
University of Bergen
Department of Informatics

Automating User Interfaces for a
Multi-way Dataflow Constraint

System

Author: Karl Henrik Elg Barlinn
Supervisors: Jaakko Järvi, Mikhail Barash

May, 2022

Abstract

A scriptable User Interface (UI) can be set to record the user’s actions into a script,
and then play that recorded script back over different data. The purpose is to automate
oft-occurring use patterns. Though such automation is useful, especially for advanced
users of particular software systems, scriptable UIs are not common. We conjecture that
the implementation cost of such features is too high for them to become common.

The project develops a generic approach for scripting where this feature could be
packaged into a library, to be reused by different UIs. In this approach, the effort needed
to implement scripting is considerably reduced.

The context for this thesis is the use of multi-way dataflow constraint systems in
Graphical User Interface (GUI) programming. Such systems can represent the state
of a GUI in a concise and well-structured manner. These state representations can be
inspected and manipulated programmatically, which is what we exploit for generic script-
ing too. Concretely, we build scripting support for the HotDrink GUI framework that is
based on multi-way dataflow constraint systems and provides a mechanism for structural
manipulation of GUI elements.

Acknowledgements

I would like to thank my supervisors, Jaakko Järvi and Mikhail Barash, for their invalu-
able feedback and discussions.

Secondly, I would also like to thank my fellow students and friends without who
writing this thesis would have been a lot less interesting, but perhaps more efficient.

Finally, I extend my sincere thanks to my family who has been supportive and gen-
uinely curious about my work with this thesis.

Karl Henrik Elg Barlinn
Tuesday 31st May, 2022

Contents

1 Introduction 1

2 Background 4
2.1 Scripting Languages . 4

2.1.1 Automating User Interfaces . 5
2.2 Model–View–View-Model Pattern . 6
2.3 Multi-way Dataflow Constraint Systems 7

2.3.1 HotDrink Framework . 8
2.3.2 Binding the View and View-model in HotDrink 10
2.3.3 Asynchronous Methods . 11

3 HDScript: Scripting in Graphical User Interfaces 12
3.1 Image Resize Application . 13
3.2 Spreadsheet Application . 15

4 Implementing HDScript 17
4.1 Action Recorder . 20

4.1.1 Automatically Starting the System Recorder 21
4.2 HDScript DSL . 22
4.3 Script Actions Types . 23

4.3.1 Assignment Actions . 23
4.3.2 Modification Actions . 24
4.3.3 Linking Action . 25
4.3.4 Schedule Command Action . 26
4.3.5 Component Actions . 26

4.4 Recognizing User’s Intent . 27
4.5 Dynamic Constraint Systems . 30

4.5.1 Guidelines for a Scriptable Dynamic Constraint System 31
4.5.2 Custom Actions . 32

i

4.5.3 Other Attempted Solutions . 33
4.5.4 Example of a Dynamic Constraint system 34

5 Related Work 37
5.1 Scriptable GUIs . 37

5.1.1 GNU Image Manipulation Program 37
5.1.2 Microsoft Word and Excel . 40
5.1.3 Adobe Suite . 42
5.1.4 SAP GUI Scripting . 44

5.2 External Automation . 46
5.2.1 Selenium . 46
5.2.2 AppleScript . 48

5.3 Summary . 48

6 Evaluation 50
6.1 HotDrink-less Image Resize Application 50
6.2 Comparison . 52

7 Conclusion and Future Work 54

Glossary 57

Bibliography 58

A Formal HDScript DSL Syntax 63

ii

List of Figures

2.1 How the different parts of Model–View–View-Model (MVVM) interacts
with each other. 7

2.2 Graph view corresponding to Listing 2.1. The variables celsius and
fahrenheit are represented as c and f, respectively. Circles are vari-
ables, rounded boxes are methods, the dashed box is a constraint, and the
solid box is a component. 9

2.3 Graph view over which methods are activated (i.e. non-greyed out el-
ements) when calculating the initial state of Listing 2.2. The variables
celsius, fahrenheit and kelvin are represented as c, f, and k, respec-
tively. The optional component name is omitted. 10

2.4 Binding between the view on the left and view-model on the right. 10

3.1 The image resize application after running the script specified in the text
area at the lower left pane of the page. 13

3.2 The image resize with the intent dialogue box active. The change made
by the user was updating the absolute height of the image from 550 to 750. 14

3.3 The spreadsheet application with interaction buttons. 15
3.4 The spreadsheet application with functions shown. The functions are dis-

played when there are no values in the referenced cell. 15
3.5 The spreadsheet from Figure 3.4 where the value 10 was assigned to cell

(0,1). 15
3.6 The spreadsheet from Figure 3.4 with new cells created by two custom

actions. The function in cell (0,1) is now =3,3 * 2. 16

4.1 A high-level visualisation of how actions are created in HDScript. 18
4.2 Overview of HDScript and its different subsystems (rectangles with

rounded corners) are connected with each other, HotDrink, and the view. 19
4.3 The relationship between binding the view on the left and the view-model

on the right. 20

iii

4.4 Variable and variable references in the constraint system (a) before and (b)
after running the script in Listing 4.4. Dashed boxes are variables, while
the solid boxes are variable references. 25

5.1 Script-Fu dialogue box to select background colour to remove. 39
5.2 Result of running the script from Listing 5.1. 39
5.3 Action recorder from Office Script in Microsoft Excel [5]. 41
5.4 Example of executing a VBA macro triggered by a graphical button click [29]. 41
5.5 Create new Photoshop Action dialogue [30]. 43
5.6 Built-in Scripting Utilities in SAP GUI [22]. 45
5.7 The Selenium IDE with a test to search for HotDrink in the University of

Bergen Library. 47

6.1 The HotDrink-less image resize evaluation application is visually similar
to the version with HotDrink described in Section 3.1. 51

iv

List of Tables

4.1 Every modification action possible. 24

v

Listings

2.1 Temperature converter component between Celsius and Fahrenheit imple-
mented in HotDrink. 9

2.2 Temperature converter component between Celsius, Fahrenheit, and Kelvin
implemented in HotDrink. 9

2.3 Schedule command counter example with a HTML view [32]. 11
3.1 Example of using custom actions. 16
4.1 Validation of a script. 23
4.2 Example of assignment actions as Domain Specific Language (DSL) state-

ments. 23
4.3 Examples of modification actions as DSL statements. 25
4.4 Example of linking action as DSL statements. 25
4.5 Example of adding then removing a component. 27
4.6 Changing a variable value from four to a constant value sixteen. 28
4.7 Register custom actions and setup listeners to perform the custom actions. 35
4.8 An example dynamic component in the spreadsheet application. Variable

v0 0 holds the value of the cell found in the first row, first column, and
v1 1 does the same for the cell found in the second row, second column. . 35

4.9 The context component of the spreadsheet application after initialization
for a 3×3 spreadsheet. 36

5.1 A Script-Fu script that replaces the background of an image with trans-
parent color, and then auto-crops the image to remove excess borders. . . 38

5.2 An example of Photoshop Scripting in JavaScript which demonstrates how
to set the active document [17]. 42

5.3 A script for counting the number files in the Applications folder [23]. . . 48
6.1 Generic record and replay functionality without HDScript. 52
6.2 Using the generic record function from Listing 6.1 to record an action in

the HotDrink-less image resize application. 52
6.3 A modification action that doubles the width of the image of the evaluation

application. 53

vi

7.1 Potential syntax to manipulate methods. The «method» expression should
define input and output variables of the method, together with its actual
function. The syntax for «method» could be borrowed from HotDrink’s
DSL e.g., (a -> b) => a * 2. 55

7.2 Suggested syntax to remove a constraint. 55
7.3 Suggested syntax to add and remove variables in a component. 56
A.1 Formal syntax of HDScript’s DSL in EBNF. 63

vii

Chapter 1

Introduction

When performing the same action repeatedly, one begins to see patterns in the expected
outcome. We are, in a sense, following a series of steps to produce a result from a set of
inputs. In other words, we are following an informal algorithm. Such repetition of the
same steps becomes tedious quite quickly, and we start thinking of ways to automate
our algorithm. This process applies to all aspects of life, and can be seen a driving force
behind many inventions. For instance, before computers, the grocer had to manually
calculate the total cost of an order for each item purchased at the convenience store;
while today this process is automated by scanning a machine-readable code on each item
and letting the computer do the calculation.

The demand to automate our lives extends to our every-day interaction with com-
puters as well. While in the past we interacted with computers using command line
interfaces, today we do most of our interaction with Graphical User Interfaces (GUIs).
Thus, we, the users, often wish to automate repetitive interactions within these GUIs.
However, developers might not necessarily want to invest in GUI automation due to the
effort it requires. Implementing automation from scratch will add another layer of com-
plexity over often already complex GUI code, and increases the amount of code that
will need maintenance in the future. For any reasonable developer to implement GUI
automation, the benefit must outweigh these costs. While this calculation must be done
on a per-application basis, the cost of having GUI automation can generally be lowered
by using a framework compared to creating automation from scratch.

Conveniently, modern GUIs are usually created with the help of frameworks. Devel-
opers must in many frameworks manually handle the relationship between the different

1

elements in a GUI. These relationships can be very complex; GUI elements can interact
with each other in non-trivial ways. One study found around one third of all GUI code
exists simply to validate the user’s actions and handle dependencies between elements [40].

HotDrink [35] is a framework which aims to simplify the dependency management
of GUI elements with multi-way dataflow constraint systems. When using the HotDrink
framework, dependencies between elements of the GUI are explicitly defined in con-
straints. These constraints exist within a constraint system, which a constraint solver
will uphold to the best of its ability. The formalizing of relationships between elements
frees GUI developers from writing the aforementioned validation code.

However, a shortcoming of HotDrink (and most other frameworks) is its lack of sup-
port for GUI automation. The goal of this thesis is to extend the existing HotDrink
framework with GUI automation capabilities; the extension is called HDScript.

We created GUI automation similarly to how many other standalone GUI automations
have been created; that is, by recording the user’s actions and by writing scripts. GUI
automation scripts are composed of instructions that the GUI interprets and executes. A
disadvantage of manually writing scripts is that they require the user to be able to write
them in a scripting language. Some automation suites will therefore record what the user
does within the GUI, and then create a script from these recorded actions. However,
blindly recording exactly what the user does might cause the context of an action to be
lost.

The context is of great importance when trying to understand the intent behind an
action. For instance, if a user were to double the size of an image, the old size is the context
of the action, and it is needed to understand why the new size was given. Without the
context, it would be impossible to understand why the user gave exactly the new size of
the image. We show that in order to create an accurate automation workflow by recording
the user’s actions, we must capture the essence of the context by asking the user for their
intent behind each action. Thus, even users without any programming experience can
accurately express their informal algorithms. In all, this thesis demonstrates that GUI
automation, script recording, editing, and playback can be implemented with only a very
small development effort per GUI, by having GUI automation built into the HotDrink
framework.

To give an introductory example of GUI automation, consider a GUI for modifying
the dimensions of an image and a user who needs to resize a collection of images using this
GUI. The user’s informal algorithm is as follows: first, set the width of the image to double

2

of its current value. Then, set the height of the image to the new width of the image.
For instance, applying the algorithm to an image with the dimension of 480×240 pixels
will result in an image with the dimensions 960×960 pixels. If there are only a couple
of images to resize, the algorithm can be performed manually using the GUI. However,
this becomes infeasible when the number of images to resize increases significantly, for
example, to thousands. It is at this scale that automation becomes appealing. Once an
automation workflow has been created, the number of times it must run is insignificant,
as it is the computer that does all the tedious work.

The structure of this thesis is as follows. In Chapter 2, we give a detailed background
for and context of the thesis, focusing on multi-way dataflow constraint systems and
scriptable Graphical User Interfaces. Chapter 3 gives two motivational examples. In
Chapter 4, we detail the implementation of HDScript developed in this work and describe
problems faced in the implementation. This chapter also discusses how to recognize the
user’s intent, and some implementation details related to the user’s intent. Next, we give
an overview of existing and related works in Chapter 5. In Chapter 6, we evaluate HD-
Script by comparing an application created with the framework to an application with
an identical feature set created without any external frameworks. Finally, in Chapter 7,
we give a conclusion of the thesis and a glance at possible future work.

3

Chapter 2

Background

2.1 Scripting Languages

A scripting programming language behaves like an interpreted language. In interpreted
languages, an interpreter reads the source code1, at runtime, statement by statement and
executes them directly. Many scripting language emphasize development convenience
over execution speed. This makes them easier to use for those new to programming and
those whose primary job is not programming, as they do not need detailed knowledge of
the underlying system. Development within scripting languages is usually more laid-back
than compiled languages such as C++ and Java. For instance, in the scripting language
PHP one does not need to explicitly declare that a variable exists, instead variables
are declared when they are first used [16]. Another distinguishing feature of scripting
languages is the fact that the data type of a variable can change simply by assigning a
value with a different type to it, such as in Python [20].

There are three primary uses for scripting languages, identified in the book The World
of Scripting Languages [31].

Glue Applications Scripting to create glue applications by combining (or glueing) off-
the-shelf components into a new application using a glue language. These glue languages
are often general-propose scripting languages, while the components glued together can be
written in compiled languages. Glue applications might be created for rapid prototyping

1A script is a program written in a scripting language.

4

or as the final product. The vital characteristic is the adaptation of the application to
changing user requirements, for instance, using shell scripting to create new commands2.

To Control Programs Scripting to control an existing program programmatically via
an Application Programming Interface (API) or by manipulating the program objects
directly. With this kind of control, a user can automate repetitive tasks, customise the
behaviour, and optimise the user experience. Programmatically controlling an application
can be seen as a specialised glue application, as there are existing components (i.e., the
application) and a glue language to tie them together. However, the difference lies in how
no new features are created. Everything the API can do is already accessible to the user
via the GUI. For instance, Selenium [25] can be used to programmatically interact with
any webpage.

General Purpose Programming Due to the plenitude of features and ease of use, it
might be easier to develop specific programs in a general-purpose scripting programming
language than in a compiled language. Developing an application in a scripting language
is particularly desired when the script developer’s time is more important than execution
speed. Interacting with the underlying operating system to do administrative tasks is a
prime example of such a case. Examples of generic scripting languages are Python [19],
Lua [12], ECMAScript [4] among others.

2.1.1 Automating User Interfaces

Many applications are only intended to be used by a human user through a GUI. Regard-
less, one often wishes to be able to automate, and write scripts, for such applications too.
External automation tools, i.e., software robots, may help in these situations. They work
the same way a regular human user would interact with an application, such as using,
or emulating, a mouse and keyboard. These external automation tools have the same
features as applications with built-in scripting capabilities. However, they often lack the
ability to view or make sense of the internal structure of the program they are automat-
ing. A common strategy to circumvent this is to use the GUI structure (e.g., HTML
Document Object Model) itself to navigate the application. Relying on the layout of an
application is fragile, however, as the visual look and feel could change without warning;

2As an example, to count the number of words in the PDF input.pdf would be pdftosrc input.pdf
- | wc -w. In this example, pdftosrc and wc are written in compiled languages.

5

for example, the screen dimension and size may affect the layout. Often these types of
automation are also version-dependent, as it is often the case GUIs change version to
version. It should be noted that the problem of version dependency is not exclusive to
external automation tools. For example, the SAP GUI Scripting automation interface [22]
(which has internal scripting capabilities) is unable to play scripts written for an older
version of the software [33]. The underlying problem is the reliance on the user interface’s
visual structure.

In contrast to external automation, i.e., applications that can only automate other
programs, there are programs that have ingrained scripting capabilities. Automation of
these programs is not limited to what the user can see and do in the GUI. Instead, it
can leverage an internal API of a program, which increases the ease of use, efficiency,
and coverage. To differentiate between the above two kinds of programmatic control of
applications, we say an application with built-in scripting support has internal scripting
capabilities, and programs that help automate other programs have wraparound scripting
capabilities.

While it is possible for each application to add its own unique flavour of scripting
internally, it would be very wasteful, in terms of programming work, to “reinvent the
wheel” that way. Such a scripting feature is demanding to implement correctly and
laborious to keep up to date as the application evolves. A more sustainable solution is
to move the scripting away from the visual layer of the application and into the logical
layer. Preferably, this should be done generically in a framework to facilitate scripting
in multiple applications. More concretely, scripting should be implemented at the view-
model level and not at the view level.

2.2 Model–View–View-Model Pattern

The Model–View–View-Model (MVVM) pattern [37] divides GUIs into three distinct
parts: model, view, and view-model, showcased in Figure 2.1. The view is what the user
sees and interacts with, e.g., buttons, input fields, keyboard shortcuts, graphics, and other
controls over the GUI. The model controls the application’s business logic, which can be
complex parsing of the data sent by the user, or it can be as simple as writing what it
receives into a database. The model is often written in a different programming language
and unaware of the GUI. The view is only responsible for the interface, and the model
is only responsible for the business logic. Thus, the view should not be doing complex

6

View-modelView Model

Data bindings
and commands

Updates

Updates

Notifies

Figure 2.1: How the different parts of MVVM interacts with each other.

calculations, and the model should not handle the interface. Instead, a third layer will be
the middleman, called the view-model. The view-model layer acts as an adapter between
the view and the model—translating what the view is showing into data the model can
understand and handling view states such as disabled elements and selection [37].

2.3 Multi-way Dataflow Constraint Systems

The dataflow of an application describes how the values flow between variables. A
variable holds a value which may change during execution. Consider a method which,
when executed, sets the value of a variable to double the value of another variable, e.g.,
f := c * 2. We say the value of f flows from the value of c. When we add another
method, c := f / 2, the relationship between f and c is expressed comprehensively.
The two methods together with the f and c variables are called a constraint. A con-
straint enforces the relationships between variables with a non-empty set of methods and
the variables to enforce. Each method assign new values to a subset of the constraint’s
variables, such that the constraint becomes satisfied. All methods in a constraint must
use all the variables of the constraint as either input or output [35]. That is to say, a
method is a function that takes some of its constraint’s variables and returns a separate
set of the constraint’s variables. Constraints are a part of a constraint system, which is a
tuple of a variable set and constraint set. The constraint system uses a constraint solver
to keep the constraints satisfied when the system’s variables are assigned new values from
outside the system. Some older implementations of constraint solvers [36] only allow one-
way constraints, i.e., exactly one method per constraint [41]. When there are multiple
methods in a constraint, we say the constraint system is multi-way.

As an example, the statement f = c * 2 can be considered as a dataflow constraint.
The constraint consists of the variables f and c, and the methods f := 2 * c and
c := f / 2. Consider the (unsatisfied) constraint f = 2 * c with the variables f = 10

7

and c = 0. The constraint solver may execute either of the constraint’s methods to sat-
isfy the constraint system. As an example, assume the c := f / 2 method is arbitrarily
chosen. The method calculates the variable c to be 5 (c := 10 / 2). The constraint is
now considered satisfied, or enforced.

2.3.1 HotDrink Framework

This thesis builds on the HotDrink [39] framework, which is a multi-way dataflow con-
straint system [35]. In HotDrink’s representation of constraint systems, the top-most
structure is called a component. Components have one or more variables and zero or
more constraints. These components hold all possible variables a constraint within it can
use. Constraints in HotDrink denote implicitly in each method signature which variables
it uses.

To provide more flexibility in constructing constraint systems, HotDrink deviates
from the idealistic description of a multi-way dataflow constraint system above by adding
variable references. In HotDrink, a component does not directly hold variables but rather
variable references. These variable references might reference a variable. If they do not
reference a variable, they are called dangling variable references. A dangling variable
reference can be linked to the variable of another reference variable. In so doing, the
variable reference will no longer be dangling. The separation of variables and variable
references is needed to allow components to reference a variable in a different component.

We give an example of a constraint system, in Listing 2.1, to showcase HotDrink. The
purpose of this constraint system is to convert temperature values between Fahrenheit
and Celsius. Without going into too much detail, we can observe the component defined
in Listing 2.1 has two variables, celsius and fahrenheit, and a single constraint with
two methods c2f and f2c. The first method convert Celsius into Fahrenheit, while the
second does the inverse, converting Fahrenheit into Celsius. The resulting component is
visualized in Figure 2.2.

8

1 component my_component {
2 var celsius , fahrenheit ;
3 constraint my_constraint {
4 c2f(celsius -> fahrenheit) => celsius * (9 / 5) + 32;
5 f2c(fahrenheit -> celsius) => (fahrenheit - 32) * (5 / 9);
6 }
7 }

Listing 2.1: Temperature converter component between Celsius and Fahrenheit
implemented in HotDrink.

f2c

c2f

my_constraint

c f

my_component

Figure 2.2: Graph view corresponding to Listing 2.1. The variables celsius and
fahrenheit are represented as c and f, respectively. Circles are variables, rounded
boxes are methods, the dashed box is a constraint, and the solid box is a component.

Listing 2.2 extends the above example with a new constraint (line 7 onward) which
will convert temperatures between Kelvin and Celsius. There is no need to explicitly
convert between Fahrenheit and Kelvin, as a change to one of the variables will cause the
other variable to be updated indirectly by the celsius constraints. In Listing 2.2 the
celsius variable is given the initial value 100. This will cause the system to be solved
during the initial loading, which will update fahrenheit and kelvin to their correct
values with regard to celsius. Since celsius is assigned a value, the solver selects
methods that do not overwrite this value. As can be observed in Figure 2.3, the c2f and
c2k methods will be selected for execution.

1 var celsius = 100, fahrenheit , kelvin ;
2
3 constraint f_and_c {
4 c2f(celsius -> fahrenheit) => celsius * (9/5) + 32;
5 f2c(fahrenheit -> celsius) => (fahrenheit - 32) * (5/9);
6 }
7 constraint c_and_k {
8 c2k(celsius -> kelvin) => 273.15 + celsius ;
9 k2c(kelvin -> celsius) => kelvin - 273.15;

10 }

Listing 2.2: Temperature converter component between Celsius, Fahrenheit, and Kelvin
implemented in HotDrink.

9

f2c

c2f

f_and_c

c f

c2k

k2c

c_and_k

k

Figure 2.3: Graph view over which methods are activated (i.e. non-greyed out elements)
when calculating the initial state of Listing 2.2. The variables celsius, fahrenheit and
kelvin are represented as c, f, and k, respectively. The optional component name is
omitted.

2.3.2 Binding the View and View-model in HotDrink

HotDrink fills the view-model role [35] in MVVM. The view and HotDrink interact with
each other via binders. Each binder is an arrow pair between the view and view-model
in Figure 2.1. The binding is shown in more detail in Figure 2.4. The view notifies the
binder of user events (i.e., user-entered values), which in turn updates the corresponding
HotDrink variable. If a variable in HotDrink is updated (though never if the binder
updated it), HotDrink will send an event to the binder, and then the binder will update
the view.

The binder concept allows for views to be interchangeable. A view only needs to send
changes to the binder and update the relevant widgets once an update is received from
the binder.

BinderGUI HotDrink

Event

Update

Update

Event

Figure 2.4: Binding between the view on the left and view-model on the right.

10

2.3.3 Asynchronous Methods

HotDrink’s methods are executed asynchronously, so that the system can accept new re-
quests for updating its variables, while it is being solved. HotDrink ensures that methods
are executed in a consistent order. This also means that HotDrink variables cannot be
directly assigned to from outside; there is a special API function, schedule command,
for requesting such changes to variables’ values. By scheduling a command, the view is
essentially using a one-shot binder to do work in the view-model. In order for the view
to update multiple variables at the same time or when the (correct) current value of a
variable is needed to update a variable, it must be done by scheduling a command.

Consider a GUI with a single button, such as the one given in Listing 2.3. When the
button is clicked, a counter will increase by one after some arbitrary time. Now consider
a user clicking the button multiple times and very quickly. If the counter took the current
value of the variable when it was clicked, the new value might be wrong because multiple
clicks could occur before the variable had time to be updated. A solution to this is using
a schedule command that takes the counter variable both as an input and an output. By
deferring the value lookup to when the command is being executed, we can be sure of
the correctness of the program.

1 const system = new ConstraintSystem ();
2 const comp = component (["var count = 0;"]);
3
4 system . addComponent (comp);
5 system . update ();
6
7 innerTextBinder (document . getElementById ("count"), comp.vs. count);
8
9 const vars = [comp.vs.count.value]

10 document . getElementById (" button "). addEventListener ("click", () => {
11 system . scheduleCommand (vars , vars , (count) => ++ count , true);
12 });

Listing 2.3: Schedule command counter example with a HTML view [32].

11

Chapter 3

HDScript: Scripting in Graphical
User Interfaces

Programs with wraparound scripting capabilities have the advantage of enabling scripting
for applications that lack internal scripting capabilities. However, the disadvantage of
using external automation tools is the lack of knowledge of the internal structure of the
program they automate. In contrast, applications with internal scripting capabilities have
the opposite problems. They have the advantage that they can use internal API calls
and are not limited to what the user can see and do, but this is restricting too: program-
specific implementations cannot easily be reused in multiple GUIs. Moving scripting
capabilities from applications to a framework will leverage the advantages and minimize
the disadvantages: multiple applications are able to have internal scripting capabilities
and knowledge of the internal structure. The thesis conjectures that scripting built into
a framework is the only pragmatic solution to achieving a more widespread adaptation
of scriptable GUIs.

Capturing Users’ Intent

When the user interacts with the GUI, HDScript records all changes sent to the view-
model. However, mindlessly recording everything the user does might result in the context
of a change being lost. The context is critical for understanding the intent behind a
change. For example, if a user doubles the size of an image, the old size serves as the
backdrop for the adjustment and is required to recognize the new size. Without context,
it would be difficult to ascertain why the user specified the new image size. We show that

12

in order to define an accurate automation workflow by recording user actions, we must
understand the the action by asking the user for their intent behind each change. As a
result, even people with little programming knowledge may write correct scripts.

We are now ready to showcase the main contribution of this thesis, HDScript, and
how it has extended the HotDrink framework to provide internal scripting capabilities
for all application created with the framework. We utilize the clear separation between
the view and the view-model in HotDrink application; which, for automation purposes,
makes it clear whether a change should be included in an automation workflow.

Two sample applications will be described: one for image resizing and another for
(simple) spreadsheet manipulation. We explain the machinery of our solution through
their implementation.

3.1 Image Resize Application

Figure 3.1: The image resize application after running the script specified in the text
area at the lower left pane of the page.

The image resize application, Figure 3.1, allows the user to resize an image either to an
absolute pixel size or to a size relative to the original image. The image which is resized

13

can be seen rightmost in the GUI. There are input fields for changing the absolute width
and height, and relative width and height of the image. The resize dialogue’s scripting
tools appear above and below these resize controls. The user can start, stop, and replay
the current action recorder. Action recorders, discussed in detail in Section 4.1, present a
way to record changes caused by a user interacting with the GUI, i.e., actions (described
in Section 4.3). The lower right pane displays the state of the current recorder, as a list
of HDScript Domain Specific Language (DSL) statements. In the lower left text pane;
HDScript DSL scripts can be entered by a user; the DSL is discussed in Section 4.2.

Figure 3.2 shows a dialogue box that is displayed when a variable has been updated,
which asks the user to specify their intention. For an in-depth description of how we aim
to capture the user’s intent, see Section 4.4.

Figure 3.2: The image resize with the intent dialogue box active. The change made by
the user was updating the absolute height of the image from 550 to 750.

In the image resize application, the underlying constraint system is static; no new
variables or constraints are added while the user interacts with the GUI. In this simple
case, the application automatically supports HDScript from the outset. More advanced
constraint systems, where constraints are added dynamically, might not be supported out-
of-the-box, as the design of the view is critical to automating the application properly.
Section 4.5 gives a more in-depth explanation and possible solutions to the dynamic
constraint system problem.

14

3.2 Spreadsheet Application

Figure 3.3: The spreadsheet application with interaction buttons.

Our spreadsheet example application, shown in Figure 3.3, has only the most basic
functionalities expected of a spreadsheet application. There are rows and columns of
cells to which a user can assign any value. A user can also write simple functions when
prefixing the value of a cell with an equals sign. Consider, for example, the function
=1,1 + 10; it takes the value of cell 1,1 and adds the numerical value 10. The result of
the function will be the value of the cell in which we write the function, see Figure 3.4
and Figure 3.5. There are also buttons to create new rows and columns, and a button to
reset the state of the application.

Figure 3.4: The spreadsheet application with functions shown. The functions are dis-
played when there are no values in the referenced cell.

Figure 3.5: The spreadsheet from Figure 3.4 where the value 10 was assigned to cell
(0,1).

15

The spreadsheet cells are implemented as variables in a single HotDrink component
and a function in this application is implemented as a component that is added to the
constraint system. Generally, a limited dynamic constraint system is achievable by fol-
lowing a few guidelines defined in Section 4.5.1. These guidelines are designed to prevent
the view from doing anything other than displaying the values of the constraint system.

To create a fully dynamic view using a constraint system with scripting, custom
actions are often required. This is detailed in Section 4.5.2. For instance, when either
the create row or the create column button is clicked, a custom action will be recorded.
In Figure 3.6 we have used custom actions to be able to modify the view; these custom
actions have created a new row and a new column of cells. The DSL script given in
Listing 3.1 was the script executed.

Figure 3.6: The spreadsheet from Figure 3.4 with new cells created by two custom actions.
The function in cell (0,1) is now =3,3 * 2.

1 # custom create_row ;
2 # custom create_column ;
3 vars.v3_3 = "50";

Listing 3.1: Example of using custom actions.

16

Chapter 4

Implementing HDScript

HDScript consists of: (i) script actions, (ii) an action recorder to record script actions,
(iii) a DSL to create actions from scripts, and (iv) an intent recognition subsystem to
simplify creating complex scripts.

The basic building block of HDScript are the script actions1, which can be seen as a
change waiting to be applied to a constraint system. In essence, the action recorder, the
DSL and its parser, and the intent recognition subsystem exist for and revolve around
script actions. Figure 4.1, for instance, illustrates how the action recorder and the HDSc-
ript DSL parser are both considered action sources; that is, they produce script actions.
The action recorder may divert from its route to refine its input before creating each
script action, whereas the DSL parser creates exactly the actions stated in a script. By
refine, we mean recognizing the intent of an action and allowing the user to select a more
appropriate action than the default “set the variable’s value to a constant value”.

An action is said to be replayed, when the change it represents is applied to a constraint
system2. When an action is replayed, it interacts with the constraint system in the same
way a user operating a GUI interacts with the constraint system. In other words, there
is no way for HotDrink to distinguish between a modification triggered by a human user
interacting with a GUI and an action being replayed. This fact guarantees that HDScript
is able to do everything a human user can do with a GUI.

Due to how HotDrink powered applications are separated by the MVVM pattern,
script actions exist exclusively in the view-model. They do not have any concept of what

1There are multiple different types of script actions, all explained in Section 4.3.
2It should be noted that an action is rarely replayed by itself, normally a series of actions are replayed

in succession by an action recorder; this will be discussed in full in Section 4.1.

17

Script Actions

Intent
Recognizer

Action
Recorder

DSL
Parser

HDScript
Action Sources

Figure 4.1: A high-level visualisation of how actions are created in HDScript.

the view is, nor any way to view or interact with the view. Additionally, the HotDrink
framework has no notion of which technology the view is created with, thus it would be
impossible to know how actions should interact with the view. The only exception is the
custom action, which is created in the view and thus has complete access to it.

In this chapter, we explore the machinery of HDScript. In addition, we describe
the difficulties of developing applications in which the structure of the constraint system
changes at runtime. A detailed overview of HDScript can be seen in Figure 4.2.

18

Binder
G

U
I

H
otD

rink

C
ustom

A
ction

Script
Text

A
rea

Intent
D

ialogue
Box

A
ction

R
ecorder

Script
A

ctions

D
SL

Parser

Intent
R

ecognizer

V
iew

V
iew

-M
odel

event

update

update

event

records

creates

updates

creates

has creates
has

register

parse

em
it

cancellable
record

event

query
intents

from
action

replace
action

Figure
4.2:

O
verview

ofH
D

Script
and

its
different

subsystem
s

(rectangles
w

ith
rounded

corners)
are

connected
w

ith
each

other,
H

otD
rink,and

the
view

.

19

4.1 Action Recorder

BinderView HotDrink

Action
Recorder

event

update

update

event

rec
or

d

re
pl

ay
up

da
te

s

View-Model

Figure 4.3: The relationship between binding the view on the left and the view-model
on the right.

The action recorder is one of two ways to produce script actions. Action recorders are
analogous to voice recorders, which first capture audio and then later replay it. Likewise,
an action recorder will capture and store changes as actions to later replay them. Each
constraint system have an associated action recorder, called the system recorder. The
system recorder is initially not recording, see Section 4.1.1. It must be manually started by
the view. When recording, the system recorder will capture all changes in the constraint
system that originate outside the view-model. Implementation-wise, a list of actions is
always represented by an action recorder, even if those actions were attained as the result
of parsing a DSL script. Thus, when discussing replaying script actions, we in-fact mean
replaying an action recorder.

To record script actions, HDScript takes advantage of how the view updates the
constraint system, illustrated in Figure 4.3. A single update from the GUI can cascade
through the entire constraint system potentially changing every variable. Apart from the
initial update, these changes are irrelevant for recording, as they will always be executed
automatically (assuming the same constraints) when replaying. Thus, when recording, we
must be careful to only record the initial change as an action. To this end, we leverage a
set of predefined methods that the view’s binders can use to update the constraint system.
By recording calls to these methods as actions, it is possible to distinguish between when
the view and when constraints are changing the constraint system.

To give an example of how recording works in practice, consider the Celsius-
Fahrenheit-conversion example outlined in Listing 2.1. When a user changes the value of

20

the celcius variable, the fahrenheit variable will be updated as per the constraint on
line 4 in Listing 2.1. The initial change of celsius will be recorded as a script action,
while the following change to fahrenheit will not be recorded, as it was caused by the
constraint system automatically being solved. In this example, only the change to the
celcius variable is needed to fully recreate all changes made to the constraint system.

Action Recorder Events

An action recorder event is emitted when a change is about to happen in a recorder. Every
type of event can be cancelled to stop the change from occurring. These events exist so
that the view may intercept changes in the system recorder. For example, whenever an
action is recorded, the view can cancel the event and then use the intent recognition
subsystem to refine the event action. As mentioned in the introduction to Chapter 4,
this is how actions may be refined.

Changing Target Component

A niche feature of the action recorder is the ability to change which component each
action will act upon. This enables recordings to be replayed over multiple structurally
similar components. For example, it could be useful in a GUI with several images where
each image is represented by a different component. A single recording could be made
for one of the images, then replayed for each image in the application by changing which
component the recording targets.

4.1.1 Automatically Starting the System Recorder

A decision we had to make is when, if ever, to automatically start the system recorder.
Ideally, we want to start the recorder automatically, but allow the programmer to opt-out
to simplify creating scriptable GUIs. However, starting to record too early might result in
unwanted actions being recorded. The problem is the lack of distinction between initial
actions in the application and the user interacting with the GUI.

Consider the initialization of an application where the user is able to scale the width
and height of an image. This application has a constraint system with a width and a
height variable where the initial values depend on the width and height of the image

21

to scale. Thus, the dimensions of the image must be fetched during the initialization of
the application, i.e., they cannot be constant values. This initial change of the width
and height variables is impossible to distinguish for the system recorder from a user
making a similar change. However, this initial change should ideally not be recorded as
the system performed it, not a user. It is up to the developer to make this distinction,
as action recorders cannot distinguish an initial change from a real action.

Now, consider a user who wants to use the application described above to create a
recording that adds 10 pixels to each dimension of an image. If the initial change were
to be recorded, such as setting the image’s width and height to 500 by 500 pixels, the
final recording would be as follows: set both the width and height of the image to 500
pixels, then add 10 pixels to both the width and height. In other words, replaying the
recording would always result in an image with a size of 510 by 510 pixels, which is not
what the user intended.

Due to the problem described, the system recorder is turned off by default, which
forces the view developers to enable the recording manually.

4.2 HDScript DSL

The HDScript DSL is used to control existing applications by turning statements in the
DSL into script actions. The DSL consists of statements terminated by a semicolon.
Scripts are interpreted linearly, there are no control structures in the DSL. We can do
this because all HDScript actions can be transformed into a statement in the HDScript
DSL, and all statements can be transformed back into their original actions. In other
words, we can convert between the HDScript DSL and HDScript actions without losing
any information. Turning an action recorder into a script serves two purposes: it preserves
the recording and allows users to change it. These scripts can also be shared among users
and utilised by others who are less technical proficient.

Each statement in the DSL is a serialised action. The actions are responsible for
serialising itself into a valid DSL statement. Turning an action recorder into a script is
therefore trivial. Deserialising a script into an action recorder, however, is not as simple.
To accomplish this the HDScript DSL parser first translates the script into an Abstract
Syntax Tree (AST). Then it performs a number of checks on the AST to ensure the
correctness of the script. Of course the checks will all pass if the script was serialised
from actions, but they may fail if it was written or modified by a user. Finally, an action
recorder is built from the AST.

22

Script Validation

The checks performed on a script’s AST exists to make sure the script is well-formed.
For example, despite being a scripting language HDScript DSL disallows referencing
variables, on the right-hand side, in components that do not exist. Conversely, as long
as a variable is defined on the left-hand side of a previous statement the script is valid,
as is demonstrated in Listing 4.1.

1 // assuming the only component is
2 // component comp {
3 // var v;
4 // }
5 comp.v = comp. non_existing ; // this would throw an error
6 comp. non_existing = 0;
7 comp.v = comp. non_existing ; // this would be allowed because of the

↪→ line above

Listing 4.1: Validation of a script.

4.3 Script Actions Types

In this section we give an in-depth explanation of each script action type, except the
custom action which is described in Section 4.5.2.

4.3.1 Assignment Actions

1 // assuming the only component is as follows
2 // component comp {
3 // var x = 1, y = 2;
4 // }
5 comp.x = 5; // assign -to - constant
6 comp.y = comp.x; // assign to value of variable
7 // Final values of the variables :
8 // comp.x = 5, comp.y = 5

Listing 4.2: Example of assignment actions as DSL statements.

The most straightforward types of actions are assignment actions. Implementation-
wise they are separated into assign-to-constant and assign-to-value-of-variable. The for-
mer action takes a given constant and sets the variable’s value to this constant. While
the latter behaves similarly to the former, instead of a constant value, it dynamically

23

retrieves the value of another variable and then sets the variable’s value to the retrieved
value. As can be seen in Listing 4.2, the DSL syntax for both actions is similar to assign-
ments in any C-like programming language. An equality sign separates the left-hand side
from the right-hand side. The left-hand side defines the qualified name of the variable to
be updated, while the right-hand side specifies the new value. A qualified name uniquely
identifies a variable within a component.

The assign-to-constant action is one of only two actions which is recorded3. Further-
more, the assign-to-constant action is unique in that it is the only action type which uses
the intent recognizer tool, to be discussed in Section 4.4.

4.3.2 Modification Actions

Manipulating values of a variable with regard to its old values is possible with modification
actions. Most assignment operators the in the JavaScript language4 are supported. These
actions follow the same syntax as the assignment statements in the DSL: a qualified name
followed by an operator, then a value. Listing 4.3 gives an example script where some of
these actions are used. A complete list of the possible modification actions can be seen
in Table 4.1.

Operator Assignment Name Explanation
*= Multiplication Multiply current value by the right-hand side
**= Exponentiation Raise the current value to the power of the right-hand side
/= Division Divide current value by the right-hand side
%= Remainder Find the remainder of the right-hand side
+= Addition Add the right-hand side to the current value
-= Subtraction Subtract the right-hand side from the current value
<<= Left shift Shift the bits of the current by the right-hand side to the left
>>= Right shift Shift the bits of the current by the right-hand side to the right
>>>= Unsigned right shift Shift the bits of the current by the right-hand side to the right unsigned
&= Bitwise AND Do a bitwise AND between the current and the right-hand side
ˆ= Bitwise XOR Do a bitwise XOR between the current and the right-hand side
|= Bitwise OR Do a bitwise OR between the current and the right-hand side
&&= Logical AND Set the value to the right-hand side if the current value is truthy
||= Logical OR Set the value to the right-hand side if the current value is falsy
??= Logical nullish Set the value to the right-hand side if the current value is nullish5

Table 4.1: Every modification action possible.

3The other is the schedule command action, discussed in Section 4.3.4.
4Other than the destructuring, assignment every assignment operator is possible. https:

//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators#assignment_
operators.

5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/
Logical_nullish_assignment.

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators#assignment_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators#assignment_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators#assignment_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_nullish_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_nullish_assignment

1 // assuming the only component is
2 // component comp {
3 // var x = 1;
4 // }
5 comp.x *= 2; // Double the value to 2
6 comp.x <<= 1; // Left shift the value once to 4
7 comp.x %= 3; // Take of remainder of 4 which is 1
8 comp.x += 1; // Add one for a total of 2
9 comp.x **= 4; // Calculate the exponent of 2ˆ4 which is 16

10 // The final value of comp.x is 16

Listing 4.3: Examples of modification actions as DSL statements.

4.3.3 Linking Action

Linking a dangling variable reference (i.e., one pointing at no variable) to a variable can
be performed with the linking action. The linking action redirects from which variable a
variable reference is reading. Linking will cause the former dangling variable reference to
report having the same value as the variable reference it is linked to, effectively making the
two variable references aliases to the same variable. We cannot link a variable reference
to a dangling variable reference, as both the action and the parser of the DSL requires
the linked-to variable reference to have a variable. An example script can be seen in
Listing 4.4 and what the script does is visualized in Figure 4.4.

1 // assuming the only component is
2 // component comp {
3 // var x = 1, &y;
4 // }
5 comp.y =& comp.x; // link comp.y to comp.x
6 comp.y = 10; // comp.x == 10 && comp.y == 10

Listing 4.4: Example of linking action as DSL statements.

comp.x comp.y

1

comp.x comp.y

10

(a) (b)

Figure 4.4: Variable and variable references in the constraint system (a) before and (b)
after running the script in Listing 4.4. Dashed boxes are variables, while the solid boxes
are variable references.

25

4.3.4 Schedule Command Action

As described in Section 2.3.3, the schedule command utility executes arbitrary code
to update HotDrink variables. This utility function has its own dedicated action, the
schedule command action. Unique to this action is how it has two modes—record-as-
value and record-as-function—which can be specified when calling the schedule command
function. When the record-as-function mode is used, the scheduled function is saved in
a schedule command action to be later executed whenever the action is replayed. In
contrast, the record-as-value mode waits for the command to complete its execution,
and then takes the new values of the output variables and records each as a separate
assign-to-constant action.

When a function is serialised and then deserialised in JavaScript, all variables in
its scope will be lost [27]. When the schedule command action is using the record-as-
function mode, it serialises the scheduled function. The record-as-function mode should
therefore only be used when all variables accessed are in the set of input variables given
to the schedule command; if this is not the case, the record-as-value mode must be used.
However, whenever possible, record-as-function should be preferred over record-as-value
because it exactly replicates what the original schedule command did.

To give an example of the schedule command action, consider the GUI with a single
button described in Section 2.3.3. When the button is clicked, a counter will increase
by one after an arbitrary period of time. To create this GUI in HotDrink, we use the
schedule command utility and give the counter variable both as an input and an output.
Depending on which mode we use, we get a very differently behaving script. If the
record-as-value mode is used, it is by design the same as setting the value of the counter
variable to a given number, regardless of what the previous value was. In contrast, when
using the record-as-function mode, the previous value will be taken into consideration.
In this example, we only access the counter variable in the scheduled command, thus the
record-as-function mode can be used.

4.3.5 Component Actions

The structure of constraint systems can be modified by component actions. The add
component action is used to create new components, whereas the remove component
action is used to delete them. While the remove component action can easily be defined

26

1 // Add the following component with the add component action .
2
3 // component v1_1 {
4 // var &v0_0 , &v1_1 , code;
5 // constraint {
6 // (v0_0 -> v1_1) => v0_0;
7 // }
8 //}
9

10 // Note that the JSON have been beautified to make it readable and all
↪→ \" have been replaced with ".

11 # AddComponent {
12 "name": "v1_1",
13 " variables ": [
14 {"owner": "vars", "name": "v0_0", "value": ""},
15 {"owner": "vars", "name": "v1_1", "value": ""},
16 {"owner": "v1_1", "name": "code", "value": "=0,0"}
17],
18 " constraints ": [{
19 "name": "c_0",
20 " constraintSpec ": {
21 " methods ": [{
22 "name": "",
23 "nvars": 2,
24 "ins": [0],
25 "outs": [1],
26 "code": " function anonymous (v0_0\n) {\ nreturn v0_0 ;\n}",
27 " promiseMask ": [0]
28 }]
29 },
30 " optional ": false
31 }]
32 };
33
34 // Now remove the added component with the remove component action
35 # RemoveComponent v1_1;

Listing 4.5: Example of adding then removing a component.

by the user, the add component action is challenging to create by hand. Listing 4.5
demonstrates both actions as DSL statements; even though the component is simple,
this script would have been very difficult for a user to develop from scratch. The issue
in creating an add component action is in understanding how a component is defined as
a JSON object and being able to define components that the view can understand and
use. We do not expect users to be able to create an add component actions from scratch.
Rather, power-users can alter the generated DSL statements of add component actions
if they need to make minor changes to the added components.

4.4 Recognizing User’s Intent

When a user interacts with a GUI, there is an intent behind each change. However, the
intent is not always clear from the interaction. Consider the script in Listing 4.6. Assume

27

it is the initial script created after recording an update of a field from four to sixteen.
Imagine the intent of the user in this example is to set the field to be four times as large
as it originally was, no matter the original value. The generated script does not express
this behaviour; it will always set the value of the field to be sixteen. The user could edit
the initial script to be comp.a *= 4, which perfectly states the user’s intent. However,
we cannot assume every user will know what to write to communicate their intention.
An advanced user is able to use the action recorder to record an initial script and then
modify it to express their intent. A less advanced user cannot modify scripts without
learning the scripting language and environment of the application.

1 // Assume comp.a = 4
2 comp.a = 16;

Listing 4.6: Changing a variable value from four to a constant value sixteen.

To enable these less advanced users to express themselves accurately, HDScript in-
cludes the intent recognition subsystem. It works by taking the old and a new value
of a variable together with the variable itself, and then using intent recognizers to find
possible intents. Each intent recognizer looks for intents of a specific data-type. This
modular approach allows the view developers to add custom intent recognizers and even
overwrite the included ones. Included by default are intent recognizers for JavaScript
primitives [10], variables, and constant assignment.

All intent recognizers return a set of intent results. An intent result consists of an
action as a HDScript DSL statement, an explanation of the action, and whether it is
recommended. The DSL statement is required for HDScript to convert the intent result
into a script action. In the sample applications, DSL statements are presented as the
main piece of information when the user clarify their intent. The statement tells the user
precisely what they will see in the generated script, and might contribute to the user
learning the HDScript DSL. It is possible that the user is ignorant of the statement’s
meaning, therefore an explanation in plain English is included in each intent result to
help the user choose the correct option. Without the explanation, the intent subsystem
would require the user to understand the DSL, thus perhaps creating a barrier for non-
programmers as users. Finally, each intent result can also be either recommended or not.
Intent results that are valid but perhaps not very likely to be the user’s intent are still
presented to the user, but as “not recommended”.

28

When to Recommend an Action

To recommend an intent result, some heuristics must be used. For example, we assume
numbers with fewer digits are preferred over those with more. How few digits a number
must have to be considered fit for recommendation is arbitrary. Consider trying to recog-
nize the intent of a changing a number from 17 to 19. In this case, we conjecture it is more
likely the user indented addition (+= 2) over multiplication (*= 1.1176470588235294)6

or division (/= 0.8947368421052632)7. There are other cases where either multiplication
or division, but not both, have a reasonable chance of being the user’s intent. Consider
trying to recognize the intent of a changing a number from 8 to 9. In this case, multipli-
cation (8 ∗ 1.125 = 9) seems reasonable, while division (8/0.888 = 9)8 does not. A third
example is the intent results x − 5 and x + −5, which are equivalent for real numbers. It
is reasonable to expect the user to prefer the first intent, as it is less verbose. It is not to
say the latter option is invalid, but instead the less likely to be chosen of the two. While
the given examples are all from the number intent recognizer, this line of reasoning can
be extended to other intent recognizers.

Presenting Intent Results

There are at least two ways to present the intent results—continuous presentation and
delayed batch presentation. The former asks the user constantly for their intention, i.e.,
after each time an action is recorded. The latter waits for the user to stop the script
recorder, and then asks for their intent at each action. The continuous presentation
has the advantage that the user will remember their intention. However, it has the
disadvantage of continuously asking which might become tiresome. If the user is prepared
to provide their intent at each step, it should be perceived as less nagging. For instance,
the view can allow the user to opt-out of the intent recognition subsystem temporarily
when they do not want to clarify their intent. The delayed batch presentation is less
intruding than the continuous presentation, but runs the risk of the user not remembering
their intent of all actions. In the end it is up to the view how intent results should be
presented.

6The factor approximates 19
17 .

7The divisor approximates 17
19 .

8Assuming the field of real numbers.

29

4.5 Dynamic Constraint Systems

Until now, all constraint systems given as examples have been static. A static constraint
system does not change structurally after initialisation; only the values of variables are
allowed to change. Disallowing the constraint system to structurally change makes it pos-
sible to support scripting without any measures from the view-developers. However, the
rigidity severely limits and complicates creating functional GUIs. For instance, an appli-
cation with a static constraint system must create all possible mutations of components
during initialization, which for a given feature in the application might be impossible.
In contrast to static constraint systems, dynamic constraint systems allow the structure
of the constraint system to be modified at runtime. These modifications include adding
or removing variables, methods, constraints, and components after the initial solving of
the constraint system. Modifying the structure of a constraint system is often desired in
complex GUIs. However, using a dynamic constraint system increases the complexity of
creating GUIs which are scriptable. For a GUI to be scriptable, a script could be created
in one instance and then run in another instance of the application without any issues.

The underlying problem of scripting in dynamic constraint systems is the desired
malleability of the constraint system. Consider whether a HotDrink variable exists in a
constraint system. Within static constraint systems, neither new variables can be added,
nor existing variables removed. Thus, if a variable exists, it is always guaranteed to exist;
conversely, if a variable does not exist, it never will. Importantly, the guarantee entails
restarts of the application. In dynamic constraint systems, there is no such guarantee.
New variables can be added and existing variables can be removed, either because the
owning component was removed or because the variable has not been added. Therefore,
in order to properly automate a GUI with a dynamic constraint system, the addition and
removal of structures must be a part of the automation. There is no point in editing a
variable which does not exist, as it would not affect the application in any meaningful
way. In HDScript, we record structural changes as component actions, explained earlier
in Section 4.3.5.

Both the view and the view-model must be built to accommodate structural changes.
That is, the view must also consider structural changes in the constraint system in order
to be a scriptable GUI. As was discussed in Section 2.2, the view must not store any
valuable data (e.g., field input). Storing data in the view is problematic as it will be
lost when the application restarts. Notably, for dynamic constraint systems, the data
lost includes all components added at runtime. Thus, when a structural change in the
constraint system occurs, the view must be able to reflect it.

30

The principal problem for applications using dynamic constraint system, is how to
recreate the bindings between the GUI and the constraint system. When adding a com-
ponent to the constraint system, bindings between a component’s variables and GUI
widgets (e.g., HTML elements) are defined by the view. HDScript is only capable of
recording and replaying actions in the constraint system and not in the view nor in the
bindings. Any created binders would not be preserved when the application restarts. To
solve the binding’s problem, an application must recreate the binders when a structural
action, such as the add component action, is replayed. However, as the constraint system
cannot in any way interact with the view other than with binders, this is not possible
unless an action can directly interact with the view.

With the underlying issues explained, we will now explain how to create a scriptable
GUI, when these GUIs have dynamic constraint system.

4.5.1 Guidelines for a Scriptable Dynamic Constraint System

To resolve the outlined issues, both the view-model and view must be carefully designed
to allow for scripting in applications using dynamic constraint systems. Scripting is sup-
ported out-of-the-box when no components are modified at runtime, i.e., for a static
constraint system. To facilitate scripting in dynamic constraint systems, we have identi-
fied a set of guidelines which shall be followed to allow for scripting.

1. Changes in the view-model must automatically be reflected in the view.
If the view-model is changed (e.g., by replaying a recording), the view should be
updated with the new values without any user interaction. This guideline aims to
improve the user experience, as none of the values displayed is outdated. Enforcing
this guideline indicates the view-model is the owner of the data, thus the view
behaves as defined in the MVVM pattern.

2. Storing valuable user input in the view should be avoided. When a user
enters data into the application (e.g., types text into a text field), the data should
be persisted in the view-model. We cannot guarantee a view will persist user input
between restarts, therefore all user-entered data is considered discarded by HotD-
rink on a restart. Any data valuable enough to be persisted must be stored in the
constraint system to prevent it from being lost. Data exclusively relevant to the
view can be discarded along with the view (e.g., scroll position).

31

3. No new bindings are to be created, nor the view modified after the
initial update of the constraint system. This guideline prevents actions from
referencing widgets in the view which might not exist when replaying the recording.

The third guideline is optional, as it restricts the view to be constructed quite dras-
tically. The resulting applications cannot be considered fully dynamic, but rather semi-
dynamic, as only the constraint system can change and not the view.

Consider a spreadsheet application in which the third guideline is enforced. In this
application, all cells must, by the third guideline, be created during initialization. The
number of rows and columns in the spreadsheet is fixed, and thus more rows and columns
cannot be added at run time. The constraint system can still change, for example,
by adding components with constraints between existing cells. Were cells to be added
dynamically, a script might reference a cell which does not exist after a restart. This
would break with the notion that a script created in one instance of an application can
always be replayed in another. By restricting the view to not create new bindings after
initialization, we can guarantee that all variables always will exist, thus this application
is scriptable.

4.5.2 Custom Actions

It is possible to ignore guideline 3, and instead display an error if a script fails to execute.
By doing so, the flexibility the guideline removes is restored, while still indicating that
something went wrong to the user. In the spreadsheet example above, new columns and
rows can therefore be added at runtime. However, ignoring guideline 3 runs the risk of
the user perceiving the application as buggy, as in their mind a perfectly fine script from
another instance does not work in a new instance. A better solution is to use custom
actions which are able to execute view-side code to create bindings; thus solving the
problem of dynamic constraint systems not being able to directly interact with the view.

In essence, custom actions are view-side functions with a unique identifier. The most
important benefit of using custom actions is the possibility to serialize bindings indirectly
by re-creating any binding in a custom action function. Custom actions allow for a truly
dynamic constraint system without any of the drawbacks of enforcing the third guideline.
While the benefit of enforcing the third guideline is the simplicity of maintenance, it
restricts the view from changing at runtime, and conversely ignoring guideline 3 with

32

custom actions imposes no such restrictions. However, there are drawbacks to using
custom actions; the custom actions themselves must be maintained, and they might
become deprecated as the application changes and old features are removed. These
drawbacks are not present when following the third guideline.

Custom actions are created by the view before the initialization of the constraint
system to execute view-side code when replaying actions in the constraint system. Custom
actions only have to be registered once by the view for them to become available to all
action recorders and to the DSL parser. While HDScript does not differentiate between
custom actions and other actions, the view must manually tell the system recorder to
play a custom action.

Consider a spreadsheet application which has created some custom actions, and does
not follow guideline 3. These custom actions are: (i) adding a new row to the spreadsheet
and (ii) adding a new column to the spreadsheet. Two buttons are wired to fire each of
the custom actions when pressed. When a user clicks one of the buttons, the view must
notify the constraint system to play and record the wired custom action. Consider a user
clicking one of the buttons. The custom action is recorded and the action recorder is
saved as a script. After a restart of the application, the script with the custom action
runs. Both times exactly the same change is applied to the view, i.e., there is no difference
whether it was a user interacting with the GUI or if a script was executed.

4.5.3 Other Attempted Solutions

The initial idea to allow for dynamic constraint systems was to use the schedule command
function as an ad-hoc custom action. The main problem with this approach is how
deserialised functions only have global variables in scope, e.g., console and document for
a typical HTML view. The loss of variables makes it impossible to interact with the view
in any meaningful way. To overcome this problem, the view must create global objects
for the command to interact with. However, the usage of global variables is generally
deprecated in modern applications [21]. Another issue is the fact that the schedule
command function was designed to update HotDrink variables, and not to run view
code. This forces the view developer to supply at least one output variable, even when
no variables should be changed. These problems make schedule command impractical to
use as a way to create a dynamic view.

33

Another attempted solution to allow dynamic constraint systems is to serialize the
actual binders, either when bound or during the standard component serialization. How-
ever, the problem with this is how the view can be written in any arbitrary framework
and programming language. There is no way we can guarantee the view can serialize its
binding. For instance, we could create a view which explicitly disallows serializing the
binders.

4.5.4 Example of a Dynamic Constraint system

We created the simple spreadsheet application given as an example in Section 3.2. For
the application to be more than a multi-cell calculator, the end-user should be allowed
to reference cells from other cells and do simple calculations. Assume that the following
two formulas are available: (i) get the value of another cell and (ii) add the value of
another cell to a constant number. We do not know which formulas will be used at com-
pile time. Therefore, the application must dynamically change the HotDrink constraint
system during the execution.

If no custom actions were created for this application, the size of the spreadsheet must
be constant. If any more cells are added later, it is not possible to create a scriptable
view without custom actions. Essentially, no view code can be injected dynamically, as
the recording playback cannot create view bindings.

However, in this implementation of the spreadsheet application, we have created two
custom actions. These custom actions are as described in Section 4.5.2: (i) add a new
row to the spreadsheet and (ii) add a new column to the spreadsheet. With these custom
actions, it is trivial to extend the spreadsheet, as can be seen in Listing 4.7.

To make a grid of cells into a usable spreadsheet, we need to be able to create some
formulas. These formulas are defined by dynamically added components in the constraint
system. For instance, Listing 4.8 is an example of a formula where the cell v0_0 (the cell
found in the first column, in the first row) will be constrained to the value of cell v1_1
(cell in the second row, second column) multiplied by two. The only variable the dynamic
component in Listing 4.8 owns is the code variable, which holds the raw user input which
resulted in the component. The code variable is needed for the user to be able to edit the
current constraint without having to rewrite the whole formula each time; it is especially
needed after a restart. The ability to edit the formula, even after a restart, demonstrates
the necessity of guideline 2.

34

1 // Register custom the actions
2 ScriptRecorder . setCustomAction (
3 new CustomRecordedAction (" create_row ", async () => {
4 await createRow (varsComp , row ++, column);
5 system . updateDirty ();
6 })
7);
8 ScriptRecorder . setCustomAction (
9 new CustomRecordedAction (" create_column ", async () => {

10 await createColumn (varsComp , row , column ++);
11 system . updateDirty ();
12 })
13);
14
15 // When a user click on one of the buttons , play corresponding custom

↪→ action
16 document . getElementById (" createRow "). onclick = () => {
17 system . recorder . playCustomAction (" create_row ");
18 };
19 document . getElementById (" createCol "). onclick = () => {
20 system . recorder . playCustomAction (" create_column ");
21 };

Listing 4.7: Register custom actions and setup listeners to perform the custom actions.

1 component v0_0 {
2 var &v1_1 , &v0_0 , code;
3 constraint {
4 (v1_1 -> v0_0) => v1_1 * 2;
5 }
6 }

Listing 4.8: An example dynamic component in the spreadsheet application. Variable
v0 0 holds the value of the cell found in the first row, first column, and v1 1 does the
same for the cell found in the second row, second column.

In HotDrink, multiple variable references can point to the same variable. The context
component of a constraint system is a single component which owns variables used by
multiple components. A context component, such as Listing 4.9, does not have any
constraints as its sole purpose is to be a centralized place to access shared variables.
To work in a dynamic constraint system, the context component must be created at
initialization. In the spreadsheet application, the context component stores the values
of the cells. Any dynamically added components can update the value of any cell by
referencing its corresponding variable in the context component. The system must be
robust enough to detect changes in the constraint system and reflect them in the view.
With a context component, we can simply bind a variable in the component to a view
widget, thus gaining this detection almost for free.

35

1 component vars {
2 var v0_0 , v0_1 , v0_2;
3 var v1_0 , v1_1 , v1_2;
4 var v2_0 , v2_1 , v2_2;
5 }

Listing 4.9: The context component of the spreadsheet application after initialization for
a 3×3 spreadsheet.

36

Chapter 5

Related Work

This chapter consists of two sections. The first discusses native scripting capabilities in
GUIs, while the second discusses external automation, such as Robotic Process Automa-
tion (RPA).

5.1 Scriptable GUIs

In this section we give some examples of applications with internal scripting capabilities.
These capabilities usually manifest themselves as either scripts written by the user or
recordings of user actions; a few provide both.

5.1.1 GNU Image Manipulation Program

GNU Image Manipulation Program (GIMP) is a widely used program for manipulating
images. It does not support automatically recording users’ actions, but it has several
other methods to automate workflows. Out-of-the-box GIMP supports Script-Fu, which
is a Scheme-based scripting environment [7]. Script-Fu is designed to automate actions
the user frequently performs or tasks that are hard to remember.

Script-Fu supports calling other custom scripts, which allows for complex behaviour
to be expressed with minimal code. Realistically, however, only those who can program
in Scheme are able to effectively create their own scripts. More widely used programming
languages [15] are supported as plugins, including Python [6], Perl [38], and C# [8].

37

One can observe that scripting in Script-Fu is targeted for expert users with program-
ming experience. Once a script has been created, however, anyone can use it. Listing 5.1
gives an example Script-Fu script. When the script is ran, it will first display a configu-
ration GUI, Figure 5.1, before performing the rest of the script. A result of running the
script can be seen in Figure 5.2.

1 (script-fu-register
2 " script-fu-remove-bg " ;func name
3 " Remove Background and Crop" ;menu label
4 " Remove background and crop" ; description
5 "kheb" ; author
6 "The Unlicense " ; copyright notice
7 "26. Aug. 2021" ;date created
8 "" ;image type that the

↪→ script works on
9 SF-IMAGE "Image" 0 ;image to work on

10 SF-DRAWABLE "Layer" 0 ;layer to work with
11 SF-COLOR "Color" ’(255 255 255) ;color variable
12)
13 (script-fu-menu-register " script-fu-remove-bg " "<Image >/ Image")
14 (define (script-fu-remove-bg image drawable color)
15 (let*
16 (
17 (width (car (gimp-drawable-width drawable)))
18 (height (car (gimp-drawable-height drawable)))
19)
20 (gimp-undo-push-group-start image)
21 (gimp-layer-add-alpha drawable) ;Add alpha channel (otherwise the

↪→ deleting of pixels is set to bg color)
22
23 (gimp-image-select-color image CHANNEL-OP-REPLACE drawable color)

↪→ ; Select all pixels of the given color
24 (gimp-drawable-edit-clear drawable) ; Delete (i.e. make

↪→ transparent) selected pixels
25
26
27 (gimp-drawable-update drawable 0 0 width height) ; Update all

↪→ pixels
28 (gimp-selection-none image) ; Deselect all
29
30 (plug-in-autocrop RUN-NONINTERACTIVE image drawable) ; Crop to

↪→ content
31
32 (gimp-undo-push-group-end image)
33)
34)

Listing 5.1: A Script-Fu script that replaces the background of an image with transparent
color, and then auto-crops the image to remove excess borders.

38

Figure 5.1: Script-Fu dialogue box to select background colour to remove.

Figure 5.2: Result of running the script from Listing 5.1.

39

5.1.2 Microsoft Word and Excel

Office Script in Microsoft Excel is an example of a user-friendly scripting platform. An
example of its user-friendliness is the option to add a shortcut button to run a recording
quickly. Microsoft Excel allows users to record their actions with a built-in “Action
Recorder”. There is no need to write code to create and use Office Script; however,
more advanced users may edit the result of a recording as a TypeScript [28] function
in the built-in code editor [5]. A “Record Action” side-panel can be seen in Figure 5.3.
It displays the current recorded actions and has widgets to control the action recorder.
Office Script lacks support for any platform other than Microsoft Excel on the web.

For desktop, Microsoft products support Visual Basic for Applications (VBA) macros.
This macro system is similar in design to Office Script: allowing non-technical users to
record actions they have performed, then play them back over different data. Feature-
wise, both Office Script and VBA macros are largely identical. The major exception is
that VBA macros can run when an event is triggered, while Office Script in Microsoft
Excel programs must be started manually [13]. Figure 5.4 shows how to define a “hello
world”-style macro that will be triggered when a command-button is clicked by a user.

40

Figure 5.3: Action recorder from Office Script in Microsoft Excel [5].

Figure 5.4: Example of executing a VBA macro triggered by a graphical button click [29].

41

5.1.3 Adobe Suite

Adobe Photoshop offers two ways to automate tasks: the basic Photoshop Action and
a more feature-rich Photoshop Scripting. Photoshop Action allows the user to repeat a
set of actions with a built-in recorder, requiring no programming to create a script. The
GUI for this recorder is shown in Figure 5.5. An action script may also include actions
which cannot be recorded, such as conditional statements, giving the user a decent range
of actions, yet with little programming needed. The drawback of Photoshop Action is
that it cannot handle files (e.g., reading, writing, renaming) nor can action scripts be
transferred to other computers.

Photoshop Scripting can do everything Photoshop Actions can do and more. How-
ever, scripts must be programmed and not recorded. Creating scripts requires potential
users to be somewhat proficient in programming. Photoshop Scripting supports multiple
languages: AppleScript on macOS, Visual Basic on Windows, and JavaScript on both
Windows and macOS. An example script from the documentation [17] of Photoshop
Scripting is given in Listing 5.2. Scripts are easily shared between different computers,
and they work on other Adobe applications too, such as Adobe Illustrator.

1 // Create 2 documents
2 var docRef = app. documents .add (4, 4);
3 var otherDocRef = app. documents .add (4, 6);
4 // make docRef the active document
5 app. activeDocument = docRef ;
6 // here you would include command statements
7 // that perform actions on the active document . Then , you could
8 // make a different document the active document
9 // use the activeDocument property of the Application object to

10 // bring otherDocRef front -most as the new active document
11 app. activeDocument = otherDocRef ;

Listing 5.2: An example of Photoshop Scripting in JavaScript which demonstrates how
to set the active document [17].

42

Figure 5.5: Create new Photoshop Action dialogue [30].

43

5.1.4 SAP GUI Scripting

SAP GUI is a user interface created for interacting with the various SAP applica-
tions; there are three main clients, SAP GUI Windows, SAP GUI Java, and SAP GUI
HTML [22]. SAP GUI Scripting emulates the user interacting with the GUI. That is,
a script can only do what the user would be able to do, just faster. It can be used as
a simple macro recording and playback tool, used for testing, or as a part of a more
advanced automation suite.

A developer is able to access individual fields in the GUI by specifying its field-id (i.e.,
path to a unique field). Scripts are often version dependent because a simple change in
the GUI might have changed the field-id of an object. As shown in Figure 5.6, there are
various utility tools bundled with the GUI to help users automate their workflow, such as
finding the field-id an object. Another bundled utility tool is the script recorder, which
is able to create scripts. Scripts can also be created by writing them manually in VBA,
JScript, JavaScript, C#, or C++. The recorded scripts are serialized to one of these
languages, depending on which GUI is used. The scripting is also the basis of all other
automation suites, such as performance monitoring, load testing, and functional testing.

By default, scripting is disabled on the server-side; this feature must be explicitly
enabled. If scripting is enabled, the system-admins have fine-grained control on how
scripts behave, such as only allowing certain groups to have access to scripts or disallowing
scripts to change any values in the system. There also appears to have been a marketplace
for selling scripts or script services, but it is now gone from the web and not archived [33].

44

Figure 5.6: Built-in Scripting Utilities in SAP GUI [22].

45

5.2 External Automation

GUIs with internal scripting capability is not the only way to enable task automation.
Another common approach is to programmatically emulate how a human interacts with a
GUI. This approach is called Robotic Process Automation (RPA) [43]. RPAs can be used
to create automated tests of a GUI or automate repetitive tasks. Compared to internal
scripting, the benefit of RPA is universal availability, as the application does not need to
support scripting itself [42].

5.2.1 Selenium

An example of RPA is Selenium [24]. It enables automation of all the major web browsers,
both programmatically [26] and by recording user input [25]. The Selenium Integrated
Development Environment (IDE) has an advanced interface for users to edit their recorded
actions, showcased in Figure 5.7. Unlike most other scripting suites, there is no actual
programming involved to edit the recorded action, thus it is easier for a novice user to
automate a task. The recorded actions can be exported as a unit test to multiple different
testing frameworks, e.g., Java JUnit [11], Python pytest [18], and JavaScript Mocha [14].

46

Figure 5.7: The Selenium IDE with a test to search for HotDrink in the University of
Bergen Library.

47

5.2.2 AppleScript

In Apple’s macOS, there is a built-in scripting language with an English-like syntax
called AppleScript [34]. Most notably, AppleScript allows scripts to be created for any
application in macOS. An example AppleScript script is given in Listing 5.3. It counts
the number of files in a folder. Application developers can respond to various “Apple
events” [1] triggered by user scripts. Handling these events allows end-users to automate
their workflow with any application using AppleScript. However, applications must be
programmed to respond to these events. Even if there is no-to-little support for Apple
events within an application, users are still able to create certain types of scripts, called
GUI scripts. This scripting method is based on the macOS accessibility framework, which
allows a script to send system events. These system events allow the user to interact with
an application as if they were using their mouse and keyboard, i.e., pressing buttons,
accessing menus, and entering text into text fields [3]. The official AppleScript editor [2]
has the ability to record the actions of a user to AppleScript instructions. It simplifies
the creation of an initial draft, making it easier to adjust the recording to the intended
automation workflow.

1 tell application " Finder "
2 if folder " Applications " of startup disk exists then
3 return count files in folder " Applications " of startup disk
4 else
5 return 0
6 end if
7 end tell

Listing 5.3: A script for counting the number files in the Applications folder [23].

5.3 Summary

As can be seen by inspecting commonly used commercial applications, some form of
scripting is available to end-users. The examples above, however, are cherry-picked for
their scripting capabilities.

There are two main approaches to automate a task in an application, as can be seen
in the provided examples. The first approach is to write a script that interacts with
the application directly, which requires some programming knowledge from the end-user.
Script-Fu is an excellent example of this approach. The second approach is to record
a user’s actions, making automation accessible to non-technical end-users. An example
of this is Photoshop Action. This second approach might not necessarily allow the user

48

to edit the recorded actions, but most scriptable software seems to allow it. Exactly
how the actions are presented to the user vary from application to application, but most
commonly this is as a text based script. Another way to display recorded actions to the
user is via a GUI, which Selenium does.

49

Chapter 6

Evaluation

We implemented the image resize application described in Section 3.1 both with and
without HotDrink and HDScript. First we describe how the version without HotDrink
was implemented, then we compare the two implementations.

6.1 HotDrink-less Image Resize Application

An application with the identical feature set as the image resize application, detailed in
Section 3.1, was created to evaluate how an alternative approach could replicate scripting
on a per-application basis. This new application is written in plain JavaScript, without
HotDrink or other external frameworks. We call it the HotDrink-less image resize evalua-
tion application. It is pictured in Figure 6.1. The HotDrink-less image resize application,
like the version using HotDrink, has four system variables that define the image size:
absolute width, absolute height, relative (to the initial width) width, and relative (to the
initial height) height. As we do not have HotDrink to handle the relationships between
variables in the application, the relationships must manually be updated each time any
of the system variables change.

The evaluation application has internal automation capabilities with record and play-
back functionality. This, reasonably, a developer can be expected to readily create, as in
Listing 6.1. A recorder, at its simplest, is a list of functions, states, or other structures
capable of acting as a proxy to the user interacting with the application. In the case of
Listing 6.1, the recorder is implemented as an ordered list of functions paired with their

50

Figure 6.1: The HotDrink-less image resize evaluation application is visually similar to
the version with HotDrink described in Section 3.1.

arguments. That is, to record an action, we call the record function with the function to
record and its arguments. When the recorder is replayed, the application iterates over
the recorded functions and executes each with their stored arguments.

In the HotDrink-less image resize application we record an action when any of the
system variables change. A system variable changes, for example, when a user updates
one of the input fields in the GUI. As listed in Listing 6.2, each action consists of two
steps: first the relevant system variable’s value is updated, then the values of all other
system variable which depend on the relevant system variable are recalculated. These
two steps are recorded as a single action in the record function from Listing 6.1.

One should note that script recording cannot be implemented by just storing the
snapshots of the full application state. If we were to do so, we would not have achieved
automation, but rather persistence. There would then be no need to store more than the
latest state of the application, as the older states would be overwritten by newer states.
In other words, both steps of the recorded actions, setting the new value and updating
dependent variables, are required to enforce invariants of the system when an action is
replayed.

51

1 const funcs = [];
2 let recording = true;
3
4 function startRecording () { recording = true; }
5 function stopRecording () { recording = false ; }
6
7 /** Record (if recording) and call the function with the given

↪→ arguments **/
8 function record (func , ... args) {
9 if (recording) {

10 funcs.push ({ func , args });
11 }
12 func (... args);
13 }
14
15 /** Replay recorded actions **/
16 function replay () {
17 let wasRecording = recording ;
18 stopRecording ();
19 for (let action of funcs) {
20 action .func (... action .args);
21 }
22 recording = wasRecording ;
23 }

Listing 6.1: Generic record and replay functionality without HDScript.

1 record ((relX) => {
2 // First step of the action : update the value of the variable
3 setRelWidth (relX);
4
5 // Second step: update dependent variables
6 // I.e., when the relative width is updated , so should the absolute

↪→ width
7 setAbsWidth (getInitWidth () * relX);
8 }, getRelWidth ()); // take snapshot of new value

Listing 6.2: Using the generic record function from Listing 6.1 to record an action in the
HotDrink-less image resize application.

6.2 Comparison

52

1 record (() => {
2 const relX = 2 * getRelWidth ();
3 const absX = 2 * getAbsWidth ();
4 setAbsWidth (getInitWidth () * relX);
5 setRelWidth (absX / getInitHeight ());
6 });

Listing 6.3: A modification action that doubles the width of the image of the evaluation
application.

The evaluation application falls short compared to the same application written with
HDScript when more advanced features than record and replay functionality are desired.
For example, in order to edit a recording, each action within the recorder must be trans-
parent enough to be modifiable. In the version without HotDrink, actions are opaque,
i.e., JavaScript functions, thus infeasible for a user to alter. The only way to increase
the number of alternative actions is to create and record a new function, as is done in
Listing 6.3. An alternative solution to edit actions is to serialize the recordings as a
script, similar to our approach in HDScript. However, in that case, the view developers
would either need to design, implement, and maintain a DSL—which is not an entirely
trivial task compared to as creating a recorder—or use an existing scripting language.
No matter the option chosen, the development cost will likely be significant. In addition,
the developers must create a system to interpret scripts, and apply each statement in the
script to the application’s current state, i.e., the system must act as if interpreting a script
is replaying a set of recorded actions. Even the simple GUI evaluation application shows
that implementing scripting without proper support from a framework is practically a
non-starter.

53

Chapter 7

Conclusion and Future Work

As part of this thesis work, we explored several applications with varying degree of GUI
automation capabilities. These applications are proof that GUI automation is clearly
useful. All of the automation features in the applications we studied were quite different,
built specifically for one application only. This thesis questions whether a more general
approach to GUI automation would be feasible. In a generic approach, the underlying
automation code can be reused in multiple different applications. This should make the
benefit of GUI automation outweigh its costs more broadly, and lower the barrier to add
GUI automation features to more applications.

We demonstrated how automation can indeed be built as a part of a GUI framework.
The HDScript extension of the HotDrink framework enables any application created with
it to have internal GUI automation capabilities. We showed that the cost of implementing
automation is reduced, and in some cases eliminated entirely, when applications are
created with HDScript. In particular, we created a recorder tool for inexperienced users
and a DSL for more experienced users to automate any application created with HotD-
rink. Additionally, we explored how users without any prior programming experience are
able to express their intent when using the action recorder. With the extended framework,
we implemented several case studies to evaluate changes needed to support automation
and scripting in applications. While the tests were rudimentary, they showed that a
generic approach to GUI automation can be made to work out-of-the-box, sometimes
without any modification to the applications themselves. This is an early step in the line
of GUI automation research, there is plenty of work to make scripting a standard feature
of run-of-the-mill GUIs. We see immediate avenues to improve usability for end-users.
Below, we include several suggestions for improvement.

54

Additional intent recognizers For the intent recognition subsystem to be effective
it should be able to operate on as many data types as possible. Currently, the subsystem
can only recognize intents of JavaScript’s primitive data types. The overall quality of
the intent recognition subsystem will continually improve as intent recognizers for new
data types are implemented. To this end, a future objective could be to construct intent
recognizers for all data types in the standard JavaScript library where an intent recognizer
is suitable. For example, an intent recognizer for Date [9] could suggest the current time
or date.

IDE for editing scripts It is currently up to the view to implement where the user
writes their scripts. This is not ideal and can be improved by providing a standardised
IDE for writing scripts in the view. To HotDrink, however, views are interchangeable.
Thus, we must potentially write an IDE for each platform that different views are using
(e.g., web, spreadsheet). The Selenium IDE [25] could be a starting point to provide
inspiration for what features users might expect.

More structural actions Currently only HotDrink components can be created or
removed with HDScript. The DSL could be expanded, and actions created, to more
easily alter the internal structure (i.e., constraints, methods, or variables) of components.
Listing 7.1, Listing 7.2, and Listing 7.3 give suggestions for additional actions as DSL
statements.

1 // Add a new method called ‘‘method_id ’’ to the constraint
2 // ‘‘constraint_id ’’ in the component ‘‘comp_id ’’.
3 # addMethod comp_id constraint_id method_id <<method >>;
4
5 // Remove the method defined above
6 # removeMethod comp_id constraint_id method_id ;

Listing 7.1: Potential syntax to manipulate methods. The «method» expression should
define input and output variables of the method, together with its actual function. The
syntax for «method» could be borrowed from HotDrink’s DSL e.g., (a -> b) => a * 2.

1 // Remove the constraint ‘‘constraint_id ’’ in the component ‘‘comp_id ’’
2 # removeConstraint comp_id constraint_id ;

Listing 7.2: Suggested syntax to remove a constraint.

55

1 // Add a new variable with the name ‘‘variable_id ’’ in the component
↪→ ‘‘comp_id ’’

2 # addVariable comp_id variable_id ;
3
4 // Remove the variable ‘‘variable_id ’’ in the component ‘‘comp_id ’’
5 # removeVariable comp_id variable_id ;

Listing 7.3: Suggested syntax to add and remove variables in a component.

56

Glossary

API Application Programming Interface.
AST Abstract Syntax Tree.
DSL Domain Specific Language.
GIMP GNU Image Manipulation Program.
GUI Graphical User Interface.
IDE Integrated Development Environment.
MVVM Model–View–View-Model.
RPA Robotic Process Automation.
UI User Interface.
VBA Visual Basic for Applications.

57

Bibliography

[1] About AppleScript.
URL: https://developer.apple.com/library/archive/documentation/AppleScript/

Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html#//apple_ref/doc/uid/

20000032-BABEBGCF. [Accessed on 2021-11-30].

[2] Mac Automation Scripting Guide: Getting to Know Script Editor.
URL: https://developer.apple.com/library/archive/documentation/

LanguagesUtilities/Conceptual/MacAutomationScriptingGuide/GettoKnowScriptEditor.

html. [Accessed on 2021-11-30].

[3] AppleScript: Graphic User Interface (GUI) Scripting.
URL: https://www.macosxautomation.com/applescript/uiscripting/index.html.
[Accessed on 2021-11-30].

[4] ECMAScript—ECMA-262.
URL: https://www.ecma-international.org/publications-and-standards/standards/

ecma-262/. [Accessed on 2022-05-11].

[5] Office Scripts in Excel on the web—Office Scripts.
URL: https://docs.microsoft.com/en-us/office/dev/scripts/overview/excel.
[Accessed on 2021-11-26].

[6] The “Python-Fu” Submenu.
URL: https://docs.gimp.org/en/gimp-filters-python-fu.html. [Accessed on 2021-12-
01].

[7] Using Script-Fu Scripts.
URL: https://docs.gimp.org/en/gimp-concepts-script-fu.html. [Accessed on 2021-
11-26].

[8] GIMP #.
URL: http://gimp-sharp.sourceforge.net/index.html. [Accessed on 2021-11-26].

58

https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html#//apple_ref/doc/uid/20000032-BABEBGCF
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html#//apple_ref/doc/uid/20000032-BABEBGCF
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html#//apple_ref/doc/uid/20000032-BABEBGCF
https://developer.apple.com/library/archive/documentation/LanguagesUtilities/Conceptual/MacAutomationScriptingGuide/GettoKnowScriptEditor.html
https://developer.apple.com/library/archive/documentation/LanguagesUtilities/Conceptual/MacAutomationScriptingGuide/GettoKnowScriptEditor.html
https://developer.apple.com/library/archive/documentation/LanguagesUtilities/Conceptual/MacAutomationScriptingGuide/GettoKnowScriptEditor.html
https://www.macosxautomation.com/applescript/uiscripting/index.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://docs.microsoft.com/en-us/office/dev/scripts/overview/excel
https://docs.gimp.org/en/gimp-filters-python-fu.html
https://docs.gimp.org/en/gimp-concepts-script-fu.html
http://gimp-sharp.sourceforge.net/index.html

[9] Date—JavaScript | MDN.
URL: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Date. [Accessed on 2022-05-20].

[10] Primitive—MDN Web Docs Glossary: Definitions of Web-related terms | MDN.
URL: https://developer.mozilla.org/en-US/docs/Glossary/Primitive. [Accessed on
2022-05-20].

[11] JUnit 4.
URL: https://junit.org/junit4/. [Accessed on 2022-01-21].

[12] The Programming Language Lua.
URL: https://www.lua.org/. [Accessed on 2022-05-11].

[13] Differences between Office Scripts and VBA macros—Office Scripts.
URL: https://docs.microsoft.com/en-us/office/dev/scripts/resources/

vba-differences. [Accessed on 2021-12-01].

[14] Mocha.
URL: https://mochajs.org/. [Accessed on 2022-01-21].

[15] Stack Overflow Developer Survey 2021.
URL: https://insights.stackoverflow.com/survey/2021#

most-popular-technologies-language. [Accessed on 2021-11-25].

[16] Language variables basics.
URL: https://www.php.net/manual/en/language.variables.basics.php.

[17] Adobe Photoshop Scripting Guide.
URL: https://github.com/Adobe-CEP/CEP-Resources/blob/

71f7620966141ac144f7e85f70d3f27a84e1f7fb/Documentation/Product%20specific%

20Documentation/Photoshop%20Scripting/photoshop-scripting-guide-2020.pdf.
[Accessed on 2021-11-25].

[18] Pytest.
URL: https://docs.pytest.org/en/6.2.x/. [Accessed on 2022-01-21].

[19] Python.
URL: https://www.python.org/. [Accessed on 2022-05-11].

[20] General Python FAQ.
URL: https://docs.python.org/3/faq/general.html#id4. [Accessed on 2022-05-13].

59

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://junit.org/junit4/
https://www.lua.org/
https://docs.microsoft.com/en-us/office/dev/scripts/resources/vba-differences
https://docs.microsoft.com/en-us/office/dev/scripts/resources/vba-differences
https://mochajs.org/
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://www.php.net/manual/en/language.variables.basics.php
https://github.com/Adobe-CEP/CEP-Resources/blob/71f7620966141ac144f7e85f70d3f27a84e1f7fb/Documentation/Product%20specific%20Documentation/Photoshop%20Scripting/photoshop-scripting-guide-2020.pdf
https://github.com/Adobe-CEP/CEP-Resources/blob/71f7620966141ac144f7e85f70d3f27a84e1f7fb/Documentation/Product%20specific%20Documentation/Photoshop%20Scripting/photoshop-scripting-guide-2020.pdf
https://github.com/Adobe-CEP/CEP-Resources/blob/71f7620966141ac144f7e85f70d3f27a84e1f7fb/Documentation/Product%20specific%20Documentation/Photoshop%20Scripting/photoshop-scripting-guide-2020.pdf
https://docs.pytest.org/en/6.2.x/
https://www.python.org/
https://docs.python.org/3/faq/general.html#id4

[21] Design Principles – React.
URL: https://reactjs.org/docs/design-principles.html. [Accessed on 2022-03-13].

[22] SAP GUI Scripting.
URL: https://wiki.scn.sap.com/wiki/display/ATopics/SAP+GUI+Scripting. [Accessed
on 2022-01-27].

[23] Scripting with AppleScript.
URL: https://developer.apple.com/library/archive/documentation/AppleScript/

Conceptual/AppleScriptX/Concepts/work_with_as.html#%2F%2Fapple_ref%2Fdoc%2Fuid%

2FTP40001568=. [Accessed on 2022-04-23].

[24] Selenium.
URL: https://www.selenium.dev/. [Accessed on 2021-11-25].

[25] Selenium IDE.
URL: https://selenium.dev/selenium-ide/index.html. [Accessed on 2021-11-25].

[26] Selenium WebDriver.
URL: https://www.selenium.dev/documentation/webdriver/. [Accessed on 2021-11-
25].

[27] Javascript—Getting All Variables In Scope—Stack Overflow.
URL: https://stackoverflow.com/questions/2051678/getting-all-variables-in-scope.
[Accessed on 2021-12-13].

[28] TypeScript.
URL: https://www.typescriptlang.org/. [Accessed on 2021-11-26].

[29] Ms Office—Word Template : Executing VBA macro on a graphical button click.
URL: https://stackoverflow.com/questions/18174819/word-template-executing-vba-macro-on-a-graphical-button-click.
[Accessed on 2022-04-23].

[30] Quick Steps! Create an action now to save time.
URL: https://community.adobe.com/t5/photoshop-ecosystem-discussions/

quick-steps-create-an-action-now-to-save-time/m-p/10844134#M358390. [Accessed on
2022-04-23].

[31] David William Barron. The World of Scripting Languages. The Worldwide se-
ries in Computer Science. John Wiley & Sons Inc, 1 edition, August 2000. ISBN
9780471998860.

60

https://reactjs.org/docs/design-principles.html
https://wiki.scn.sap.com/wiki/display/ATopics/SAP+GUI+Scripting
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/work_with_as.html#%2F%2Fapple_ref%2Fdoc%2Fuid%2FTP40001568=
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/work_with_as.html#%2F%2Fapple_ref%2Fdoc%2Fuid%2FTP40001568=
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/work_with_as.html#%2F%2Fapple_ref%2Fdoc%2Fuid%2FTP40001568=
https://www.selenium.dev/
https://selenium.dev/selenium-ide/index.html
https://www.selenium.dev/documentation/webdriver/
https://stackoverflow.com/questions/2051678/getting-all-variables-in-scope
https://www.typescriptlang.org/
https://stackoverflow.com/questions/18174819/word-template-executing-vba-macro-on-a-graphical-button-click
https://community.adobe.com/t5/photoshop-ecosystem-discussions/quick-steps-create-an-action-now-to-save-time/m-p/10844134#M358390
https://community.adobe.com/t5/photoshop-ecosystem-discussions/quick-steps-create-an-action-now-to-save-time/m-p/10844134#M358390

[32] Daniel Berge. Seven tasks implemented using HotDrink.
URL: https://github.com/DanielBerge/7-tasks-hotdrink/blob/

f8fb13d27c4feeecf6d200a01d2aec863920b7b6/counter/counter.js. [Accessed on
2022-04-27].

[33] Christian Cohrs and Gisbert Loff. The SAP GUI Scripting API How to Automate
User Interaction—Technology, Examples and Integration.
URL: http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/

80aaac18-2dfe-2a10-bbb1-ec9b3760ea4c.

[34] William R. Cook. AppleScript. In Proceedings of the third ACM SIGPLAN confer-
ence on History of programming languages, HOPL III, pages 1–1–1–21, New York,
NY, USA, June 2007. Association for Computing Machinery. ISBN 9781595937667.
doi: 10.1145/1238844.1238845.
URL: https://doi.org/10.1145/1238844.1238845.

[35] John Freeman, Jaakko Järvi, and Gabriel Foust. HotDrink: a library for web user
interfaces. In Proceedings of the 11th International Conference on Generative Pro-
gramming and Component Engineering—GPCE ’12, page 80, Dresden, Germany,
2012. ACM Press. ISBN 9781450311298. doi: 10.1145/2371401.2371413.
URL: http://dl.acm.org/citation.cfm?doid=2371401.2371413.

[36] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. An incremental con-
straint solver. Communications of the ACM, 33(1):54–63, January 1990. ISSN 0001-
0782. doi: 10.1145/76372.77531.
URL: https://doi.org/10.1145/76372.77531. [Accessed on 2022-03-25].

[37] John Gossman. Introduction to Model/View/ViewModel pattern for building WPF
apps—Tales from the Smart Client—Site Home—MSDN Blogs.
URL: https://web.archive.org/web/20100601093702/http://blogs.msdn.com/b/

johngossman/archive/2005/10/08/478683.aspx. [Accessed on 2022-01-19]. Archived
from the original http://blogs.msdn.com/b/johngossman/archive/2005/10/08/
478683.aspx.

[38] Ed J. GIMP—A Tutorial for GIMP-Perl Users.
URL: https://www.gimp.org/tutorials/Basic_Perl/. [Accessed on 2021-12-01].

[39] Jaakko Järvi. HotDrink git repository.
URL: https://git.app.uib.no/Jaakko.Jarvi/hd4. [Accessed on 2022-05-20].

61

https://github.com/DanielBerge/7-tasks-hotdrink/blob/f8fb13d27c4feeecf6d200a01d2aec863920b7b6/counter/counter.js
https://github.com/DanielBerge/7-tasks-hotdrink/blob/f8fb13d27c4feeecf6d200a01d2aec863920b7b6/counter/counter.js
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/80aaac18-2dfe-2a10-bbb1-ec9b3760ea4c
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/80aaac18-2dfe-2a10-bbb1-ec9b3760ea4c
https://doi.org/10.1145/1238844.1238845
http://dl.acm.org/citation.cfm?doid=2371401.2371413
https://doi.org/10.1145/76372.77531
https://web.archive.org/web/20100601093702/http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
https://web.archive.org/web/20100601093702/http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
https://www.gimp.org/tutorials/Basic_Perl/
https://git.app.uib.no/Jaakko.Jarvi/hd4

[40] Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Prop-
erty models: from incidental algorithms to reusable components. In Proceedings of
the 7th international conference on Generative programming and component engi-
neering, GPCE ’08, pages 89–98, New York, NY, USA, October 2008. Association
for Computing Machinery. ISBN 9781605582672. doi: 10.1145/1449913.1449927.
URL: https://doi.org/10.1145/1449913.1449927.

[41] Michael Sannella. Skyblue: a multi-way local propagation constraint solver for user
interface construction. In Proceedings of the 7th annual ACM symposium on User
interface software and technology, UIST ’94, pages 137–146, New York, NY, USA,
November 1994. Association for Computing Machinery. ISBN 9780897916578. doi:
10.1145/192426.192485.
URL: https://doi.org/10.1145/192426.192485.

[42] UiPath. The Impact of RPA on Employee Experience.
URL: https://www.uipath.com/resources/automation-analyst-reports/

forrester-employee-experience-rpa.

[43] Wil M. P. van der Aalst, Martin Bichler, and Armin Heinzl. Robotic Process Automa-
tion. Business & Information Systems Engineering, 60(4):269–272, August 2018.
ISSN 2363-7005, 1867-0202. doi: 10.1007/s12599-018-0542-4.
URL: http://link.springer.com/10.1007/s12599-018-0542-4. [Accessed on 2021-11-
25].

62

https://doi.org/10.1145/1449913.1449927
https://doi.org/10.1145/192426.192485
https://www.uipath.com/resources/automation-analyst-reports/forrester-employee-experience-rpa
https://www.uipath.com/resources/automation-analyst-reports/forrester-employee-experience-rpa
http://link.springer.com/10.1007/s12599-018-0542-4

Appendix A

Formal HDScript DSL Syntax

We define the formal syntax of HDScript’s DSL in Extended Backus-Naur Form (EBNF)
with Listing A.1.

1 digit = "0".."9" ;
2 letter = "a".."z" | "A".."Z" ;
3 letter_plus = letter | "_" | "$" ;
4 dig_let = digit | letter_plus ;
5 whitespace = " " | "\t" | "\n" | "\r" ;
6 identifier = letter_plus { dig_let } ;
7 var_ref = { whitespace } identifier "." identifier { whitespace } ;
8 var_ref_list = var_ref { "," { whitespace } var_ref } ;
9

10 # For js code essentially allow all ASCII characters
11 js_code = { whitespace } { " ".."|" } { whitespace } ;
12
13 assign_constant = var_ref "=" js_code ;
14 assign_non_constant = var_ref ("-" | "+" | "*" | "/" | "|" | "&" |

↪→ "%" | "ˆ" "||" | "&&" | " >>>" | ">>" | "<<" | "**" | "??") "="
↪→ js_code ;

15 assign_left_to_right_value = var_ref "=" var_ref ;
16 assign_left_to_right_variable = var_ref "=&" var_ref ;
17 add_component = { whitespace } "# AddComponent " js_code ;
18 remove_component = { whitespace } "# RemoveComponent " js_code ;
19 schedule_command = { whitespace } "(" var_ref_list "->" var_ref_list

↪→ ")" js_code ;
20 custom_action = { whitespace } "# custom " { whitespace } identifier {

↪→ whitespace };
21
22 line = assign_constant | assign_non_constant |

↪→ assign_left_to_right_value | assign_left_to_right_variable |
↪→ add_component | remove_component | schedule_command |
↪→ custom_action ";" ;

23 script = { line } ;

Listing A.1: Formal syntax of HDScript’s DSL in EBNF.

63

	Introduction
	Background
	Scripting Languages
	Automating User Interfaces

	Model–View–View-Model Pattern
	Multi-way Dataflow Constraint Systems
	HotDrink Framework
	Binding the View and View-model in HotDrink
	Asynchronous Methods

	HDScript: Scripting in Graphical User Interfaces
	Image Resize Application
	Spreadsheet Application

	Implementing HDScript
	Action Recorder
	Automatically Starting the System Recorder

	HDScript DSL
	Script Actions Types
	Assignment Actions
	Modification Actions
	Linking Action
	Schedule Command Action
	Component Actions

	Recognizing User's Intent
	Dynamic Constraint Systems
	Guidelines for a Scriptable Dynamic Constraint System
	Custom Actions
	Other Attempted Solutions
	Example of a Dynamic Constraint system

	Related Work
	Scriptable GUIs
	GNU Image Manipulation Program
	Microsoft Word and Excel
	Adobe Suite
	SAP GUI Scripting

	External Automation
	Selenium
	AppleScript

	Summary

	Evaluation
	HotDrink-less Image Resize Application
	Comparison

	Conclusion and Future Work
	Glossary
	Bibliography
	Formal HDScript DSL Syntax

