
University of Bergen
Department of informatics

Searchable Symmetric
Encryption and its applications

Author: Kristoffer Borg Nilsen
Supervisor: Chunlei Li

May 2022

ii

Abstract

In the age of personalized advertisement and online identity profiles, people’s
personal information is worth more to corporations than ever. Storing data
in the cloud is increasing in popularity due to bigger file sizes and people
just storing more information digitally. The leading cloud storage providers
require insight into what users store on their servers. This forces users to
trust their cloud storage provider not to misuse their information. This opens
the possibility that private information is sold to hackers or is made publicly
available on the internet. However, the more realistic case is that the service
provider sells or misuses your metadata for use in personalized advertisements
or other, less apparent purposes. This thesis will explore Searchable Sym-
metric Encryption (SSE) algorithms and how we can utilize them to make a
more secure cloud storage service. Source code for the project can be found
here: https://github.com/kni034/Symmetric-searchable-encryption,
and https://github.com/kni034/secure-indexes.

https://github.com/kni034/Symmetric-searchable-encryption
https://github.com/kni034/secure-indexes

ii

Acknowledgements

First of all, I would like to thank my supervisor Chunlei Li for his excellent
guidance throughout the development of my project, and while writing the
thesis. Thank you for always making time for me when I got stuck on a
problem or simply wanted to discuss an idea.

I would also like to thank my fellow students at the Department of Infor-
matics for creating an inclusive community, where I have felt at home. I am
grateful for the many hours I have spent at the reading hall with interesting
discussions and wonderful people. Special gratitude to the master students
at the Selmer Center and Glassburet. Thank you for always having my back
and reminding me to have fun even in stressful times. I truly could not have
done this without you.

Last but not least, a big thanks to my family and friends, both at home
and here in Bergen, for all the support and love throughout my studies.

Kristoffer Borg Nilsen
Bergen, 2022

ii

Contents

1 Introduction 1
1.1 Background on Searchable Encryption 1

1.1.1 Searchable symmetric encryption 1
1.1.2 Searchable asymmetric encryption 3

1.2 Development of Searchable Symmetric Encryption 5
1.2.1 Single keyword search 5
1.2.2 Fuzzy keyword search 7
1.2.3 Conjunctive keyword search 8
1.2.4 Ranked keyword search 9
1.2.5 Verifiable keyword search 9

1.3 Project Summary . 9

2 Theoretical Background 11
2.1 Cryptography . 11
2.2 Block Cipher . 12

2.2.1 AES . 12
2.2.2 Modes of Operation . 14
2.2.3 ECB . 14
2.2.4 CBC . 15
2.2.5 Padding . 16

2.3 Stream Cipher . 17
2.3.1 Trivium . 17

2.4 Hash functions . 19
2.4.1 SHA-512 . 20
2.4.2 HMAC . 24
2.4.3 Hash collisions . 25
2.4.4 Bloom filter . 25
2.4.5 Password hashing . 26

iii

3 Practical Techniques for Searches on Encrypted Data 28
3.1 Scheme Overview . 28

3.1.1 Scheme I - The Basic Scheme 29
3.1.2 Scheme II - Controlled Searching 30
3.1.3 Scheme III - Support for Hidden Searches 31
3.1.4 Scheme IV - The Final Scheme 32

3.2 Scheme Features . 33
3.2.1 Main Features . 33
3.2.2 Extra Features . 34

3.3 Implementation Specifications 35
3.4 Performance Analysis . 39

4 Secure Indexes 43
4.1 Scheme Overview . 44

4.1.1 Key Generation . 44
4.1.2 Trapdoor Construction 44
4.1.3 Index Construction . 45
4.1.4 Search . 46

4.2 Features of Secure Index . 46
4.2.1 Efficient Update . 46

4.3 Implementation Specifications 47
4.4 Performance Analysis . 48

5 Cloud storage application with SSE for images and videos 53
5.1 Motivation . 54
5.2 Authentication . 56
5.3 Generating keywords . 58

5.3.1 Location . 59
5.3.2 Object recognition . 59
5.3.3 Date . 61
5.3.4 Filename . 62
5.3.5 Custom Keywords . 62

5.4 Performance . 62
5.4.1 Precomputation . 62
5.4.2 Search . 63

5.5 Future Work . 63
5.5.1 Better keywords . 63
5.5.2 Support for more metadata formats 64

iv

5.5.3 Data transmission protocols 64
5.5.4 Forgot password feature 64

6 Conclusion 65

v

List of Figures

1.1 The general structure of SSE schemes [44] 2

1.2 The general structure of PEKS schemes [44] 4

1.3 Tree-based construction [39] 7

2.1 Lookup table used during the SubBytes transformation 14

2.2 Encrypting with AES in ECB Mode 15

2.3 Encrypting with AES in CBC Mode 16

2.4 Visual representation of Trivium 17

2.5 Initializing internal registers 18

2.6 N rounds of Trivium . 19

2.7 SHA512 . 20

2.8 The compression function . 22

2.9 All 80 rounds of the compression function F , functions are
explained in 2.2 . 24

2.10 Bloom filter . 25

3.1 Scheme I . 29

3.2 Scheme III . 31

3.3 Scheme IV . 32

3.4 Components of my implementation and their relation 36

4.1 Generating a trapdoor . 45

4.2 Build Index . 45

5.1 Simple Graphical User Interface 54

5.2 Components of the application and their relation 55

5.3 Registration . 57

5.4 Login . 58

5.5 Example picture 1 . 60

vi

5.6 Example picture 2 . 60

vii

List of Tables

3.1 Number of operations per block 40
3.2 Number of bytes processed per second displayed in 1000s . . . 40
3.3 Execution time for encrypting and uploading 100 txt files,

Searching with 0 matches and 85 matches over the 100 en-
crypted txt files with block sizes 16 and 32. Results are the
average of 10 separate executions, results are displayed in mil-
liseconds. 42

3.4 Storage space required for storing all 100 files encrypted with
different block sizes. Filesizes are displayed in kilobytes (KB). 42

4.1 Average of 10 iterations to encrypt and upload 100 txt files.
Time in milliseconds. 51

4.2 Average of 10 iterations to Search with 0 matches over 100
encrypted txt files. Time in milliseconds. 52

4.3 Storage space required to store 100 encrypted txt files and
their index. Original plaintext size without index = 68,4. Re-
sults in kilobytes (KB). 52

5.1 Keywords for picture 5.5 works much better as searchwords
than for picture 5.6 . 61

viii

Chapter 1

Introduction

1.1 Background on Searchable Encryption

When storing data remotely, secrecy is essential. Encrypting the informa-
tion stored remotely has been standard from the start. The use of remote
storage servers, also called Cloud Servers, is increasing rapidly for personal
use and businesses. The standard way of storing information remotely has
been to encrypt during transmission and then let the server decrypt and
then re-encrypt the data before storing it safely. Allowing the server to use
its own encryption makes sense and enables many valuable features for the
users. However, this comes at the cost of letting the server view the user’s
data. In today’s world, it is safer to assume that corporations are willing
to misuse their user’s information if they can get away with it. As users,
this is practically impossible to stop. Therefore it is better to avoid the
situation altogether. One solution to this problem is a type of encryption
called Searchable Encryption (SE) which allows for searching on encrypted
data. The two main branches of SE are searchable symmetric encryption and
searchable asymmetric encryption [44].

1.1.1 Searchable symmetric encryption

Searchable Symmetric Encryption (SSE) is a type of encryption that makes
it possible to make hidden searches on encrypted data. Suppose a user,

1

Alice wants to store a set of documents on a remote server. As Alice does
not want the server to be able to view the contents of her documents, she
encrypts her files before uploading them to the server. Whenever Alice wants
to retrieve any documents containing a specific keyword, she can generate
a special token(later referred to as a trapdoor) and ask the server to search
for the token in her encrypted documents. The server never learns anything
about the keyword or the documents but can determine if the documents
contain the keyword or not and return the correct documents.

Figure 1.1: The general structure of SSE schemes [44]

The general structure of SSE schemes consists of four main functions:
keygen, buildIndex, trapdoor, and search (The scheme by Song et al. in [41]
is an exception to this structure).

Keygen: Generates a private key. Takes a security parameter as input-
(usually the keysize of the system) and outputs the private key.

BuildIndex: Generates an index for a file or a set of files. Takes the private
key and file(s) as input and outputs the index.

Trapdoor: Generates a trapdoor for a keyword. A trapdoor is the encoded
(hidden) version of a keyword. Takes a keyword and the private key as
input and returns the trapdoor for the given keyword.

Search: Finds all documents that contain the provided trapdoor. Takes an
index or a set of indices and a trapdoor as input and returns a set of
documents (or document references/identifiers).

2

The flow of most SSE schemes is as follows: During the initialization of a
new user, the keygen algorithm is called by the data owner (can be the same
person as the ’user’), and the private key is stored locally or distributed lo-
cally to the desired users. When the user wants to store a file, they generate
its index(locally), encrypt the file with a normal symmetric encryption al-
gorithm, and upload both the index and the file to the server. Depending
on the scheme, there are either one index per document or one index for all
document. When the user wants to search for a keyword, the user generates
a trapdoor locally with the private key and sends the trapdoor to the server.
The server calls the search function and returns any matching documents.
The user can then decrypt the files with their private key.

1.1.2 Searchable asymmetric encryption

Searchable asymmetric encryption, also called Public-key encryption with
keyword search (PEKS) works similarly to SSE but in a public-key setting.
Suppose Alice uses several different devices to read her emails. Alice wants
any emails containing the word ’urgent’ to be sent directly to her phone, and
the rest should be sent to her laptop. Like in the SSE example, Alice can
create a token and send this to the server. In this example, Alice uses her
private key to create a token with the keyword ’urgent’ and sends this to
the server with the instruction to send emails with a matching token to be
sent to her phone. Now if another user wants to send an email to Alice, they
encrypt the email with a relevant keyword(for example ’urgent’) and with
Alice’s public key and send it to her. The server receives the email and can
check if it has a matching token and route it accordingly. Alice then uses her
private key to decrypt the email.

The general structure of PEKS schemes:

Keygen: Generates a private/public key pair. Takes a security parameter
as input and outputs the private/public key pair.

PEKS: Encrypts a document while preserving searchability for a specific
user. Takes the recipient’s public key and a keyword as input, and
returns an encrypted document with searchability for that keyword.

3

Figure 1.2: The general structure of PEKS schemes [44]

Trapdoor: Generates a trapdoor for a keyword. Takes a user’s private key
and a keyword and returns a token/trapdoor for the given keyword.

Test: Tests if an encrypted document was encrypted with a specific token or
not. Takes a user’s private key, the encrypted document, and a token as
input, and returns ’true’ if the document and the token were encrypted
with the same keyword, otherwise ’false’.

Boneh et al. [14] proposed the first PEKS scheme in 2004, laying the
foundation for a research line with several branches. The main branches
of PEKS are largely the same as in SSE. Park et al. [38] were the first to
propose a scheme using conjunctive search. Bringer et al. [15] proposed
an error-tolerant searchable encryption scheme. Like in the first SSEs with
fuzzy keyword search, the scheme uses Locality Sensitive Hashing to generate
the same hash from similar keywords. Zheng et al. [47] proposed a scheme
incorporating verifiable keyword search. Curious readers can find more in-
formation about PEKS in the survey paper by Wang et al. [44], and its
citations. PEKSs are outside the scope of this thesis and will not be covered
further.

4

1.2 Development of Searchable Symmetric

Encryption

Initially, the only way to hide the contents of data being stored remotely was
to encrypt the data before uploading. This approach worked but was highly
ineffective as the user would have to download all the data, decrypt it and
search locally every time they wanted to search for something specific in their
documents. To solve this problem, Song et al. [41] proposed a scheme that
made it possible to partially decrypt files on the server without revealing the
file’s contents. In this scheme, the user keeps a special private key which is
used for both encrypting files and creating trapdoors(called search tokens in
the paper). The trapdoors disclose no information about the search contents
and can only be created by anyone with the correct private key. [39]

In the field of SSE, there are several different research branches focusing
on different techniques of searching on encrypted data. The main branches
include searching with a single keyword, fuzzy keyword search, conjunctive
keyword search, ranked keyword search, and verifiable keyword search.

1.2.1 Single keyword search

In the branch of single keyword search, there have been proposed several
ways of searching, mainly how to structure the index table used to perform
the lookup of the trapdoor. As mentioned, the first scheme to use SSE was
proposed by Song et al. [41].

This scheme does not use an index but performs the search directly on
the encrypted text. The encryption is performed in a way that makes it
possible for the server, when provided with a trapdoor to partially decrypt
and check if the trapdoor is present in the encrypted text. Because of its
clever design, only the user with the private key can generate a trapdoor from
a search word. Neither the trapdoor nor the partially decrypted ciphertext
reveal anything about its contents to the server. As the search is performed
directly on the encrypted text and the server has to iterate over the entire
document, the search time scales linearly with the length of the document.

5

As the scheme does not use an index, it does not require much more storage
space than the encrypted document itself.

The next two techniques for searching with a single keyword use an index
structured like a lookup table. The first uses what Poh et al. [39] call a direct
index in their survey paper. With a direct index, the server stores a set of
trapdoors for each encrypted file. The set of trapdoors is generated by the
user before encryption and reveals no information about the words they were
generated from. If a user wants to delete or modify a file on the server, its
corresponding set of trapdoors should also be deleted/modified. When users
want to search for a keyword, they generate the trapdoor with the search
word and their private key and send it to the server. Goh [25] proposed a
scheme that uses a Bloom filter as a per document index. A Bloom filter is a
datatype that, in constant time can tell you if an element is part of a set or
not. With this scheme, search time is linear with the number of documents
on the server. This is because the server has to check each file’s index during
a search query. The storage space required however is increased as each file
requires its own index to also be stored on the server.

Using an inverted index works similar to a direct index, but instead of
the file pointing to a set of trapdoors, each trapdoor points to a set of files
containing that word. Curtmola et al. [20] were the first to propose a scheme
that uses an inverted index, they also propose an improved way of measuring
the security of the system. The advantage of using an inverted index is that
search times are sublinear and optimal in many cases. However, maintaining
an inverted index is more complicated than keeping a direct index. When
a user adds, removes, or updates a file in a scheme where an inverted index
is used, the server has to linearly scan the inverted index table and update
every relevant entry. The storage space needed is roughly the same as with
a direct index.

The most recent addition to the development of single keyword search
is dynamic SSE schemes. Van Liesdonk et al. [33] were the first to tackle
the problem of making updates more efficient. In their paper, they propose
two variants of their scheme with different qualities regarding search time
and storage requirements. The first variant is interactive and the second is
not interactive. Kamara and Papamanthou [28] proposed a new scheme that
uses a three-structure as the index. The main difference between this method

6

and the previous methods is that instead of maintaining a map of [trapdoor,
document] pairs, the user constructs a search tree where the nodes in the
tree are used to perform the search.

1 1 1

1 0 1

1 0 0 0 0 1

1 1 1

1 1 0 0 1 1

Figure 1.3: Tree-based construction [39]

In Kamara and Papamanthous’s [28] scheme index, each node stores in-
formation about which words can be found in the documents represented by
the children nodes. The tree index stores a boolean list where each bit rep-
resents a word being present or not in any of the documents in the children
nodes. The example figure above shows that documents D1 and D3 contain
word w1 as they both have 1 in the first position of their boolean list. Ste-
fanov, et al. [43] proposed a scheme that combines the positives of the earlier
schemes i.e small leakage and high efficiency in search and updates. Their
scheme uses sublinear time for searching and updating in the worst case.

1.2.2 Fuzzy keyword search

With the single keyword search technique, the search word has to match the
stored keywords exactly. Any typo or small inconsistency in the search word
will result in the search failing. Fuzzy keyword search tackles this problem
by being able to handle minor differences in the search word and the stored
keyword.

7

Li et al. [32] design and utilize a ’wildcard-based’ technique related to the
concept of edit distance to construct a fuzzy keyword set. They also propose
a fuzzy search scheme utilizing the construction of the fuzzy keyword set.
Adjedj et al. [13] use their fuzzy keyword scheme to perform fast and secure
biometric identification. Like Kuzu et al. [30], they use locality-sensitive
hashing (LSH), which will with a very high probability output the same value
for two inputs with a small matching score(based on Hamming distance).

1.2.3 Conjunctive keyword search

In both single keyword search and fuzzy keyword search, the user provides
a trapdoor to the server and receives the documents containing the key-
word represented by that trapdoor. If a user wants to search for documents
containing multiple keywords, they either have to search with all keywords
separately and then locally separate the desired documents, or somehow em-
bed several keywords into each trapdoor when generating the index. Both
options are far from ideal. The first option leaks a substantial amount of
information to the server, and the second option would make the size of each
index scale exponentially.

To solve this problem, Golle et al. [26] proposed two schemes with con-
junctive keyword search. The first scheme has communication costs linear to
the number of documents but the work can be done offline before the request
is sent to the server. The second scheme’s search cost is on the order of the
number of keywords and does not require any offline work. Cash et al. [18]
solve the problem of searching for multiple keywords with boolean queries.
Their scheme is not the fastest or most secure but provides a realistic and
practical trade-off between security and efficiency. Faber et al. [24] propose
an extension to the scheme proposed by Cash et al. [18], adding support for
substring-, wildcard-, phase-, and range queries. The new query types do
add some cost in performance and storage, but the authors claim that the
extension is still practical today, even for large databases.

8

1.2.4 Ranked keyword search

With a ranked keyword search, only the most relevant documents are re-
turned during a query. This can be used to make systems more effective
and reduce unnecessary network traffic. Zerr et al. [46] present a ranking
model used to create a relevance score transformation function. This lets a
server return the most relevant results for a user query without revealing any
information about the indexed data. Cao et al. [17] propose the first multi-
keyword scheme with ranked search. Xia et al. [45] proposed a scheme with
the same multi-keyword ranked search attribute, but also features efficient
updates and deletions. The scheme uses a three-structure index and uses a
”Greedy Depth-first Search” algorithm for searching.

1.2.5 Verifiable keyword search

With a verifiable keyword search, the recipient can check whether the result
of a query is complete and correct. This attribute is widely used in general
internet communication and helps avoid unnoticed hardware or software er-
rors, as well as protecting the user from semi-honest servers trying to save
computation resources. Chai and Gong [19] proposed the first verifiable SSE
scheme. The scheme uses a trie-like (prefix tree) structure as the index.
This index is used to search, and produce proof that the returned results are
valid and complete. Li et al. [31] discuss an aspect of query authentication
called query freshness that previously has not been explored. Query fresh-
ness means being able to verify that the search result comes from the latest
version of the database. Kurosawa and Ohtaki [29] propose a verifiable SSE
scheme with a focus on security against active adversaries, as opposed to the
more common perspective of a passive (honest-but-curious server) adversary.

1.3 Project Summary

This thesis first aims to provide the reader with the knowledge necessary to
understand the functions and mechanisms of the schemes implemented in the

9

main part of the project. The topics explained in the theoretical background
include block ciphers, stream ciphers, and hash functions, as well as relevant
functions and methods related to those topics.

Chapters 3 and 4 describe the schemes proposed by Song et al [41] and
Goh [25] respectively. The two chapters have a similar structure but differ
slightly in some areas. They first describe the scheme in detail. In Chapter
3 this is done by defining a very basic version of the scheme. The full scheme
is described by introducing three extensions to the basic scheme, where each
extension builds on the previous one. Inspiration for this structure of de-
scription is taken from the original paper and helps the reader break down
the different parts of the rather complex scheme. In Chapter 4 this is done
by separately describing the four main components of the scheme mentioned
in the background section of the Introduction. Then the implementation of
both schemes is presented. The aim of this section is to explain the major
components of the implementation and their relation to each other. Various
implementation decisions are also discussed. Lastly, a more detailed theoret-
ical performance analysis is followed by a set of tests on the implementation
with the same dataset. The goal of the tests is to show roughly how much
performance varies between the two schemes, and how much performance
varies when changing the internal parameters.

Chapter 5 presents my own proof of concept cloud storage application for
images and videos using SSE. The application uses an altered version of the
implementation of Goh’s Secure Indexes scheme described in Chapter 4. The
chapter starts with a brief introduction of the application and the motivation
behind it. This is followed by describing the structure that is built on top of
the main encryption scheme and how it works. The structure mainly consists
of the authentication service and its communication protocols. The next
section discusses keyword generation and the challenge of generating good
and user-friendly keywords. The section presents several types of keywords
and explains how they are generated. Then the performance of the system
is discussed, followed by a section describing future work for the application.

Chapter 6 presents a final conclusion discussing the implementations and
test results produced throughout the project.

10

Chapter 2

Theoretical Background

2.1 Cryptography

Cryptography is the study of techniques for achieving secure storage and
secure communication between two or more parties. Secure communication
happens when only the intended recipients can read and verify messages, and
the contents are hidden from third parties. Historically, the techniques used
to hide message contents were done by scrambling characters of the message
to make it unreadable. This was done in a way that made it possible to
reverse the process and obtain the original message if you knew the key
to the hidden message. The most common example of this is the Caesar
cipher used by the ancient Romans where the key consisted of a number
and decided how much to shift the alphabet used in the message [34, p. 53].
In this cipher, the same key is used to encrypt(hide), and decrypt(reverse)
the contents of the message. When the same key is used for encryption and
decryption, we call it symmetric encryption. This was for many years the
only way to encrypt messages. With the help of computers, the systems we
use to perform encryptions have become more advanced. During the 1970s
two of the most widely used cryptographic primitives were invented, namely
the Diffie-Helman Key Exchange and the RSA cryptosystem [22][40]. What
was special with these is that the key used for encryption and decryption
is different. What is more fascinating is that the decryption key could be

11

generated by the recipient by combining their own secret component with a
public component shared by the sender. This became known as asymmetric
encryption.

In modern-day computer systems, both symmetric and asymmetric en-
cryptions are used. Symmetric encryption is typically faster and more space-
efficient, and asymmetric encryption is typically used to set up a secure
connection between two parties over an insecure channel. A normal way
to set up communication between two parties starts with the sender using
asymmetric encryption to encrypt a symmetric key. The recipient then uses
the private key and decrypt the symmetric key. Then they both can use
the faster, and more efficient symmetric encryption scheme to encrypt their
messages. In this thesis, I will not focus on the transmission of data, but
rather on the way to encrypt data with symmetric encryption.

2.2 Block Cipher

Block ciphers are a type of encryption/decryption algorithm that turns a
fixed size input into a pseudorandom fixed-size output with the intent of
hiding the contents. Block ciphers are deterministic algorithms, meaning
that if initialized with the same parameters, two encryptions of the same
input will give the same output. The fixed-size inputs and outputs are called
blocks. During the algorithm’s initialization, keys to encrypt and decrypt
are generated. Block ciphers are considered the standard method to encrypt
data on the Internet due to their fast computational speed and that they
produce relatively small file sizes.

2.2.1 AES

The Advanced Encryption Standard (AES), namely, the cipher Rijndael, was
developed by Joan Daemen and Vincent Rijmen in 1998 [12]. Rijndael was
chosen as the new encryption standard by the U.S. National Institute of
Standards and Technology (NIST) in 2001. AES consists of several versions

12

of the original Rijndael with different key lengths: 128 bit, 192 bit, and 256
bit, all with the same block size of 128 bits.

The encryption process consists of performing a set number of ”rounds”
on the current block. Each round, except for the last, consists of 4 different
transformations done in order, where the output of one transformation is
used as input for the next. The 128-bit block is initially divided into 16, 8-bit
chunks called bytes. These 16 bytes are then placed into an array, represented
as a 4× 4 matrix during transformations. The four transformations used in
AES are the following:

SubBytes: Each byte in the input is substituted with a new byte found in
the predefined lookup table 2.1.

ShiftRows: Each matrix row is shifted a variable amount to the left, looping
back on itself. The number of places each row is shifted equals the
current row’s y position in the matrix. Row 0 is shifted 0 steps to the
left(stays the same), row 1 is shifted one position to the left, and so on.

MixColumns: Each column in the matrix is transformed into a new column
by performing vector-matrix multiplication with a predefined matrix
provided in [12].

AddRoundKey: Each bit in the matrix is EXORed with the current subkey
generated from the key expansion algorithm explained in [12].

The number of rounds performed depends on the chosen key size, ten rounds
for key size 128 bits, 12 rounds for key size 192 bits, or 14 rounds for key
size 256 bits. Before the first round starts, an AddRoundKey transforma-
tion is applied to the block. Then in each round, the four transformations
are performed in this order: SubBytes, ShiftRows, MixColumns, then Ad-
dRoundKey. In the last round, MixColumns is skipped because it does not
add any extra security. The output is converted back into its original form
and is now encrypted.

Even complex block ciphers like AES are only designed to securely encrypt
a single block with the same key. There have been designed several methods
for using block ciphers called modes of operation to get around this.

13

Figure 2.1: Lookup table used during the SubBytes transformation

2.2.2 Modes of Operation

A block cipher in its basic form is not very useful in the real world since it
will only work securely for a single block of input. Several methods for using
block ciphers have been designed to describe how to repeatedly apply a block
ciphers single-block operation to an input of much greater length with good
levels of security and/or adds other desirable features.

The National Institute of Standards and Technology proposed five dif-
ferent modes of operation to cover the vast majority of needs for block ci-
phers [23]. The five modes of operation are: Electronic Code Book(ECB),
Cipher Block Chain(CBC), Cipher Feedback(CFB), Output Feedback(OFB)
and Counter(CTR). Some of the modes require defining an Initialization Vec-
tor (IV). The IV is used as the starting internal value of the block cipher.
The modes of operation relevant to this project are ECB and CBC.

2.2.3 ECB

Electronic Codebook (ECB) is the simplest of the standard modes of opera-
tion. In ECB mode, each input block is encrypted with the same key. This

14

ECB Mode

...

AESKey AESKey AESKey

...

Plaintext

Ciphertext

Figure 2.2: Encrypting with AES in ECB Mode

is only secure if it is used to encrypt a single block before changing the key.
Because of this, it should never be used as the primary encryption method in
a system. The main reason why ECB is not secure is that any two identical
blocks will have the same output. This type of encryption is weak to fre-
quency attacks and will reveal many encrypted words if given enough data.
As a result of the independent encryptions of each block, an error during
encryption will only corrupt the current block, and the previous and later
blocks will still be intact.

In Song et als. Scheme IV [41], AES in ECB mode is used, but not as the
primary encryption method. It is still secure to use in this context because
another pseudorandom component is added to the output of the encryption
before it is uploaded to the server. This will be explained in more detail in
Chapter 3.

2.2.4 CBC

In Cipher Block Chaining (CBC) mode, the input from the current block
is XORed with the plaintext of the next block before encrypting. Before
encrypting the first block, the input is XORed with the Initialization Vector
(IV), which should be generated randomly for each encryption. Using the
previous encrypted block during encryption ensures that two identical blocks

15

CBC Mode

...

AESKey AESKey AESKey

...

Plaintext

Ciphertext

Initialization

Vector (IV)

...

Figure 2.3: Encrypting with AES in CBC Mode

will look completely unrelated after encryption. This block chaining effect
makes CBC resistant to statistical attacks like frequency analysis.

2.2.5 Padding

As block ciphers only accept input of a fixed size, a padding scheme is often
used to ensure each block is the correct size. If padding was applied during
encrypting, it must be removed after decryption. Because we need to know
what should be removed, adding the length of the applied padding as part
of the actual padding is common.

PKCS 5- and PKCS 7 Padding are predefined padding schemes and are
used to pad byte arrays to a set size. Both schemes work the same but for
different array lengths. They work by first finding the number of bytes that
needs to be padded to give the array the correct size. The value of each
added byte is the number of bytes added. If the current block needs to add 3
bytes to reach the desired size, the three bytes added will all have the value
”03” [27, Ch.6.3].

16

2.3 Stream Cipher

As mentioned in the previous section, block ciphers process input in blocks
at a time. Stream ciphers process much smaller units at a time, usually
1 bit or 1 byte(8 bits). A stream cipher does not do computations on the
input(cleartext) as a block cipher does. Instead, they generate a pseudo-
random bitstream called a keystream and combine it with the input. The
combination is done with the XOR operation. If the XOR operator is applied
twice with the same value, the output will be the same as the original input.
This makes decryption very simple; Use the same key as during encryption,
generate the same keystream, and combine it with the ciphertext to get the
original cleartext.

2.3.1 Trivium

Figure 2.4: Visual representation of Trivium

17

Trivium is a fast and lightweight stream cipher that uses an 80-bit key
and an 80-bit Initialization Vector (IV) to securely generate up to 264 bits
of pseudorandom output [16]. Trivium was designed as a challenge to how
much a stream cipher could be simplified without sacrificing security, speed,
and flexibility. Trivium still needs more testing before it is ready to be used
in a real-world scenario where actual critical information is being handled
but is very well suited for a project of this scale.

Trivium consists of 288 internal registers(s1,...,s288), each containing one
bit. Trivium also keeps track of three intermediate variables t1, t2 and t3.
These are mainly used to calculate the output bit zi in the main phase.
Before any output is produced, an initialization phase is performed. In the
initialization phase, the key and IV are loaded into the internal registers, and
the rest of the registers are filled with predetermined bits 2.5.

Figure 2.5: Initializing internal registers

In the last part of the initialization phase, the internal state is rotated 4
full cycles. One cycle consists of 288 rounds. After the initialization phase,
the variable zi is calculated each round and is the output bit for that round.
During the initialization phase, zi will not be outputted. N rounds of Trivium
are calculated by the figure below 2.6, and as visualized in Figure 2.4. As
mentioned, 4 cycles (4× 288) are performed without outputting the variable
zi.

During the main phase of Trivium, one bit (zi) is produced per round as
shown in Figure 2.6.

18

Figure 2.6: N rounds of Trivium

2.4 Hash functions

A hash function is a one-way function where the primary purpose is to map
a variable-size input to a fixed size output without being able to reverse
the process. Hash functions are used in several fields of computer science.
They are, for example, the main component in the data structure hashtable
and an essential tool in computer security. Hash functions do not require
any additional key other than the input to be hashed. A cryptographically
strong hash function should be easy to compute but hard to invert [35]. The
primary and essential requirements for a hash function H with input x:

1. H can be applied to any argument of any size. H applied to more
than one argument is equivalent to using H on the concatenation of
the arguments.

2. H always produces a fixed size output.

3. Given H and x, it is easy to compute H(x).

4. Given H and H(x), it is computationally infeasible to determine x.

5. Given H and x, it is computationally infeasible to find an x′ 6= x such
that H(x) = H(x′).

19

2.4.1 SHA-512

The Secure Hash Algorithms (SHA) is a set of cryptographic hash functions
published by the Nasional Institute of Standards and Technology (NIST).
The algorithms are divided into SHA-0, SHA-1, SHA-2, and SHA-3. SHA-
512 is one of 6 similar hash functions included in SHA-2. The SHA-2 al-
gorithms are made with the Merkle-Damg̊ard construction. In the Merkle-
Damg̊ard construction, the input is divided into blocks and, one by one, fed
into a compression algorithm. The output of each compression is combined
with the next block and compressed again.

A message-digest with SHA512 is computed in 3 steps [42]:

Figure 2.7: SHA512

Step 1: Padding. The compression algorithm F of SHA512 takes an input
of size 1024 bits and turns it into an output of size 512 bits. The
message, therefore, needs to have a length that is a multiple of 1024.
Like in a block cipher this is achieved by padding the message. A

20

critical component of the padding scheme used in SHA512 is adding
the length of the original message (before any padding is applied) as
the last part of the padding. The length L is always formatted as an
unsigned integer in binary with 128 bits. If the length L of the original
message happens to be longer than 896 mod 1024 bits[L ≡ 896 (mod
1024)](the padding does not fit in the last block), a new block is added
to make room for the padding. Any space in between the last bit of the
message and the 128-bit message length is filled with one ’1’ bit and
the rest ’0’ bits(from left to right).

Step 2: Setup. In this step, eight internal variables are defined and inital-
ized. The eight internal variables a, b, c, d, e, f , g and h are 64-bit
registers. The eight registers are initialyzed with the values (in hex-
adesimal format):

a = 6A09E667F3BCC908

b = BB67AE8584CAA73B

c = 3C6EF372FE94F82B

d = A54FF53A5F1D36F1

e = 510E527FADE682D1

f = 9B05688C2B3E6C1F

g = 1F83D9ABFB41BD6B

h = 5BE0CD19137E2179

Step 3: Process Message. In this step, we apply the compression func-
tion F to each 1024-bit block of the message with padding. Between
iterations, we keep track of the internal variables Hi defined in the
previous step. To produce Hi+1 we apply the compression function to
the 1024bit message block Mi+1 and Hi. The 512-bit output is then
XORed with Hi. The 512-bit value HN produced from message block
MN and internal variable HN−1 where N is the number of blocks in the
padded message, is the hash of the message.

The compression function F : The compression function used in SHA512
has 80 internal rounds of computations. Each round takes in a Wi and
a Ki, where i is the current round and the internal variables a, b, c,
d, e, f , g and h. For round 0, the internal variables are derived from
splitting the previous internal variables Hi−1, or for rounds 1-79, the
internal variables are the output of the previous round. Variable Wi is
calculated with the formula [21]:

21

Figure 2.8: The compression function

Wt =

{
M

(i)
t 0 ≤ t ≤ 15

σ
{512}
1 (Wt−2) +Wt−7 + σ

{512)
0 (Wt−15) +Wt−16 16 ≤ t ≤ 79

(2.1)

Functions used in the compression function:

22

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) (2.2a)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (2.2b)

(512)∑
0

(x) = ROTR28(x)⊕ ROTR34(x)⊕ ROTR39(x) (2.2c)

(512)∑
1

(x) = ROTR14(x)⊕ ROTR18(x)⊕ ROTR41(x) (2.2d)

σ
(512)
1 (x) = ROTR19(x)⊕ ROTR61(x)⊕ SHR6(x) (2.2e)

σ
(512)
0 (x) = ROTR1(x)⊕ ROTR8(x)⊕ SHR7(x) (2.2f)

where

ROTRn(x) is a circular right shift operation where the bits in x are
shifted n spaces to the right. Bits that overflow on the right side loop
around to the left side.

and

SHRn(x) is a noncircular right shift operation where the bits in x are
shifted n spaces to the right. The n bits that overflow on the right side
are lost, and n ’0’ bits are padded on the left side.

The Ki values are predefined constants. These are calculated by taking
the first sixty-four bits of the fractional parts of the cube roots of the
first eighty prime numbers. The constant Ki is calculated from the i’th
prime number. All K values can be found in the Secure Hash Standard
documentation [21].

In each round, the internal values are changed with the same formula.
Figure 2.9 shows the computations of all 80 rounds of the compression
function. One iteration corresponds to one round.

As shown in Figure 2.8, the output of the last round of computa-
tion(round 80) combined with the output of the previous compression
block(Hi−1) to create the output of this compression block(Hi). The
output is always size 512bits. The output of the last compression block
is the output of the hash function.

23

Figure 2.9: All 80 rounds of the compression function F , functions are ex-
plained in 2.2

2.4.2 HMAC

Hash-based Message Authentication Code (HMAC) is a method of securely
adding a key to a standard hashing algorithm. The method requires the
generation of two subkeys: innerKey and outerKey. Both subkeys are
derived from the original key. Generating the two subkeys is done by XORing
the original key with two strings, ipad(inner pad) and opad(outer pad). The
string ipad consists of the byte ’0x36’ repeated B times where B is the length
of the original key. String opad is generated in the same way but with byte
’0x5C’ instead of ’0x36’. The hash is then computed like this:

F (outerKey + F (innterKey + text))

where F is the hash function and text is the input to be hashed.

24

2.4.3 Hash collisions

As one would expect from a function where the number of possible inputs
is greater than the number of possible outputs, sometimes two different in-
puts result in the same output. With hash functions, this is called a hash
collision. When mapping a variable-size input to a fixed-size output, this
is an unavoidable problem. As hash functions are often used to generate a
fingerprint/identification/checksum of an element, the possibility of a hash
collision adds a small probability of error. A feature of a good hashing al-
gorithm is that there should not be any way to predict or manufacture the
output of the function. For a hashing algorithm that produces a hash of size
512 bits, producing a specific output has a probability of 1/2512. The average
number of hashes before a collision is likely to occur is 2256.

2.4.4 Bloom filter

Figure 2.10: Bloom filter

A Bloom filter is a data structure used to check if an element is part of
a set or not. A Bloom filter is always initialized without any elements. An
empty Bloom filter consists of m bits, all set to 0, where m is the number

25

of possible outputs of the pseudorandom function in use. When adding an
element to the Bloom filter, the element is sent through r independent pseu-
dorandom functions. The number r decides the number of functions in the
system and is called the security parameter. The bits positioned at the index
of the result of the functions are set to 1. To check if an element is in the
Bloom filter, the element is sent through the same r pseudorandom functions
and checked if all the answers are in the Bloom filter. If all the results are in
the Bloom filter, the element is present with a very high probability, if any of
the results are not in the Bloom filter, the element is definitely not in the set.
There is a very low probability of a false positive if all the pseudorandom
functions have a collision at the same time. Suppose the probability that
a pseudorandom function outputs the same value for two different elements
is p. Then the probability of a false positive is pr. The error probability
drastically decreases when increasing r.

2.4.5 Password hashing

A requirement in a general-purpose hash function is speed. One should be
able to perform message authentication or calculate checksums as efficiently
as possible. When hashing passwords, however, the opposite is true. Two
common ways for an attacker to obtain another user’s password are with a
brute force attack or a dictionary attack. In a brute force attack, the attacker
tries all possible combinations to eventually guess the correct password. In
a dictionary attack, the attacker uses a previously generated dictionary with
(hash, password) pairs to be able to quickly find the password corresponding
to the stored hash. This is made significantly harder with the addition of
salt when hashing the password, but this is not good enough with computers
getting faster.

A Password-Based Key Derivation Function (PBKDF2) is a function for
deriving a random-like key based on a given password, which is provided
by the user and is usually not strong and long enough. [36]. This can be
used to make a function for hashing passwords that are computationally
slow. The algorithm’s speed depends on the number of iterations provided
during initialization. OWASP recommends 120000 iterations when using
PBKDF2 with SHA512 [7]. It works by applying a keyed hashing function

26

to a password and a salt. This process is repeated many times with the
output of the last iteration as the new input.

27

Chapter 3

Practical Techniques for
Searches on Encrypted Data

Song et al. [41] proposed a scheme to solve the issue of having to trust
storage servers fully. In the paper, Song et al. use mail servers as the primary
example but state that the uses are not limited to only text. The scheme
works for any set of tokens called a document, where a user can search for
the token. In the case of an email, the set of tokens would typically be each
section of text separated by a space. Throughout the thesis, a token will
often be referred to as a word.

3.1 Scheme Overview

In the paper, Song et al. describe four schemes, where each scheme adds
better security or functionality to the previous scheme. The final scheme,
scheme four, is provably secure and ensures that the untrusted server can-
not learn anything about the plaintext given only the ciphertext. The final
scheme features controlled searching, meaning that only the data owner or
anyone the data owner has chosen to share their secret key with can perform
searches on the encrypted data. Anyone that has rightfully been given access
to the key (data owner or other) will throughout the thesis be referred to

28

as a user. The scheme features hidden queries, which means that the search
word is encrypted and will not be revealed in the clear to the server. The
last main feature is query isolation, meaning that the server learns nothing
more than the search result when performing queries. The schemes require a
stream cipher G, a pseudorandom function F , for example, a hash function,
and a block cipher E. The block cipher is essential to be deterministic and
does not use any randomness. The encrypted block should not rely on any-
thing other than the key and the current block. In other words, it should be
a block cipher in ECB mode.

3.1.1 Scheme I - The Basic Scheme

Plaintext

Stream Cipher

Ciphertext

Figure 3.1: Scheme I

The first scheme introduces the basic concept of the encryption method.
During initialization, the block size n is chosen. Each word w in document
D is padded to be length n, or if w is longer than the block size, it is split
into several blocks. For each w, during encryption, a sequence of bits S of
length n −m is generated with the pseudorandom generator G, where m is
the length of the output of the pseudorandom function. When encrypting
word wi in position i, Si is generated, and Ti =< Si, Fki(Si) > with secret key
ki is created. The ciphertext Ci is computed by applying bitwise exclusive or
(XOR) on Ti and wi. For this scheme version, the user can choose whether
to use the same key k for all words in the document or use a different one
for each word.

When a user wants to search for a word in the documents, the user sends
the search word w and the key k to the server. Then the server checks each

29

word in each document whether the current ciphertext word XORed with the
search word is on the form < Si, Fk(Si) > (this is the Ti from the encryption).
The encrypted word matches the search word if a valid T is found. The server
can then return the document to the user.

When the user wants to decrypt the returned document, they apply the
encryption in reverse. Since the XOR operator returns the original input if
the operation is used twice, the user can generate the keystream S again(since
they know the seed), calculate T , and XOR it with the ciphertext C to get
the original cleartext document.

There are two obvious problems with this version of the scheme. The
first is that the search word is shown to the server in the clear. The second
is that the user must provide the key k to the server when searching. The
server decrypts the whole document if the same k has been used for all words.
However, if the user has chosen a different k for each word, then they would
have to know the exact position the word might appear in and the k for that
exact word. This defeats the purpose of searching, and a fix to this will be
presented in the next version.

3.1.2 Scheme II - Controlled Searching

As the name suggests, this scheme extension provides a way to choose ki
to achieve controlled searching. This requires an additional pseudorandom
function f , and a secret key k′. k′ should be selected randomly and be kept
secret by the user. This scheme suggests using f with k′ on each word and
the output as the key ki during encryption. This would guarantee that the
server could not learn anything about the other words when performing a
query.

When the user wants to search for a word w in their documents stored
on the server, the user will compute k = fk′(w). The user would then send
the server < w, k >. Then, like in the basic scheme, the server would XOR
each ciphertext word Ci with the provided search word w and check if the
output is in the form < Si, Fk(Si) >.

30

It is possible to use different k′ keys for some documents to limit which
documents can be searched for in a single query. This can be done either for
the convenience of being able to categorize documents or to add an extra layer
of security. This feature will be explained in detail in the Scheme features
section.

This scheme is much more secure than the basic scheme, but the user still
has to provide the search word in plaintext to the server. Scheme III aims
to solve this problem.

3.1.3 Scheme III - Support for Hidden Searches

Plaintext

Stream Cipher

Ciphertext

Figure 3.2: Scheme III

Scheme III provides a simple extension to the previous scheme to make
the searches hidden from the server. To achieve this, pre-encrypt the word
w with a block cipher in ECB mode before applying the stream cipher. The
key k′′ used for the block cipher should also be kept secret by the user. k is
now computed from fk′(X) where X = Ek′′(w).

Careful readers may have noticed that when pre-encrypting each word
with ECB before the main encryption, the user can no longer decrypt the
documents. This is because if the user generates keys ki = fk′(Ek′′(wi)),
they would need to know Ek′′(wi) = Xi. This does not make sense because

31

there would be no point in generating Ti =< Si, Fk′(Si) > to find Xi if the
user already knew Xi. In the last scheme, Song et al. fix this issue without
compromising the algorithm’s security.

3.1.4 Scheme IV - The Final Scheme

Plaintext

Stream Cipher

Ciphertext

Figure 3.3: Scheme IV

The final scheme provides a simple fix to the problem described at the
end of Scheme III. In the final scheme, the user should split the pre-encrypted
word X into two parts, L and R. L should be of length n − m, the same
length as S, and R should be length m, the same as Fk(S). Now, instead of
calculating k = fk′(X), the user should calculate k = fk′(L).

The full encryption now looks like this: the user first divides document
D into a set of n size words w where n is the block size. In an English
text, this would usually mean splitting the text on each space character and
padding the words to length n. Then the user loops through the set of words,
and for each word wi in position i, pre-encrypt it: Xi = Ek′′(wi). The pre-
encrypted word Xi is split into Li and Ri. Then the user generates Si as
n − m lenght output of the pseudorandom generator G, with a randomly
chosen secret seed, which should be stored locally for use during decryption.
The user computes ki = fk′(Li) and sets Ti =< Si, Fki(Si) >. The current
ciphertext block Ci is computed by XORing Xi and Ti.

32

When users want to search for a word, they pre-encrypt the search word
w: X = Ek′′(w), then split it into a left and right part, L and R respectively,
like during encryption. The user then computes k = fk′(L) and sends <
X, k > to the server. The server can now loop through each block in each
document and partially decrypt it to check if it has a valid T . For ciphertext
block Ci in position i, the server splits the block into a left, and a right
part Ci1 and Ci2. The same is done for the pre-encrypted search word X ->
[L,R]. Then the server computes Si = Ci1 XOR L. Then the server computes
Fk(Si) and checks if Fk(Si) XOR Ci2 equals R(this makes it a valid T). If
so, a match has been found, and the document can be returned to the user.

When decrypting, the user generates Si with the psuedorandom gen-
erator G and their secret seed, computes Li = Si XOR Ci1, calculates
ki = fk′(Li), computes Fki(Si) and then computes Ri = Ci2 XOR Fki(Si).
The user can then combine Li and Ri to get Xi. Then use the block cipher
to decrypt Xi into wi.

3.2 Scheme Features

When talking about features, I am exclusively referring to features of the final
scheme: Scheme IV. In the introduction of this chapter, the main features
of controlled searching, hidden queries, and query isolation were mentioned
briefly. The main features and some extra, nice-to-have/alternative features
will be explained in the two subsections below.

3.2.1 Main Features

The main features: controlled searching, hidden queries, and query
isolation are vital to the scheme’s security. Controlled searching addressed
in Scheme II ensures that the secret key generated by the user is needed
to make search queries on that user’s files stored on the server. The user
can choose to share their secret key with others, giving them administrative
rights to their account, but the key should never be shared with the server.
Query isolation ensures that the server cannot learn anything about the

33

words that do not produce a match when performing a search query. Query
isolation paired with Hidden queries, which ensures that the server cannot
learn anything about the word being queried, makes the system only leak an
acceptable amount of information.

3.2.2 Extra Features

Although there is no direct way of querying with wildcards (unknown
character(s)), a user could simulate the feature by creating queries with all
the different combinations of characters for the wildcard(s). If a user wanted
to search for ”Ca?” where ”?” is an unknown character, the user could cre-
ate 26 different queries (or more if special characters and/or numbers are
included), one for each character in the alphabet instead of the wildcard.
The number of queries and, therefore, also search time increases exponen-
tially for each extra wildcard, so this feature should probably only be used
in a particular type of system where this is used sparingly. When using this
feature, it is also essential to remember that each query sent to the server
leaks a small amount of information about the search. Making thousands of
queries for a single search might not be a great idea.

An alternative to using a fixed block size is to use a feature with variable-
length words. Using variable-length words removes the space inefficiency
caused by padding in the regular scheme but adds some complexity and a lot
of extra computation to the server. When encrypting with variable-length
words, the user only generates enough random bits of the bitstream to per-
form the XOR. The user would have to store the length of each word to be
able to separate them during decryption. The length of each word has to
be shared with the server for it to know where to search in the document.
Sharing the word lengths with the server is generally a bad idea but does
remove the considerable space inefficiency of the main scheme. The alterna-
tive to sharing the word lengths is to make the server search all possible r
length sequences of the document where r is the length of the search word.
The complexity increase of this approach is very high, as the server needs to
perform r times more searches than the fixed size approach.

The last extra feature is an extension of the controlled search and provides
functionality to categorize documents. This is mentioned briefly in the

34

”Scheme II - Controlled Searching” subsection. To explain this feature, I will
use an example: Assume a user; Alice wants to store their emails on a server
that uses this scheme. Alice wants to categorize her emails as ”important” or
”spam”. When encrypting the emails, she can choose to generate ki = fk′(Li)
with two different k′ keys, one for the ”important” emails and one for ”spam”.
Then later, when Alice wants to search for a word in only the ”important”
emails, she generates k with the same k′ as when encrypting those emails.
When performing the query, the server will look through all the files like
normal, but only the ”important” emails have a chance of finding a match.
From the server’s point of view, there is no way to tell that the emails are
encrypted with a different key. If Alice wants to search through all her emails,
she performs separate search queries with every k′ she has used to categorize
emails.

To add to the extension of controlled searching explained above, using
different k′ keys in different parts of a single document is possible. To con-
tinue the example from above, if Alice wants to be able to search for only
who sent an email, she can use a different k′ for the part of the document
where the information about the sender is stored. Then if she wants to search
for only the sender, she creates the search token with the same k′. This fea-
ture can be extended as far as the user wants in both directions. Although
an extensive amount of keys can be more challenging to manage, and if the
user often wants to search through all documents, the number of queries will
increase.

3.3 Implementation Specifications

In my implementation of the algorithm, I use a client-server solution. One
server can have many clients and each client connects to a single server. The
system is hosted locally and is not meant to be used outside of a controlled
environment for demonstration purposes only. This implementation does not

35

Figure 3.4: Components of my implementation and their relation

include any extra security features like encrypted file names, user authenti-
cation, or integrity checks. I have chosen not to focus on the mentioned extra

36

security features because they are not part of the proposed scheme.

I implemented the scheme in Java, specifically Java 18, and some of the
design decisions are based on the standards and common practices of the
language. For example, a common way to work with bits in Java is in the
datatype byte. A byte is represented by a number in the range [−127, 128]
and effectively holds 8 bits(28 = 256). For example, a 128-bit key will be
represented as a list of 16 bytes. Text, on the other hand, can be a bit
more tricky. The standard text charset is UTF-8. UTF-8 is a variable width
character encoding, meaning that a single character can be represented by
1 - 4 bytes. The more common symbols are represented by only 1 byte
and uncommon characters use more bytes. As mentioned in section 2, block
ciphers convert a fixed-size input to a fixed-size output. Using UTF-8 causes
the number of characters in each encryption block to vary depending on
which characters are included in the current block.

As the user needs to generate the same bitstream when decrypting as
when encrypting, there needs to be a way for the user to get the correct seed
that corresponds to the current document. A very simple way to achieve
this is that the user stores a dictionary of document identifiers and the corre-
sponding seed locally and gets the seed whenever they download something
from the server. If the user were to lose the dictionary or log on from a
different computer, there would be no way to decrypt files even though the
user knows the password for their account. I decided to store the dictionary
encrypted on the server to solve this problem. The dictionary should not
be encrypted with the SSE scheme like the rest of the documents because
it should always be included whenever the user downloads other documents.
From looking at the image of the components in Figure 3.4, if the server
finds any matches when searching, the dictionary(called lookup in the code)
is returned with the encrypted documents. The downside to storing the dic-
tionary on the server is that the user would have to download the dictionary
and update it before encrypting and uploading the actual document, this can
be seen as the setLookup function in the image of the components 3.4. This
adds an extra round-trip to the communication protocol between client and
server. This dictionary is referred to as the lookup table in the code and
later in the thesis.

The code runs in a loop that lets the user interact with the program
through the terminal. First, the user is asked to choose a working directory.

37

This is where the program creates client directories and server directories
used to store the user’s files and the server’s files. The working directory
is also where the program creates and updates temporary files. Before the
main loop begins, the user enters a username and password, which will be
used to generate the secret key. In the main loop, the user has the option to
upload files, search for files log out, or quit. The commands are written in the
terminal but choosing files and the working directory is done in a primitive
file-selection popup.

In the upload function, before encryption starts, the user asks the server
for its lookup file. If there is none stored on the server, the user creates a
new one. Then the encryption starts by randomly generating a seed for
trivium with a SecureRandom Java object. A Scanner object is used to read
the entire document that is to be encrypted and iterate over each word(any
group of characters separated by a space). Each word is processed by a
”separateWords” function used to split the word into the correct number of
32-byte chunks(for blocksize 32) where the correct padding is added to each
chunk. The padding scheme in this implementation works as follows: the
last two bytes of each block are always reserved for padding. If the length of
the current word is not a multiple of 30, the missing bytes are filled with ”*”
characters. The last two padding bytes indicate how many ”*” characters
were added. If the current word is longer than 30 bytes, the word is split into
the correct number of chunks, and only the last chunk is padded as mentioned
above, the other chunks are padded with the bytes ”-1” to indicate that the
chunk should be combined with the next chunk when decrypting.

After padding, each 32-byte chunk is pre-encrypted with AES in ECB
mode, the AES option ”No-Padding” is used as I need to be able to control
the padding of each word myself. I decide to make the left and right parts
of the block the same size by setting m = blocksize/2. Generating k is
done with HMAC with SHA512 on L as explained earlier. Whenever I work
with strings during the encryption, the charset ISO 8859 1 is used. This is
because, unlike UTF-8, ISO 8859 1 always translates 1 byte into 1 character.
This is generally easier to work with when performing operations directly on
the words. When the encryption of the entire document is complete, a hash
of the document is computed and used as a key in the lookup dictionary to
store the seed for trivium. Before uploading the updated lookup and the
encrypted document, the lookup is encrypted with AES in CBC mode.

38

When a user wants to search, they type the search command in the
terminal and provide the keywords they want to search for. The search
token is generated with the same functions as where used in the encryption.
The pre-encrypted word X and the key k are sent to the server with the
current user’s userID.

When the server receives the search request, it finds the files owned by the
current user. Each file(except the lookup) is sent through the ”checkMatch”
function. The ckeckMatch function performs the search as described in the
introduction by checking for a valid T in each block. If the server finds any
matches, those files are returned along with the lookup.

Dectryption is performed automatically for any files returned by a
search. From the lookup table accompanied by the returned files, the user
finds the correct seeds for trivium to generate the correct keystream S. With
the S and the private key, the user can successfully decrypt all their files.

3.4 Performance Analysis

As the scheme uses sequential search and is encrypted/decrypted by scanning
through the document’s words like in a block cipher, it is obvious that the
main factor of performance is document length and number of documents.
The four main functions encryption, search, token generation and de-
cryption mostly consists of performing a combination of the three main
operations pre-encryption with AES in ECB mode, generating pseu-
dorandom bitstream with Trivium and hashing with SHA512. When
scanning through a document during encryption, decryption, or search, each
block of input is processed in the same way throughout the entire scan. It is,
therefore, logical to analyze the performance of processing a single bock of
input for the three mentioned functions. Token generation does not require
scanning over several words and is therefore treated as a single block of input
in this analysis.

The table below counts the number of executions the major algorithms
(AES ECB, Trivium, and SHA512) has to do for each block processed during

39

the functions: encryption, search, token generation, and decryption. Care-
ful readers may notice that the number of SHA512 executions is doubled
from what it should be. This is because the implementation uses HMAC to
perform keyed hashes. HMAC as explained in the theoretical background
section uses two executions of SHA512 per hash calculated. Trivium gen-
erates a single bit per execution, so the number of executions required to
generate Si is always n −m. The default block size of my implementation
is 32. The number of AES ECB encryption blocks is therefore 2 per 32-byte
block of input.

Function AES Trivium SHA512

Encryption 2 n−m 4
Search 0 0 2

Token Generation 2 0 2
Decryption 2 n−m 4

Table 3.1: Number of operations per block

As there is no great way of analyzing the speed of algorithms without
going to extreme depths regarding internal operations, I decided to perform
some tests on the main algorithms of the scheme. To make test results com-
parable, all performance tests are run on the same computer, specifically a
Thinkpad T580 with a Intel(R) Core(TM) i5-8350U CPU [2]. When test-
ing the speed of SHA512 and AES, OpenSSL [6] was used. OpenSSL is a
cryptography toolkit that among other things lets anyone test the speed of
several cryptography algorithms locally. As there is no official standard for
trivium, it is not supported by OpenSSL. To test the performance of my
implementation of Trivium, I created a simple testing program [10].

Function AES Trivium SHA512

Bytes 877142.15k 501.05k 57772.28k

Table 3.2: Number of bytes processed per second displayed in 1000s

To try to simulate the conditions of how the algorithms were used in
the implementation, the tests were performed with as similar as possible
parameters as in the scheme implementation. The AES test displays how
many bytes are processed with AES in ECB mode with block size 128. The
test on SHA512 uses input size of 128 bits. The test on trivium is the average

40

of 10 runs of the test program mentioned earlier. The result from the trivium
test counts the number of bits produced in one second, this is divided by 8
to make comparison with the other algorithms easier.

The encrypted documents do not require any extra overhead other than
the encrypted contents of the document. Therefore, the storage space needed
is determined by the number of words in the document and the block size.
My implementation supports any block size that is a multiple of 128 bits(16
bytes), but the default block size is 256 bits(32 bytes). If a word is longer than
30 bytes(the last 2 bytes are reserved for padding), the word is encrypted in
two(or more) blocks. As a general rule, a word of any size(smaller than 30
bytes) will take up 32 bytes of storage space.

Padding is excellent for masking the length of words in the document
to the server but adds redundancy. How much redundancy depends on the
length of the original input. If all words in the original document were of size
30, very little extra redundancy would be added. The encrypted document
would almost be the same size as the unencrypted document. To analyze the
redundancy, one could look at the average length of words in the language
used in the documents.

The above tests analyze the cryptographic algorithms in a closed en-
vironment. To provide a more practical result, I performed tests on the
implementation itself. The tests analyze the major functions of the scheme,
specifically:

Upload: Test includes encryption of 100 txt files and sending them to the
server.

Search, 0 matches: Test includes creating a trapdoor with a bogus word,
sending it to the server, and executing a search query.

Search, 85 matches: Test includes creating a trapdoor with the word ’to’,
sending it to the server, executing a search query, returning the 85
matches, and decrypting them.

41

Block Size Upload Search, 0 matches Search, 85 matches

16 4894 434 709
32 6852 779 1178

Table 3.3: Execution time for encrypting and uploading 100 txt files, Search-
ing with 0 matches and 85 matches over the 100 encrypted txt files with block
sizes 16 and 32. Results are the average of 10 separate executions, results
are displayed in milliseconds.

Block Size Filesize Percent increase

Cleartext 66.4 0%
16 183.6 176%
32 363.3 446%

Table 3.4: Storage space required for storing all 100 files encrypted with
different block sizes. Filesizes are displayed in kilobytes (KB).

The dataset used for testing consists of the first 100 poems in the col-
lection ’The Sonnets’ written by William Shakespeare [8] as separate txt
files. The smallest of the files is 595 bytes and the biggest is 706 bytes. The
combined size of all 100 files is 66.4KB.

It is clear from looking at the storage space required in Table 3.4 that
using block size 32 on this dataset adds a large amount of redundancy. If
this is worth it or not is unclear and needs further testing. When most of the
words in the dataset are short, choosing block size 16 can save a lot of storage
space. However, if the dataset consists of longer words, choosing blocksize
32 can save some storage. This is because the last two bytes in each block
are reserved for padding. This means that with block size 32, there are 30
bytes reserved for the actual word, compared to 14 bytes for block size 16.
A 30-byte word when encrypted with block size 32 requires 1 32-byte block
whereas the same word encrypted with block size 16 would require 3 16-byte
blocks(30 bytes > 2× 14bytes).

42

Chapter 4

Secure Indexes

In the Discussion section of the paper [41] Song et al. describe searching
with an encrypted index as an option to the method of sequentially scanning
each document. The process of searching with an encrypted index described
by Song et al. is later categorized by Poh [39] as searching with an inverted
index. When searching with a reversed index, the server keeps an updated
map of pointers from encrypted words to the documents they appear in.
Searching with a direct index table is simpler because a pre-computed lookup
table can show a user with valid credentials if a word appears in a given file
or not, without having to search through the file during each query. However,
the downside to using an inverse index table is that it adds extra overhead,
and keeping the index updated can be cumbersome.

Goh [25] proposed a scheme that uses a direct index instead of a reversed
index like Song et al. described. The overhead is still there, but updat-
ing is much simpler. Goh’s scheme ”Secure Indexes” uses a per document
index [25]. Each document has a corresponding index table to check if a pro-
vided word appears in a given document. The scheme lets a user generate a
trapdoor, which is used to make queries to the server. Trapdoor generation
requires the user’s private key and leaks very little information about the
contents of the query to the server.

The big difference in searching with an index table instead of on the main
document like in the previous scheme is that the document itself does not

43

need to be encrypted in a special way. In the secure indexes scheme, the
main document is encrypted with a standard up-to-date block cipher in the
most secure manner. Therefore, security relies on creating and maintaining
the index table in an intelligent way.

4.1 Scheme Overview

The secure indexes scheme is constructed with four main algorithms: Key
Generation, Trapdoor Construction, Index Construction(also called
BuildIndex) and Search Index.

4.1.1 Key Generation

The key generation algorithm is an algorithm to generate a secret key. The
user will keep this key, never to be revealed to the server. The algorithm
takes an integer s, which is the security parameter of the scheme. The
security parameters decide the key size of the system. The private key Kpriv
takes the form of a set of r subkeys, where each subkey consists of s bits.
The variable r should be chosen when initializing the system. The number
of subkeys in the key has to be the same for all users of the system, but the
user can choose the size of each subkey s. In a secure system, there should
be a minimum requirement for the length of s, for example, 128 or 256. The
bits in each subkey in Kpriv should be chosen at random.

4.1.2 Trapdoor Construction

The trapdoor algorithm is used to generate a trapdoor (which serves a sim-
ilar purpose as the search token from the previous scheme). The trapdoor
algorithm takes the private key Kpriv and the search-word w in plaintext
as input. The algorithm uses a keyed pseudorandom function f , which takes
Kpriv and w as inputs and produces a trapdoor for w in the same format

44

. . .

. . .

Figure 4.1: Generating a trapdoor

as the private key Kpriv(set of bit arrays). As the construction of the trap-
door uses the private key, the trapdoor for two identical words generated by
two different users will be completely different. One could not look at the
trapdoor for any given word and determine the original word or the private
key used to generate it.

4.1.3 Index Construction

. . .

. . .

. . .

. . .

Figure 4.2: Build Index

The index table used in this scheme is a Bloom filter with hash functions
as the pseudorandom functions. When generating the index, the private key
Kpriv and document D are needed. The index generation algorithm loops
through D and for each word generates its trapdoor. For each trapdoor,
all bitsets are hashed with the identifier ID(Did) of D to create the current
trapdoors codeword. The last step is to make sure two identical words in
different documents do not produce the same codeword. This is to avoid the
possibility of statistical attacks.

45

4.1.4 Search

The main feature of this scheme is being able to search for keywords on an
encrypted document. Searching is done by the user generating a trapdoor for
a word and sending it to the server. Generating valid trapdoors requires the
user’s private key and can therefore only be done by the account’s rightful
owner. The server generates a codeword with the trapdoor and each doc-
ument identifier and checks if the current index contains the codeword or
not.

4.2 Features of Secure Index

4.2.1 Efficient Update

Updating a document in the secure index scheme does not require the user
to rebuild the index. Instead, the user computes the codewords that are
removed from a document when changing the contents of a document and
remove those codewords from the documents index. Similarly, when adding
words to a document with an already existing index, the user computes the
codewords of the newly added words and adds them to the index. When
updating, the user needs to decrypt the actual document and encrypt it
again after updating it.

If the number of words updated is more than half of the original document,
rebuilding the entire index from scratch is more efficient. This is because the
user would have to compute the codewords of the removed words and the
updated/added words. In a smaller application, where documents are not
frequently changed, I would argue that rebuilding the index during updating
is fine. However, this feature will save a lot of computation and time when
handling larger documents, where smaller updates are regular.

46

4.3 Implementation Specifications

The code structure of the implementation of this scheme is relatively similar
to the code structure of the previous scheme. Like in the implementation
of the previous scheme, I use a client-server structure where one client can
connect to a single server, but one server can have many clients. When the
server is initialized, security parameters s and r are chosen, these decide the
size of each subkey and the number of subkeys respectively. A user object
is created with a username and password to initialize a user. As there is no
authentication service other than each user having their own private key to
encrypt with, the user does not need to connect/login to the server. The
only form of authentication is that the user attaches their user identification
(userID) to the messages they send to the server. Unfortunately, the imple-
mentation cannot be run in this state as the implementation is used as the
base to create the application described in Section 5.

Whenever a user wants to upload a document, the user first builds an
index(Bloom filter), then encrypts the main document with AES in CBC
mode. The user then uploads the encrypted document and its index to the
server. Building the index starts by extracting the words from the document.
As this implementation is made for encrypting text documents, this is done
by separating each group of characters separated by a space. Then, for each
word its corresponding trapdoor is created. To make searching easier for the
user, each word is converted to lowercase before calculating the trapdoor.
This avoids the hassle of remembering if a word starts with a capital letter
or not when searching. Trapdoor generation in my implementation is done
by hashing the word with all r subkeys of the private key separately. The
hashing is done with HMAC with SHA512. This creates a trapdoor for
the word consisting of r different hashes. To generate the codeword that
is inserted into the Bloom filter, each part of the trapdoor is hashed again,
with the same keyed hashing algorithm (HMAC with SHA512) but with the
document identifier (Did) as the key. As the Bloom filter stores elements as
indexes of an array, the hash needs to be converted into a BigInteger. As
the size of the output of SHA512 is 512 bits, the number of possible outputs
is 2512. Therefore, the size of the Bloom filter array needs to be 2512. As
the vast majority of bits in the Bloom filter would be 0, I decided only to
store the indexes as BigIntegers instead of using the BigInteger as an index

47

in the boolean array. This method of storing only the index itself is more
space-efficient when the document contains a small number of words. I chose
to use the datatype HashSet for the Bloom filter as it performs addition and
lookup operations in constant time. After every word has been turned into
codewords and inserted into the Bloom filter, the Bloom filter is written to
a file.

When the user wants to search for a document, they create a trapdoor
with their private key and search word. This is done in the same way as
during the construction of the index but without converting the trapdoor to
a codeword. The trapdoor and the user identification (userID) are sent to
the server as a search request. The server finds all documents belonging to
the given userID and generates the codeword from the provided trapdoor
and each Did. The server then performs a lookup in the current documents
Bloom filter. Any document where the Bloom filter contains all subsets of
the generated codeword is returned to the user.

As well as the encrypted documents and their indexes, the server stores
a hashmap for each user. The hashmap maps a document to its index. The
hashmap is used only for easier handling of the files and does not give the
server any information it otherwise wouldn’t have. This hashmap is updated
whenever the user uploads or removes a document index pair. The hashmap
is stored as a file with name lookup.

4.4 Performance Analysis

The speed of encrypting and decrypting the main documents is equal to the
speed of AES in CBC mode. Testing AES in CBC mode with OpenSSL [6]
like in the previous chapter, shows that it can process 249382.53k bytes per
second on the same machine.

What makes the secure indexes scheme interesting is the index tied to each
document and how to create it. To analyze the performance of the BuildIndex
algorithm. We generate the codeword for each plaintext word in the original
document to build an index. A codeword consists of the hash of each element
in that words trapdoor. The trapdoor consists of r hashes, where r is the

48

number of subkeys in the private key Kpriv. The number of hashes that
needs to be performed per word is, therefore, 2× r. In my implementation,
I use HMAC with SHA512 to calculate trapdoors and codewords. Like in
the implementation of the previous scheme, the use of HMAC doubles the
number of SHA512 operations per hash. The actual number of hashes per
word is 2×2×r = 4×r. After generating the codewords, randomly generated
codewords are inserted into the Bloom filter until it reaches the size of the
upper bound u.

Generating the private key can be compared to the computation time
required for generating s × r random bits. To generate the random bits, I
use the SecureRandom Java class. The underlying algorithm which is used
in the SecureRandom class is platform-specific. The preferred algorithm
when running the code on a laptop with Manjaro (Linux) operating system
is NativePRNG. NativePRNG gets random numbers based on SHA1-based
PRNG from the underlying operating system [3] [5].

Searching for a word in the encrypted documents on the server requires
the user to generate a trapdoor. As mentioned in the first part of the analysis,
generating a trapdoor requires 2 × r hashes. Then for each document, the
server generates the codeword and performs a constant time lookup in the
index. Generating the codeword also requires 2× r hashes.

The storage space required for the index is determined by the upper
bound u. Choosing a suitable value for u can be tricky as it limits how many
words a document in the system can contain while still masking the number
of keywords to the server.

When initializing the system, the three parameters s, r, and u are chosen.
These all play important roles in the performance of the system. When
choosing the parameters, we essentially have to find a balance of security
and performance. Requiring a very long private key will make the system
more secure, but increases the number of computations per encryption. To
quickly repeat the function of each parameter, s and r decide the size of each
subkey and the number of subkeys in the private key Kpriv respectively.
Because the private key is used to create trapdoors and codewords, s and r
also determine the size and number of elements (BigIntegers) in the index of
each file. The upper bound u determines the minimum number of masked

49

keywords(real or fake) in each index. If we set u = 50, the index of a txt
document with 40 unique words(keywords) will contain 10 fake, randomly
generated keywords. This is done to mask the number of keywords in the
file.

As I think running time and storage space are two of the most interesting
factors when analyzing the performance of the implementation of this kind
of system, I decided to perform three separate tests with different values for
s, r, and u. Each result for the two first tests on running time is the average
of 10 separate executions with the given parameters. To make it possible
to compare results with the previous scheme, the tests are performed on
a Thinkpad T580 with an Intel(R) Core(TM) i5-8350U CPU [2] with the
same dataset [8]. The first test measures the time it takes to encrypt, build
the index and upload all the files in the dataset. The second test measures
the time it takes to perform a search with no results. And the last test
measures the storage space required to store all the encrypted files with their
corresponding index on the server. I decided not to include the test that
measures search time with a high number of matches like in the previous
scheme. This is because I don’t consider it to add much value over the
search time without matches test as it only adds the time it takes to decrypt
with AES in CBC mode.

It is clear from looking at the results of all the tests that increasing u
severely decreases the performance of the system. Choosing a good value
for u can be very tricky, as it very much depends on the use case of the
system. I think the topic of choosing a suitable value for u, and even if it
is needed is cause for an interesting discussion. To add to the discussion, I
propose three solutions with various upsides and downsides to the problem.
The first is to not use an upper bound u, this is equivalent to choosing u =
0(produces the exact same results as u = 1 with our dataset). The obvious
upside of this solution is that there is no added computation and storage cost
used for redundancy(fake keywords). The downside is that the number of
keywords associated with each file is not hidden. This may or may not be a
big security risk largely depending on the use case of the system. The second
solution is to use a large enough u to cover all files in the system. This can
be a good solution if we know that all files have roughly the same number
of keywords. The last solution is to use a ’good enough’ value for u. This
solution might be a decent tradeoff between security and performance. The

50

big problem with the first two solutions is that the downsides are very bad
in a worst-case scenario. It is easy to make the claim that if an adversary
can see the size of the encrypted file, masking the number of keywords does
not add much extra security. This only applies if we know the file types of
the encrypted files. An encrypted txt file with 100 keywords can typically
use 500bytes of storage, as opposed to an encrypted image with 15 keywords
which easily can use 10MB(10000000bytes) of storage space.

Encrypt, BuildIndex, and Upload
s u r = 2 r = 3 r = 5

128
1 688 735 1100

100 651 839 1247
2000 7835 11798 19861

256
1 543 730 1137

100 590 918 1291
2000 8247 12363 20582

512
1 565 759 1148

100 613 871 1290
2000 8825 12995 22158

Table 4.1: Average of 10 iterations to encrypt and upload 100 txt files. Time
in milliseconds.

51

Search, 0 matches
s u r = 2 r = 3 r = 5

128
1 160 198 326

100 157 229 378
2000 2974 4485 7846

256
1 134 201 330

100 156 231 381
2000 3013 4519 7498

512
1 139 201 331

100 157 232 385
2000 3043 4546 7572

Table 4.2: Average of 10 iterations to Search with 0 matches over 100 en-
crypted txt files. Time in milliseconds.

Storage space
s u r = 2 r = 3 r = 5

128
1 974.4 1419.6 2309.9

100 1119.1 1636.6 2671.7
2000 20784.2 31134.2 51834.3

256
1 1243.2 1822.8 2981.9

100 1431.6 2105.4 3452.9
2000 27034.2 40509.1 67459.2

512
1 1780.9 2629.3 4326.0

100 2056.6 3042.9 5015.4
2000 39534.2 59259.3 98709.2

Table 4.3: Storage space required to store 100 encrypted txt files and their
index. Original plaintext size without index = 68,4. Results in kilobytes
(KB).

52

Chapter 5

Cloud storage application with
SSE for images and videos

During the implementation of the Secure Indexes scheme, I realized that the
potential use-cases of SSE are not limited to only text documents. There
still needs to exist a set of words that can be searched for, but this does not
need to be the words of the original text document. In my application, I have
altered the Secure Indexes scheme to work with images and videos. The set of
words that can be searched for is generated from the image metadata and an
object recognition API. The main scheme is surrounded by an authentication
service that uses a database to store and manage users. I have created a very
simple graphical user interface 5.1 to make the application more user-friendly.

Figure 5 shows an overview of the components of the application and their
relation to each other. The figure is somewhat simplified to make it more
manageable to understand. A good way to read the figure is by following
the arrows connecting each component. The number displayed at the start
of each arrow indicates in which order that component is executed. The pro-
gram always starts by running the generator function of the GUI(function
displayed in red). When a user is successfully logged in(mainScreen func-
tion in GUI is called), the numbers indicating the order of execution are
reset to make it easier to follow. Some of the functionality left out of the
figure includes reading and updating the server’s internal lookup table(for

53

keeping track of which index corresponds to which file), the extra round trip
required when logging in or registering a new user (this will be explained
later, visualized in 5.3 and 5.4), generating the keywords for each file (part
of the buildIndex algorithm) and buildIndex generating codewords for each
trapdoor.

Figure 5.1: Simple Graphical User Interface

5.1 Motivation

My application is meant to show the various upsides and downsides that
might come with using an SSE scheme, specifically Secure Indexes in a cloud
storage application. I am aware that more secure and well-polished databases
exist that utilize searchable encryption, CryptDB [1], for example. Still, I
think it is helpful to show a working model of an application running SSE.

54

Figure 5.2: Components of the application and their relation

55

5.2 Authentication

It is essential to realize that even though the Secure Indexes scheme is cryp-
tographically secure, it needs a service to handle user authentication. A user
should not be allowed to try to interact with another user’s documents, even
though they have no way of generating valid queries. Another good reason
to protect the application with an authentication service is that we could
not let users remove their stored documents without being authenticated.
There would be no way of preventing a user from deleting other users’ stored
documents.

A reasonable thought is that an authentication service is needed to store
passwords securely, hashed with a good hashing algorithm with salt. How-
ever, this is not the case because, without an authentication service, there
would be no reason to store the user’s passwords. The only reason a password
is used in the main scheme is to generate trapdoors and the password is never
stored on the server in any way. The only reason to store user credentials on
the server is to authenticate the users before giving them access to making
queries.

In my application, I have created an authentication layer referred to as
the authenticator on top of the Secure Indexes scheme on the server. All
communication between a user and the server passes through the authenti-
cator. The authenticator keeps an SQLite [9] database with user credentials
used for authenticating users. The authenticator also acts as a salt distrib-
utor, used by the user when hashing their password. Before the user can
interact with the server(through the authenticator), they have to be given a
Universal Unique Identifier UUID. This happens after they are logged in or
registered if they are new.

Registration is done in two steps. Step 1 is that the user requests salt
from the authenticator. The authenticator will generate a 16-byte salt value
with a SecureRandom object in java. The generated salt is stored in the
database with the current users userID. The userID of any user is the hash
of the username. As the name suggests, the username will never be shown
to the server, only their identification(’ID’). The salt is then sent back to
the user. Step 2 starts with the user computing their hashed password. The

56

User Authenticator Database

Registration

Figure 5.3: Registration

password-salt combination is hashed with PBKDF2, designed explicitly for
hashing passwords. The hashed password is then sent to the authenticator
with the userID. The authenticator updates the database with the provided
password. The authenticator then generates the UUID for this session and
sends it back to the user. A visual representation of the registration protocol
is displayed in Figure 5.3.

Login looks similar to the registration and is also done in two steps.
Step one starts with the user requesting their salt from the authenticator.
The salt value is not secret, so the user does not need verification to get it.
The authenticator then uses the userID to get the salt value and return it
to the user. Like in step two, during registration, the user computes their
hashed password with the salt and sends it to the server. The authenticator
then checks if the userID and the provided password match an entry in
the database, if so generates a UUID, and sends it to the user. A visual
representation of the login protocol is displayed in Figure 5.4.

57

User Authenticator Database

Login

Figure 5.4: Login

After login or registration, all communication to the server is sent through
the authenticator. The session UUID is attached for each message the user
sends to the authenticator. The server will not process the message if the
UUID does not match the one the user was issued during login/registration.

5.3 Generating keywords

The main factor in how well this application works in practice is the quality
of the keywords for each file. The three main elements that can be searched
for in my application are location, objects in the image, and date/time. As
the application serves as online storage for pictures and videos, I have used
various data points from the files to generate the keywords. The user can
also add custom words to each file for easier searching.

58

The way to obtain information about an image/video is to use a service
to extract metadata from the file. In my application, I use a java library
called metadata-extractor [37].

5.3.1 Location

In many cases, the most natural keyword to search for to find specific images
or videos is location. From the metadata, it is possible to extract the longi-
tude and latitude of where the picture/video was taken. I then used an API
called LocationIQ [4] to retrieve place names for the provided longitude and
latitude. This feature is called reverse geocoding. The ”zoom” level (how
specific the place names should be) can be adjusted in the API call. The dif-
ferent ”zoom levels” can provide country, state, county, city, suburb, street,
or building. Since this information is private to the user, I have chosen to
include as specific location keywords as possible.

5.3.2 Object recognition

As I think an excellent object recognition algorithm can make image search
much more user-friendly, I decided to try to add this to my application. It
did not work quite as well as I hoped; I still think it shows the possibilities
of the feature. This feature unfortunately only works for images.

To get keywords of the images, I use Google Vision AI [11]. This will
analyze the image and return any labels it found. The API gives all labels
it finds a score between 0 - 1, where 0 means that the algorithm is unsure,
and 1 means that the algorithm is confident that the label is correct. I
chose to use all keywords that score more than 0.7 as the ones below I found
too inaccurate. Most of the time, the API produces good keywords, but
sometimes the keywords produced by the API would not be very natural
search words. An example of this can be seen on the next page, by comparing
the two images 5.6 and 5.5 and their labels from the API in the table 5.1

59

Figure 5.5: Example picture 1

Figure 5.6: Example picture 2

60

Keywords 5.5 Scores 5.5 Keywords 5.6 Scores 5.6

Plant 0.9644 Cloud 0.9747
Tree 0.8863 Sky 0.9721
Deer 0.8844 Wheel 0.9665

Natural landscape 0.8803 Vehicle 0.9126
Grass 0.8160 Motor vehicle 0.9107
Fawn 0.8156 Road surface 0.8894

Grassland 0.7971 Asphalt 0.8800
Groundcover 0.7910 Tree 0.8460

Terrestrial animal 0.7842 Electricity 0.8236
Landscape 0.7615 Rolling 0.8215

Table 5.1: Keywords for picture 5.5 works much better as searchwords than
for picture 5.6

5.3.3 Date

The date of the image/video can be found in the metadata. To make search-
ing more convenient for the user, I used the date to create other related
search words. Keywords like ”summer” or ”Sunday” are not listed in the
metadata but can be generated by analyzing the date. I also included year,
month, and day combinations as search words. This makes it possible to
search for images/videos in ”march 2020” or ”17. of may” (Norway’s na-
tional day). This feature can be expanded as much as needed. It would be
easy to add ”morning”, ”afternoon” and ”night” depending on the time of
day for example, or the name of holidays for specific dates.

I added a range search option as an extension to the Date keyword. This
makes it possible to search for all dates between two dates. This can also be
done without specifying the day or month and day. Internally in the appli-
cation, this means to send requests for all dates between the two provided
dates. In the case of searching between two months, you will only need one
request per month between the two provided months.

61

5.3.4 Filename

Searching for the filename of the image/video is probably the most common
way of searching for files. I added support for searching for the full filename
with extension and the filename without the extension. This is a very simple
feature but can be very helpful as searching for the filename is a very common
way of sorting and searching for files.

5.3.5 Custom Keywords

A natural feature for an application like this, where the keywords are gen-
erated automatically per file, is the option to add custom keywords. During
upload, the user has the option to add custom words.

One issue with the feature of custom keywords is that checking for errors
with hash collisions is no longer possible. When the keywords were generated
purely based on the current file, the set of keywords could be recreated after
a search to make sure that the search word was valid for the given file. With
custom keywords, however, there is no way to accurately recreate the set
of keywords, without remembering the exact custom words that were used
during encryption. I don’t think this is a big problem because of the very
low chance of error. The only way to produce a false positive is to encounter
r independent hash collisions at the same time.

5.4 Performance

5.4.1 Precomputation

As I’m using the free version of both APIs described earlier, the number of
allowed queries per second is low. In the google vision AI API, I’m limited
to 1000 requests per month but the speed is good. The free version of Lo-
cationIQ claims to handle 2 requests per second but I encountered problems
unless I waited for one full second between requests. The API calls add one

62

full second of extra computation time per file uploaded. Since the speed of
the API calls depends on how much money you are willing to spend on the
API services, I added the possibility of storing the result of the API calls
locally to avoid having to wait for the APIs each time. This, however, is not
a very good solution if the application were to be used in a real-world sce-
nario. This is because requiring the user to store information locally defeats
the purpose of uploading it to the cloud. However, it could be a useful extra
feature in the right circumstances, like in this project for example.

5.4.2 Search

Since each file has its own index that has to be checked during a search
operation, the search time scales linearly with the number of files in the
system. The number of operations needed for each search is the same as the r
number(number of subkeys) of the system. Checking a single codeword in the
index of a single file consists of calculating a hash and performing a hashtable
lookup(hashtable lookups are a constant time operation). Checking for a
single codeword is therefore a constant time operation. The full search time
is then O(n× r).

5.5 Future Work

5.5.1 Better keywords

As mentioned earlier in the thesis, a lot of the application’s usefulness relies
on the quality of the keywords. If the user cannot guess/remember the key-
words for the file they want, the service does not serve its intended purpose.
The process of generating better keywords starts by understanding what the
application should be used for. If the application is for teachers to store their
recorded lectures, find a way to extract the subject and topics of the video.
The date and location would also be great keywords in this setting.

63

5.5.2 Support for more metadata formats

As mentioned in the ”Generating keywords” section, there are several formats
for structuring metadata. This is because different file types can store dif-
ferent types and amounts of metadata. With the method of handpicking out
the different parts of information, I need from the metadata, adding support
for more formats is very cumbersome. I have not looked into more efficient
ways of extracting metadata, but I am sure there are better methods.

5.5.3 Data transmission protocols

As the application is not meant to be deployed on an actual server, the
communication between a user and the server happens internally, like sending
objects between classes. Although protocols would look very similar, the
information would have to be sent through streams, and there would need
to be implemented ways to make sure the correct data is received without
errors. This also means implementing a system to resend information that
is not received correctly.

5.5.4 Forgot password feature

In its current state, the only way to connect to your account is with your
username and password. If you forget or lose your password, there is no
way of retrieving or changing it. This is especially devastating because you
lose access to the files stored on the account. One way to solve this is to
add support for alternative authentications methods. This would allow the
user to authenticate themselves with other credentials than the username
and password, making it possible to retrieve or reset one’s password. If we
add the possibility of chaining a user’s password, we would either have to
change the current direct connection between the user’s password and their
private key or download and re-encrypt every file with the new private key
after changing passwords.

64

Chapter 6

Conclusion

The first goal of this thesis was to provide an implementation for the two
SSE schemes by Song et al. [41] and Goh [25], and test their performance. In
Chapters 3 and 4, I discuss various implementation decisions made through-
out the project and the reasoning behind them. This could be a valuable
resource for anyone wanting to implement similar schemes in Java.

By comparing the tests performed on the implementations, we can draw
the simple conclusion that the Secure Index scheme is significantly faster than
Song et als. scheme. Storage space requirements however are substantially
higher in the secure indexes scheme. We can tell from the tests that an
important factor in the storage space requirements, is the size of the variable
u. The amount of security provided by increasing u is not analyzed in this
thesis and might be an interesting topic of research in the future.

The second goal of the thesis was to propose a working example of an
application running SSE as the main encryption scheme. This was to show
some of the positive features of Secure Indexes, and to demonstrate some of
the limitations of the scheme.

65

Bibliography

[1] CryptDB. https://css.csail.mit.edu/cryptdb/.

[2] Intel Core i58350U Processor 6M Cache up to
3.60 GHz Product Specifications. https://ark.

intel.com/content/www/us/en/ark/products/124969/

intel-core-i58350u-processor-6m-cache-up-to-3-60-ghz.html.

[3] Java securerandom algorithms. https://docs.oracle.com/

javase/10/docs/specs/security/standard-names.html#:~:text=

Example%3A%0APBKDF2WithHmacSHA256.-,SecureRandom%20Number%

20Generation%20Algorithms,-The%20algorithm%20names. (Ac-
cessed on 05/21/2022).

[4] LocationIQ - Free & Fast Geocoding, Reverse Geocoding and Maps
service. https://locationiq.com/geocoding.

[5] Nativeprng - github. https://github.com/frohoff/jdk8u-jdk/

blob/master/src/solaris/classes/sun/security/provider/

NativePRNG.java.

[6] Openssl - cryptography and ssl/tls toolkit. https://www.openssl.

org/. (Accessed on 05/21/2022).

[7] Password storage - owasp cheat sheet series. https:

//cheatsheetseries.owasp.org/cheatsheets/Password_Storage_

Cheat_Sheet.html. (Accessed on 04/13/2022).

[8] The sonnets. https://ocw.mit.edu/ans7870/6/6.006/s08/

lecturenotes/files/t8.shakespeare.txt.

66

https://css.csail.mit.edu/cryptdb/
https://ark.intel.com/content/www/us/en/ark/products/124969/intel-core-i58350u-processor-6m-cache-up-to-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124969/intel-core-i58350u-processor-6m-cache-up-to-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124969/intel-core-i58350u-processor-6m-cache-up-to-3-60-ghz.html
https://docs.oracle.com/javase/10/docs/specs/security/standard-names.html#:~:text=Example%3A%0APBKDF2WithHmacSHA256.-,SecureRandom%20Number%20Generation%20Algorithms,-The%20algorithm%20names
https://docs.oracle.com/javase/10/docs/specs/security/standard-names.html#:~:text=Example%3A%0APBKDF2WithHmacSHA256.-,SecureRandom%20Number%20Generation%20Algorithms,-The%20algorithm%20names
https://docs.oracle.com/javase/10/docs/specs/security/standard-names.html#:~:text=Example%3A%0APBKDF2WithHmacSHA256.-,SecureRandom%20Number%20Generation%20Algorithms,-The%20algorithm%20names
https://docs.oracle.com/javase/10/docs/specs/security/standard-names.html#:~:text=Example%3A%0APBKDF2WithHmacSHA256.-,SecureRandom%20Number%20Generation%20Algorithms,-The%20algorithm%20names
https://locationiq.com/geocoding
https://github.com/frohoff/jdk8u-jdk/blob/master/src/solaris/classes/sun/security/provider/NativePRNG.java
https://github.com/frohoff/jdk8u-jdk/blob/master/src/solaris/classes/sun/security/provider/NativePRNG.java
https://github.com/frohoff/jdk8u-jdk/blob/master/src/solaris/classes/sun/security/provider/NativePRNG.java
https://www.openssl.org/
https://www.openssl.org/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt

[9] SQLite Home Page. https://www.sqlite.org/index.html.

[10] Trivium performance test source code. https://github.com/kni034/

Trivium-performance-test. (Accessed on 05/21/2022).

[11] Vision AI | Derive Image Insights via ML | Cloud Vision API. https:

//cloud.google.com/vision.

[12] Announcing the Advanced Encryption Standard (AES). 2001.

[13] Michael Adjedj, Julien Bringer, Hervé Chabanne, and Bruno Kindarji.
Biometric identification over encrypted data made feasible. In Infor-
mation Systems Security, Lecture Notes in Computer Science, pages
86–100. Springer Berlin Heidelberg, Berlin, Heidelberg.

[14] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe
Persiano. Public key encryption with keyword search. In Advances in
Cryptology - EUROCRYPT 2004, Lecture Notes in Computer Science,
pages 506–522, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[15] J Bringer, H Chabanne, and B Kindarji. Error-tolerant searchable en-
cryption. In 2009 IEEE International Conference on Communications,
pages 1–6. IEEE, 2009.

[16] Christophe De Canniere and Bart Preneel. Trivium specifications. eS-
TREAM, ECRYPT Stream Cipher Project, 2005.

[17] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-
preserving multi-keyword ranked search over encrypted cloud data.
IEEE transactions on parallel and distributed systems, 25(1):222–233,
2014.

[18] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,
Marcel-Cătălin Roşu, and Michael Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances in
Cryptology – CRYPTO 2013, volume 8042 of Lecture Notes in Computer
Science, pages 353–373. Springer Berlin Heidelberg, Berlin, Heidelberg.

[19] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption
for semi-honest-but-curious cloud servers. In 2012 IEEE International
Conference on Communications (ICC), pages 917–922. IEEE, 2012.

67

https://www.sqlite.org/index.html
https://github.com/kni034/Trivium-performance-test
https://github.com/kni034/Trivium-performance-test
https://cloud.google.com/vision
https://cloud.google.com/vision

[20] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and efficient
constructions. In Conference on Computer and Communications Secu-
rity: Proceedings of the 13th ACM conference on Computer and commu-
nications security; 30 Oct.-03 Nov. 2006, CCS ’06, pages 79–88. ACM,
2006.

[21] Quynh Dang. Secure hash standard (shs), 2012-03-06 2012.

[22] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, November
1976.

[23] Morris Dworkin. Recommendation for block cipher modes of operation
methods and techniques, 2001-12-01 2001.

[24] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel
Rosu, and Michael Steiner. Rich queries on encrypted data: Beyond
exact matches. Cryptology ePrint Archive, Report 2015/927, 2015.
https://ia.cr/2015/927.

[25] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report
2003/216, 2003. http://eprint.iacr.org/2003/216/.

[26] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive
keyword search over encrypted data. In Applied Cryptography and Net-
work Security, Lecture Notes in Computer Science, pages 31–45, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[27] Russ Housley. Cryptographic Message Syntax (CMS). RFC 5652,
September 2009.

[28] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic
searchable symmetric encryption. In Financial Cryptography and Data
Security, Lecture Notes in Computer Science, pages 258–274. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[29] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric
encryption. In Financial Cryptography and Data Security, Lecture Notes
in Computer Science, pages 285–298. Springer Berlin Heidelberg, Berlin,
Heidelberg.

68

https://ia.cr/2015/927
http://eprint.iacr.org/2003/216/

[30] Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. Ef-
ficient similarity search over encrypted data. In 2012 IEEE 28th Inter-
national Conference on Data Engineering, pages 1156–1167, 2012.

[31] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.
Dynamic authenticated index structures for outsourced databases. In
International Conference on Management of Data: Proceedings of the
2006 ACM SIGMOD international conference on Management of data;
27-29 June 2006, SIGMOD ’06, pages 121–132. ACM, 2006.

[32] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou.
Fuzzy keyword search over encrypted data in cloud computing. In 2010
Proceedings IEEE INFOCOM, pages 1–5. IEEE, 2010.

[33] P.P Liesdonk, van, S Sedghi, J.M Doumen, P.H Hartel, W Jonker, and
M Petkovic. Computationally efficient searchable symmetric encryp-
tion. In Lecture notes in computer science, Lecture Notes in Computer
Science, pages 87–100. Springer, Berlin, Heidelberg, 2010.

[34] Keith Martin. Everyday Cryptography: Fundamental Principles & Ap-
plications. Oxford University Press, 2nd edition, June 2017.

[35] RALPH CHARLES MERKLE. Secrecy, authentication, and public key
systems, 1979.

[36] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. PKCS #5:
Password-Based Cryptography Specification Version 2.1. RFC 8018,
January 2017.

[37] Drew Noakes. drewnoakes/metadata-extractor. https://github.com/

drewnoakes/metadata-extractor, May 2022. original-date: 2014-11-
19T00:13:55Z.

[38] Dong Jin Park, Kihyun Kim, and Pil Joong Lee. Public key encryption
with conjunctive field keyword search. In Information Security Applica-
tions, Lecture Notes in Computer Science, pages 73–86. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[39] Geong Sen Poh, Ji jian Chin, Wei chuen Yau, Kim kwang Ray-
mond Choo, and Moesfa Soeheila Mohamad. Searchable symmetric

69

https://github.com/drewnoakes/metadata-extractor
https://github.com/drewnoakes/metadata-extractor

encryption: Designs and challenges. ACM Computing Surveys, 50(3),
2017.

[40] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978.

[41] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical
techniques for searches on encrypted data. 2000.

[42] William Stallings. Computer security : principles and practice, 2018.

[43] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical
dynamic searchable encryption with small leakage. IACR Cryptology
ePrint Archive, 2013:832, 2013.

[44] Yunling Wang, Jianfeng Wang, and Xiaofeng Chen. Secure searchable
encryption: a survey. Journal of communications and information net-
works, 1(4):52–65, 2017.

[45] Zhihua Xia, Xinhui Wang, Xingming Sun, and Qian Wang. A secure
and dynamic multi-keyword ranked search scheme over encrypted cloud
data. IEEE transactions on parallel and distributed systems, 27(2):340–
352, 2016.

[46] Sergej Zerr, Daniel Olmedilla, Wolfgang Nejdl, and Wolf Siberski. Zerber
+r: top-k retrieval from a confidential index. In Proceedings of the 12th
International Conference on extending database technology, EDBT ’09,
pages 439–449. ACM, 2009.

[47] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. Vabks: Verifi-
able attribute-based keyword search over outsourced encrypted data. In
IEEE INFOCOM 2014 - IEEE Conference on Computer Communica-
tions, pages 522–530. IEEE, 2014.

70

	Introduction
	Background on Searchable Encryption
	Searchable symmetric encryption
	Searchable asymmetric encryption

	Development of Searchable Symmetric Encryption
	Single keyword search
	Fuzzy keyword search
	Conjunctive keyword search
	Ranked keyword search
	Verifiable keyword search

	Project Summary

	Theoretical Background
	Cryptography
	Block Cipher
	AES
	Modes of Operation
	ECB
	CBC
	Padding

	Stream Cipher
	Trivium

	Hash functions
	SHA-512
	HMAC
	Hash collisions
	Bloom filter
	Password hashing

	Practical Techniques for Searches on Encrypted Data
	Scheme Overview
	Scheme I - The Basic Scheme
	Scheme II - Controlled Searching
	Scheme III - Support for Hidden Searches
	Scheme IV - The Final Scheme

	Scheme Features
	Main Features
	Extra Features

	Implementation Specifications
	Performance Analysis

	Secure Indexes
	Scheme Overview
	Key Generation
	Trapdoor Construction
	Index Construction
	Search

	Features of Secure Index
	Efficient Update

	Implementation Specifications
	Performance Analysis

	Cloud storage application with SSE for images and videos
	Motivation
	Authentication
	Generating keywords
	Location
	Object recognition
	Date
	Filename
	Custom Keywords

	Performance
	Precomputation
	Search

	Future Work
	Better keywords
	Support for more metadata formats
	Data transmission protocols
	Forgot password feature

	Conclusion

