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Metabolic flux analysis of 3D spheroids 
reveals significant differences in glucose 
metabolism from matched 2D cultures 
of colorectal cancer and pancreatic ductal 
adenocarcinoma cell lines
Tia R. Tidwell1, Gro V. Røsland2,3, Karl Johan Tronstad2, Kjetil Søreide4 and Hanne R. Hagland1*    

Abstract 

Background:  Most in vitro cancer cell experiments have been performed using 2D models. However, 3D spheroid 
cultures are increasingly favored for being more representative of in vivo tumor conditions. To overcome the transla-
tional challenges with 2D cell cultures, 3D systems better model more complex cell-to-cell contact and nutrient levels 
present in a tumor, improving our understanding of cancer complexity. Despite this need, there are few reports on 
how 3D cultures differ metabolically from 2D cultures.

Methods:  Well-described cell lines from colorectal cancer (HCT116 and SW948) and pancreatic ductal adenocarci-
noma (Panc-1 and MIA-Pa-Ca-2) were used to investigate metabolism in 3D spheroid models. The metabolic variation 
under normal glucose conditions were investigated comparing 2D and 3D cultures by metabolic flux analysis and 
expression of key metabolic proteins.

Results:  We find significant differences in glucose metabolism of 3D cultures compared to 2D cultures, both related 
to glycolysis and oxidative phosphorylation. Spheroids have higher ATP-linked respiration in standard nutrient 
conditions and higher non-aerobic ATP production in the absence of supplemented glucose. In addition, ATP-linked 
respiration is significantly inversely correlated with OCR/ECAR (p = 0.0096). Mitochondrial transport protein, TOMM20, 
expression decreases in all spheroid models compared to 2D, and monocarboxylate transporter (MCT) expression 
increases in 3 of the 4 spheroid models.

Conclusions:  In this study of CRC and PDAC cell lines, we demonstrate that glucose metabolism in 3D spheroids 
differs significantly from 2D cultures, both in terms of glycolytic and oxidative phosphorylation metrics. The metabolic 
phenotype shift from 2D to 3D culture in one cell line is greater than the phenotypic differences between each cell 
line and tumor source. The results herein emphasize the need to use 3D cell models for investigating nutrient utiliza-
tion and metabolic flux for a better understanding of tumor metabolism and potential metabolic therapeutic targets.
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Background
Cellular metabolism is tightly controlled and serves 
an essential function for normal growth and survival. 
Since the identification of an altered metabolic state in 
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cancer by Warburg almost 100 years ago [1], the impor-
tance of cancer metabolism for the understanding of 
tumor biology [2] and its potential for clinical target-
ing has been recognized [3]. The complexity of cancer 
metabolism has become a major research area [4], con-
tributing to many studies investigating the metabolic 
heterogeneity of tumors [5] mainly driven by perfusion-
limited nutrient access [6]. Common methods used 
to investigate cancer metabolism range from metabo-
lomics and gene expression to protein expression, and 
live metabolic flux analysis. However, metabolic flex-
ibility, with regard to nutrient stress, is best studied in 
real time. The cellular growth conditions and ability to 
adapt to nutrient stress has an effect on cells’ response 
to drug treatment [7].

Notably, the majority of cancer drug testing has been 
done in 2D cultures [8]. However, 3D cancer cell mod-
els are proposed as improved models for initial drug 
screening [9], based on their ability to model cell-cell 
interactions and natural nutrient gradients occurring in 
an avascular or poorly vascularized tumor microenvi-
ronment [9–11]. Therefore, it is important to study how 
growth and metabolism differ between the conventional 
2D models and the emerging spheroid 3D models. Of 
concern, 3D cancer models are more cumbersome to 
grow, study, and evaluate for therapy response [12]. Since 
the first publication on cancer spheroids in 1971 [13], 3D 
culturing comprise a mere 1.7% of publications indexed 
in PubMed using cell lines in cancer research. Hence, 
there is a void of data from 3D models, and even more 
so for comparative experiments between 2D and 3D 
cultures.

Whereas cancer spheroid metabolism has largely been 
studied using omics [14, 15] and tracing [16] approaches, 
assessment of metabolic flux in cancer spheroids remains 
limited [17, 18]. Metabolic flux assessments can be per-
formed in  vitro by using the Seahorse XF Analyzers to 
measure how cells tolerate stressors such as drugs or tox-
ins by altering their metabolism.

To better understand how 3D spheroid growth and 
metabolism differ from corresponding 2D-grown cells, 
we performed parallel studies evaluating a range of 
metabolic flux parameters and related metabolic pro-
tein markers in the colon cancer cell lines SW948 and 
HCT116 and the pancreatic cancer cell lines Panc1 and 
MIA-Pa-Ca-2. To maintain the 3D cell cultures close to 
the glucose levels found in vivo [19], all experiments were 
performed using 5 mmol/L glucose in growth medium. 
In comparison, most cell culture media contain 25 
mmol/L glucose. In the presented study, we show how 
growth rates, live metabolic flux measurements, sub-
strate utilization, and related metabolic biomarkers cor-
relate in corresponding 2D and 3D cell models.

Methods
Cell culture
Cell lines were chosen based on published results on 
metabolism [20, 21], and spheroid production [22–29]. 
The goal was to achieve some metabolic variation among 
the cell lines, so lines were chosen that were purported 
to differ in their dependence on glycolysis and oxidative 
phosphorylation. Since 3D culture was essential to this 
study, only cell lines that had already been confirmed to 
produce spheroids were considered. This led to the selec-
tion of SW948 and HCT116, colorectal cancer (CRC) 
lines, and Panc1 and MIA-Pa-Ca-2, pancreatic ductal 
adenocarcinoma (PDAC) cell lines.

SW948 and MIA Pa-Ca-2 were purchased from 
European Collection of Authenticated Cell Cultures 
(ECACC), Panc1 and HCT116 cell lines were generously 
provided by collaborators at the Stavanger University 
Hospital Molecular Biology Lab. All cell lines were cul-
tured in DMEM (Corning, Corning, USA) supplemented 
with 10% fetal bovine serum (FBS) (BioWest, Nuaillé, 
France), 5 mM glucose (Sigma-Aldrich, St. Louis, USA), 
2 mM l-glutamine (Corning, Corning, USA), penicillin 
(100 U/ml), streptomycin (100 μg/ml) (Merck Millipore 
Corporation, Burlington, USA) in a humidified incuba-
tor at 37 °C with 5% CO2 infusion. Cells were grown in 
2D adherent culture conditions, from which spheroids 
were prepared before each experiment. Spheroids were 
formed from a 40-μl volume of detached single-cell 
suspensions with 5000 cells, either in hanging drops in 
a dish, or in CELLSTAR cell repellent U-bottom plates 
(Greiner Bio-One, Kremsmünster, Austria). Spheroids 
were grown for 3 days (CRC) or 4 days (PDAC) before 
conducting metabolic assays.

2D doubling time
Cells were seeded in flat-bottom 96-well plate at a density 
of 5000 cells/well. At each timepoint, 3 wells were stained 
with Hoechst and the entire well imaged using Leica SP8 
confocal microscope (Leica Microsystems, Mannheim, 
Germany) for direct cell detection and counting in the 
LASX software.

Spheroid growth
Spheroids were cultured in U-bottom plates as described 
above, but in densities from 200 cells/well to 10,000 cells/
well. Transmitted light images of the spheroids were cap-
tured on days 3, 4, 6, and 8 using the Leica SP8 confocal 
microscope. Images were analyzed in ImageJ to obtain 
the cross-sectional area of the spheroid.

Metabolic flux assays
Mitochondrial respiration and glycolysis were meas-
ured using the Seahorse XF96e and XFp flux analyzers 
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(Agilent). For mitochondrial oxygen measurements, 
assay media consisted of unbuffered, serum-free DMEM 
8.3 g/L (D5030, Sigma-Aldrich, St. Louis, USA), NaCl 
1.85 g/L, 2 mM l-glutamine, and 5 mM glucose adjusted 
pH to 7.4 before running the experiment. Before run-
ning mitochondrial and glycolysis assays, titration of 
CCCP over a range of concentrations was performed as 
per the Seahorse cell characterization procedure. The 
CCCP concentration chosen was that which yielded 
the maximum OCR value, for each cell line and culture 
method (Table S2).

2D assays
One day prior to assay analysis, 10,000 cells were seeded 
in each well of a XF96e cell culture plate using culture 
media as described above. Approximately 1 h before the 
assays, culture media was exchanged for 180 μl assay 
media. The plates were then incubated at 37 °C in a 
CO2-free incubator for 45 min–1 h prior to running the 
assay. Oxygen consumption rate (OCR) and extracellular 
acidification rate (ECAR) were measured over 90 min (15 
mix and measure cycles), with compounds being injected 
every 3 cycles. For the mitochondrial respiration assays, 
the following compounds were injected sequentially (final 
concentrations in the wells): oligomycin (3 μM), CCCP 
(0.5 μM), rotenone (1 μM), and antimycin A (AMA, 1 
μM) (all compound reagents from Sigma-Aldrich, St. 
Louis, USA). For the glycolysis assays, the assay media 
was not supplemented with glucose and the following 
compounds were injected sequentially (final concentra-
tions in the wells): glucose (10 mM), oligomycin (3 μM), 
and 2-deoxy-D-glucose (100 mM). Protein concentration 
was measured in each well for normalization using stand-
ard BCA assay (PanReac AppliChem, Darmstadt, Ger-
many) according to manufacturer’s instructions.

3D assays
Spheroid cell culture plates were used for the XF96e 
assays. Each well was coated with 25 μl CellTak (Corning, 
Corning, USA) at a concentration of 33 μg/ml. Spheroids 
were transferred from hanging drops and placed in the 
centers of wells in the spheroid assay, which contained 
160 μl assay media. Plates were then incubated at 37 °C 
in a CO2-free incubator for 45 min–1 h prior to running 
the assay. OCR and ECAR were measured over 150 min 
(23 mix and measure cycles). For the mitochondrial res-
piration assays, the following compounds were injected 
sequentially (final concentrations in the wells): oligo-
mycin after cycle 3 (3 μM), CCCP after cycle 9 (cell line 
dependent, see Table S2), rotenone after cycle 15 (1 μM), 
and antimycin A after cycle 19 (1 μM). For the glycolysis 
assays, the assay media consisted of unbuffered, serum-
free DMEM 8.3 g/L, NaCl 1.85 g/L, 2 mM l-glutamine, 

adjusted pH to 7.4 before running the experiment and 
the following compounds were injected sequentially 
(final concentrations in the wells): glucose after cycle 3 
(10 mM), oligomycin after cycle 9 (3 μM), and 2-deoxy-
D-glucose after cycle 15 (100 mM). To use the data for 
comparison of metabolic phenotypes across cell models 
regardless of absolute metabolic activity, OCR and ECAR 
were normalized to basal OCR levels (MST) and ECAR 
level after glucose injection (GST). Statistical significance 
was determined in GraphPad using ordinary one-way 
ANOVA, correction for multiple comparisons by the 
Sidak method, with alpha = 0.05.

ATP production calculations
Buffer Factor of assay media was calculated using the 
Agilent Seahorse XF Buffer Factor Protocol. This num-
ber (1.70 mM/pH) was then used for the calculation of 
the ATP production rate after each injection following 
the information contained in the Agilent White Paper: 
“Quantifying Cellular ATP Production Rate Using Agi-
lent Seahorse XF Technology” and Mookerjee et al .[30], 
according to the following equations:

The buffer factor was converted to a buffering power 
(BP) of 0.258 mpH/pmol H+ and combined with data 
from the glycolysis assays and residual OCR after AMA 
from mitochondrial stress test, run in parallel to GST. 
The total proton production rate (PPR) is found by 
dividing ECAR by BP (Eq.  1) and can be broken down 
into PPRresp and PPRglyc, with the PPRresp being from all 
mitochondrial oxygen consumption (non-mitochondrial 
is subtracted) (Eq. 2) where pH = 7.4 and pKCO2→HCO3 
= 6.093. PPRglyc is the PPRtotal minus PPRresp (Eq. 3). The 
PPR is converted to ATP by calculations using known 
values for mol ATP yielded per mol oxygen consumed 
(P/O ratio). The result is ATPglyc (Eq.  4) that incorpo-
rates all ATP produced through glycolysis, including 
that which ends in lactate production or pyruvate that is 
shuttled to mitochondria resulting in production of CO2 

(1)PPRtotal = ECAR/BP

(2)PPRresp =
(

10pH−pKCO2→HCO3∕
(

1 + 10pH−pKCO2→HCO3
))

∙OCRmito

(3)PPRglyc = PPRtotal − PPRresp

(4)
ATPglyc =

[

PPRglyc • ATP/lactate
]

+ [OCRmito· 2P/O]

(5)
ATPox =

[

OCRcoupled • 2P/O
]

+ [OCRmito· 2P/O]

(6)ATPtotal = ATPglyc + ATPox
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(conversion of CO2 to bicarbonate is a major source of 
extracellular acidification in Seahorse assays [31] due to 
the use of unbuffered media). In the last case, this may 
or may not be coupled to ATP production via OXPHOS. 
Metabolic phenotypes are described using the bioener-
getic indices also described in Mookerjee et al. [30].

The Glycolytic Index (GI) is a way to normalize 
between samples, allowing comparison of pheno-
type and contribution of glycolysis to ATP production 
regardless of changes in absolute ATP production 
rates (Eq.  7). The Crabtree Index (CI) quantifies the 
shift away from OXPHOS upon addition of glucose 
(Eq.  8) and The Pasteur Index (PI) quantifies the shift 
to OXPHOS upon “removal” of mitochondrial inhibitor 
oligomycin (Eq.  9). Statistical significance was deter-
mined in GraphPad using multiple t tests, correction 
for multiple comparisons by the Holm-Sidak method, 
with alpha = 0.05.

Metabolite assays
Media was collected from spheroids grown in ULA 
round-bottom 96-well plates and 2D cultures from 
flat 96-well plates, at days 0, 2, and 4, with no refeed-
ing of media during this period. Day 0 for spheroids is 
culture day 3 for CRC spheroids and day 4 for PDAC 
spheroids and on this day they received full media 
exchange. The media from each timepoint was then 
used in the metabolite assays. Glucose concentration 
was assayed using the GlucCell glucose monitoring 
system (Cesco Bioengineering, Taichungy, Taiwan) 
according to the manufacturer’s instructions. Lactate 
was assayed using the l-Lactate Assay Kit (MAK329, 
Sigma-Aldrich, St. Louis, USA) according to the man-
ufacturer’s instructions. Glutamine was assayed using 
the Glutamine/Glutamate Determination Kit (GLN1, 
Sigma-Aldrich, St. Louis, USA), adjusted for a low 
volume assay in a microplate. These results include 
both glutamine and endogenous glutamate. All values 
are presented normalized to surface area of cultures 
grown for equivalent period as that in the. Surface area 
in 2D was obtained from area measured in images on 
day 4 from the proliferation experiments. Surface area 
in 3D was estimated from area of spheroids in growth 
experiments after the same time in culture and extrap-
olated to the surface area of sphere, A = 4·π·r2.

(7)GI = 100
(

ATPglyc/ATPtotal
)

(8)CI = GIglucose −GIbasal

(9)PI = GIoligo −GIglucose

Protein expression
Expression of metabolic proteins (MCT1, MCT4, 
GLUT1, UCP2, TOMM20) was measured by flow cytom-
etry. Spheroids (approximately n = 600) comprised of 
10,000 cells were produced and grown for 3–4 days 
before collection and dissociation using Accutase (Inno-
vative Cell Technologies, Inc., San Diego). The spheroids 
were collected by rinsing plates with PBS and placed in 
a centrifuge tube. After centrifuging 5 min at 100 RCF, 
the supernatant was discarded and the pellet was resus-
pended in 5 ml Accutase. The tubes were placed on a 
rocker at room temperature and resuspended every 10 
min using a P1000 pipet to gently disrupt the spheroids. 
Adherent cells were collected on the same day as the 
spheroids, also detached using Accutase. The cell lines 
varied considerably in incubation time needed for com-
plete detachment and dissociation. Cell suspensions were 
counted using a Muse cell analyzer and Muse count and 
viability assay (Luminex, Austin, USA). The cell suspen-
sions were then fixed with 3.7% PFA for 30 min. Cells 
were kept in PBS until staining. 5 × 105 cells were used 
for each staining reaction (at 1 × 106 cells/ml). Each tube 
was incubated in blocking/permeabilization buffer (PBS, 
20% FCS, 0.05% Tween 20) for 1 h at room temp, rinsed 
with PBS before adding primary antibodies (single stain 
per tube) and incubated overnight at 4 °C, rocking. The 
next day, they were rinsed with PBS and the secondary 
antibodies were added, with the exception of unstained 
control and the tubes stained with conjugated TOMM20 
antibody. Finally, cells were rinsed and resuspended in 
PBS containing 0.5% BSA for analysis in Bio-Rad S3e 
(Bio-Rad Laboratories, Hercules, USA) (experimen-
tal replicates 1 and 2) and CytoFlex (Beckman Coulter, 
Brea, USA) (experimental replicate 3). Primary antibod-
ies: Rabbit Anti-Glucose Transporter GLUT1 antibody, 
EPR3915 (Abcam, Amsterdam, Netherlands); Mouse 
MCT1 Antibody SC-365501 and Mouse MCT4 Antibody 
SC-376140 (Santa Cruz Biotechnology, Dallas, USA); 
Rabbit UCP2 antibody (Bioss Antibodies Inc., Woburn, 
USA); Llama anti-rabbit IgG polyclonal antibody, CF™ 
488A and anti-mouse IgG polyclonal antibody, CF™ 
488A (Biotium, Fremont, USA). Datasets were analyzed 
using FCS Express (De Novo Software, Pasadena, USA), 
gated to singlet populations, and the median values were 
compared in ratios of 3D to 2D.

Results
Characterization of cell lines in 2D and 3D culture
Cell proliferation rate and cell doubling time are affected 
by cell growth conditions. To determine the cell doubling 
time of each cell line used when grown in physiological 
glucose conditions, direct cell counting using Hoechst 
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staining was performed over a period of 5 days (Fig.  1, 
left column). HCT116 has the shortest doubling time of 
17.9 h (Fig.  1A), compared to the other colorectal cell 
line, SW948, which was 10 h longer with 27.9 h doubling 
time (Fig. 1C). For the pancreatic cell lines, the doubling 
time of Panc1 is 24.8 h (Fig. 1E), versus 28.8 h for MIA-
Pa-Ca-2 (Fig. 1G).

Spheroids were formed from each cell line, using cell 
numbers ranging from 200 to 10,000 cells, and growth was 
monitored during 8 days (Fig. 1B, D, F, H). Representative 
images of the 3D spheroids are shown in supplementary 
data (Figure  S1). The initial size measurement was per-
formed on day 3 after 3D spheroid formation. The colo-
rectal cancer cell line HCT116 forms spheroids that are 
compact in size and where cells are indistinguishable from 
another (Figure  S1). The size of spheroids ranged from 
0.04 mm2 in cross-sectional area formed from 200 cells to 
0.45 mm2 from spheroids formed by 10,000 cells (Fig. 1B). 
Over the following 5 days of measurement the lowest cell 
density of 200 cells increased 10-fold in area to 0.40 mm2, 
whereas the highest cell density of 10 000 cells increased 
only 3-fold to 1.21 mm2 from the initial measurement. The 
other colorectal cancer cell line, SW948 also form compact 
spheroids of similar size as HCT116 starting from 0.06 
mm2 from 200 cells, to 0.73 mm2 formed from 10,000 cells. 
The spheroid growth for the lowest cell density increases 
by 8-fold (0.49 mm2) over the 5 days whereas the highest 
cell density is nearly quadruples in size to 2.87 mm2 in the 
same time period (Fig. 1D). HCT116 spheroids are more 
spherical and vary less in size than SW948, based on vis-
ual inspection and standard deviation of measurements. 
The CRC spheroids start developing a dark necrotic core 
by day 3 which is more pronounced in SW948, and have 
a tendency to fracture and lose their structural integrity 
once they reach larger sizes (Figure S2).

Panc1 forms spheroids with a clear edge and single cells 
remain distinguishable (Figure S1). Spheroids range from 
0.04 mm2 (200 cells) to 0.76 mm2 (10,000 cells) in area and 
grow to 0.23 mm2 (200 cells) and 1.04 mm2 (10,000 cells). 
MIA-Pa-Ca-2 form large spheroids that are easily dissoci-
ated and with an irregular shape (Figure S1). These sphe-
roids are in general larger in size ranging from 0.15 mm2 
(200 cells) to 2.08 mm2 (10,000 cells), and exhibit less 
growth compared to the other cell lines over the 8 days of 
size measurements (Fig. 1H). Panc1 develops a dark core 
and at a later time point than seen for the CRC cell lines 
(day 6 in 5000-cell spheroids), while this darker core is not 

detected in MIA-Pa-Ca-2 over the 8 days of size measure-
ments (Figure S2). 2D characteristics and cell appearance 
were not predictive of 3D spheroid morphology (Fig-
ure S1). Nor was there an apparent relationship between 
doubling time in 2D and size or growth in 3D.

Basal ATP‑linked respiration is increased in 3D cultures, 
compared to 2D
Real-time metabolic flux was assessed in 2D and 3D 
using the Seahorse XFe96 system (Fig. 2A, B). OCR and 
ECAR from the Mitochondrial Stress Test (MST) and 
Glycolysis Stress Test (GST) were used to calculate rele-
vant metabolic metrics for more information on the phe-
notypes of the cell lines in 2D and 3D, relative to either 
basal OCR (MST, Fig. 2) or ECAR after glucose injection 
(GST, Fig. 3). The spheroids were also assayed using the 
Seahorse XFp system (Figure S3) and MST. Protein nor-
malization was performed for OCR and ECAR values in 
2D and 3D (Figure S4).

In HCT116 (Fig. 2C), the respiration-linked ATP pro-
duction increases in spheroids, together with an increase 
in total respiratory capacity compared to 2D-grown 
cells. There is also a slight increase in complex II activ-
ity in spheroids versus 2D cells, as measured after rote-
none inhibition. Comparatively, HCT116 spheroids have 
significantly lower reserve glycolytic capacity (287% vs 
23%) in spheroids, and higher basal glycolysis (43% vs 
100%) (Fig. 3A). In SW948 spheroids, ATP-linked respi-
ration is significantly higher, 5.5 percentage points (pp) 
(p < 0.0001), but respiratory capacity is 32 pp lower, p < 
0.00001 (Fig. 2D). There is no significant change in glyco-
lytic reserve capacity, but basal glycolysis increases from 
29 to 99% in spheroids (p < 0.00001) (Fig. 3B).

Panc1 spheroids increase in respiratory metrics but this 
change (16.5 pp) is only significant for ATP-linked respi-
ration, p < 0.05 (Fig. 2E). Like HCT116, glycolytic reserve 
capacity drops significantly in spheroids compared to 
2D, p < 0.00001 (Fig. 3C) from 521% to 21%. With this, 
basal glycolysis increases from 58 to 95%, p < 0.00001. 
MIA-Pa-Ca-2 spheroids have significantly higher respira-
tory metrics, p < 0.00001 (Fig.  2F). ATP-linked respira-
tion increases 34pp, respiratory capacity increases 46 pp, 
and complex II activity increases 6 pp. Reserve glycolytic 
capacity increases in MIA-Pa-Ca-2 spheroids (Fig.  3D), 
but not significantly as there is a high amount of varia-
tion between the individual samples. Basal glycolysis 
increases significantly (8 pp, p < 0.05).

Fig. 1  Cell line proliferation in 2D and spheroid growth. Proliferation of cells in 2D was measured by direct cell counting in a flat-bottom 96-well 
plate over a period of 5 days, starting cell number of 5000 cells (n = 3 wells): HCT116 (A), SW948 (C), Panc1 (E), MIA-Pa-Ca-2 (G). For spheroid growth 
measurements, 5000 cells were seeded in different amounts in ultra-low-attachment round bottom plate and then imaged from days 3-8 (n = 10 
spheroids, 1 per well): HCT116 (B), SW948 (D), Panc1 (F), MIA-Pa-Ca-2 (H). Measured area is plotted and error bars indicate standard deviation

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Except for SW948, the other cell lines all trend to 
higher respiratory activity in 3D culture (increase in 
ATP-linked respiration, respiratory capacity, and com-
plex II activity). ATP-linked respiration in 3D is signifi-
cantly higher in all cell lines. Changes in total glycolytic 
capacity between 2D and 3D are more varied. HCT116 
and Panc1 exhibit changes in the same direction for both 
respiration and glycolysis, but not on the same scale. 
However, the 3D models of all the cell lines demonstrate 
lower OCR/ECAR than their 2D counterparts, reflecting 
a more glycolytic phenotype. When combining 2D and 
3D samples, ATP-linked respiration is negatively corre-
lated to basal OCR/ECAR (Fig. 2E) (− 0.837, p = 0.0096), 
so the lower the OCR/ECAR, the more respiration is 
linked to ATP production.

Spheroids depend on glycolysis for the majority of ATP 
production
Percent of ATP production from glycolysis and oxida-
tive phosphorylation (OXPHOS) was calculated using 
results from the Seahorse assays (Eqs. 1–6), as described 
in Mookerjee et al. [30]. Table 1 and Fig. 4 show the cal-
culated percent non-aerobic ATP production (Eq.  7) in 
2D and 3D cultures at measurements with no glucose 
added (basal), after glucose injection (glucose), and after 
oligomycin injection (oligo). The data generated from 
this assay allows the quantification of bioenergetic phe-
notypes of the cell models [30]. The Crabtree Index (CI) 
quantifies the shift away from OXPHOS upon addition 
of glucose (Eq.  8). The Pasteur Index (PI) describes the 
shift to OXPHOS upon ‘removal’ of ATP-synthase inhibi-
tor oligomycin (Eq. 9). This reflects the flexibility of the 
cells to shift their metabolism to glycolytic from oxidative 
pathways depending on acute changes in the availability 
of glucose and oxygen. These phenotypes are not to be 
compared to the Warburg effect, which is a description of 
a chronic metabolic phenotype, and is best represented 
by just the glycolytic index (GI) in the presence of glu-
cose, where a chronic Warburg phenotype would be that 
over 50%. HCT116 spheroids are significantly more glyc-
olytic in all measurements of the assay, p < 0.00001 (basal 
and glucose) and p < 0.0001 (oligo) (Fig.  4A). SW948 
(Fig. 4B) only differ between 3D and 2D at the basal stage. 
After glucose and oligomycin, SW948 use glycolysis 

for ATP production at about the same percentage. Like 
HCT116, Panc1 spheroids are significantly more glyco-
lytic at every stage of the assay, p < 0.00001 (Fig. 4C). In 
contrast to the other cell lines, MIA-Pa-Ca-2 are more 
glycolytic in 2D after glucose injection, but at basal, they 
do not differ significantly (Fig.  4D). However, after oli-
gomycin, MIA-Pa-Ca-2 are significantly more glycolytic 
in 3D. The level of ATP production from glycolysis after 
oligomycin in 2D MIA-Pa-Ca-2 culture stands out as the 
lowest of all the cell lines; any activity remaining after oli-
gomycin is due to substrate-linked phosphorylation from 
the TCA cycle not linked to OXPHOS. The spheroids all 
exhibit a lower CI, lower PI, and higher GIglucose com-
pared to 2D, with the exception of MIA-Pa-Ca-2 which 
have higher PI and GIglucose in 3D.

Differential expression of proteins involved in metabolism 
in 2D versus 3D cultures
The expression levels of relevant metabolic proteins were 
analyzed using flow cytometry to investigate their poten-
tial role as markers to support or explain the results of 
the metabolic flux assays. This includes the major mem-
brane proteins involved in nutrient transport represented 
by glucose transporter 1 (GLUT1), monocarboxylate 
transporter 1 (MCT1), and monocarboxylate trans-
porter 4 (MCT4) and two mitochondria-associated pro-
teins, translocase of outer mitochondrial membrane 20 
(TOMM20) and uncoupling protein 2 (UCP2). Median 
protein expression is plotted in Fig.  5 and fold differ-
ence of 3D over 2D is added alongside each experimental 
result (histograms for each individual population can be 
found in Figure S5). While there is some inter-run vari-
ation, on average a large increase in MCT transporters 
(MCT1 and/or MCT4) is seen in CRC spheroids, with 
1.438 fold difference in HCT116 in MCT4 and 1.827 
(MCT1) and 1.280 (MCT4) fold difference in SW948. 
Panc1 spheroids demonstrate opposite expression level 
changes in these transporters, with higher expression in 
MCT1 (1.558) and lower expression in MCT4 (0.788). 
MCT1 expression varies over experimental replicates in 
MIA-Pa-Ca-2 although there is an average increase and 
MCT4 expression is on average unchanged between 2D 
and 3D. Little change is seen in GLUT1 in CRC while 
in PDAC, conflicting changes in expression are seen 

(See figure on next page.)
Fig. 2  Results from Mitochondrial Stress Test assays in 2D and 3D by cell line. A Seahorse set-up for 2D analysis. B Seahorse set-up for 3D analysis. 
Mitochondrial Stress Test (MST) traces (left and middle rows) present OCR data normalized to the maximum basal value of each sample. Dotted 
vertical lines indicate injections in the following order: oligomycin, CCCP, rotenone, antimycin A. Metrics from the MST (right row) include ATP-linked 
respiration (OCR basal max–oligomycin min), total respiratory capacity (maximum OCR after CCCP), complex I activity (OCR CCCP–rotenone) and 
complex II activity (OCR rotenone–antimycin A). 2D results are in blue and 3D results are in red. Error bars represent SEM. C HCT116, 2D n = 56 and 
3D n = 38. D SW948, 2D n = 60 and 3D n = 37. E Panc1, 2D n = 57 and 3D n = 4. F MIA-Pa-Ca-2, 2D n = 54 and 3D n = 47. Statistical significance 
was determined using multiple t tests, correction for multiple comparisons by the Holm-Sidak method, with alpha = .05. p < 0.05: *, p < 0.001: **, p 
< 0.0001: ***, p < 0.00001: ****
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Fig. 2  (See legend on previous page.)
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between runs. TOMM20 expression is lower across 
all cell lines in 3D culture. UCP2 increases in SW948 
(1.677) and MIA-Pa-Ca-2 (1.231), while HCT116 exhib-
its a decrease in UCP2 (0.759). The forward scattering 
detected for each cell sample, an indication of cell size, 
differs between the 2D and 3D samples. The cells dissoci-
ated from the spheroids exhibit a lower median forward 
scattering and an increase in variation coefficient (except 
in HCT116), a reflection of greater distribution in sphe-
roid cell size (Table S1).

Substrate consumption is similar between 2D and 3D 
culture conditions
All the experiments here have been carried out in low glu-
cose as this is one way to achieve a more physiological cell 
culture environment. To ensure the cultures are not being 
starved of nutrients and for more insight into nutrient 
utilization, the levels of glucose, glutamine, and lactate in 
the culture media were tested (Fig. 6). All cell lines exhibit 
higher glucose consumption, lactate production, and glu-
tamine consumption in 2D cultures when comparing 
absolute levels (Figure S6). However, when normalizing to 
surface area exposed to media, consistent differences disap-
pear. HCT116 in 3D has almost double the amount of glu-
cose consumed per mm2 than in 2D, but the other cell lines 
are quite similar between 2D and 3D cultures. The increase 
in HCT116 in 3D is also present for glutamine consump-
tion and lactate production. MIA-Pa-Ca-2 in 3D con-
sumes more glutamine per mm2 than in 2D and Panc1 in 
3D produces almost twice as much lactate as in 2D. This is 
especially large considering there is no increase in glucose 
consumption in 3D. Finally, despite being cultured in physi-
ological glucose, the cells are not being starved of glucose, 
even over 4 days without media exchange (Figure S6), with 
final concentrations never less than 1.1 mmol.

Discussion
There are few published studies analyzing 3D spheroid 
metabolic flux. Metabolic phenotype data from literature 
is difficult to compare as nutrient conditions, experimen-
tal design, and metrics presented differ between studies. 
We find that glucose metabolism in 3D spheroids dif-
fers significantly from what is measured in 2D cultures, 
both in terms of glycolytic and oxidative phosphorylation 

metrics in both CRC and PDAC. Other papers publishing 
both metabolic flux data and spheroid experiments have 
largely just run metabolic analysis on the 2D cultures 
used to produce the spheroids [32]. Our data clearly indi-
cate that these data are not transferrable between culture 
methods as the metabolic phenotype shift from 2D to 3D 
culture in one cell line is greater than the phenotypic dif-
ferences between each cell line and tumor source.

We found that spheroids have higher non-aerobic ATP 
production in the absence of added glucose compared to 
2D grown cells. The calculations of ATP production are 
based on assumptions that no other nutrients are pro-
vided and any ATP production without glucose is due to 
glycogen metabolism [30]. In our experiments, the cell 
growth media contained glutamine which also serves as a 
metabolic substrate, and thus complicates the simplified 
model presented by Mookerjee et al. [30]. However, this 
retained non-aerobic ATP production was not found in 
the 2D cultures grown in the same glutamine-enriched 
media. As the majority of glutamine consumed is metab-
olized via glutaminolysis to lactate [5] and therefore also 
contributes to ECAR, this may explain the continuous 
increase in ECAR from the 3D spheroids in glucose-
free conditions. In low-oxygen conditions, as found in 
the core of large spheroids, glutamine also makes aero-
bic glycolysis more effective and can sustain cell growth 
even as the exclusive substrate [33]. In support of this, we 
found that there was a decrease in glutamine concentra-
tion in the cell media for our 2D and 3D grown cell lines, 
although the 3D spheroids seem to be better at exploit-
ing this substrate for energy conversion in glucose-free 
conditions. Furthermore, glycogen is a possible substrate, 
as pre-supposed in the Mookerjee model. HCT116 sphe-
roids have been shown to have much higher percentage 
of cells in arrested growth (G0/G1) and higher expression 
of glycogen enzymes than cells in 2D culture [34]; glyco-
gen has been found at higher amounts in more quiescent 
cells [35] which could explain this potential connection. 
The high level of ECAR seen in the glucose-free condi-
tion was an unexpected result and warrants more investi-
gation to pinpoint plausible causes.

Upon analyzing mitochondrial function, we found that 
spheroids had higher ATP-linked respiration than the cor-
responding 2D cultured cells. For standard 2D cell growth, 

Fig. 3  Results from Glycolysis Stress Test assays in 2D and 3D by cell line. Glycolysis Stress Test (GST) traces (left and middle rows) present ECAR data 
normalized to the ECAR of each sample after glucose injection. Dotted vertical lines indicate injections in the following order: glucose, oligomycin, 
2-DG. Metrics from the GST (right row) include basal ECAR without glucose and total glycolytic capacity (maximum ECAR after oligomycin). 2D 
results are in blue and 3D results are in red. Error bars represent SEM. A HCT116, 2D n = 57 and 3D n = 25. B SW948, 2D n = 55 and 3D n = 47. C 
Panc1, 2D n = 54 and 3D n = 10. D MIA-Pa-Ca-2, 2D n = 25 and 3D n = 46. Statistical significance was determined using multiple t tests, correction 
for multiple comparisons by the Holm-Sidak method, with alpha = 0.05. p < 0.05: *, p < 0.001: **, p < 0.0001: ***, p < 0.00001: ****. E ATP-linked 
respiration (% of basal respiration) vs basal OCR/ECAR, with 3D in red and 3D in blue. Simple linear regression, R2 = 0.7004, with dotted bands 
showing 95% confidence interval. Pearson correlation = − 0.837, p = 0.0096

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Table 1  ATP Production (%) from glycolysis

Glycolytic Index (GI) and bioenergetic phenotypes calculated from Seahorse assay data [30]. GIbasal is before supplementation with glucose, GIglucose is after 
supplementation with glucose, and GIoligo is after injection with oligomycin. Crabtree Index (CI) = GIglucose – GIbasal. Pasteur Index (PI) = GIoligo – GIglucose

Cell line Method GIbasal CI GIglucose PI GIoligo

HCT116 2D 4.4 ± 3.4% 26.8 31.2 ± 4.3% 67.2 98.4 ± 0.2%

3D 55.7 ± 14.8% 1.7 59.4 ± 10.2% 29.7 99.1 ± 1.2%

SW948 2D 3.4 ± 3.3% 52.7 56.1 ± 4.9% 41.8 97.9 ± 0.6%

3D 47.4 ± 13.5% 10.3 57.7 ± 9.9% 39.7 97.4 ± 1.6%

Panc1 2D 9.0 ± 4.5% 22.5 31.5 ± 4.1% 65.9 97.4 ± 0.5%

3D 58.9 ± 17.5% 17.0 75.9 ± 13.7% 23.3 99.2 ± 0.6%

MIA-Pa-Ca-2 2D 17.5 ± 14.6% 28.7 46.2 ± 9.3% 45.3 91.5 ± 6.5%

3D 20.7 ± 6.8 19.0 39.7 ± 9.4% 59.0 98.7 ± 0.8%

Fig. 4  ATP production from glycolysis. Percentage of total ATP produced that is attributed to glycolysis was calculated using metrics from Seahorse 
assays in 2D (blue) and 3D (red) over 2 independent experiments: A HCT116, 2D n = 57 and 3D n = 25. B SW948, 2D n = 55 and 3D n = 47. C 
Panc1, 2D n = 54 and 3D n = 10. D MIA-Pa-Ca-2, 2D n = 51 and 3D n = 46. Basal is without glucose, glucose is after the addition of glucose, and 
oligo is after oligomycin injection. Points represent the mean value over all wells, error bars are standard deviation. Statistical significance was 
calculated by unpaired t test, multiple comparisons (two-stage linear step-up procedure of Benjamin, Krieger and Yekutieli, FDR 1%): p < 0.05: *, p < 
0.001: **, p < 0.0001: ***, p < 0.00001: ****
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HCT116 is generally known to be highly metabolically 
active and oxidative [21]. In contrast, we have previously 
found that SW948 is more glycolysis-dependent than 
oxidative in 2D [36]. The pancreatic cell lines Panc1 and 
MIA-Pa-Ca-2 have previously been found to be lipogenic/
oxidative [21] and glycolytic, respectively [20, 37]. We do 
find that these relative phenotypes persist in our physi-
ological glucose setting for our 2D grown cells, however 
in 3D all shift to a more glycolytic phenotype. As such, 
2D metabolic analysis cannot substitute for 3D analysis, 
as agreed by others in field [18, 38, 39], and needs to be 
acknowledged when screening for response to metabolic 
drugs. Only a few peer-reviewed studies are published 

that have run Seahorse assays for metabolic flux analy-
sis of spheroids [18, 40, 41]. One used HCT116, show-
ing increased spare respiratory capacity over 2D [42], in 
agreement with our results in HCT116 and the two PDAC 
cell lines in this study. Other metabolic phenotype data 
from literature is difficult to compare as nutrient condi-
tions, experimental design, and metrics presented are 
too diverse. Despite some variation due to these factors, 
some repeated findings in 3D metabolism studies include 
increased glycolytic activity compared to monolayer cul-
tures [38, 39, 43], phenotypic heterogeneity [44], and uti-
lization of other nutrient sources than glucose [16, 39]. 
Reduction in levels of ATP-synthase subunits in spheroids 
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[38] could be related to the increased ATP-linked respi-
ration and reduced sensitivity to oligomycin seen in the 
presented study and elsewhere [18]. The increase in ATP-
linked respiration in more glycolytic phenotypes (lower 
OCR/ECAR) could be due to an increased need for ATP-
production efficiency in the mitochondria to compensate 
any lost ATP production in the shift to ATP-inefficient 
glycolysis. Alternatively, and more in line with the changes 
seen in absolute values, the lower OCR/ECAR could be a 
reflection of a decrease in OXPHOS, increasing the rela-
tive amount of glycolysis, with the remaining respiration 
more efficiently linked to ATP.

Changes in metabolism between 2D and 3D extend 
beyond functional phenotypes, and several metabolic 
biomarkers can be assessed. We found that mitochon-
drial transport protein, TOMM20, expression decreases 
in all spheroids compared to 2D, and monocarboxylate 
transporter (MCT) expression increases in spheroids of 
HCT116, SW948, and Panc1 that differ significantly from 
2D in basal glycolysis. The change in TOMM20 could be 
related to the increase in mitochondrial ATP-coupling as 
TOMM20 overexpression has shown to affect prolifera-
tion of colorectal cancer, impacting ATP production and 
mito-potential [45]. Furthermore, the expression could 
reflect the cell size; however, the dissociated cells from 
3D are only marginally smaller on average and may not 
fully explain the great difference in TOMM20 expres-
sion, especially in HCT116 and MIA-Pa-Ca-2. Whereas 
the change in expression of MCT between 2D and 3D 
cultures is variable between the cell lines, the results are 
interesting from the perspective of intra-spheroid nutri-
ent cooperation. The spheroid models that do exhibit a 
change in expression compared to 2D are those that form 
more “spherical” 3D spheroids (Figure  S1). Compared 
to 2D, MCT1 in spheroids is increased in SW948 and 

PANC1, while MCT4 is increased in the CRC cell lines, 
HCT116 and SW948. MCT4 is associated with glycolytic 
metabolism [46] and oxidative stress [47], whereas MCT1 
and TOMM20 are markers of tumor areas that are prolif-
erative and mitochondria-rich [47]. MIA-Pa-Ca-2 does 
not show clear change in MCT expression; these results 
are more variable in the biological replicates, and this cell 
line produces very flat and easily dissociated spheroids. 
A dynamic expression of nutrient and waste transport-
ers based on a complex interplay between neighboring 
cells have previously been shown upon investigation of 
the MCT expression in cancer associated fibroblasts and 
cancer cells [48]. This could explain why spheroids with 
low cell to cell attachment may affect the expression of 
these receptors by nutrient signaling [49].

Despite the significant shift to glycolysis in the sphe-
roid cultures shown in the present study, the expression of 
GLUT1 did not show the same significant change between 
2D and 3D cultures. Increased GLUT1 expression has been  
associated with cancer aggressiveness [50–52], and many 
studies point to the possibility of GLUT1 as a prognos-
tic marker [53]. However, these studies typically compare 
expression between cancer and normal tissues. Upon com-
parison of different cancer cell line models in 2D and 3D 
cultures, we found that GLUT1 protein expression in vitro 
was highly variable between 2D and 3D and not consistent 
nor directly correlated to the metabolic profile of the cell 
lines. The changes in glycolysis and corresponding glucose 
demand between the models may not be as extreme as that 
between normal to cancer cells, thus not inducing a sig-
nificant change in GLUT1 expression. However, Vyas et al. 
have found GLUT1 gene expression significantly increased 
in HCT116 spheroids compared to 2D culture [34]. GLUT1 
is the ubiquitous glucose transporter [54] and has a high-
affinity to glucose (1–2 mM) [55]. We have previously 

Fig. 6  Glucose, lactate, glutamine levels in culture media from 2D and 3D cultures. Culture media was collected over a period of 4 days and levels 
of metabolites were measured in 2D (blue) and 3D (red) cultures and presented as mean level per media-exposed surface area (mm2). A Total 
glucose consumed, mean of 2 samples. B Total glutamine consumed (μmol), mean of 3 pooled samples. C Total lactate produced (μmol), mean 2 
samples. Error bars represent standard deviation
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found that different glucose conditions significantly affect 
GLUT1 expression in 2D [36]. However, as none of these 
models reached a level of extracellular glucose below 1 mM, 
this is not expected to effect GLUT1 expression. GLUT3 
has a high glucose affinity [55] and has also been identified 
as a potential prognostic marker in cancer survival [56]. 
It is worth consideration if it has alternative potential as a 
sensitive detector of intracellular glucose demand. Levels 
of both glucose and lactate are vital for the survival of can-
cer cells in three-dimensional settings; thus, the transport-
ers controlling these are worth further investigation [39]. 
Despite the extracellular levels of glucose measured at 1 
mM, we surmise that the glucose may be exhausted in the 
core of the spheroid due to natural gradients and diffusion, 
as expected in such a model [9–11]. This plus an assumed 
low oxygen partial pressure in the spheroid core may be 
driving necrosis [57] and related to the metabolic changes 
seen here.

This study is primarily limited by the few cell lines 
included. Studying more cell lines and including 
tumor-derived organoids can provide a more complete 
view of the variation among 3D models and correlation 
with markers. Other improvements include section-
ing spheroids and performing immunohistochemistry 
for localization of protein expression [58, 59]. Another 
option is layered removal of spheroids [60] for flow 
analysis; however, the dissociation of the spheroids 
here before fixation could be the source of some of the 
variability in protein expression. Even though the dis-
sociation reagent used is quite gentle, some spheroids 
incubate for long time periods and this could influence 
protein expression, especially for very dynamic markers 
such as UCP2 [61]. Finally, an enhanced model of sphe-
roid metabolism would include more physiological cul-
ture medium [62, 63], co-culture, and embedding in a 
matrix, but a matrix can present further challenges for 
analysis. Additionally, carbon tracing of glucose offers 
the ability to directly monitor metabolic flux and how 
glucose is being processed through the cells. Finally, 
modulation of expression of the markers via knock-
down would add insight to how they directly affect the 
metabolic phenotypes.

Conclusions
We find that metabolism changes significantly when cells 
are cultured in 3D, compared to 2D. In our data, spheroids 
demonstrate an increase in glycolytic activity over mon-
olayer cultures, and the complexity of the 3D culture envi-
ronment allows for improved utilization of other nutrient 
sources than glucose for ATP production. Spheroids 
have higher ATP-linked respiration in standard nutri-
ent conditions and higher non-aerobic ATP production 
in the absence of supplemented glucose. Mitochondrial 

transport protein, TOMM20, expression decreases in all 
spheroid models compared to 2D, and monocarboxy-
late transporter expression increases in 3 of the 4 sphe-
roid models. To our knowledge, the presented study is 
the most robust analysis comparing 2D and 3D spheroid 
metabolism using live metabolic flux measurements. 
Our results show that investigation of cancer metabolism 
should focus on using more complex 3D in vitro cell mod-
els to expand our knowledge within this field and gain a 
better understanding of the applicability to tumor biology. 
Even more importantly, the recent surge in screening and 
repurposing established metabolic drugs for cancer treat-
ment should be done in 3D cell models to improve the 
translation into in vivo tumor settings.
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Additional file 1: Figure S1. Morphology of cell lines. 2D adherent (top) 
and 3D spheroid (bottom) cultures. (Spheroid size for detail, not to scale). 
Figure S2. Spheroid growth over several days and with varying starting 
cell number, shown from day 3 after spheroid preparation. Transmitted 
light confocal images, 5X objective (each image is 750x750 um). Figure 
S3. Seahorse XFp is a viable option for low replicate studies of spheroid 
metabolism, depending on spheroid morphology. OCR data from Mito 
Stress Test of spheroids analyzed in Seahorse XFp are shown compared 
to data from Seahorse XF96. The OCR values relative to basal do not differ 
greatly in the CRC models, (A) HCT116 (n=4) and (B) SW948 (n=5), how-
ever PDAC models were more challenging. (C) Signal from Panc1 (n=4) 
may be increased by using larger spheroids or longer culture of the same 
starting cell number. (D) MIA-Pa-Ca-2 (n=3) exhibit a flatter spheroid mor-
phology which presents an issue in the normal Seahorse culture plates, 
as they lack the special machining of the XF96 spheroid plates that help 
capture the spheroids and flow fluid around and up the sides of the wells. 
The movement of these spheroids may be avoided with different coating 
prior to transfer of the spheroids. Figure S4. Protein-normalized OCR and 
ECAR values in 2D and 3D. (A) OCR from MST in 2D. (B) OCR from MST in 
3D. (C) ECAR from GST in 2D. (D) ECAR from GST in 3D. Figure S5. Overlaid 
histograms of protein expression. By cell line, all runs, to show relative 
magnitudes and expression distribution of the cell populations. Showing 
normalized peak values to 1000 events. Figure S6. Metabolite levels 
relative to starting amount. (A) Glucose levels in CRC cell lines. (B) Lactate 
levels in CRC cell lines. (C) Glutamine levels in CRC cell lines. (D) Glucose 
levels in PDAC cell lines. (B) Lactate levels in PDAC cell lines. (C) Glutamine 
levels in PDAC cell lines. Blue is 2D, Red is 3D. Error bars represent standard 
deviation. Table S1. Forward scatter intensity from flow cytometry experi-
ments. Cells from spheroids exhibit lower intensity of forward scattering 
and a higher coefficient of variation. Experimental replicates 1 and 2 were 
performed on BioRad S3e and replicate 3 on CytoFlex. The large difference 
in forward scattering magnitudes between these runs are due to the 
difference in detector sensitivities between the instruments. Table S2. 
Seahorse CCCP concentrations. Final concentration of CCCP in the wells 
during Seahorse assays for each cell line in 2D and 3D, based on titration 
over a range of concentrations yielding the maximum OCR values.
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