrin [AP20]
running on a ChipWhisperer-Lite. We then compare the success rates for DPA attacks
targeting all bits separately. Each of these attacks gives us a score for the possible keys.
In Section 4.2 we compare multiple methods for combining these scores to increase
the efficiency of the attack. By combining the scores with either sum or product we
get a new attack requiring less than half the amount of traces as the original attack to
reach a success rate of 99%.

Lastly, as bitsliced implementations are parallelized, in Section 4.3 we compared the
success rates of having the parallel plaintexts equal or different. We discovered that
the success rates are almost the same, with equal plaintexts being slightly better in
some cases.

C h a p t e r 2
A d v a n c e d E n c r y p t i o n S t a n d a r d

In the late 1990s, the American National Institute of Standards and Technology (NIST)
realized that their previous standard for encryption, Data Encryption Standard (DES),
was getting to the end of its lifetime. The key size used in DES had become too small
to be secure against modern computers, and in 1997 the first exhaustive brute-force
attack on DES was achieved [Smi21]. To encourage more trust in a new standard, NIST
decided to hold a competition to choose a replacement. This competition consisted
of the international cryptographic community both submitting proposals for new
algorithms and scrutinizing the algorithms. Efficiency, security, and flexibility were all
high priorities for the algorithms. There were 15 valid submissions to the competition,
which over several rounds were reduced down to 5 finalists [Smi21]. In October 2000,
NIST announced the winner to be the Rijndael algorithm [Bul00]. The next year,
in 2001, the standard was completed, and Rijndael was accepted as FIPS 197, The
Advanced Encryption Standard (AES) [NIST01]. AES has since been accepted as a
standard in the International Organization for Standardization. It is included in the
Transport Layer Security (TLS) protocol used to secure the Internet, as well as in Wi-Fi
to secure wireless networks [Smi21].

A d v a n c e d E n c r y p t i o n S t a n d a r d (A E S) AES is a symmetric block cipher and is a
subset of the original Rijndael cipher. The full details of the cipher are in Advanced
Encryption Standard (AES) [NIST01], but the following is a brief overview.

A block cipher works on a fixed-size input, referred to as a block. The Rijndael cipher
allowed for a range of key- and blocksizes, however, AES only allows a blocksize of
128-bits and keys of 128-bits, 192-bits, and 256-bits. As a convention, AES-128 means
AES using a 128-bit key. The same applies to 192-bits and 256-bits. This thesis will
focus on AES-128. Therefore, if the size of the key is omitted, assume it to be 128-bits.

The AES state is structured as a 4 × 4 array of bytes. The cipher is constructed as a
Substitution-Permutation Network (SPN). An SPN cipher consists of several rounds.
Each round consists of a substitution of bytes, the addition of a round key, and a linear

2 A d v a n c e d E n c r y p t i o n S t a n d a r d 5

layer permuting the state.
In AES, the number of rounds depends on the size of the key. There are either 10, 12,

or 14 rounds, with more rounds for larger keys. A key scheduler is used to expand the
primary key into round keys for each of the rounds.

The first step of the cipher is adding the first round key to the state using bitwise
xor. It is worth noting that the main key is used directly here, i.e., for a 128-bit key,
the first round key is equal to the main key. Then follows (𝑛 − 1) rounds of SubBytes,
ShiftRows, MixColumns, and AddRoundKey, where 𝑛 is the number of rounds. The last
round skips the MixColumns operation. It only contains SubBytes, ShiftRows, and the
addition of the key.

The substitution layer, SubBytes, applies a function on each byte of the state. This
function is referred to as the S-Box. It has a byte, eight bits, as input and output. The
S-box is invertible, as the inverse is used for decryption. In addition, S-Boxes should be
as non-linear as possible as it is the only part of the cipher that is not linear. S-boxes are
commonly implemented using either lookup tables or logic circuits. Lookup tables are
precomputed tables where the element at index 𝑖 is the output of the S-box for input
𝑖. A logic circuit, on the other hand, consists of many logic gates, and performance
is dependent on the number of gates needed to construct it. Much work has been
put into finding circuits for AES S-boxes with fewer gates, and the current best is 113
gates[CMT20].

The linear layer consists of two operations, MixColumns and ShiftRows, and together
they provide the permutation in the algorithm. MixColumns applies a linear transfor-
mation on each column of the state. The details of this operation will be omitted here
but can be found in the NIST standard[NIST01]. ShiftRows does a cyclic right shift on
each row of the state. The first row is not shifted, the second row is shifted once, the
third row twice, and the fourth row is shifted three times.

The full structure of encryption with AES is described in Algorithm 2.1.

2 . 1 T - T a b l e I m p l e m e n t a t i o n

T-tables are an implementation strategy for AES proposed in the original Rijndael
proposal [DR02]. The T-table implementation precomputes four large lookup tables.
These tables take into account the linear layer as well as the S-Box. Therefore the entire
round can be reduced to lookups and XOR. Because the last round has a different linear
layer from the rest, missing the MixColumns, this round must be handled separately.
The T-table implementation is faster than the naive way of implementing AES on
platforms that can fit the lookup tables. However, AES instruction sets on modern
processors are even faster than using T-tables. Therefore T-tables are more popular on
devices that do not have access to a dedicated AES instruction set.

2 A d v a n c e d E n c r y p t i o n S t a n d a r d 6

Algorithm 2.1 AES-128
Require: 128-bit key 𝑘, plaintext as 4 × 4 matrix of bytes 𝐒 numbered 1-16
Ensure: 𝐒 contains the ciphertext

1: function AES(𝑘, 𝐒)
2: for 𝑖 ← 1 to 10 do
3: 𝑟𝑘𝑖 ← key schedule(𝑘, 𝑖)
4: 𝐒 ← 𝑘 ⊕ 𝐒
5: for 𝑖 ← 1 to 9 do
6: for 𝑗 ← 1 to 16 do
7: 𝐒𝑗 ← S-Box(𝐒𝑗)
8: 𝐒 ← ShiftRows(𝐒)
9: 𝐒 ← MixColumns(𝐒)

10: 𝐒 ← 𝑟𝑘𝑖 ⊕ 𝑆
11: for 𝑗 ← 1 to 16 do
12: 𝐒𝑗 ← S-Box(𝐒𝑗)
13: 𝐒 ← ShiftRows(𝐒)
14: 𝐒 ← 𝑟𝑘10 ⊕ 𝐒
15: return 𝐒

2 . 2 B i t s l i c i n g

Bitslicing is an implementation approach for block ciphers where the bits in the state
are spread over multiple registers. It was first used for an efficient DES implementation
by Biham [Bih97]. The simplest way to do this is by putting each bit of the state in
a separate register. The rest of the register can then be filled with bits from different
computations of the same cipher, allowing as many blocks enciphered in parallel as
there are bits in the register.

Since S-Box computations can be represented as logic circuits, the computation for
all the parallel blocks can be done at the same time using bitwise logic operators on
the whole register.

Unfortunately, this approach is not very efficient for AES on devices with fewer
than 128 registers. This is due to the overhead incurred by loading and storing the
extra registers. The first bitsliced AES implementation by Matsui [Mat06] used this
approach regardless. A better approach introduced by Könighofer [Kön08] uses the
4 × 4 structure of AES to its advantage and performs byte-level bitslicing. Instead of
spreading the entire state over the registers, the bits for each byte are split instead.
Multiple bytes of the same block are then packed into the same register. This allows for
fewer blocks processed in parallel, as 16 bits are needed for each block instead of only
one, but by using fewer registers, it becomes more efficient on platforms without many

2 A d v a n c e d E n c r y p t i o n S t a n d a r d 7

registers, R1 to R8. Note that one input message block A fills only 16 bits in
each Ri. Therefore several input messages can be processed in parallel, e.g. by
storing bits from several input message blocks into each register. This is illus-
trated in Figure 2 for the case of 32-bit registers. In this case, a second plaintext
B is processed concurrently with A.

...

...

...

...
...

...

Normal Byte Ordering Bitsliced Ordering

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

A4 A8 A12 A16

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B4 B8 B12 B16

a1
1 b11 a5

1 b51 a9
1 b91 a13

1 b131 a12
1 b121 a16

1 b161

a1
8 b18 a5

8 b58 a9
8 b98 a13

8 b138 a12
8 b128 a16

8 b168

R1

R8

32 bits

Ai = [ai
8, a

i
7, a

i
6, a

i
5, a

i
4, a

i
3, a

i
2, a

i
1]

Bi = [bi8, b
i
7, b

i
6, b

i
5, b

i
4, b

i
3, b

i
2, b

i
1]

Fig. 2. Layout of bitsliced AES registers.

Coding style. We have coded our bitsliced AES implementation in C language
and mimicked the concept of hardware gates by using software macros for all
atomic operations. This approach allows us to write our program as a fixed
sequence of calls to five main macros: bitwise operations (XOR, AND and NOT),
data transfers (MOV) and left rotates (ROTL):

#define XOR(c,a,b) c = a ˆ b;
#define AND(c,a,b) c = a & b;
#define NOT(c,a) c = ˜ a;
#define MOV(c,a) c = a;
#define ROTL(c,a,l) c = (a � l) | (a � (32 - l));

The main benefit of this approach is that protecting the implementation
with gate-level masking requires only rewriting the macros. This point will be
elaborated on in Section 4.

F i g u r e 2 . 1 / Layout of the registers in bitsliced AES [Bal+15].

registers. The layout for the registers using such byte-level bitslicing is in Figure 2.1.
An advantage of bitsliced implementations over T-tables is resistance against cache

timing attacks due to not using lookup tables. In addition, due to the circuit structure
of bitsliced implementations, adding Boolean masking to protect against side-channel
attacks is straightforward.

2 . 3 S p e e d C o m p a r i s o n

As mentioned, T-table implementations are generally faster on platforms without
dedicated hardware. One such platform, and the platform that will be the focus of
this thesis, is the ChipWhisperer-Lite. The ChipWhisperer-Lite has an STM32F303
microcontroller with an Arm Cortex-M4 core. For Cortex-M, Schwabe and Stoffelen
[SS17] introduced both a fast T-table and a fast bitsliced implementation. The bitsliced
implementation was then further improved by Adomnicai and Peyrin [AP20].

The improvement made by Adomnicai and Peyrin [AP20] is using four specialized
linear layers, one for every fourth round. By combining MixColumns and ShiftRows,
the total number of operations needed is reduced, increasing performance. This im-
plementation is referred to as the fixsliced implementation and will be the bitsliced
implementation used in this thesis.

Choosing a bitsliced implementation comes at a cost to speed when T-table imple-
mentations are an option. To quantify the difference in performance between the fastest
bitsliced and T-table implementations, we counted the number of cycles used by each
of them to perform encryption on the ChipWhisperer-Lite. We ran the encryption

2 A d v a n c e d E n c r y p t i o n S t a n d a r d 8

several times, but the number of cycles did not change between different plaintexts
and keys. The T-table implementation by Schwabe and Stoffelen [SS17] spends 672
cycles to encrypt one block. Meanwhile, the fixsliced implementation uses 2780 cycles
to encrypt two blocks in parallel. As long as there are two plaintexts to encrypt, the
fixsliced implementation uses 1390 cycles per block. This comparison does not take
into account the key scheduler. In conclusion, the fixsliced implementation is about
half as efficient as the T-table implementation.

C h a p t e r 3
S i d e - C h a n n e l A n a l y s i s

When a cryptosystem is implemented on a physical device, it might leak different
information than just the plaintext, and ciphertext. Such information might come, for
example, from the power consumption of the system, or the electromagnetic radiation
emitted by the system. This information is known as a side-channel. In Side Channel
Analysis (SCA), this information is used to extract secrets and attack the cryptosystem.

SCA based on power consumption, called power analysis, collects power consump-
tion values over time for the system while encrypting. Such measurements are called
traces. Figure 3.1 shows the scaled power consumption during the first one and a half
rounds of AES using a naive lookup table implementation. This trace was collected on
a ChipWhisperer-Lite. The ChipWhisperer-Lite is a board containing an STM32F303
target that runs the encryption and an analog-to-digital converter to measure the
voltage over a shunt resistor that is in line with the power of the target. The power con-
sumption changes depending on what operation is being performed. By recognizing
repeated patterns, an attacker can make assumptions about what operation is being
performed. The trace shows a repeating pattern starting with a large negative peak,
and each of these patterns is one round of AES. Power Analysis can also be used when
a side-channel behaves similar to power consumption, for instance for measurements
of electromagnetic radiation.

Power consumption is affected by the operation being performed. The simplest form
of power analysis looks at patterns in a single trace that can reveal what operation is
being performed. An example of this is when the square and multiply algorithm is
used in encryption, like in the asymmetric encryption RSA. Square and multiply is
used to compute exponentiation. It goes through each of the bits in the exponent, if
the bit is zero only squaring is done, but if the bit is one multiplication is also done.
The rounds with squaring will look different on the trace than the rounds with both
squaring and multiplying, and therefore an attacker can read the exponent from the
trace. For RSA this exponent is the secret key. To protect against these types of attacks,
the choice of operation performed should not depend on the data.

3 S i d e - C h a n n e l A n a l y s i s 1 0

0 1 000 2 000 3 000 4 000 5 000
−0.4

−0.2

0

0.2

Timestamp

Sc
al

ed
P
ow

er
C

on
su

m
pt

io
n

F i g u r e 3 . 1 / Trace from naive AES implementation.

The power consumption also depends on the value of the data of the computation.
In a CMOS circuit, flipping a bit requires more power than keeping the bit the same.
For example, going from 1 to 0 requires more power than going from 1 to 1. Thus
the power consumption when writing to a register depends on the number of bits
that are different between the data already stored in the register and the new data.
This difference is known as the Hamming distance. HD(𝑎, 𝑏) denotes the number of
bits that are different between 𝑎 and 𝑏. A similar concept to Hamming distance is
the Hamming weight, which describes the number of set bits. HW(𝑎) denotes the
number of one bits in 𝑎. Hamming distance andHammingweight are related as follows:
HD(𝑎, 𝑏) = HW(𝑎 ⊕ 𝑏) where ⊕ is bitwise XOR.

3 . 1 D i ff e r e n t i a l P o w e r A n a l y s i s

Instead of just exploiting the information in one trace, Differential Power Analysis
(DPA) uses many traces to exploit the data dependency described above. The traces
are collected using different plaintexts encrypted under an unknown fixed key. DPA
was originally proposed to attack DES by Kocher, Jaffe, and Jun [KJJ99]. Many im-
provements and variations have been made since then, and we will use the term DPA
to refer to a wide range of attacks, including Correlation Power Analysis (CPA). The
following approach is based on the generalized DPA attack described by Mangard,
Oswald, and Popp [MOP08, pp. 119–123].

DPA starts with picking an intermediate value in the encryption that depends on
both some known data and the unknown key. The known data is usually either a part
of the plaintext or the ciphertext. Since DPA depends on trying all possible values for
the unknown key, the intermediate value should only depend on a small part of the key,

3 S i d e - C h a n n e l A n a l y s i s 1 1

usually only one byte. The number of possible values for that part of the key is denoted
𝐾. If 𝑑 is the known data and 𝑘 is a part of the unknown key, then the intermediate
value should be a function 𝑓 (𝑑, 𝑘).

Next, several traces are collected with changing values for the known data. The
number of traces is denoted 𝑁. The data is stored in a length 𝑁 vector 𝐝. We will denote
the data corresponding to trace 𝑖 by 𝑑𝑖. Each of the traces has a length of 𝑇, and the
traces are stored in a 𝑁 × 𝑇 matrix 𝐓. As notation, 𝐭𝑖 refers to the 𝑖’th column of 𝐓, and
𝐭′𝑖 refers to row 𝑖 of 𝐓. Hence, 𝐭′𝑖 refers to the trace for the 𝑖’th run of the encryption.

With the known data values collected, hypothetical intermediate values for each possible
guess of 𝑘 must be computed. For each value of 𝑘 and each value of 𝑑, 𝑣 = 𝑓 (𝑑, 𝑘) is
computed. Then these hypothetical intermediate values are mapped to hypothetical
power consumption values. Let this mapping be the function ‘model(𝑣)’, where 𝑣 is a
hypothetical intermediate value. This function should return a unitless estimate of the
power consumption and is known as the power model.

Lastly, a distinguisher function is used to compare how closely the hypothetical power
consumption under a given key matches the observed power consumption at a given
timestamp. The distinguisher function takes in all hypothetical power consumptions
for a key guess 𝑘, 𝐡𝑘, and all power measurements at a timestamp 𝑖, 𝐭𝑖, and returns a
score. We denote this function as ‘distinguisher(𝐡𝑘, 𝐭𝑖)’. The scores for all key guesses
and all timestamps are computed and collected in a 𝐾 × 𝑇 matrix 𝐑. Higher scores in
the matrix indicate that the key guess at that index is more likely to be the correct key.

DPA can take many forms, and the attacker has many choices in the parameters for
the attack. The attacker has to choose the intermediate value, the power model, and
the distinguisher. Algorithm 3.1 gives an overview of a DPA attack, and Algorithm 3.2
describes how to turn a matrix 𝐑 into a length 𝐾 vector 𝐜 containing just the scores for
each key guess.

Algorithm 3.1 Generalized DPA attack
Require: 𝑁 × 𝑇 matrix 𝐓 of traces, length 𝑁 vector 𝐝 of data.
Ensure: 𝐾 × 𝑇 matrix 𝐑 of scores.

1: function DPA(𝐓, 𝐝)
2: for 𝑛 ← 1 to 𝑁 do
3: for 𝑘 ← 1 to 𝐾 do
4: ℎ𝑘,𝑛 ← model(𝑓 (𝑑𝑛, 𝑘))
5: for 𝑘 ← 1 to 𝐾 do
6: for 𝑖 ← 1 to 𝑇 do
7: 𝑟𝑘,𝑖 ← distinguisher(𝐡𝑘, 𝐭𝑖)
8: return 𝐑

3 S i d e - C h a n n e l A n a l y s i s 1 2

Algorithm 3.2 Compute a vector of keyscores
Require: 𝐾 × 𝑇 matrix 𝐑 of scores
Ensure: Length 𝐾 vector 𝐜 of one score for each keyguess.

1: function keyscores(𝐑)
2: for 𝑘 ← 1 to 𝐾 do
3: 𝑐𝑘 ← max𝑖∈{1,..,𝑇} 𝑟𝑘,𝑖

4: return 𝐜

3 . 1 . 1 I n t e r m e d i a t e V a l u e s

The possible intermediate values depend on the encryption algorithm used, and what
data is known. For AES the most commonly used intermediate value is the output
of one of the first round S-boxes and it depends on knowing the plaintext. If 𝑑 is
one byte of the plaintext and 𝑘 is one byte of the key, then this intermediate value is
𝑓 (𝑑, 𝑘) = S-Box(𝑑 ⊕ 𝑘). Prouff [Pro05] showed that the properties of S-boxes often
help DPA attacks. This intermediate value is also the last value that only depends on
one byte of the key because after MixColumns any intermediate value will depend on
multiple keybytes.

If only the ciphertext is known, an alternative value is the input of one of the last
round S-Box. Here the value depends on the last round key, but if the full last round key
is found, the original main key can be recovered using the inverse of the key expansion.

3 . 1 . 2 P o w e r M o d e l s

The choice of power model depends on the implementation and platform. Based on
the observation about power consumption earlier, the Hamming distance or Hamming
weight are common choices. The Hamming distance requires more knowledge of
the system but often gives a better estimate than the Hamming weight. Both Ham-
ming weight and Hamming distance are only efficient power models if the whole
intermediate value is stored in the same register and operated on at the same time.

When neither Hamming weight nor Hamming distance is efficient, the simplest
power model, and the one used in the original DPA paper[KJJ99], is the single-bit
model. In this model, just one bit of the intermediate value is used. Commonly this
is the Least Significant Bit (LSB). The choice of which bit to look at can change the
effectiveness of the attack, as different bits can leak differently.

3 . 1 . 3 C o r r e l a t i o n P o w e r A n a l y s i s

Lastly is the choice of distinguisher, of which we will only focus on the Pearson corre-
lation coefficient. DPA using Pearson correlation coefficient as distinguisher is called

3 S i d e - C h a n n e l A n a l y s i s 1 3

Correlation Power Analysis (CPA). For two random variables 𝑋 and 𝑌, Pearson corre-
lation coefficient is defined as:

𝜌(𝑋, 𝑌) ∶=
Cov(𝑋, 𝑌)

√Var(𝑋) ⋅ Var(𝑌)
[3.1]

However, this value needs to be estimated in the case of CPA. Given 𝐱 and 𝐲 as
vectors of measurements, using sample variance and sample covariance, 𝜌 is estimated
as:

̂𝜌(𝐱, 𝐲) ∶=
∑𝑁

𝑛=1(𝑥𝑛 − 𝐱) ⋅ (𝑦𝑛 − 𝐲)

√∑𝑁
𝑛=1(𝑥𝑛 − 𝐱)2 ⋅ ∑𝑁

𝑛=1(𝑦𝑛 − 𝐲)2
[3.2]

Let 𝐭𝑖 and 𝐡𝑘 be length 𝑁 vectors. Here, 𝐭𝑖 corresponds to the power value of all traces
at timestamp 𝑖 and 𝐡𝑗 corresponds to the hypothetical power value with keyguess 𝑗
for those traces. Then Pearson correlation coefficient can be used as a distinguisher as

̂𝜌(𝐭𝑖, 𝐡𝑗).

3 . 2 M e a s u r i n g T h e P e r f o r m a n c e o f A t t a c k s

As seen in this chapter, there are many variations of attacks. There are even more
different devices, algorithms, and implementations. To compare how these factors
impact the efficiency of the attacks, some metrics are needed. The definitions here are
based on the definitions used by Cagli [Cag18, pp. 31–32].

The most common metrics are the success rate of order n(SR𝑛) and the average keyrank.
Each of the attacks described in this chapter can be used to create a sorted vector of

key guesses, described in Algorithm 3.3, where a key guess is closer to the start if it is
a more likely key. Let this vector be 𝐠, 𝑔𝑖 is the 𝑖’th most likely key guess, and 𝑘∗ is the
correct key. The rank of the correct key is its index in this vector, i.e. if 𝑔𝑖 = 𝑘∗ then the
rank of 𝑘∗ is 𝑖.

Algorithm 3.3 Compute Keyguesses
Require: Length 𝐾 vector 𝐜 of scores.
Ensure: Length 𝐾 vector 𝐠 of sorted keyguesses.

1: 𝐠 ← arg sort𝑘∈{1,..,𝐾} 𝑐𝑘
2: return 𝐠

3 S i d e - C h a n n e l A n a l y s i s 1 4

S u c c e s s R a t e The Success Rate (SR) of order 𝑛, SR𝑛, is the likelihood of the correct
key, 𝑘∗, having a rank less than or equal to 𝑛. For instance, the success rate of order 1
is the likelihood of the correct key being the first guess in 𝐠. In other words, it is the
likelihood of the correct key being the key with the highest score. The success rate of
order 1 is also called the first order success rate. When the order of the success rate is not
specified, it is assumed to be of order 1.

A v e r a g e K e y R a n k The average key rank is the average rank of the correct key. That
is, the average index of 𝑘∗ in 𝐠.

These values are usually estimated empirically by repeating the attack a large number
of times. The SR𝑛 is then the ratio between the attacks where the correct key is within
𝑛 and all attacks. And the average key rank is the mean index of the correct key in all
the attacks.

3 . 3 S i g n a l - t o - N o i s e R a t i o f o r S C A

A Signal-to-Noise Ratio (SNR) plot can be used to estimate the amount of leakage and
where the leakage occurs. The SNR is the ratio between the signal and the noise, first
introduced in the context of SCA by Mangard [Man04], defined as:

SNR =
Var(Signal)
Var(Noise) [3.3]

The signal is the part of the power consumption that is caused by the chosen inter-
mediate value, and the noise is the power consumption caused by algorithmic and
electric noise.

To estimate the SNR we use the approach described by Mangard, Oswald, and
Popp [MOP08, pp. 73–75]. First, we need to collect several traces, along with the data
needed for the intermediate value. If the intermediate value depends on the key, we
also assume the key to be known. We also need to choose a power model. The traces
are grouped by their expected power value, i.e. the output of the power model on the
intermediate values.

For each group, the mean of the traces in that group is calculated. To compute
the signal, we can replace every trace with the mean trace for its group. The noise
is calculated by subtracting the group mean from every trace. Algorithm 3.4 gives a
summary of how to compute the SNR for a given time. By repeating this process for
all timestamps, we can get a vector of SNR values. We can use that vector to locate
where possible leakage occurs by looking at the highest values.

3 S i d e - C h a n n e l A n a l y s i s 1 5

Algorithm 3.4 Compute an estimated SNR
Require: Length vector 𝐭𝑗 of traces at time 𝑗.
Ensure: Estimated SNR at time 𝑗.

1: for 𝑖 ← possible expected power values do
2: 𝐦𝑖 ← Values of 𝐭𝑗 where the expected power value for that trace is 𝑖
3: for 𝑛 ← 1 to 𝑁 do
4: 𝑖 ← The expected power value of trace 𝑛
5: Signal𝑛 ← 𝐦𝑖
6: Noise𝑛 ← 𝑡𝑗,𝑛 − 𝐦𝑖

7: return
∑𝑁

𝑛=1(Signal𝑛−Signal)2

∑𝑁
𝑛=1(Noise𝑛−Noise)2

C h a p t e r 4
A t t a c k s o n B i t s l i c e d A E S

The current state of the art for attacks on bitsliced AES is the attacks by Balasch et al.
[Bal+15]. Their attack only exploits one moment in the traces, corresponding to a
single bit. The goal of this chapter is to improve these attacks by combining leakage
from multiple timestamps, and therefore multiple bits, to improve their attack.

4 . 1 C o r r e l a t i o n P o w e r A n a l y s i s

Balasch et al. [Bal+15] uses CPA for their attack, therefore we will use it as the basis
for our attacks and we chose to focus on CPA for this thesis.

As described in Section 3.1.1, the chosen intermediate value for AES is usually
the output of one of the first round S-boxes and that will be the intermediate value
we use. CPA using this intermediate value is described in Algorithm 4.1. In AES
implementations using lookup tables, the entire intermediate value is stored in a single
register. Therefore, when the intermediate value leaks, the leakage depends on all
bits of the intermediate value. In this case, we can use Hamming weight as the power
model as described in Section 3.1.2.

For bitsliced implementations, the intermediate value is no longer stored in its
entirety in a single register. Instead, each bit of the intermediate value is stored in a
separate register. Therefore, the Hamming weight model is no longer effective and we
fall back to the single-bit model described in Section 3.1.2.

In addition, bitsliced implementations are inherently parallelized. If only the inter-
mediate value corresponding to one of the plaintexts is used, and the plaintexts are
different, the other plaintexts will only add algorithmic noise and make the attack
less efficient. But, for each of the plaintexts, the same bit of the intermediate value
is stored in the same register. Therefore, we can exploit the leakage from multiple
plaintexts by taking the Hamming weight between bits from different intermediate
values. Figure 4.1 shows an example of how intermediate values can be stored in

4 A t t a c k s o n B i t s l i c e d A E S 1 7

Algorithm 4.1 CPA on AES
Require: 𝑁 × 𝑇 matrix 𝐓 of traces, length 𝑁 vector 𝐝 of plaintexts, target S-box 𝑏, the

power model used.
Ensure: 256 × 𝑇 matrix 𝐑 of correlations.

1: function CPA(𝐓, 𝐝, 𝑏, model)
2: for 𝑛 ← 1 to 𝑁 do
3: for 𝑘 ← 0 to 255 do
4: 𝑝𝑛 ← choose byte 𝑏 of 𝑑𝑛
5: ℎ𝑛,𝑘 ← model(S-Box(𝑝𝑛 ⊕ 𝑘))
6: for 𝑘 ← 0 to 255 do
7: for 𝑖 ← 1 to 𝑇 do
8: 𝑟𝑘,𝑖 ← | ̂𝜌(𝐡𝑘, 𝐭𝑖)|
9: return 𝐑

𝑎7 𝑏7ℛ7

0 1 2 3 … 15 16

𝑎0 𝑏0ℛ0

⋮⋮ ⋮⋮

…

…

F i g u r e 4 . 1 / Layout of intermediate values in regis-
ters for bitsliced AES with two parallel encryp-
tions.

different registers for a bitsliced implementation with two parallel encryptions. Here
𝑎𝑖 is the 𝑖’th bit of the intermediate value corresponding to the first plaintext, and 𝑏𝑖
is the 𝑖’th bit of the intermediate value corresponding to the second plaintext. Then,
a power model to exploit the 𝑖’th bit from each intermediate value is the Hamming
weight of 𝑎𝑖 and 𝑏𝑖.

Algorithm 4.2 describes an algorithm for an attack exploiting the intermediate
value of multiple plaintexts, where 𝑃 is the number of plaintexts encrypted in parallel.
Balasch et al. [Bal+15] uses the Hamming weight of the least significant bits of two
plaintexts as their power model.

The implementation we will use for our measurements is by Adomnicai and Peyrin
[AP20]. It expects two plaintexts in parallel, therefore wewill use the Hammingweight
of two bits, one from each intermediate value, as our power model. In addition, for
the following experiments, the two plaintexts will be different. There are multiple
candidates for which bit to pick for the model. To compare the leakage of each of the
bits, we can use each of them as the power model for an SNR plot. Figure 4.2 shows an

4 A t t a c k s o n B i t s l i c e d A E S 1 8

1 100 1 200 1 300 1 400

0

5 ⋅ 10−2

0.1

0.15

Timestamp

SN
R

Bit 0 Bits 1-7

F i g u r e 4 . 2 / SNR plot for each bit of intermediate value
during the first S-box computation.

SNR plot with each potential power model. Each of the larger peaks corresponds to
each of the power models. It clearly shows why the Hamming weight model for the full
intermediate value is bad, as each of the bits is operated on separately and sequentially.
Since the height of each peak is different, different bits also have a varying amount of
leakage, with bit 0, the LSB, having the highest SNR for this implementation.

As the different bits leak differently, we can run an attack with each different bit
as the power model to compare how they perform. We will use Algorithm 4.2 for
these attacks, with 𝑃 = 2. The details for the experiments are described in Section 4.5.
Figure 4.3 shows the success rate for each different model. It clearly shows that the
choice of bit can greatly impact the effectiveness of the attack. The least and most
significant bits both have a high success rate, making the bit chosen by [Bal+15] a good
choice also for this implementation.

4 . 2 C o m b i n i n g S c o r e s

To exploit the information inmultiple bits we can run an attack for each bit and combine
the scores. For each attackwe get amatrix of correlations, that matrix can be turned into
a vector of scores for every key guess with Algorithm 3.2. Then we can use a combining
function to combine the scores for each key guess. Such an attack is described in
Algorithm 4.3.

There are a few options for combining functions, but our first attempt is just taking
the maximum of every score. This is an improvement on just looking at one bit as

4 A t t a c k s o n B i t s l i c e d A E S 1 9

Algorithm 4.2 CPA on bitsliced AES implementations with parallel encryption
Require: 𝑁 × 𝑇 matrix 𝐓 of traces, 𝑃 × 𝑁 matrix 𝐃 of plaintexts, target S-box 𝑏, power

model.
Ensure: 256 × 𝑇 matrix 𝐑 of correlations.

1: function CPA Bitsliced(𝐓, 𝐃, 𝑏, model)
2: for 𝑛 ← 1 to 𝑁 do
3: for 𝑘 ← 0 to 255 do
4: ℎ𝑛,𝑘 ← 0
5: for 𝑖 ← 1 to 𝑃 do
6: 𝑝 ← choose byte 𝑏 of 𝑑𝑖,𝑛
7: ℎ𝑛,𝑘 ← ℎ𝑛,𝑘 + model(S-Box(𝑝 ⊕ 𝑘))
8: for 𝑘 ← 0 to 255 do
9: for 𝑖 ← 1 to 𝑇 do

10: 𝑟𝑘,𝑖 ← | ̂𝜌(𝐡𝑘, 𝐭𝑖)|
11: return 𝐑

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Number of Traces

SR

Bit 0 Bit 7 Bits 1-6

F i g u r e 4 . 3 / Success rates for attacks on each bit.

4 A t t a c k s o n B i t s l i c e d A E S 2 0

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Number of Traces

SR

Bit 0 Max

F i g u r e 4 . 4 / Success rates for attacks using maximum
correlation.

shown in Figure 4.4.

Algorithm 4.3 CPA attack with score combiner
Require: 𝑁 × 𝑇 matrix 𝐓 of traces, 𝑃 × 𝑁 vector 𝐃 of plaintexts, target S-box 𝑏, score

combiner.
Ensure: Length 256 vector 𝐜 of scores.

1: for 𝑖 ← 0 to 7 do
2: 𝐜𝑖 ← keyscores(CPA Bitsliced(𝐓, 𝐃, 𝑏, 𝑖’th bit power model))
3: for 𝑘 ← 0 to 255 do
4: 𝑐′𝑘 ← combiner (𝑐𝑖,𝑘|𝑖 ∈ {0, … , 7})

return 𝐜′

To improve the attack further we need to retain the information from all the bits, and
not just pick the best score. For this, we chose to use sum and product as combiners.
Elaabid et al. [Ela+11] chose to use product to combine correlation. In their paper, they
try to combine the correlation at several timestamps on a non-bitsliced implementation,
and unlike our attack, they do not use different power models.

Figure 4.5 shows that the success rate for both the product and sum are more efficient
than both attacking a single bit and taking the maximum. Sum and product are very
close in performance. This similarity is noted by Yang et al. [Yan+17] in a related
setting, where the correlation is combined across different side channels, instead of
different models on the same side channel. The reason for this close similarity has not

4 A t t a c k s o n B i t s l i c e d A E S 2 1

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Number of Traces

SR

Bit 0 Max Sum Prod

F i g u r e 4 . 5 / Success rates for attacks using sum or
product.

been explored further in this thesis.

4 . 3 C h o i c e o f P l a i n t e x t s

So far we have only looked at the case where the two plaintexts in the plaintext pair
are different but does the efficiency of the attack change if they are equal?

In many cases, if the attacker does not control the plaintexts, we expect the two
plaintexts to be different. But, in some cases, they could be similar enough for most
of the bytes to be equal. AES can be used in a mode of operation known as counter
mode[Dwo01]. In counter mode, AES is used to generate a keystream, this keystream
is then XORed with the plaintext to create the ciphertext. To generate the keystream, a
random initial value is encrypted for the first block, then the initial value is incremented
for each block. Since only the last byte changes between most increments, the other
bytes stay the same. Another instance where the two plaintexts could be equal is for
added redundancy and to protect against fault attacks.

Figure 4.6 compares the success rates of an attack using just LSB(Algorithm 4.2)
and an attack using sum as a combiner (Algorithm 4.3) using either traces where
the plaintexts are equal or traces where the plaintexts are different. It shows that the
success rates are almost the same, with equal plaintexts being slightly better in some
cases. If the attacker does not control the plaintexts they are not at any significant
disadvantage.

4 A t t a c k s o n B i t s l i c e d A E S 2 2

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Number of Traces

SR

Bit 0, different Sum, different Bit 0, equal Sum, equal

F i g u r e 4 . 6 / Success rates for attacks using either traces with equal
plaintexts or different plaintexts.

T a b l e 4 . 1 / The number of traces needed to have SR0 ≥ 0.99 .

Trace method
Attack

Sum Product Max Bit 0

Plaintext pairs equal 144 146 228 334
Plaintext pairs differ 143 145 231 364

4 . 4 O v e r a l l R e s u l t s

We have presented several new attacks and experimentally evaluated their success
rate using both equal plaintext pairs and plaintext pairs with different plaintexts. The
bit 0 attack with different plaintexts is equivalent to the attack used by Balasch et al.
[Bal+15] in their paper and is the current state of the art. To compare the success rates
more directly, Table 4.1 compares the traces needed to reach a success rate of 99% for
the different attacks. It shows that the sum and product attack presented in this thesis
requires less than half the amount of traces compared to the current state of the art.
On different plaintexts, the current state of the art requires 364 traces, and our best
attack requires only 143 traces.

4 A t t a c k s o n B i t s l i c e d A E S 2 3

4 . 5 E x p e r i m e n t a l S e t u p

Toget the success ratesweused in this thesis, we collected power traces on aChipWhisperer-
Lite using the implementation by Adomnicai and Peyrin [AP20]. The traces were cut
down to the area around first-round SubBytes. Each type of attack was performed on
up to 500 traces and 1000 times, requiring 500000 traces.

Since algorithms in this thesis only describe how to perform one attack, speed im-
provements had to be made to make the computation of all the attacks feasible. These
improvements were based on the algorithms by Bottinelli and Bos [BB17]. They de-
scribe different algorithms for computing CPA that make tradeoffs between speed and
memory. We opted to aim for the highest speed, but at the cost of high memory usage.
They describe that ̂𝜌(𝐡𝑘, 𝐭𝑖), Equation 3.2, can be rewritten as:

𝑁𝑠5 − 𝑠1𝑠3

√(𝑁𝑠2 − 𝑠2
1)(𝑁𝑠4 − 𝑠2

3)
[4.1]

Where 𝑁 is the number of traces, 𝑠1 = ∑𝑁
𝑛=1 𝐡𝑘,𝑛, 𝑠2 = ∑𝑁

𝑛=1 𝐡2
𝑘,𝑛, 𝑠3 = ∑𝑁

𝑛=1 𝐭𝑖,𝑛,
𝑠4 = ∑𝑁

𝑛=1 𝐭2
𝑖,𝑛 and 𝑠5 = ∑𝑁

𝑛=1 𝐡𝑘,𝑛𝐭𝑖,𝑛. The tradeoffs between speed and memory are
which of these sums to precompute, and we chose to precompute all of them. We also
wanted to compute the correlation for every added trace, not just the final correlation,
i.e. we want the correlation for 𝑛 traces, 𝑛 + 1 traces, 𝑛 + 2 traces, and so on, and
other than the newly added trace, the set of traces stay the same. So, instead of just
precomputing the final sums, we stored the cumulative sums as well.

The full code for both the trace collection and experiments can be found at github.
com/Simula-UiB/bitsliced-aes-cpa.

https://github.com/Simula-UiB/bitsliced-aes-cpa
https://github.com/Simula-UiB/bitsliced-aes-cpa

C h a p t e r 5
C o n c l u s i o n s a n d F u t u r e W o r k

In this thesis, we have presented several new attacks on bitsliced AES. The current
state of the art only exploited a single bit of information, but we presented a way to use
the information in multiple bits. These attacks are based on combining the scores from
multiple CPA attacks, each attack targeting a different bit. The scores are combined
using sum, product, or maximum. Only half as many traces were needed for the same
performance with sum and product, compared to attacking only one bit.

There are potential improvements to be made to the combiner. For instance, we
have not investigated how much each bit contributes to the leakage, and if a weighted
sum/product would be more efficient. The combiner could also potentially be used for
other attacks, such as for higher-order DPA to target masked implementations and for
profiled attacks.

In addition to new attacks, we have also looked at how the choice of plaintext pairs
affects the performance of the attacks. This investigation showed that collecting traces
having the two plaintexts equal can be slightly more efficient, but the difference is
minimal compared to differing plaintexts. We did not compare the performance of
looking at only one plaintext and ignoring the other as we expect that to be significantly
less efficient, however, it would be interesting to quantify how much the difference is.

Lastly, we made a speed comparison between a bitsliced and T-table implementation
of AES, showing the bitsliced implementation is about half as slow. Comparing the
side-channel security between those implementations would also be interesting.

B i b l i o g r a p h y

[AP20] Alexandre Adomnicai and Thomas Peyrin. “Fixslicing AES-like Ciphers:
New Bitsliced AES Speed Records on ARM-Cortex m and RISC-V.” In:
IACR Transactions on Cryptographic Hardware and Embedded Systems
2021.1 (Dec. 2020), pp. 402–425 (cit. on pp. 3, 7, 17, 23).

[Bal+15] Josep Balasch et al. “DPA, Bitslicing and Masking at 1 GHz.” In: Crypto-
graphic Hardware and Embedded Systems CHES 2015. Ed. by Tim Güneysu
and Helena Handschuh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 599–619 (cit. on pp. 3, 7, 16–18, 22).

[BB17] Paul Bottinelli and Joppe W Bos. “Computational Aspects of Correlation
Power Analysis.” In: Journal of Cryptographic Engineering 7.3 (2017),
pp. 167–181 (cit. on p. 23).

[Bih97] Eli Biham. “A Fast New DES Implementation in Software.” In: Fast Software
Encryption. Ed. by Eli Biham. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 260–272 (cit. on p. 6).

[Bul00] Philip Bulman. Commerce Department Announces Winner of Global Infor-
mation Security Competition. NIST. Oct. 2, 2000. url: https://www.nist.
gov/news-events/news/2000/10/commerce-department-announces-winner-
global-information-security (visited on 05/04/2022) (cit. on p. 4).

[Cag18] Eleonora Cagli. “Feature Extraction for Side-Channel Attacks.” PhD thesis.
Sorbonne Université, Dec. 5, 2018 (cit. on p. 13).

[CMT20] Cagdas Calik and Circuit Minimization Team. Circuit Minimization Work.
2020. url: http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.
html (visited on 09/23/2021) (cit. on p. 5).

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES the
Advanced Encryption Standard. Springer-Verlag, 2002 (cit. on p. 5).

[Dwo01] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Methods and Techniques. NIST Special Publication (SP) 800-38A. National
Institute of Standards and Technology, Dec. 1, 2001 (cit. on p. 21).

[Ela+11] M. Abdelaziz Elaabid et al. “Combined Side-Channel Attacks.” In: Infor-
mation Security Applications. Ed. by Yongwha Chung and Moti Yung.
Vol. 6513. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 175–190 (cit. on p. 20).

https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security
https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security
https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

B i b l i o g r a p h y 2 6

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis.”
In: Advances in Cryptology CRYPTO 99. Ed. by Michael Wiener. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1999, pp. 388–397
(cit. on pp. 2, 10, 12).

[Kön08] Robert Könighofer. “A Fast and Cache-Timing Resistant Implementation
of the AES.” In: Topics in Cryptology CT-RSA 2008. Ed. by Tal Malkin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 187–202 (cit. on
p. 6).

[Man04] Stefan Mangard. “Hardware Countermeasures against DPA A Statistical
Analysis of Their Effectiveness.” In: Topics in Cryptology CT-RSA 2004.
Ed. by Tatsuaki Okamoto. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2004, pp. 222–235 (cit. on p. 14).

[Mat06] Mitsuru Matsui. “How Far Can We Go on the X64 Processors?” In: Fast
Software Encryption. Ed. by Matthew Robshaw. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 341–358 (cit. on p. 6).

[MOP08] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Advances in Information Security. Springer US,
2008 (cit. on pp. 10, 14).

[NIST01] Advanced Encryption Standard (AES). National Institute of Standards and
Technology, Nov. 2001 (cit. on pp. 4, 5).

[Pro05] Emmanuel Prouff. “DPA Attacks and S-Boxes.” In: Fast Software Encryption.
Ed. by Henri Gilbert and Helena Handschuh. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2005, pp. 424–441 (cit. on p. 12).

[Smi21] Miles Smid. “Development of the Advanced Encryption Standard.” In: 126
(Aug. 16, 2021) (cit. on p. 4).

[SS17] Peter Schwabe and Ko Stoffelen. “All the AES You Need on Cortex-M3
and M4.” In: Selected Areas in Cryptography SAC 2016. Ed. by Roberto
Avanzi and Howard Heys. Cham: Springer International Publishing, 2017,
pp. 180–194 (cit. on pp. 7, 8).

[Yan+17] Wei Yang et al. “Multi-Channel Fusion Attacks.” In: IEEE Transactions on
Information Forensics and Security 12.8 (Aug. 2017), pp. 1757–1771 (cit. on
p. 20).

F u r t h e r R e a d i n g

The following references were used in this work but not cited in the text body; they are provided
here as-is.

B i b l i o g r a p h y 2 7

Wouter de Groot et al. “Bitsliced Masking and ARM: Friends or Foes?” In: Lightweight
Cryptography for Security and Privacy. Ed. by Andrey Bogdanov. Cham: Springer
International Publishing, 2017, pp. 91–109.

Emilia Käsper and Peter Schwabe. “Faster and Timing-Attack Resistant AES-GCM.” In:
Cryptographic Hardware and Embedded Systems - CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–17.

Mitsuru Matsui and Junko Nakajima. “On the Power of Bitslice Implementation on Intel
Core2 Processor.” In: Cryptographic Hardware and Embedded Systems - CHES 2007.
Ed. by Pascal Paillier and Ingrid Verbauwhede. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 121–134.

Stefan Mangard, Elisabeth Oswald, and Francois-Xavier Standaert. One for All - All for
One: Unifying Standard DPA Attacks. 449. 2009.

Luke Mather, Elisabeth Oswald, and Carolyn Whitnall. “Multi-Target DPA Attacks:
Pushing DPA Beyond the Limits of a Desktop Computer.” In: Advances in Cryptology
ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2014, pp. 243–261.

Ambuj Sinha, Zhimin Chen, and Patrick Schaumont. “A Comprehensive Analysis of
Performance and Side-Channel-Leakage of AES SBOX Implementations in Embedded
Software.” In: Proceedings of the 5th Workshop on Embedded Systems Security. WESS
’10. New York, NY, USA: Association for Computing Machinery, 2010.

	Glossary
	Symbols
	Acronyms

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Introduction to Cryptography
	1.2 Introduction to Side Channel Analysis
	1.3 Bitslicing
	1.4 Our Contribution

	2 Advanced Encryption Standard
	2.1 T-Table Implementation
	2.2 Bitslicing
	2.3 Speed Comparison

	3 Side-Channel Analysis
	3.1 Differential Power Analysis
	3.1.1 Intermediate Values
	3.1.2 Power Models
	3.1.3 Correlation Power Analysis

	3.2 Measuring The Performance of Attacks
	3.3 Signal-to-Noise Ratio for SCA

	4 Attacks on Bitsliced AES
	4.1 Correlation Power Analysis
	4.2 Combining Scores
	4.3 Choice of Plaintexts
	4.4 Overall Results
	4.5 Experimental Setup

	5 Conclusions and Future Work
	Bibliography

